

Object-Oriented Analysis
and Design for

Information Systems

This page intentionally left blank

Object-Oriented Analysis
and Design for

Information Systems
Modeling with UML, OCL,

and IFML

Raul Sidnei Wazlawick

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Andrea Dierna

Editorial Project Manager: Kaitlin Herbert

Project Manager: Punithavathy Govindaradjane

Designer: Matthew Limbert

Morgan Kaufmann is an imprint of Elsevier

225 Wyman Street, Waltham, MA, 02451, USA

r 2013 Elsevier Editora Ltda.

Copyright r 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or any information storage and retrieval system, without permission in writing from

the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be

found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as

may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our

understanding, changes in research methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any

information or methods described herein. In using such information or methods they should be mindful of their own

safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for

any injury and/or damage to persons or property as a matter of products liability,negligence or otherwise, or from

any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-418673-6

Printed in the United States of America

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

For information on all MK publications

visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://www.mkp.com

This book is dedicated to my parents and ancestors; without them I would not exist.

This page intentionally left blank

Contents

Acknowledgments ... xv

About the Author ... xvii

Foreword ... xix

Preface .. xxi

CHAPTER 1 Introduction.. 1
1.1 This book ..1

1.2 Object-oriented systems development..2

1.3 Unified Modeling Language (UML)..3

1.4 Unified Process (UP) ..3

1.5 The process so far...6

1.6 Questions...6

CHAPTER 2 Business Modeling.. 7
2.1 Introduction to business modeling ...7

2.2 General view of the system..9

2.3 Business use cases ..13

2.3.1 Business actors and business workers..15

2.3.2 Automation opportunities ...15

2.4 Business activity diagram...18

2.4.1 Basic elements ..18

2.4.2 Control flow nodes ...20

2.5 State-dependent aspects of a business..23

2.6 Remarks ..27

2.7 The process so far...27

2.8 Questions...28

CHAPTER 3 High-Level Requirements ... 29
3.1 Introduction to high-level requirements...29

3.2 System actors ..30

3.3 System use cases...31

3.3.1 Single session..33

3.3.2 Interactive ...35

3.3.3 Consistent result ...35

3.3.4 Essential ..36

3.3.5 Brief ..37

3.3.6 System boundary ..37

3.4 How to find system use cases in the business model ..38

3.5 Requirements ..41

3.5.1 Requirements elicitation...41

3.5.2 Eliciting requirements is not design! ...42

3.5.3 Requirements challenges ..44

3.5.4 Evident and hidden functional requirements ...45

3.5.5 Nonfunctional requirements ...45

3.5.6 Permanence and transience of nonfunctional requirements46

3.5.7 Mandatory and desired requirements ...47

3.5.8 Supplementary requirements ..47

3.6 Preliminary conceptual model..52

3.7 The process so far...57

3.8 Questions...57

CHAPTER 4 Use Case Based Project Planning (Online Chapter) 59

CHAPTER 5 Expanded Use Cases... 61
5.1 Introduction to expanded use cases..61

5.2 Main flow..62

5.3 Alternate flows..64

5.3.1 Scenarios ...65

5.3.2 Variants ...66

5.3.3 Exception handling ...69

5.4 Writing recommendations ..74

5.4.1 Essential versus real use case...75

5.4.2 Explicit information..76

5.4.3 Identification and selection ..77

5.4.4 Mandatory steps..77

5.4.5 Complementary steps ...81

5.4.6 Unsuitable steps ..82

5.5 Included use cases and fragments ..83

5.6 Expansion of stereotyped use cases ...84

5.6.1 Report expanded ...85

5.6.2 CRUD expanded...86

5.7 Other sections of an expanded use case...89

5.7.1 Stakeholders..91

5.7.2 Preconditions ..91

5.7.3 Success post-conditions ..92

5.7.4 Open issues ...92

5.8 System sequence diagrams ...92

5.8.1 Elements of a sequence diagram..93

5.8.2 Expanded use cases as system sequence diagrams..95

viii Contents

5.8.3 Connecting the interface to the façade-controller..97

5.8.4 Stateless strategy...101

5.8.5 Stateful strategy ..103

5.8.6 Alternate flows in system sequence diagrams ...104

5.9 The process so far...110

5.10 Questions...111

CHAPTER 6 Conceptual Modeling: Fundamentals ... 113
6.1 Introduction to conceptual modeling ...113

6.2 Attributes...115

6.2.1 Attribute types ..116

6.2.2 Initial values ...116

6.2.3 Derived attributes ...117

6.2.4 Enumerations ..118

6.2.5 Primitive types ..119

6.3 Concepts..120

6.3.1 Unique attributes...121

6.3.2 System control class ...121

6.4 Associations ..122

6.4.1 Role multiplicity ...124

6.4.2 Association direction ..126

6.4.3 Derived association...126

6.4.4 Aggregation and composition ..129

6.4.5 n-ary associations ...130

6.5 Collections ..132

6.5.1 Set ...133

6.5.2 Ordered set..134

6.5.3 Bag ..134

6.5.4 Sequence ...134

6.5.5 Map ...135

6.5.6 Partition...136

6.5.7 Relation...137

6.6 Organization of the conceptual model ...138

6.6.1 Generalization, specialization, and inheritance ...139

6.6.2 Association classes ...141

6.6.3 Modal classes..144

6.7 Invariants...149

6.8 Iterative construction of the conceptual model..152

6.8.1 How to find concepts and attributes ..152

6.8.2 Dependent and independent concepts ..156

6.8.3 How to find associations ..157

6.8.4 Example of iterative construction of the conceptual model........................159

ixContents

6.9 The process so far...162

6.10 Questions...163

CHAPTER 7 Conceptual Modeling: Patterns... 165
7.1 Introduction to conceptual model patterns...165

7.2 High cohesion ...165

7.3 Specification classes ...168

7.4 Quantity...170

7.5 Measure...171

7.6 Strategy ...172

7.7 Composite ...173

7.8 Organizational hierarchy ..174

7.9 Object joining ...175

7.9.1 Copy and replace ..176

7.9.2 Superseding...176

7.9.3 Essence/Appearance ...177

7.9.4 Undoing a join ..177

7.10 Account/Transaction ...178

7.11 Range ..182

7.12 Temporal patterns ...183

7.12.1 Effectivity ...185

7.12.2 History...185

7.12.3 Temporal ...186

7.12.4 Bitemporal ..187

7.13 Discussion ...189

7.14 The process so far...189

7.15 Questions...190

CHAPTER 8 Functional Modeling with OCL Contracts... 193
8.1 Introduction to functional modeling...193

8.2 Preconditions...196

8.2.1 Parameter guarantee ...197

8.2.2 Complementary constraints ..198

8.2.3 Precondition assurance ...199

8.2.4 Preconditions and exceptions versus invariants...200

8.3 Transient associations...200

8.4 Query return..201

8.5 Postconditions ...203

8.5.1 Changing an attribute value..205

8.5.2 Creating an instance ...206

8.5.3 Adding a link ..207

x Contents

8.5.4 Destroying an instance ...209

8.5.5 Removing a link ...209

8.5.6 Well-formed postconditions ...210

8.5.7 Combinations of Postconditions...211

8.5.8 Former values ...212

8.5.9 Postconditions covering collections of objects ..213

8.5.10 Postconditions and real-world events...214

8.6 Exceptions...214

8.7 Pattern contracts for CRUD ...216

8.7.1 Create contract ...217

8.7.2 Update contract...218

8.7.3 Delete contract..218

8.7.4 Retrieve contract ...221

8.8 Pattern contracts for listing objects..222

8.9 Contracts related to use cases...223

8.10 The process so far...224

8.11 Questions ..225

CHAPTER 9 Domain Tier Design... 227
9.1 Introduction to domain tier design ...227

9.2 Object responsibility distribution ...229

9.3 Visibility ...232

9.3.1 Visibility by association ...232

9.3.2 Visibility by parameter...240

9.3.3 Locally declared visibility ..242

9.3.4 Global visibility ..244

9.4 Dynamic modeling based on postconditions ...245

9.4.1 Instance creation ...246

9.4.2 Link addition...249

9.4.3 Attribute value modification ..250

9.4.4 Instance destruction ..250

9.4.5 Removing and replacing a link ..251

9.4.6 Conditional postconditions ...253

9.4.7 Exceptions...255

9.4.8 Postconditions over collections ..255

9.5 System queries ..257

9.6 Delegation and low coupling..259

9.7 Design class diagram..262

9.8 The process so far...265

9.9 Questions...267

xiContents

CHAPTER 10 Code Generation (Online Chapter) .. 269

CHAPTER 11 Testing .. 271
11.1 Introduction to testing ..271

11.2 Functional testing ...272

11.2.1 Equivalence partitioning.. 272

11.2.2 Limit value analysis... 274

11.3 Stubs and drivers ..274

11.4 Test-driven development ..275

11.5 Unit testing ...276

11.6 System operations testing...280

11.7 Use case testing (System, acceptance, and business cycle tests)282

11.8 The process so far...285

11.9 Questions ..288

CHAPTER 12 Interface Tier Design with IFML.. 289
12.1 Introduction to interface tier design...289

12.2 Interaction flow modeling language (IFML) ...289

12.3 View components ...290

12.3.1 Details .. 291

12.3.2 Multiple details .. 293

12.3.3 Simple list .. 294

12.3.4 List ... 295

12.3.5 Checkable List ... 297

12.3.6 Forms ... 297

12.3.7 Hierarchies ... 298

12.4 Pages ...301

12.5 Flows...302

12.5.1 Normal navigation flow... 302

12.5.2 Data flow ... 304

12.5.3 Parameter binding.. 304

12.5.4 Multivalued parameter binding ... 305

12.6 Hypertext organization ...305

12.6.1 Site views... 307

12.6.2 Areas .. 308

12.6.3 Home, landmark, and default .. 309

12.7 Web Interface Patterns ...309

12.7.1 Cascade Index.. 309

12.7.2 Filtered index... 312

12.7.3 Guided tour .. 313

12.7.4 Viewpoints ... 313

xii Contents

12.7.5 Overview plus detail.. 313

12.7.6 Top-level navigation.. 314

12.8 Modeling operations in the interface ...317

12.8.1 Create operation... 319

12.8.2 Delete operation... 319

12.8.3 Update operation.. 322

12.8.4 Connect, disconnect, and reconnect operations 323

12.9 IFML models for CRUD operations..325

12.10 Use case interface modeling with IFML ...329

12.11 The process so far ..332

12.12 Questions ..334

CHAPTER 13 Data Persistence (Online Chapter) ... 335

Postface .. 337

References.. 339

Index .. 343

xiiiContents

This page intentionally left blank

Acknowledgments

I wish to thank some people that in some way helped me to make this book possible: Prof. Luiz

Fernando Bier Melgarejo, for introducing me to the world of object-oriented systems back in 1987;

my colleague Prof. Marcos Eduardo Casa, for all his work in developing pair programming back in

the 1980s when object-oriented concepts were regarded as “something from another planet”; my

colleague Prof. Antonio Carlos Mariani, for developing the Actors World, a tool that helped us

teach object-oriented programming; the companies that allowed the use of the techniques explained

in this book in a real production environment; my advisees Everton Luiz Vieira, Kuesley Fernandes

do Nascimento, and Iuri Cardoso for helping me consolidate some of the new techniques; the

Department of Informatics and Statistics (INE) of the Federal University of Santa Catarina (UFSC),

for the opportunity to develop this work; and especially software engineer Gilmar Purim, for the

fruitful discussions that helped to define the shape of the first version of this book in 2003.

I wish to thank also the more than one thousand students, who I refrain from nominating, vic-

tims of my course on Object-Oriented Analysis and Design for two decades � their doubts, misun-

derstandings, and difficulties motivated me to research and learn even more; my friend, Prof.

Rogério Cid Bastos, for providing orientation and motivation; and finally my friends and brethren,

for the moments of joy and fraternity.

xv

http://dx.doi.org/10.1016/B978-0-12-418673-6.00017-X

This page intentionally left blank

About the Author

Raul Sidnei Wazlawick is an Associate Professor of Computer Science at UFSC, in Florianópolis,

Brazil. He has received a Bachelor’s and Master’s in Computer Science, and Doctor in Engineering

(1993). Wazlawick was chair of the IFIP Working Group on Informatics and ICT in Higher-

Education, trustee of the Brazilian Computer Society, general chair of the Brazilian Symposium on

Software Engineering (2006), and co-chair of the IFIP World Conference on Computers in

Education (2009). He has published three textbooks in Portuguese and about 100 papers. His field

of experience includes object-oriented systems, with which he has worked since 1986. Wazlawick’s

main research interest is object-oriented software engineering. He is currently (2012�2015) head-

ing a software development team that is developing software systems to support the Brazilian pub-

lic health system.1 He often makes presentations at universities, companies, and government

institutions on topics related to software engineering. He also has worked as a software engineering

consultant since the early 1990s.

1http://dab.saude.gov.br/portaldab/esus.php.

xvii

http://dab.saude.gov.br/portaldab/esus.php
http://dx.doi.org/10.1016/B978-0-12-418673-6.00019-3

This page intentionally left blank

Foreword

Because things are often fuzzy at the beginning of a software project, because it is sometimes diffi-

cult to get stakeholders to agree, because required information and functions are often unclear,

because customers have no compunction about requesting systems with frightening complexity and

staggering size, and because it’s so tempting to assume that we already know what is required,

there remains a compelling need for good books that teach software engineers a pragmatic, proven

approach to analysis and design. Raul Wazlawick provides us with such a book.

Over the past 50 years we have seen many methods proposed for analysis and design of com-

puter software, but in my view, the most intuitive and effective adopts an object-oriented mindset.

Remember, analysis and design occur relatively early in the software process at a time when things

are fluid, where iteration is not only common, but mandatory, and where “objects” are often the

most visible of all elements of the problem.

The beauty of the object-oriented paradigm is that it is wonderfully elastic. We can describe

objects that are easily understood by business people at the conceptual level, and then through a

process of iteration and elaboration, refine those objects into much lower levels of abstraction that

technical people can use effectively. In this book, Professor Wazlawick provides us with guidance

for accomplishing this.

Using UML as his notational form, he begins where all good analysts should start—at the

beginning! He provides us with the tools required to understand the problem through a process of

elicitation, elaboration, and representation. He emphasizes use cases, and helps us understand that

they serve as both an excellent mechanism for problem understanding and as a mechanism that can

greatly assist project planning.

He insists that good analysts and good designers must iterate as they develop an increasingly

better and more detailed understanding of the problem. To accomplish this, he provides the reader

with object-oriented techniques and the UML tools to get that job done.

Through the book, a continuing case study is used to provide examples of all analysis and

design techniques. Basic principles are introduced, expanded into a set of workable techniques, and

then used to develop analysis and design representations and models using UML.

During my long professional career, I have met with hundreds of companies and thousands of

software professionals worldwide. Each company and every person has a unique opinion on what

makes software so challenging, and there are as many opinions on how to meet those challenges in

a particular situation. But few software professions would disagree with a very simple statement:

“If you don’t know where you’re going, it is very, very difficult get there.”

Effective methods for analysis and design provide software professionals with a destination and

a road map for getting there. In Object-Oriented Analysis and Design for Information Systems,

Raul Wazlawick provides the tools software professionals need to craft the road map, and as a

consequence, this book helps every reader get where he needs to go.

Roger S. Pressman, Ph.D.

xix

http://dx.doi.org/10.1016/B978-0-12-418673-6.00020-X

This page intentionally left blank

Preface

This book presents, in a deep and didactic way, elements of object-oriented analysis and design for

developing information systems.

The area of software development for information systems has evolved during the last two dec-

ades around the Unified Modeling Language (UML) and the Unified Process (UP), adopted as

international standards by the Object Management Group (OMG). Even agile developing methods

nowadays use object-oriented development as the leading paradigm.

In contrast to some other books in this area, which are organized around the presentation of

UML diagrams and their many possible uses, this book concentrates on the daily analyst’s and

designer’s activities, and it explains how the different diagrams may help them in developing better

systems and developing systems better.

Although the object-oriented culture has more than 40 years of existence, there are still compa-

nies that find it hard to produce good quality software, especially due to the lack of maintainability

and flexibility on the systems they produce. This book presents information and techniques to mini-

mize that deficiency.

The techniques described here were applied with success by the author in many software devel-

opment companies, as well as in research projects at the university level.

This book is intended for computing professionals (analysts, designers, and programmers), and

computer science students, both in undergraduate or graduate studies with at least a basic knowl-

edge of object-oriented development or modeling. Beginners and experienced people will find the

guidance presented in this book useful in improving the quality of their projects. This book was

written to help them achieve the best design possible.

In contrast to what occurs with the waterfall model (Royce, 1970), where analysis and design

activities happen sequentially, iterative models like UP propose that those activities (also called dis-

ciplines) may happen with higher or lower emphasis at any phase.

This book gives more emphasis to the activities that are typically performed by analysts and

designers, including business modeling, requirements engineering, analysis, and design. Other disci-

plines such as project management, implementation, and testing are also referenced. For more

information on other disciplines, books on software engineering such as Pressman (2010) may be

consulted, or books more specific to the Unified Process such as Kruchten (2003).

The goal of the UP Inception phase is to build a general view of the system and its context, and

plan further development. The two main modeling tools for this phase are conceptual modeling

(Chapters 6 and 7) and high-level use cases (Chapter 3). Business modeling (Chapter 2) may be

necessary with more or less emphasis, depending on the project that is going to be developed.

At the end of the Inception phase, high-level use cases may be used as a basis for planning the

rest of the project (Chapter 4). Usually, that planning involves rating use cases as small, medium,

or large (the t-shirt scale) with regard to their complexity, and deciding on their priority. When the

complexity of each use case is known, it is possible to estimate the average time necessary to

develop them (Karner, 1993), and thus, the iterations may be planned as a set of activities that can

be realistically performed with the time available.

xxi

http://dx.doi.org/10.1016/B978-0-12-418673-6.00021-1

The Elaboration phase of UP is performed as a sequence of iterations. Each iteration has a set

of use cases assigned for development.1 Developing an individual use case usually starts with its

expansion into flows (Chapter 5). Optionally, the use case flows may be represented as system

sequence diagrams, in order to help discover system queries and commands that have to be

implemented.

During the Elaboration phase, when the architecture is evolving, the conceptual model

(Chapters 6 and 7) is refined and completed.

System queries and commands may be implemented with a programming language. But the

designer may choose rather to specify contracts for system queries and commands (Chapter 8),

which besides being a higher-level definition for the expected behavior of each procedure, may be

very useful in helping to define test cases (Chapter 11). These contracts correspond to the func-

tional model of the system, because they define the functionality of each query and command in

terms of the input they receive and the results they produce.

At this point, again, the system may be implemented, or its code may be automatically gener-

ated if tools are available. However, if elegant code is desired, it may be helpful to produce a new

set of diagrams (sequence or communication diagrams) for each of the system operations

(Chapter 9). Those diagrams indicate how the different objects will exchange messages in order to

distribute responsibilities and attain the desired postconditions specified by the contracts. With this

procedure, design patterns are easier to apply to the code. These diagrams also help to specify

which methods (besides getters and setters) must be implemented in each class, and how they must

be implemented.

During Elaboration, the design of the interface can be completed (Chapter 12). This book pre-

sents the IFML notation2 as an option for modeling that aspect of a system. IFML is a brand-new

standard modeling language for information flow that is being adopted as one of the OMG stan-

dards from March 2013.

Although it is more emphatic during the construction phase, the elaboration phase may also

require the generation of a database structure (Chapter 13) and running code (Chapter 10). Data

persistence may be generated automatically if the appropriate tools are available. However, it is

worth at least knowing how the persistence mechanism works, even if it is automated. Code genera-

tion is also presented as a set of rules that can be automated.

In order to save space for a deep presentation of the topics, most of the exercises can be

accessed on the Internet.

1An iteration may also have a mitigation plan assigned for a given risk or a change request originated by the client,

user, or even the development team.
2http://www.ifml.org/.

xxii Preface

http://www.ifml.org/

CHAPTER

1Introduction

KEY TOPICS IN THIS CHAPTER

• Object-Oriented Systems Development

• Unified Modeling Language (UML)

• Unified Process (UP)

1.1 This book
There is a vast literature that aims at syntactically presenting UML1 diagrams, such as for instance,

Miles and Hamilton (2006). There are also a significant number of books about development

processes and management activities, such as Satzinger, Jackson and Burd (2011). However, there

are relatively few books that go really deep into the presentation of best practices that allow the

effective application of object-oriented techniques in software development in the real world. This

means that despite the vast literature in this area, many questions faced by developers are still left

unanswered.

This book presents more details on many object-oriented concepts and activities, especially

those presented by Larman (2004), which is based on the Unified Process, commonly known as UP

(Jacobson, Booch, & Rumbaugh, 1999; Scott, 2001).

The reason this book is based on Larman’s concepts is because he presents a concise and efficient

approach to systems analysis and design using an object-oriented paradigm. In his approach, each arti-

fact (document or diagram) has a very clear and practical reason to exist and the connections between

artifacts are very precise.

In our approach, agile principles adopted by Extreme Programming (XP) (Beck & Andres, 2004)

are largely accepted. However, we propose that programming must be undertaken first using a model-

ing language before directly programming code. The use of UML diagrams as high-level programming

tools instead of just documentation tools is recommended. With that approach, the artifacts used should

contribute directly to the understanding of the problem (analysis) or to the design of a solution. In order

to improve the process of designing a solution, we consider model transformation and automatic code

generation fundamental.

1http://www.uml.org/.

1Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00001-6

© 2014 Elsevier Inc. All rights reserved.

http://www.omg.org/
http://dx.doi.org/10.1016/B978-0-12-418673-6.00001-6

Furthermore, in contrast to Larman’s work, this book presents some original concepts and other

details on topics as follows:

• Objective criteria to identify use cases and decide when to subdivide them or not.

• A technique to expand use cases that reduces the disparity among descriptions created by

different analysts (the concept of mandatory and complementary steps allows one to decide

exactly how many steps a use case must have).

• System sequence diagrams built with actor, interface, and control (instead of actor

and system only) to help realize a clear difference between system events and

system operations.

• An original approach for writing system commands and queries contracts with the use

of the Object Constraint Language, OCL (Object Management Group, 2010) that

allows for automatic generation of running code, and not only postcondition checking,

as current tools do.

• An adaptation of Fowler’s (2003) analysis patterns to UML, and restructuring some of those

patterns to simplify their identification and application in practice.

• A systematic technique to generate dynamic object models from OCL contracts, which follows

good design patterns, and reduces significantly the amount of code necessary for running an

application, avoiding, for example, redundant verifications.

• An interface tier design presented with the use of IFML (Interaction Flow Modeling Language),

a brand new OMG standard for interface modeling.

The aforementioned features are useful for producing high-quality software that is well organized,

based on a multitiered architecture, and able to change or accommodate new requirements.

1.2 Object-oriented systems development
What is object-oriented systems development? By observing the way object-oriented analysis and

design is taught and practiced in some places, it can be concluded that many professionals simply adopt

an object-oriented programming language, or use fragments of an object-oriented based development

process. However, very often, they are not as effective as one would expect.

It is not sufficient to organize the system architecture in tiers and modules if the code imple-

mented inside of it is disorganized. Some programmers organize the system adequately in classes

and packages, but they still write spaghetti code inside the methods of these classes and packages.

In addition, other developers still use top-down functional decomposition inside methods, which is

not appropriate when using object-oriented programming (top-down decomposition is adequate if

structured programming is used instead).

In order to build code that is really object-oriented, developers should learn the techniques of

delegation and responsibility assignment, which can lead to reusable code and low coupling. Those

techniques are explained in this book.

It is useless to invest heavily in object-oriented CASE (computer-aided software engineering)

tools without learning the way to think in terms of object-oriented programming. The use of diagrams

will not necessarily improve the quality of the software, although it may help.

2 CHAPTER 1 Introduction

1.3 Unified Modeling Language (UML)
Some developers believe that UML is a methodology, maybe because of the “M” in the acronym.

However, that is not true: UML means Unified Modeling Language, and it is therefore a language

that can be used to describe things.

Knowing a language does not necessarily imply the ability to produce useful artifacts. For example,

English is a language, but someone who knows how to speak English does not necessarily know how

to write good poetry or how to make good speeches. Besides the language syntax, there are knowledge

and techniques of best practices that greatly help poets and speakers to place the elements of the

language in an order and structure that is adequate to produce the expected results.

The UML language has been under development since James Rumbaugh and Grady Booch joined

forces at Rational Software and started to unify their already well-known diagrammatic notations and

processes. Later, Ivar Jacobson joined the group and added his use cases and other notations to the

unified language that was under development.

UML is constantly being revised and currently has the following three families of diagrams:

• Structure diagrams: Includes package, class, objects, composite structure, component, profile, and

deployment diagrams. They are used to define what must be implemented in the system in terms of

components. They are useful to specify the part of the system architecture that is time independent.

• Behavior diagrams: Includes use case, activity, and state machine diagrams. They emphasize

what must happen in the system or business process. They are used to describe the functionality

of the system.

• Interaction diagrams: Includes communication, sequence, timing, and interaction overview

diagrams. These are a subset of behavior diagrams and describe the control flow between

different components of the system.

Not every diagram must be used during the development of a system. Only those that represent

useful information for the project are recommended. This book emphasizes the use of the activity,

machine state, use case, sequence, communication, and class diagrams for modeling information sys-

tems. However, other diagrams can be useful depending on the features of the system being modeled.

For more information on the different UML diagrams, the book by Miles and Hamilton (2006) may

be consulted.

1.4 Unified Process (UP)
The techniques presented in this book are compatible with the Unified Process, which is heavily

based (although not necessarily) on UML.

UP was also proposed by the three amigos, Grady Booch, James Rumbaugh, and Ivar Jacobson

(Jacobson, Booch, and Rumbaugh, 1999), as the result of their extensive experience.

This process is based in the following principles:

• Use case driven: The development is planned and organized over a list of use cases.

• Architecture centered: The development process leads to the construction of a

system architecture that allows the implementation of the requirements. That architecture

31.4 Unified Process (UP)

is based on the identification of a structure that is iteratively built from a conceptual

model.

• Iterative and incremental: Development is divided into iterations or development cycles. At each

iteration, new features are added to the system architecture, or corrected/refined, leaving it more

complete and closer to the final desired system.

• Risk oriented: The elements of greater risk for a project are addressed early. For instance,

critical use cases are identified, detailed, and implemented before the others.

UP includes in its disciplines the main activities related to software development. Those activ-

ities have different levels or emphasis during the four major UP phases: Inception, Elaboration,

Construction, and Transition (Figure 1.1). Although sequential in time, those phases must not be

confused with the waterfall phases (Royce, 1970). In the waterfall model, requirements specifica-

tion must be completed before design, design must be completed before construction, and so on.

In UP, requirements specification, design, construction, and other activities are performed in all

phases with different emphasis.

Inception is the first phase of UP, in which the main requirements are discovered and the exten-

sion of the system is understood. The output of this phase usually consists of a preliminary conceptual

FIGURE 1.1

The emphasis of the different disciplines during the four phases of the Rational Unified Process (RUPs).2,3

2RUP (Rational Unified Process) is the oldest and most known implementation of the Unified Process.
3Source: http://www.ibm.com/

4 CHAPTER 1 Introduction

http://www.ibm.com/

model (Section 3.6); a requirements document, usually in the form of a list of high-level use cases

(Section 3.3) and supplementary specifications (Section 3.5.8); and a development schedule based on

the use case list (Section 4.3). Additionally, a list of high-importance risks and their mitigation plans

may be created, as well as other plans attending the special needs of the project. But those aspects

are out of the scope of this book, which will concentrate on modeling techniques, not management.

Only iteration planning based on high-level use cases is presented in detail.

The Elaboration phase includes a more detailed requirements analysis, which is performed by

expanding the use cases, that is, writing the sequence of steps that characterizes each of their possible

flows. The conceptual model is refined after each use case is expanded. Depending on the priority of

the use cases, it is expected that the number of changes applied to the software architecture decreases

as the project proceeds during Elaboration.

During the Construction phase most of the code production and test activities are performed. It is

expected that the Elaboration phase produces an architecture sufficiently stable so that its refactoring

will be minimized during this phase.

The Transition phase consists typically of the final tests and the delivery of the system to its users

including possibly its installation and data migration. During this phase, the system will be deployed,

possibly replacing an existing system (manual or automatic).

The Elaboration and Construction phases are performed in iterations. An iteration may have

as an objective developing one or more use cases, implementing change requests, or mitigating

selected risks. During an iteration, use cases are expanded and the information learned from them

is incrementally incorporated in the product. It is expected that the Elaboration phase deals with the

major risks of the system, as well as with the more complex or risky use cases that affect the sys-

tem architecture significantly. On the other hand, the Construction phase concentrates on producing

code for the whole application and implementing change requests.

UP is usually understood as a prescriptive process. But it may also be performed as an agile

method, with few artifacts. Two popular agile implementations of UP are AUP4 (Ambler &

Jeffries, 2002) and OpenUP5 (Kroll & MacIsaac, 2006). An agile process is one that

prioritizes:6

• People and iterations over tools and processes.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

In order to obtain such agility, all documentation must be directed to software production. Each

activity performed by the developer must have a very clear goal and a precise use, aiming always

toward the production of code that meets the requirements in the best way possible and in the shortest

reasonable time. Software is designed with two goals in mind: understanding client needs, and pro-

ducing a viable solution to those needs. In order to help people adequately communicate their needs

and solutions, different artifacts, such as diagrams, may be created; diagrams are more useful when

they allow code to be automatically generated from them.

4http://www.ambysoft.com/unifiedprocess/agileUP.html
5http://epf.eclipse.org/wikis/openup/index.htm
6http://agilemanifesto.org/

51.4 Unified Process (UP)

http://www.ambysoft.com/unifiedprocess/agileUP.html
http://epf.eclipse.org/wikis/openup/index.htm
http://agilemanifesto.org/

1.5 The process so far
At the end of each chapter, a table shows which analysis and design activities have been covered by

the book, highlighting those that were covered by the current chapter. This initial chapter is a general

view of the Unified Process. Only the Inception and Elaboration phases are addressed in this book,

and only the disciplines of business modeling, requirements, analysis and design, implementation, test,

and some aspects of project management are addressed.

Inception Elaboration Construction Transition

Business Modeling

Areas covered by this book

Requirements

Analysis and Design

Implementation

Test

Project Management

Deployment

Configuration and Change Management

Environment

1.6 Questions
1. What are the four fundamental principles of the Unified Process?

2. What is the goal of each of the four phases of the Unified Process?

3. How do the phases of UP differ from waterfall’s phases?

6 CHAPTER 1 Introduction

CHAPTER

2Business Modeling

KEY TOPICS IN THIS CHAPTER

• General View of the System

• Business Use Case Diagram

• Activity Diagram

• State Machine Diagram

2.1 Introduction to business modeling
The Inception phase of the Unified Process (UP) consists of a period of time when the analysts are

looking to gather information about the business to be automated or restructured. It is assumed that

the knowledge that the analysts have about the business is minimal, and that the interaction with the

stakeholders will be intense. The goal in this phase is to discover if it is worth it to do the analysis

without developing too deep into the project.

Usually, before starting to discover and analyze system requirements, it is necessary to under-

stand the goals of the target organization. This view can be obtained by the UP discipline called

business modeling.

Business modeling is, therefore, an activity that supports the discovery of system requirements

by helping the team perceive the wider business context where the future system will operate.

Different text or diagram artifacts can support it, as this chapter presents.

The artifacts in this phase usually do not need to be too detailed. Meetings with stakeholders

could produce a record (minutes) that probably can register several ideas about the goals of the

company and the automation opportunities. By using this information, the team may build a general

view of the business.

Starting with the records obtained, the team can organize an initial document for the project,

which can be called general view of the system or executive summary. That document usually

includes the scope declaration.

Other relevant information is usually included in the general view as well, such as stake-

holders, power assignment, risk analysis, preliminary budget and schedule, and the project

premises.

The scope declaration of the project may be related to the business analysis activities. After dis-

covering useful information about the business, the team is better able to determine what must and

what must not be included in the project. The general view of the system may be elaborated with

the help of some UML diagrams. Business use case diagrams (Section 2.3), and business activity

7Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00002-8

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00002-8

diagrams (Section 2.4) may be used, and occasionally state machine diagrams (Section 2.5) can be

used as well. Alternatively, the Business Process Model and Notation,1 BPMN,2 may be used instead

of the UML activity diagrams. These diagrams help in determining if the scope of the project is

complete and consistent with the goals of the organization.

Business modeling consists of studying and understanding the organization and its processes,

because usually the system to be developed will not be an isolated product, but an organic part of

the organization context. The goals of this discipline are to:

• Understand the structure and dynamics of the target organization in which the software will

be used.

• Understand the current problems of the target organization and identify potential improvements

that can be obtained with the software.

• Assure that clients, users, and the development team share a consistent understanding of the

target organization.

• Derive the requirements that will lead to the desired improvements.

One of the critical points for the success of a software development project is its funding. In

order to keep interest in the development of a software product a client must always stay con-

vinced that its investment represents a gain, and not a waste of time and money. Comprehension

of the business model is fundamental so that the development team can keep the client interested

in the project.

Another important aspect of business modeling is to bring the business team and the software

engineering team closer, so that the actual problems of the organization and its needs are under-

stood, analyzed, and solved using information technology.

Business modeling is very important when significant behavioral changes are introduced to a

group of people. In this case, business context and the consequences of installing a new system

must be acknowledged and studied. It may be less important when such behavioral changes are

not expected.

Thus, business modeling may have different levels of importance depending on the project

needs. Kruchten (2003) identifies six scenarios of growing complexity in terms of the need for

business modeling:

• Organizational chart: It may be necessary only to build an organizational chart in order to

know the sectors and responsibilities related to the area in which the project is inserted. In this

case, business modeling, in general, is very simple, and happens only during Inception. The

organizational chart will help analysts to locate the people that are responsible for the different

aspects related to the future system, and what degree of authority is assigned to each one when

deciding the requirements.

• Domain modeling: If the goal of the project is to build applications to manage and present

information, then business modeling may be performed during domain analysis, that is, when a

static model of the information (conceptual model) is produced. In this case, business modeling

is performed during Inception and Elaboration.

1Formerly known as Business Process Modeling Notation.
2http://www.bpmn.org/

8 CHAPTER 2 Business Modeling

http://www.bpmn.org/

• One company, many systems: It may be the case that the team is developing a whole family of

systems for a company. In this case, business modeling is not only about one system, but

spreads along many projects, and could even be a separated project of its own. It will help to

discover individual system’s requirements as well as to determine a common architecture for

the whole family.

• Generic business model: If the goal is to build one or more systems that will serve a pool of

organizations, then business modeling is useful in order to align the different organizations to a

common business view, or, if that is not possible, to obtain a business view in which the

specifics of the organizations are visible.

• New business: If an organization decides to start a new business, and a whole set of systems

must be developed to give support to it, then a significant business modeling effort must be

undertaken. In this case, the goal of business modeling is not only to find requirements, but to

verify the effective viability of the new business. Thus, business modeling, in that situation,

could be an independent project.

• Renewal: If an organization decides to completely renew its way of business, then business

modeling will be a separate project, performed in several steps: vision of the new business,

reverse engineering of the existing business, direct engineering of the new business, and

installation of the new business.

Other factors that increase or decrease the need for business modeling in a project are:

• Well-defined and stable requirements at the beginning of the project (for example, creating a

substitute for an existing system) reduce the need to perform intense business modeling.

• If the new system is going to change the way people do their work, then special attention must

be paid to business modeling, especially when the business model is going to be changed or

rebuilt after the automation of some business use cases.

• If the project has important risks, especially business risks, then business modeling must be

more detailed and intense.

• If the user community is large and heterogeneous, then business modeling probably will be

more difficult.

• If it is necessary to integrate the new system with hardware and legacy systems, then the

comprehension of those elements must be included in business modeling, generating more work.

• More uncertainty about requirements means more attention to business modeling.

No matter the level of detail and effort to be put into business modeling, every project

must begin with preliminary documentation that allows for an understanding of its scope.

A project with poorly defined scope will certainly give rise to discomfort or even fights

between the client and development team, regarding the inclusion (or lack of inclusion) of cer-

tain features.

2.2 General view of the system
The activities related to the definition of the scope of a project should usually take a relatively

small fraction of the time of the whole project, although variations may exist depending on the

92.2 General view of the system

kind of the project: projects with simple and well-defined requirements may demand no more

than a couple of days of business modeling while complex and large projects may demand

weeks or months. At the time of scope definition, all information about the company business

must be explored by interviewing users, clients, and domain specialists, as well as by the exami-

nation of documents, reports, existing systems, and related bibliography.

For most projects, the first question the analyst should answer is the following: What is the vision

of the company for the project? In other words, what does the company want with the project? Why

is it being proposed, and why is the company going to spend money with it?

At that moment, another question, often forgotten, may be raised: Buying or developing?

Sometimes, the product the client wants is available for purchase.

These questions must be answered in a relatively short time. That is why it is suggested that the

Inception phase proceed relatively quickly. Why? Because, at this time, the client and the develop-

ment team usually do not have an idea of the real extension of the project and it is, from the point

of view of both, an investment on the future, and, therefore, a risk.

The general view of the system or executive summary is a free format document, where the

analyst may report the relevant items she discovered about the system after the initial

interviews with the stakeholders. The document usually includes the scope declaration for

the project.

We do not intend to propose rules for writing that document. But it is suggested that it should

not be too long. A few pages of text and some diagrams seem to be sufficient to describe in a sum-

marized way the scope of most systems. More than that could mean that too much detail was

included in the summary. These details could be alternatively addressed in other documents such as

the list of risks, requirements, or use cases.

The scope declaration in the general view must present, in general lines, the product that must

be developed: what must be included, and what could be included but should not. This information

may be obtained initially by interviewing the stakeholders, and may be refined later with the use of

the diagrams presented in this chapter.

If possible, the main deliverables of the project should be also defined in the general view

as well as the time frame when the client is going to receive some kind of delivery from the

development team. Normally, this list of deliverables consists of implemented versions of the

software, but the list can also include other items, such as design, manuals, installation media,

training, etc. It can be very difficult to establish deadlines for deliveries before doing the

requirements analysis of the system, because estimation effort techniques such as function

points (Albrecht and Gaffney Jr., 1983), use case points (Karner, 1993), or COCOMO II

(Boehm, 2000) can only be applied after a good deal of the requirements is known. Thus, the

information about deadlines at this early stage is more a guess than a formal strong commit-

ment for development.

The general view document may also contain some acceptance criteria for the product, that is,

quantifiable items that will be used to decide whether the project was a success or not. The product

acceptance criteria must at least include metrics for deadlines, budget, and quality. If subjective cri-

teria such as “customer satisfied,” “system easy to use,” or “state-of-the-art technology” are used,

they must be quantified, that is, it must be defined how to measure “customer satisfaction,” “ease

of use,” “state of the art,” and so on. Examples of quantifiable acceptance criteria are “the system

must support up to 50,000 simultaneous accesses without degrading performance,” “the system

10 CHAPTER 2 Business Modeling

must eliminate the need to use paper for performing processes x and y,” and “the system must

allow selling up to 100 books a minute on the Internet.”

More information may be added to the general view document if needed (for example, main

risks, technologies to be used, etc.). The general view of the system is the base agreement

document for the client and the developer. It will be taken as a basis for planning the rest of the

project.

It is important to mention that when the general view is being built, the requirements analysis

has not yet been completed, and therefore the information mentioned in the general view consists

of early commitments. It is expected that the requirements analysis will detail the scope in depth,

but not augment its extension. For example, in requirements analysis the process of selling books

may be detailed with discounts, sales, delivery, and so on (considering that “selling books” is men-

tioned in the scope declaration), but if the payment roll of the company was not mentioned in the

scope declaration, then the inclusion of that item in the project would require a renegotiation of the

scope declaration.

Pressman (2008) proposes a number of techniques to communicate with stakeholders in order to

discover business goals, for example:

• Traditional focus groups, where a trained analyst meets with a group of end-users or people

representing their roles.

• Electronic focus groups, where the meetings are conducted by the use of electronic media.

• Iterative surveys, where a number of surveys are conducted among end-users, presenting them

some questions and asking for clarification.

• Exploratory surveys, where an exploratory research is conducted among end-users that use a

similar existing product.

• Scenario building, where a group of end users is led to produce a description of a number of

scenarios for using the system.

The last option seems to be very popular among agile method practitioners, where scenarios are

sometimes identified as user stories.

Figure 2.1 presents a general view with very preliminary scope declaration for a fictional virtual

bookstore Livir,3 which will be used to illustrate the modeling techniques within this book. This

text would have been obtained after a quick preliminary meeting with the client. Using this as a

basis, a deeper study may be conducted with business use cases and other diagrams, so that the

information contained in it is refined, as shown below in this chapter. The document is divided into

two parts:

• A simple vision statement of what the project will offer to customers and the business that’s

creating it.

• The constraints for version 1.0.

3Why a virtual bookstore? Because it is a typical commercial information system, and because most readers should

already have experience with that kind of system, and also because it is sufficiently simple, although rich, to illustrate

the modeling techniques of this book. Such systems are already available for acquisition and customization, and it might

not make sense to develop a new one from scratch, but the purpose here is just didactic.

112.2 General view of the system

To allow for the presentation of this project in a book, a series of simplifications were considered.

The description and modeling of a real project would be much more extensive. Furthermore, the

models presented would sometimes only be partial at a given time, being refined or changed later.

It can be seen that the general view is a nonstructured view of the project. It includes business

information for managers, and operational information for developers. Sometimes, even details

about the technology to be used can be described if necessary. What the analyst must consider is

that the general view describes the main concerns of the clients and those concerns will be better

structured later during analysis and design.

A good analyst must act like a psychoanalyst, that is, she must avoid speaking in the place of

the client. The analyst must help the client to speak; when the client starts to report some of her

General View for the Livir Project

Version 1.0

Vision:

A new business will be initiated: a virtual bookstore. The system to support it must

manage the acquisition and selling processes of the company. Access for customers and

management people must be accomplished through a Web site.

When a book is ordered, it is delivered immediately if available in stock, or else, the

book is ordered to a publisher, and a compatible deadline is informed to the customer.

The system must calculate taxes and delivery fee as well as applying discounts to the

sale when applicable.

The system must allow a manager to generate reports on bestselling books, and on most

profitable customers, as well as suggest books for buying based on past customer’s

interests.

Constraints:

a) Customers would only pay by credit card.

b) The bookstore will deal only with new books, not used ones.

c) Access to the system will be available through a web site only.

FIGURE 2.1

General view for the Livir project.

12 CHAPTER 2 Business Modeling

needs, the analyst must hear, instead of presenting fast prebuilt (and often mistaken) solutions. The

analyst must motivate the client to detail her requirements and must question those requirements so

that the client can decide which are urgent and which are not.

2.3 Business use cases
Jacobson (1994) presents in detail techniques for business modeling with business use cases. In

general, in business models, there are entities (people or companies) external to the target organiza-

tion, called business actors, and internal entities, called business workers. Business use cases are

the processes performed by those actors and workers that allow them to reach some of the company

business goals.

The business use case model considers the entire company as a system, and the actors may be

people, companies, or other organizations that create business or maintain relationships with the

business (Kroll and Kruchten, 2003).

The first thing the team must think about when doing business modeling is that what is being

modeled is not a software system. A company is being modeled. Business information is sought

from higher-level management people and specialists, because they know and sometimes create the

company goals.

The quantity of business use cases that will be identified may be relatively small. A business

process is a long-range process that is performed by the company; think, for example, of selling

products, conducting marketing, providing services, solving customer problems, etc. Each process

of this type must contribute to a business goal. This is not the moment for detailing such processes.

For example, selling products may include many subprocesses such as registering customers, offer-

ing products, sending products, applying discounts, etc. But those processes (that later possibly will

be identified as system use cases if they are going to be automated) are involved by the highest-

level process, which is Sell books.

Although UML still does not have a standard symbol to differentiate business use cases from

system use cases (Chapter 3), it is usual to represent business use cases with the stereotype

{businessc, or by cutting the use case ellipse with an edge as shown in Figure 2.2.

In this example, Sell books is a business use case because it involves a relationship between the

company and an external entity (a customer), producing a perceptible and consistent result: one or

more books sold. This use case possibly will be performed by the customer with the collaboration

of some workers inside the company; it may or may not use software systems.

Use case names must be chosen carefully, because at this stage they will summarize critical

information about the system, and wrong choices may prevent the team and stakeholders from

Sell books

FIGURE 2.2

Business use case.

132.3 Business use cases

sharing comprehension about the real intention of business actors and workers. Blain4 presents

some best practices collected from many sources:

• Good use case names reflect user goals. Names such as Access system or Open main window

must be avoided because they reflect technology and not a business goal. Also names without

verbs such as Invoice must be avoided because it is not clear what is going to happen to the

invoice. Better names might be Generate invoice, Cancel invoice, Pay invoice, etc.

• Good use case names are as short as possible. Although some people may propose that a use

case name should not have more than two or three words (or any other number), it is unfeasible

to define such a limit because there is a risk of losing clarity on the business goal if the name is

too short. As Blain points out, which word could be removed from the name Collect late

payment without obscuring its meaning? However, that name is better than Collect late payment

from customers that are past due.

• Good use case names use meaningful verbs. Use case names not only should have strong verbs,

but they must be meaningful. A meaningless verb is one that does not make clear what the use

case accomplishes; for example what does a use case such as “Process order” accomplish?

What result does it produce? A name such as “Separate ordered items for dispatch” would be

more meaningful in that case.

• Good use case names use active voice. As in general writing, active voice is preferable to

passive voice. Pay for order is better than The order is paid.

• Good use case names use present tense. The present tense indicates what the user is trying to

do. Past and future tense may sound confusing and unnecessary.

• Good use case names do not identify the actor. As use cases are linked to actors, actors are not

part of their names. Thus, a use case name must not identify the actor as in Manager creates

sales report. Just name the use case Create sales report and link it to a manager or other actors

if necessary.

• Good use case names are consistent. The same naming rules and naming conventions should be

applied along a project or group of projects. Avoid, for example, naming one use case Generate

sales report and another Produce reservations report. Chose one verb for that meaning and use

it consistently.

Additionally, Probasco (2001) proposes that the list of use case names should resemble a to do

list. Thus, instead of writing Cash withdrawal, Funds transfer, and ATM service, it would be better

to write Withdraw cash, Transfer funds, and Service the ATM, respectively.

Probasco also insists that the meaning of a use case name must be precise. For example, is Auction

a good use case name? Is it a verb or a noun? If you consider that it is a noun and that a verb must be

added, is Execute auction a good name? The verb Execute would probably be a programmer’s choice,

but it probably has no meaning for an auctioneer (Is the Auction going to be shot to death?). In this

case, an idea would be to talk to a domain specialist in order to obtain a better name. On the other

hand, even if “auction” is indeed a verb it is not sufficiently clear. Is it the auction of a single item? Is

it the auction of a complete set of items? Is it simply an auction participant placing a bid? In that case,

names such as Auction items, Auction single item, or Place bid would be clearer.

4http://tynerblain.com/blog/2007/01/22/how-to-write-good-use-case-names/

14 CHAPTER 2 Business Modeling

http://tynerblain.com/blog/2007/01/22/how-to-write-good-use-case-names/

2.3.1 Business actors and business workers
During business modeling there are two kinds of actors that must be addressed (Figure 2.3):

• Business actors: People, organizations, or even systems that perform some activities belonging

to the process, but which are not part of the target company. That is, they are not under

company control. Business actors could be, for instance, customers, publishers, external

auditors, partner companies, or even other automatic systems that the target company could

interact with.

• Business workers:5 People, organizations, or even systems that perform some activities

belonging to the process and that are part of the target company. They could be the company’s

employees, its departments, or even existing software systems belonging to the company.

Graphically, they are distinguished from business actors by the use of the stereotype

{workerc.

This differentiation is important because business actors usually cannot be automated, that is,

they will not be replaced by computational systems. However, business workers roles can possibly

be replaced by automatic systems (English, 2007).

Business actors and business workers are linked to the business use cases they participate in by

connecting lines without arrows,6 as shown in Figure 2.4.

2.3.2 Automation opportunities
A bookstore that intends to sell through the Internet, like Livir, should produce a business model

that identifies its main business use cases, external actors (customers, publishers, etc.), and business

workers (managers, clerks, etc.). If we suppose that the bookstore company already exists and has

no automation at all or very incipient automation, then the business workers will be, basically, real

people. These workers may be candidates for automation if there is interest in increasing the level

Customer <<worker>>
Clerk

FIGURE 2.3

Business actor (left) and business worker (right).

5If we are modeling a company as a whole usually business workers do not appear, as they are internal to the company’s

system. But if connections between different subsystems of the company are shown, then business workers must appear.
6Some approaches suggest the use of arrows to indicate whether the actor only receives or sends information to the sys-

tem. But that practice, besides not being supported by UML 2, brings practically no useful information at this point of

the business analysis, because at the moment it is only important to know which use cases really exist, and which actors

are involved with them. The details on the interaction will be given later with the activity diagrams that will describe

how a business use case is performed.

152.3 Business use cases

of automation of the company. For example, the role of the clerk that currently helps customers

find books on the shelves may be replaced in the virtual bookstore by an automatic guidance sys-

tem. However, the customer role cannot be replaced by an automatic system.

Every business worker role will usually not be replaced. It will depend on the scope of the proj-

ect to be defined. An advantage in making the business use case diagram, then, is to help in visual-

izing and making decisions on automation. With the diagram, it is possible to visualize what must

stay inside and outside the automation scope, depending on the project’s goals.

Normally, during an automation process within a company, it is useful to replace at least the

workers’ roles that correspond to mere proxies, that is, the ones that simply perform actions in the

place of an external actor. In the case of the bookstore, the sales clerk role is necessary only to

help the customer at the physical store. But, when the sales are moved to virtual space, that role is

not necessary anymore, because the customer may easily find her way on the website.

The association of the business use cases with the company’s major business goals helps to

identify the scope of the system, that is, the activities that will be effectively automated in the proj-

ect that is being initiated. In the example of Figure 2.5, all use cases are candidates for automation

at differing levels of priority. However, the company could be interested only in implementing

sales and acquisition at this point, leaving marketing and customer services left to a second project.

The system boundary can be used to identify the set of business use cases and business workers

that will be automated, as shown in Figure 2.6.

The business use case diagram shows that the automation project will include the processes of

buying and selling books and the role of the clerk. It also shows that the processes of advertisement

and gaining client loyalty are outside the scope of the project.

However, a deeper analysis may show that the worker that buys books for the bookstore cannot

be easily automated. It might be the case that all books could be automatically bought by an auto-

matic process that could analyze potential sales and stock, without the participation of any human

being. But, if that is not the case, the best thing to do is to consider that the clerk really has two dif-

ferent roles: help the customer (that role will be automated) and buy books for the bookstore (that

<<worker>>
Clerk

Customer

Sell books

FIGURE 2.4

Links between business actors, business workers, and business use cases.

16 CHAPTER 2 Business Modeling

role will not be automated). Figure 2.7 shows an evolution of the diagram where part of the respon-

sibility of the clerk is reassigned to a worker named “Acquisition manager.” There is no one-to-one

equivalence between a role and a person: a person may perform many roles and a role may be per-

formed by many different people.

Sell books
<<worker>>

Clerk

Customer <<worker>>

Marketing department

Buy books

Sell books

Advertise

Gain client loyalty

FIGURE 2.5

Business use cases: candidates for automation.

Sell books
<<worker>>

Clerk

Automation scope

Customer
<<worker>>

Marketing department

Buy books

Advertise

Gain client loyalty

FIGURE 2.6

System boundary being used to indicate the scope of the project.

172.3 Business use cases

If the project, on the other hand, consists of a number of subprojects or stages, in which differ-

ent parts of the company would be automated, that could also be indicated by the use of different

system boundaries in the diagram: one for each subproject or stage.

The next step that leads to the requirements analysis is the detailed study of the business use

cases that will be automated. The level of precision and detail depends on the objectives of the

project, as already discussed early in this chapter.

2.4 Business activity diagram
The UML activity diagram is a very popular option for studying the details of a business use case.

With this diagram, the different activities performed by business actors and workers in order to

reach the general goal of the use case can be specified.

For a better understanding of the way the company works through its use cases, it is possible to

create an activity diagram for each business use case that is going to be automated. The activity

diagrams can be used to represent processes at the organizational level.

2.4.1 Basic elements
Much of the UML activity diagram is similar to a flowchart. There are activities sequentially linked.

Decision points and loops may be used and even parallelism may be expressed in such diagrams.

The activity diagram may be divided into swim lanes, each one representing an actor or worker

that participates at a set of activities. As in the use case diagram, an actor or worker may be a per-

son, a department, a computational system, or even a complete organization.

Sell books
<<worker>>

Clerk

Automation scope

Customer

<<worker>>
Acquisition manager

<<worker>>
Marketing department

Buy books

Advertise

Gain client loyalty

FIGURE 2.7

An actor is split because only part of its role will be automated.

18 CHAPTER 2 Business Modeling

The process represented in the diagram usually has an initial node, represented by a solid circle

, and an activity final node, represented by a solid circle inscribed in a circumference . The

initial node may not be considered mandatory in some cases when the beginning of the process can

be inferred by observing an activity that does not have an antecessor. However, the use of that mark

improves the readability of the diagram because it is easier to see where the process really begins.

The activities are represented by action nodes . When an activity is represented inside a

swim lane it means that the corresponding actor is the one responsible for the activity.

Flows or dependencies between activities are represented by arrows -. Flows usually link two

activities, indicating precedence between them.

A path is a sequence of activities linked by flows: - - - - .

In the Livir example, the activity diagram may be used as a way to visualize the details of business

use cases such as Sell books. The model presented in Figure 2.8 shows a first approach to the process.

The diagram that is starting to be designed in Figure 2.8 is not intended to be a model for the

system to be built and should not be thought of like that. Its utility is to help the team understand

which activities and actors are involved with the main business processes of the company, so that,

using that information, they can perform a more effective requirements analysis later. The logical

path of the diagram must be understandable and validated by business people.

Later, the analyst will examine in detail each of the activities that must be performed. If a given

activity belongs to the scope of the system that is going to be implemented, then it must be a target

for a more detailed analysis.

Order books

Pay
Inform availability
and total

Send books

Confirm payment

Customer

Register order

Clerk Credit card operator

FIGURE 2.8

First approach to an activity diagram for modeling the book sales business process.

192.4 Business activity diagram

2.4.2 Control flow nodes
Two control flow nodes are common in the activity diagram: decision nodes and parallelism nodes.

• The decision nodes (branch and merge nodes) are represented by diamonds . The flows coming

out of the decision node must have guard conditions (a logic expression between brackets). Two

or more flows may leave a decision node, but it is important that the guard conditions are

mutually exclusive, that is, only one of them may be true at a time.

• The parallelism nodes (fork and join nodes) are represented by bars . The flows coming

out of a fork node are performed in parallel.

The diagram in Figure 2.8 is still a very crude representation of the real process of selling

books. Just to illustrate a possible evolution of that diagram, let’s examine the situation when some

of the ordered books are not available in stock. It would be necessary to order them from one of

the publishers and add them to the customer order after arrival. Figure 2.9 shows this situation by

indicating that if some books are not available, then they have to be ordered from publishers, and

the order is sent only after they arrive.

Publisher

Send books

Pay

Order books Register order

Inform
availability and
total

Confirm payment

Order books
from supplier

Receive books

Send books

Customer Clerk Credit card operator

[some books missing]

[all books in stock]

FIGURE 2.9

Example of decision control flow.

20 CHAPTER 2 Business Modeling

Just below the Confirm payment activity there is a branch node represented by the diamond. As

noted before, the decision node allows only one exit flow to be followed. The guard conditions

([some books missing] and [all books in stock]) are mutually exclusive. From the branch node, the

flow follows one of the alternate paths until reaching the merge node that is depicted just above the

Send books activity.

Later, the analyst could discover that the model is still not satisfactory. For instance, even if

some books are not in stock, the order could be sent in two or more deliveries. Thus, two paths

could be performed in parallel: sending the books that are available in stock and, if necessary,

ordering the other books, and sending them later, as shown in Figure 2.10.

The bar below the Confirm payment activity in Figure 2.10 represents a fork node because it

starts two parallel paths, and the other bar represents a join node because it synchronizes the paral-

lel paths into a single path.

The single path after a join node can only be followed if all paths that come to the join node

have been followed. It can be seen that in that model, if all the books are in stock, only one of the

parallel paths will have activities to be performed, because the other path immediately goes to the

merge and join nodes.

Supplier

Send books

Pay

Order books Register order

Inform availability
and total

Confirm payment

Order books
from supplier

Receive books

Send books
in stock

Send
missing book

Customer Clerk Credit card operator

[some books missing]

[all books in stock]

FIGURE 2.10

Example of parallel flows.

212.4 Business activity diagram

The fork, join, decision, and merge nodes, as well as the initial and activity final nodes, may be

placed inside swim lanes. However, this does not affect their semantics. Thus, the choice of a swim

lane to place such nodes is only due to visual suitability.

Another node that can be useful sometimes is the flow final node, , which terminates a path

(parallel or not) that is being performed. The difference between it and the activity final node is

that in the case of the activity final node, all flows of the activity diagram are terminated when a

single flow reaches it, while in the case of the flow final node only one flow (among other parallel

flows) is terminated, but the activity continues.

In the use case of Figure 2.7, only one actor (customer) and one worker (clerk) participate in

the use case Sell books. However, after detailing the activities related to that use case, as done in

Figure 2.10, it was discovered that two more actors are necessary: the Publisher and the Credit

card operator. Additionally, the Publisher is an actor that has to be linked to the use case Buy

books. Thus, depending on the level of detail desired at this point of the project, the business use

case diagram may be updated to reflect those discoveries, as seen in Figure 2.11.

Other options for detailing a business use case are the UML sequence diagram and communica-

tion diagram. However, those diagrams are used to represent messages being sent to elements. It is

not always quite natural to find names to label those messages in the case of a business process,

and meaningless names such as “seek data” and “check result” are chosen eventually. Thus, the

activity diagram is a more natural choice to describe what happens in the real world, inside an

organization of people. However, as will be seen in Section 5.8, sequence diagrams are very useful

to detail system use cases, because system use cases usually consist of a sequence of information

flows being exchanged between actors and a system.

Sell books
<<worker>>

Clerk

Automation scope

Publisher

Credit card operator

Customer

Acquisition manager

<<worker>>
Marketing department

Buy books

Advertise

Gain client loyalty

FIGURE 2.11

Business use case diagram updated with information discovered with the activity diagram.

22 CHAPTER 2 Business Modeling

2.5 State-dependent aspects of a business
Besides business use cases, which may be detailed by activity diagrams, it may be important to

understand other aspects of a business that do not always appear clearly in such diagrams, such as

some key business objects that change state during their life cycle.

Thus, another UML diagram that can help the team to understand the organization’s business is

the state machine diagram. Like the activity diagram, this is a behavioral diagram, but, instead of

modeling activities in processes, it represents a set of states in which a system, actor, or entity

could be at a given instant.

The state machine diagram specifies events in its flows. An event triggers the flow that takes

the entity from one state to another. That is, the flows are labeled with events that, if they occur,

make the entity change from one state to another.

Those occurrences may be, however, restricted by guard conditions. For example, the login

event may only send the system to a logged state if the password is correct.

Graphically, the events are represented in the flows by simple expressions, and guard conditions

are represented between brackets, as in the case of activity diagrams.

The transitions in a state machine diagram can also include effects that are performed in response to

a state transition. For example, the transition activated by the event login and guarded by the condition

[password correct] can activate the action /grant access, which is an effect of the transition (not its

cause). Actions associated to transitions are represented by expressions initiated by a slash (/).

As an example on how that diagram can be useful during business analysis, we can imagine

that a team is interested in understanding the life cycle of a book in the bookstore. Examining the

different states of a key business object such as a book for this project may reduce the risk of

underestimating the complexity of the system requirements.

Thus, the team may discover that the book is initially registered in the catalog of a publisher.

The bookstore can then order a set of copies of the book. When the delivery arrives, the book is

added to stock and made available for sale. Once sold, the book is removed from stock and taken

to the shipment department. In some situations, books may return to the bookstore, for example,

due to a wrong address, or for being damaged during shipment. In the first case, the bookstore

must contact the customer and, depending on the contact, it can cancel the sale or resend the book.

The book life cycle finishes only when the transport company confirms the delivery. All those

changes of state (transitions) are represented in Figure 2.12.

However, the model presented in Figure 2.12 is still incomplete regarding the possible transi-

tions of a book. For example, a delivered book can return damaged and, in that case, cannot be

resent or sold again. This can be represented by adding a guard condition to the transition that goes

from the Returned state to the Sent state, and adding a new final state in which the book is dis-

carded, as shown in Figure 2.13.

These guard conditions are still very informal. But this is acceptable during business modeling,

because the goal is to understand the organization of the business, not specify a computational sys-

tem. Nevertheless, precise guard conditions may be obtained if a formal language such as OCL

(Object Constraint Language) is used. Later in this book expressions using OCL are introduced.

In some situations it is possible that an event causes a transition from more than one state. In

the example of Figure 2.13, it can be imagined that a book may not only be damaged when it is in

232.5 State-dependent aspects of a business

state Returned, but also when it is in other states like In store and Sold. Then, a transition to

Discarded should exist from those three states. However, to abbreviate this set of transitions a

superstate may be used instead.

In Figure 2.14, any transition from the superstate In store represents a set of transitions

from each of its substates. In the case of a transition to the superstate, it is necessary to estab-

lish which of the substates would be the initial one. In order to do that it is necessary to

include an initial state inside the superstate, or, instead, make the transition go straight to the

substate.

An object may be simultaneously at more than one single state. For example, a book may be

a special offer or not from the moment it is ordered from the publisher until the moment it

reaches a final state as discharged or sold. Thus, a book may be modeled with two concurrent

states: the first state determines if it is a special offer or not, and the second state determines its

Catalogued

Appear in catalog

Order sent

Ordered to
publisher

Arrival

In stock
Sale

Sold

Sale cancelled

Return
Returned

Delivery

Sent

Confirmation arrival

Delivery confirmed

Delivery

FIGURE 2.12

First state machine model for the life cycle of a book.

24 CHAPTER 2 Business Modeling

status regarding sales. In the diagram in Figure 2.15 the concurrent states are represented inside

orthogonal regions in a superstate.

When a transition leaves the superstate, then all concurrent substates are also left. For example,

when an arrival confirmation or discard event happens in the diagram in Figure 2.15, both concur-

rent states cease to be active and the book is considered to be at a final state.

The analysis on the states of a book could continue. For example, it would be possible to deter-

mine that a book in state Sold, Returned, or Sent could not change price from Normal price to

Special offer and vice versa. That could be modeled by adding a guard condition to the transitions

from states Normal price and Special offer: [not in state Sold, Sent, or Returned].

Utilizing a state machine diagram to represent a business object is useful for improving

the discovery of system requirements related to some key business objects, as shown in

Section 3.4.

Catalogued

Appear in catalog

Order sent

Ordered to
publisher

Arrival

In stock
Sale

Sold

[book ok] sale cancelled

Return
Returned

Delivery

Sent

Confirmation arrival

Delivery confirmed

[book ok] delivery

[book damaged] discard

Discarded

FIGURE 2.13

State machine diagram with guard conditions.

252.5 State-dependent aspects of a business

Catalogued
Appear in catalog Order sent Ordered to

publisher

Arrival

In store

In stock
Sale

Sold
[book ok] sale cancelled

Return

Returned

Delivery

Sent

Confirmation arrival

Delivery confirmed

[book ok] delivery

[book damaged] discard

Discarded

FIGURE 2.14

State machine diagram with a superstate.

Catalogued
Appear in catalog Order sent

Ordered to
supplier

Arrival

In store

In stock
Sale

Sold

Normal price

Begin offer

Cancel offer

Special offer

[book ok] sale cancelled

Return

Returned

Delivery
Sent

Confirmation arrival

Delivery confirmed

[book ok] delivery

[book damaged] discard

Discarded

FIGURE 2.15

State machine diagram with regions.

26 CHAPTER 2 Business Modeling

2.6 Remarks
It is important to remember that the goal of business modeling is usually to find a general view of

the business, and not a detailed specification of its processes. Thus, in most cases, the team’s goal

is to concentrate on discovering information about the business, and not on formally specifying

how the business works as if it was a machine.

A question still may be asked: Which business elements deserve the production of a state

machine or activity diagram? Unless stated to the contrary, it is not advisable to prepare a diagram

for every business element, because, if this is done, Inception would take too long to complete,

and its objectives would be hindered. What is usually needed at that point is a model for some key

elements, so that their behavior can be better understood and their requirements derived later.

A clue to identify those key elements is to ask what the business objects are. In the case of a bookstore,

they are books, in the case of a hotel, lodging, in the case of a court, criminal processes, and so on. Thus,

those are the key elements that must be modeled in greater detail to help in understanding the business.

A second question could be the following: Which diagram should we use � activity or state

machine? The answer depends on the nature of the element to be modeled. A state does not corre-

spond necessarily to an activity. A TV, for instance, may be in state off, when it is doing nothing.

An activity diagram is useful when modeling people, organizations, or systems doing things. On

the other hand, the state machine diagram is useful when a single entity passes through different

states in which it is not necessarily doing something. Furthermore, the activity diagram usually

details a business use case (that is, a process like selling, buying, checking, etc.), while the state

machine diagram is usually associated with a business object (like books, people, orders, etc.).

Business modeling is not just about building diagrams, however. The purpose of diagrams is to

help understand the context and the initial general requirements of a project and a system. Business

modeling is one of the key activities that help a team to identify and prepare for project risks.

Other risk mitigation activities may also be performed during Inception, such as proof-of-concept,

workshops, prototyping, early tests, etc. Any strategy that helps in understanding the big picture

and identifying the major risks and complexities of a project are valid.

2.7 The process so far

Inception Elaboration

Business Modeling Build a general view of the system:

• Build a business use case diagram and determine the
automation scope for the project.

• Build preliminary activity diagrams for business use
cases.

• Build preliminary state machine diagrams for key
business objects.

Requirements

Analysis and Design

Implementation

Test

Project Management

272.7 The process so far

2.8 Questions
1. What is the purpose of business modeling?

2. Business modeling can occur with different levels of intensity for different kinds of projects.

Explain and give examples!

3. What is the difference between a business worker and a business actor?

4. Which aspects of a business may be detailed by an activity diagram? Which may be detailed by

a state machine diagram?

28 CHAPTER 2 Business Modeling

CHAPTER

3High-Level Requirements

KEY TOPICS IN THIS CHAPTER

• System Actors

• System Use Cases

• How to Find System Use Cases in the Business Model

• Requirements

• Preliminary Conceptual Model

3.1 Introduction to high-level requirements
Once the business has been reasonably understood and modeled, the requirements analysis may

begin. Although there are several approaches to represent requirements, this book presents a tech-

nique based on use cases.

The system use case is an individual process that is identified from the business activities

(Section 2.4). High-level (or brief) system use cases represent the more general functional require-

ments of a system. The annotations on these use cases represent the nonfunctional requirements,

that is, the constraints and qualities related to those functions. The supplementary requirements are

nonfunctional requirements that apply to the system as a whole � not only to individual functions.

They may be represented in the supplementary specification document (Section 3.5.8).

System use cases are useful for many activities related to systems development, such as:

• Definition and validation of the system architecture: In general, classes, associations, and

attributes that form part of the system architecture are obtained from the use case1 texts

(Section 3.6).

• Creation of test cases: Use cases can be seen as a basis for system and acceptance tests

(Section 11.7), where the functionality is tested from the point of view of the user.

• Planning iterations: Each use case receives a priority (Section 4.3), and the effort to develop it

is estimated (Section 4.2), so that the team can decide on which use cases to develop at each

iteration.

• Basis for user documentation: Use cases are descriptions of the system’s normal operation

flows, as well as alternate flows that represent how to deal with eventual exceptional conditions

1From now on, system use cases will be referred to simply as use cases for simplicity, except when they are compared

to business use cases.

29Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00003-X

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00003-X

(Chapter 5). These descriptions are an excellent basis for starting the user manual, because all

possible functionalities are described there in a structured and complete way.

Each use case represents a coherent set of functional system requirements. Usually, more than

one function is related to a single use case, especially if it is a complex one. Some functions, on

the other hand, may be associated to more than one use case. In some situations it may also happen

that a function corresponds to a single use case and vice versa. This usually occurs with very sim-

ple use cases such as reports and entity management.

There are at least three approaches for requirements and use cases:

• Create a list of functional requirements, and then identify use cases associated with them.

• Create a set of use cases, and then extract the functional requirements from them.

• Consider that use cases are requirements. The brief version of the use cases corresponds to

high-level requirements and the expanded use cases correspond to the complete set of

requirements.

In this book, the third approach is taken, because it is simpler, straighter, and avoids generating

different documents with the same goal. Requirements elicitation and analysis corresponds, then, to

the discovery of system use cases and their properties.

3.2 System actors
A system actor is an entity of the real world that interacts with the system through the use case.

Actors may be roles performed by people such as customers, publishers, sellers, operators, etc.

Actors can also be external systems, that is, systems that are outside the scope of the project being

developed.

Human actors or external systems interact with the target system by sending and receiving

information through an interface. In the case of human actors, the information is usually

exchanged through data entry devices such as keyboards, mice, or other special devices. Those

actors receive information from the system through interfaces such as screens, printers, or other

special devices.

Communication with actors that are external systems usually happens through a computer net-

work. In this case, the communication interface consists of the network and its protocols.

The idea of external systems as actors must not be confused with internal ones that are compo-

nents of the system under development. For instance, a database management system (DBMS),

used to implement data persistence for the system under development, is not an actor but a compo-

nent of the inner architecture of the system. The following rules may help to appropriately identify

external systems that could be actors:

• System actors are complete information systems, and not only libraries of classes or

components. These systems store their own information, which can be exchanged with the

system being developed. That information may change independently from the system being

implemented.

30 CHAPTER 3 High-Level Requirements

• System actors are out of the scope of development, that is, the team will not necessarily have

access to the internal design of these systems, or the ability to change it. The team must

communicate with an system actor using the system actor’s own definitions, because they

cannot be modified.

Some approaches consider that there are two kinds of actors: primary and secondary. Primary

actors are the ones whose goal the use case is trying to satisfy, while secondary actors are actors

that just provide some service to the process under discussion. Examples of secondary actors are

printers, web services, or people that must provide information or confirmation, as for example, a

clerk that confirms that the client has paid in cash. In this book we do not follow that distinction:

we distinguish use case actors into human or system actors only.

3.3 System use cases
System use cases differ from business use cases (Section 2.3) in some aspects. For example, busi-

ness actors may spend days or even weeks performing a business use case, while system use cases

are often executed in a short period of time, usually minutes, with one or a few actors interacting

with a system and obtaining a consistent and complete result for at least one of their goals. System

use cases also must be performed without interruptions while business use cases are not restricted

in that respect.

Another fundamental difference between a business use case and a system use case is that the

business use case is usually performed by many human actors, while the system use case is nor-

mally performed by a few (sometimes just one) human actors. The fact is that if a system use

case is going to be performed by more than one human actor, then they should be interacting at

the same time with the system, and that is not a common situation. Usually, each human actor

accesses the system at a time of her convenience, accessing necessary data and performing the

necessary actions. This leads to a sequence of system use cases and not to a single use case, as

explained later. However, sometimes more than one human actor may be available online; for

example, at a supermarket when a customer is buying goods, a supervisor may be summoned to

perform actions that the cashier is not allowed to do (e.g., cancel a sale). The point is that the

supervisor must be available online and the other actors must wait for her to show up before

proceeding.

On the other hand, external computational systems may be considered online actors, because

they are available continuously. For example, it can be assumed that a credit card operator is avail-

able online continuously. At the moment a customer decides to make a payment with her credit

card, the system actor Credit card operator will be available.

A high-level system use case is represented only by a name inside an ellipse. It is usually asso-

ciated to one or more actors as seen in Figure 3.1.

In the diagram in Figure 3.1, the ellipses represent system use cases. By default, an actor is a

role performed by a human. Other kinds of actors may be represented by the use of stereotypes, as

shown in Figure 3.1, where the stereotype {systemc indicates that Credit card operator is an

external system, not a human.

313.3 System use cases

The use case diagram is a very popular UML diagram, but it is also frequently misunderstood.

It is usual to see these diagrams with dozens of use cases and also some of their fragments attached.

However, during Inception, the important thing is to know what the major processes of the system

are, and not to detail them. Thus, the presence of fragments in the diagram, and the use of the

include and extend relationships between use cases (which sometimes reveal part of their internal

structure) is not advisable. Concerns about fragments and use cases including or extending others

may be left for the moment when those high-level processes are detailed by system sequence dia-

grams (Section 5.8).

Usually there is not enough information to discover all of the fragments at this time. Why

should only some of the use case fragments be shown and others not shown? Simply show none at

all in the diagram during Inception! This prevents the diagram from having a large number of ellip-

ses, which can hinder its comprehension. Thus, there is a need for strong criteria to decide which

use cases should be maintained in the diagram to avoid, on one hand, a large number of excessively

detailed processes, and on the other hand, too few processes, which could lack important features

of the system.

The rule is to consider as a use case only those processes that can be performed in isolation.

Partial processes that must necessarily be performed during other processes must not be represented

in the system use case diagram.

However, even following this guide the number of use cases in a real-world system may still be

too high, so that dealing with them may become difficult. To reduce the number without losing

information and precision a second rule may be used. It consists of grouping use cases that are

somewhat related, especially if that may be done more than once, like a pattern. For example, there

could be four use cases such as Create book, Retrieve book, Update book, and Delete book, or just

one use case called Manage book that includes the four single processes. This is a pattern, because

it may be repeated for other concepts: Manage publisher may be used instead of Create publisher,

Retrieve publisher, Update publisher, and Delete publisher. This pattern is known as CRUD, which

is an acronym for Create, Retrieve, Update, and Delete.

The next subsections detail those rules and present other criteria for achieving the best use case

granularity.

Livir

Order books

Pay for books
Customer

<<system>>
Credit card operator

FIGURE 3.1

System use case diagram.

32 CHAPTER 3 High-Level Requirements

3.3.1 Single session
A good system use case must be performed in a single session.2 This means that it should begin

and finish without interruption. For example, the registration of an order is made during a single

session of the system, involving the identification of the customer, book selection, price visualiza-

tion, payment, address selection, etc. Each of these aspects is a functional requirement of the

system.

Use cases must be performed as single processes. Processes that can only happen in the context

of other processes are just fragments, not use cases.

In the case of the Livir system, calculating taxes is something that will happen only during the

process of ordering books. Let’s suppose that the requirements of the system do not determine that

it must be considered an independent process (although it could be, if requirements were different).

In this case, Calculating taxes is not a use case, and because of that fact, it should not be included

in the diagram. Figure 3.2 illustrates the situation that must be avoided � using fragments in the

diagram.

On the other hand, Order books can be considered a use case because it is a process with a

well-defined start and finish, it occurs in a contiguous time interval (without interruptions), and it

produces a sound result (the order is registered).

Livir

Order books

<<Include>>

avoid!

Pay for books

Customer

<<system>>
Credit card operator

<<fragment>>
Calculate taxes

FIGURE 3.2

Example of a use case fragment.

2That idea follows Larman’s (2004) definition of an EBP (Elementary Business Process) use case. The EBP definition

comes from the business process engineering field: “a task performed by one person in one place at one time, in

response to a business event, which adds measurable business value and leaves the data in a consistent state.”

333.3 System use cases

In the example represented in Figure 3.1, there are two possible scenarios that could be

investigated:

• The system will only confirm the order if the payment is made online (it is not possible to

save the shopping cart). In this case, the process of ordering books and paying are just

fragments of a single use case that could be called Buy books. If this is the real requirement,

then the diagram must be changed and the two use cases replaced by a single use case named

Buy books.

• The system will register the order, but not necessarily proceed to checkout, that is, the shopping

cart may be stored until the customer decides to finish the order (which can be done

immediately or at some other time). This is the case represented in Figure 3.1. In this case,

Order books is one use case and Pay for books is another use case. They can be performed

immediately one after the other, or with an interval of some days, and because of that, they

should be considered independent use cases.

On the other hand, books are not automatically delivered when the order is paid: someone is

responsible for verifying, from time to time, which orders have been issued; that person collects

books in stock, and sends the package. The delivery process may happen just after the order is

paid, but it can also happen on the next day (or even six to eight weeks later). This fact charac-

terizes Delivery as a different use case. The Delivery use case has buying books as a precondi-

tion, but buying is not part of delivery: delivery just happens after it. Thus, buying and

delivering, although sequential and even part of the same business use case, must be considered

as different system use cases, as shown in Figure 3.3 where the Send books use case is

introduced.

Livir

Order books

Pay for books

Send books

Customer

Dispatcher

<<system>>
Credit card operator

FIGURE 3.3

Use cases related to the business process of selling books.

34 CHAPTER 3 High-Level Requirements

3.3.2 Interactive
A use case must also be interactive, meaning that an actor must exist to interact with the system.

The internal processes of the system are not use cases no matter how complex they are. On the

other side, a simple query on some information may be a use case if there is an actor that starts it.

The aforementioned internal processes are either part of a use case (as, for instance, Calculate

taxes is part of Buy books), or supplementary requirements (as, for instance, Store data at a rela-

tional database). In the case of supplementary requirements, they are usually implemented by inter-

nal mechanisms that do not depend on user interaction. During the Inception phase they are

recorded as supplementary specifications (Section 3.4.8) or nonfunctional requirements (annotations

on use cases � Section 3.4.5), so that the risk and effort that they imply is not underestimated.

3.3.3 Consistent result
A use case must produce a consistent result, be it a complete entry or transformation on a piece of

information, or simply a query where relevant information is passed to a user. A use case cannot

leave the information at an inconsistent state at its end. For instance, the registering of an order

cannot be concluded without the identification of the customer and the books she is ordering, or

else the information about the order would be incomplete regarding the business rules; the book-

store could not resume the order or charge it without knowing who the customer is and which

books are ordered.

To decide if a use case has a consistent result, one could think like this: only a complete process

is a system use case, in the sense that a user could go to the computer, turn it on, perform the pro-

cess, and at its end, turn off the computer, because the process is complete, and some business goal

was obtained (some relevant information was received or updated by the user).

This excludes from the use case definition fragments such as Calculate taxes, in the case of the

bookstore example, because those taxes are calculated only inside the ordering process, and not as

an isolated process. That also excludes operations such as Login, because performing a login and

then turning off the computer cannot be seen as a complete process. It may be just part of one or

more use cases (Figure 3.4).

To avoid representing Login as a use case or even as part of one it may be simply assumed that

every system operation could only be performed by a user that is regularly identified and autho-

rized to perform it. This mechanism is part of the technological design of the system and does not

need to be considered in the high-level use case model.

On the other hand, it is possible that complete use cases occur inside other use cases. For exam-

ple, the process of registering a customer can be considered a complete use case. But that process

Login avoid!

Customer

FIGURE 3.4

Login must not be considered a complete use case.

353.3 System use cases

can also occur during book ordering, especially if it is the first time that the customer is using the

system, or when she needs to update data (Figure 3.5).

The dependency association between use cases is stereotyped with {extendc to indicate that

the process of ordering books may occasionally be extended by the process of registering the cus-

tomer. Both processes may occur independently from each other, but the customer registration can

also occur during book ordering.

To avoid abusing {extendc in the use case diagram, it is important to keep in mind that only

complete use cases must be maintained in the diagram. Fragments like those shown in Figures 3.2

and 3.4 must be avoided, even if they are extension points of a use case. These fragments will be

addressed appropriately later, when the high-level use cases are detailed (Chapter 5). In practice, at

this point, any association between use cases such as extend or include should be avoided in the

diagram because they usually add no useful information for the Inception phase.

3.3.4 Essential
Two styles for writing use cases may be identified:

• Essential use cases, which do not mention interface technology.

• Concrete (or real) use cases, which are specifically written for a given interface technology.

During requirements elicitation and analysis, system use cases are considered requirements, not

design. It is a common mistake to include among these use case actions that are purely related to

an interface technology (such as Open main window, Print report, and Login). People prepared to

handle that facet of design will decide on those actions later, after the requirements are discovered.

Ambler (2000) points out that essential models are more flexible, leaving more options open

and more readily accommodating changes in technology. He also says that essential models are

more robust than concrete representations because they are more likely to remain valid in the face

of changing implementation technology.

Thus, essential use cases must be considered as the correct option during requirements elicita-

tion, although technology details or options may be annotated to allow risk management and effort

calculation. Later in this book (Section 5.4.1), the difference between essential and concrete use

cases will be explained in more detail.

Order books

Register customer

<<extend>>Customer

FIGURE 3.5

Independent use cases that may be related.

36 CHAPTER 3 High-Level Requirements

3.3.5 Brief
During Inception use cases usually are brief, meaning that they are described just by their name or,

in some cases, by one or two sentences. However, this is not the only way a use case may be

described. Later they will be extended and contain more details about the requirements (Chapter 5).

Cockburn (2001) identifies three types of use cases with regard to the level of detail:

• Brief: A one-paragraph synopsis of the use case.

• Casual: Written in simple, paragraph, prose style. It is likely to be missing project information

associated with the use case, and is likely to be less rigorous in its description than a fully

dressed use case.

• Fully Dressed: Expanded to include a main flow and alternate flows, as well as other sections

such as postconditions, preconditions, stakeholders, and technological variations.

In this book we expect that use cases considered during the Inception phase will be brief. This

means that usually their name is sufficient to explain their meaning. However, additional explana-

tion is allowed for the sake of requirements comprehension. Also, if some key use cases have to be

expanded in order to identify risks regarding their inherent complexity, this is also acceptable.

Usually, fully dressed or expanded use cases will be useful only after Inception, when requirements

must be detailed adequately.

3.3.6 System boundary
One of the decisions a team must make when designing system use cases is where to place the sys-

tem boundary. Graphically, the boundary is only a rectangle that is placed on the diagram. Inside it

are the use cases and outside are the actors. In business use case diagrams, the system boundary

represents the limits of the organization (company, department, etc.). Here, it represents the limits

of a computational system.

A decision was made earlier on which workers to include in the automation border. One exam-

ple is the clerk that helps the customer buy books. In that case, when modeling system use cases

the Clerk disappears, and the use case is performed by the customer itself.

However, if it was not a virtual bookstore, but a regular one where customers buy at a store,

should the clerk be kept in the use case diagram? For a use case to be as essential as possible,

it is recommended that only actors that are really interested in the use case be kept in the dia-

gram. The clerk of the example is just a proxy of the customer; the clerk has no personal goals

in the process of buying books. It acts simply as a system interface. Whether the bookstore is

virtual or not, the essential use case should be the same, because the same information would

be exchanged between the customer and the system; the clerk would only transmit information

as she receives it. In this case, the only actor would be the customer and the clerk should not

even appear in the diagram. In this way, the analysis will produce use cases that are technology

independent.

Someone could ask the following: What if the clerk must indicate that she assisted in the sale

so that a percentage would be paid to her? In that case, what we have is a use case that is different

from the one mentioned in the last paragraph. Here, both the customer and the clerk should be

actors: the customer is interested in the books and the clerk is interested in the percentage. Also, if

373.3 System use cases

the clerk may perform actions that are not allowed for the customer (e.g., overriding a product

price) she must be considered an actor and may not be removed from the diagram.

3.4 How to find system use cases in the business model
In order to discover system use cases and actors, the team may examine the business use case dia-

gram with the defined automation boundary (scope of automation).

First, the actors that are really interested in the process to be automated should be identified.

These are the business actors that interact with the business use cases inside the automation scope,

and the business workers that interact with such use cases but that are not themselves inside the

automation scope. In the case of Figure 2.11, the following system actors could be identified:

• Customer, Publisher and Credit card operator, because they are business actors that interact

with use cases that will be automated.

• Acquisition manager, because it is a business worker that will not be automated, but that

interacts with a use case that will be.

On the other hand, the following will not be considered system actors:

• Clerk, because it is a business worker that will be automated.

• Marketing Department, because it is a business worker that does not interact with any use case

inside the automation scope.

The business workers whose functions will be partially or totally supported by the system may be

important sources of information, because knowing how they perform their duties currently may

be crucial to understand how the system must work. Moreover, knowing how the duties are really

performed may be valuable because sometimes what happens in practice is not what is written in the

procedure books.

Another source of requirements is the business actors that will become system actors.

However, they will not always be available for requirements elicitation, and, in that case, they

should be replaced by domain specialists. For example, it may not be possible to interview the

customer of a bookstore that does not exist yet. Thus, someone that knows the business and can

explain how it is supposed to work will be a key person for obtaining the right requirements. If

the publishers and credit card operators are also not available, it still would be possible to exam-

ine existing documentation on the communication protocols and services offered, so that the inter-

facing requirements with them can be known. In the case of the customer, however, such a

possibility would not be feasible.

Once system actors have been identified from the business use case diagrams, it will be possible

to observe the activity and state diagrams that were produced during business analysis in order to

verify which activities performed by the system actors can be considered system use cases.

By analyzing the activities of Figure 2.10, we can see that the activities performed by the

Customer are:

• Order books.

• Pay for books.

38 CHAPTER 3 High-Level Requirements

The only activity of the Publisher is Send books, and the only activity of the Credit card opera-

tor is Confirm payment.

Not every activity of the original Clerk becomes a system use case. As seen in Figure 2.7, the

clerk was split into two actors: Acquisition manager, which will not be automated, and Clerk, which

will be automated. The activities performed by the Acquisition manager role may become system use

cases. However, the activities performed by the business worker Clerk, which is being automated,

become internal actions of the system. For example, the activities Register order and Inform avail-

ability and total in Figure 2.10 do not become system use cases; they are just part of the use case

Order books initiated by the customer. However, Order books from supplier is a system use case

whose actor is the Acquisition manager.

Regarding processes that will be identified as use cases, one must still consider two concerns:

• Do the activities connected by a flow necessarily occur immediately or can they occur in

different moments? In the example, are Order books and Pay for books activities that must

occur in a single session of use of the system, or can they be performed in different moments?

The answer will depend on the way the business is organized, that is, it will depend on the

business rules. If the company decides that the order is received only after the payment is made,

then those two activities form a single use case. However, if the company decides that it is

possible to register an order (save a shopping cart) and pay for it some other day, then there are

two different use cases.

• Are the activities selected complete and sound? For example, is Send books a good description

of the activity performed by the publisher? By the similarity to the process performed by the

customer, it can be inferred that the publisher will first receive an order, and then it will send

the books it has in stock. However, the payment in the business-to-business case is usually not

made immediately � an invoice is generated and paid by the bookstore with a predefined

deadline (for example, four weeks after purchasing).

At this point, the diagram of Figure 2.10 should be revised. The publisher does not simply Send

books. It is going to receive the order, send an invoice for payment, and finally send the books that

are available. The books must be received and registered by some worker at the bookstore. That

worker will be a new system actor and could be called Deposit worker.

A recurrent question is if actors correspond to security profiles. This is not necessarily the case.

The goal behind the identification and modeling of actors is more related to the process of finding

and organizing requirements than to the process of granting access to the system. A good software

design will treat access permission in a dynamic way, allowing user profiles to be created, and per-

missions to be associated to the different profiles of individual users. As that aspect of the system

is not domain dependent it is not adequate to model it within the domain. In other words, use case

actors should not be considered as security profiles. Those profiles will be created dynamically

with the use of a generic domain-independent mechanism.

The state machine diagram presented in Figure 2.15 is also particularly helpful in terms of sys-

tem use cases that must be analyzed. Each change of state of a book (main business object), must

be done by someone, and that “someone” is an actor performing a use case. Thus, from the transi-

tions in that diagram a new set of system use cases was discovered as shown in Figure 3.6.

In Figure 3.6, the use cases Catalog book and Order book from publisher are maintained outside

the scope of the Livir system. This is due to the fact that it was discovered at a point that such use

393.4 How to find system use cases in the business model

cases would be performed within the publisher system, not within the system under development.

As they are not included in the bookstore system, they may be maintained in the diagram, but out-

side the system boundary, because they are out of scope and will not be implemented.

After making sure that it is understood that they will not be implemented, they may be removed

from the diagram, in order to simplify it and avoid later confusion with people who may not under-

stand that what is outside the boundary will not be implemented. In that case, their names may be

listed in an out of scope list, for recording purposes.

The use cases associated with the new actor Deposit manager are necessary to cover most

of the transitions indicated in the state machine diagram of Figure 2.15. It is interesting to

notice that some transitions are performed outside the scope of the company. For example,

when a customer decides to return a book, this is not done through the bookstore system; she

simply sends the book back, usually by mail. The information regarding the return only reaches

Catalog book

SupplierAcquisition manager

Deposit manager

Receive books

Deliver books

Register delivery
confirmation

Register book
return

Discard books

Resend books

Create/remove
special offer

Cancel sale

Sales manager

<<system>>
Credit card operator

Order books

Pay for books
Customer

Livir

Order book
from publisher

FIGURE 3.6

System use case model completed with information discovered on the state machine diagram of Figure 2.15.

40 CHAPTER 3 High-Level Requirements

the bookstore when it receives the book. Thus, the use case referred to here is Register book

return and not Return book, because the registry is made by the deposit manager, and not by

the customer. This is similar to the registry of the arrival of books, represented by the use case

Receive books, because when the publisher sends the books it cannot be registered in the book-

store system directly (unless both systems are integrated). Only the arrival can be registered by

the bookstore. This is a fundamental difference between a business use case and a system use

case: in a business use case the process as it happens in the real world may be described as

part of the use case, but when the focus is on the system, only processes that involve the

system may be represented.

3.5 Requirements
Identifying system use cases is an activity that is part of the Requirements discipline of the Unified

Process. Requirements elicitation and analysis is a significant part of the Inception phase. The team

can and must use every available source to identify requirements (specialists, users, documents,

interfaces, literature, etc.), and, for each source, a set of functions that the system must perform

may be identified.

3.5.1 Requirements elicitation
Requirements elicitation corresponds to the search for information about the functions that the sys-

tem must perform, and for the constraints under which the system must operate. In the approach to

requirements presented in this book, they will be recorded in the system use cases.

Another way to register requirements without use cases would be by using a document that

consists of a list of functional requirements, possibly accompanied by a list of constraints

(Sommerville, 2006). The advantage of using use cases instead of a list of functions is that a good

use case has a well-defined granularity, which allows for the generation of a high-level require-

ments list that is much more comprehensible than a list of individual functions. Usually the number

of high-level use cases is much lower than the number of individual functions. The individual func-

tions will appear in the use case expansion, when the high-level use cases have their structure

detailed.

In the case of the Livir example, requirements elicitation will allow the team to discover that

the system must control buying and selling books, receiving payments, allow damaged books to

be registered, generate sales reports, verify if books are available in stock, etc. These operations

and many others will constitute the functionality of the system, and this is why these require-

ments are called functional requirements. These functions will be incorporated into one or more

use cases.

On the other hand, during requirements elicitation the analyst may face business rules or con-

straints on how functions must be performed by the system. For example, a business rule could

state that the bookstore only sends books after the payment is confirmed. That kind of rule is a non-

functional requirement that can be recorded as an annotation or remark on the use case itself, in

order to be recalled and verified when the use case has to be detailed (Figure 3.7). Alternatively it

413.5 Requirements

could be recorded separately as a numbered list or spreadsheet, with a reference to the use cases

through a unique number.

As can be seen in Figure 3.7, the use case diagram with notes will quickly become too complex

to be useful. This is why it is recommended that such annotations should be recorded inside the

use case specifications or in a separate document. Most CASE (Computer-Aided Software

Engineering) tools allow that a diagram element such as a use case have a specification window as

shown in Figure 3.8. One exception to that rule would be the case when the annotation is absolutely

required to help understanding the diagram. However, this is seldom the case.

3.5.2 Eliciting requirements is not design!
A system that is going to be analyzed is like a forest. To explore an unknown forest one cannot

start by examining each plant and animal. There is a saying that states that some people cannot see

the forest for the trees. The forest is the system and the trees are the requirements. Only at the end

of the process could a team say that they acquired knowledge about the smallest parts. First, a view

of the whole must be taken, and only after that the details may be studied.

Thus, the Inception phase must provide a view of the whole � so that what is more important

can be seen first � and then the whole can be divided into parts so that the details can be analyzed

and finally a solution designed. The organization of iterations in the Elaboration and Construction

Customer

Livir

May order a
maximum of 100
books.

<<system>>
Credit card operator

Dispatcher

Order books

Pay for books

Send books

The payment must have been
confirmed.

FIGURE 3.7

Nonfunctional requirements annotated in use cases.

42 CHAPTER 3 High-Level Requirements

phases correspond to dividing the forest into sectors, in order to see each sector at a time, and in

that way, being able to deal with the inherent complexity. Thus, one of the final goals for the

Inception phase is to organize work division in terms of use cases, which will be explored during

the upcoming iterations.

During Inception, requirements elicitation must be quick and generic. The right way to do this

is to look at the extension of the requirements, not their details. The analyst must understand the

extension of what the system must do, without detailing how it will do that. Only during the

Elaboration iterations will the requirement analysis be deepened.

The time used for requirements elicitation time must be about discovery, not invention. During

this period, the team of analysts, with the clients, users, and other stakeholders will try to list most

of the capacities and restrictions with no concern about detailing them. Details about requirements

will be conveniently accommodated during the next iterations.

It must also be clear that requirements are something that a client asks for, and not something that

the team designs. Some analysts mix requirements gathering � that is, the memory of the demands

of the client � with the beginning of the system’s design. One example of this kind of confusion is a

set of requirements involving relational database design. Unless there are legacy systems that must be

compatible to the new system, how can it be justified that a set of relational tables is a client

demand? That could eventually be possible with some sophisticated clients with a degree in

Computer Science, but it is not the general rule. Database tables are part of the solution domain, not

FIGURE 3.8

Example of specification window for a use case. Image produced with the CASE tool Visual Paradigmt

Community Edition.

433.5 Requirements

the problem domain. The analyst must seek the requirements that correspond to the client needs and

goals in terms of information. Later, she may decide if that information would be stored in a

relational database or in another structure.

3.5.3 Requirements challenges
The requirements document, which can be formed by the use case diagrams with annotations and

by the supplementary specifications, must register the capacities of the system and the conditions

under which it must operate. The challenges regarding requirements are, at a minimum, the follow-

ing (Pressman, 2010):

• How to discover requirements.

• How to communicate requirements to the other phases and teams of the project.

• How to recall requirements during development in order to verify if they have all been

implemented.

• How to manage requirements change.

It would be useless to develop a nice use case diagram, and later not be able to know if the

requirements incorporated there were included in the design. The existence of automatic mechan-

isms to conduct this verification is crucial. Therefore, it is important to maintain traceability rela-

tions between use cases and other parts of the design. The following chapters show how those

relations among design artifacts are obtained.

It is necessary to keep in mind that requirements necessarily change during the development of

a project. Thus, the change must be managed, not avoided, after Inception.

Sometimes, requirements change after the system is deployed. Context conditions, regulations,

company policies, or work methods may change anytime. Although the analyst cannot foresee these

changes, mechanisms to accommodate them may be created in order to ease the change process

when it is necessary. There are specific design patterns to deal with these requirement instabilities

(as, for instance, the Strategy pattern, presented in Section 7.6). The changes are totally unpredict-

able. If the system is not structured to accommodate the changes in requirements it would probably

be hard to implement them.

This kind of situation makes requirements-driven analysis and design processes (Alford, 1991)

inadequate for most systems. Using requirements as a base to support system architecture is like

building a house over moving sand; when requirements change, the structure suffers. However, the

Unified Process (UP) uses a much more stable basis for the architecture, which is based on classes

and components that encapsulate information and behavior.

These classes implement functionalities that combined allow the implementation of the

requirements. If requirements change, the combinations change, but not the basic structure. This

kind of architecture follows the open-close principle (Meyer, 1988), in the sense that it is

always closed for modification (it works), but open for extension (it may accommodate new

functionalities).

It is important to trace the origin of each requirement (e.g., a business actor, a business worker,

the client itself, or even a domain specialist), because it is necessary to validate requirements with

those sources, verifying if they are well written, complete and sound.

44 CHAPTER 3 High-Level Requirements

Sometimes it may also occur that different people or departments present different specifica-

tions for the same requirement. In that case, it is necessary to produce an agreement among them,

or identify who has the highest authority to determine the acceptable form for the requirement.

3.5.4 Evident and hidden functional requirements
Functional requirements can be optionally identified as evident or hidden (Gause and Weinberg, 1989):

• Evident functional requirements are functions that are performed with the user’s knowledge.

These requirements usually correspond to information exchange between the user and the

system, such as queries and data entry, which flows through the system interface.

• Hidden functional requirements are functions performed by the system without explicit

knowledge of the user. Usually these functions are math operations and data updating

performed by the system without explicit user knowledge, but as a consequence of other

functions performed by the user.

Hidden requirements are performed internally by the system. Thus, although they do not appear

explicitly as use cases, they must be adequately associated to them in order to be recalled at the

time of design and implementation. Thus, they could also be added as annotations to a use case.

An example of an evident requirement is the production of a report on bestselling books, which

is something a manager might require. An example of a hidden requirement is applying a discount

policy to a sale. In that case, the user does not explicitly request that the system perform the opera-

tion. As it is an activity that the system performs automatically, it is a hidden requirement.

3.5.5 Nonfunctional requirements
Nonfunctional requirements are constraints or qualities that may be linked to specific functions of a

system (for example, “an order cannot contain more than one hundred books,” “the order transaction

must be preserved if communications are broken,” etc.), and therefore they can be treated as annota-

tions on the use cases that incorporate the respective functions. Sometimes, however, nonfunctional

requirements may be general, that is, not necessarily attached to a function (for example, “the system

must be implemented in Java”), and in that case, they will appear in the supplementary specifications

document. Constraints and qualities that are specifically attached to a function are called nonfunc-

tional requirements, and general constraints and qualities are called supplementary requirements.

There are two kinds of nonfunctional requirements:

• Logical issues: Business rules attached to a function. For example, during sales registration, a

series of constraints could be considered, such as not closing the sale until the credit card

operator confirms the payment, or not closing the sale if the last delivery to the same address

has been returned due to invalid address.

• Technological issues: Constraints and qualities related to the technology used to perform the

function, such as, for example, the user interface, the kind of communication protocol, security

constraints, fault tolerance, and so on.

For example, establishing that the user interface to perform an order must follow a design pat-

tern based on a sequential flow of screens is a technological constraint (interface constraint) about

453.5 Requirements

the way that function must be performed. Another example of a nonfunctional requirement is “the

payment confirmation must not take more than 5 seconds.” This is a technological constraint

related to system performance and it would affect the way a designer would think about the com-

munication mechanism with the credit card operator. In this case, the system design would have to

consider seriously the broadband connections to the operators.

A requirement does not establish how the constraint will be implemented, it just demands it.

The design and implementation of the system must meet the requirement in one way or another, or

otherwise the analyst should negotiate with the client for some requirement flexibility.

3.5.6 Permanence and transience of nonfunctional requirements
One of the most fundamental features of a requirement is whether a given nonfunctional or supple-

mentary requirement is permanent or transient.

Nonfunctional and supplementary requirements can be considered permanent (they are not

expected to change) or transient (they are expected to change) depending on a decision made by the

client. Permanence or transience is not an intrinsic feature of a requirement: it is decided depending

on the convenience. The same given requirements can be considered permanent or transient depend-

ing on what is desired regarding the time and cost of software development and maintenance.

If one invests in flexible design, so that most constraints are transient, less effort will be spent

during maintenance in order to accommodate changes. However, the cost of that flexible design

during development may become prohibitive for some projects. It will always be a good idea to

ponder which constraints should really be treated as transient requirements.

For example, a supplementary requirement could establish that the Livir system must deal with a

single currency: the dollar. If that requirement is considered permanent, then the system will be

designed for a single currency (“dollar” could even be a data type used to define variables and attri-

butes). However, if the requirement is considered transient, then even if there is no other currency being

used today, the whole system must be prepared to accommodate future currency, or even more than

one currency at a time.

The consequences of deciding that a requirement is permanent are the following:

• It is cheaper and quicker to develop the system.

• It is more expensive and difficult to change the system if, by any chance, the requirements

change in the future.

On the other hand, deciding that the requirement is transient has the following consequences:

• It is more expensive and complex to develop the system (it should accommodate functionalities

for changing the currency, for example).

• It is easier and quicker to maintain the system (if the currency changes, the system is already

prepared to accommodate that with a simple reconfiguration).

Thus, it is not the nature of the nonfunctional requirement that will decide whether it is perma-

nent or transient. It is the client, with the help of the team, that must make the decision. The ideal

situation would be to list the requirements of greater importance (those that are really expected to

change in the near future with a bigger impact on the system) and consider them transient, while

leaving the others as permanent.

46 CHAPTER 3 High-Level Requirements

3.5.7 Mandatory and desired requirements
Requirements may also be considered mandatory or desired,3 that is, those that must be obtained

by any means and those that could be obtained if no bigger issue hinders the development process.

In the case of functional requirements, that classification indicates development priorities. If

there is flexibility in the contract such that only the most important use cases are implemented

if there is no time to implement them all, then the team must know which ones are mandatory.

However, if the team is able to make a good estimate of the effort needed to develop the system,

and if they have a good history of accurate estimation, there will be less motivation for such distinction

regarding functional requirements, because all requirements are expected to be implemented in time.

On the other hand, nonfunctional and supplementary requirements are much more unpre-

dictable than functional ones with regard to effort estimation. Thus, in some cases, it may be

necessary to consider those requirements with some flexibility.

In this case, some restrictions are defined such that they must be obtained by any means and

others may be considered simply desirable, and some time is allocated to pursue them.

For example, in the case of the Livir system, the requirement for using a web interface may be

considered a mandatory supplementary requirement. In that case, other solutions are not acceptable.

However, additional access through a cell phone could be considered as desirable requirement,

because such access is not absolutely necessary for the effective success of the system.

Nowadays, with the formalization of software development contracts, there is less flexibility

regarding desirable requirements. In most cases, the developer must state which requirements will

be implemented, how much time it will take, and how much it is going to cost. Stepping outside

that line may require the payment of fines or even canceling the project.

3.5.8 Supplementary requirements
Supplementary requirements are all types of constraints and qualities related to the system as a

whole and not only to individual functions. For example, a supplementary requirement may estab-

lish that the system must be compatible with a given legacy database, or be implemented with a

given programming language, or even follow a given look and feel.

Care must be taken when supplementary requirements are defined. A requirement such as “the

system must be easy to use” is not sufficiently clear. It would be better to say something like “nov-

ice users must be able to complete tasks without errors on their first attempt.” That gives a more

precise idea of what must be designed to accomplish the requirement.

Nonfunctional and supplementary requirements may also be identified with different groups

such as, for example, interface, implementation, performance, fault tolerance, etc. The goal of mak-

ing such distinctions is to allow for better organization.

Although most UP practitioners would choose to use the FURPS1 classification system

(Grady, 1992) for organizing supplementary requirements, the newest source to decide on supple-

mentary requirements classification is ISO/IEC 25010,4 as shown in Table 3.1.

3Another option is to use the MoSCoW scale: Must, Should, Could, and Would.
4http://www.iso.org/iso/catalogue_detail?csnumber5 35733

473.5 Requirements

http://www.iso.org/iso/catalogue_detail?csnumber=35733
http://www.iso.org/iso/catalogue_detail?csnumber=35733

Table 3.1 Supplementary Requirements Classification Based on ISO/IEC 25010:2011 and

Requirements Generating Questions

25010
Feature

25010 Subfeature Requirements Generating Questions

Functional
suitability

Functional
completeness

Are these all necessary functions that must be implemented? May
some of them be left outside the system scope? May some
functions be implemented by a further project?

Functional
appropriateness

To what degree must the user activities be made easier by the
system?

Functional
correctness
(accuracy)

Are there accuracy specifications, that is, a desirable precision for
data? Are there limits for tolerating imprecision?

Reliability Maturity Must special care be taken to prevent the system from presenting
defects during use? Must critical parts be defined by formal
specifications? What is the intensity and type of tests that must be
performed to assure the system is free from bugs?

Availability What is the degree of availability required for the system? How
many simultaneous accesses must be supported? How many
hours per day? How many days per year?

Fault tolerance How should the system react in the case of externally provoked
anomalies, such as communication interruptions?

Recoverability Must the system recover automatically in the case of a disaster?
Under which circumstances must lost data and aborted processes
be recovered?

Usability Appropriateness
recognizability

In what way should the software present itself to a potential user so
that she may recognize its applicability? How should the software
be packaged?

Learnability How are the concepts inherent to the software being presented to
the user so that she can become competent in its use?

Operability To what degree must the product be easy to use and control?
What kind of help must the system provide? What forms of
documentation and manuals should be available? How are they
going to be produced? What kind of information should they
present?

User error
protection

What kind of protection against user error is necessary?

User interface
aesthetics

Which design patterns will be used for the interface to provide visual
pleasure and satisfactory interaction?

Accessibility To what degree must the product be designed to attend to people
with special needs?

Performance
efficiency

Time behavior Which time restrictions exist related to the software processes and
functions?

Resource utilization Are there data storage space restrictions? Energy limitations?
Communication network limitations?

Capacity Regarding processing capacity, what are the nominal values
expected and what are the critical values? For example, the
software may be designed to support up to 2,000 simultaneous

(Continued)

48 CHAPTER 3 High-Level Requirements

Table 3.1 (Continued)

25010
Feature

25010 Subfeature Requirements Generating Questions

accesses, but assured to keep working when up to 10,000
simultaneous accesses occur.

Security Confidentiality To what degree must the information and functions of the system
be available only to those authorized to access them?

Integrity To what degree must data and functions be protected against
unauthorized modification by people and systems?

Nonrepudiation To what must the system guarantee that the records kept by it are
effectively true so that their authors cannot deny them?

Accountability To what degree are user actions recorded by the system? What
information is kept?

Authenticity To what degree must it be guaranteed that a logged-in user is really
who she is supposed to be?

Compatibility Coexistence With which products must the software potentially coexist? Which
tools and programming languages must be used? Is it necessary to
run the system with legacy systems?

Interoperability Which other products must communicate with the system? To
which systems must it send data? From which systems must it
receive data?

Maintainability Modularity What kind of architecture will be used? Layers? Partitions?
Components? Web services?

Reusability Will the system be produced from parts of other systems? Must the
system be designed so that its parts could be reused in future
projects?

Analyzability Will special techniques or tools be used to ease debugging of the
code?

Modifiability Will special techniques or tools be used to guarantee that changes
introduced in the system will not produce new defects?

Testability Will special techniques and tools be used to ease regression tests?
Will automated test tools be used? Will TDD (test-driven
development) be used? How are test assets produced during
development going to be kept?

Portability Adaptability To what degree must the software adapt itself to other contexts
besides the ones it was originally designed for? Must it be recompiled
or just reconfigured? What can be configured in the system?
Examples of configurable items are printers, currency, company
policies, interface fonts and colors, language, etc. Transient
requirements would probably be related to configurable items.

Installability What installation resources will be provided? Should installation be
automatic? Is data migration automatic?

Replaceability What resources must the system provide when it replaces other
systems with the same goals? What resources must the system
provide when it is going to be replaced by other systems with the
same goals? Should it generate data and configuration in formats
widely understood such as XML?

(Continued)

493.5 Requirements

Although this list is extensive, the team must keep in mind that it is only a classification to

improve the ability to identify which requirements are really important. There is no need to seek

nonexistent requirements, for example establishing complicated packaging requirements for a client

that does not care about the way the software will be packaged.

It is also advisable not to lose time discussing if a given requirement belongs to this or that

type. More important than deciding on its type is to know that it exists: long discussions on require-

ments classification do not add significant knowledge to the project.

Table 3.2 presents an example of supplementary requirements that could be assigned to the

Livir example.

Not every field was filled because, as said before, requirements must not be invented, they must

be asked for by the client. Thus, usually there are not requirements in all categories. The questions

that generate requirements mentioned in Table 3.1 are a good basis for finding eventual needs. But

it is not mandatory to have an answer to all of those questions.

Table 3.1 (Continued)

25010
Feature

25010 Subfeature Requirements Generating Questions

Effectiveness Effectiveness Which business goals on the real use environment must the system
help to obtain? To what degree must the system be responsible for
obtaining those goals in a complete and correct way?

Efficiency Efficiency What kind of return of investment (ROI) must the system produce to
the client?

Satisfaction Utility In which way must the software be designed to help the user
perceive the consequences of its use?

Pleasure To what degree must the system provide pleasure to its users?

Comfort To what degree must the system preserve or improve physical and
mental user comfort?

Trust In which way must the system be designed so that the stakeholders
trust it will do the work?

Freedom
from risk

Economic risk
mitigation

What kind of financial risk (including property and moral damage)
must the system reduce?

Health and safety
risk mitigation

What kind of physical risk to people must the system reduce?

Environmental risk
mitigation

What kind of environmental and property risks must the system
reduce?

Context
coverage

Context
completeness

To what degree must the system be used effectively, efficiently,
without risks, and with user satisfaction in its use contexts? What
are those use contexts? Are there legal requirements related to the
use of the software?

Flexibility To what degree must the system be used effectively, efficiently,
without risks, and with user satisfaction in use contexts other than
the ones it was originally designed for? What are those use
contexts?

50 CHAPTER 3 High-Level Requirements

Table 3.2 Supplementary Requirements for the Livir System

25010
Feature

25010 Subfeature Supplementary Requirement

Functional
suitability

Functional
completeness

Functional
appropriateness

Functional
correctness
(accuracy)

Reliability Maturity

Availability The system must be available continuously (24 hours a day,
7 days a week).

Fault tolerance Transactions partially concluded by the user in the case of
temporary faults must be preserved for recovery for at least
24 hours. After that deadline, they may suffer rollback.

Recoverability In the case of energy, communication, or data failure, the system
must become operational again without operator intervention.

Usability Appropriateness
recognizability

All access functions that generate value for each kind of user must
be easily recognizable in the initial page of the system. Primordial
functions must be highlighted.

Learnability Names of functions (e.g., buttons and menus) must conform to
usual Windows names in order to improve users’ ability to learn
about their use.

Operability The use of the system must be clear to novice users: there must
not be the need for supplementary help or explanation.

User error
protection

The application must prevent the user from entering inconsistent
information.

User interface
aesthetics

Accessibility The system must be configurable to many human languages.

Performance
efficiency

Time behavior During peak hours it is important that the system’s performance
does not degrade.

Resource utilization

Capacity Peaks of 10,000 simultaneous accesses are expected.

Security Confidentiality Data about sales and customers are only accessible by the
customer herself, the sales manager, and workers authorized by the
sales manager.

Integrity A customer may change her own data and open orders only. All
other data may be changed only by authorized personnel. Different
levels of authority may be defined.

Nonrepudiation The system must store in a tamperproof record the following data
about each order: its contents, the date and time it was issued and
received, and the identity of the customer.

Accountability

Authenticity

(Continued)

513.5 Requirements

3.6 Preliminary conceptual model
Although Chapters 6 and 7 present conceptual modeling techniques in detail, it is necessary to mention

here that there are interdependency relations between system use cases and the so-called preliminary

conceptual model (Larman, 2004). The preliminary conceptual model is built during Inception, and

Table 3.2 (Continued)

25010
Feature

25010 Subfeature Supplementary Requirement

Users’ passwords must not in any case be visible by other users
or system managers.

Compatibility Coexistence

Interoperability The system must be able to communicate automatically with credit
card operators to allow confirmation of payment.

Maintainability Modularity

Reusability

Analyzability

Modifiability

Testability

Portability Adaptability The server must be installed on a single platform. The client
application must be accessible at least by Internet Explorer, Google
Chrome, and Mozilla Firefox. The client application must be sensible
to the configuration of the user computer in order to identify the
language, currency, and other definitions.

Installability The customer may access the system via the Web without the need
to install any additional component except those that are usually
available for browsers.

Replaceability

Effectiveness Effectiveness

Efficiency Efficiency

Satisfaction Utility

Pleasure

Comfort

Trust

Freedom
from risk

Economic risk
mitigation

Health and safety
risk mitigation

Environmental risk
mitigation

Context
coverage

Context
completeness

Flexibility

52 CHAPTER 3 High-Level Requirements

consists of a class diagram that represents the main information units of the system. It is still not nec-

essary to represent attributes. Although associations must appear in that model, it is not necessary to

detail their features.

By analyzing the system use case diagram, many important concepts may be discovered. These

concepts are represented as classes in the preliminary conceptual model; they represent the struc-

ture of the information that will be managed by the system. At the same time, an analyst, by

observing the conceptual model, could notice if the use case diagram is sufficiently complete. This

verification usually occurs when new entities are identified in a business process, and it is neces-

sary that they be somehow recorded by the system.

Figure 3.9 presents a possible preliminary conceptual model for the use case diagram presented

in Figure 3.6. The process for discovering classes consists of thinking about the use cases and

imagining which (high-level) information is exchanged between the actors and the system to allow

the process to work. The associations between classes represent dependencies or relationships

between the pieces of information represented by them.

Looking at Figure 3.6 with the purpose of finding the concepts shown in Figure 3.9, it can be

seen that:

• Order books is probably the most important use case in the system. It gives rise to two

concepts, Book and Order, which are associated.

• Pay for books adds a new concept, Payment, which is associated with Order. At that point the

team could decide to change the name of the use case to Pay order.

• The Receive books use case gives rise to the concept Arrival, which is associated to Book.

Maybe at that point EntryOrder or BuyOrder could be introduced as a new concept.

Publisher Special offer Confirmation

Discard Book Delivery

Arrival Order Return

Customer Cancellation Payment

FIGURE 3.9

Preliminary conceptual model for the use cases of Figure 3.6.

533.6 Preliminary conceptual model

• Deliver books produces a new concept, Delivery, which is associated to Order. Now Deliver

books may/should be renamed to Deliver order.

• Register delivery confirmation produces the concept Confirmation, which is associated with

Delivery.

• Register book return produces Return, which is associated to Order. Maybe at that point the

name of the use case should be changed to Register order return.

• Discard books produces Discard, which is associated to Book.

• Resend books does not create a new concept at first glance because it may be considered the

repetition of the use case Deliver books. However, that still must be analyzed further.

• Cancel sale produces the Cancellation concept, which is associated to an Order. Maybe the use

case name should be changed to Cancel order at this point.

• Create/remove special offer creates the SpecialOffer concept, which is associated to Book.

The identification of that preliminary conceptual model is especially useful to ease the visuali-

zation of the structure of the information that is going to be managed by the system; this helps

in unifying the vocabulary among the team members and other stakeholders. The decisions

about changing use case names in order to clean the vocabulary are already implemented in

Figure 3.10.

Deposit manager

Receive books

Deliver order

Register delivery
confirmation

Register order
return

Discard books

Resend order

Cancel order

Pay order

Order books

<<crud>>
Manage customer

Create/remove
special offer

<<crud>>
Manage book

<<crud>>
Manage supplier

Acquisition manager

Sales manager

Customer

<<system>>
Credit card operator

Livir

FIGURE 3.10

Use case model with names revised and CRUDs added.

54 CHAPTER 3 High-Level Requirements

But there is also the following important practical utility for the preliminary conceptual model.

Among the concepts shown, most are information elements created or changed in the context of

the use cases already identified. However, some of them are neither created nor changed by those

use cases, and that means that some use cases could still be missing. This is the case especially

for the classes Book, Publisher, and Customer. Those concepts may be considered as a CRUD,

because they allow the four classical operations: Create, Retrieve, Update, and Delete. If they are

to be added to the diagram, instead of representing them individually it would be better to repre-

sent the four operations by using a single CRUD use case, which is stereotyped with {crudc,

as seen in Figure 3.10.

A new actor was defined for managing the publishers and books: the Acquisition manager. On

the other hand, it was decided that the customer would be responsible for its own record.

Why is there no CRUD for orders, canceling, returning, payment, etc.? Because those are

already managed by the use cases on the diagram, and it is not necessary to create other use cases

specifically for them. For example, an order is created by the use case Order books; it is changed

by use cases such as Cancel order and Pay order; it is visualized (retrieved) in many use cases;

and, finally, it is assumed that it cannot be removed from the system.

Another question that could be raised with the stakeholders is: What are the reports that the sys-

tem must produce? Although they are the simplest use cases, as explained later, reports are an

important source of information for identifying which information is necessary to fill the stake-

holders’ needs.

There is a difference between reports and the retrieve query of CRUD: retrieving is simply

recovering stored data about an object; a report, however, usually involves a number of objects,

sometimes from different classes, and it necessarily includes some kind of filtering or combination

of data (sum, product, average, greater value, lower value, etc.). For example, a query for informa-

tion about a book, given its ISBN, should not be considered as a report use case, because that query

is already included in the CRUD use case.

For the running example, some reports that are interesting to certain actors could be identified,

such as:

• Deposit manager: Report on upcoming orders by period of time, report on deliveries by period

of time, report on the total number of books available for sale, report on returns received by

period of time, and report on books discarded by period of time.

• Customer: Report on orders status, and report on past sales.

• Sales manager: Report on book sales by period of time.

The client could demand other reports, and the above are only examples. Those that are used

exclusively inside one of the existing use cases must be excluded from the reports list. For exam-

ple, the deposit manager could be interested in the list of orders that are arriving. If that list is

going to be consulted only at the moment an order really arrives and must be registered, then the

query must be considered as part of the use case Receive books, and must not be included in

the diagram. Only reports that are not necessarily part of other use cases must be included in the

diagram; otherwise the list could quickly grow far beyond the manageable, and would be redundant

and incomplete (because it is the use case expansion with sequence diagrams that will really indi-

cate which steps, including queries, are necessary for each use case). Figure 3.11 shows the use

case diagram updated with the reports (stereotyped with {reportc) as indicated above.

553.6 Preliminary conceptual model

The quantity of {reportc use cases will depend on the structure of the information they pres-

ent. When parameterization is possible it must be used. It is not necessary, for example, to have a

Sales report by week and Sales report by month. Unless they present different data structures, they

are a single report. The reference to a week, month, or any other period of time is just a parameter.

However, it is not advisable to group reports with diverse natures, for example Sales report by

book and Deliveries report by period of time: the inputs and outputs are different. Thus, those two

reports must be considered two different use cases.

As seen in Figure 3.11, the number of use cases may become high and the diagram may quickly

become hard to organize. This is one of the reasons to avoid including fragments in these diagrams.

Each single use case will be detailed by other means. Also, the CRUD and report use cases may

not be included in the main use case diagram if the system is at least of moderate size. They must

be listed somewhere else (a spreadsheet or a separated use case diagram, for instance), in order not

to pollute the main use case diagram. Another solution that may be used sometimes is to represent

them with a different color (as done in Figures 3.10 and 3.11), so that they do not hinder the visual-

ization of the key use cases in the diagram.

Receive books

Livir
<<crud>>

Manage supplier

<<crud>>
Manage book

<<report>>
Book sales by period

<<crud>>
Manage customer

<<report>>
Past sales

<<system>>
Credit card operator

Customer

Sales manager

Acquisition manager

Pay order

<<report>>
Order status

Order books

Create/remove
special offer

Deliver order

Register order
return

Discard books

Resend order

Cancel order

<<report>>
Discarded books by period

<<report>>
Book returns by

period

Deposit
manager

<<report>>
Upcoming orders by period

<<report>>
Deliveries by period

<<report>>
Books available for sale

Register delivery confirmation

FIGURE 3.11

Use case diagram with reports.5

5Use cases stereotyped with {reportc have their names abbreviated to avoid repeating “Generate report for . . .”
repeated many times.

56 CHAPTER 3 High-Level Requirements

3.7 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram and determine the automation
scope for the project.

• Build preliminary activity diagrams for business use cases.
• Build preliminary state machine diagrams for key business

objects.

Requirements Prepare the system use case diagram (functional requirements):

• Identify the system actors from the business use case
model.

• Identify the system use cases from the business use case
model, and the activity and state machine diagrams from
business modeling.

Identify the nonfunctional requirements as use case
annotations:

• Identify the main business rules associated to use cases.
• Identify the main quality issues associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model by observing system
use cases and the concepts needed by them.

Implementation

Test

Project
Management

3.8 Questions
1. Explain the differences between a business use case and a system use case.

2. What is the utility of a system use case through the software development process?

3. Which business actors and business workers are converted into system actors?

4. What are functional, nonfunctional, and supplementary requirements and what features might

they have?

5. Why must a preliminary conceptual model be made during the Inception phase?

573.8 Questions

This page intentionally left blank

CHAPTER

4Use Case Based Project Planning

Note: This chapter is available on the companion website:

http://booksite.elsevier.com/9780124186736

1 Abstract
This chapter shows how to plan and develop a project using iterations, risk analysis, and effort esti-

mation based on high-level use cases. It explains how the effort to develop the project is estimated

based on the perceived complexity of each use case and other features of the system and develop-

ment team. Finally, the chapter explains how to organize a series of incremental iterations based on

a prioritized list of use cases and risks, which is the backbone for the development plan with the

Unified Process.

2 Content
4.1 Introduction to effort estimation and risk analysis in software projects

4.1.1 Ad hoc techniques

4.1.2 Parametric techniques

4.1.3 Risk analysis

4.2 Use case point analysis

4.2.1 UAW � unadjusted actor weight

4.2.2 UUCW � unadjusted use case weight

4.2.3 UUCP � unadjusted use case points

4.2.4 TCF � technical complexity factor

4.2.5 EF � environmental factors

4.2.6 UCP � adjusted use case points

4.2.7 Effort

4.2.8 Calendar time and average team size

4.2.9 Counting methods for detailed use cases

4.3 Planning an iterative project

4.3.1 Estimating the duration of iterations

4.3.2 Number of iterations

59Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00024-7

© 2014 Elsevier Inc. All rights reserved.

http://booksite.elsevier.com/9780124186736
http://dx.doi.org/10.1016/B978-0-12-418673-6.00024-7

4.3.3 Effort per use case point

4.3.4 Team load capacity

4.3.5 Defining use case priority

4.3.6 Planning phase and iterations

4.4 The process so far

4.5 Questions

60 CHAPTER 4 Use Case Based Project Planning

CHAPTER

e4Use Case Based Project Planning

4.1 Introduction to effort estimation and risk analysis in
software projects

The motivation for effort estimation in software projects comes from the fact that historically most

software development projects:

• Take more time to complete than expected.

• Cost much more than expected.

• Generate a product that does not have the quality expected.

• Generate a product that does not have the scope expected.

Thus, the point is that software development teams and clients must learn to expect the right

time, cost, quality, and scope regarding their project and their team. Effort estimation techniques

are used to accomplish these goals.

4.1.1 Ad hoc techniques
A number of techniques for effort estimation have been proposed and used in the last several dec-

ades. One that is very popular is the Smith technique, which may be summarized as “Smith, tell us

how much time you need to develop that system!” A variation of the Smith technique is the con-

strained Smith technique, which may be summarized as “Smith, you have three months to develop

that system!” Although popular (and known by other names, such as Susan, Peter, Mary, etc.), this

approach is not very accurate.

Another ad-hoc technique that is used is the six months technique. It consists of estimating “six

months” for any software project at the beginning of its development and then adjusting it up or

down as the scope and requirements are discovered. Variations of that technique are virtually infi-

nite, including the One Year technique and the Eighteen Months technique, among others.

These kinds of techniques are known as nonparametric estimation because they are not based

on measures on the project to be developed. Somerville (2006) identifies some other nonparametric

techniques:

• Expert judgment. The expert judgment technique proposes that one or more experts on the

project domain and software development should meet and use their experience to produce an

estimate. The Smith technique is a potentially bad scenario for the expert judgment technique:

the technique may be very inaccurate, depending on the expertise of the estimators. However, if

the experts really have experience in similar projects it is a feasible, quick, and relatively cheap

technique.

e1Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00004-1

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00004-1

• Estimation by analogy. That technique is in fact the pragmatic basis for the expert judgment

technique. It is assumed that the effort for developing a new system will be similar to the effort for

developing other similar systems. The technique is not feasible if similar projects are not available

for comparison. It can make good use of one or more experts in order to determine what qualifies as

a similar system and how the time spent to develop it may be used as a basis to estimate the effort

for the current project. Thus, this technique usually may evolve to expert judgment.

• Parkinson’s Law. That technique is not usually adopted openly, but it is recurrent in software

projects and in other areas: the project costs whatever resources are available. The advantage is

that the project will not cost more than expected, but frequently the scope of the system will not

be completely covered.

• Pricing to win. The cost of the project is equal to the price that it is believed will win the

contract. The disadvantage of this method is that the system the client gets may not be what she

expected, because as costs must usually be reduced, this may impact quality and scope.

However, when there is no detailed information about the system and the team lacks experience

on more advanced estimation techniques this technique may be chosen: the project cost is

agreed based on common understandings and the development is constrained by the cost.

The agile community usually adopts an estimation strategy that is based on story points. A user

story is a scenario of use of a system, and it is somewhat similar to a use case. However, use cases

are more structured and formal; they are produced by a team of analysts. User stories, on the other

hand, must be written by the users themselves. They must represent a scenario where the users see

themselves using the system that is going to be produced. The idea behind this is that the users

present the needs that are most important for them first; the details would be remembered later.

One story point is considered to be an ideal working day (6 to 8 hours focused and dedicated to a

project). The estimation effort is then calculated for each user story in terms of story points. The

question to be answered by the team is, “How many ideal days x people would take to develop a

given user story?” If the answer is x people would take y days, then the number of story points is x�y.
Story points assignment is subjective and may be considered a nonparametric technique. The team

usually evaluates the effort based on their experience on similar past projects. The assignment is

made based on effort, complexity, and risk. For example, the following questions could be asked:

• Complexity: Does this user story have many possible scenarios?

• Effort: Is the change going to be made in many different components?

• Risk: Does anyone in the team know the technology necessary to develop this story?

Another way to estimate user stories is to place all user stories on cards on the table. Then, the

simplest ones to develop are separated and one story point or less is assigned to them. After that,

the simplest of the remaining stories are separated and two story points assigned to them. This pro-

cedure is repeated until no more user stories remain on the table. It is suggested that each iteration

increase the number of story points by following a series similar to the Fibonacci series such as 0,
1/2, 1, 2, 3, 5, 8, 13, 20, 40, 100, etc.1 The reasoning behind this is that for an average human it is

1In the actual Fibonacci series, each number is the sum of the previous two. Thus, the original series is 1, 1, 2, 3, 5, 8,

13, 21, 34, 55, 89, etc. However, for estimation purposes an approximate series is used because as numbers grow the

estimation is less accurate.

e2 CHAPTER e4 Use Case Based Project Planning

hard to estimate how much a horse weighs; however, most people will agree that a horse weighs

more than a dog and less than an elephant.

If a user story is determined to take less than one ideal working day, it must be attached to

another story, and stories that are above a given limit (for example, 10 story points) must be split

into simpler stories.

4.1.2 Parametric techniques
Another class of estimation techniques includes the parametric ones which aim to present an effort

estimation based on the estimated size of the system, the technical difficulty to develop it, and the

capacity of the team, among other features. The size of the system may be measured in terms of:

• Lines of code. Techniques such as COCOMO II � COnstructive COst MOdel II (Boehm, 2000)

start estimating how many source lines of code (SLOC) the system will have. In fact, as most

systems have thousands of lines of code, the usual measure is kilo source lines of code (KSLOC).

• Function points. Techniques based on function point analysis (FPA) (Albrecht, 1979) and its

variations are not concerned about lines of code. They estimate that the effort to develop a

system depends on the apparent functionality that is going to be implemented. Thus, usually

these techniques count the number of functional requirements and evaluate their complexity by

asking how many classes or data records they need to use in order to be implemented and how

many arguments a user sends or receives from the system in order to perform the function.

• Use case points. That is a variation of the function point analysis technique that is based on use

cases instead of functional requirements for estimation. This technique is explained in detail in

Section 4.2.

Although COCOMO II is the most detailed technique it has a disadvantage compared to func-

tion points and use case points: the number of KSLOC must be estimated by specialists before

applying the method, and this is a significant source of uncertainty.2 Function points and use case

points are based on requirements, which may actually be known at the beginning of a project (of

course requirements may change during development, but when they change estimation may be

immediately updated in a systematic way).

In addition to the size of the system measured in lines of code or apparent functionality, the

parametric techniques also make use of technical adjustment factors. It is assumed that implement-

ing a function of the same size may be easier or harder depending on the kind of system that is

being developed. For example, an information system like Livir is more straightforward to imple-

ment than a robot surgery system or a core system embedded into an airplane. The same amount of

source lines of code may take more or less time to develop depending on the technical complexity

of the system.

The most complete technique regarding technical adjustment factors is COCOMO II, which pro-

posed the use of up to 16 effort multipliers divided into four groups:

• Product attributes. These include the reliability required for the software, the relative size of the

test database, the inner complexity of the product, development aiming at reusability, and the

quantity of documentation expected and needed.

2To minimize this uncertainty, backfire tables that convert function points into KSLOC may be used (Boehm, 2000).

e34.1 Introduction to effort estimation and risk analysis in software projects

• Hardware attributes. These include aspects related to time and space efficiency and the

volatility of the development platform.

• Personnel attributes. These include the capacity of analysts and programmers, personnel

continuity, experience on similar applications, and experience on the platform, programming

language, and other software tools.

• Project attributes. These include the use of computer-aided software engineering (CASE) tools,

distribution of the development team, and the need to accelerate the development schedule.

Use case points and function points have similar effort multipliers but with a different organiza-

tion and sometimes a different interpretation. In both methods, the effort multipliers are a numeric

index that is multiplied by the estimated size of the system to produce effort estimation. However,

COCOMO II has a unique feature: a set of scale factors. There are five such factors:

• Precedentedness. Is the product similar to others that were already developed by the same

team?

• Development flexibility. Does the product have to be developed straight to the requirements or

are the requirements only general goals?

• Architecture and risk resolution. Is there good support to resolve risks and architectural issues?

• Team cohesion. Have the team worked together before? Are they nicely integrated?

• Process maturity. What is the maturity of the organization? CMMI3 (SEI-CMU, 2010) and

SPICE4 (Emam, Melo & Drouin, 1997) may be used as a measure of maturity. COCOMO II

also proposes a simple questionnaire that helps to estimate the maturity of the organization if

other assessments are not available.

The difference here is that those scale factors are not multiplied by the system size: they are

used in an exponential. Average values (near 1) for these factors means a nominal scale where each

line of code produced costs the same regardless of the size of the software. If the scale factors are

bad, then their numerical value is greater than 1 and this means that a line of code in a bigger sys-

tem costs more than a line of code in a smaller system. If the scale factors are good, then the team

gains in scale, that is, a line of code in a bigger system costs less than a line of code in a smaller

system.

4.1.3 Risk analysis
A risk is something that may happen and cause trouble.5 Risks are very frequent and numerous in

software projects. There are different categories of risk and they have different impacts: there are

some that are just a nuisance and others that may cause the termination of the project. Usually the

process of dealing with risks involves:

• Identification. The team must discover and be aware of the conditions that may trigger

problems in a project. Checklists such as the one by Carr et al. (1993) may help the

identification process.

3Capability Maturity Model Integration.
4Software Process Improvement and Capability dEtermination.
5Some definitions also consider positive risks as situations that may happen and help the project.

e4 CHAPTER e4 Use Case Based Project Planning

• Analysis. Risks are analyzed so that some of their attributes are discovered. Usually at least two

attributes must be identified: the probability of the occurrence of the condition that triggers the

risk, and the impact that the risk has on the project. The exposure or importance of a risk is a

combination of probability and impact. Usually risks with high probability of occurrence and

high impact on the project are the most important.

• Planning. Once the exposure of the risks is assessed, plans must be made for medium- and

high-exposure risks and the project must include activities to minimize the probability and/or

impact of the most important risks. These plans are the mitigation plans. Moreover, recovery

or contingency plans should also be prepared for the most important risks and they will be

executed if, despite the mitigation activities, the risk still becomes a problem.

• Control. The risks of a project are even more unstable than its requirements: they change

frequently and unexpectedly. New risks are discovered during development and their

importance may change. Thus, the project manager must be aware of that and pay close

attention to the status of the risks during the whole project.

Different sources of risks may be identified. Carr et al. (1993) presents the following structure:

• Product engineering:

• Requirements: Are they stable, complete, clear, valid, and feasible? Is the project something

that has never been made before? Is the project bigger than any other the organization has

undertaken before?

• Design: Is it difficult to obtain? Are the interfaces with other systems clear and easy? Are

there performance, testability, and hardware constraints? Will software developed outside the

company be used?

• Code and test: Is the implementation feasible? Is the time reserved for testing enough?

• Integration and test: Is the integration and test environment adequate?

• Engineering aspects: Will the software be easy to maintain? Are the reliability, safety, and

security requirements easy to obtain and verify? Are there special human factors to be taken

into account? Is the documentation adequate for the project?

• Development environment:

• Development process: Is there a clear and proven development process in use? Are the plans

formally controlled? Is the process adequate for this kind of system? Do the members of the

team know and use the process? Are there clear mechanisms for managing changes to the

product?

• Development system: Is there adequate hardware and other tools for the development of the

project? Are the tools easy to use? Does the team know how to use the tools? Are the tools

reliable?

• Management process: Are the plans adequate? Do they include contingency plans? Are roles

and authority inside the project well defined? Do the managers have experience? How does

the team communicate with other stakeholders?

• Management method: Are there metrics to help management? Are the project personnel

trained? Is quality management adequate? Is the configuration of code and other artifacts

controlled?

• Working environment: Is the team concerned about quality? Is the team cooperative?

Is communication among team members good? Is the morale of the team high?

e54.1 Introduction to effort estimation and risk analysis in software projects

• External constraints:

• Resources: Is the schedule reliable and stable? Is the team experienced and capable? Is the

budget adequate? Are the facilities adequate?

• Contract: What kind of contract exists? Are there contractual constraints? Does the project

depend on external partners?

• Communication interfaces: Are there problems with the client such as weak communication

or incomplete knowledge about the domain?

• Subcontracted personnel: Are there problems with partner companies such as weak

interfaces, poor communication, or lack of collaboration? Does the project depend on them?

• Main contractor: If you are a subcontracted company, are there any difficult issues

regarding the main contractor?

• Management: Is the higher management absent or micromanaging?

• Sellers: Do the product sellers you are using solve issues quickly?

• Policies: Are policies creating trouble for the project?

This list is just a reference; many other unpredictable risks may appear in most projects.

After being identified, risks must be analyzed. Many risk attributes may be identified. Among

them, maybe the most important are:

• Probability: The chance that a risk really becomes a problem. If there is a historical series of

data, risk probability could be measured numerically. However, most risks are assessed using

the t-shirt scale, where “high” means that it is almost sure that the risk will become a problem,

“medium” means that it is expected that the risk will become a problem, and “low” means that

the chance for the risk to become a problem is minimal.

• Impact: The price to pay (monetary or not) when the risk becomes a problem. Again, numerical

measures may be used if sufficient information is available. For most projects, risk impact could

be assessed as “high” (may terminate the project), “medium” (may raise the project’s costs

significantly), and “low” (may cause some trouble, but losses are easily recoverable).

• Importance or exposure: The combination of probability and impact, as expressed in Table e4.1.

High- and medium-exposure risks should have mitigation plans for reducing the probability

and/or impact. In the case of high-exposure risks, it is advisable to execute the plans as soon as

possible, while medium-exposure risks may be addressed later. Thus, risk mitigation activities will

be included in the project effort at this time. Low-exposure risks may just be monitored in order to

detect if their exposure changes during the project.

Table e4.1 How to Calculate the Exposure of a Risk

Probability

High Medium Low

Impact High High exposure High exposure Medium exposure

Medium High exposure Medium exposure Low exposure

Low Medium exposure Low exposure Low exposure

e6 CHAPTER e4 Use Case Based Project Planning

Among other possible definitions, it may be said that a risk is composed of three parts:

• Cause: An uncertain condition that may create trouble.

• Problem: A situation that could occur given the uncertainty of the cause.

• Effect: An impact over one or more of the project’s goals.

Thus, there are three kinds of plans that may be associated to risks:

• Mitigation plan for reducing risk probability: It must act on the cause of the risk, reducing the

probability of its occurrence.

• Mitigation plan for reducing risk impact: It must act on the effects of the risk, reducing the cost

of recoverability if the risk really becomes a problem.

• Contingency plan or disaster recovery plan: It states what to do after the risk actually becomes

a problem, that is, it acts on the problem created by the risk.

Mitigation plans are preventive: they should be executed before the risk becomes a

problem. Contingency plans, on the other hand, are performed only if the risk really becomes a

problem.

Table e4.2 presents an example with some risks related to the Livir project and a simple state-

ment of mitigation and contingency actions. More detailed plans could be elaborated, though, if

necessary.

Risks must be monitored while the project is being developed. As requirements usually do, risk

may change over time. Even their names and properties may change. That is why risks are identi-

fied by a code: to keep track of them even when they change.

4.2 Use case point analysis6

Once system use cases have been identified, the effort necessary to develop them may be estimated.

Furthermore, the use cases must be prioritized so that the most important use cases are developed

first. In iterative processes such as the Unified Process, a relatively small set of use cases will be

developed at each iteration. Thus, planning a project using this kind of process consists of deter-

mining a general plan or phase plan and a set of iteration plans that determines which use cases or

risks will be addressed at each iteration. This is why it is important to determine a project’s priori-

ties and estimate the effort necessary to develop them. During Inception, only the phase plan and

the plan for the first iteration of Elaboration are built. Each further iteration is planned while the

previous one is being performed.

Phase and iteration planning are typical project management activities. Effort estimation is a

planning tool that indicates, among other things, how much time and personnel is needed by the

project.

The technique known as use case points (Karner, 1993) is based on function points (Albrecht &

Gaffney Jr., 1983), specifically on the MK II or Mark II counting technique (Symons, 1988), which

6Readers not interested in knowing the details on how to estimate effort and develop a project plan may want to skip

from here directly to Chapter 5 where object-oriented analysis and design techniques continue to be explained.

e74.2 Use case point analysis

Table e4.2 Example of Risks and Plans for the Livir Project

Code Risk Risk Attributes Probability
Reduction Plan

Impact
Reduction
Plan

Contingency
Plan

Cause Problem Effect Pr. Imp. Exp.

K1 Unstable
requirements.

Key
requirements
may change
during
development.

Time lost
developing
parts that
will not be
used.

H H H Take special care
during
requirements
elicitation. Study
similar products.
Develop
prototypes for
requirements
validation.

Emphasize
modular
development.
Implement an
efficient version
control system.

Use a change
management
system to
adequately
control
requirements
changes.

K2 The team is
inexperienced.

Bad design
decisions may
be made.

Code hard
to maintain
and full of
defects.

H M H Hire an
experienced
software architect
to coordinate and
validate all design
decisions.

Use automatic
testing
extensively to
find defects.

Refactor code
to improve
design.

K3 The team is not
familiar with the
communication
protocol with
credit card
operators.

Wrong or
inefficient
communication
interface with
credit card
operators.

Errors in
credit card
operation.

H L M Develop a
throwaway
prototype for
studying the
communication
protocol of the
credit card
operator system.

Implement
double-check
procedures for
credit card
operations
based on
invariants and
postconditions.

Double-check
security on
credit card
operations.
Interrupt
operations with
credit cards until
the problems
are fixed.

is a relatively simpler approach than that of the IFPUG (International Functional Point Users

Group).7

Use case point analysis is simpler than function point analysis, but it still suffers from not having

strong reports on its application to a wide number of projects, such as function point analysis and

COCOMO II do. Another problem with use case point analysis is that the team comprehension on

what constitutes a use case may produce disparate estimations. COCOMO II suffers from a similar

problem because it is based on a crude estimation on the number of lines of code to be produced, but

it allows estimators to use a backfire table (Center for Software Engineering USC, 2000) to convert

function points into lines of code (with different conversion rates depending on the language used).

Moreover, function point analysis also depends on the capacity of the estimators and the capacity of

the analysts to identify the correct and complete set of requirements. The conclusion is that each

technique has a weak point; however, a team that is well tuned, with historical records on estimates

for past projects, and that applies the same patterns and conventions when developing software would

produce better estimations than an inexperienced team, regardless of the estimation method they use.

All methods depend on a good estimation effort history and the quality of the parameters obtained

for the current project (lines of code, functional requirements, or use cases).

The technique of use case point analysis was incorporated to the Unified Process because that

process is strongly based on use cases. As said before, one of the biggest difficulties to applying it

is not the method itself, which is very simple, but the lack of standardization on what is effectively

a use case (Anda, 2001). Due to the absence of an international standard, the team may create and

use its own understanding of the adequate granularity for use cases.

Use case point analysis is based on the quantity and complexity of system actors and use cases,

which corresponds to the unadjusted use case points (UUCP) value. The application of technical

and environmental factors leads to the UCP, or adjusted use case points.

UUCP is calculated from the estimated complexity of the actors (UAW � unadjusted actor

weight) and use cases (UUCW � unadjusted use case weight), as discussed in the next subsections.

4.2.1 UAW � unadjusted actor weight
The method for assigning complexity to actors is quite simple. Each actor is counted once, even if

it is associated to many use cases. In the case of actors that are specializations of more generic

actors, only the most elementary specializations are counted, that is, actors that do not have

subtypes.

Once the actors have been identified, their complexity is defined as follows:

• Human actors that interact with the system through a graphic user interface are considered

complex and receive 3 use case points.

• Other systems that interact with the system through a protocol like TCP/IP and human actors

that interact with the system only through a command line are considered of medium

complexity and receive 2 use case points.

• Other systems that are accessed by application programming interfaces (API) are considered of

low complexity and receive 1 use case point.

7http://www.ifpug.org/

e94.2 Use case point analysis

http://www.ifpug.org/

The value of UAW (unadjusted actor weight) is simply the sum of the points assigned to all

system actors.

In the example of Figure 3.11 the following actors were considered:

• Deposit manager: 3 points.

• Acquisition manager: 3 points.

• Sales manager: 3 points.

• Customer: 3 points.

• Credit card operator {systemc: 2 points.

Thus, for that example, UAW5 31 31 31 31 25 14.

The use of UAW for effort estimation, however, is not unanimously accepted. Sometimes, it is

suggested that it can be ignored in the equations. Usually, even UCP counting tools consider UAW

an optional measure and using it or not is a decision left to the team.

4.2.2 UUCW � unadjusted use case weight
Use cases are also counted once. Only complete processes should be counted. That means that

extensions, variants, and other fragments, in general, should not be counted.

In the original proposal of Karner (1993), the complexity of a use case is defined based on the

estimated number of transactions (information being sent to or received from the system), includ-

ing alternate sequences (see Chapter 5 for more details). Then, use cases could be characterized as

follows:

• Simple use cases: No more than three transactions.

• Medium use cases: Four to seven transactions.

• Complex use cases: More than seven transactions.

However, if we are working with high-level use cases, it may be hard to know for sure how

many transactions each use case really has, and that makes that estimation a little risky.

An alternate way to estimate the complexity of a use case is by the number of classes necessary

to implement the use case functions. Thus:

• Simple use cases must be implemented with five classes or less.

• Medium use cases must be implemented with six to ten classes.

• Complex use cases must be implemented with more than ten classes.

The number of classes necessary for implementing a use case will depend also on detailed

requirements that usually are not known during Inception, given that the use cases have not been

yet expanded. That makes this approach also somewhat risky.

Another way to estimate the complexity of a use case is by the analysis of its risk. Thus:

• Reports usually have only one or two transactions and low risk, because they do not change

data. They can be considered simple use cases.

• Pattern use cases such as CRUD have a number of transactions that are known and limited.

Their risk is medium, because although their internal logic is known, obscure business rules

may affect them, and they can be considered medium complexity.

e10 CHAPTER e4 Use Case Based Project Planning

• Nonpattern use cases have an unknown number of transactions, and high risk, because besides

the fact that the business rules may be unknown or misunderstood, even the internal structure of

the use case is unknown (its main flow and alternate sequences). Thus, this kind of use case is

considered complex.

The UUCW (unadjusted use case weight) value is given by the sum of the value assigned to

each use case using the following criterion:

• Simple use case: 5 use case points.

• Medium use case: 10 use case points.

• Complex use case: 15 use case points.

Applying that technique to the example of Figure 3.11, there are eight use cases stereotyped as

reports, which receive 8�55 40 use case points. There are also three CRUD use cases (pattern use

cases), which receive 3�105 30 points. Finally, there are 10 use cases without any stereotype with

higher risk, which receive 10�155 150 use case points. Thus, the UUCW of this example is

401 301 1505 220.

There are also other counting techniques. But most of them are based on the detailed version of

a use case. Some of them are presented in Section 4.2.9.

4.2.3 UUCP � unadjusted use case points
The value for UUCP, or unadjusted use case points, is calculated as the sum of UAW and UUCW:

UUCP5UAW1UUCW

In the running example, UUCP5 141 2205 234.

As mentioned before, actors’ weights may be excluded from the computation of UUCP, and that

would make UUCP immediately equal to UUCW, that is, UUCP5UUCW5 220 in the example.

4.2.4 TCF � technical complexity factor
The technique of use case point analysis proposes that the UUCP should be adjusted by two crite-

ria: technical factors (which are associated to the project), and environmental factors (which are

associated to the team).

Each factor receives a rating from 0 to 5, where 0 means no influence on the project, 3 is nomi-

nal influence, and 5 is maximum influence on the project.

Surprisingly, this is the only information usually given in literature about the technical factors

of use case point analysis, and that makes the assessment of these factors highly subjective, and

even sometimes contradictory.8

8For example, regarding the T12 factor, there are authors that say that more third-party access means less effort, because

there is code reuse, while other authors say that more third-party access means more effort, because it is necessary to

understand code written by others. In this book, a synthesis between those two views is built: it is considered good

to have access to well-written code, not so good to have access to code that needs revision, and worse to not have access

to any third-party code. Reusing code of bad quality is considered completely undesirable (it is usually easier to develop

it from scratch).

e114.2 Use case point analysis

There are 13 technical factors, each one with a specific weight, as shown in Table e4.3.

Therefore, each of the technical factors has a rate between 0 and 5 that is multiplied by its

weight. The sum of those products corresponds to the TFactor value, that is, the impact of the tech-

nical factors, which ranges between 0 and 70.

The TCF (technical complexity factor) may be calculated by adjusting TFactor to the range 0.6

to 1.3 with the following formula:

TCF5 0:61 ð0:01 � TFactorÞ
For a better reference on the meaning of the ratings 0 to 5, it is suggested that one use the direc-

tions below, adapted from the function point analysis technique (Albrecht & Gaffney Jr., 1983).

T1 � Distributed system: Is the system architecture centralized or distributed?

0. The application ignores any aspect related to distributed processing.

1. The application generates data that will be processed by other computers with human

intervention (for example, spreadsheets or preformatted files sent by media or email).

2. Application data are prepared and transferred automatically for processing in other computers.

3. Application processing is distributed, and data are transferred in just one direction.

4. Application processing is distributed and data are transferred in both directions.

5. Application processes must be executed in the most appropriate processing core or computer,

which is dynamically determined.

T2 � Response time/performance objectives: What is the importance of the application

response time to its users?

0. No special performance requirement was defined by the client.

1. Performance requirements were established and revised, but no special action must be taken.

Table e4.3 Technical Factors for Adjusting use Case Points

Code Factor Weight

T1 Distributed system 2

T2 Response time/performance objectives 1

T3 End-user efficiency 1

T4 Internal processing complexity 1

T5 Design aiming for code reusability 1

T6 Easy to install 0.5

T7 Easy to operate 0.5

T8 Portability 2

T9 Design aiming for easy maintenance 1

T10 Concurrent/parallel processing 1

T11 Security 1

T12 Access for/to third-party code 1

T13 User training needs 1

e12 CHAPTER e4 Use Case Based Project Planning

2. Response time and transfer rates are critical during peak hours. No special design for processor

core use is necessary. The deadline for most processes is the next day.

3. Response time and transfer rates are critical during commercial hours. No special design for

processor core use is necessary. Requirements regarding deadlines for communication with

interfaced systems are restrictive.

4. In addition to 3, performance requirements are sufficiently restrictive for requiring performance

analysis tasks during design.

5. In addition to 4, performance analysis tools must be used during design, development, and/or

implementation, in order to meet the client’s performance requirements.

T3 � End-user efficiency: Is the application designed to allow final users just to do their job

or is it designed to improve their efficiency?

0. The application does not need any of the items below.

1. The application needs one to three of the items below.

2. The application needs four to five of the items below.

3. The application needs six or more of the items below, but there is no requirement related to

user efficiency.

4. The application needs six or more of the items below, and the user efficiency requirements are

so strong that the design must include features to minimize typing, maximize defaults, use

templates, etc.

5. The application needs six or more of the items below, and the user efficiency requirements are

so strong that the design activities must include tools and special processes to demonstrate that

the performance goals are obtained.

The following items must be considered for the assessment of the end-user efficiency

item:9

• Navigational help (for example, dynamically generated menus, adaptive hypermedia, etc.).

• Online help and documentation.

• Automated cursor movement.

• Predefined function keys.

• Batch tasks submitted from online transactions.

• High use of colors and visual highlights in screens.

• Minimizing the number of screens to reach the business goals.

• Bilingual support (counts as four items).

• Multilingual support (counts as six items).

T4 � Internal processing complexity: Does the application need complex algorithms?

0. None of the options below.

1. One of the options below.

2. Two of the options below.

9Some items such as “menus” and “scrolling” that were originally considered in the function point analysis were

removed from the list because they are considered too trivial for current applications.

e134.2 Use case point analysis

3. Three of the options below.

4. Four of the options below.

5. All five options below.

The following options need to be considered for assessing internal processing complexity:

• Careful control (for example, special audit processing) and/or secure processing specific to the

application.

• Extensive logical processing.

• Extensive mathematical processing.

• Lots of exception processing resulting from incomplete transactions that needs to be

reprocessed, such as incomplete automated teller machine transactions caused by interruption of

communication, missing data values, or failed data change.

• Complex processing to manage multiple inputs and output possibilities, such as multimedia or

device independency.

T5 � Design aiming for code reusability: Is the application designed so that its code and arti-

facts will be highly reusable?

0. There is no concern about producing reusable code.

1. Reusable code is generated for use inside the same project.

2. Less than 10% of the application must consider more than the user needs.

3. 10% or more of the application must consider more than the user needs.

4. The application must be specifically packaged and/or documented for facilitating reuse, and the

application must be customizable by the user at the level of source code.

5. The application must be specifically packaged and/or documented for facilitating reuse, and the

application must be customizable by the user with the use of parameters.

T6 � Easy to install: Will the application be designed so that its installation is automatic (for

example, in the case of users with low or unknown technical capacity), or is there no special con-

cern about it?

0. The client established no special consideration, and no special setup is necessary for

installation.

1. The client established no special consideration, but a special setup is required for

installation.

2. The client established requirements for data conversion and installation, and conversion and

installation guides must be provided and tested. The impact of conversion in the project is not

considered important.

3. The client established requirements for data conversion and installation, and conversion and

installation guides must be provided and tested. The impact of conversion on the project is

considerable.

4. In addition to 2, tools for automatic conversion and installation must be provided and

tested.

5. In addition to 3, tools for automatic conversion and installation must be provided and

tested.

e14 CHAPTER e4 Use Case Based Project Planning

T7 � Easy to operate:10 Are there special requirements regarding the operation of the system?

0. No special considerations about the operation of the system besides normal backup procedures

were established by the user.

1. One of the items below applies to the system.

2. Two of the items below apply to the system.

3. Three of the items below apply to the system.

4. Four of the items below apply to the system.

5. The application is designed to operate in nonsupervised manner. “Nonsupervised” means that human

intervention is not necessary for keeping the system operational, even if crashes occur, except maybe

for the first startup and final turn off. One of the application features is automatic error recovery.

For the evaluation of the easy to operate factor, the following items must be considered:

• Effective processes for initialization, backup, and recovery must be provided, but operator

intervention is still necessary.

• Effective processes for initialization, backup, and recovery must be provided, and no operator

intervention is necessary (counts as two items).

• The application must minimize the need for data store in offline media (for example, tapes).

• The application must minimize the need for dealing with paper.

T8 � Portability: Is the application or parts of it designed to work on more than one platform?

0. There is no user requirement to consider the need for installing the application on more than

one platform.

1. The design must consider the need for the system to operate in different platforms, but the

application must be designed to operate only in identical hardware and software environments.

2. The design must consider the need for the system to operate in different platforms, but the

application must be designed to operate only in similar hardware and software environments.

3. The design must consider the need for the system to operate in different platforms, but the

application must be designed to operate in heterogeneous hardware and software environments.

4. In addition to 1 or 2, a documentation and maintenance plan must be elaborated and tested to

support operation in multiple platforms.

5. In addition to 3, a documentation and maintenance plan must be elaborated and tested to

support operation in multiple platforms.

T9 � Design aiming for easy maintenance: Does the client require that the application must

be easy to change in future?

0. None of the items below.

1. One of the items below.

2. Two of the items below.

3. Three of the items below.

10Occasionally this item is referred to as “usability”, but the original concept of usability was already considered in fac-

tor T3, end-user efficiency. We prefer to interpret this factor as “easy to operate” for its compatibility with the technical

factors of function point analysis, and also to avoid confusion and redundancy with the end-user efficiency factor.

e154.2 Use case point analysis

4. Four of the items below.

5. Five or more of the items below.

To evaluate this factor, the following items are considered:

• A flexible report structure must be provided to deal with simple queries such as logical binary

operators applied to just one logical archive (count as one item).

• A flexible report structure must be provided to deal with medium complexity queries such as

logical binary operators applied to more than one logical archive (count as two items).

• A flexible report structure must be provided to deal with high complexity queries such as

combinations of logical binary operators applied to one or more logical archives (count as three

items).

• Business control data are kept in tables managed by the user with interactive online access, but

changes must only be effective on the next day (count as one item).

• Business control data are kept in tables managed by the user with interactive online access, and

changes are effective immediately (count as two items).

T10 � Concurrent/parallel processing: Must the application be designed in order to deal with

problems related to concurrency such as, for example, data and resource sharing?

0. No concurrent access to data is expected.

1. Concurrent access to data is expected sometimes.

2. Concurrent access to data is expected frequently.

3. Concurrent access to data is expected all the time.

4. In addition to 3, the user indicates that a lot of multiple accesses are going to happen, forcing

performance analysis tasks and deadlock resolution during design.

5. In addition to 4, the design requires the use of special tools to control access.

T11 � Security: Are the security needs just nominal or are a special design and additional spe-

cifications required?

0. There are no special requirements regarding security.

1. The need for security must be taken into account in design.

2. In addition to 1, the application must be designed so that it can be accessed only by authorized users.

3. In addition to 2, access to the system will be controlled and audited.

4. In addition to 3, a security plan must be elaborated and tested to support access control to the

application.

5. In addition to 4, a security plan must be elaborated and tested to support auditory.

T12 � Access for/to third-party code: Is the application going to use code already developed,

such as commercial off-the-shelf (COTS) components, frameworks or libraries? High reuse of good

quality software reduces the value of this item as it implies less development effort.

0. Highly reliable preexistent code will be used extensively for developing the application.

1. Highly reliable preexistent code will be used in small parts of the application.

2. Preexistent code that eventually needs to be adjusted will be used extensively for developing

the application.

3. Preexistent code that eventually needs to be adjusted will be used in small parts of the application.

4. Preexistent code that needs to be fixed or is hard to understand will be used in the application.

e16 CHAPTER e4 Use Case Based Project Planning

5. No preexistent code will be used in the application or questionable quality code will be used in

the application.

T13 � User training needs: Will the application be easy to use, or must extensive training be

given to future users?

0. There are no specific requirements for user training.

1. Specific user training requirements have been mentioned.

2. There are formal specific user training requirements, and the application must be designed to

facilitate training.

3. There are formal specific user training requirements, and the application must be designed to

support users with different levels of training.

4. A detailed training plan must be elaborated for the transition phase and executed.

5. In addition to 4, the users are geographically distributed.

Applying the technical factors to the current example, a result similar to the one presented in

Table e4.4 could be obtained.

The technical factors value, TCF, for the example is obtained by:

TCF5 0:61 ð0:01 � 22:5Þ5 0:825

As that value is less than 1, the technical factors for this project indicate a development time

that is smaller than nominal (82.5% of nominal). However, the environmental factors still have to

be determined.

4.2.5 EF � environmental factors
One aspect that distinguishes use case point analysis from function point analysis is that use case

point analysis uses an adjustment factor for the characteristics of the development team. Thus, the

same project, with the same technical factors, may have a different number of adjusted use case

points for different teams.

There are eight environmental factors that assess the working environment. Each one has its

own weight and two of them have negative weights. Again, ratings range from 0 to 5, but their

meaning is a little different from those of the ratings attributed to the technical factors. While the

ratings of the technical factors evaluate the influence of those factors on the project, the ratings of

the environmental factors evaluate the quality of those factors in the working environment. For

example, a 0 rating for the “motivation” factor means that the team is not motivated, a 3 rating

means that motivation is average, and a 5 rating means that the team is highly motivated.

The environmental factors are defined in Table e4.5.

Thus, the ratings multiplied by the weight of the environmental factors may range from 210 to

32.5. This value is called the EFactor.

EFactor is adjusted to the interval 0.425 to 1.7, generating the EF (environmental factor) by the

following formula:

EF5 1:4� ð0:03 � EFactorÞ
Ribu (2001) presents a reference for assigning ratings to the environmental factors, which is

described below with some adaptation.

e174.2 Use case point analysis

Table e4.4 Assessment for the Technical Factors of Livir

Code Factor Weight Rate Weight3Rate Justification

T1 Distributed
system

2 0 0 The application ignores any aspects
related to distributed processing.

T2 Response
time/
performance
objectives

1 2 2 Response time and transfer rates are
critical during peak hours. No special
design for processor core use is
necessary. The deadline for most
processes is the next day.

T3 End-user
efficiency

1 3 3 The application needs the following items,
but there are no special requirements
related to user efficiency:

• Navigational help (for example,
dynamically generated menus,
adaptive hypermedia, etc.)

• Online help and documentation
• High use of colors and visual highlights

in screens
• Minimizing the number of screens to

reach the business goals
• Multilingual support (counts as six

items)

T4 Internal
processing
complexity

1 0 0 None of the options apply.

T5 Design aiming
for code
reusability

1 0 0 There is no concern about producing
reusable code.

T6 Easy to install 0.5 0 0 No special considerations were
established by the client and no special
setup is necessary for installation.

T7 Easy to
operate

0.5 5 2.5 The application is designed to operate in
nonsupervised manner. “Nonsupervised”
means that human intervention is not
necessary for keeping the system
operational, even if crashes occur, except
maybe for the first startup and final turn
off. One of the application features is
automatic error recovery.

T8 Portability 2 3 6 The design must consider the need for the
system to operate in different platforms,
but the client application must be
designed to operate in heterogeneous
hardware and software environments.

T9 Design aiming
for easy
maintenance

1 0 0 None of the items apply.

(Continued)

e18 CHAPTER e4 Use Case Based Project Planning

E1 � Familiarity with the development process: This factor assesses the team’s experience

with the development process they are using. Originally the factor mentioned the Unified Process,

and some authors even mention UML here. But this has been adjusted to reflect the fact that other

processes and modeling languages could be used instead.

0. The team does not have experience with the development process or does not use any process.

1. The team has theoretical knowledge about the development process, but no experience.

2. A few members of the team have already used the process in one project.

3. A few members of the team have used the process in more than one project.

4. Up to half the team has used the process in many projects.

5. More than half the team has used the process in many projects.

Table e4.4 (Continued)

Code Factor Weight Rate Weight3Rate Justification

T10 Concurrent/
parallel
processing

1 1 1 Concurrent access to data is expected
sometimes.

T11 Security 1 3 3 The need for security must be taken into
account in design. The application must
be designed so that it can be accessed
only by authorized users. The access to
the system will be controlled and audited.

T12 Access for/to
third-party
code

1 5 5 No preexistent code will be used in the
application.

T13 User training
needs

1 0 0 There are no specific requirements for
user training.

TFactor 22.5

Table e4.5 Environmental Factors for Adjusting Use Case Points

Code Factor Weight

E1 Familiarity with the development process 1.5

E2 Experience in the application 0.5

E3 Object-oriented experience 1

E4 Lead analyst experience 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part-time workers 21

E8 Difficulty with programming language 21

e194.2 Use case point analysis

E2 � Experience in the application: This factor assesses the familiarity of the team with the

application area or domain. For example, if the application is about e-commerce, have the team

already worked with systems in the same area?

0. No team member has any experience in projects in the same area.

1. Some team members have 6 to 12 months of experience in projects in the same area.

2. Some team members have 12 to 18 months of experience in projects in the same area.

3. Most team members have 18 to 24 months of experience in projects in the same area.

4. Most team members have greater than two years of experience in the same area.

5. All team members have greater than two years of experience in the same area.

E3 � Object-oriented experience: This factor must not be confused with either familiarity

with the development process (E1) or experience in the application (E2): this is about the experi-

ence of the team in doing object-oriented analysis, modeling, design, and programming, indepen-

dently of the application area and the development process used.

0. The team has no experience in object-oriented techniques.

1. All team members have some experience in object-oriented techniques (up to one year).

2. Most team members have 12 to 18 months of experience in object-oriented techniques.

3. All team members have 12 to 18 months of experience, or most team members have 18 to

24 months of experience in object-oriented techniques.

4. Most team members have more than two years of experience in object-oriented techniques.

5. All team members have more than two years of experience in object-oriented techniques.

E4 � Lead analyst experience: This factor measures the experience of the lead analyst with

requirement analysis and object-oriented modeling.

0. The lead analyst has no experience.

1. The lead analyst has previous experience in a single similar project.

2. The lead analyst has about one year of experience in more than one similar project.

3. The lead analyst has about two years of experience in similar projects.

4. The lead analyst has more than two years of experience in similar projects.

5. The lead analyst has more than three years of experience in a variety of projects.

E5 � Motivation: This factor describes the team’s motivation.11

0. The team has no motivation at all. Without constant supervision the team becomes

unproductive. The team only does what is strictly asked.

1. The team has very little motivation. Constant supervision is necessary to keep productivity at

acceptable levels.

2. The team has little motivation. Management interventions are necessary from time to time to

maintain productivity.

11Surely that is one of the hardest environmental factors to assess, because the real motivation of the team may be

masked. Ribu’s (2001) suggestion seemed to help very little in rating this factor, and we took the liberty of reinterpreting

the reference.

e20 CHAPTER e4 Use Case Based Project Planning

3. The team has some motivation. Usually the team has initiative, but management intervention is

still necessary sporadically to keep productivity.

4. The team is well motivated. The team is self-managed usually, but the existence of supervision

is still necessary because productivity can be lost without it.

5. The team is highly motivated. Even without supervision everyone knows what has to be done,

and pace is maintained indefinitely.

E6 � Stable requirements: This factor evaluates if the team has been able to keep require-

ments stable in past projects, minimizing their change during the project. This factor may vary

from project to project, because there are domains where requirements change often independently

of the capacity of the analysts. This factor must assess only software changes that were caused by

the team’s inability to discover the right requirements.

0. There is no historic data about requirement stability or, in the past, poor analysis caused big

changes in requirements after the project started.

1. Requirements were predominantly unstable in the past. Clients asked for many changes caused

mainly by incomplete or incorrect requirements.

2. Requirements were unstable in the past. Clients asked for some changes caused by incomplete

or incorrect requirements.

3. Requirements were relatively stable in the past. Clients asked for changes in secondary

functionalities with some regularity. Changes to main functionalities were asked for seldom.

4. Requirements were mostly stable in the past. Users asked for little changes, especially cosmetic

ones. Changes in main or secondary functionalities were unusual.

5. Requirements were totally stable in the past. Little changes, if any, had no impact on projects.

E7 � Part-time workers: This is a negative factor, that is, contrary to the first six environmen-

tal factors, higher values here represent more development time, not less. A team with many mem-

bers involved in other projects or activities is less productive than a dedicated team.

0. No team member is part time on the project.

1. Up to 10% of the team is part time.

2. Up to 20% of the team is part time.

3. Up to 40% of the team is part time.

4. Up to 60% of the team is part time.

5. More than 60% of the team is part time.

E8 � Difficulty with programming language: This is another negative factor, meaning that

high values here are bad for the development time.

0. All team members are very experienced programmers.

1. Most team members have at least two years of experience in programming.

2. All team members have at least 18 months of experience in programming.

3. Most team members have at least 18 months of experience in programming.

4. A few team members have some experience in programming (not more than one year).

5. All team members are inexperienced programmers.

In order to continue with the Livir example, let us assume that the company is formed by a group

of five professionals who recently obtained Computer Science degrees and studied object-oriented

e214.2 Use case point analysis

techniques, but do not have significant professional experience. Three of them are fully dedicated to

the project, while the other two have other activities. Livir will be the first project they are going to

perform professionally together. With this fictional company, the evaluation of the environmental

factors could be something like Table e4.6.

Applying the adjustment formula to the company’s environmental factors the following is

obtained:

EF5 1:4� ð0:03 � 1:5Þ5 1:355

This indicates that the environmental factors are bad for this team of beginners, and that their

effort will be around 35% greater than nominal.

4.2.6 UCP � adjusted use case points
Once actor and use case weights as well as technical and environmental factors are calculated, the

adjusted use case points may be obtained by simple multiplication:

UCP5UUCP � TCF � EF
For the running example we obtain:

UCP5 234 � 0:825 � 1:3555 261:583

Table e4.6 Environmental Factors Evaluation for a Fictional Team Developing the Livir Project

Code Factor Weight Rate Weight3Rate Justification

E1 Familiarity with
development
process

1.5 1 1.5 The team has theoretical knowledge
about the development process
but no commercial practice.

E2 Experience in the
application

0.5 0 0 No team member has previous
experience with similar projects.

E3 Object-oriented
experience

1 3 3 All team members have about 12 to
18 months of (academic) experience
with object-oriented techniques.

E4 Lead analyst
experience

0.5 0 0 The lead analyst has no experience.

E5 Motivation 1 5 5 The team is highly motivated. Even
without supervision, each member
knows his/her job and maintains the
pace indefinitely.

E6 Stable requirements 2 0 0 There is no trustable history for the
team.

E7 Part-time workers 21 3 23 40% of the team is part time.

E8 Difficulty with
programming
language

21 5 25 Although they have academic
experience, all programmers are
novices.

EFactor 1.5

e22 CHAPTER e4 Use Case Based Project Planning

4.2.7 Effort
The key goal of all estimation techniques is to predict the effort necessary to develop a project. In

the first place, it is necessary to define the extension of the effort that is being estimated. The

COCOMO II method, for example, when applied with the Unified Process, estimates the effort to

be spent during Elaboration and Construction only.

Besides this, does the effort include administrative activities, sales, etc.? Or does it include only

the effort spent on software engineering activities? Literature on use case points usually is not as

detailed as COCOMO II and function point analysis regarding the kind of effort that is being esti-

mated. As use case point analysis is based on function point analysis Mk II (UKSMA Metrics

Practices Committee, 1998), we can assume that by default the same definitions apply, such as

“The project effort should include staff who is clearly allocated to the project and who work

according to the project requirements. The time of a user being interviewed, for instance, would

not be included, whereas the time of a user allocated for a significant amount of time to the project

team would be included.” Similarly, the following definition can also be applied: “The work effort

should be measured in units of a ‘productive’ or ‘net’ work-hours, which is defined as: ‘One hour

of work by one person, including normal personal breaks, but excluding major breaks, such as for

lunch’.” Mk II also states that a project starts when “it has been agreed and approved that work

should be undertaken to deliver an IS12 solution [. . .] one or more staff have been allocated to the

project, and start working on it” (this happens during the Inception phase), and that a project ends

when “the application is made ‘live’ by moving it into the production environment for the first

time, and the users make use of it” (this happens during the Transition phase).

The effort that is calculated usually must include all risks and unexpected situations. Estimation

is not a precise science though. In some situations things may get out of control and adjustments

must be made on the fly to keep the project on the rail. We can say that the final schedule would

define the maximum time tolerable for delivery of a product with the minimum scope acceptable.

That is, if we are lucky and risks cause little trouble, we can deliver the product earlier or deliver a

better product than expected.

Once the number of use case points is calculated, they have to be transformed into an effort

measure by using a team productivity index (TPI). If the TPI is measured as the time one team

member spent on a single use case point13 then the effort may be given by:

E5UCP � TPI
As UCP is a scale-independent value, it must be decided in which scale the effort will be mea-

sured. The use case point literature usually refers to staff hours per use case point. However, other

methods such as COCOMO II (Boehm, 2000) prefer staff months.

Because most formulas that are usually applied to productivity in the software industry are

defined in terms of staff months, and because the unit chosen may affect results, this book adopts

staff months as the productivity unit, but refers to staff hours when necessary.

12Information System.
13Optionally, the TPI could be expressed as the number of use case points a team member can produce in a given unit of

time. In that case, the formula should be E5UCP / TPI.

e234.2 Use case point analysis

Considering that a month corresponds to 158 working hours on average (holidays and weekends

disregarded), then x staff hours per use case point correspond to x/158 staff months per use case

point.

Originally, Karner (1993) estimated than 20 staff hours (approximately 0.127 staff months) per

use case point14 would be a good guess when a trustable history is lacking. Later, Ribu (2001)

determined that that value could range from 15 to 30 staff hours (0.095 to 0.190 staff months) per

use case point.

The TPI value can also be estimated by taking past projects, looking for the total staff time

spent and dividing it by the number of use case points. Thus, for example, if the total effort spent

on a given project was 9 staff months and the total project UCP was 60, then the team productivity

index in that case is 9/60, that is, 0.15 staff months per use case point.

Other work (Schneider & Winters, 1998) proposes that the number of environmental factors E1

to E6 rated below 3 must be added to the number of environmental factors E7 and E8 rated above

3, and:

• If the result is 2 or less, assume 20 staff hours (0.127 staff months) per use case point.

• If the result is 3 or 4, assume 28 staff hours (0.177 staff months) per use case point.

• If the result is greater than 4, environmental factors present too high a risk for the project, and

must be improved before any development commitment is assumed, or else assume 36 staff

hours (0.228 staff months) per use case point.

In the current example there are five negative environmental factors: E1, E2, E4, E6, and E8.

The recommendation, in this case, would be trying to improve the quality of the environment

before developing any project. However, if the team decides to take the risk, the project should

assume the worst estimate of 0.228 staff months per use case point. Thus, the total effort for the

Livir project is E5 261.583�0.2285 59.64 staff months.

4.2.8 Calendar time and average team size
The effort value obtained for the example in the last section (59.64 staff months) refers to the total

effort for developing the project from its start until the delivery of the product. However, more

than one staff member will be working on the project and thus calendar time (linear time with

weekends and holydays disregarded) will probably be much smaller.

There is a simple rule of thumb formula that allows one to approximate the ideal calendar time

for a project from its total effort (McConnel, 1996). The formula is:

T 5 2:5 �
ffiffiffiffi

E
3
p

In this formula, T is the ideal calendar time for developing the project.

This formula only works if E is expressed in staff months. The use of other units such as staff

weeks, or staff hours, would cause distortions in the result due to the use of the cubic radix.

Other formulae based on function points (Jones, 2007) or lines of code (Boehm, 2000) are avail-

able. But, in order to be applied with use case points, some conversions are needed. If a more

14Remember that a complex use case has 15 use case points and thus requires about 300 staff hours to be fully developed

according to Karner (1993).

e24 CHAPTER e4 Use Case Based Project Planning

accurate approximation is desired maybe this is worth the effort because Boehm’s and Jones’s for-

mulae use information about the project complexity and team capacity as parameters to produce

the calendar time estimate.

Applying the rule of thumb formula above to the current example produces:

T 5 2:5 �
ffiffiffiffiffiffiffiffiffiffiffi

59:643
p

D9:768 months

The average size of the team (P) is calculated by:

P5E=T

For the running example, we obtain:

P5 59:64=9:7685 6:106

Thus, the average size of the team, in that case, must be approximately equal to six. In sum-

mary, the project would be ideally developed by six people in about 10 months. For this example,

the development company could choose to hire a new professional (especially a more experienced

professional that could help to improve the environmental factor ratings); trying to develop the

project with five people could take a time longer than the ideal. For this example, it is possible to

calculate the time a team of five would take for developing the project as 59.64/55 11.928. In that

case, the project would be completed by five people in about 12 months. We said “it is possible”

because the number of people considered is smaller than the recommended size for the team.

However, it would be unrealistic to apply this division to calculate the calendar time for a team

larger than the ideal. For instance, it would not be realistic to assume that 20 people could complete

the project in 59.64/205 2.982 months. Any team size higher than the ideal means that the total

effort (E) must be adjusted to a higher value. The COCOMO II effort multiplier SCED (Required

Development Schedule) indicates that running a project on a time that is 85% of the ideal time

implies adding 14% to the total effort, and running a project on a time that is 75% of the ideal time

implies adding 43% to the total effort (Boehm, 2000).

It may appear that those times are too high for the project presented in the example. However,

it must be considered that the environmental factors are very bad, because the team has very little

experience. They will make errors and possibly will have to redo a lot of work. Most important, the

lack of experience may lead the team to misunderstand requirements and have to fix them later,

increasing development time significantly.

If instead of those novices we had a dream team with the best rates possible for environmental

factors, then EF would be 0.425 (the best value possible). In that case,

UCP5 234�0.825�0.4255 82.046. Using the recommendation of Schneider and Winters (1998), it

can be assumed that the dream team could work at a rate of 20 staff hours or 0.127 staff months

per use case point. Thus, E5 82.046�0.1275 10.42. Applying the formula for calendar time and

average team size the result is T5 5.46 and P5 1.908. That is, a dream team of two people could

complete the project in about five and a half months. That seems a very reasonable estimate consid-

ering the size of the project and the capacity of the team.

However, it is important to mention that those formulas are somewhat “magical” because there

are a great range of projects and development teams. Before using them seriously in a company it

is always useful to test and adjust them to the local reality.

e254.2 Use case point analysis

4.2.9 Counting methods for detailed use cases
The use case point analysis technique presented in previous subsections considers only a guess on

the complexity of the use cases because it deals with high-level use cases, which are represented

only by their name and, eventually, one or two explaining sentences.

There are techniques for counting use case points with expanded use cases (explained in

Chapter 5), but their utility is more limited because, with the Unified Process, use cases are usually

only detailed during the iterations. During Inception, the team usually only have high-level use cases.

Even so, those techniques may be useful if the use cases are already detailed, or if effort estimation

must be refined when an iteration starts. This is why those techniques are summarized in this section.

Robiolo and Orosco (2008) suggest that the text of the detailed use case must be analyzed and

the entities (classes) and transactions (steps) counted. The size of an application in unadjusted use

case points would be the sum of those values.

Braz and Vergilio (2006) propose a technique named FUSP (Fuzzy Use Case Size Points),

where counting is based on the complexity of:

• Actors that participate in the use case.

• Use case pre- and postconditions.

• Number of entities necessary for the use case.

• Number of transactions of the use case.

• Complexity of the alternate flows of the use case.

Thus, the measure is quite detailed, but a lot of work is necessary to apply it and the use cases

must be expanded for it to work.

Mohagheghi, Anda, and Conradi (2005) propose a technique (Adapted Use Case Points) that

assumes that every actor has medium complexity, and every use case is complex in the beginning.

Later, use cases must be split into smaller use cases and reclassified as simple or medium as the

refining process goes on. Extended use cases and alternate flows are counted as well.

Kamal and Ahmed (2011) present an extensive comparison among the aforementioned and other

counting methods.

The Full Use Case Size method (Ibarra & Vilain, 2010) was proposed with the objective of

measuring the size of use cases. The method measures functional and nonfunctional aspects and, to

do that, it needs high-level use cases and a list of nonfunctional requirements annotated for each

use case. Measurement is based on three components:

• The kind of use case.

• The number of system operations (transactions) and business rules.

• The number of interface requirements.

Details about these techniques may be found in the original works cited above.

4.3 Planning an iterative project
The goal of project planning is to build a plan for the project as a whole. Among other things, it is

important that the person or group responsible for planning use the best tools available to assess the

e26 CHAPTER e4 Use Case Based Project Planning

amount of effort that should be expended in the project. That estimate will lead to the project

schedule and budget.

There are several aspects to consider at the start. The scope declaration has already defined the

goals of the project and acceptance criteria. Also, the necessary business modeling has already

been completed, and the high-level requirements were incorporated to the system use cases.

With the technique of use case point analysis, the total effort for developing the project may be

estimated, as well as the ideal calendar time and the average size of the team; these are global mea-

sures for the project.

Now it is necessary to define the duration and number of iterations.

4.3.1 Estimating the duration of iterations
An iteration begins with planning and finishes with a new version of the system being released

internally or delivered to the client. The duration of an iteration in UP and most agile methods usu-

ally ranges from one to eight weeks,15 and it depends, among other factors, on the complexity of

the project and the size of the team.

Small teams with up to five people16 may do the planning together on a Monday morning, per-

form the work during the week, and generate a release on Friday.

Groups with more than 20 people might need more time to distribute and synchronize activities.

Consider that the amount of work is naturally higher. Moreover, the generation of a release takes

more time, because there will be a higher amount of software parts to be integrated, verified, and

fixed. Thus, in that case, iterations with three to four weeks would be allowed.

Groups with more than 40 people need to work on a more structured and formal environment,

with more intermediary documentation, so that the information flow will naturally be slower. Thus,

an iteration with six to eight weeks would be advisable.

Other factors that may affect the duration of the iterations are the following:

• Automatic code generation and integrated life cycle software tools allow for shorter iterations.

• A team that is very competent in UP and analysis, design, and coding techniques allows for

shorter iterations.

• If quality is a critical concern and consequently tests and revisions are intense, then iterations

must be longer, unless extensive automation and effective quality coding patterns are used.

4.3.2 Number of iterations
The number of iterations of a project depends on the calendar time divided by the duration of each iter-

ation. For example, for the Livir project, with the novice team, the project would take about 10 months

with a team of six people. Thus, an iteration of two weeks would be used, with a total of 20 iterations.

The number of iterations that would be considered for Elaboration and Construction depends

fundamentally on the need to address architectural problems. This can be roughly estimated by the

proportional quantity of complex use cases that should be studied and developed. As the milestone

15Agile methods prefer the shortest duration possible. Some methods such as XP are more radical by forbidding itera-

tions with more than three weeks, but other methods are more relaxed on that.
16Or larger teams that are very tuned and have excellent tool support.

e274.3 Planning an iterative project

of the Elaboration phase is a stable architecture, it can be assumed that Elaboration will not termi-

nate while there are complex high priority use cases that need to be analyzed. Kruchten (2003) esti-

mates that the Elaboration would take about 30% of the linear time of a typical project and

Construction would take about 50% of the time of a typical project, while Inception and Transition

would take about 10% each.

Another question that comes to mind at this point is whether the effort estimation includes the

Inception phase or not (because Inception is practically finished when the estimate is made). The

COCOMO II method, for example, when applied to the Unified Process, estimates only the effort

to be spent in Elaboration and Construction, leaving Inception and Transition to be calculated as a

percentage of the total effort. Usually, it is believed that use case point analysis estimates the total

effort of a project, from its beginning to the delivery of the product. However, if the team uses

another interpretation, the important thing is to keep it coherent from one project to another. Any

discrepancy in estimation measures would be absorbed by the team productivity index.

4.3.3 Effort per use case point
In order to find the effort to develop each kind of use case (simple, medium, or complex), the fol-

lowing procedure may be used:

1. Take the total effort for the project (E), and divide it by the total unadjusted use case weight

(UUCW) � ignore the actors’ weight.

2. The resulting value is the effort estimated per unadjusted use case point for the specific project

and team (EUCP5E/UUCW).

3. Finally, find the effort for each kind of use case by multiplying EUCP by 5 in the case of simple

use cases, by 10 for medium, and by 15 for complex ones.

For the running example we have:

EUCP 5
59; 64

220
5 0:271 staff months per use case point

Thus:

• Simple use cases demand 5�0.2715 1.355 staff months.

• Medium use cases demand 10�0.2715 2.71 staff months.

• Complex use cases demand 15�0.2715 4.065 staff months.

Notice that the dream team would produce values much lower than those. In the case of the

dream team:

EUCP 5
10; 42

220
5 0:047 staff months per use case point

Thus:

• Simple use cases demand 5�0.0475 0.235 staff months.

• Medium use cases demand 10�0.0475 0.47 staff months.

• Complex use cases demand 15�0.0475 0.705 staff months.

e28 CHAPTER e4 Use Case Based Project Planning

4.3.4 Team load capacity
Other information that can be calculated is the team load capacity (TLC) for each iteration. This is

calculated as the number of team members multiplied by the iteration length (expressed in

months):

TLC5P � iteration length ðin monthsÞ
In the running example, considering the novice team (six people) and two week iterations (about

0.5 months), TLC5 6�0.55 3. That means that each iteration for that project has a team load of

three staff months.

With a two-week iteration, the team would not be able to finish a complex use case (it demands

4.065 staff months, as seen above). Two options may be considered:

• Extend the duration of the iterations to three weeks (about 0.75 months).

• Slice use cases so that they may be partially implemented in two-week iterations.

Although agile developers would prefer shorter iterations, if we choose to extend the iterations,

the calendar time for the project (10 months) divided by the iteration duration (0.75) results in 13.3

iterations, which can be adjusted to 14, unless the project is to be hurried. This way, the team load

per iteration would be 6�0.755 4.5 and one iteration would be sufficient to deal with a complete

complex use case.

4.3.5 Defining use case priority
One of the main techniques for reducing risk in a project is dealing first with the most complex use

cases, especially if they are those that represent the most critical business processes, because with

them the team may learn more about the system than with other use cases. Pattern use cases such

as CRUD (medium complexity) and reports (smallest complexity) can be addressed later during

Construction.

Planning indicates when each use case is going to be analyzed, designed, and implemented. The

Unified Process, like most agile techniques, does not expect that the general project plan defines

when each use case is to be implemented. However, they are placed in a dynamic priority list, and

although it may be updated on the fly, it is possible to know when each use case is supposed to be

completed. Planning an iteration begins by choosing which use cases, risks, or change requirements

would be addressed on the next iteration. When planning an iteration, the following aspects must

be considered when choosing which use cases to address:

• Use case complexity: Use cases of higher risk and complexity should be addressed first in most

cases, unless special conditions (for example, a relatively simple use case with high

technological risk) justify choosing different use cases.

• Dependencies among use cases: Use cases that have a strong dependence to the ones that were

already accommodated in the iteration should be addressed together if possible, because it

avoids fragmenting the work on the classes.

• Team load capacity: The development work must be assigned to team members based on their

TLC.

e294.3 Planning an iterative project

One suggestion for prioritizing use cases for the Livir example presented in Figure 3.11 is given

in Table e4.7.

The order of this list is most critical for the complex use cases, because a wrong choice in terms

of their priorities could lead to otherwise unnecessary refactoring in subsequent iterations. We con-

sidered that the most important use cases for this business are those related to the process of selling

books, because that is what generates profit for the company. However, the order of use cases with

lower risk such as cruds and reports is not so critical.

4.3.6 Planning phase and iterations
With the information obtained in previous sections, it is possible to elaborate the preliminary

release plan utilizing the use case priorities, effort, and team load capacity.

The goals of an iteration may be of three types:

• Implementing totally or partially one or more use cases.

• Mitigating one or more risks, generating or performing a probability reduction, impact

reduction, or disaster recovery plan.

• Implementing totally or partially one or more changes requested. As the system architecture

evolves during iterations, changes may be asked for due to nonconformities to requirements or

design errors. Incorporating these changes into the software may be one of the goals of an

interaction. This kind of goal usually only arises after the first iteration.

For each element (use case, risk, or change requested) there must be effort estimation. The ele-

ments will be selected for inclusion in one iteration or another depending on their priority (priori-

ties may change as the project progresses � therefore, planning may change too). Higher priority

Table e4.7 Suggestion for Use Case Priorities for the Livir Example

1. Order books 12. Manage books {crudc
2. Pay order 13. Manage publishers {crudc
3. Deliver order 14. Order status {reportc
4. Register delivery confirmation 15. Past sales {reportc
5. Receive books 16. Book sales by period {reportc
6. Resend order 17. Books available for sale {reportc
7. Register order return 18. Book returns by period {reportc
8. Discard books 19. Upcoming orders by period {reportc
9. Cancel order 20. Deliveries by period {reportc
10. Create/remove special offer 21. Discarded books by period {reportc
11. Manage customers {crudc

e30 CHAPTER e4 Use Case Based Project Planning

must be given to the more complex and risky elements, which are the ones with greater potential

for learning about the system. The suggestion is to pick first:

• Use cases that represent the most critical business processes, for example, those which help the

company achieve its organizational goals, such as obtaining profit.

• High-importance (or high-exposure) risks, that is, those with high impact and a high probability

of becoming problems.

• Urgent change requests, for example those that demand architecture refactoring.

When considering the elements of highest priority, other elements with lower priorities, but

closely related to the higher priority ones, may be added to the same iteration for convenience. The

important thing is that the total effort assigned to the iteration does not surpass the staff month

value that corresponds to the team load capacity.

Risk mitigation and some change requests may not be suitable for effort estimation because

their size cannot be measured in terms of use case points (or any other metric). For example, find-

ing and fixing a bug may take seconds or weeks. In these cases, usually a fixed amount of time is

assigned, such as, for example, investing one team member during one week to work on the mitiga-

tion of a given risk. At the end of the time box17 previously defined the result is evaluated and it is

decided if the activity must continue or not.

Let’s consider that the project has 10 months (40 weeks) and the iteration duration is

three weeks. Then, Inception and Transition would take about four weeks (10% of the

total time), Elaboration would take about 12 weeks (30% of the total time) and four three-

week iterations, and Construction would take about 20 weeks (50% of the total time) and

close to seven iterations (one of them could be a week shorter, or one week from the

Transition phase could be borrowed for the last Construction iteration � the chosen alterna-

tive presented below).

Kroll (2004) presents a suggestion for a generic phase plan that is adapted for the Livir example

in Table e4.8. At the moment change requests were not included because they appear only when

the project is running, not at the beginning. Thus, the plan in this case was made only based on use

case release and risk mitigation.

After phase planning concludes (usually at the end of Inception), the plan for the first Elaboration

iteration E1 can be detailed, with use cases being chosen and activities detailed and assigned to

developers. Only when that iteration is running should the planning for the second iteration begin.

The purpose of an iteration plan includes the following (Kroll 2004):

1. Define the scope of the iteration by defining its goals in terms of artifacts to be produced such as:

• Detailing and implementing specific use cases.

• Mitigation of known risks.

• Performing requested changes.

2. Create a detailed plan on how the iteration must unfold.

3. Create, identify, and manage tasks dependencies.

4. Assign tasks to people.

17A time box is a fixed period of time allocated for a task.

e314.3 Planning an iterative project

For example, consider that you are planning the first Elaboration iteration E1 for the Livir

project. Consider the general goals presented in Table e4.8, and the current state of the system.

Some iteration goals could be defined such as:

• Expand and implement use case 01: Order books.

• Test and refine the preliminary architecture.

• Perform mitigation plans for risk K1: Unstable requirements.

Then, planning may continue by defining the iteration deliverables and the tasks necessary to

produce them, and assigning them to developers. Agile teams might prefer to produce this plan in a

team meeting, while teams following RUP may prefer to instantiate some of the RUP workflows in

order to determine which tasks should be performed in order to achieve the iteration goals.

Explaining this is out of the scope of this book, but readers interested in learning more may start

by consulting West (2002) or Crain (2004).

Table e4.8 Generic Phase Planning for the Livir Example

Phase Iteration Primary Objective (Risks and Use Cases Addressed) Schedule

Inception I1 Define vision Weeks 1 to 4

Determine project scope

Define candidate architecture

Create business case

Create software development plan

Elaboration E1 Install and test architecture components Weeks 5 to 7

Validate requirements details

Implement priority use cases.

Test proposed architecture

E2-E4 Mitigate architectural risks. Weeks 8 to 16

Complete architecture installation and test

Implement additional use cases

Load test architectural elements

Construction C1-C6 Describe and implement additional use cases Weeks 17 to 34

Integrate product and validate

C7 Describe and implement additional use cases Weeks 34 to 37

Integrate product and validate

Plan beta test

Plan user manual

Transition T1 Deliver beta to client Weeks 38 to 40

Analyze feedback from beta users

Apply corrections

Finalize user manual and other artifacts

Deliver to client

e32 CHAPTER e4 Use Case Based Project Planning

4.4 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram and determine the automation
scope for the project.

• Build preliminary activity diagrams for business use cases.
• Build preliminary state machine diagrams for key business

objects.

Requirements Prepare the system use case diagram (functional requirements):

• Identify the system actors from the business use case model.
• Identify the system use cases from the business use case model,

and activity and state machine diagrams from business modeling.

Identify nonfunctional requirements as use case annotations:

• Identify the main business rules associated to use cases.
• Identify the main quality issues associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model by observing system use
cases and the concepts needed by them.

Implementation

Test

Project
Management

Estimate the total effort, ideal calendar time, and average team
size for the project.
Estimate the duration and quantity of iterations for each phase.
Prepare the phase plan and iteration plan for the first iteration.

4.5 Questions
1. Explain the differences among COCOMO II, function point analysis, and use case point

analysis. What are their relative advantages and disadvantages?

2. In use case point analysis what is the difference between technical and environmental factors?

Why does use case point analysis consider them as separate groups?

3. Let E be the total effort for developing a project, and T the ideal calendar time recommended

for the same project. What happens with E when the project must be developed in a time

shorter than T? Does the same occur when the project may be developed in a time longer than

T?

4. How do you determine the ideal duration of an iteration for a given project?

5. How do you establish a list of priorities for use cases?

e334.5 Questions

This page intentionally left blank

CHAPTER

5Expanded Use Cases

KEY TOPICS IN THIS CHAPTER

• Main flow of an expanded use case

• Alternate flows: exception handlers and variants

• Writing recommendations

• System sequence diagrams

5.1 Introduction to expanded use cases
As explained in Chapter 3, use cases may be used to represent system requirements, among other

things. They are nowadays one of the leading approaches for requirements because they allow the

building of a structure that is easier to understand, communicate, and manage than previous

approaches. Ivar Jacobson identifies some reasons why use cases became so popular:1

• A use case model is a picture that allows a team to describe even a complex system. It tells in

simple terms what the system is going to do for its users.

• A use case produces value to a particular user, not to an unidentifiable community of them.

• Use cases are also test cases; when the team finishes organizing requirements in use cases they

have also produced the structure needed for test cases.

• Use cases are the starting point to design effective user experiences, such as, for example, a

website.

• Use cases drive development from analysis to design, from design to code, and from code to

testing.

Frequently, the first analysis activity of Elaboration iterations is to detail the use cases assigned

to the iteration. The process of detailing or expanding a use case into a sequence of steps corre-

sponds to refining the requirements analysis, especially the functional requirements. In each itera-

tion, it is possible to expand one or more use cases and analyze and design the necessary structures

for the software product to meet the requirements, allowing users to interact with the system by fol-

lowing the steps indicated in the expanded use case.

In order to proceed with the expansion of a given high-level use case, it is necessary to have at

hand the system use case diagram, including all annotations, and the supplementary specifications

document. It would also be useful, for the first iteration, to have a version of the preliminary

1http://blog.ivarjacobson.com/use-cases-%E2%80%93-why-successful-and-popular/

61Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00005-3

© 2014 Elsevier Inc. All rights reserved.

http://blog.ivarjacobson.com/use-cases-%E2%80%93-why-successful-and-popular/
http://dx.doi.org/10.1016/B978-0-12-418673-6.00005-3

conceptual model if it was developed during Inception. For iterations other than the first

Elaboration iteration it is very useful to have a version of the evolving conceptual model already

refined by the activities of past iterations.

As use case expansion corresponds to the refinement of the requirements analysis, the team

must conduct a very detailed exam on the process incorporated into the use case from the point of

view of the user. The use case must be described step by step: how it is performed and which inter-

actions between actors and system do exist. Technology and interfaces should be ignored at this

point. Only the information exchanged between the system and the actors is mandatory in these

descriptions.

This step-by-step description, in principle, must not be structured with branches. It must be

based on a default sequence, or main flow (Section 5.2), which describes what happens when every-

thing goes right during the use case interaction. This flow is also called the “happy path” because

in it there are no error, failure, or exception.

After describing the main flow of the use case, the business rules or nonfunctional requirements

annotated for the use case must be checked and analyzed from the point of view of the user, in

order to discover what could possibly go wrong in a given step, which could generate an exception.

After identifying a possible exception, a description of a procedure to correct the problem should

be described (Section 5.3.3). There may be at least one exception for each business rule. The use

case is then completed with alternate flows that resemble the handlers used for exception handling

in programming.

Besides the above, the team can verify if the user may be able to execute the use case in a

number of different ways or scenarios (Section 5.3.1). If its execution structure varies greatly, then

variants to the main flow may be identified (Section 5.3.2).

5.2 Main flow
The main flow is the most important section of an expanded use case. It is the description of the

use case process when everything goes right, that is, when no alternate flow occurs.

In the bookstore example, a first draft of the main flow of the Order books use case may

include the customer identifying herself, searching and selecting books, and finally proceeding to

payment.

Regarding user identification, a recurrent problem arises here: What if the user has already iden-

tified herself on a use case that was executed just before the current one? This is a common situa-

tion and must be adequately dealt with. As at this point user identification is optional, it may be

left as an alternate flow, as explained in Section 5.3. Thus, it is assumed for the main flow of this

use case that the user is already known by the system; if this is not the case, an alternate flow

where the user identifies herself should be performed.

Therefore, the actions that better describe the main flow of use case Order books are the follow-

ing: a user searches and selects books for buying and proceeds to payment. However, this is not a

one-way communication, and the system must present to the user which books are available for

sale, as well as other information that is important to the user such as the books’ prices, and the

total value of the order.

62 CHAPTER 5 Expanded Use Cases

Figure 5.1 presents a draft for the main flow of the Order books use case, which is considered

the highest priority use case of the Livir system (Section 4.3.5).

At step 1 the user may choose not to provide a keyword, and then at step 2 she would receive a

list with all the books available at the bookstore. For now it is not necessary to decide on the inter-

face format. For example, if the list of books is too long, maybe a limited list with scrolling com-

mands would be preferable to a complete list. This can be decided when the interface is being

designed. The interaction of the user with the scrolling commands of the interface is something that

should not be included in the essential use case description.

In order to execute step 5 it is necessary that the user is identified and validated, or else how

would she resume the order later? The main flow here assumes that she is already identified, but if

this is not the case, an exception would be raised as explained in Section 5.3.3.

After step 5 it is assumed that the use case finishes and the shopping cart has been saved (as it

is an internal operation, it is not necessarily mentioned in the use case, as explained in

Section 5.4.6). At this point, the user can chose to log off and resume shopping some other day, or

she can proceed immediately to the Pay order use case (Figure 5.2).

Note that these use cases are drafts because we still must discuss some issues and make some

improvements in their formulations, which will occur in the upcoming sections. For example, the

alternate flows that will be presented later are related to the possible exceptions and variants identi-

fied by the team. For example, step 3 of Order books may present an exception such as insufficient

quantity of the book in stock. Another evident exception may happen in step 5 of Pay order, in

which the credit card operator approves the sale: although this is expected for the success of the

use case, it may not happen.

Exceptions, however, instead of producing conditional tests in the main flow, must be ignored

by it, and handled separately. It would be harder to understand the purpose of a use case that has in

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least title, author, price, page count, publisher, ISBN, and cover
image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and tota l value.

5. The customer finishes the order.

FIGURE 5.1

First draft for the main flow of the Order books use case.

635.2 Main flow

its body an algorithmic structure that considers all possible exceptions, like the one shown in

Figure 5.3.

The problem with the use case flow in Figure 5.3 that makes it so unnecessarily complex is the

quantity of “if-then” statements in its formulation. The main flow should not be sprinkled with con-

ditions. It should indicate what would happen in an ideal situation in which all information passed

is correct and complete. Exceptions and other variations to the main flow should be handled as

alternate flows, as seen in the following section.

5.3 Alternate flows
A use case specifies a process that can be performed in real life in a number of different ways.

Two people buying books would take different sequences of steps. If the sequences are sufficiently

similar,2 then the same flow must be used to describe both. But in some situations alternate flows

must be used to indicate sequences that could occur in quite different ways.

Use case 02: Pay order

1. The system generates the pending order summary (title, author, quantity, unit
price, and subtotal for each book), as well as the total price of the order, and a list
of registered delivery addresses for the customer.

2. The customer selects a delivery address.

3. The system presents the delivery fee, the scheduled arrival date, and a
list of credit cards already registered for the customer (flag and last four digits of
the credit card number).

4. The customer selects one of her credit cards for payment.

5. The system sends to the respective credit card operator the following data: card
number, owner’s name, validity, security code, total purchase value, and code
of the store.

6. The credit card operator approves the sale by sending an authorization code.

7. The system informs the customer that the sale was approved and supplies the
tracking number of the package.

FIGURE 5.2

First draft of the main flow of the Pay order use case.

2For example, one customer buys two books and another customer buys five books: both actions may be described sim-

ply as “customer buys books” because the number of books is irrelevant for understanding the process.

64 CHAPTER 5 Expanded Use Cases

There are basically two kinds of alternate flows: variants (Section 5.3.2), which indicate differ-

ent ways to reach the same goal, and exception handlers (Section 5.3.3), which indicate how to

deal with problems that appear during a use case execution.

However, sometimes the variants are so different that they can be considered individual use

cases. Then, variants may be simple scenarios (Section 5.3.1) of a single use case, or, sometimes,

they may be the key to discovering brand new use cases.

5.3.1 Scenarios
A use case can be understood as a description or general specification that supports a set of differ-

ent scenarios. Each scenario is a particular realization or instance of the use case. Usually, a use

case has a main scenario (execution of the main flow) and alternate scenarios (executions of the

main flow that pass by one or more alternate flows). However, the notion of main flow variants

sometimes creates doubt on what should really be a use case. In the bookstore example, considering

the process for buying books, at least two different scenarios come to mind:

• A customer orders books and saves the shopping cart to continue shopping later.

• A customer orders books and pays for them.

Is it a single use case with two alternative ends? Or should it be split into two use cases?

Use case 01: Order books (handling exceptions inadequately in the main flow) AVOID!

1. If the customer does not have a record, then she registers, indicating her
name, phone, address, social security number, and at least one credit card.
If she is already registered, then she identifies herself, unless she was already
identified before.

2. If the customer still has not paid for the last sale, then the system shows the
shopping cart, so that it can be paid, canceled, or resumed.

3. The system presents the options of books for sale, indicating at least the
title, author, price, page count, publisher, ISBN, and cover image.

4.

5. …

The customer selects books, and indicates the desired quantity of each one. If the
desired quantity is not available in stock, then the system must ask the user to
redo the order considering the available quantity. If the quantity is zero, then the
customer must have the option of taking that item off the order. It is possible still
for the customer to split her order into two parts, receiving as soon as possible the
available books and receiving a second delivery with the missing books when
possible.

FIGURE 5.3

Use case with exceptions inadequately handled in the main flow.

655.3 Alternate flows

Both options are equally valid, although one of them is possibly more useful than the other. The

choices are:

• Create more use cases (one for each scenario). Each use case has a simpler structure, but there

would be a high number of similar use cases.

• Group similar scenarios in a single use case. There are a smaller number of use cases, but each

of them would be more complex.

At this point, it is more important to discover the information exchanged between the actors

and the system than to decide if two scenarios consist of one or two use cases. Thus, it is not so

important, with regard to the final result, if the operations are discovered or described in a single

use case with two scenarios or in two use cases each with a single scenario.

The advantage of joining alternate scenarios into a single use case is that the description of

some steps must not be repeated in different use cases. This is the same advantage that is obtained

when the attributes of different classes are shared by a superclass (Section 6.6.1).

However, use cases must not be considered similar to procedure calls: they are linear descrip-

tions of scenarios that may happen in the real world where a user is interacting with a system.

5.3.2 Variants
It is admitted, in principle, that the main flow is a strict sequence of interaction steps: it is neither

branched nor nested. However, sometimes it could be useful to represent the main sequence in a

not-so-linear way.

As mentioned in the previous section, use cases for ordering books and paying for them could

be considered a single use case with two scenarios. In that case, each scenario would be an alter-

nate end for the use case: Save shopping cart or Proceed to checkout.

These two possible endings may be represented as variants of the main flow of a single use

case.

As shown in Figure 5.4, the use case Buy books has two possible ends: in the first, the cart is

saved so that the order can be resumed later, and in the second, the customer pays for and finishes

the order.

Saving the cart to resume the order later is not an exception (in the sense given in

Section 5.3.3) but an option for the customer. That is not a condition that prevents the use case

from concluding, because the use case still produces something: the cart is stored to be used later.

This is just a main flow variant, and this is why both variants are shown with the same status in the

flow.3

Some analysts might choose one of the variants to be in the main flow and the other to be an

alternative flow in the form of a variant. In Figure 5.5 the variant Proceed to checkout was chosen

to be in the main flow, while the variant Save shopping cart was left out of the main flow. An

3However, this style for variants must not encourage the reader to do the same with exceptions. As explained in

Section 5.3.3, in the case of exceptions there is indeed a normal flow and an alternate one, which must be described out-

side the main flow; in the case of variants the idea is that they are only different ways to perform the main flow.

66 CHAPTER 5 Expanded Use Cases

Use case 01/02: Buy books (joins Order books and Pay order)

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

6. The customer decides:

• Save shopping cart: Variant 6a.

• Proceed to checkout: Variant 6b.

Variant 6a: Save shopping cart

6a.1. The customer informs the system that the shopping cart should be saved.

6a.2. The system informs the customer how many days the cart will be available.

Variant 6b: Proceed to checkout

6b.1. The system generates a list of registered addresses for the customer.

6b.2. The customer selects a delivery address.

6b.3. The system presents the delivery fee, the date scheduled for arrival and a
list of credit cards already registered for the customer.

6b.4. The customer selects one of her cards for payment.

6b.5. The system sends to the respective credit card operator the following data:
card number, owner’s name, validity, security code, total purchase value,
and code of the store.

6b.6. The credit card operator approves the sale by sending an authorization
code.

6b.7. The system informs the customer that the sale was approved and supplies
the tracking number.

FIGURE 5.4

Main flow of a use case with variants.

675.3 Alternate flows

advantage of this choice is that it allows the variant to be associated to more than one step in the

main flow. For example, consider that the variant Save shopping cart may be executed when the

user is in any step from 1 to 8. In this case the variant code would be numbered 1-8a. If the variant

could be executed at any time during the main flow, then its number would be �a.
This style, although predominant in literature, forces the use case analyst to make a choice

between variants that may be artificial in some cases. If there is not a clear predominance among

Use case 01/02: Buy books

1. The customer provides keywords for searching books.

2. The system presents a list of books for sale that matches the keywords, including
at least the title, author, price, page count, publisher, ISBN, and cover image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

6. The system generates a list of registered addresses for the customer.

7. The customer selects a delivery address.

8. The system presents the delivery fee, the scheduled arrival date and a list of credit
cards already registered for the customer.

9. The customer selects one of her cards for payment.

10. The system sends to the respective credit card operator the following data: card
number, owner’s name, validity, security code, total purchase value, and code of
the store.

11. The credit card operator approves the sale by sending an authorization code.

12. The system informs the customer that the sale was approved and supplies the
tracking number of the package.

Variant 1-8a: Save shopping cart

1-8a.1. Customer informs the system that the shopping cart must be saved.

1-8a.2. System informs the customer how many days the cart will be available.

FIGURE 5.5

Alternative way to represent a use case with variants where one is kept in main flow and the others are

alternate flow.

68 CHAPTER 5 Expanded Use Cases

the different variants, then a style such as the one presented in Figure 5.4 seems preferable, because

it gives the same status to each variant.

5.3.3 Exception handling
After describing the main flow of a use case and adding variants (if any), the analyst must concen-

trate on identifying the exceptions that could occur and create an alternate flow for each one. There

are basically two techniques for identifying exceptions:

1. Each business rule annotated for a use case may generate an exception. For example, if the

use case for ordering books has a business rule that states that the value of the order cannot be

lower than 50 dollars, then when an order is confirmed there will be an exception if it does

not reach that value. To deal with this exception it will be necessary to add more books to the

order, or it will be canceled.

2. Additionally, the analyst may look at each of the steps of the main flow, especially those

that represent information flowing from actors to the system. In those flows there will be

possibly data that the system cannot accept by definition, which constitutes an exception. For

example, in the step where the credit card operator is asked to authorize the sale it could send

a refusal code � this would be an exception, because the use case cannot be successfully

completed in that case. Corrective actions must be taken (outside the main flow), or the use

case will be terminated without achieving its goals.

An exception (in the sense used in computer science) is not necessarily an event that seldom

occurs, but an event that if not handled prevents a process from proceeding. An exception is not

necessarily something that prevents a use case from starting, but it is normally something that

prevents it from being concluded. The fact that the credit card has reached its limit does not pre-

vent the customer from accessing the bookstore site and starting to shop, but it prevents her from

completing the order unless a valid credit card with available credit is provided. Therefore,

although the use case may be initiated, it cannot be concluded until every exception that occurs

is handled.

Figure 5.6 shows an evolution of the use case Order books, now with some exceptions identi-

fied after the main flow. Each exception is identified by a number that indicates the line of the

main flow where it originates, and a letter that helps differentiate exceptions that may happen in

the same step. For example, if step 5 has three exceptions, then they will be identified as 5a, 5b,

and 5c. If an exception can occur in any step, then it is identified as �a, �b, etc., and if it can occur

in a range of steps, such as 3-7, than it is identified as 3-7a, 3-7b, etc. Additionally, if an exception

can occur in nonadjacent steps, such as steps 3 and 6, than it may be identified as 3,6a. A sentence

follow the identification code that corresponds to the business rule or situation that is the cause of

the exception. Figure 5.6 also introduces variant 5d that allows the user to continue shopping for

other books instead of finishing the order. This is not an exception, just a choice.

The number of exceptions a team may come up with may be very high; however, we are inter-

ested in just a few of them. Most exceptions that could be thought of may be resolved by other

mechanisms than the logic of the use case. A key for reducing the use case complexity and still

dealing with the system complexity is to reduce the number of exceptions identified here to those

that really must be addressed. The exceptions that are really interesting now are the ones where the

695.3 Alternate flows

user tries to send the system some data that cannot be accepted. Any other kind of exception proba-

bly can be resolved by other mechanisms. In the example of Figure 5.6:

• In step 1 there can be no exceptions because the system may accept any keyword that the user

provides. It just happens that for some choice of keywords there may not be any book to

present. In this case, the behavior of the system should show no books, or maybe show the

books that most closely meet the keywords (Google does that). This is not an exception that

prevents the use case from continuing, just a special case of its behavior.

• In step 2, and any other step where the system is presenting data, there can be no exceptions in

logic, because in step 2 the system is not trying to accommodate data sent by the user; if some

exception could occur, then it probably would have happened in the previous step and generated

an effect here. The system showing a list with no books is not an exception. Again it is a

special case of its normal behavior, and the user action would be choosing no book in step 3

and after that repeating step 1 or proceeding to finish the order in step 5.

• Still in step 2, an analyst could think “What if the calculations involved with the query have a

defect that makes the system halt when trying to present the result?” Well, if the code has a

defect, then it must be corrected, and not incorporated in the use case logic. This is not the

kind of exception we are interested in.

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

Exception 3a: The quantity requested is higher than the quantity in stock for one
or more books.

Exception 5a: The customer is not identified yet.

Exception 5b: The customer does not have an account.

Exception 5c: No book was selected for purchase.

FIGURE 5.6

Example of use case with exceptions identified.

70 CHAPTER 5 Expanded Use Cases

• At any step, an analyst could think that an exception could happen if the communication

between the system and the user fails. That is what developers usually understand as a real

world exception. However, this is not the kind of exception we are interested in here, because

it is not specific to the logic of the use case; communication may fail at any time � it does not

matter which step of which use case is being executed. Additionally, this exception is related

to technology, and we are dealing with essential use cases, where references to implementation

technology are avoided. Thus, this kind of exception must be implemented by general

mechanisms, not by the logic of the use case.

• In step 3, what if the user indicates a negative quantity? What if she writes a letter in the

quantity field? Here the idea is that all bad user actions could be eliminated by simple interface

widgets. For example, instead of writing a number in a text box, the user selects a quantity by

sliding a bar that represents only positive quantities. These interface mechanisms are part of

technology and they are not to be mentioned in the essential use case. However, the analyst

may know that there are ways to prevent a user from choosing a negative or a “xyz” quantity,

and therefore this is not a preoccupation that must be included in the use case structure.

As explained in Chapter 8, this kind of syntactic user error will be addressed by defining the

type of arguments that the system can receive. If the type is defined as “natural,4” then the team

must not be concerned with any other values; they simply cannot be produced by the user. The

interface will not allow it.

• However, there is a logical exception in step 3, which corresponds to the user asking for a

quantity that is more than is available in stock. The quantity of books available in stock varies

from book to book and varies in time. Thus it cannot be defined as a static type. The system

could prevent the user from choosing a quantity that is higher than available, but in that case,

the system would have to check for those quantities prior to the user action.

• Finally, step 5 has at least three exceptions that are just the type we are looking for; three

problems that are related to the use case logic and that prevent the use case from achieving

its goals: a user that is not identified yet, a user that has no valid identification, and an order

with no books selected.

Through the discussion above we can conclude that in practice exceptions happen usually in

steps that correspond to information being sent to the system, because only in those cases are there

business rules or situations that prevent the system from accepting the data and proceeding further.

Lots of potential exceptions may be treated as type check or technological issues, as explained

above. And in most cases, exceptions identified in a step where the system is presenting informa-

tion should have been dealt with at the previous step where the user was sending information to the

system. In summary, interesting exceptions in a use case flow are those in which the user tries to

send information that the system cannot accept.

Each exception must be handled by an alternate flow that corresponds to a branch of the main

flow. This alternate flow defines a sequence of steps that should be performed to eliminate the

problem created by the exception. If this sequence of steps cannot be performed or if the actor does

not want to perform them, the only option left is to abort the use case, that is, terminate it without

reaching any of its goals.

4The set {1, 2, 3, . . .}.

715.3 Alternate flows

Therefore, each exception identified in a use case has an exception handler. An exception

handler has at least four parts:

• An identification code that, as explained above, consists of the number of the step(s) that

originates the exception followed by a letter that identifies the exception.

• The exception, which consists of a sentence that states which business rule was broken, because

in a single line in the main flow different kinds of exceptions may happen, as in, for example,

step 5 of the use case of Figure 5.6.

• Corrective actions that consist of an alternate flow, that is, a sequence of actions that should be

performed to correct the exception. The corrective actions are numbered sequentially and each

step is prefixed by the exception identification. For example, exception 2a has steps numbered

as 2a.1, 2a.2, 2a.3, etc.

• Finalization, which is the last line of the alternate flow and indicates if and how the use case

returns to the main flow after performing the corrective actions.

There are five basic ways to terminate a corrective actions sequence:

1. Terminate the use case normally after the corrective actions are performed. By default, if no

finalization action is mentioned, it is assumed that the use case terminates at the end of the

alternate flow. The use case does not return to the main flow but its goals are reached by the

alternate flow.

2. Go back to a step before the one that caused the exception. Sometimes it is necessary to go

back to the beginning of the use case or move back some steps before the one that caused the

exception. This is neither very common nor desirable, because it implies that the user will

repeat steps that have already been taken. However in systems that must obtain data in real time

or systems with intensive concurrent transactions this may be the case.

3. Return to the step that caused the exception and perform it again. This is more usual. One must

choose this option when the step that caused the exception could eventually cause other

exceptions even if one of them has been already handled. This is the case for the exceptions of

step 6 in Figure 5.6, because in addition to not having a valid identification the user could not

have selected any books.

4. Advance to some step after the one that caused the exception. This can be done when corrective

actions have already produced what the step or sequence of steps were supposed to do.

However, it is still necessary to check if new exceptions could happen in the main or alternate

flow (see the previous option).

5. Abort the use case. In this case, the control does not return to the main flow and the use case

does not reach its goals. If it is necessary to perform some corrective actions (for example,

removing transient records) this may be indicated in the steps of the alternate flow (this

approach for handling an exception is known as organized panic).

Figure 5.7 presents a new version of the Order books use case, now with the corrective actions

for the alternate flows defined.

In the example, each exception identified and handled is specific for the step where it occurs. For

example, the quantity of books available may only be detected in step 3 when the user provides it.

It is important that only exceptions that are specific to some steps are effectively included in the

use case. Otherwise, it could quickly become unnecessarily complex. Generic exceptions that may

72 CHAPTER 5 Expanded Use Cases

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

Exception 3a: The quantity requested is higher than the quantity in stock for one

3a.1. The system informs the available quantities for each book where the user
 ordered more than is available.

3a.2. The user changes the desired quantities to meet the quantities in stock.*

3a.3. Advance to step 4.

Exception 5a: The customer is not yet identified.

5a.1. The customer provides valid identification.

5a.2. Return to step 5.

Exception 5b: The customer does not have an account.

5b.1. The customer registers herself by providing a username, password, and
email address.

5b.2. Return to step 5.

Exception 5c: No book was selected for purchase.

5c.1. Return to step 1.

5d.1. Return to step 1.

Variant 5d: The customer decides to continue shopping.

or more books.

FIGURE 5.7

Example of use case with exception handlers. �Contrary to what was stated in chapter 2, here we assume for

simplicity that books out of stock cannot be sold.

735.3 Alternate flows

occur at any step of any use case must not be treated as exceptions here. For example, the actor

may cancel a process at any step. That kind of situation is more adequately handled by generic

mechanisms. For this example, a generic mechanism of rollback should be provided for the system.

If this kind of exception was included in every use case, then a huge number of similar exceptions

would be introduced with no practical result. If at any step of any use case the user can cancel the

transaction, it is not necessary to repeat that information many times. There could exist hundreds or

thousands of steps in the set of use cases of a system. Generic exceptions that are specific to a

single use case may be numbered with the “�” notation. Otherwise, if the exception may happen in

any use case or in a great number of them, then it must be recorded in the supplementary specifica-

tions document, and therefore must be implemented by general mechanisms, not by specific use

case steps.

5.4 Writing recommendations
The writing style of a use case should follow a pattern like “actor provides. . . / system informs. . ..”
Styles like “system asks. . .” should be avoided because what must be represented in the use case is

the flow of information, not the occasional demands that gave rise to those flows; those demands

do not exist in every scenario, and in most of them they are not even necessary.

The team must avoid placing tests in the use case main flow. Tests like “if the user has a record

then the system presents. . .” should be avoided. That kind of test is unnecessary because exception

handlers should already be associated to the steps of the main flow. Then, if an exception occurs, it

would be handled in an alternate flow.

These tests must not be placed in the main flow to keep it from becoming a complex flowchart

instead of a straight, simple sequence of steps. Lots of “if/then” statements can make the flow

obscure, and the stakeholder would not know what the expected flow (happy path) is.

The only situation in which a test would be acceptable in a flow is when it is about an optional

single step, as, for example, “if the user wants, she may also provide her cell phone number.” But

even in that case, an alternate flow would be a better choice.

Another common writing concern is that a use case must alternate inputs and outputs of infor-

mation. In other words, normally a use case has the form “actor provides . . . , system informs . . . ,
actor provides . . . , system informs”

Sequences such as “actor provides . . . , actor provides . . . , actor provides . . .” or “system

informs . . . , system informs . . . , system informs . . .” must be avoided unless justified.

The idea behind the alternating pattern is to reduce any discrepancy on the number of steps that

different analysts could assign to the same use case. Without that rule one analyst could write:

1. The customer provides her name, ID,5 and phone number.

5Here and in further examples in this book the ID provided by a customer is not a system-generated internal code, but

the number of a personal document that belongs to the customer. In the United States the social security number could

correspond to the ID number, while in other countries other numbers could be used.

74 CHAPTER 5 Expanded Use Cases

On the other hand, another analyst could write:

1. The customer provides her name.

2. The customer provides her ID.

3. The customer provides her phone number.

The most useful and correct version under this point of view is the first, because, among other

things, the second would demand that the information be provided in the order of the steps: after

providing her ID, the user cannot go back and correct her name. Thus, the first version is more

compatible with most information systems, which present interfaces where information may be

entered and edited before it is finally sent to the system.

A sequence of two input steps can be justified only if the first step may cause an exception that

can prevent the use case from proceeding further. One example of this is:

1. The customer provides identification.

2. The customer provides the flag, number, expiration date, and security code of her credit card.

In this example, when the customer presents identification, an exception would occur if the

identification is invalid. In that case, the information about the credit card must not be given by the

user. The actor will only give that information after the first step is performed or corrective actions

were taken.

Even in that case, an intermediary validation step could be used to improve the understandabil-

ity of the sequence, such as:

1. The customer provides identification.

2. The system validates customer identification.

3. The customer provides the flag, number, expiration date, and security code of her credit card.

Finally, some system messages may be avoided in the use case flow because they do not

involve the system presenting stored information. For example, the first step for the alternate flow

for exception 5a in Figure 5.5 could be “The system informs the user that the customer was not yet

identified.” That is not an error, but the step is somewhat redundant in the flow because the excep-

tion already states the condition that causes it. When designing an interface for handling that excep-

tion the team should be concerned about error messages like that. However, it is not necessary for

understanding the flow of information of the use case. Consider that if it was necessary then any

exception handler in any use case should start by presenting an exception message, this can already

be inferred by the exception condition. It can be assumed by default that the message will be

shown, and thus mentioning it every time is not necessary.

5.4.1 Essential versus real use case
A frequent doubt about use cases is what system must be described? The current one? Or the one

that will be built? If the current operations are performed manually, and in the future they will be

performed with a computer, what must be the description provided by the use case? The answer is

none, but both! The use case written for analysis purposes must describe the essence of the opera-

tions, not their concrete realization. Thus, the analyst should always try to avoid mentioning the

technology used to perform the process and concentrate only on the exchanged information. Instead

755.4 Writing recommendations

of writing “the clerk writes the customer name and address on a paper sheet,” corresponding to a

manual technology used normally in nonautomated systems, or “the customer fills in the name and

address on the main screen,” which corresponds to an automated technology, the analyst must reg-

ister the use case simply as “the customer provides a name and address.” The last form is

technology-free and interface-independent and represents, therefore, an essential description for the

operation.

All use cases used for requirements purposes should be, in principle, essential. Essential in this

context means that the use case is described in a language where only the essence of the operations

is presented, not its concrete counterpart. In other words, the analyst must describe “what” happens

between the user and the system without informing “how” that interaction happens. The analyst

should not, therefore, while doing analysis, try to describe the interface technology between the

user and system. This will be described during design time in which real use cases could be written

after the real interface has been designed. Real use cases stay attached to a specific interface tech-

nology, while essential use cases are technology-free.

Why essential use cases? According to Ambler (2004), real use cases (those that mention tech-

nology) contain too many built-in assumptions, often hidden or implicit about the underlying tech-

nology of interface implementation strategies. That may be a good feature during design, but not

during requirements analysis. An essential use case, on the other hand, states the user needs or

intentions, and not the concrete technology that could support those needs.

As the description of the use case at that moment is made without reference to the interface

technology, it is not necessary to decide what the interfaces look like, but only what information is

exchanged between actors and system. References to menus, windows, buttons, and other graphical

devices must be avoided in the text of the essential use cases.

So how do we describe use cases that seem to be particularly concrete such as, for example,

drawing money from an automatic teller machine? How do we do that without describing technol-

ogy? It is possible. Instead of saying “the user passes a magnetic card” one could say that “the user

provides identification.” Instead of saying that the machine “prints the account details” one could

say that the machine “presents the account details.” Thus, by eliminating the reference to the physi-

cal technology, only the essence remains. This opens the way for the design of innovative technolo-

gies later, that is, interfaces different than those that can be seen at a first glance. For example, the

user could be identified by fingerprints, the receipt could be sent by SMS (Short Message Service),

and even the money could be delivered in cash or in credits to a preloaded card.

It is the responsibility of the analyst to study the current processes of the company and produce

an essential version of them in the form of use cases. Later, the designer will give a new form to

those processes by using technology to produce a new concrete version of the system.

5.4.2 Explicit information
For the sake of understanding use cases as functional requirements, it is recommended that the ana-

lyst make explicit the individual data pieces exchanged between actors and the system. Thus,

instead of a laconic “the customer provides her data,” the use case should say “the customer pro-

vides her name, ID, email, phone, and address.”

Eventually, a term such as “customer” could be externally defined as meaning “name, ID,

email, phone and address.” An expression such as customer5, name, id, email, phone, address.

76 CHAPTER 5 Expanded Use Cases

could be written. If that definition is adequately registered, for example, in the conceptual model,

or in a data dictionary, then it can be used in the use case text to avoid repeating the individual ele-

ments every time they are needed.

5.4.3 Identification and selection
A recurrent problem associated to use cases is how to identify people and things. For example, a

customer must be identified and validated in order to conclude the Order books use case. How

does she do it? Username and password? Social security number? Fingerprints? Selecting the name

from a predefined list or menu? To keep the use case essential, that particular action must be left

generic, and references to possible ways for identifying a customer must be left to design.

Furthermore, the computer security community already has established common methods to

securely validate an identity, and these proven methods should be used instead of reinventing the

wheel. For now, the use case will simply state that the user provides identification, without men-

tioning by which means that identification was obtained and validated. This can be done when

security issues are designed into the system.

Another example is the selection of books for purchase. Does the customer submit the ISBN of

the book? Select it from a list? Use a natural language speech interface? During use case expansion

these issues do not need to be decided (unless they are indeed nonfunctional or supplementary

requirements). At the essential level of the use case the user simply selects books. Later, the design

will present some options to provide the means for the user to make that selection in the most

comfortable way.

5.4.4 Mandatory steps
One of the biggest doubts reported by teams that work with use cases is about what steps to include

in the expanded use case.

In fact, two people that describe the same use case, unless they have a nicely established con-

vention, may produce different step sequences. For example, in a traditional bookstore, one analyst

could state that the clerk asks the customer which books she wants; but another analyst could

ignore that step and state that the customer simply picks up the books and give them to the clerk

for purchase. The question is: Which one of the two versions is right?

Both may be correct, but one of them is more useful. In any scenario of that use case, it is man-

datory that the customer selects the books she intends to buy; otherwise the order cannot be com-

pleted. However, it is optional for the clerk to ask for the books. That may happen just in some

scenarios, but not in all of them. Thus, selecting books to buy is mandatory, but asking for that

information is optional in the flow of the use case.

Analysts must be encouraged to build correct versions of the use cases, but we should not stop

there: different analysts should build similar descriptions for the same process. This can be obtained

when the number of optional steps is minimized.

Every use case has mandatory steps. These steps include information that is passed from the

actors to the system and from the system to the actors (Figure 5.8). Without one of those steps, the

use case may not make sense. Those steps must appear in any expanded use case, and their absence

implies that the use case is incorrect.

775.4 Writing recommendations

Other steps such as “ask for books” are optional or complementary. They may help contextual-

ize the use case, but they are not fundamental because they do not transmit any information through

the system boundary.

Thus, an expanded use case for buying books must contain steps that indicate that the cus-

tomer selects books to be bought. The customer should also inform the system how many copies

she wants if this is the case. The system must inform the customer of the total value of the pur-

chase. Why are these steps mandatory? Because without exchanging this information it would be

impossible to adequately register a sale. Certainly it would not be of great help if a system regis-

ters a sale without mentioning which books were sold or how much was spent. Because that infor-

mation is so important for the conclusion of the use case it is considered mandatory for the

expanded use case.

In a use case description the information does not appear from nowhere. It is transmitted from

the actors to the system and vice versa. The absence of any mandatory step may make the use case

seem incomplete, as shown in Figure 5.9, where a use case was poorly described because manda-

tory information was omitted.

The use case in Figure 5.9 is incomplete because an order would need more information than

the use case description provides. How could the system know which books the customer wants to

buy? No matter how the information is obtained, it is mandatory data that must be received by the

system, and therefore it must be registered in the use case.

There is a clear reason for making all mandatory information appear in the expanded use case:

this information will be used later to define what the system operations are, that is, what methods

have to be implemented in order to satisfy the requirements. If this information is not complete at

this point, incomplete methods would be implemented later, and that will raise a need to redo part

of the system when the problem is identified.

Information

System

Information

FIGURE 5.8

Mandatory use case steps.

78 CHAPTER 5 Expanded Use Cases

Furthermore, the information contained in the mandatory steps of the use cases will be used to

refine the conceptual model, which is the basis for the structure of the classes of the system.

Depending on the direction the information goes, mandatory steps may be identified as:

• System events: Steps that indicate that some information is transmitted from the actors to the

system.

• System returns: Steps that indicate that some information is transmitted from the system to the

actors.

Special care must be taken when considering system returns. For those steps to be really manda-

tory they must pass some information that the system stores or can access. That information must

be something that in principle the actors do not have access to except by querying the system.

For example, the system must inform the actor of the total value of the purchase in the use case

Order books. Otherwise, the actor will not know how much to pay. That information could, maybe,

be calculated by the customer if she mentally adds the individual prices of the books, but even so

she could not be sure about the total value because information about discounts, taxes, and fees

must be provided by the system. The responsibility for providing that information belongs to the

system.

On the other hand, when a customer sends some information to the system, the interface may

provide some kind of feedback to make clear the data were received and adequately processed.

However, that feedback (normally a message such as “OK”, or “done”) is not a system return

because it is not stored or derived information about books, customers, and orders. This kind of

message is just an interface feedback, and therefore it belongs to the interface technology domain.

As it does not consist of stored information it must not be considered as a mandatory step.

It may be interesting if system events and returns are explicitly identified in use cases. A reader

that is new to use cases may choose to clearly identify mandatory steps by marking inputs with

[IN] and outputs with [OUT]. Those markers may be placed just after the line number, as shown in

Figure 5.10.

Use case 01: Order books (missing mandatory information) AVOID!

1. The customer provides keywords for searching books.

2. The system presents a list of books for sale that matches the keywords, including
at least the title, author, price, page count, publisher, ISBN, and cover image.

3. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

4. The customer finishes the order.

FIGURE 5.9

An example of a poorly described use case that is missing a mandatory step.

795.4 Writing recommendations

Use case -01: Order books

1. [IN] The customer provides keywords for searching books.

2. [OUT] The system presents a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

3. [IN] The customer selects books from the list and indicates the desired quantity
for each one.

4. [OUT] The system generates the order summary (title, author, quantity, unit
price, and subtotal for each book) and total value.

5. [IN] The customer finishes the order.

Exception 3a: The quantity requested is higher than the quantity in stock for one or
 more books.

3a.1. [OUT] The system informs the user of the available quantities for each book
 where the user ordered more than is available.

3a.2. [IN] The customer changes the desired quantities to meet the quantities in
 stock.

3a.3. Advance to step 4.

Exception 5a: The customer is not yet identified.

5a.1. [IN] The customer provides valid identification.

5a.2. Return to step 5.

Exception 5b: The customer does not have an account.

5b.1. [IN] The customer registers herself by providing username, password, and
email address.

5b.2. Return to step 5.

Exception 5c: No book was selected for purchase.

5c.1. Return to step 1.

FIGURE 5.10

A use case with mandatory steps marked.

80 CHAPTER 5 Expanded Use Cases

Those marks can also help the analyst to verify if each step is really a single transaction because

no step can be marked with [IN] and [OUT] at the same time. It also helps the analyst to see if

there are sequences of [IN] or sequences of [OUT] that could be joined into a single step.

5.4.5 Complementary steps
Another kind of use case step is the optional or complementary step, which does not represent an

information flow between actors and the system. However, this kind of step can be used sometimes

to help understand the use case context.

This kind of step usually corresponds to communication between actors (communication that

does not involve the system, as shown in Figure 5.11) or to the description of actions or attitudes

that also does not configure information flow, such as “the customer opens the bookstore home

page,” “the customer decides to buy books,” “the system asks the customer for identification,” or

“the clerk asks the customer which books she wants to buy.”

Complementary steps are not fundamental in essential use cases because they do not correspond

to system events or system returns, as they do not transmit information through the system

boundary.

Some of them can be even mapped to navigation operations during interface design. For exam-

ple, a real use case (design) could have a step like “the customer selects an option.” That line does

not correspond to a system event because at that time the customer does not pass any information

to the system (such as name, phone, address, book title, etc.). That action corresponds simply to a

change of state that will be implemented as interface navigation (a new screen is opened after the

option is selected, for example).

System

FIGURE 5.11

Complementary use case steps.

815.4 Writing recommendations

5.4.6 Unsuitable steps
The team must keep in mind that, as the use case is a description of the interaction between actors

and system, they must avoid including any internal system processes (Figure 5.12), such as “the

system stores the information into the database.”. Those steps are considered unsuitable for the use

case description.

The use case is a tool for describing the interaction between users and a system, not a tool to

describe internal processing. The internal processes of the system will be better described during

design with more adequate tools, such as communication diagrams.

In the use case description, the analyst must concentrate on describing the information that is

passed from users to the system (for example, “the user selects the books to be ordered”) and from

the system to users (for example, “the system presents the total”). Any aspect about internal proces-

sing must be omitted. It can be said that the system presents the total value, but not the steps taken

by the system to calculate that value. In other words, the system still must be seen as a black box

at this time.

If the analyst wants to record a formula or algorithm to perform a given calculation that is

needed to present some data, then it can be done in the use case annotations and recorded as a non-

functional requirement.

Figure 5.13 presents a situation where the description of a use case goes beyond the recom-

mended, and unsuitable steps are added. The unsuitable steps are marked with [X].

The use case in Figure 5.13 includes all mandatory steps but also includes unsuitable ones (steps

2, 5, and 8), which correspond to internal processing, not information input or output.

The fact that the system performs verifications, calculations, and internal queries does not affect

its interaction with the user. The user only needs to know that the information she sends is received

System

FIGURE 5.12

Unsuitable use case steps.

82 CHAPTER 5 Expanded Use Cases

by the system, and it may be recovered from the system when necessary. How the system is going

to do that is an internal problem that will be answered only during design and coding.

5.5 Included use cases and fragments
It is possible for two or more use cases to have coincident parts. For example, many use cases may

include a payment fragment. In other cases a use case may include not only a fragment, but a com-

plete use case. The include relationship can be used only when the duplicated fragment or use case

is significant, that is, it should not be used when just one step is duplicated. An included use case

or fragment may be called in a flow by using the “include” expression. Suppose that payment is a

fragment that appears in more than one use case in the system. This fragment could then be called

by any use case as done in Figure 5.14.

The fragment itself can be defined as in Figure 5.15.

Notice that the fragment is not a complete use case in this example. It cannot be executed alone

by a user; it only can be performed as part of another use case.

Some care must be taken here. First of all, use cases are not procedures like the ones used in

programming languages; they are linear descriptions of real world processes. Analysts are not

encouraged to structure use cases as they do with code. Included use cases or fragments may be

used only when the situation really justifies it.

Use case 01: Order books (with unsuitable steps) AVOID!

1. The customer provides keywords for searching books.

2. [X] The system verifies in the database the books that satisfy the search criteria.

3. The system generates a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

4. The customer selects books from the list and indicates the desired quantity for
each one.

5. [X] The system calculates the total of the sale as the sum of subtotals, which
consist of the price of each book multiplied by the respective desired quantity.

6. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

7. The customer finishes the order.

8. [X] The system marks the order as “finished” and stores it in the database.

FIGURE 5.13

Example of a use case with unsuitable steps.

835.5 Included use cases and fragments

However, the analyst must keep in mind that the goal of the expanded use case in analysis is to

help in understanding the nature of the interactions between the system and its actors, and not to

structure a computer program to simulate that interaction. Thus the included use case or fragment

calls must be used carefully.

5.6 Expansion of stereotyped use cases
Stereotyped or pattern use cases present medium or low risk to the software development process

because the structure of their flows is already known. The indication of ,, crud.. or

Fragment 02a: Payment

1. The system presents a list of credit cards already registered for the customer
(flag and last four digits of the credit card number).

2. The customer selects one of her credit cards for payment.

3. The system sends to the respective credit card operator the following data: card
number, owner’s name, validity, security code, purchase total value, and
code of the store

4. The credit card operator approves the sale by sending an authorization code.

FIGURE 5.15

A use case fragment that may be included in more than one use case.

Use case 02: Pay order

1. The system generates the pending order summary (title, author, quantity, unit
price, and subtotal for each book), as well as the total price of the order, and a list
of registered delivery addresses for the customer.

2. The customer selects a delivery address.

3. The system presents the delivery fee, and the scheduled arrival date,

4. Include Fragment 02a: Payment.

5. The system informs the customer that the sale was approved and supplies the
tracking number of the package.

FIGURE 5.14

A use case that calls an included fragment.

84 CHAPTER 5 Expanded Use Cases

,, report.. stereotypes, if adequately documented, may pass to the programmers a clear idea

of what has to be implemented.

Ideally, if functional requirements are sufficiently detailed, stereotyped use cases would not

need to be detailed. For example, if the specification of a report already presents all information it

receives and returns, there is no need to write a detailed use case for it, because it would just repeat

information that the analyst already has.

One concern that must be kept in mind during requirements elicitation is whether a use case

that was identified really belongs to a pattern. Some analysis effort must be spent on the use cases

before deciding if they really belong to the pattern.6 For example, reports must never change data.

If the use case is presenting data but also changes data then it must not be defined as a report use

case. It could be a variation of that pattern or a completely new structure that does not belong to

any known pattern.

In the case of CRUDs what can be said is that not every entity of the conceptual model is

suitable to be managed by the CRUD pattern. CRUDs are expected to be the simplest entities. If

they get more complex, a set of non-CRUD use cases is necessary for describing how the user

works with them.

For instance, an address or a credit card are very simple entities and could be nicely managed

by a CRUD use case. On the opposite side, an order is one of the more complex entities of the

bookstore system. Orders may be issued, canceled, completed, sent, resent, received back, etc. That

does not characterize it as a CRUD.

In the middle of the scale there are concepts which the team must look at to decide if they may

be adequately managed as a CRUD or not. For example, is managing customers a CRUD or not?

Some time may be spent on analysis before the team can decide on that. Section 5.6.2 shows that it

may be considered a variation of the CRUD pattern.

The expansion models for pattern use cases presented in the following subsections serve as a

reference to the reader. They are presented in a form of a template, so that analysts can use them to

write their own versions of pattern use cases, or even work on new patterns or subpatterns.

5.6.1 Report expanded
A report is a simple use case that consists of a single access and calculations on data managed by a

system. The information sent by the actor consists of arguments for selection, filtering, ordering,

grouping, etc. Figure 5.16 presents a general format for an expanded report use case.

Figure 5.17 presents a concrete example of a report, that is, an instantiation for the template,

applied to the Livir example.

For the reasons explained in Section 5.3.3, this kind of use case does not have alternate flows

(otherwise it would not be a report, but a different kind of use case). The user simply sends the

arguments and receives a set of organized data in return. If the user passes the wrong arguments

(for example, incorrect data), she will receive the right answer for the wrong data. For example, if

the user passes by mistake a period in which there were no devolutions, then she will receive an

6In the past the author ran a project in which a use case that seemed to be a simple CRUD at the beginning happened to

be the most complex use case of the whole system in the end.

855.6 Expansion of stereotyped use cases

empty list, which corresponds to the right answer for the arguments passed. In that sense, therefore,

this kind of use case cannot have exceptions.

However, the team still must assure that the use case is really a report before sending it to

design and coding, because it could be a variation of that pattern.

5.6.2 CRUD expanded
Just like reports, CRUDs are also use cases that follow a known pattern. This kind of use case con-

sists of the optional execution of one out of four possible operations: create, retrieve, update, and

delete.

This kind of use case has a main flow with four variants, because none of the operations can be

considered a “happy path” or “exception.” They are distinct operations grouped more by conve-

nience, for being associated to the same entity, than by similarities among their steps. Therefore,

the main flow is just a user decision on which operation will be executed. Figure 5.18 presents a

possible template for this kind of use case.

Observe that in that use case template variant 1c (Update) includes the steps of variant 1b

(Retrieve).

Exception handler 1d.1a uses a specific strategy that consists of preventing the user from delet-

ing an object when there is some rule against it. In Section 8.5.4, this issue is revisited and other

strategies to deal with this exception are discussed.

Figure 5.19 presents an example of expansion of a typical CRUD use case.

Use case 18: Returned orders by period <<report>>

1. The deposit manager provides initial and final dates.

2. The system presents a list of returned orders received in the period including the
data of the return, the number of the order, the name of the customer, the total
value of the order, the reason for the return, and the list of returned books
(name, quantity, and price). The orders list is sorted by data, and the returned
products list is sorted by name.

FIGURE 5.17

An example of an expanded report.

Use case template: Report on … <<report>>

1. User provides …

2. System presents …, grouped by …, and sorted by …

FIGURE 5.16

A template for the expanded report use case.

86 CHAPTER 5 Expanded Use Cases

Use case template: Manage … <<crud>>

1. User chooses:

• Create: Variant 1a

• Retrieve: Variant 1b

• Update: Variant 1c

• Delete: Variant 1d

Variant 1a: Create

1a.1. User provides …

Variant 1b: Retrieve

1b.1. User identifies/selects a …

1b.2. System presents … of the identified element.

Variant 1c: Update

1c.1. Include variant 1b: Retrieve.

1c.2. User provides new values for …

Variant 1d: Delete

1d.1. User identifies/selects a … to be deleted.

Exception 1a.1a: Inclusion violates business rule …

1a.1a.1. System informs that rule … prevents inclusion.

1a.1a.2. Return to step 1a.1.

Exception 1c.2a: Update violates business rule …

1c.2a.1. System informs that rule … prevents the update.

1c.2a.2. Return to step 1c.2.

Exception 1d.1a: Delete violates business or structural rule …

1d.1a.1: System informs that rule … prevents deletion.

1d.1a.2: Return to step 1d.1.

FIGURE 5.18

A template for an expanded CRUD use case.

875.6 Expansion of stereotyped use cases

Use Case 13: Manage Publisher <<crud>>

1. Acquisition manager chooses:

• Create publisher: Variant 1a

• Retrieve publisher: Variant 1b

• Update publisher: Variant 1c

• Delete publisher: Variant 1d

Variant 1a: Create publisher

1a.1. Acquisition manager provides publisher’s name, identification code,
address, and email.

Variant 1b: Retrieve publisher

1b.1. Acquisition manager identifies a publisher.

1b.2. System presents publisher’s name, identification code, address, and email.

Variant 1c: Update publisher

1c.1. Include variant 1b: Retrieve publisher

1c.2. Acquisition manager provides new values for publisher’s name,
identification code, address, and email.

Variant 1d: Delete publisher

1d.1: Acquisition manager identifies a publisher to be deleted.

Exception (1a.1,1c.2)a: Identification code provided already exists.

(1a.1,1c.2)a.1: System informs user that there is already a publisher with the
provided identification code.

(1a.1,1c.2)a.2: Return to the step that caused the exception.

Exception 1d.1a: There are books associated to the publisher.

1d.1a.1: System informs user that it is not possible to delete a publisher with
associated books.

1d.1a.2: Return to step 1d.1.

FIGURE 5.19

An example of an expanded CRUD use case.

88 CHAPTER 5 Expanded Use Cases

In this example, two business rules were used to identify exceptions:

• The identification code for publishers must be unique, which must be verified both when a new

instance is included and when an instance is updated. This produces exceptions in step 1a.1 and

1c.2, which may be identified as a single exception (1a.1,1c.2)a.

• If the publisher already has a book associated to it (and that association is mandatory for books,

i.e., every book must be linked to a publisher) then it cannot be deleted. This is a structural rule

that must appear explicitly in the conceptual model as a mandatory role from book to publisher

(Section 6.4.1).

Figure 5.20 presents the CRUD use case Manage customers, which is a variation on the pattern.

A customer can retrieve and modify only her own data. Thus, the use case must be adapted to that

fact. On the other hand, it may be desirable that a system manager could access data from any cus-

tomer. For that manager the use case would be a regular CRUD. Would two use cases be created

here? One for the customer to manage her own data and the other for the system manager to manage

data from all users? Maybe. . . but it seems that this approach would be quite repetitive. To make

things even worse, imagine that it is possible for a regional manager to access the data of users only

from her region. Would this be a third use case? This does not sound like a good solution.

To solve this issue in an elegant way, the use case could be parameterized, indicating that the

user can only access data from customers she is authorized to review. When customers are being

managed, what must be verified by a given business rule is whether the user really has permission

to access or change the data from the customer she is trying to access or change. In Figure 5.20

checking that permission is performed by exception handler (1b.1,1d.1)a: Access not authorized.

Notice that the use case in Figure 5.20 is a CRUD variation that could be called CRUD with

access restriction, because the access to data depends on who is the user.

Other CRUD variations exist, such as:

• CRUDL: Including a variant to list the existing elements. Thus, instead of simply identifying an

object to retrieve, update, or delete, the user can select it from a list.

• SCRUD: Including a variant to search elements.

• RUD: Where elements may be retrieved, updated, and deleted, but not created.

• CRU: Where elements may be created, retrieved, and updated, but not deleted.

Many other variations may be invented depending on the need and the cost/benefit of having

more patterns to remember.

There is a simpler way to define a pattern-based use case if it fits perfectly on the pattern. This

consists of simply listing the field to be filled and the business rules to be observed. For the rest,

the pattern is applied. Figure 5.21 shows an example.

With the information given in Figure 5.21 and the template of Figure 5.18 it is possible to

implement the use case without expanding it.

5.7 Other sections of an expanded use case
Since the concept of a use case was created (Jacobson, Christenson, Jonsson, & Övergaard, 1992),

different formats have been proposed. Each proposal includes different elements. The “main flow”

895.7 Other sections of an expanded use case

Use Case 11: Manage Customers <<crud>>

1. User chooses:

• Create customer: Variant 1a

• Retrieve customer: Variant 1b

• Update customer: Variant 1c

• Delete customer: Variant 1d

Variant 1a: Create customer

1a.1. User provides customer’s name, ID, address, phone, and email.

Variant 1b: Retrieve customer

1b.1. User identifies a customer.

1b.2. System presents customer’s name, ID, address, phone, and email.

Variant 1c: Update customer

1c.1. Include variant 1b: Retrieve customer

1c.2. User provides new values for customer’s name, ID, address, phone, and
email.

Variant 1.d: Delete customer

1d.1: User identifies a customer to be deleted.

Exception (1a.1,1c.2)a: ID already exists.

(1a.1,1c.2)a.1: System informs user that there is already a customer with the given ID.

(1a.1,1c.2)a.2: Return to the step that caused the exception.

Exception (1b.1,1d.1)a: Access not authorized.

(1b.1,1d.1)a.1. System informs user that access is denied.

(1b.1,1d.1)a.2. Return to the step that caused the exception.

Exception 1d.1b: There are orders associated to the customer.

1d.1b.1: System informs user that it is not possible to delete a customer with
orders associated to it

1d.1b.2: Return to step 1d.1.

FIGURE 5.20

An expanded CRUD use case with access restrictions.

90 CHAPTER 5 Expanded Use Cases

and “alternate flows” sections are fundamental for any detailed use case description. However,

other sections can be included if the analyst needs them. Some of the most popular are presented in

the next subsections.

5.7.1 Stakeholders
There are often scenarios where groups other than actors are relevant to a use case. Other sectors of

the company could have some interest in the use case. For example, in the use case Order books

the only actor is the customer. But the results of that use case may interest the stock and accounts

departments, because the results of a sale may affect both the quantity of books in stock as well as

the quantity of money available or to be received. Thus, even if those departments are not partici-

pants in the use case, they can be listed as stakeholders.

The utility of the stakeholders list for a use case is that the use case must satisfy all stake-

holders. Thus, the documentation will be useful to remind the analyst to seek information that

needs to be stored, processed, or transmitted, so that those interests can be satisfied.

5.7.2 Preconditions
By definition, preconditions are facts considered true before a use case even starts. Preconditions

must not be confused with exceptions: exceptions may be detected only after the use case has

started. Exceptions are detected during a use case because most of the time it is not possible to ver-

ify if the conditions were true or not before the use case begins. For example, it is not possible to

assure that the customer has enough credit to pay for the order before starting the Order books use

case, because the value of the order cannot be known at that time; therefore this is an exception.

However, it is possible to admit that only a book that was sold and delivered can be returned.

Thus, the sale and delivery of the book is a precondition for its return.

As preconditions are accepted as true facts before the use case starts, they will not be checked

during the use case. Although there can be other interpretations in literature, these kind of

Use case 12: Manage books <<crud>>

Fields:

• ISBN, title, author, page count, publisher, price.

Rules for insert and update:

• The ISBN is unique, i.e., different books cannot have the same ISBN number.

Rules for delete:

• A book that has sold copies cannot be deleted.

FIGURE 5.21

Example of brief expansion for a CRUD use case.

915.7 Other sections of an expanded use case

preconditions do not generate exceptions. If they are false it should be impossible to start the use

case (otherwise they are exceptions, not preconditions).

5.7.3 Success post-conditions
Success post conditions establish the results of a use case, that is, what will be true after the use

case is executed. For example, the Order books use case may have as a post-condition the follow-

ing result: “the order was registered by the system.”

5.7.4 Open issues
Sometimes, without the presence of the client, the team cannot decide about some issue that may

depend on company policies. For example, may the customer pay the order in installments? Are

there special offers for customers that buy more than certain quantities?

If the client is not immediately available, these doubts must be recorded in the use case section

“open issues” in order to be solved as soon as possible.

At the end of the analysis activities of one iteration it is expected that all open issues have been

resolved and incorporated into the use case description.

5.8 System sequence diagrams
Among other uses, the text of the expanded use cases may be used as:

• A source of information to discover the concepts and attributes for refining the conceptual

model (Section 6.8).

• A source of information to discover system operations, which consist of the methods that

encapsulate the domain tier of the system from the interface (Chapter 8).

There are two kinds of system operations:

• System commands, which change data and must not return data.

• System queries, which return data and must not change data.

That follows the Command-Query Separation or CQS principle of software engineering

(Meyer, 1988), which allows for better code reusability and maintainability. A query that

changes data would be less cohesive than a query without collateral effect and a command with-

out return.

System commands are methods that are activated by a system event, that is, as a reaction to a

user action. System commands, by definition, implement a flow of information from the outside to

the inside of the system. Therefore, system commands update the information that is managed by

the system.

System queries are methods that correspond to the simple verification of information already

stored. That information may be presented exactly as it exists or modified by logical and mathemat-

ical operations (such as sum, average, etc.). By definition, a system query may not be responsible

92 CHAPTER 5 Expanded Use Cases

for the insertion of new information into the system. It should also not be responsible for updating

or removing information from the system: it can only read information.

The set of system operations correspond to the total functionality of a system, that is, the set of

all functions that can be performed by a user with the system.

Use cases are excellent sources for discovering system operations. System commands are basi-

cally associated to steps in which the user sends some information to the system (those marked

with [IN]). System queries are associated to use case steps in which the system sends information

to actors (those marked with [OUT]).

5.8.1 Elements of a sequence diagram
One of the UML diagrams that can be particularly useful for representing the sequence of system

events and returns in a use case is the sequence diagram. When a sequence diagram is used to rep-

resent a use case it may be called a system sequence diagram (Larman, 2004). The sequence dia-

gram has elements that are instances of actors and other system components. In the first version of

the system sequence diagram only the actors and the system interface (or application tier) are repre-

sented (Figure 5.22).

The activities related to use case analysis still do not deal with objects that are internal to the

system. Thus, the system must be represented as a single object: a black box. In this case, it can be

represented by the interface symbol , as proposed by Jacobson et al. (1992). One actor can

only communicate with a system through its interface. Messages from the actor cannot reach the

objects, as shown in Figure 5.23.

Actor 1 Actor 2

1: information

3: information

2: information

4: information

5: information

Interface

FIGURE 5.22

System sequence diagram.

935.8 System sequence diagrams

Actors, interfaces, and other elements of the sequence diagram have a lifeline, represented by a

vertical line, where events may happen. When the line is dashed, the actor or system is inactive.

When the line is solid, the element is active (processing or waiting for the result of an operation

being performed by another element). Human actors are always considered active.

The horizontal arrows represent the information flow. There are three kinds of information

flows in that diagram:

• Between actors: Actors’ communication among themselves, corresponding to complementary

steps of the expanded use case.

• From the actors to the system: Corresponding to system events, that is, steps that could be

marked with [IN] in expanded use cases.

• From the system to the actors: Corresponding to system returns, that is, steps that could be

marked with [OUT] in expanded use cases.

The information exchange between actors does not belong to the scope of the system, but it

may be useful to illustrate how information is exchanged from actor to actor until reaching the

system.

One thing to keep in mind when these diagrams are being built is that information is not created

during the process; it is only transferred from actors to system and vice versa. The actor usually

has some information that must be passed to the system in order to perform a process. To process a

book order, the customer must inform the system who she is and which books she desires. In the

beginning, the customer is the only one who holds that information; the system has the registry of

all customers and books, but it cannot know who that specific customer is until someone provides

that information.

The sequence diagram can be built for the main flow of a use case and completed with alternate

flows. Optionally, different sequence diagrams could be built for each flow. However, the most

important thing at the moment is to know what information is exchanged between the actors and

the system. The analyst must build a catalog with all system commands and queries (which are

explained in the next sections) identified in the main and alternate flows of the use case. This

1: information

3: information

2: information

Actor

: Customer : Book

AVOID

FIGURE 5.23

An example of an inadequate system sequence diagram, where actors communicate directly with the objects.

94 CHAPTER 5 Expanded Use Cases

information will be used later to define contracts that indicate how the system retrieves and trans-

forms information (Chapter 8).

5.8.2 Expanded use cases as system sequence diagrams
The system sequence diagram is a tool for achieving more formal and detailed use case descrip-

tions. Additionally, developing the system sequence diagram makes the connection between

requirements analysis (the expanded use case) and software design (the system operations that will

be implemented).

The construction of the system sequence diagram may be done in two stages:

1. Representing the steps of the use case as information exchange between actors and the system

interface.

2. Representing system operations as methods calling between the interface and the façade-

controller,7 which encapsulates the domain tier of the system.

The first step is simple: for each use case input (a step that could be marked with [IN]), there is

an equivalent system event in which one actor sends information to the interface, and for each use

case output (a step that could be marked with [OUT]), there is an equivalent system return in which

an actor receives information from the system (Figures 5.24 and 5.25).

Note that between actors and interface the flows consist of sending and receiving information.

Information may be sent by an actor, for example, by typing it in a form. Information can be

received by an actor when it is printed on the screen, for example. At this level, flows are not call-

ing methods because actors are not internal objects.

The words or phrases used in sequence diagram flows to represent information are sometimes a

source of confusion and misunderstanding. To avoid such confusion, a labeling pattern is

recommended:

• Simple information (alphanumeric data) is represented by one or more words. For example,

keyword (step 1 of Figure 5.25), quantity (step 3), and total (step 5).

• Complex information may be represented between “, ” and “. ” in the diagram if it is

composed of a few elements (2 or 3). For example, ,selected book, quantity. (step 3).

• Complex information composed of numerous elements (more than 3) may be represented in a

separate note or data dictionary.8 Only the name of the complex concept is used in the diagram.

For example, book (step 2) and item (step 4).

• A collection of values is indicated by the suffix “�”. For example, keyword� (step 1), book�

(step 2), ,selected book, quantity. � (step 3), and item� (step 4).

• When one object is selected from a list presented by the system, the selection is indicated by

the word “selected,” as in step 3, where “selected book” stands for a book that was selected

from the list book presented in step 2.

7A façade-controller provides “a unified interface to a set of interfaces in a subsystem. Façade defines a higher-level

interface that makes the subsystem easier to use” (Gamma, Helm, Johnson, & Vlissides, 1995)
8Remember that it is not always the case that complex information exchanged with the system corresponds to the com-

plete set of attributes of a concept of the conceptual model.

955.8 System sequence diagrams

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least the title, author, price, page count, publisher, ISBN, and
cover image.

3. The customer selects books from the list and provides the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

Variant 5d: The customer decides to continue shopping.

5d.1. Return to step 1.

FIGURE 5.24

A reference use case.

Customer

loop

Livir interface

1: keyword*

2: book*

3: <selected book, quantity>*

4: <item*, total>

5: finish order

book = <title, author, price, page count, publisher, isbn, cover image>
item = title, author, quantity, unit price, subtotal>

FIGURE 5.25

The representation of a use case main flow as a system sequence diagram.

96 CHAPTER 5 Expanded Use Cases

Some other considerations on the diagram may follow:

• In step 1, the team could choose to use keywords instead of keyword�. However, in this case,

the fact that the information being sent is a list of words would not follow the proposed

notation.

• The information contained in a book is probably a subset of the attributes of the Book class of

the conceptual model; it does not necessarily correspond to the complete set of attributes of the

Book class.

• In step 3, when the user informs the system about the list of books she has selected it is not

necessarily the complete information about a book that is being sent by the user to the system.

Technologically speaking, the user just has to select a book from a list and the interface sends

to the system the correct identifier for the selected book (the user does not even have to know

which identifier it is).

• In step 4, an item was created to represent different aspects of a book: instead of page count,

publisher, ISBN, and cover image, an item presents quantity (which is not an attribute of a

book), and subtotal (which is calculated from price and quantity).

• Step 5 does not represent alphanumeric information being sent or received as in the previous

steps. Finish order is a control step. It just informs the system that the state of the order has

changed without passing any other new alphanumeric information.

• Variant 5d is a choice between finishing the order or resuming shopping. It is represented by

the loop fragment that includes steps 1 to 4.

5.8.3 Connecting the interface to the façade-controller
System events are actions that a user performs over the system interface. When a web interface is

used, for example, these actions consist of filling forms, pressing buttons, etc. These are not opera-

tions in the sense of programming languages, that is, these flows from an actor to the system and

vice versa do not represent method calling.

However, system commands and system queries are computational procedures that are necessary

to implement system events and system returns, respectively. System commands and queries are

activated by messages that are sent from the interface to the façade-controller. Now, we have a sys-

tem component that invokes another system component. In this case, it is the interface that sends a

message, asking the façade-controller to perform a method that consists of a command or query.

The set of all possible messages is equivalent to the whole functionality of the system: all access

and updating of the logic for data is done by system commands and queries.

Thus, four kinds of arrows are of interest in system sequence diagrams:

• System event: As shown in Figure 5.26, this is an action performed by an actor that sends some

information to the system. In the diagram, it is represented by an arrow from the actor to the

interface.

• System return: As shown in Figure 5.27, this is a flow of information from the system to one

actor, represented in the diagram as an arrow from the interface to the actor.

• System command: As shown in Figure 5.28, this is a message that is sent from the interface to

the controller, usually in response to a system event. The system command must, by definition,

change some information stored or managed by the system. In the diagram, this is represented

975.8 System sequence diagrams

by an arrow from the interface to the controller labeled with a message (the use of parentheses

is always recommended to distinguish it from information flows, such as system events and

returns).

• System query: As seen in Figure 5.29, this is a message that is sent from the interface to the

controller in order to obtain some information from the system. Queries must not change data;

they just return data. In the diagram, queries are represented by arrows from the interface to the

controller labeled with a message with an explicit return value.

Query results could also be represented by dashed lines from the controller to the interface, as

shown in Figure 5.30. Both representations are allowed and the team may choose one or the other.

The approach of Figure 5.29 creates fewer arrows in the diagram, but may be complicated if com-

plex data must be returned by the query. That problem can be minimized if notes such as those of

Figure 5.25 are used to define complex data. Other analysts would prefer the approach of

Figure 5.30, which makes the return appear explicitly as an arrow in the diagram. The disadvantage

of this approach is that it splits a single query call into two arrows.

information or control

FIGURE 5.26

System event.

information

FIGURE 5.27

System return.

98 CHAPTER 5 Expanded Use Cases

command (arguments)

FIGURE 5.28

System command.

result := query (arguments)

FIGURE 5.29

System query.

query (arguments)

result

FIGURE 5.30

Alternate representation of a system query.

995.8 System sequence diagrams

Communication between actors can be represented in the system sequence diagram as arrows

from one actor to another. However, as explained before, these communications do not affect the

implementation of the system.

The domain tier of an application (the part of the system that contains all classes that perform

the logical operations on data) is encapsulated by its façade-controller, which is an instance of a

class that implements all system commands and queries that must be accessed by a given interface

or set of interfaces. There are at least three subpatterns for the façade-controller. The first one, for

smaller systems, consists of implementing a single controller for the whole system. However, this

would result in a large number of operations implemented in a single class. A solution to this is to

divide it into use case controllers, that is, a different controller class for each use case. However,

this is not a good solution when different use cases call the same methods, which should be imple-

mented in different classes. The most adequate solution for most medium or large systems is to

implement component or subsystem controllers, that is, controllers that encapsulate the functionality

of subsystems or components as defined by the system architecture.

The design of messages between the interface and the controller is made after an examination

of the system events and returns using the following rules:

• A system event that sends data to the system that must be stored, updated, or deleted, that is,

data that causes a change in the internal state of the system, requires at least one system

command (Figure 5.31).

• A system return that sends data from the system to the user requires at least one system query,

so that the data can be obtained from the controller in order to be presented by the interface

(Figure 5.32).

• A sequence of system event and return, where the event just provides arguments for producing

the return, requires a system query where the information received from the system event are

the arguments (Figure 5.33).

The cause/consequence relation between events and commands and between returns and queries

is not always so direct. Sometimes, a query can use arguments that were passed to the interface

many steps earlier, or information passed by the actor to the interface can be used many times by

different system commands and queries.

InterfaceActor

1: information

Controller

command (information)

FIGURE 5.31

A system event that requires a system command.

100 CHAPTER 5 Expanded Use Cases

These rules for deriving queries and commands from returns and events are just a first approach

for designing the interface tier. Later, modeling techniques and design decisions may change the

way these commands and queries are invoked.

5.8.4 Stateless strategy
When the system sequence diagram is being developed, each piece of information is passed from

the actor to the system once. However, in the next level, between interface and controller, many

different commands and queries may need the same arguments. For example, the customer ID may

be necessary to perform many subsequent operations. At this point, the designer must decide if the

controller must have transient memory for storing these arguments (stateful strategy) or if it is not

provided with memory (stateless strategy). In the stateless strategy each time a system query or

command needs an argument it has to receive it explicitly from the interface.

Figure 5.34 shows how the system sequence diagram would look for the use case Order books

with a stateless strategy. The information is passed from the actor to the interface just once, but

InterfaceActor

1: information

Controller

information := query()

FIGURE 5.32

A system return that requires a system query.

InterfaceActor

2: information

1: argument

Controller

information := query (argument)

FIGURE 5.33

A sequence of system event and system return that requires a system query as the event just passes its

arguments.

1015.8 System sequence diagrams

each time a system command or query needs that information, the interface must send it again as

an argument to the controller. Observe that cartId is passed by the interface to the controller three

times: when add2Cart, getCartSummary, and finishOrder are called.

From this point it can be seen that the team is making a transition from analysis to design,

because design decisions must be made in order to accommodate the requirements. For example,

the fact that a user must be identified only when the order is finished prevents the system from

creating an order before that point (if the order is really a concept that must be associated to a

customer). Therefore, a shopping cart is created instead of an order at the initialization of that

sequence diagram. The order will be created only when the user chooses to stop shopping (finishing

the order). At that point, if the user is not already identified an exception would be raised, as

explained later. One point to notice is that as the controller has no transient memory, it does not

register the information of who is shopping. It is the interface that holds the customer identification

at this point. When the order is ready to be completed, the interface sends to the controller the IDs

of the customer and of the shopping cart (remember that the shopping cart is not yet associated to

any customer).

Customer

loop

Livir interface

1: keyword*

2: book*

4: <item*, total>

5: finish order
finishOrder(customerld,cartld)

book=<title, author, price, page count, publisher, isbn, cover image>
item=<title, author, quantity, unit price, subtotal>

3: <selected book, quantity>*

Livir Controller

cartld:= createShoppingCart()

book*:= searchBook(keyword*)

add2Cart (cartld,<selected book,quantity>*)

<item*,total>:=getCartSummary(cartld)

FIGURE 5.34

System sequence diagram for the main flow of use case Order books using a stateless strategy.

102 CHAPTER 5 Expanded Use Cases

As the controller does not have state (transient memory), each operation sent to it that refers to

the shopping cart must refer to its number (cartId). Why is the cart ID used and not the cart object

itself? Are we not doing object-oriented design? The point is that the domain objects are encapsu-

lated by the controller. This means that the interface should not have direct access to the domain

objects. This is why the interface sends an ID as a parameter instead of the cart object itself.

One remark must be made about the command createShoppingCart: as it creates a new domain

object and returns its identification code, one could ask if this is not against the command-query

separation principle. It is not. It is one of the acceptable exceptions to that principle, because the

command just creates a new object and returns its identification code. It can be made because try-

ing to obtain the code of a newly created object by other means would be counterproductive.

5.8.5 Stateful strategy
When the controller may have transient memory for holding working parameters during the execu-

tion of a use case, then we are using the stateful strategy. Thus, after an argument is sent to the

controller by an operation, the subsequent operations would not need to receive the argument again;

the controller would keep it in local memory.

This argument is not necessarily persistent information, though; the transient information is not

stored in a database or other equivalent structure. It consists of transient information only (for

example, who is the current customer, which shopping cart is being used, etc.), which is available

only during the use case transaction. Figure 5.35 presents the same use case that was shown in

Figure 5.34, but this time with the stateful approach. It can be observed that, among other things, it

is not necessary to return the new shopping cart identification, because the controller will remember

which one it is.

With the stateful strategy it is not necessary to return the reference to the new shopping cart

because the controller has an internal mechanism to store that value. In the same way, the methods

add2Cart, getCartSummary, and finishOrder also do not need to receive that argument. It is main-

tained by the controller. In the same way, the identity of the customer, if known, is maintained by

the controller, not by the interface.

One option for implementing this transient memory is to use transient associations, as explained

in Section 8.3. It is an architectural decision to choose one or another approach. Some pros and

cons of them are the following:

• The stateful strategy demands the implementation of a transient (not persistent) memory

mechanism in order to store some parameters (the use of transient associations, for example).

The stateless strategy does not demand that kind of mechanism.

• The stateless strategy demands more parameter passing between the interface and the controller.

When it is the case of passing information through the network this may be inconvenient. With

the stateful strategy information is transmitted just once.

Additionally, it can be said that operations are more reusable with the stateless strategy, because

each of them receives all the parameters it needs, without depending on operations that were per-

formed before. Also, the stateless strategy scales better than the stateful one. Systems with many

concurrent users would be easier to produce and maintain with stateless strategy.

1035.8 System sequence diagrams

5.8.6 Alternate flows in system sequence diagrams
As seen at the beginning of this chapter, use case steps, especially system events, may have excep-

tions, which are handled by an alternate flow.

The insertion of those alternate flows in a system sequence diagram may be done in stages.

Initially, the exceptions may be indicated in the diagram as well as where they occur. Then opt

fragments can be produced, that is, optional parts as shown in Figure 5.36. The procedure is to take

the complete use case as shown in Figure 5.7 and add each exception as an opt fragment at the ade-

quate position of the flow (usually just after the step that could cause the exception).

The diagram of Figure 5.36 shows literally that after step 3 and after step 5 optional events may

happen. Those events correspond to exceptions 3a, 5a, 5b, and 6c shown in Figure 5.7.

Now, it is necessary to design what happens inside the optional fragments when each exception

is handled. The opt fragment contains the steps of the alternate flow, but it is also important to

look carefully at the termination of the alternate flow. Some of the alternate flows return to the step

that generated the exception and must be treated as repetitive loops that include the step which

caused the exception. Others advance to the next step, and should be treated as just an optional

Customer

1: keyword∗

2: book∗

3: <selected book, quantity>∗

4: <item∗, total>

5: finish order

Livir interface Livir controller
createShoppingCart()

book∗:=searchBook(keyword∗)

<item∗,total>:=getCartSummary()

add2Cart(<selected book,quantity>∗)

finishOrder()

book=<title, author, price, page count, publisher, isbn, cover image>
item=<title, author, quantity, unit price, subtotal>

loop

FIGURE 5.35

System sequence diagram for the main flow of use case Order books using stateful strategy.

104 CHAPTER 5 Expanded Use Cases

Customer Livir interface createShoppingCart() Livir controller

book∗:=searchBook(keyword∗)

<item∗,total>:=getCartSummary()

add2Cart(<selected book,quantity>∗)

finishOrder()

book=<title, author, price, number of pages, publisher, isbn, cover image>
item=<title, author, quantity, unit price, subtotal>

1: keyword∗

2: book∗

3: <selected book, quantity>∗

4: <item∗, total>

5: finish order

[quantity higher than stock]

[customer not identified]

[customer does not have an account]

[no books selected]

opt

opt

opt

opt

loop

FIGURE 5.36

Sequence diagram with exceptions included.

1055.8 System sequence diagrams

fragment of the diagram. When other use cases are referenced or when a fragment is so long that it

justifies its definition in a separate diagram, then the ref fragment may be used, which indicates

that another sequence diagram is being called. The ref fragment may receive and return information

in the same way a programming function does, and using the same notation, as for example, ref

otherDiagram(arguments):result.

Now the diagram of Figure 5.36 is going to be improved with exception handling. This may

become a complex task unless some design decisions are made carefully. For example, in step 3, a

set of books and respective quantities is sent to the system and only then the quantities are checked.

This would require handling an exception where some books are ordered above stock and others

are not, which could be inconvenient. Therefore it was decided to change the sequence diagram so

that the exception would be checked each time a quantity is provided. Notice that this decision

changes a little the way the user perceives the system behavior: instead of complaining about quan-

tities at the end of the selection, the system would check the quantity after each book choice. The

resulting diagram is shown in Figure 5.37, where only the first three steps of the use case are repre-

sented for simplicity.

Note in Figure 5.37 that the design could be improved again. Why try to perform a command

with a quantity that is above stock if the system already knows that information? The information

1: keyword∗

2: book∗

3: selected book, quantity

[quantity higher than stock]

limit

selected book, new quantity [<=limit]

book∗:=searchBook(keyword∗)

limit:=getStock()

add2Cart(selected book,quantity)

add2Cart(selected book, new quantity)

createShoppingCart()
Livir interface Livir controllerCustomer

loop

loop

opt

FIGURE 5.37

Part of system sequence diagram with a design change and an exception handler.

106 CHAPTER 5 Expanded Use Cases

about stock could be returned by the searchBook query so that the interface entry field could

already be limited to the real quantity available. That information could also be used by the inter-

face to show books that are in the catalog but not in stock as out of stock. Figure 5.38 shows the

resulting design.

Observe that in Figure 5.38 the fragment that handles the exception simply disappears. This

happened because the exception was changed into a precondition for the system command

add2Cart. This is a popular technique to improve design that will be revisited in Chapter 8. The

technique consists of preventing the user from sending an invalid argument; the user choice is lim-

ited to the valid values. Thus, the exception cannot occur anymore.

Exceptions 5a and 5b may be resolved together as they involve user identification. When the

command finishOrder is executed, an exception would occur if the user is not yet identified. The

user then has two choices: entering a valid identification or creating a new one. The partial diagram

is shown in Figure 5.39.

As seen in Figure 5.39, it is not necessary to try the command finishOrder in order to discover

that the user is not yet identified. The condition may be tested after the user decides to finish the

order but before trying the command. Thus, if the user is not identified, she has two options, repre-

sented inside the alt fragment. The alt fragment works like an if-then-else: if the user has an

account, than she logs in, else she has to create a new account. In both cases, as those sequences

may be highly reusable, a reference to another sequence diagram is indicated by the fragment ref.

Customer

1: keyword∗

2: book∗

3: selected book, quantity [<=stock]

loop

Livir interface Livir controller
createShoppingCart()

book∗:�searchBook(keyword∗)

add2Cart(selected book,quantity)

book�<title, author, price, page count, publisher, isbn, cover image, stock>
item�<title, author, quantity, unit price, subtotal>

loop

FIGURE 5.38

Part of the system sequence diagram where an exception handler was redesigned.

1075.8 System sequence diagrams

Finally, exception 5c states that if no book was selected the order cannot be closed. This can be

implemented as a loop fragment placed over the flows from 1 to 4 (excluding flow 5) that would

repeat until at least one book is selected. As there is already such a loop in the diagram (see

Figure 5.37), it is enough to add that condition to the existing loop. The complete sequence dia-

gram with all exceptions handled is shown in Figure 5.40.

The main practical result of the system sequence diagram is the discovery and design of the sys-

tem commands and queries that must be implemented to allow the functionality of the system to be

available for the users. According to Figure 5.40, these commands and queries are:9

• createShoppingCart().

• searchBook(keyword�):book�.
• add2Cart(selected book, quantity).

• getCartSummary ():, item�, total. .

• finishOrder().

Chapter 8 shows how to use this information to build a set of contracts that define the whole

functionality of the system.

Login

finishOrder()

5: finish order

alt

ref

opt

ref
Register new user

[customer not identified]

[user has account]

FIGURE 5.39

Dealing with user identification.

9The strategy applied in Figure 5.40 is stateful. If the stateless strategy was used instead, the operations would be slightly

different, because they would have more parameters.

108 CHAPTER 5 Expanded Use Cases

Customer Livir interface Livir controller

book∗:�searchBook(keyword∗)

add2Cart(selected book,quantity)

createShoppingCart()

Login

Register new user

finishOrder()

1: keyword∗

2: book∗

3: selected book, quantity [<=stock]

4: <item∗, total>

6: finish order

<item∗,total>:�getCartSummary()

loop

loop

opt

alt

ref

ref

[until at least one book was selected]

[customer not identified]

[user has account]

FIGURE 5.40

Complete sequence diagram with exceptions handled.

1095.8 System sequence diagrams

5.9 The process so far

Inception Elaboration

Business Modeling Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding
use cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from the
business use case model, and the
activity and state machine diagrams
from business modeling.

• Identify the main flow.
• Identify alternate flows:

variants and exception
handlers.

Identify nonfunctional requirements as use
case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and Design Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a
use case as a system
sequence diagram.

• Represent the system
commands and queries using
stateful or stateless
strategies.

• Complete the system
sequence diagrams with
alternate flows.

Implementation

Test

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan
for the first iteration.

110 CHAPTER 5 Expanded Use Cases

5.10 Questions
1. Variants and exception handlers are alternate flows for a use case. In which situations should

one or the other be used?

2. What is the difference between an essential use case and a real use case? Why is the essential

use case more interesting for requirements purposes?

3. Explain the differences between mandatory, complementary, and unsuitable use case steps.

4. Expand the main flow of use case 03, Deliver order, presented in Figure 3.10.

5. Finalize the expansion of the use case of Figure 5.2 by indicating its alternate flows.

6. Design the system sequence diagram for the main flow of the use case of Figure 5.2, choosing

one of the following strategies: stateless or stateful. After designing the diagram for the main

flow, add the alternate flows identified in Question 5.

1115.10 Questions

This page intentionally left blank

CHAPTER

6Conceptual Modeling: Fundamentals

KEY TOPICS IN THIS CHAPTER

• Attributes

• Concepts

• Associations

• Collections

• Organization of the conceptual model: structural, associative, and temporal

• Invariants

• Iterative construction of the conceptual model

6.1 Introduction to conceptual modeling
Domain analysis consists of discovering and modeling information that has to be managed by the

system. This means that the team should discover how the information has to be structured and

transformed. It starts during Inception with the preliminary conceptual model and continues during

Elaboration, when that model is refined and completed as requirements analysis is deepened with

the expansion of use cases.

One can analyze two aspects of information: static (also called structural), which is studied in

this chapter and Chapter 7, and functional, studied in Chapter 8. The static aspect may be repre-

sented in the conceptual model, and the functional aspect in the system operation contracts.

During analysis there is no dynamic model for the objects, because analysis takes into consider-

ation only an external view of the system. The dynamic model, consisting of the collaborations

among objects, is made during design (Chapter 9), because only at that time are internal aspects of

the system addressed. Thus, the functional model of analysis indicates only what information enters

and leaves the system, without saying how the information is transformed. Later, the dynamic

model of design will show clearly how object collaborations could change information.

The conceptual model describes information that the system is going to manage. It is an artifact

from the problem domain, not the solution domain. Therefore, the conceptual model should not be

confused with the Design Class Diagram (DCD), which belongs to the software architecture

(Chapter 9). The DCD, although initially derived from the conceptual model, belongs to the solu-

tion domain and therefore serves different purposes.

The conceptual model should not also be confused with the data model (Chapter 13), because

the data model emphasizes stored data representation and organization, while the conceptual model

aims at representing the comprehension of information by users, not its physical representation.

113Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00006-5

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00006-5

Thus, a relational data model is just one of the possible physical representations of a more essential

conceptual model.

An interesting way to comprehend the conceptual model is to imagine that the elements

described by it correspond to information that initially exists only in the mind of the user, as repre-

sented in Figure 6.1, and not in a physical store system.

A user sends information to the system and receives information from the system through sys-

tem events and returns, respectively. At this point, the system does not even need to be considered

a computational system, because the information exists independently of computer support for stor-

ing and managing it.

The goal of the analysis is to study the problem. But the computational system is a solution,

and therefore, it belongs to the design. The system solution could even be designed without com-

puter technology. It is possible to analyze a whole situation and then propose a manual solution to

implement it, in which, for example, data are stored in paper sheets, and operations performed by

workers using pencil, eraser, and staplers.

Publisher SpecialOffer Confirmation

Discard

Arrival

Customer Cancellation Payment

Order Return

Book Delivery

FIGURE 6.1

The conceptual model is a representation of the users’ view of the information.

114 CHAPTER 6 Conceptual Modeling: Fundamentals

Just like essential use cases, the conceptual model is independent of the physical solutions that

could be adopted, and should contain only elements that belong to the domain of the problem, leav-

ing to the design the elements of the solution, that is, all elements related to technology, such as

interfaces, storage, communication, and so on.

The conceptual model represents only the static aspect of the information. Therefore, in the con-

ceptual model, references to operations or dynamic aspects of the system cannot exist. Although

the conceptual model is represented by the UML class diagram, the analyst should not yet include

any methods. Chapter 9 shows how to identify and design methods using a systematic approach.

When the class diagram is used for conceptual modeling, there are precisely three kinds of ele-

ments to use for representing information:

• Attributes: Simple alphanumeric or primitive information, such as numbers, texts, dates, etc.

Examples of attributes in the Livir project are customer name, payment date, book title, and total

value of an order. An attribute is always connected to a more complex element: the concept.

• Concepts: The representation of the complex information that has coherent meaning in the

domain. Concepts usually aggregate attributes and cannot be described merely as alphanumeric.

Concepts also may be associated to each other. Examples of concepts in the Livir project are

book, customer, order, and payment.

• Associations: A kind of information that links different concepts. However, associations are

more than mere links: they are information. In the Livir example associations should exist

between orders and customer, and also between orders and books, for example.

These three elements are detailed in the next sections. It is practically impossible to explain one

without mentioning the others, because the three are strongly interwined.

6.2 Attributes
Attributes are, in the conceptual model, the alphanumeric and primitive elements such as date,

money, number, string, interval, etc.

Although most programming languages allow attributes to be defined as data structures such as

lists, arrays, sets, trees, etc., it is not advisable in conceptual modeling because those structures are

better modeled as associations, as explained in the following sections.

Complex concepts (classes) should also not be used as attributes of other concepts (although,

again, programming languages allow that). For example, a book should not be an attribute of an

order. If a relationship between books and orders exists, then an association should be used instead,

because books and orders are complex concepts. An exception to this recommendation occurs

when a primitive type (Section 6.2.5) or enumeration (Section 6.2.4) is used to label an attribute;

primitive types and enumerations are defined as stereotyped classes, but they do not behave like

concepts. They are used as attribute types. For example, a date is composed by parts such as year,

month, and day, however a birth date is considered an attribute of a person, not a complex concept

associated to a person.

Attributes in UML are always represented inside a class, as shown in Figure 6.2, where the class

Customer has the attributes: name, id, address, and phone.

1156.2 Attributes

6.2.1 Attribute types
Attributes may have a type, although this is not mandatory for the conceptual model. Figure 6.3

presents a version of the class of Figure 6.2 with typed attributes.

Types in conceptual models have the same meaning they have in programming languages. In

Figure 6.3, we have the classical type String, and primitive user-defined types IdNumber and

PhoneNumber.

When an attribute is defined by formation rules, as in the case of id and phone, it is advisable

to define a primitive type especially for it, as is done in Figure 6.3.

The address is something special. Is it an attribute or a complex concept? Is it simply a string

or complex concept composed of street, ZIP code, number, city, etc.? This case, as many others, is

decided by analyzing the information needs of the users. If addresses are used just to print envel-

opes and send mail, then they behave merely as strings, and may be represented as attributes typed

as strings. However, if addresses are used to calculate distances and routes, or if they are used to

group customers that live in the neighborhood, then they behave as complex concepts and should

be modeled as a primitive type. Furthermore, if they have a structure of associations between them,

then they should be modeled as complex concepts.

6.2.2 Initial values
An attribute may be declared with an initial value, that is, every time a new instance of the concept is cre-

ated, that attribute will automatically receive a defined initial value, which can be changed later if

necessary.

In the Livir system, an order may be created, for example, with a total value that is initially

zero. This can be defined in the class diagram, as shown in Figure 6.4.

The definition of an initial value for an attribute may also be created with the use of the Object

Constraint Language (OCL) (Object Management Group, 2010).

Every OCL expression should be declared in a context that corresponds to a class. Most OCL

declarations also have a subcontext, consisting of a class property, that is, an attribute, association

role, or even a method. When declaring the initial value for the attribute totalValue in class Order,

the context is Order and the subcontext is totalValue. Thus, the OCL expression starts as

Context Order::totalValue

Optionally, the type of the attribute may be added:

Context Order::totalValue:Money

Customer

+name

+id

+address

+phone

FIGURE 6.2

Attributes represented inside a class.

Customer

+name : String

+id : IdNumber
+address : String
+phone : PhoneNumber

FIGURE 6.3

Typed attributes.

116 CHAPTER 6 Conceptual Modeling: Fundamentals

In order to indicate that the OCL expression is defining an initial value for an attribute, the

clause init: is used, followed by the expression that when evaluated produces the initial value for

the attribute. As in the example the initial value is the constant 0, the expression may be defined as

Context Order::totalValue:Money
init: 0

The expression may also be simplified by omitting the type of the attribute:

Context Order::totalValue
init: 0

An attribute may have its initial value defined by more complex expressions. Later, examples of

more complex OCL expressions are presented, which can be used to initialize attributes with values

produced by mathematical and logical operations.

6.2.3 Derived attributes
Derived attributes are understood here as derived alphanumeric values only. If a “derived attribute”

refers to objects or data structures, then they are called derived associations (Section 6.4.3).

Derived attributes differ from normal attributes because they cannot be changed directly. In other

words, they are read only.

A derived attribute is calculated and must be defined by an expression. In the class diagram, a

derived attribute may be represented by a slash (/) preceding the attribute name (and type), fol-

lowed by “5” and the (OCL) expression that defines the attribute. Figure 6.5 shows an example in

which profit is defined as the difference between price and cost.

Derived attributes may also be defined by OCL expressions.1 The expression again has a class

as context and an attribute as subcontext. It is followed by the word derive: this indicates that the

expression that follows it defines how the value of the derived attribute is calculated. The expres-

sion of the example of Figure 6.5 defines profit by using the values of other two attributes of the

same class: profit5 price � cost.

For now, we can consider that the OCL expressions after clauses such as init: and derive: start

with an expression that denotes an instance of the context class. That instance is referred to by the

word self.

Order

+date : Date
+totalValue : Money = 0
+number : Natural

FIGURE 6.4

A class showing an attribute with an initial value.

Book

+cost : Money
+price : Money
+ / profit : Money = price-cost

FIGURE 6.5

A class showing a derived attribute.

1Not necessarily, because many analysts may chose natural language or other specification languages. However, as OCL

is part of the UML package, it is advisable to use it.

1176.2 Attributes

The notation self.property allows one to access the value of a property (attribute, association

role, or method) belonging to the object. For example, in the context of the class Book, the expres-

sion self.cost denotes the value of the attribute cost of a given instance of Book.

Thus, the OCL expression that defines the derived value for the attribute profit of class Book is

Context Book::profit
derive:
self.price-self.cost

In OCL it is possible to omit the expression self when the context is not ambiguous. In the

example above, the expression could be simplified to

Context Book::profit
derive:
price-cost

In the Book context, price and cost may be nothing else but attributes of Book. Then, the word

self may be omitted from the expression.

Derived attributes may not be directly updated. In the Book class of Figure 6.5 only the attri-

butes cost and price may be directly updated. The derived attribute profit is read only: it is calcu-

lated as the result of its defining expression.2

6.2.4 Enumerations
Enumerations are a balance between concepts and attributes. They are basically strings, and behave

like that. But there is a predefined set of valid strings that constitutes the enumeration domain. For

example, a calendar day can only assume a value in a set of seven possibilities: Sunday, Monday,

Tuesday, Wednesday, Thursday, Friday, and Saturday. Thus, an attribute defined as a CalendarDay

(typed with that enumeration) would only assume one out of those seven values.

Enumerations may appear in UML diagrams as stereotyped classes. It is suggested that

enumerations that are domain independent are not placed in the same diagram that contains the

conceptual model, but in a special package intended to contain the enumerations, as shown in

Figure 6.6, because domain-independent enumerations (such as CalendarDay) are very reusable

from application to application. Only domain-specific enumerations should be kept together with

the other classes of the conceptual model so that people can see their meaning more easily.

In Figure 6.6, the attribute validity of class Offer may have assigned to it one out of the seven

possible values for the enumeration CalendarDay.

Enumerations may be considered stereotyped classes. While they may have associations and attri-

butes of their own, the analyst is not encouraged to use those features because they could simply turn

the enumeration into a complex concept and it would probably lose reusability. For example, consider

the CalendarDay enumeration. It is simply a list of seven names. Suppose now that the analyst adds

2At this point, some readers that are also programmers could be worried about performance issues with the code that

will be used to implement derived attributes. As they are by definition “calculated,” it seems a waste of processing time

to repeat those calculations if the original values of cost and price do not change. However, the readers can stay calm

because code optimization mechanisms are available for derived attributes. For example, the value calculated for a

derived attribute may be kept in the cache and recalculated only when one of its components is changed. For example,

profit has to be recalculated only when the instance of Book changes the values of price or cost.

118 CHAPTER 6 Conceptual Modeling: Fundamentals

some attributes to the CalendarDay enumeration, such as, for example, the working hours. Then, for

example, Monday to Friday may have working hours defined from 9 am to 5 pm, Saturday from 9 am

to noon, and Sunday may have no working hours at all. Different applications could define working

hours in a different way. In this case, what is the difference between this enumeration and a complex

concept as it also has attributes and possibly associations and even methods later? Instead of creating

attributes or associations for an enumeration it would be advisable to create a new complex concept

that accommodates the enumeration and the other attributes. In the example, a new concept working

day could be created with two attributes: calendar day (still an enumeration), and working hours (nor-

mal attributes as explained above). Thus, enumerations that are thought to incorporate extra functional-

ities should be maintained without that structure and included in normal classes.

To remain reusable, an enumeration should not be able to access another class through an asso-

ciation, but any other class should be able to access the enumeration. The fact that Offer in

Figure 6.6 has an attribute labeled with CalendarDay allows the normal class Offer to access the

enumeration CalendarDay but not vice versa. This keeps the enumeration uncoupled from the clas-

ses that use it and therefore it is reusable.

Enumeration values in OCL may be represented by the enumeration name followed by “::” and

the value name, as, for example, CalendarDay::Tuesday.

6.2.5 Primitive types
The team can and should define primitive types when they deal with attributes that have formation

rules, as in the case of ISBN. Primitive types may be defined as classes stereotyped with

{primitivec, as shown in Figure 6.7.

The ISBN class, which is stereotyped in such a manner, is a type that can be used to define attri-

butes. It is not a complex concept like Book, Customer, etc. It has a value with public access

Enumerations Conceptual model

+validity : CalendarDay
+discount : Percentual

<<enumeration>>
CalendarDay Offer

<<Constant>> +Sunday
<<Constant>> +Monday
<<Constant>> +Tuesday
<<Constant>> +Wednesday
<<Constant>> +Thursday
<<Constant>> +Friday
<<Constant>> +Saturday

FIGURE 6.6

Definition and use of an enumeration.

1196.2 Attributes

(marked with “1”), and a validation predicate that is private (marked with “2”), meaning that it

can be accessed only by methods inside the class itself. That predicate can be called to verify if the

ISBN value is valid or not, considering its formation rule.3 That predicate can be used in the con-

structor (the method that creates instances of the class) to guarantee that only valid ISBNs are cre-

ated. Remember that conceptual classes do not have methods, but primitive types are not part of

the conceptual model. They are user-defined, reusable low-level components.

Although the value of the primitive type has public access it is normally accepted that it is

immutable. That means that the value of the primitive type can be defined only at creation time,

and not updated later. This is to make it consistent with the idea of primitive data elements as con-

stants, and not as objects. Objects may change their internal state, and constants usually do not.4

Some primitive types, such as Date and Money, are already available in some programming lan-

guages and database management systems. Other not-so-common types, such as ISBN, ZIP code,

odd numbers, etc., may be created.

The primitive type formation rule must be defined syntactically, that is, by evaluating expres-

sions that do not need to consult data managed by the system. If a formation rule depends on

consulting attribute or association values, then it is not, probably, a primitive type, but a normal

class. For example, the prime number formation rule may be checked without consulting objects

and associations, but a registered customer name may not be a primitive type, because to check if a

string is a registered customer name, it is necessary to query existing names of current customers.

A primitive type usually is application independent, that is, its meaning usually is independent

from the system or project being developed. An ISBN has the same meaning and formation rule in

any application domain that uses it. Concepts such as Customer, Book, and Order may have differ-

ent definitions in different applications and cannot usually be reused without some refactoring

effort. However, primitive types are usually 100% reusable, without adjustments or modifications.

6.3 Concepts
Concepts are more than alphanumeric values. They are also more than a bunch of attributes,

because they carry meaning and may be associated to each other. Conceptual modeling may begin

with concepts and associations only, as shown in Section 3.6, that is, attributes are not needed right

away. However, when examined in detail, a concept usually contains a coherent group of attributes.

<<primitive>>

<<immutable>> +value

–valid() : Boolean

ISBN

FIGURE 6.7

Example of a primitive type.

3The ISBN formation rule is explained in http://www.isbn.org/standards/home/isbn/us/isbnqa.asp.
4Some languages such as Smalltalk allow constants to change their value in runtime, but this is not usually the case and

is not recommended for most applications.

120 CHAPTER 6 Conceptual Modeling: Fundamentals

http://www.isbn.org/standards/home/isbn/us/isbnqa.asp

6.3.1 Unique attributes
It is assumed that different instances of a concept are distinguishable from each other just by the

fact that they were created independently. This is not the case with primitive types. Two dates,

such as 05/03/2013 and 05/03/2013, are the same. But two customers named John Smith are not

necessarily the same person. Some programming languages indeed use two comparison predicates,

one to check if two objects are equal (they have the same values for their attributes) and another to

check if they are identical (they share the same space in memory).

Different instances are therefore always distinguishable from each other, but additionally they

may have attributes that are unique to them. Once an attribute has been stereotyped as{uniquec
two instances of the concept cannot have the same value for that attribute. One example of a unique

attribute is the ISBN for books, which is unique for each book (Figure 6.8), while the other attri-

butes may have identical values for different books.

Unique attributes must not be confused with primary keys,{pkc. Primary keys are used especially

for database design to provide a unique identification for an instance. But{uniquec and{pkc are

not identical, because a concept may have only one primary key, but more than one unique attribute.

Unique attributes are closer to the idea of candidate keys in relational databases (Date, 1982).

6.3.2 System control class
Usually, the conceptual model is expected to be a connected graph, that is, every concept has a path (a

sequence of associations) connecting it to every other concept. When that is not the case, it is supposed

that something is missing, that is, important associations or concepts have not been discovered yet.

Although some authors oppose it, a concept that represents the system as a whole (in our example

Livir) may be useful in the conceptual model if some precautions are taken. First of all, that concept

should be declared as a Singleton;5 and second, it should not have attributes, being just a control

class. This class corresponds to the system controller or façade-controller already mentioned in

Chapter 5. It does not represent any data; it serves only as a point of reference to add associations to

other classes, as seen in the following sections.

All concepts are associated directly or indirectly to the controller class in order to be accessible

by the application.

The system controller class may be stereotyped with {controlc or drawn using Jacobson’s

(1994) icon, as shown in Figure 6.9.

Book

<<unique>> +isbn : ISBN
+title : String
+authorsName : String
+pageCount : Natural

FIGURE 6.8

Class showing an attribute stereotyped as{uniquec.

Livir

FIGURE 6.9

A system controller class.

5A design pattern that states that a class with a single instance may be accessible globally.

1216.3 Concepts

In Chapter 9, the advantages of using the controller class are explained in detail. There are

some situations that are nicely modeled as associations from the control class.6

6.4 Associations
When complex concepts are related, it is said that there is an association among them. Associations

usually happen only between two concepts, but they can also be defined among three or more con-

cepts. There may also be reflexive associations between instances of the same class. For example,

the association that links parents to children is defined as a reflexive association from Person to

Person.

When classes are associated, then their instances may be linked. For example, an order is linked

to the books being ordered, and also to the customer that creates the order. A payment, if it exists,

is linked to an order in the bookstore example.

Associations may be tricky to identify in use case texts, especially because sometimes deciding

if something is a concept or association may be fuzzy. For example, is a book reservation an asso-

ciation between a book and a customer? Or is it a concept? If it is considered a concept, what are

its own associations?

Moreover, use case texts often mention operations that are not exactly static associations.

Operations such as buying books, or making a reservation, are dynamic transformations on data.

They could produce concepts to represent their existence, but usually representing them as associa-

tions would not be adequate. It is necessary to take into account the difference between the (static)

associations and (dynamic) operations:

• An association is a static relation that may exist between complex concepts, complementing the

information about them in a given moment (a snapshot of their state), or referring to new

associative information (for example, neighborhood or parent/children).

• An operation is the act of accessing and transforming existing information.

As a description of a dynamic process, a use case text is usually full of explicit references to

operations, but associations usually have to be inferred from the text.

At a used car dealer there are people who buy cars from other people. When someone buys a

car she is performing an operation. That operation changes the links between objects: one owner-

ship link ceases to exist, while another is created in its place. It would not be appropriate to repre-

sent an operation as an association, as shown in Figure 6.10.

Why is that interpretation not adequate? Because to buy is not a state of the information, it is a

transition between states.

The state of the information about cars and people in this case is the ownership: a given person

owns a car or not. This can be represented as an association between Person and Car (Figure 6.11).

However, there are different ways people and cars may be associated besides ownership. A per-

son may be passenger of a car, or its driver, or the association may represent merely that someone

likes a given car. To eliminate such ambiguities, it is convenient in many cases to use a role name

6See also an example in Figure 6.18.

122 CHAPTER 6 Conceptual Modeling: Fundamentals

on one or both association ends in order to indicate which role a class plays. Role names are not

assigned to the association as a whole, but to both of its sides. Thus, a binary association has two

role names: one for each participating class. In Figure 6.12, for example, a person is in the role of

owner related to a car and a car belongs to the role fleet of a person.

Different roles may be represented by different associations, as shown in Figure 6.13.

When an explicit role name is missing in the diagram, it is assumed that the class name (not

capitalized) is the default role name. In the case of Figure 6.13, a car has two roles related to peo-

ple: owner and driver. From the point of view of a person, there are two roles for cars: the fleet,

which corresponds to the cars a given person owns, and a default role name car, which corresponds

to the car a person drives.

According to the UML specification, associations can also have names (Figure 6.11 presents an

example), which are placed in the middle of the edge that links the classes. However, such names,

Person Carown

FIGURE 6.11

Representation of a static association between two concepts.

Person Carowner fleet

FIGURE 6.12

An association with role names.

Person Car
driver

owner fleet

FIGURE 6.13

Multiple associations between the same concepts.

Person Carbuy

AVOID!

FIGURE 6.10

An operation inadequately labeled as an association.

1236.4 Associations

besides being difficult to give (novice analysts use to fill their diagrams with lots of associations

labeled with “has” or synonyms), do not have much practical use.

It may be easier and more useful to work with role names instead of association names. In prac-

tice, one can ignore the fact that associations may have a name. Conceptual models can be per-

fectly clear with role names replacing association names. Role names are easier to give because

they define navigation possibilities between concepts and are useful also for naming derived pro-

gramming code elements such as the variables that would represent the association when the code

is generated. If by any means an association name is still needed it is always possible to create it

by composing the role names; the reverse is not true. For example, an association between a book

and a customer could be called book2customer if it indeed needs to have a name (for example, for

reference purposes).

Sometimes, it may be interesting to keep information about operations or transactions that were

performed. For example, it would be useful for the car sales system to store information about sales

transactions, as for example, date, value, etc. In this case, the information about the transaction is

represented in the diagram, as a complex concept (Figure 6.14), and it represents statically the oper-

ation that was performed.

In this case, the transaction is represented as a concept, while its associations represent static

relations between concepts.

6.4.1 Role multiplicity
In a conceptual model, it is fundamental to know how many elements a role accepts. For example,

in the association between Person and Car with role name driver in Figure 6.13, how many cars

can someone drive? How many drivers can a car have?

The answer depends on a study of the nature of the problem and on the real meaning of the

association, especially if it represents the present time or the past. For example, if the association

of Figure 6.13 represents the present, then the car may have just one driver (one at a time). But if

the association represents the past, then it is possible that a car has had a number of drivers who

drove it during different periods of time.

Thus, it is fundamental that the team decides clearly what the association means before deciding

on its role multiplicity. They have to remember that associations are static constraints; they repre-

sent whatever can exist between the instances of the associated classes. Therefore, depending on

the meaning of the association, it may have different role multiplicities.

There are, basically, two decisions to be made about the multiplicity of an association role:

1. Is the role mandatory or not? For example, should a person have at least one car? Should a car

have at least one driver or owner?

Person buyer acquisitions

salesseller
+date : Date

+value : Money

Sale Car

FIGURE 6.14

A transaction represented as a concept.

124 CHAPTER 6 Conceptual Modeling: Fundamentals

2. Does the number of instances that may be linked through the role have a defined conceptual

bound? For example, is there a maximum number or minimum number of cars that a person

may drive or own?

The answers to these questions may be tricky. Regarding the first decision, for example, return-

ing to the Livir project, it is expected that each order must have a payment. But that does not qual-

ify the payment role for an order as mandatory, because an order can exist without a payment for a

period of time. Eventually, any order will hopefully be paid for, but not necessarily soon. Thus,

this role is not mandatory for the order.

The other tricky issue concerns the maximum number of elements a role allows. Physically

speaking, the maximum number of cars that a person may own is the number of cars that exist on

planet Earth (the number is increasing, but it is defined at a given moment of time, even if it is

hard to count). But as new cars are built, they may be purchased. Thus, although there is a physical

limit for the ownership role, there is no conceptual or logical limit. Thus, the role should be consid-

ered virtually without upper bound.

Role multiplicity in UML is represented by a numeric expression where

• The asterisk “�” means “any quantity,” and indicates that there is no upper bound.

• The comma “,” means “or.”

• Two dots “..” means “up to.”

The following are examples of the usual multiplicity limits for conceptual models:

1 � exactly one

0..1 � zero or one

� � zero or more

1..� � one or more

2..5 � two up to five

2,5 � two or five

2,5..8 � two or from five up to eight

The multiplicity limits that include zero represent roles that are optional for a concept. All the other

limits are mandatory.

Figure 6.15 shows an example where one person may have a fleet with an undetermined number of

cars (optional), and a person may be a driver of one car at most (also optional). On the other hand, it

shows that a car must have a single owner (mandatory) and that it may have a driver or not (optional).

According to many countries’ laws, a car may have more than one owner, or it may be owned

by a corporation; in some situations a car may also have no owner at all. The conceptual model

(such as the one in Figure 6.15) represents not necessarily a general truth, but the information needs

Person
0..1 driver 0..1

1 owner fleet *

Car

FIGURE 6.15

Example of associations with role multiplicity.

1256.4 Associations

for a given application. For some information systems it could be mandatory that a car, in order to

be registered, have a single owner and that this owner must be a person. In this case, the conceptual

model should represent the specific and pragmatic information needs for that system.

6.4.2 Association direction
An association in a conceptual model should be nondirectional, that is, the navigability of the asso-

ciation should not yet be determined (Booch et al., 2007). This is due to the fact that for analysis

purposes, it is only necessary to know whether two concepts are associated or not; dynamic design

will decide on navigability later.

There is, usually, little benefit to a premature (before dynamic design) definition of navigability

direction. Unidirectional associations in general have the following advantages over bidirectional ones:

• It is not necessary to define a role name for both sides (just one).

• They are easier to implement.

Only the first advantage has any meaning for conceptual modeling, but it is too weak to justify

making decisions prematurely.

6.4.3 Derived association
Just as useful as derived attributes are derived associations, that is, associations that instead of

being represented physically are calculated from available information. For example, suppose it is

often necessary to know which books a given customer has already bought in the Livir system. As

books are not linked directly to the customer in the conceptual model, referring to that information

could be a bit more complicated than expected. Figure 6.16 shows an example of how a conceptual

model for Livir could relate books and customers indirectly through orders and purchasing items;

in this case, the set of all books bought by a customer would be referred as the set of books linked

to the items linked to the orders linked to the customer.

Compared to the preliminary conceptual model of Chapter 3, Figure 6.16 introduces the concept

Item between Book and Order. Items are necessary if the concept Book means the published title,

not the physical copy. In this case, what is ordered is an Item, which represents one or more physi-

cal copies of a given Book. The book may have its price updated regularly, but a change in the

book price should not affect the price of former orders. Thus, the price of an item remains the

same even if the price of the book was changed.

Note that with this model there is no direct link between the customer and the books she has

already bought. Creating a new straight association between Customer and Book would not be a

good solution because it would be redundant to the model, as the set of books may already be

obtained indirectly. Furthermore, a new association between Customer and Book could associate

Customer 1 1

1* *

*Order Item Book

FIGURE 6.16

A customer indirectly associated to books.

126 CHAPTER 6 Conceptual Modeling: Fundamentals

any customer with any book, not only those that were already bought by the customer through her

orders. This model allows the representation of inconsistent information, which would require some

checking mechanism (for example allowing only books that were bought to be associated to the

customer).

A modeling solution for that case, when it is relevant to have straight access to a collection of

objects that can already be derived from existing information, is to use a derived association, as

depicted in Figure 6.17.

UML allows derived associations to be navigated in both directions. It is assumed that both

roles are derived. In the case of Figure 6.17 the opposite role Customer must also be considered

derived, even if its default role name does not indicate this in the diagram.

The multiplicity of both roles of the derived association of Figure 6.17 is multiple because by

navigating on the normal associations it can be seen that a customer may have ordered zero or more

books, and that a book may have been ordered by zero or more customers. Usually, the multiplicity

of a derived association is defined by the product of the multiplicities of the roles that must be navi-

gated to reach the target concept. The following rules may be used to determine that multiplicity:

• The lower bound of the derived multiplicity is the product of the lower bounds of the roles in

the navigation path.

• The upper bound of the derived multiplicity is the product of the upper bounds of the roles in

the navigation path.

For example, if the multiplicities found in the path are 1..5, 2..� and 1, then the derived multipli-

city is 2..�, because the lower bounds are 1, 2, and 1 (1 � 2 � 15 2), and the upper bounds are 5,

infinite, and 1 (5 � infinite � 15 infinite).

However, if filters are applied to the definition of the derived association, the resulting multi-

plicity may be different. For example, if the derived association is defined so that it links a cus-

tomer to the most expensive book she has already bought, then the derived multiplicity is 1, and

not �.
As opposed to normal associations that allow links between individual objects to be added and

removed, a derived association may only be consulted (similar to derived attributes, which are read only).

A derived association may be defined by an OCL expression as well. The example of Figure 6.17

may be defined as

Context Customer::orderedBook
derive:
self.order.item.book

Customer Order Item Book

/orderedBook

*

1 1

1* *

*

*

FIGURE 6.17

A derived association.

1276.4 Associations

The following observations can be made about this OCL expression:

• The context is the class at the origin of the derived association (Customer). The subcontext is

the role name of the derived association (orderedBook).

• The clause derive: is used similarly to the case of derived attributes. What determines if the

expression is defining a derived attribute or association is the context and the type of

information that is returned by the expression. Derived attributes are defined by expressions that

return an alphanumeric, enumeration, or primitive type, while derived associations are defined

by expressions that return an object or a collection of objects (data structure).

In object-oriented programming languages, usually the “.” notation can be used only over a

single object. OCL, however, allows it to be used over collections of objects.7 If x is a collection,

then the meaning of x.y is the collection of y that can be obtained as properties of x. For example,

self.order denotes the set of orders of a customer in the current example; self.order.item is the set

of items linked to the orders of a given customer; and self.order.item.book is the set of all books

linked to the items that are linked to the orders that are linked to the customer.

A derived association may also be used to define a subset of objects from a set of linked objects

by the application of a filter. For example, imagine that the bookstore has a record on special cli-

ents that have bought above 1000 dollars worth of books. Let us call them gold customers. Let us

also assume that the Customer class has a derived attribute totalSales with the sum of all orders of

a customer. The definition of that derived attribute is not important for the example and it will be

ignored now. A derived association between the controller and the Customer class may be used to

model the gold customers as a subset of the customers of Livir. Figure 6.18 shows the partial con-

ceptual model for this example.

The OCL expression for this derived association has as the context the Livir controller itself,

because it is at the origin of the association. The expression that defines the derived association has

to denote the set of customers that bought more than 1000 dollars, that is, the instances of

Customer whose totalSales value is higher than 1000.

The OCL expression to obtain a subset of elements that satisfy a given Boolean expression like

this is select. The Boolean expression is placed inside parentheses after the select command. The

Boolean expression usually starts with an iteration variable that in the case of the following expres-

sion was named: aCustomer.

/ goldCustomer
+ / totalSales : Money

Customer
1

0..1

*

*

Livir

FIGURE 6.18

Derived association defining a subset of a normal association.

7In fact, in OCL, even a single object is considered a collection with a single element. This is equivalent to the natural

notion of a set, but not to the mathematical notion, because in set theory, a set with one element is not the element. In

OCL a set with one element and the element are the same thing.

128 CHAPTER 6 Conceptual Modeling: Fundamentals

Context Livir::goldCustomer
derive:
self.customer-.select(aCustomerjaCustomer.totalSales.1000)

In the case of this expression, the iteration variable is called “aCustomer” but it could have any

other name. It denotes each one of the customers for the evaluation of the expression aCustomer.

totalSales.1000.

The arrow notation “-.” is used before select instead of the “.” notation because the select

function is applied over the structure of the set, not over its elements.8

OCL also allows the iteration variable to be omitted if the context of the expression is not

ambiguous. Thus, the expression above can be simplified to

Context Livir:goldCustomer
derive:
customer-.select(totalSales.1000)

Observe that inside the parentheses after select the context is potentially ambiguous. There, the

property totalSales could refer both to a customer and to the instance of Livir. What allows us to

eliminate the ambiguity is the fact that the property totalSales exists only in the Customer class; it

does not exist in the Livir class. If it existed in both classes, then the nonabbreviated notation

should be used in order to eliminate the ambiguous expression.

6.4.4 Aggregation and composition
Some associations may be considered stronger than others in the sense that they define one kind of

object that is composed of others. A house, for example, is composed of rooms, a book of chapters,

an undergraduate career of courses, etc.

If the association is exclusive, in the sense that an object may not be part of another object at the

same time, then it is considered a strong part-whole association, which is called a composite aggre-

gation,9 and it is drawn with a black diamond on the role that represents the whole (Figure 6.19).

The multiplicity of the role that represents the composite (the side where the diamond is), in the

case of a composite aggregation, should be 1 or 0..1, and nothing else, because composites do not

share parts, even with objects of the same class.

Composite aggregation indicates exclusivity in the part-whole association. When this exclusivity

is not mandatory (the part may be part of other aggregates), then a white diamond is used instead,

and the association is called a shared aggregation (Figure 6.20).

8In the case of a set of people p, if someone wants to get the set of all ages, she could write p.age. However, the size of

the set is not a property of the people; it is a property of the set structure. Thus, to obtain the size of the set the expres-

sion p-.size() should be used. If it was written as p.size, then it would be representing the set of the sizes of each per-

son, not the size of the set.
9“An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be

aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most

one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can

(where allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the

composite. Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, delet-

ing an element in one part of the graph will also result in the deletion of all elements of the sub graph below that ele-

ment” (Object Management Group, 2011).

1296.4 Associations

The white diamond indicates a shared aggregation where the part may belong to different

wholes at the same time. In Figure 6.20, a given Item must be part of an Order, but also may be

part of a Sale.

Composite and shared aggregation are special associations and should be used with much parsi-

mony, that is, they should be used only when the team is sure that it is the case that an object is

really part of another, and not just a normal association. Even the UML specification (Object

Management Group, 2011) states that the precise semantics of a shared aggregation varies between

application areas and modelers.

It is common to see aggregation and composition being abused in models, when objects that are

not part-whole related are linked by that kind of association. For example, a customer is not part of

an order, if not for any other reason but the fact that a customer is a person and an order is not a

physical thing, but a transaction. Composite and shared aggregations should unite elements of the

same nature: physical with physical, and abstract with abstract. An order may be associated to a

customer, but the order is not made of customers.

There are few real advantages in using aggregation in conceptual modeling. This is another rea-

son to minimize or even abolish their use in conceptual models. Among the advantages is that com-

posite or shared aggregation parts usually have attributes that are combined and derived in the

whole. For example, the total value of an order is the sum of its items; the weight of a package is

the sum of the weight of each book; when a car is sold, all its parts are sold too; and so on.

However, these concerns usually appear only at design time.

6.4.5 n-ary associations
Most associations are binary, that is, most associations have only two roles. However, there are

situations where associations with three or more roles are needed. In UML, these associations can

be represented by using a diamond that connects all the roles of the association, as in Figure 6.21.

Order Item Book

1

1

*
*

FIGURE 6.19

An example of composite aggregation.

Order

Sale

Item Book

0..1

1

1

*

*
*

FIGURE 6.20

An example of shared aggregation.

130 CHAPTER 6 Conceptual Modeling: Fundamentals

The example in Figure 6.21 was taken from a budget control application. Each project may be

associated to multiple budget items and multiple financial years. Each financial year may have a

number of budget items per project. A ternary association (that is, an association with three roles)

represents this situation, as seen in Figure 6.21.

These cases are not frequent, but they may appear in a project. Before deciding to use a ternary

or n-ary association (which may be a headache during design and implementation), the team should

verify if they are not confusing it with a situation where a combination of binary associations

should be used instead. For example, the case shown in Figure 6.22 is not correctly modeled as a

ternary association, because the relation between the author and the publisher happens only when

the author publishes a book with a publisher. Then, the association between the author and the pub-

lisher would be a derived one.

The model represented in Figure 6.23 is more precise than the one in Figure 6.22 for the case

being discussed. Only in a scenario where the same author could publish the same book using a dif-

ferent publisher and the publisher could publish the same book with a different author (!) would

there be a case for a ternary association.

BudgetItem FinancialYear

Project

*

**

FIGURE 6.21

An example of a ternary association.

Book

Publisher

AVOID!

Author

*

*

*

*

FIGURE 6.22

An unsuitable ternary association.

1316.4 Associations

Real ternary associations, however, may still be replaced by a combination of binary ones.

Maybe the simplest approach to accomplish this is to replace the ternary (or n-ary) association by a

new concept. Sometimes, naming the new concept may be tricky, but it can be done. For example,

the model of Figure 6.21 could be replaced by the one shown in Figure 6.24.

However, there is a subtle semantic difference between the models in Figures 6.21 and 6.24. In

the case of Figure 6.24, there may be two or more Spendable instances with exactly the same bud-

get item, financial year, and project. This cannot happen in the case of Figure 6.21. Thus, for this

simplification to have the same semantics as the ternary association, it is necessary to complement

it with an invariant (see Section 6.7).

6.5 Collections
Simple collections of objects that do not have any particular meaning or structure should not be, in

principle, represented as concepts, but as associations. Any association role already represents a

collection of objects of the associated class. Thus, considering again the example of Figure 6.15,

fleet is a role that associates a set of cars to a person. The model presented in Figure 6.25 is, there-

fore, unnecessary and redundant.

Author Publisher

Book

*

*

*1..
1

FIGURE 6.23

The model of Figure 6.22 correctly represented with two binary associations.

Budgetltem 1

* *

*

1

1Spendable

Project

FinancialYear

FIGURE 6.24

Model where a ternary association is replaced by a new concept.

132 CHAPTER 6 Conceptual Modeling: Fundamentals

Thus, unless the fleet has its own attributes or associations (for example a person having multi-

ple fleets located in different places) the correct form to represent a simple collection of objects is

through an association role, not through a class (Figure 6.26).

Thus, the team must be aware that if the collection has particular attributes or associations, then

it must be represented as a concept. For example, an Order is initially understood as a set of items,

but an Order also has attributes such as issue date, total value, discount, etc., and associations such

as the one with the customer, who may have multiple orders. If that is the case, the collection is a

concept. However, a collection with no particular attributes or associations is just a collection, and

therefore it is modeled as an association role.

Association roles may be thought as representing abstract data types (Liskov, 1974) in concep-

tual models. In design models they would also represent concrete data types. Abstract data types

are defined only by behavior, not by structure. They appear, for example, in the following:

• The set structure, in which elements do not repeat and have no defined position.

• The bag structure, in which elements may repeat but still do not have a defined position.

• The ordered set structure, in which elements do not repeat but have a defined position.

• The sequence structure, in which elements may repeat and have a defined position.

The concrete data types, on the other hand, are physical implementations for the abstract versions.

For example, a list may be implemented in many forms, such as an array, binary tree, linked list, etc.

In the case of concrete data types, besides behavior, there is also a physical structure that defines them.

6.5.1 Set
An association role, by default, is a set, that is, a structure where elements do not repeat and where

there is no defined position for them. In Figure 6.26, the fleet is an example of a set.

If someone tries to link the same car to the same person a second time, nothing happens,

because it already belongs to the set.

Fleet

AVOID!

ownerPerson Car1 1

*1

FIGURE 6.25

A simple collection being inadequately represented as a class.

Car

owner fleet

Person 1 *

FIGURE 6.26

A simpler model for the situation presented in Figure 6.25.

1336.5 Collections

6.5.2 Ordered set
Suppose a book that is not yet in stock has a list of people interested in buying it as soon as it is

available. If it cannot be assured that the quantity of books received will fill all the orders, then the

fairer way to attend to these customers is by establishing a line from the oldest reservation to the

newest. This requires that the customers have a position in the line.

If the same customer cannot reserve the same book more than once, then it is still a structure

with no elements repeated, but now with defined positions. This leads to the ordered set structure.

In the diagram, the role may be marked with the constraint {ordered} to indicate that it is a collec-

tion where elements do not repeat but have defined positions, as seen in Figure 6.27.

The constraint {ordered} over an association role means that the elements linked on that role

have position (first, second, third, . . . , last), but still cannot be repeated.

6.5.3 Bag
There are situations in which the position of the elements does not matter, but each element may

appear more than once in the collection. That structure is called a bag.

For example, one may need to know how many people viewed the details of a book, and it may

be important also to know how many times each one viewed it. It is not necessary to know who

viewed it first, but the information on the number of views is necessary. That is a typical case for

using a bag. Each time a person views the details of a book, a new link is added on the association

defined as a bag. The model is shown in Figure 6.28.

6.5.4 Sequence
The sequence allows elements to be repeated and also assigns a position to them. For example,

imagine that people that buy a given value worth of books qualify for receiving a gift, but a limited

quantity of gifts is available. Thus, a list of people that qualify to receive the gift may be built and

the gifts will be distributed to the first members of the list as soon as gifts become available. If

someone again buys more than the limit established to receive a gift, she will enter the list again.

Book Customer

*{ordered} reservation
*

FIGURE 6.27

An ordered set of reservations for a book.

Book Customer

*{bag} viewer
*

FIGURE 6.28

An example of a bag.

134 CHAPTER 6 Conceptual Modeling: Fundamentals

Thus, in that structure the position of an element is relevant and each element may appear more

than once: this corresponds to a sequence structure, as seen in Figure 6.29.

The multiplicity � on the Livir side means that not all customers are qualified for a gift and

that they may qualify more than once.

The sequence has two important special cases. When the first element to be removed is always

the oldest in the sequence, as in the case of Figure 6.29, then the structure is also a queue. UML

does not define a constraint for queues, but a stereotype on the sequence constraint would do the

job: {sequence}{queuec.

When the first element to be removed is the newest in the sequence, than it behaves like a stack,

and may be stereotyped as such: {sequence} {stackc. Queues and stacks that do not repeat ele-

ments may be defined respectively as {ordered}{queuec and {ordered}{stackc.

A general list may have elements removed and inserted at any position. Queues and stacks have

elements inserted and removed only at predetermined positions, as explained above, although, in

some cases, all of their elements may be browsed.

A curiosity to be mentioned now is that in the real world most collections are strict sets and not

sequences, but even so, the most used programming structure is still the sequence, and not the set,

which indicates a gap between reality and the data structures used in programming.

6.5.5 Map
When a concept has a unique attribute, a map may be created from that attribute to the concept, in

such a way that it is easier to identify and find specific instances of the concept. For example, as

the ISBN is unique for a book, associations to Book may be qualified by the ISBN, meaning that

instead of having a set of books, the origin class has access to a map that allows immediate identifi-

cation of any book if its ISBN is known. Figure 6.30 shows an example of qualified association.

The small rectangle at the left side of the association in Figure 6.30 represents a qualifier for

the class at the opposite side of the association. Notice that instead of “�,” the role of the right side

* {sequence} qualifiedForGift Customer

Livir

*

FIGURE 6.29

An example of a sequence.

Book

0..1

1

Livir

isbn

<<unique>> <<immutable>> +isbn : ISBN
+title : String
+authorsName : String
+year : Integer
+pageCount : Natural

FIGURE 6.30

An example of qualified association representing a map.

1356.5 Collections

is now bounded by “0..1”; the association should now be read as follows: “for each possible ISBN

there is no more than one book.” Some valid ISBN values may not be associated to any book,

because they were not registered in the system or because the ISBN, although valid, has simply not

yet been assigned to a book; however, if one ISBN is taken by a book, no other book may share it.

In practice, a qualified association is still an association “to many,” but the objects belonging to the

role may be accessed by one of their attributes.

The role at the left side (the qualifier side) is marked with “1,” meaning that each book has a

single ISBN, not less or more. This has to necessarily be true, because an ISBN is unique and not

optional for the class Book, and therefore, it is mandatory and does not allow repetition.

The qualifier is not only a way to access objects in an easier way. It is also a powerful modeling

tool. For example, consider a situation where a person may own many phones, but only one of

each kind. How do we represent this? An elegant model for that situation is shown in Figure 6.31.

In the case of Figure 6.31 one person may have up to four phones, but just one of each kind. If

more kinds are added to the enumeration later, then more phones may be associated to each person.

If the role on the right side was 1 instead of 0..1, then one person should necessarily have four

phones, each one a different kind. That use of a qualified association with a mandatory role usually

makes sense only when the qualifier is an enumeration or a finite set.

In the example of Figure 6.30, the qualifier is an attribute of the qualified class, and in that case

it is called an internal qualifier. On the other hand, in Figure 6.31 the qualifier is not an attribute

of the class, and it is called an external qualifier.

6.5.6 Partition
In Figures 6.30 and 6.31, the multiplicity 1 or 0..1 on the right side of the figure means that the associ-

ation is a mapping, that is, for each value of the key there is at most one instance of the qualified class.

What if instead of “1” or “0..1” the multiplicity was marked with “�”? In this case, the associa-

tion would read as follows: “for each key there is a set of instances of the qualified class.”

For example, books may be classified by genre. As many books may belong to the same genre,

the genre attribute may not be unique. But it is possible to define a partition on the set of books

based on their genre, as shown in Figure 6.32.

<<enumeration>>
TelephoneKind

<<Constant>> +home
<<Constant>> +work
<<Constant>> +cellphone
<<Constant>> +message

Person
kind:TelephoneKind

Phone

0..1

1
+number : PhoneNumber

FIGURE 6.31

Use of a qualifier as a modeling tool.

136 CHAPTER 6 Conceptual Modeling: Fundamentals

Figure 6.32 states that for each particular value of genre there is a set of books (with zero or

more elements). The role multiplicity 1 on the left side indicates that every book has a genre.

6.5.7 Relation
Now, imagine that a book may have more than one genre, as, for example, The Hitchhiker’s Guide

to the Galaxy (Adams, 1979), which can be classified both as science fiction and humor. For repre-

senting the possibility of a book having more than one genre in the example of Figure 6.32, it

would be sufficient to change the multiplicity on the left side of the association to � (if a genre is

optional) or 1..� (if it is mandatory). Additionally, the genre should be removed from the attributes

of Book, becoming an external qualifier, because the genre attribute should allow multiple values.

Figure 6.33 shows the resulting relation.

<<unique>> +isbn : ISBN
+genre : BookGenre

genre:BookGenre

<<Constant>> +mystery
<<Constant>> +romance
<<Constant>> +science fiction
<<Constant>> +historical romance
<<Constant>> +thriller
<<Constant>> +humor

Livir

Book

1 *

<<enumeration>>
BookGenre

FIGURE 6.32

An example of a partition.

<<unique>> +isbn : ISBNgenre:BookGenre

<<Constant>> +mystery
<<Constant>> +romance
<<Constant>> +science fiction
<<Constant>> +historical romance
<<Constant>> +thriller
<<Constant>> +humor

Livir

Book

1..*
*

<<enumeration>>
BookGenre

FIGURE 6.33

An example of a relation.

1376.5 Collections

The relation of Figure 6.33 states that a book may have one or more genres and a genre has a

set of books associated with it. As a book may have more than one genre, then the qualifier should

be necessarily external.

6.6 Organization of the conceptual model
The elaboration of the conceptual model involves more than just putting concepts, attributes, and

associations together. For the conceptual model to be a reliable and organized representation of

real-world information, it is necessary to use some modeling techniques.

The main organizational techniques for concepts may be distinguished into three groups:

• Structural: Representing generalizations among concepts, as for example, BankAccount

generalizing SavingsAccount and CheckAccount.

• Associative: Representing associative roles that some concepts may play related to others, as for

example, Student and Professor being roles a Person may play related to a school.

• Temporal: Representing relations among different states of a concept, as for example an Order

being in states AttendingPayment and Paid.

Novice analysts and sometimes even experienced ones tend to think that the only way to factor-

ize information is by the use of inheritance, or generalization.10 However, it is necessary to apply

some judgment before deciding on using this or that technique. Inheritance may be used only when

a concept effectively has two or more subtypes. Although UML allows an instance to change its

class, only a few languages, such as Smalltalk (Goldberg & Robson, 1989), tried to implement

such a feature, maybe because there are some unresolved inherent difficulties associated to the fact

that one instance could change its internal structure on the fly. Most object-oriented languages

ignore this feature due to the problems it raises and due to the fact that it is usually unnecessary,

because most behaviors that could be modeled by this feature also have alternate simpler represen-

tations. Thus, for practical terms, it is usually the case that an instance may not change its class: it

is born as a member of one class and it will die a member of the same class.11 As students may

become professors, they do not qualify as subtypes of people (the best solution for modeling this

situation is given in Section 6.6.2).

Another counterexample is Worker and Customer being modeled as subclasses of Person. This

is bad first because no one is born a worker or customer; a person becomes a worker or customer

when associated to a company. More than that, the same person may be a customer or worker in

more than one company. Using inheritance in this case would create conceptual problems that can

produce duplicity in records and data inconsistency.

The following subsections present details on the three approaches to the organization of concepts.

10Just try to search Google for images with the keywords “UML” and “inheritance.” You will see lots of examples of

bad use of inheritance, as, for instance, Person as a generalization of Student and Professor.
11More specifically, an object is also an instance of all of its superclasses (Section 6.6.1). The idea is that the set of

superclasses should not change after the instance is created.

138 CHAPTER 6 Conceptual Modeling: Fundamentals

6.6.1 Generalization, specialization, and inheritance
For years, inheritance was considered the most important feature of object-oriented languages.

Languages such as Smalltalk, for example, were built over a single hierarchy of classes based on

inheritance.

As time went by, this emphasis lost strength, because it was perceived that inheritance is not

always the best idea for solving modeling problems. Today, inheritance is considered just one of

the techniques that help to factorize information that otherwise would be repeated in classes.

Inheritance, in object-oriented systems, occurs when two classes relate through a special associ-

ation called a generalization (or a specialization, depending on the direction you look). A class that

generalizes another class is its superclass, and the specialized one is the subclass.

Generalization should be used every time there is a set of classes X1, . . ., Xn that have specific

differences and common similarities, so that the similarities can be grouped in a superclass X (gen-

eralization of X1, . . ., Xn) and the differences maintained in X1, . . ., Xn.

The generalization has a semantic much different from the other associations of the conceptual

model. It exists only between classes, not between instances as normal associations do. For exam-

ple, if a class Customer is associated to the class Order by a normal association, then instances of

Customer may be linked to instances of Order: the normal association allows the links to exist. On

the other hand if a class BankAccount is a generalization of CheckAccount, then every instance of

CheckAccount is also an instance of BankAccount (Figure 6.34). There are not two instances to be

linked, just one instance with the properties defined in both class. In the example, every instance of

CheckAccount has three attributes: number, overdraftLimit, and overdraftFee. However, not every

instance of BankAccount is an instance of CheckAccount: the generalization is anti-symmetric. An

instance of BankAccount has only one attribute: number.

Thus, one of the reasons to use inheritance is when there are some similar properties (attributes,

associations, or methods) in different classes, which may be factorized in an abstract construct such

as a superclass.

If the superclass may have its own instances, then it is a normal class. However, most of the time

superclasses are defined not to allow direct instances: only their subclasses may have instances. In

this case they are known as abstract superclasses. Abstract superclasses are represented in UML by a

class with its name written in italic, or, more visibly, with the constraint {abstract} (Figure 6.35).

BankAccount

CheckAccount

+overDraftLimit : Money
+overDraftFee : Percentage

<<unique>> +number : AccountNumber

FIGURE 6.34

An example of generalization with inheritance.

1396.6 Organization of the conceptual model

In Figure 6.35, the BankAccount class is abstract, and therefore cannot have direct instances;

only its subclasses may have instances. Instances of CheckAccount have number, overdraftLimit,

and overdraftFee as attributes; instances of SavingsAccount have number and interestRate as attri-

butes. Both subclasses also inherit the association to the class Customer, and all instances of both

classes must, therefore, be linked to an instance of Customer.

Generalization in not advisable when the superclass has no properties, that is, no attributes,

associations, or methods of its own (Figure 6.36).

Generalization should also not be used when subclasses do not have properties (attributes, asso-

ciations, or methods12) that differentiate them from each other as in Figure 6.37.

In these cases, the ideal solution is to use a single attribute, possibly typed with an enumeration,

to differentiate instance groups of objects that have the same properties (Figure 6.38).

Besides these rules, before deciding on the use of inheritance, it is advisable to verify if the gen-

eralization really represents a structural classification of the elements, and not an associative or

temporal organization, as seen in the following sections.

Thing

AVOID

CustomerBook

<<unique>> +id : IdNumber
+name : String
+address : String

<<unique>> +isbn : ISBN
+title : String
+authorsName : String
+year : Integer
+pageCount : Natural

FIGURE 6.36

Situation where generalization is not recommended, because there are no generalized properties.

{abstract} BankAccount Customer

1

*

SavingsAccount

+interestRate : Percentage

CheckAccount

+overDraftLimit : Money
+overDraftFee : Percentage

<<unique>> +number : AccountNumber

FIGURE 6.35

Two classes being generalized by an abstract class.

12Methods are only considered when design classes are being modeled. Remember that conceptual classes do not have

methods.

140 CHAPTER 6 Conceptual Modeling: Fundamentals

6.6.2 Association classes
One issue frequently misunderstood in conceptual modeling is related to the definition of generaliza-

tion among classes that are not really structural subtypes, but roles. For example, a bookstore may

have two “types” of people: customers and workers. After discovering that both have a name, address,

phone, etc., an analyst could assume that they are two concepts that should be generalized as Person.

But that apparently simple solution (Figure 6.39) generates a complicated problem, because they are

not different types of people, but different roles that people could play when relating to a company.

Person

Man Woman

AVOID

+address : String
+name : String
<<unique>> +id : IdNumber

FIGURE 6.37

Situation where specialization is not recommended because there are no properties being specialized in

subclasses.

Person

+address : String
+name : String
<<unique>> +id : IdNumber
+gender : HumanGender

<<enumeration>>
HumanGender

<<Constant>> +male
<<Constant>> +female

FIGURE 6.38

A more adequate model for the situation of Figure 6.37.

Person

AVOID

1

* OrderCustomerWorker

+wage : Money +creditLimit : Money

<<unique>> +id : IdNumber
+name : String
+address : String
+phone : PhoneNumber

FIGURE 6.39

Unsuitable way to represent roles with generalization.

1416.6 Organization of the conceptual model

Why is this a problem? Imagine that a bookstore worker decides to buy books at her workplace.

In this case the worker will be behaving like a customer. An unsuitable although very frequent

solution to this is to create a second record for the worker as a customer, as if she was a different

person. As a consequence, the same person would have two records in the system: one as a worker

and another as a customer. This produces data redundancy and it is a source of data inconsistency,

because, for example, if the worker has registered a change in address, the customer may still keep

the old address. As they are the same person, this information is inconsistent.

A more suitable solution is to consider that there exists a Person that may relate to a Company

in at least two ways: as a customer and as a worker. The specific properties of a customer (credit

limit, for instance), and of a worker (salary, for instance), would be properties of the associations,

and not of the person. To represent these association properties, an association class should be

defined for each one, as shown in Figure 6.40.

Therefore, when the same object may play different roles related to other objects, these roles

should not be represented as subclasses, but as association classes.

In order to decide which situation demands inheritance and which situation demands association

classes, it may be verified if the “subtypes” depend on the existence of a third class to make sense.

If the “subtype” depends on a third class, then the solution consists of using an association class.

For example, nobody may be simply a student; if someone is a student, then she must be associated

to a school or at least to a teacher.

Thus, it is unsuitable to create classes that represent kinds of people that in reality are not sub-

classes, but roles. Workers, teachers, students, principals, customers, etc., should not be subclasses

of Person. Concepts like these only make sense if related to other concepts such as Company,

School, Department, etc. A person may be worker at a company, student at a school, etc.

The difference between using an association class and an intermediary concept is subtle.

Figure 6.41 shows an example of a reservation being modeled as an intermediary concept, and

Figure 6.42 is a version of that reservation modeled as an association class.

In the case of Figure 6.41, a reservation associates a customer to a book. In the case of

Figure 6.42 the customer and the book are directly associated, and the reservation, as an association

Person

Customer Order

Company
workingPlace

shop

worker

customer

1

*

*

*

*

*

Worker

+wage : Money

+creditLimit : Money

<<unique>> +id : IdNumber
+name : String
+address : String
+phone : PhoneNumber

FIGURE 6.40

More suitable representation of roles as class associations.

142 CHAPTER 6 Conceptual Modeling: Fundamentals

class, is a consequence of that association. However, in Figure 6.41, the same customer may have

many reservations for the same book (nothing in the model prevents it), while in Figure 6.42 one

customer may have just one reservation for each book. The link between the customer and the

book may exist or not; it is not a bag. However, if both roles of the association in Figure 6.42 were

marked with {bag}, then a user could have more than one reservation for the same book and the

model in Figure 6.42 would be equivalent to the one in Figure 6.41.

The issue of having different records for the same person, as discussed above, frequently creates

problems in information systems. For example, a student enters the university and is registered as such.

Then, she receives a scholarship and a new record is created. Then, she works at a lab, and is registered

again. Finally, she is hired as a professor and a new record is created. She appears many times in the

university records, as if she was different people. Her old records become out of date; address and

phone numbers usually are only updated in the most recent records. This happens because systems usu-

ally use inheritance (Figure 6.43), or completely separated records (Figure 6.44) in these cases.

To avoid this problem, as seen before, the solution is to recognize that a person is always the same.

The person’s roles at the institution change, but the person does not become a new person. Thus, the

solution for this situation is more suitable when based on association classes, as shown in Figure 6.45.

Customer Reservation Book1

*

*

1

FIGURE 6.41

A reservation being modeled as an intermediary concept.

Customer

*

* Book

Reservation

FIGURE 6.42

A reservation being modeled as an association class.

Person

LabWorker ProfessorScholarStudent

AVOID!

FIGURE 6.43

Unsuitable representation of many records for the same person with inheritance.

1436.6 Organization of the conceptual model

In Figure 6.45, if a person can play the same role more than once, then the multiplicity at the

left side of the association should be �.
A reasonable exception may be admitted if just one kind of person exists in the context of the system.

For example, if the system only manages information about professors and that is the only role a person

may play at the university in the context of that information system, then it would be easier just to create

a class named Professor, and in the context of that system, Professor is a synonym of Person because

there are no other kinds of people. The same thing happens in the Livir example, where it was decided to

keep Customer as the only class representing people, instead of transforming it into an association class.

6.6.3 Modal classes
Modal classes are used to model concepts with instances that can change from one state to another

during their existence, changing, possibly, their properties’ structure, including attributes, associa-

tions, and behavior. Although a few programming languages allow instances to change their struc-

ture by changing their class, this is not assumed as a modeling principle because such changes may

create unpredictable structural problems.

Scholar

University

1 1

11

* * *

LabWorker Professor

AVOID!

Student

FIGURE 6.44

Unsuitable representation of many records for the same person as separated concepts.

LabWorker Professor

Person

ScholarStudent

University

0..1
0..1

0..1

0..1

*

*
*

*

FIGURE 6.45

Representation of many records for the same person as association classes.

144 CHAPTER 6 Conceptual Modeling: Fundamentals

Even if an instance could change its class, redefining its attributes and associations remains a

problem. However, there are modeling techniques that allow one to represent situations that would

need objects that change class without using this feature. The idea is not to change the object class,

but its state. When a TV is turned on it does not become a new type of TV: it just changes its state.

Three increasingly complex situations related to state modeling may be identified:

• Stable transition: The different states of an object do not affect its structure, but only its

property values (attributes and links).

• Monotonic increasing transition: As the object changes state it may only keep its properties or

acquire new ones.

• Nonmonotonic transition:13 As the object changes state it may keep, acquire, or lose properties.

Modeling solutions for the stable and monotonic increasing transitions are quite simple.

However, for modeling the nonmonotonic transition, a design pattern named State (Gamma, Helm,

Johnson, & Vlissides, 1995) is necessary, as seen in the following subsections.

6.6.3.1 Stable transition
Frequently, different states of an object may be represented by a simple attribute. In fact, the set of all attri-

butes and links of an object defines its state. For example, the state of an order could be modeled simply

as a state attribute typed with an enumeration whose values may be “ongoing,” “concluded,” and “paid.”.

Another example is the suspended attribute of the Address class (Figure 6.46). If a package sent

to that address returns, then the address is marked as suspended (the attribute is changed to true).

When the customer updates the address it is changed to false again. The default value for the sus-

pended attribute is false.

If the attribute suspended is true, then the address cannot be used for deliveries.

The transition is considered stable because just the value of the attribute changes. The inner structure

of the object is kept the same. This does not happen with the two cases presented in the next subsections.

6.6.3.2 Monotonic increasing transition
The situation is a bit more complex when the concept may acquire new attributes or associations as it

changes state. For example, invoices that are waiting for payment have only dueDate and dueValue as

attributes. But an invoice that is paid additionally has paymentDate and paidValue (Figure 6.47).

Address

+street : String
+number : Natural
+city : String
+state : String
+zip : ZipCode
+suspended : Boolean = false

FIGURE 6.46

A concept with a stable state transition.

13The monotonic decreasing case can be considered here too (a transition that can only remove properties from an

instance).

1456.6 Organization of the conceptual model

It is said that the transition in Figure 6.47 is monotonic increasing because new attributes and

associations may be created for it, but not eliminated. This implies that a paid invoice cannot go

back to be a new invoice again.

It would not be adequate to model that situation with inheritance, as seen in Figure 6.48, because

in that case, an instance of NewInvoice should be transformed into an instance of PaidInvoice, or it

has to be destroyed and created again from scratch, and all its references should be rebuilt.

Another solution that is not very nice, but still very popular, consists of creating a single class

Invoice and allowing certain attributes to be null until the class changes its state, as shown in

Figure 6.49. Usually, the verification of the instance consistency is done in the updating methods.

But an invariant could also be used (as explained in Section 6.7) to guarantee that no instance

reaches an invalid state, as, for example, with a defined paymentDate and null paidValue.

This model is still not good because it generates a class with low cohesion, which has, in conse-

quence, complex consistency rules that should be checked frequently. This kind of class is highly

susceptible to design and programming errors.

It would be better to model the invoice concept so that the consistency of the objects could be con-

strained by the structure of the model itself, and not by external rules. As it is a monotonic increasing

transition, then it is possible to model this situation just by splitting the original concept in two: one that

represents the invoice, and another that represents its payment with the properties that were added when

the payment occurred. These two concepts are, then, linked by a 1 to 0..1 association (Figure 6.50).

With the model presented in Figure 6.50 it is impossible for an invoice to have a defined pay-

ment date and undefined paid value, and this is guaranteed without performing any further con-

straint on its attributes or associations.

The state of an invoice is a derived attribute, which is calculated as follows: if there is no pay-

ment linked to the invoice, then the invoice is new; otherwise it is paid. In OCL that condition may

be expressed as

{abstract} Invoice

PaidInvoice

+paymentDate : Date
+paidValue : Money

NewInvoice

+dueDate : Date
+dueValue : Money AVOID

FIGURE 6.48

Unsuitable way to model a monotonic increasing transition with inheritance.

NewInvoice PaidInvoice

+dueDate : Date
+dueValue : Money

+dueDate : Date
+dueValue : Money
+paymentDate : Date
+paidValue : Money

FIGURE 6.47

A concept with a monotonic increasing transition.

146 CHAPTER 6 Conceptual Modeling: Fundamentals

Context Invoice::state
derive:
if self.payment-.isEmpty() then

InvoiceState::new
else

InvoiceState::paid
endif

The expression above introduces two new OCL features:

• if-then-else-endif, which is one of the OCL selection functions. If the condition after the if is

true, then the function results in the evaluation of the expression after the then; otherwise it

results in the evaluation of the expression after the else.

• isEmpty(), which is a function applied to a collection structure and returns true if the collection

is empty or false otherwise. It is an easy way to check if there is some object linked to another

object or not.

6.6.3.3 Nonmonotonic transition
With nonmonotonic transition, an object may both gain and lose properties as it changes its state.

Fortunately, it is not frequent that an information system requires any information to be lost.

However, sometimes, that can be exactly what should be done.

There are many ways to conceive and model a reservation system for a hotel, for example. One

of them consists of regarding the hosting as an entity that evolves from a reservation in three steps:

1. Initially, a potential guest makes a reservation indicating the days she intends to arrive and

depart, the kind of accommodation, and the number of people. The hotel provides the fee.

2. When the guest checks in, the arrival date is registered (it may be the same date of the

reservation or a different date). The hotel assigns a room that may be different from the one

<<enumeration>>
InvoiceState

Invoice Payment

0..1
1 +date : Date

+paidValue : Money<<Constant>> +new
<<Constant>> +paid

+dueDate : Date
+dueValue : Money
+ / state : InvoiceState

FIGURE 6.50

Effective way to model a monotonic increasing transition.

Invoice

AVOID!<<Constant>> +new
<<Constant>> +paid

+dueDate : Date
+dueValue : Money
<<optional>> +paymentDate : Date
<<optional>> +paidValue : Money
+state : InvoiceState

<<enumeration>>
InvoiceState

FIGURE 6.49

Unsuitable way to model a monotonic increasing transition with a single class and null attributes.

1476.6 Organization of the conceptual model

initially reserved and, if this is the case, it informs the guest of the new fee. The expected date

of departure continues to exist, although it can be updated during the stay.

3. When the guest checks out, the expected departure date ceases to exist and the effective

departure date is registered, and the bill has to be paid.

This set of states may be modeled during business analysis with a state machine diagram similar to

the one in Figure 6.51.

If a hosting just acquires new attributes and associations as it evolves through the states of

Figure 6.51, then it could be represented by a chain of concepts like the one shown in Figure 6.52.

However, it is possible to assume that some state transitions may eliminate some attributes or

associations that have no more meaning in the new state, as, for instance, estimated dates, which

are replaced by real dates, and the type of room, which will be replaced by a real room that already

has a type.

In order to represent this kind of situation, it is necessary to use a design pattern known as State

(Gamma, Helm, Johnson, & Vlissides, 1995). According to this pattern, a class should be separated

from its states. Properties that are shared by all states are kept in the original class, and properties

that belong only to one or a few states are moved to the respective states. These states are speciali-

zations of an abstract class, as shown in Figure 6.53.

In Figure 6.53, the attributes nrPeople and fee exist in every possible state of a hosting, and this

is why they are represented in the Hosting class. The other properties are distributed among the

three possible states:

• Reservation: A hosting, in addition to the number of people, has estimated arrival and leaving

dates and the accommodation type (not yet a room), from which the initial value for the hosting

fee is obtained.

• CurrentLodging: A hosting, in addition to the number of people and fee, has an effective check-

in date, estimated leaving date, and an effective room assigned. The estimatedArrival attribute

and the straight link to the accommodation type are not necessary anymore and are discarded.

• FinishedLodging: A hosting, in addition to the number of people and fee, has effective check-in

and check-out dates, and an effective room that was assigned. The estimated leaving date is not

necessary anymore and is discarded.

check outcheck inreservation Reservation CurrentLodging FinishedLodging

FIGURE 6.51

A state machine diagram for modeling a simple hosting process.

CheckIn CheckOutReservation

1

0..1

1

0..1

FIGURE 6.52

Possible model for reservations as monotonic increasing transitions.

148 CHAPTER 6 Conceptual Modeling: Fundamentals

From the point of view of a Room, it can be linked to at most one CurrentLodging (0..1), but it

can be associated to many FinishedLodging (�). This way, the temporal property of that association

is already modeled too, because the association of a room to lodging may be at most one in the

present, but many in the past.

6.7 Invariants
There are situations where the expressivity of the diagrams is not enough to represent rules that

should be recorded in the conceptual model. In these cases, the analyst should use invariants.

GuestGuest

1

1

1

1

0..1

1

*

*

*

1 state

Hosting

<<unique>> +id : IdNumber

+name : String *

1
+nrPeople : Natural

+estimatedArrival : Date
+estimatedLeave : Date

+checkIn : Date
+estimatedLeave : Date

+description : String +number : Natural
+fee : Money

+checkIn : Date
+checkOut : Date

+fee = state.accomodationType.fee

HostingState

Reservation CurrentLodging

AccomodationType Room

FinishedLodging

FIGURE 6.53

Nonmonotonic state transitions modeled with the State design pattern.

Order
1 0..5

Item

FIGURE 6.54

A constraint that can be represented as a role multiplicity.

1496.7 Invariants

Invariants are general constraints over instances of the classes. Some constraints are represented

in the association roles; for example, a constraint that states that an order should have not more

than five items can be represented as in Figure 6.54.

However, not every possible constraint may be represented in the association roles. Consider

the model shown in Figure 6.55.

The totalValue of an order is a derived value in Figure 6.55. The sum function in OCL returns the

sum of the numerical elements that are produced for each of the elements of the set. The expression

between parentheses after sum indicates how each individual numerical value is obtained from the

elements of the set. The expression used to define the totalValue in Figure 6.55 is an abbreviation of

Context Order::totalValue:Money
derive:
self.item-.sum(anItemjanItem.subtotal)

Someone could also try to write the expression above as self.item.subtotal-.
sum(aSubtotaljaSubtotal) or self.item.subtotal-.sum(). However, in that case, as the role item is a

set and not a bag or sequence, the subtotals would be also a set. If two items have the same value

for the subtotal, then it would appear just once in the set and the sum would not reflect the inten-

tions of the modeler.

The subtotal in the Item class is also a derived value calculated by the following expression:

Context Item::subtotal:Money
derive:
self.quantity*self.price

The item price has an initial value defined as the price of the book that is linked to the item:

Context Item::price:Money
init:
self.book.price

Order

Item Book

+price : Money+quantity : Natural

+price : Money = book.price
+ / subtotal : Money = quantity*price

1

1

*

*

{totalValue<=1000}

+ / totalValue : Money = item–>sum(subtotal)

FIGURE 6.55

An example of a class with an invariant.

150 CHAPTER 6 Conceptual Modeling: Fundamentals

Now, if there is a constraint that states that no order can have a total value higher than 1000

dollars, it would not be possible to represent it in the role multiplicity, as done in Figure 6.54.

However, the constraint could be represented by using an invariant like the following:

Context Order
inv:
self.totalValue,51000

Invariants may appear in the diagram indicated as constraints associated to a class. The invariant

mentioned above is represented just below the Order class name in Figure 6.55.

The invariant declaration in OCL does not have a subcontext; it must be true for every instance

of the class, not for a particular attribute or association role.

Many software developers, when faced with the need to use constrains like invariants, choose to

incorporate these rules in methods that update the attributes and links of the objects. For example,

considering Figure 6.55, a test for the constraint could be added to the method that adds a new

item to the order to check if the total value surpasses one thousand dollars; in that case, the opera-

tion would be prevented from completing.

The problem with that approach is that the verification would be made only on that method, but it

would not be a general rule for every method. The developer knows the rule now, but what happens

if another developer assumes the project later? What about maintenance? A developer that changes

the system some years later would not necessarily know that that rule exists. She would probably not

review the requirements document (assuming that it still exists and is updated), and she would poten-

tially introduce a conceptual error in the system if she allows other methods to not follow that rule.

For instance, if the check was implemented only in the operation that adds a new item to an

order, what if the item has its price changed? What if the item has its quantity changed?

Thus, general conceptual rules that always apply should be explicit in the conceptual model,

and not relegated to verifications in the programming code. Inconsistent instances may be pre-

vented. If it is possible, such constrains may be represented in the diagram structure; otherwise,

they should be represented by invariants.

Another example, which happens frequently, is the need to constrain two associations that

would be independent otherwise. In Figure 6.56, note that students are associated to a chosen

career, each career has courses, and students take courses.

Course1

1

*
*

1..*

*

Student

Career

FIGURE 6.56

A model that needs a further constraint to be consistent.

1516.7 Invariants

However, the model depicted in the figure does not guarantee that students will choose courses

associated to their career. According to the model, a student may take any course, and if that is not

the case, a constraint should be added to the model. UML allows constraints to be added between

associations (with the use of dashed lines). This notation is an alternate form for an invariant.

To guarantee that a student can only take courses related to her own career an invariant like the

following should be provided:

Context Student
inv:
self.course.career5self.career

The expression uses a feature of sets (not allowing elements to be repeated) to verify that all

courses taken by the student belong to the student’s career. The expression self.career results in the

student’s career (a set with a single element because of the multiplicity of the role from student to

career). On the other hand, the expression self.course.career results in the set of all careers associ-

ated to all courses taken by the student. If there are courses from different careers, then that set

could not be equal to self.career (which has a single element). Otherwise, if all careers are the

same then the set self.course.career will contain a single element (because sets do not repeat ele-

ments). If that element is the same as self.career, then the invariant will be true and valid.

6.8 Iterative construction of the conceptual model
This section shows how the conceptual model can be refined with information from the expanded

use cases. Initially, we discuss how to find concepts and attributes from the use case texts. Next,

we discuss how to identify associations of the model. Finally, we present a complete example

with some use cases from the first iterations of the Livir project, and their contribution to the con-

ceptual model.

6.8.1 How to find concepts and attributes
The process of discovering the elements of the conceptual model may vary. However, one of the

most useful techniques is to look at the text of the expanded use cases or system sequence dia-

grams. From those artifacts one can discover all textual elements that eventually refer to informa-

tion to be managed.

Usually, these textual elements are composed by nouns such as “person,” “order,” “payment,” etc.,

or by expressions that denote nouns (known in linguistics as noun phrases), such as “payment authori-

zation.” Moreover, sometimes even verbs may represent concepts, when verbs express an act that

corresponds to a noun, as, for example, the verb “paying,” which corresponds to the noun “payment.”

The analyst should mind the project goals and scope when looking for the elements of the con-

ceptual model. It is not advisable to represent in the conceptual model information that is irrelevant

to the system. Thus, not every noun, adjective, or verb should be considered as a model element.

The analyst is responsible for understanding what the real information needs of the system are, and

for filtering the irrelevancies.

152 CHAPTER 6 Conceptual Modeling: Fundamentals

The process of identification of concepts and attributes consists of the following:

1. Identify in the expanded use case text or in the arguments of the operations in the system sequence

diagram the words or phrases that correspond to concepts that are relevant to maintain the record.

2. Group words or phrases that refer to the same entity as, for example, “buy” and “acquisition,”

“customer” and “client,” etc.

3. Decide which of the identified elements are complex concepts, and which are mere attributes.

Usually, attributes are the elements that may be considered alphanumeric (names, numbers,

codes, monetary values, Boolean values, etc.), enumerations, or primitive (dates, ISBNs, etc.).

Applying this technique to the use case of Figure 5.10, the main elements related to the use

case may be found. Figure 6.57 shows these elements underlined.

Even if there is no preliminary conceptual model, this use case is enough to identify some con-

cepts that belong to the system domain. If the preliminary conceptual model already exists, then

the use case helps to refine the model, indicating new concepts, new attributes, or structure

changes. For the example, we assume that there is already a preliminary conceptual model, which

is depicted in Figure 6.58.

The terms identified in the use case text of Figure 6.57 are, in order of appearance:

• Customer: A class that is already in the conceptual model.

• Keyword: Keywords are used for searching; they are not considered at this point attributes of

complex concepts on their own (although they could be if search history or preferences have to

be recorded).

• Book: A class that is already in the conceptual model.

• Sale: In the context of that use case and at this point of analysis “sale” and “order” could be

considered synonyms. Thus, this is a class that is already in the conceptual model.

• Title, author, price, and page count: Attributes of Book. Author could still be considered a

complex concept if the information about authors is more complex than a single name.

• Publisher: A class that is already in the model. The use case probably is referring to the

publisher’s name.

• ISBN and cover image: Attributes of Book.

• Desired quantity: Cannot be considered an attribute of Book because it varies depending on the

order. It cannot be considered an attribute of the order either because it varies depending on the

book (there may be many books in an order). The desired quantity is, therefore, an attribute of

the association between a book and an order, represented by an intermediary concept or by an

association class called Item.

• Order summary: This is referring to an Order; it does not seem to be a new concept.

• Title, author (or author’s name), quantity, unit price, and subtotal: Except for subtotal all

attributes have been already mentioned. Subtotal may be a derived attribute of an Item. Unit

price is equivalent to price, which is already considered an attribute of Book. However, it may

in fact also be an attribute of Item as well.

• Total value: Derived attribute of Order.

• Finishes the order: This indicates an action that represents a change in the state of an order. Maybe

an attribute would be sufficient to represent this state, but more analysis would be advisable in

order to see if finishing an order is not a more complex operation (which is indeed it is).

1536.8 Iterative construction of the conceptual model

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least title, author, price, page count, publisher, ISBN, and cover
image.

3. The customer selects books from the list and indicates the
each one.

desired quantity for

4. The system generates the order summary (title, author, quantity, unit price and
subtotal for each book) and total value.

5. The customer finishes the order.

Exception 3a: The quantity asked is higher than the quantity in stock for one or more
books.

3a.1. The system informs the available quantities for each book that was ordered
above stock

3a.2. The user changes the desired quantities to meet the quantity in stock.

3a.3. Advances to step 4.

Exception 5a: The customer is not identified yet.

5a.1. The customer provides valid identification.

5a.2. Return to step 5.

Exception 5b: The customer does not have an account.

5b.1. The customer registers herself by providing username, password, and
email address.

5b.2. Return to step 5.

Exception 5c: No book was selected for buying.

5c.1. Return to step 1.

FIGURE 6.57

Use case with candidate concepts and attributes underlined.

154 CHAPTER 6 Conceptual Modeling: Fundamentals

• Quantity requested: Same thing as quantity.

• Quantity in stock: Probably a new attribute of Book.

• Available quantities: Synonym of quantity in stock.

• Identified: Could this be a state of a customer? Maybe not. It refers to whether the user is

logged in or not.

• Valid identification: This belongs to the security domain. However, the conceptual model

probably may have a way to identify customers. Usually ID numbers such as the Social

Security number are used for that purpose.

• Account: This again has to do with login.

• Username, password, and email address: Depending on the kind of security framework that is

used (or not) these may be attributes of a customer (or attributes of a user that is attached to a

customer), or they may even be completely addressed by the security framework and ignored in

the conceptual model. For now they are left as security issues, and not included in the

conceptual model.

From the information collected above, the preliminary conceptual model may be refined, and it would

become similar to the one shown in Figure 6.59, where new classes and attributes are highlighted.

Note that a single use case added significant new information to the model. This is no coinci-

dence, because that use case was considered the most important in the system and thus the first to

be detailed in iterations. Its complexity has a lot to contribute to the comprehension of the informa-

tion structure that the system should manage.

Not every association in Figure 6.59 had its multiplicities defined. The UML default for unde-

fined role multiplicity is 1, but the situation in Figure 6.59 is that associations with no multiplicity

defined were simply not analyzed up to this point and are considered “to be defined.”

Publisher SpecialOffer Confirmation

Discard Delivery

Arrival Return

Customer Cancellation Payment

Book

Order

FIGURE 6.58

Preliminary conceptual model for the current example.

1556.8 Iterative construction of the conceptual model

6.8.2 Dependent and independent concepts
A concept is dependent from others if it needs to be associated to them in order to make sense, that

is, to represent information that is minimally meaningful.14 Looking at Figure 6.59, it can be seen

that an order would not make sense unless it was associated to a customer and to a set of items.

Without those associations, the concept of Order would not make sense. The order also has other

associations in that figure, but they are optional.

A concept is independent if it has a meaning even without being associated to others.15 For

example, the Publisher concept may be understood just from its attributes, without being associated

to other concepts. The existing associations for a publisher are optional. Thus, the Publisher con-

cept, in that sense, is independent.

SpecialOffer

Book

Item

Discard

Arrival

1

1

1

1

Confirmation

Delivery

ReturnOrder

Publisher

+name : String

+title : String

*

*

*

*

*

+quantity : Natural
+ / subtotal : Money = price*quantity

+totalValue : Money = item → sum(subtotal)
+finished : Boolean = false

Customer Cancellation Payment

+price : Money

+authorsName : String
+price : Money
+pageCount : Natural
<<unique>>+isbn : ISBN
+coverImage : Image
+stock : Natural

FIGURE 6.59

The second version of the conceptual model, refined after the analysis of use case 01: Order books.

14There is a parallel between dependent concepts and transitive verbs. The sentence “He opened” does not make sense,

because the verb needs a complement, as for example, “He opened the can.”
15A parallel exists between independent concepts and intransitive verbs. The sentence “He slept” makes sense because the

verb does not require a complement. However, even intransitive verbs may have supplemental information (for example, “He

slept for three hours”), as independent concepts do.

156 CHAPTER 6 Conceptual Modeling: Fundamentals

But, what purpose does this distinction serve? It was discussed in Chapter 5 that only the sim-

plest concepts may be managed by CRUD use cases. Dependent concepts should not be considered

simple in principle, while independent concepts may be simple in principle.

In Figure 6.59, almost all the concepts are dependent. For example, a delivery depends on an

order, a confirmation depends on a delivery, and so on. Only Publisher, Book, and Customer are

independent concepts and candidates to be managed by CRUD use cases.

Concepts that are managed by CRUD use cases are usually those that can be accessed directly

when information is being retrieved from a system. Although adding the façade-controller class to

the model could wait for design modeling activities (Chapter 9), it can be added now to indicate

which concepts are independent ones. In principle, only independent concepts have mandatory links

to the controller class. Being linked to the controller class means that the instances of the class may

be accessed directly. For example, an instance of Book may be accessed directly by its ISBN.

However, an instance of Item is not accessible directly. To access an Item one has to navigate from

a Book or an Order. Thus, the Item is not linked to the façade-control class.

Although Book is an independent class, it was not linked to the controller because it has a mandatory

association to another independent class: the Publisher. In this case, any book may be accessed by look-

ing at the set of books of the publishers. If later it is discovered that books must be accessed directly,

independently from its publisher or that any other concept needs this kind of access, then (derived) asso-

ciations to the controller may be created as needed, but they are not created by default for every concept,

to avoid increasing coupling among classes.

There are, therefore, two main paths to reach information in the model of Figure 6.60: from a

publisher, and from a customer. All other concepts are reached by starting at one of those. Later, as

mentioned, information needs may require defining other paths. In Chapter 9, we see that an order

must also be accessed directly, because a number of system operations need to obtain an order by

its number or date independently of who the customer is or what books are in it.

6.8.3 How to find associations
If the information related to concepts and attributes is easily found in the use case texts, the asso-

ciations are not. As mentioned before, use cases indicate many operations that transform informa-

tion, but one must seek for clues about associations.

So, how do we find associations between complex concepts? There are at least two rules that can be

used:

• Dependent concepts (such as Order, Payment, Cancellation, etc.) should be necessarily

associated to the concepts that complement them (which may be dependent or independent).

• Associative information, that is, associations that are not mandatory, but that complement the

information in the model (such as “a person may own a car”), should be represented by associations.

Sometimes, associative information appears in the use case texts as concepts. For example, an

order could be an association between a customer and books), but it is sufficiently complex to be

represented as a concept. As an order is a dependent concept, there are associations between those

concepts and their complements.

1576.8 Iterative construction of the conceptual model

When one states that a person may own a car, that information should be represented by an

association. Many professionals who work with programming but not modeling could produce

models similar to the one presented in Figure 6.61. However, this is unsuitable, because (first) attri-

butes should not have concepts as type, and (second) the model is disguising a real association.

It is also unsuitable to use foreign keys (Date, 1982), as shown in Figure 6.62, because that also

disguises associations. This mistake is commonly made by modelers used to design relational data-

bases. Foreign keys must not be used in conceptual modeling because they are an implementation

technique.

Thus, when two complex concepts are related to each other, the construct to be used is the asso-

ciation (Figure 6.63).

The example of Figure 6.63, contrary to the others, respects a cohesion rule that states that a

concept should only contain its own properties. As the ID is an attribute of the owner, it should not

be represented as an attribute of a car (as in Figure 6.62). Another reason to have visible nondis-

guised associations is more practical: it is easier to see which objects have references to others.

Later (Chapter 9), we discuss how these visibility lines may be used for designing effective and

good quality object-oriented code.

SpecialOffer

Book

Item

Discard

Arrival

Livir
1

1

1

1

1

1

Confirmation

Delivery

ReturnOrder

Publisher

+title : String

*

*

*

*

*
*

+quantity : Natural
+ / subtotal : Money = price*quantity

+totalValue : Money = item
+finished : Boolean = false

Customer Cancellation Payment

sum(subtotal)

+price : Money

+authorsName : String
+price : Money
+pageCount : Natural
<<unique>>+isbn : ISBN
+coverImage : Image
+stock : Natural

+name : String

FIGURE 6.60

Refined conceptual model with a façade controller.

158 CHAPTER 6 Conceptual Modeling: Fundamentals

6.8.4 Example of iterative construction of the conceptual model
It was mentioned before that the Unified Process is use-case driven and architecture centered. But,

what does that mean in practice? We have seen already how to identify and detail use cases, and

we have also seen that they can be used as a source of requirements for refining the conceptual

model, which is the basis for the design class diagram, an important part of the system architecture.

Section 6.8.1 showed how the preliminary conceptual model could be refined with information

from the first detailed use case (Order books).

Applying that process again, simulating a second iteration for use case 02 Pay order, new con-

cepts and attributes are discovered (Figure 6.64).

The elements identified in this use case are:

• Delivery addresses: As a customer may have more than one delivery address and as addresses

are used to calculate delivery fees, they may not be represented by a simple attribute, but

instead are represented by a class.

• The second occurrence of delivery address refers to the specific address associated to the

current order. Thus, a new association is found between an order and one address.

• Delivery fee: Attribute of the order. But from where is this value obtained? If requirements are

further analyzed it would be discovered that different cities have different fees that depend

fundamentally on the distance from the city to the company headquarters. Thus a new class is

created (City), which is associated to Address, and the default fee for each city is defined as an

attribute of that class.

• Credit cards: New concept. Should be associated to a customer.

• Flag: Probably not an attribute, but a complex concept associated to a credit card.

AVOID!
Person Car

+owner : Person

FIGURE 6.61

An attribute disguising an association.

Person

<<unique>> +id : IdNumber +ownerId : IdNumber AVOID!

Car

FIGURE 6.62

An association disguised as a foreign key attribute.

Person

<<unique>> +id : IdNumber

owner Car

FIGURE 6.63

Suitable representation for the situation shown in Figures 6.61 and 6.62.

1596.8 Iterative construction of the conceptual model

• Card for payment: An association between an order and a customer’s credit card.

• Credit card operator: It is in fact an external actor; its data may be associated to the credit card flag.

• Card number, owner’s name, validity, security code: Attributes of a credit card.

• Purchase total value: Same as order total value.

• Code of the store: Not an attribute of the bookstore, as might be thought. This code identifies

the bookstore for each card operator. As different operators may provide different codes, this

attribute should be represented in the credit card flag concept, unless a network of stores is

being modeled.

• Approval: This happens when an authorization code is received (see next item).

• Authorization code: Can be thought of as an attribute of the order. But it may only exist when a

credit card is already linked to the order. Thus, it would be better placed as an attribute of the

association between credit card and order.

• Tracking number of the delivered package: May be an attribute of the delivery.

The new elements are highlighted in Figure 6.65, which is the third version of the conceptual

model for the Livir example. Notice that there are still some concepts with no attributes and some

associations are left with undefined multiplicity. This is because the use cases analyzed to this point

did not produce information to refine those elements. They would be refined latter when other use

cases are expanded and their information incorporated in the conceptual model.

Observe that just the main flow of this use case was used in the example. Alternate flows of this

use case still need to be analyzed and included. Recently, Jacobson et al. (2011) have proposed the

Use case 02: Pay order

1. The system generates the pending order summary (title, author, quantity, unit
price and subtotal for each book), as well as the total price of the order, and a list
of registered delivery addresses for the customer.

2. The customer selects a delivery address.

3. The system generates the delivery fee, and the date scheduled for arrival, and a
list of credit cards already registered for the customer (flag and last four digits of
credit card number).

4. The customer selects one of her credit cards for payment.

5. The system sends to the respective credit card operator the following data: card
number, owner’s name, validity, security code, purchase total value, code of
the store.

6. The credit card operator approves the sale by sending an authorization code.

7. The system informs the customer that the sale was approved and the tracking
number of the delivered package.

FIGURE 6.64

Main flow of use case 02 Pay for books with candidate concepts and attributes identified.

160 CHAPTER 6 Conceptual Modeling: Fundamentals

use case 2.0 technology, which specifically suggests that a use case should be addressed in slices,

and not as an indivisible whole.

At least two invariants still should be added to the diagram of Figure 6.65 in order to avoid the

existence of inconsistent information: the address of the order must be one of the addresses of

the order’s customer and the credit card used to pay the order must be one of the credit cards of the

customer. Those invariants may be defined in the Order class as

Context Order
inv:
self.customer.address-.includes(self.address)

and
self.customer.creditCard-.includes(self.creditCard)

The OCL predicate includes verifies if the object received as an argument is included in the set. It

is equivalent to the math operator “+”. For example, self.customer.address-.includes (self.address)

means self.customer.address + self.address, that is, self.customer.address contains self.address. It is

assumed that if the element received as an argument is the empty set, then the expression is true. Thus,

if the delivery address and credit card were not yet defined, then the invariant is not being violated.

The analysis of the second use case has incremented the conceptual model with a significant

number of new classes and attributes. The idea is that the quantity of novelties decreases as the

+deliveryFee : Money = address.city.deliveryFee

Flag

CreditCard

Authorization

City

+name : String
+storesCode : StoreCode

+nr : CreditCardNumber
+name : String
+valididy : Date
+securityCode : Natural

+code : AuthCode

0..1

0..1

1

1

1

1

1

1

1

1

1

1

*

*

*

*

*

*

*

*
*

*

*

*

*

1
Livir

1

+totalValue : Money = item

+quantity : Natural

+title : String

+name : String

+authorsName : String
+price : Money
+pageCount : Natural
<<unique>>+isbn : ISBN
+coverImage : Image
+stock : Natural

+ / subtotal : Money = price*quantity
+price : Money

+finished : Boolean = false

+nrPackage : PackageNumber

sum(suntotal)

Address Customer Cancellation

Order

Item

Return

Delivery

Confirmation

Book

Discard

Publisher SpecialOffer

Arrival

Payment

+deliveryFee : Money
+name : String

*

FIGURE 6.65

Conceptual model refined with information from the main flow of the use case of the second iteration: 02 Pay order.

1616.8 Iterative construction of the conceptual model

iterations advance, because, in the end, only CRUDs of elements already studied and reports with

information that should already be in the system will be addressed. It is not expected that they will

bring any new information to the conceptual model.

Observe that inverting that order would leave for the final iterations the insertion of many clas-

ses and attributes, and this would require a lot of rework in the design, and some architecture refac-

toring would possibly be needed in order to accommodate those needs. That is why it is so

fundamental to initiate the project with the most complex use cases and only later incorporate the

simpler ones into the architecture.

6.9 The process so far

Inception Elaboration

Business Modeling Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
the activity and state machine
diagrams from business modeling.

• Identify the main flow.
• Identify alternate flows: variants

and exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and Design Prepare the preliminary conceptual
model by observing system use cases
and the concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence
diagram.

• Represent the system commands
and queries using stateful or
stateless strategies.

• Complete the system sequence
diagrams with alternate flows.

(Continued)

162 CHAPTER 6 Conceptual Modeling: Fundamentals

(Continued)

Inception Elaboration

Analysis and Design Refine the conceptual model:

• Identify concepts, attributes,
and associations in the text of
expanded use cases.

• Detail attributes and
associations with stereotypes,
multiplicity, and constraints as
needed.

• Organize the model by using
inheritance, association
classes, and temporal
specifications.

• Add invariants as needed.

Implementation

Test

Project
Management

Estimate total effort, ideal calendar time
and average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan
for the first iteration.

6.10 Questions
1. Try to imagine a real world situation where the right structure to be used is a sequence.

Remember that a real sequence allows elements to be repeated and assigns position to elements.

Try not to get fooled by natural language use of the word “list.” A “grocery list,” for example,

is not a sequence, because elements do not repeat and their position in the list is irrelevant; a

student roll call may be organized in alphabetical order, but again, repetition is not allowed and

the order is again irrelevant although convenient. Thus, those are not real sequences.

2. What is the purpose of the controller class? What is its relation with dependent and independent

concepts?

3. Why should an attribute not be typed with a class name? Why should an attribute not be used

to reference another class?

4. Elaborate a list of concepts and subconcepts (subtypes of the original concept, as, for example,

dog and beagle) from common sense. Then, try to identify the type of each relation: structural,

associative, or temporal. Try to have at least one example of each type in your list.

5. What is the difference between a normal association, an aggregation, and a composition?

6. List some examples of data types that could be defined as primitive.

1636.10 Questions

This page intentionally left blank

CHAPTER

7Conceptual Modeling: Patterns

KEY TOPICS IN THIS CHAPTER

• High cohesion

• Specification classes

• Quantity

• Measure

• Strategy

• Composite

• Organizational hierarchy

• Account/transaction

• Range

• Temporal patterns

7.1 Introduction to conceptual model patterns
Class diagrams that represent conceptual models almost always become more complex and hard to

maintain than analysts and other team members would like. There exist techniques that reduce the

complexity of such diagrams, and at the same time, improve their expressiveness. Naı̈ve models

may be unnecessarily complex.

These techniques are called analysis patterns and may be understood as a special case of design

patters (Gamma, Helm, Johnson, & Vlissides, 1995) that are applied specifically to the conceptual

model. Most patterns presented in this chapter were first described by Fowler (2003).

Analysis or design patterns are not rules that must be obeyed, but recommendations based on previous

experience. It is the responsibility of the analyst to decide when to apply a given pattern in the models.

7.2 High cohesion1

High cohesion is so important for object-oriented modeling that it is considered more a principle or

guideline axiom than a pattern itself. A concept with high cohesion is more stable and reusable

than a concept with low cohesion, which can become rapidly confusing and hard to maintain. Most

1Usually, high cohesion is mentioned in conjunction with low coupling. However, as coupling problems appear to

emerge when object collaborations are designed, discussion on low coupling is left for Section 9.6.

165Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00007-7

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00007-7

systems could have all their information represented in a single table, but that would be an extreme

worst case of low cohesion, and it would not be practical.

Earlier, we mentioned that concepts should not have attributes that belong to other concepts

(e.g., a car should not have the owner’s ID as one of its attributes). Attributes also must not have

class names or data structures (set, list, array, etc.) as data types because all those situations are evi-

dences of low cohesion (a class with that kind of attribute is probably representing more than one

single concept). For example, an instance of Order should not have an itemsList attribute because

items have their own attributes and associations; they should appear related to Order by a 1 to �

association.

In the example of Figure 6.65, when it was discovered that a customer could have more than

one address, instead of the naı̈ve solution of creating attributes like address1, address2, etc., or

even address:Array of Strings, we created a new concept (Address), which was associated to the

customer. Imagine how hard it would be to deal with information such as deliveryFee if the

addresses were modeled as an array of strings.

Concepts and attributes should have a simple structure with high cohesion elements. Evidence

of low cohesion includes scenarios where some attributes of a class may be null depending on the

value of other attributes. If complex constraints (invariants) are necessary to keep a concept consis-

tent, this is equivalent to using duct tape to keep the pieces of a broken pot together.

In Figure 7.1, the attributes paidValue and paymentDate are mutually dependent: both are null

or both are not null. An invariant must be added to the class to avoid the situation where one of

them is null while the other is not, in order to avoid inconsistent instances. Invariants are good to

represent business rules that must always be valid. But when an invariant just relates two attributes

of a class, it is a strong clue of lack of cohesion.

A better way to model this situation is shown in Figure 7.2, where the concepts Order and

Payment appear separated but with high cohesion. In this case, there are no optional attributes

depending on each other and no need for constraints.

Another potential problem related to low cohesion is the existence of groups of strongly corre-

lated attributes, as seen in Figure 7.3 where it can be observed that groups of attributes have stronger

relations inside the group, such as street, number, city, and state, which compose an address, or ddd

(distance direct dialing) and phone, which are part of a complete phone number, or passportNumber

and issuingCountry, which are part of passport information. The relation that exists inside each group

appears implicitly on the order they are presented in the class. This is bad, because if the attributes

were sorted in alphabetical order, for example, the weak structure of the groups would be messed

Order
{not(paymentDate.isNull() xor paidValue.isNull())}

+dueValue : Money

+dueDate : Date

<<optional>> +paidValue : Money

<<optional>> +paymentDate : Date

AVOID

FIGURE 7.1

A class with low cohesion because attributes depend on each other.

166 CHAPTER 7 Conceptual Modeling: Patterns

up: city, ddd, issuingCountry, name, number, passportNumber, phone, state, and street.

The understanding of a concept should not depend on the ways its attributes are sorted.

A better solution to improve high cohesion in that model is shown in Figure 7.4. It also opens a

way to other modeling possibilities such as, for example, allowing a person to have more than one

address, or more than one phone. In those cases, it is simply the case of changing the association

multiplicity.

Order Payment

+paidValue : Money
+paymentDate : Date

+dueValue : Money
+dueDate : Date

1

0..1

FIGURE 7.2

A modeling solution with high-cohesion classes.

Person

AVOID

+name : String
+street : String

+number : Natural
+city : String

+state : String

+ddd : DDDCode

+phone : PhoneNumber

+passportNumber : PassportNumber

+issuingCountry : Country

FIGURE 7.3

A class with low cohesion because of strongly related attributes.

Person Address

PhonePassport

+ddd : DDD+number : PassportNumber
+issuingCountry : Country +number : PhoneNumber

+street : String

+number : Natural
+city : String

+state : String

+name : String

1

1
1

11

1

FIGURE 7.4

A solution to Figure 7.3 with high cohesion.

1677.2 High cohesion

Yet another situation occurs when some attributes repeat their values for a group of instances.

Figure 7.5 presents an example. In this figure, the attributes customerName, customerId, and

customerBirthDate repeat the same values for different orders when the customer is the same.

This type of situation can be eliminated by splitting the concept into two associated concepts

with better cohesion, as shown in Figure 7.6. Notice that even attributes’ names are shortened with

this choice of model.

7.3 Specification classes
A special case of low cohesion happens when an object is confused with its specification. That situ-

ation is very frequent: sometimes, products or physical items share a common specification, while

their exemplars may have some differences among them.

One example of specification already discussed in the Livir example is the difference between

the concept of a book as a published title, and a book as a physical copy of a published title. If

both book concepts are not distinguished, lots of trouble will occur. In past examples the class

Book refers to the published title, while Item stands for a set of physical copies. Thus, an instance

of Book is a specification for a set of undistinguishable instances of Item.

Another possibility is to consider that each item is a single copy of a book. That would elimi-

nate the need to include the quantity attribute in class Item, but it would create more instances and

associations for an order if the order includes more than one copy of the same book.

Order

+ / totalValue : Money = item->sum (subtotal)

+dueDate : Date

+dueValue : Money

+costumerId : IdNumber

+costumerName : String

+costumerBirthDate : Date

AVOID

FIGURE 7.5

A class with low cohesion because it has attributes that repeat values in different instances.

Order Customer

+ / totalValue : Money = item->sum(subtotal) <<oid>> +id : IdNumber
+name : String

+birthDate : Date

*
1+dueDate : Date

+dueValue : Money

FIGURE 7.6

A model for the example of Figure 7.5 with high-cohesion classes.

168 CHAPTER 7 Conceptual Modeling: Patterns

Depending on the information needs, it would be necessary to differentiate one copy from

another. For example, if used books are to be sold, the conservation state should be kept for each

copy. In this case, instead of a set of items, the Book class could be used as a specification for the

class Copy, whose instances are single copies of a book.

The specification class Book should contain the attributes and associations that do not vary for

different copies. For example, different copies of the same book have the same title, author,

ISBN, base price, etc. However, conservation state and discount may be distinct for each copy.

Thus, these attributes (and associations, if any) are placed in the Copy class, as shown in

Figure 7.7.

It is possible for a class to have more than one specification. For example, the discount of the

book could be predetermined depending on the conservation state of the book (an enumeration with

values such as new, used, damaged, etc.). Thus, a copy, besides being specified by the published

title, may also be specified by its state of conservation. Thus, Conservation would be a class with

some instances that may specify physical copies of books, and define their discounts as shown in

Figure 7.8.

Book

<<unique>> +isbn : ISBN

+title : String

+author : String

+price : Money

1

*specification
+state : ConservationState

+discount : Percentual

Copy

FIGURE 7.7

A class and its specification class.

<<enumeration>>

<<unique>> +state : ConservationState

+discount : Percentual

conservationSpecification 1

*

*1

literarySpecification

<<unique>> +isbn : ISBN

+title : String
+author : String

+price : Money

<<Constant>> +new

<<Constant>> +used
<<Constant>> +damaged

ConservationState

Book

Copy

Conservation

FIGURE 7.8

A class with two specification classes.

1697.3 Specification classes

The instances of class Conservation have two attributes. The first is the conservation state,

which is a value obtained from the enumeration ConservationState. There are initially only three

possible values: new, used, and damaged. The second attribute is the discount percentage that

would be applied to a copy depending on its conservation state. As it is expected that books with

the same conservation state have the same discount, then the attribute state in class Conservation

must be unique and therefore marked with {uniquec. Otherwise, different discounts could be

associated to the same conservation state.

7.4 Quantity
Frequently the team faces the need to model quantities that are not merely numbers. For example,

the weight of a book could be defined as 400. But 400 what? Grams? Pounds? Kilos? One solution

is to define a specific type for the weight (Pounds, for example), and then keep using it consis-

tently. The attribute then could be declared as weight:Pounds. But that demands that all books have

their weight expressed in pounds.

In some cases, the system must be configurable to support different weight units. In some coun-

tries, grams and kilograms are used, while others use pounds, or even other units. If the attribute

has a type that refers to a specific unit, then the system must suffer refactoring to accommodate

new weight units.

However, the quantity pattern allows different unit systems to coexist and to be easily

exchangeable. The pattern consists of creating a new primitive type Quantity, which has two attri-

butes, as shown in Figure 7.9.

This way, the weight of each book is specified as a primitive quantity formed by a numeric

value and a unit, whose type is an enumeration with possible values defined as grams, pounds,

and kilos.

If a unit conversion is needed, then an option is to transform the enumeration Unit into a normal

class, and associate a new class Ratio to two units, origin and destination, as shown in Figure 7.10.

When a quantity in the origin unit has to be converted to a quantity in the destination unit, then the

value of the quantity associated to the origin unit is divided by the conversion ratio.

Thus, for example, an instance of Unit whose name is “grams” may be linked to an instance of

Ratio as origin, which may be linked to another instance of Unit, named “kilos.” The value of that

Book

+weight : Quantity

<<primitive>> <<enumeration>>

<<Constant>> +grams

<<Constant>> +pounds

<<Constant>> +kilos

+value : Real

+unit : Unit

Quantity Unit

FIGURE 7.9

Definition and use of Quantity.

170 CHAPTER 7 Conceptual Modeling: Patterns

ratio should be 1000, because in order to convert grams into kilos, the original value in grams must

be divided by 1000.

7.5 Measure
An evolution of the quantity pattern is the measure pattern, which can be used when a number of

different measures over an object must be taken possibly at different times. For example, a person

in observation at a hospital may have many measures taken from time to time: body temperature,

blood pressure, blood glucose level, etc. Thousands of different measures could be taken, but usu-

ally just a few are actually taken for each patient. Therefore, to avoid creating a concept with thou-

sands of attributes with most of them likely being null, a better option is to use the measure pattern

as shown in Figure 7.11.

Thus, a patient may have a series of measures taken, each one assessing a different phenomena

and presenting a value that corresponds to a quantity (following the quantity pattern).

It is still possible to make these patterns a little more sophisticated by adding attributes in the

Measure class to indicate the instant of time at which the measure was taken, and also the validity

of the measure. For example, the fact that a patient had a fever a couple of hours ago does not

mean that she still has it. This evolution is explained in Section 7.12.1.

Another evolution for this pattern is to add an attribute to define the precision or accuracy

of the measure taken. For example, body temperature usually is measured with a precision of

0.1 degrees (Celsius or Fahrenheit).

Unit Ratio

<<unique>> +name : String

1 origin

1 destiny

originRatio*

destinyRatio*
+value : Real

FIGURE 7.10

Unit with conversion ratio.

Patient

+name : String
*

1 +phenomena : KindOfPhenomena

+value : Quantity

<<enumeration>>

<<Constant>> +body temperature

<<Constant>> +blood pressure

<<Constant>> +blood glucose level

KindOfPhenomena

Measure

FIGURE 7.11

Definition and use of the measure pattern.

1717.5 Measure

7.6 Strategy
It was mentioned that one of the great requirements challenges is to manage their change.

Transitory requirements must especially be accommodated in the system design so that when they

change the impact to the system, is minimized.

Some cases are relatively easy to address. For example, if it is already decided that the system

must operate in different countries, the quantity pattern could be used to deal with currency and

other measures that may vary from country to country.

But there are much more complicated situations. For example, the tax calculation procedure

may vary a lot from country to country and even from state to state in some countries. There are

some taxes that are calculated in relation to the profit, others with regard to the selling price, and

so on. Methods for calculating taxes change from time to time, and in some countries new taxes

are created every year. Systems must be prepared to cope with that, but the changes are completely

unpredictable. Just configuring parameters usually is not enough.

Another example is the bookstore’s discount policy. Current policy could be applying 10% off on

orders above 100 dollars, for example. However, after some time, creative and unpredictable policies

may be defined by the sales department, such as:

• Give a free book with a value up to 50 dollars for orders above 300 dollars.

• Give 20% off for up to two books on the customer’s birthday.

• Give 5% off on horror books on Friday the 13th.

• The customer spins a wheel and it defines the discount she receives, from 1% to 10%.

Moreover, it would be possible to combine policies, if applicable, or choose the one that gives

the higher discount.

The strategy pattern suggests that in these cases, the procedure (e.g., calculate taxes or discount)

must be separated from the data to which it applies. In other words, if a discount is applied to an

order, then the discount should not merely be a method implemented in the Order class. The dis-

count should be defined as something easier to change. The solution proposed by the strategy pat-

tern is to create an abstract class associated to the order. This abstract class may have concrete

subclasses that represent concrete discount policies, as shown in Figure 7.12.

Thus, each instance of Order is associated to an instance of one of the subclasses of the

Discount strategy.

UML does not allow an attribute to be declared {abstract}; only classes and methods may be declared

so. However, as derived attributes will be implemented by methods eventually, the idea of an abstract

derived attribute stereotyped with{abstractc as shown in Figure 7.12 is coherent to the UML spirit.

Thus, the abstract class Discount implements an abstract derived attribute amount, which is

implemented in a concrete way in each of its subclasses. If some of the strategies need data from

the customer or from the order to calculate the discount, that data can be accessed through the asso-

ciations from the discount abstract class to the classes that own the information.

This pattern minimizes two problems related to requirements change. First, it keeps the discount

strategy applied when the order was issued, even if strategies change in future. Second, if new strat-

egies are created later, it is sufficient to implement one or more subclasses for Discount. This does

not affect the old strategies, or the old orders.

172 CHAPTER 7 Conceptual Modeling: Patterns

7.7 Composite2

As mentioned in Section 7.6, sometimes different strategies must be grouped and a combination or

selection of them must be applied. The combination of different discount strategies can be obtained,

for example, by the sum of the values obtained for the derived attribute amount for each individual

strategy, or by choosing the highest or lowest values among them. The choice of one or another

combination produces different aggregated strategies.

In Figure 7.13 there are two composite strategies shown. SumDiscount defines amount as the

sum of the values returned by each component discount:

Context SumDiscount::amount:Money

derive:
self.discount-.sum(aDiscountjaDiscount.amount)

MajorDiscount selects the highest discount among each aggregated subclass:

Context MajorDiscount::amount:Money

derive:
self.discount-.maxElement(aDiscountjaDiscount.amount)

The current version of OCL does not define a function maxElement to take the highest element

of a collection, but it could be defined as a new operation. Another solution is defining the expres-

sion by using functions already provided by the language, such as

PercentageDiscount

+percentage : Percentage
+lowerBound : Money
+ / amount : Money

0..1

1

BirthDayDiscount

+nrBooks : Natural
+upperBound : Money
+ / amount : Money

{abstract} Discount

+ / amount : Money <<abstract>>

Order

FIGURE 7.12

Strategy pattern.

2Composite is the classic name for this pattern. However, if basic elements may be shared by different composite ele-

ments, it is the shared aggregation association that is used instead of the composite aggregation. This happens when

strategies are composed.

1737.7 Composite

Context MajorDiscount::discountAmount:Money

derive:
self.discount-.sortedBy(aDiscount|aDiscount.amount)-.last()

The reader could find that it is not necessary to produce a sorted version of an entire list just to

obtain its highest element. But remember that this is specification, not implementation; it is the

final result that counts. Anyway, defining a new operation in this case, if possible, would be better

because the meaning of the specification would be clearer.

7.8 Organizational hierarchy
Another common situation consists of the need to represent organizational hierarchies. It is com-

monplace, for example, to represent the administrative organization of a company as a composition

hierarchy as shown in Figure 7.14.

However, hierarchies like this usually do not behave well. First of all, this kind of organization

is not followed by every company: other companies may have different levels or different composi-

tions among them. Second, the company structure may change over time. New divisions or offices

may be created, some may be joined, and others split. Last, but not least, different views of an

organization may exist at the same time; for example, the finance department may have a different

view of the same organization.

How to deal with all that complexity in a conceptual model? By using the organizational hier-

archy pattern.

The solution consists of not considering the different levels of an organization as concepts, but

as instances of a single concept, as shown in Figure 7.15.

{abstract} Discount

PercentageDiscount

BirthDayDiscount

SumDiscount MajorDiscount

+ / active : Money <<abstract>>

+percentage : Percentage
+lowerBound : Money
+ / active : Money

+nrBooks : Natural
+upperBound : Money
+ / amount : Money

+ / amount : Money + / amount : Money

FIGURE 7.13

Example of the composite pattern.

174 CHAPTER 7 Conceptual Modeling: Patterns

In this way, flexibility is gained related to dealing simultaneously with organizational structures

from different companies. Also, eventual changes in the organizational structure, such as adding

more levels, or changing dependencies, may be easier to accomplish.

This pattern has some variations that may be used if concurrent hierarchies, superseding struc-

tures, or equivalent structures should also be represented. Those variations are discussed in the fol-

lowing sections.

7.9 Object joining
One of the team’s assumptions that usually fails is that users will do everything right. That is not

always the case. User failure (and sometimes sabotage) is still frequent, despite the efforts to build

failsafe interfaces. A user could, for example, register a new publisher in the system, and later dis-

cover that it was already registered. Entering an incorrect code or the impossibility of having a

unique identification for a real world object may cause this situation. The result is that two objects

are registered in the system, both representing the same publisher, and each of them may possibly

have its own set of books associated, some repeated, some not.

The solution when this kind of error happens is to join the objects, usually copying one over the

other. This operation can be performed directly within the database, but in some situations it may be so

common that it would be necessary that the system be prepared to allow this possibility as a user feature.

Besides, it is not always an error that causes the need for a join. In some situations, there are

objects considered equivalent by one group of people and not by another, and both situations must

be represented simultaneously. In other cases, as in multiple view organizational hierarchies, it may

be necessary to indicate that two structure elements in different views are equivalent, or that one

succeeds another in time.

The following subsections present the main strategies to deal with these kinds of situations.

1..*

1

1..*

1 OfficeDivisionCompany

FIGURE 7.14

Straight representation of a company’s organizational structure by using classes for the different levels of

composition.

OrganizationalStructure

+name : String
+type : OrganizationalStructureType

superstructure

0..1

* substructure

<<enumeration>>
OrganizationalStructureType

<<Constant>> +company
<<Constant>> +division
<<Constant>> +office

FIGURE 7.15

Application of the organizational hierarchy pattern.

1757.9 Object joining

7.9.1 Copy and replace
The first strategy that comes to mind when it is necessary to join two objects consists of copying

the data of one object over the second (copy and replace). The copy/replace command could be

defined by a contract (see Chapter 8), and the team should define, for each attribute and each asso-

ciation, what must happen during the copy/replace command. Rules should be defined to decide if

an attribute is going to be copied over the other, or if their values are to be added, or if the newest

or highest of them must prevail, etc. Regarding the associations, the team must decide what hap-

pens: if one replaces the other, or if their properties are added, and so on.

The registry of the date of the last inclusion or change of a concept may be useful for deciding

which attribute must be kept in the case of a conflict. For example, if a registered customer makes a

new record, and it is going to be resolved, then the most recent address must be kept, not the oldest

one. On the other hand, all of her orders must be added to the resulting instance.

After performing the copy/replace command the instance that was copied must be destroyed,

and any references to it must be redirected to the instance that received the data.

7.9.2 Superseding
Superseding is a technique that can be used when the original object must be kept and not

destroyed. Superseding is applicable, for example, in the case of organizational structures that are

succeeded in time. Suppose that the departments of marketing and sales are joined into a single

department of customer contact; the original departments must be marked as no longer active, and

a new department must be added as their successor. The superseding strategy may be implemented

by a reflexive association, as shown in Figure 7.16.

The derived attribute active indicates if the structure is active or if it has been superseded. It is

true if the set of superseders is empty and false otherwise.

To maintain the original organizational structure even if it is not active anymore may be impor-

tant for registry purposes. Someday someone could need to know how much a given department

that does not exist anymore spent on toothpicks.

It would be useful to add an association class to the superseded/supersede association; its attri-

butes could indicate, for example, the date when the superseding event taken place, or the context

OrganizationalStructure

+name : String
+type : OrganizationalStructureType
+ / active : Boolean = self.superseder–>isEmpty()

superstructure0..1

*

*

*

substructure

superseder

superseded

FIGURE 7.16

An example of the superseding strategy.

176 CHAPTER 7 Conceptual Modeling: Patterns

or view in which it must be considered. If that kind of information is necessary, the team should

consider applying one of the temporal patterns (Section 7.12).

7.9.3 Essence/Appearance
Another situation that can still often happen is the existence of objects that are considered equiva-

lent but must be kept as separated objects. This is not a registry error and it is not an object that

supersedes another: this is object equivalence.

Object equivalence may be modeled by the use of an essence object that is associated to a set of

equivalent objects. As opposed to copy/replace, the original objects are kept, and as opposed to

superseding there is no active or superseded object: all associated objects are equivalent. Figure 7.17

shows an example of a class (Book) that accepts that its members share a common essence.

In the example, we consider that the same book in essence, especially a classic work, may be pub-

lished by different publishers. Each publication is distinct, with a different ISBN and number of

pages. Even the title and author’s name may vary (proper names may be translated or abbreviated

sometimes). But the essence of the text is the same. Some users may be interested in ordering Plato’s

The Republic from a specific publisher, and others may be interested in the book independently of

the edition or publisher. Thus, the users interested in a specific publication are looking for the appear-

ance (a given instance of Book), and the users interested in the text are looking for the book in

essence � the publisher does not matter. The second group of users, when viewing any edition of

The Republic must also be allowed to view other instances of Book linked to the same EssenceBook

if they exist. In other words, if you look for book aBook and if aBook.essenceBook-. notEmpty(),

then you will see aBook.essenceBook.book, which is a set of books with the same essence.

Not every Book must be linked to an EssenceBook, only those that participate in an equivalence

class. Also, there must be at least two equivalent books to create an EssenceBook. This is why the

association role from EssenceBook to Book is marked with 2..�.
Objects are considered equivalent if they are linked to the same essence object. The essence

object exists only to establish that equivalence; usually it will not have any other properties.

Otherwise, maybe the specification class pattern could be used instead.

7.9.4 Undoing a join
Just when you think that the real world cannot be more complex, it becomes so. Therefore, if there

is a possibility of joining objects, it is also possible that joined objects must be separated again.

EssenceBookPublisher 1

*

2..*

0..1+title : String
+author : String
<<unique>> +isbn : ISBN
+pageCount : Natural

Book

FIGURE 7.17

Essence/Appearance technique.

1777.9 Object joining

Once again, these commands may be performed directly in the database, or through well-planned

operations available at the system’s user interface.

To allow the joins of the copy/replace technique to be undone, a backup of the original objects

must be kept, because the technique destroys one of the objects and disfigures the other. The super-

seding technique allows the join to be undone just by removing the association. In the case of

essence/appearance, it is necessary to remove the association (and the essence object if less than

two links to it remain).

However, in every case it is important to decide how to deal with eventual changes within the

object that occurred while it was joined with the others.

A way to implement the possibility of undoing joins and any other operation is to use a varia-

tion of the temporal pattern (Section 7.12.3), which keeps track of former values of objects attri-

butes and associations.

7.10 Account/Transaction
The account/transaction pattern is closely related to business, but it has wide applicability. It was

mentioned before that books may be cataloged, ordered, received, delivered, discarded, etc. Such

movements, as well as the financial transactions involved with them, give origin to concepts such

as Order, Delivery, Discard, Return, etc., each one with its own attributes and associations.

However, it is possible to identify a common core for all these concepts and many more, which

is constituted by a single and powerful pattern.

An Account is a concept that bears quantities of something (such as items, products, or money).

An Account has a balance that usually consists of the sum of every deposit or withdrawal.

On the other hand, deposits and withdrawals are usually just entries of goods or money from an

account to another. Thus, a Transaction consists of two entries: a deposit in one account and a

withdrawal of the same value in another account. Figure 7.18 illustrates those classes.

A consistent transaction with two entries such as the one in Figure 7.18 needs two entries with the

same absolute value but opposite signs. In other words, if a transaction takes 5 dollars from an account,

it must necessarily deposit 5 dollars into another account; the withdrawal has a negative sign and the

deposit a positive sign. Thus, the Transaction class needs the following invariant:

Context Transaction

inv:
entry-.sum(value)50

This means that for each instance of Transaction the sum of the value of the two associated

entries must be zero.

+

Account Entry1

*

2

1+ / balance : Quantity = entry–>sum (value) + value : Quantity

Transaction
{entry–>sum (value)=0}

FIGURE 7.18

Classes for the account/transaction pattern.

178 CHAPTER 7 Conceptual Modeling: Patterns

The derived attribute balance of class Account is defined as the sum of every entry linked to

that specific Account:

Context Account::balance

derive:
entry-.sum(value)

Many situations related to the bookstore example could be modeled from a set of instances of

class Account, such as:

• For each publisher there is an instance of Account from which books are “withdrawn,” that is, it is

an entry account, and its balance becomes more negative as books are ordered from the supplier.

• There is an account for orders expected, which contains the books that were ordered from the

supplier but that had not yet arrived.

• There is an account for stock containing the available books.

• There is an account for sold books containing books sold but not yet delivered.

• There is an account for delivered books containing books delivered but not yet confirmed by the

customer.

• There is an account for confirmed delivery containing books delivered and confirmed by the

customer. Its balance represents the whole set of books that the customer has bought from the

bookstore.

In parallel to book transactions there are concomitant money transactions. There are receivable

accounts, payable accounts, received accounts, paid accounts, investment, debts, values saved for

paying taxes, etc.

Thus, many transactions of the bookstore example could be modeled as an instance of

Transaction. For example:

• An order is a transaction that takes books from a publisher account, and deposits them into an

orders expected account.

• The arrival of the books is a transaction that takes from the orders expected account and adds

to the stock account.

• A sale is a transaction that takes from the stock account and adds to the sold books account.

• A delivery is a transaction that takes from the sold books account and adds to the delivered

books account.

• A return is a transaction that takes from the delivered books account and adds to the stock

account (if the books are in good shape).

• A confirmation of delivery is a transaction that takes from the delivery account and adds to the

confirmed delivery exit account.

As an example, imagine a company that just started, where five instances3 of the Account class

were created: supplier, pendingOrders, stock, sold, and delivered. Figure 7.19 shows the initial state

for those objects, when all accounts have a zero balance.

3The example deals with only five instances for simplification. Many others could be included.

1797.10 Account/Transaction

Figure 7.20 shows the resulting set of objects when a purchase order (instance of Transaction)

is created. The order was issued for 50 books.

Figure 7.21 shows the state of the accounts if only 40 of the 50 ordered books arrive.

Figure 7.22 shows the state of the accounts after 25 books are sold.

And finally, Figure 7.23 shows how the accounts look like after the 25 books sold are

delivered.

New transactions and accounts may be created dynamically (i.e., without having to recompile

the system). For example, a new transaction may be created for returning books, which moves

books from the delivered account back to the stock account. Also, a new transaction for discarding

books could be created moving books from the stock or sold accounts to a new account for dis-

carded books. Parallel financial transactions could be created as well by using Account and

Transaction.

This pattern is very interesting as an example of how a simple powerful idea can deal with so

many different situations. It has many variations and sophistications. For example, multi-legged

transactions may be created if necessary, for moving from more than one account to a single

account, or from a single account to more than one account, or even from more than one account

supplier : Account

pendingOrders : Account

stock : Account

sold : Account

delivered : Account

balance = 0

balance = 0

balance = 0

balance = 0

balance = 0

FIGURE 7.19

Initial state of an accounting system for products.

180 CHAPTER 7 Conceptual Modeling: Patterns

to more than one account at the same time. To accomplish this variation, the multiplicity role from

Transaction to Entry in Figure 7.18 should be changed to 2..�.
Another important variation is the use of memo entries. For example, when money is received,

taxes must be paid, but not necessarily immediately. Thus, when a transaction moves money from

a customer account to the bookstore balance account, a quantity of money equivalent to the taxes

due could be registered into a tax memo account. When it is time to pay taxes, the balance of the

memo account registers the amount to be paid.

Memo accounts and normal accounts could be distinguished. However, as they share the same

definition, they were kept as instances of a single Account class in Figure 7.24. On the other hand,

memo entries are distinguished. A transaction must have at least two normal entries, but any num-

ber of memo entries (zero in most cases). Furthermore, only normal entries are subjected to the

invariant of the Transaction class. Memo entries are ignored because they do not really move goods

or money.

Despite normal and memo accounts both having the same structure and behavior, it would be

wise to clearly differentiate both kinds in order to avoid the system linking memo entries into nor-

mal accounts and vice versa.

supplier : Account : Entry buyingOrder : Transaction

pendingOrders : Account

stock : Account

sold : Account

delivered : Account

balance = –50 value = –50

 : Entry

value = 50

balance = 50

balance = 0

balance = 0

balance = 0

FIGURE 7.20

State of the accounts after a purchase order of 50 books is issued.

1817.10 Account/Transaction

7.11 Range
When an object has a pair of attributes indicating the beginning and end of some phenomena, such

as initial and final date, instead of representing it as two separated attributes, it is advisable to

declare a single attribute type such as Range (or Interval), as shown in Figure 7.25.

The primitive Range is parameterized, meaning that when an instance is created it must indicate

the Type to be used to define its attributes. For example, a range over Date could be referred to as

Range[Date], and a range over a quantity defined as Distance could be referred to as Range

[Distance].

There are two reasons for using a range instead of two attributes:

• If the lower and upper bounds are separated attributes in a conceptual class, they would have a

strong relation between them. This goes against the high cohesion principle explained in

Section 7.2.

• Operations that are specific to ranges (for example, checking if a value is inside a range) will be

needed. If there is a specific Range primitive type, these operations may be implemented once

just in the primitive. If two attributes are used instead, each class where they are declared

should implement its own version of the operations on ranges.

supplier : Account : Entry buyingOrder : Transaction

arrival : Transaction

pendingOrders : Account

stock : Account

sold : Account

delivered : Account

balance = –50 value = –50

 : Entry

value = –40

 : Entry

value = 40

 : Entry

value = 50

balance = 10

balance = 40

balance = 0

balance = 0

FIGURE 7.21

State of the accounts after 40 books arrive at the bookstore.

182 CHAPTER 7 Conceptual Modeling: Patterns

It is much more reasonable to implement operations just once in a high-cohesion class, than

implementing them many times in low-cohesion classes.

As seen in Figure 7.25, both attributes of the Range class are optional, which means that

ranges may be undefined in one or both ends. For example, a range that starts at January 1st,

2013 and has no upper bound could be defined with lowerBound5 “01/01/2013” and

upperBound5 null.

Evolutions of this pattern could take into account the mathematical properties of intervals. For

example, there are open and closed intervals: [0..10] is an interval that includes 0 and 10, while

(0..10) is an interval that excludes 0 and 10. Furthermore, (0..10] excludes 0 and includes 10 and

[0..10) includes 0 and excludes 10. This evolution could be implemented simply by adding two

Boolean attributes to the class: lowerBoundOpen and upperBoundOpen.

7.12 Temporal patterns
Frequently the analyst faces the need to deal with time. For example, it may be necessary to repre-

sent the relations between people and their jobs. But, if the association between people and jobs

supplier : Account : Entry buyingOrder : Transaction

arrival : Transaction

sale : Transaction

pendingOrders : Account

stock : Account

sold : Account

delivered : Account

balance = –50 value = –50

 : Entry

value = –40

 : Entry

value = 40

 : Entry

value = –25

 : Entry

value = 25

 : Entry

value = 50

balance = 10

balance = 15

balance = 25

balance = 0

FIGURE 7.22

State of the accounts after 25 books are sold.

1837.12 Temporal patterns

supplier : Account : Entry buyingOrder : Transaction

arrival : Transaction

sale : Transaction

delivery : Transaction

pendingOrders : Account

stock : Account

sold : Account

delivered : Account

balance = –50 value = –50

 : Entry

value = –40

 : Entry

value = 40

 : Entry

value = –25

 : Entry

value = 25

 : Entry

value = –25

 : Entry

value = 25

 : Entry

value = 50

balance = 10

balance = 15

balance = 0

balance = 25

FIGURE 7.23

State of the accounts after the delivery of 25 books.

Account

MemoEntry
Transaction

NormalEntry

{abstract} Entry

+ / balance : Quantity = entry–>sum (value)

1

12..*

*
*

1

{normalEntry–>sum (value)=0}
+value : Quantity

FIGURE 7.24

Evolution of Account/Transaction with memo entries.

184 CHAPTER 7 Conceptual Modeling: Patterns

represents only the present time, then the information of former jobs will be lost when someone

quits the job. This section discusses some patterns that deal with that important notion.4

7.12.1 Effectivity
When an object is valid for some time (for example, a temperature measure, which has a time it

was taken and a time it is considered valid), then the effectivity pattern may be used. It consists of

declaring an effective attribute in the class, which is typed with a range, as seen in Figure 7.26.

7.12.2 History
If historical information has to be stored about the past states of an association, then the history

association pattern may be used. This kind of association may be identified by the stereotype

{historyc, as seen in Figure 7.27.

The stereotype of the association of Figure 7.27 means that a person must have just zero or one

job currently, but she may have had other jobs in the past. These past jobs may be recovered as items

in a list. In other words, it is possible to recover the last job, the job before the last, and so on.

When it comes to design, each class with an association with a navigable role implements a

method for accessing the elements linked. In the example of Figure 7.27, the design class for Person

would have a getter method getJob() that returns the company of the current job of a person or the

empty set if there is no current job. If the association is stereotyped with {historyc, in addition to

that standard method there would exist another method with a parameter, getJob(index:Natural),

Measure

+phenomena : Kind Of Phenomena
+value : Quantity
+effective : Range[Time]

FIGURE 7.26

Use of the effectivity pattern.

<<primitive>>
Range

<<optional>> +lowerBound : Type
<<optional>> +upperBound : Type

Type

FIGURE 7.25

A generic primitive type Range.

4Martin Fowler presents a nice summary on many temporal patterns at http://martinfowler.com/eaaDev/timeNarrative.

html.

1857.12 Temporal patterns

http://martinfowler.com/eaaDev/timeNarrative.html
http://martinfowler.com/eaaDev/timeNarrative.html

where getJob(1) returns the current job, getJob(2) returns the last job, getJob(3) returns the

job before the last, and so on. If there is no job for the index given, then the method returns the

empty set.

In practice, this pattern can be modeled by two associations, as shown in Figure 7.28. The stereotype

is, then, a way to abbreviate that complex structure, replacing it with a simpler one.

7.12.3 Temporal
The history association pattern is not capable of answering what the job of a person was at a given

date, or if a person was unemployed in the past. In order to represent that kind of information, an

evolution of that pattern may be used: an association that in addition to sequential memory also has

time memory, as shown in Figure 7.29.

A temporal association has, in addition to the aforementioned two get methods, a method for

obtaining the value of the association at a given time. In the example, that method could be

getJob(date:Date). Thus, the Person class presented in Figure 7.29 would have at least three getters

for the temporal job role:

• getJob(): Returns the current job of a person or the empty set if the person is currently

unemployed.

• getJob(index:Natural): Returns the current or former job of a person depending on the index

argument, or the empty set if there is no job at that index.

• getJob(date:Date): Returns the job a person had at a given date or the empty set if the person

was unemployed at that date.

If it was required to know the job of a person at a given time of the day, then instead of the

Date the primitive type Time could be used, which refers to year, month, day, hour, minute, and

second. For some applications, milliseconds, microseconds, and so on could be used instead.

job <<history>>
*

0..1

Person Company

FIGURE 7.27

An example of the history association pattern.

CompanyPerson
currentJob 0..1* employees

formerJobs * {sequence}

* formerEmployees

FIGURE 7.28

Concrete model for the,,history.. stereotype.

186 CHAPTER 7 Conceptual Modeling: Patterns

Figure 7.30 presents a model for implementing the {temporalc stereotype.

The Job class does not have a pair of attributes such as initialDate and endDate, but a single

attribute interval with type Range[Date], representing an interval between two dates.

Not only can associations be temporal, but attributes as well. If an attribute must keep a record

of its former values, then the {temporalc stereotype can be used to keep track of them.

For example, some countries allow people to change their names after marriage, divorce, or

decision of a judge. In Figure 7.31, the ID and birthdate of a person are not supposed to change or,

if they change, old values are not kept. However, former names must be kept.

Another variation of this pattern is to define a temporal class. In the case of a class stereotyped

with {temporalc, all of its attributes and association roles are temporal. The class also could pro-

vide a method for producing a version of its instances at a given instant of time; for example, if x

is an instance of a temporal class, one could obtain a previous state of x by using a function such

as x.atInstant(aTimeInstant). Each time one of the attribute’s values or links is changed, a new ver-

sion of the object is created.

7.12.4 Bitemporal
Not only in science fiction, but also in many current information system applications, time may be

considered two-dimensional. There is a dimension of time in which events occur and another

dimension where we acknowledge that an event occurred.

Look back at Figure 7.29, and imagine that Mary is currently working for Company X. Today

(August 11th, 2013) we discover that in fact Mary changed jobs on March 1st, 2013. We update

Mary’s job, and the date she changed jobs is recorded as March 1st, 2013. However, we only knew

about the change on August 11th, 2013. Any actions the company could have performed between

March 1st and August 11th were taken with the knowledge that Mary still worked at Company X.

Sometimes, especially for accountability or legal procedures, knowing when a record that was

made is very important. The bitemporal pattern is an elegant way to keep track not only of the line

of events but also the line of our knowledge about events (Figure 7.32).

job<<temporal>>

* 0..1

Person Company

FIGURE 7.29

A temporal association.

+interval : Range [Date]1

* {sequence}
*

1

CompanyJobPerson

FIGURE 7.30

A possible implementation of the {temporalc stereotype.

1877.12 Temporal patterns

Now a new getter may be introduced for the role job: getJob(date,knowledgeDate:Date). The

first argument is the instant of time we are interested in and the second argument is the instance of

time of our knowledge about it. For example, if we want to answer the question “On June 15th,

2013, where did we believe that Mary worked on June 1st, 2013?” we could use getJob(“06/01/

2013”,“06/15/2013”) to get the answer, which would be “Company X.”

If we want to know where Mary worked on June 1st, 2013 based on our current knowledge, we

could use the getter mentioned for the temporal pattern (Section 7.12.3): getJob(“06/01/2013”),

which is short for getJob(“06/01/2013”, today).

Figure 7.33 presents a possible model for implementing that stereotype.

Now there are two date ranges in the class Job, one for registering the time the job was effec-

tive and the other to represent the range of time when the registered time was recorded.

Each time our knowledge about the job of a person is changed a new instance of Job is created.

The interval attribute establishes when the job was effective, and the record attribute establishes

the point from when we believed that. The upper bound of the record range will be kept undefined

while it represents our current knowledge, that is, while that information was not overridden by

newer (eventually contradictory) information.

Person

<<temporal>> +name : String
<<unique>> +id : IdNumber
+birthDate : Date

FIGURE 7.31

Temporal pattern applied to an attribute.

<<bitemporal>> job*

0..1

Person Company

FIGURE 7.32

Bitemporal pattern.

+interval : Range [Date]
+record : Range [Date]

1

* {sequence}
*

1

CompanyJobPerson

FIGURE 7.33

A model that implements the bitemporal pattern.

188 CHAPTER 7 Conceptual Modeling: Patterns

The bitemporal pattern can also be applied to attributes or entire classes, just like the temporal

pattern.

7.13 Discussion
A good conceptual model produces an organized structure that is suitable to generate an already

normalized database. It incorporates structural rules that prevent information from being repre-

sented in an inconsistent way; it also simplifies the code that will be generated because it mini-

mizes and organizes consistency checks, and several verifications that are guaranteed by the model

itself do not need to be performed by the code.

The use of suitable design patterns in situations where they are necessary simplifies the con-

ceptual model and gives it more flexibility and quality. It is, therefore, a powerful tool. Many

other patterns exist, and analysts may create their own new patterns. It just has to be kept in

mind that the creation of a pattern is justified only when its benefits pay for the effort expended

in creating it.

7.14 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram and
determine the automation scope for the
project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine diagrams
for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
business use case model, and the
activity and state machine diagrams from
business modeling.

• Identify the main flow.
• Identify alternate flows: variants

and exception handlers.

Identify nonfunctional requirements as use
case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

• Identify supplementary requirements.

(Continued)

1897.14 The process so far

(Continued)

Inception Elaboration

Analysis and
Design

Prepare the preliminary conceptual model by
observing system use cases and the
concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence
diagram.

• Represent the system commands
and queries using stateful or
stateless strategies.

• Complete system sequence
diagrams with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of
expanded use cases.

• Detail attributes and associations
with stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes,
and temporal specifications.

• Add invariants as needed.
• Improve the conceptual model

with the application of analysis
patterns.

Implementation

Test

Project
Management

Estimate total effort, ideal calendar time, and
average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan for
the first iteration.

7.15 Questions
1. In Figure 7.18, the Transaction class needs another invariant. A transaction cannot be linked to

entries that are linked to the same account. Elaborate that invariant in OCL.

2. Apply the account/transaction pattern to the parallel financial transactions of the example

shown in Figures 7.19 to 7.23. As the bills may be paid forward it may be necessary to use

memo entries. Define the set of instances of Account and Transaction that are necessary and

describe them.

3. Use Google to find examples of conceptual models including classes with attributes. Analyze

those classes and check if they present cohesion problems. Propose alternative solutions to them

if necessary.

190 CHAPTER 7 Conceptual Modeling: Patterns

4. A system for registering genealogical trees allows different users to check if they have

coincident people in their own trees. If this is the case, the shared person is marked in each tree

as equivalent to the other. Thus, two cousins, for example, who have the same grandfather,

may have a coincident registry in their trees. Which of the three strategies of object joining is

best for dealing with this case? Why? Elaborate a model for representing people in the

genealogical trees using that pattern.

5. Complete the diagram of Figure 7.12 with information about orders, items, books, and

customers. Then use OCL to define the derived attribute amount for both subclasses of

Discount.

1917.15 Questions

This page intentionally left blank

CHAPTER

8Functional Modeling with OCL
Contracts

KEY TOPICS IN THIS CHAPTER

• Preconditions

• Query return

• Postconditions

• Exceptions

• System operation contracts

8.1 Introduction to functional modeling
Before functional modeling, the analysis process in the Elaboration phase produces two important

artifacts:

• The refined conceptual model (Chapters 6 and 7), which represents statically the information

managed by the system.

• The expanded use cases or system sequence diagrams (Chapter 5), which show how potential

users exchange information with the system, without mentioning how that information is

processed internally by the system and without mentioning the interface technology.

When system sequence diagrams are built, the system commands and queries that must be

implemented are identified. Each system command and query implies a user intention or goal; for

example, the user may be providing information on which books she intends to buy, or she could

be asking how much a book costs. That intention is captured by system command contracts and sys-

tem query contracts, generically referred to as system operation contracts, which incorporate the

functional model of the system.

A system command contract may have three sections:

• Preconditions (optional): States what is assumed to be true by the command and therefore

should not be checked by it.

• Postconditions (mandatory): States how the command changes existing information if it is

successfully executed.

• Exceptions (optional): States what conditions that could prevent the command from succeeding

will be checked by it.

193Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00008-9

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00008-9

On the other hand, a system query contract may have the following sections:

• Preconditions (optional): States what is assumed to be true by the query and therefore should

not be checked by it.

• Results (mandatory): Defines the information that the query returns.

• Exceptions (optional): States the conditions that were added by the designer to prevent the

system from performing the query in some situations.

Preconditions exist in both types of contracts. They define constraints that are complementary

to the ones already existing in the conceptual model. Preconditions are assumed to be true by the

operation. This means that preconditions are not tested by the operation that is defined by the con-

tract; they must be tested and assured before the operation is performed.

Postconditions exist only in system command contracts because they specify how the informa-

tion kept by the system is changed. Special care must be taken to not confuse postconditions with

query results. By the Command-Query Separation principle (Meyer, 1988) it is not appropriate for

a command to return any result (except in special justified cases). Queries, on the other hand, must

return some result, but cannot produce any change in the existing information. Therefore, system

queries must have results and system commands must have postconditions.

As opposed to preconditions that must be true before the operation is called, exceptions are

situations that usually cannot or should not be tested before; exceptions are tested by the operation

itself. Exceptions are events that, if they occur, prevent the operation from succeeding.

Exceptions in command contracts and exceptions in query contracts may have distinct

purposes. In command contracts, exceptions are used when arguments or existing information

do not satisfy a given business rule (for example, trying to register a customer that is already

registered).

However, in query contracts, exceptions have a different meaning. As a query does not change

information, there is no invalid argument that could possibly prevent a well-defined query from

being performed. If a user queries a system about a customer that does not exist, the query is not

prevented from being performed: it would answer that there is no customer for the query; this is

the right answer, not an exception. Exceptions in queries would be used only if by any chance the

team decides that for a given condition the query must not be performed. Usually, those conditions

are related to security issues, or other technological concerns such as multi-window interface, con-

currency, communication, etc. As these issues are usually not addressed by functional modeling,

exceptions in queries contracts are not frequent.

Normally, in an operation contract, be it a command or query, an exception can be transformed

into a precondition and vice versa. The decision on designing an issue as a precondition or excep-

tion determines which part of the system is responsible for testing that issue: the calling operation

or the called operation. Usually, in large multiuser systems, race conditions1 may lead to choosing

to avoid preconditions; however, if the system is not subject to complex concurrency or a concur-

rency control mechanism that prevents data from changing during transactions exists, then a design

based on preconditions may be the better choice.

1For example, after a user orders a book, while the user is closing the order and providing payment, the only available

book could be sold to another user. This must be avoided with concurrency control mechanisms, as explained in

Chapter 13.

194 CHAPTER 8 Functional Modeling with OCL Contracts

For the examples in this chapter a partial refinement of the conceptual model presented in for-

mer chapters is used (Figure 8.1), as well as a stateless version of the system sequence diagram for

use case 01: Order books (Figure 8.2).

The {immutablec stereotype used for some attributes and roles in Figure 8.1 is explained in

Section 8.7.2.

In the partial conceptual model of Figure 8.1, the concept of a shopping cart was added because a

user may start shopping even if she is not yet identified. Thus, the shopping cart has an identification

code (because as the stateless strategy is being adopted it must be identified in some way). Also, despite

the fact that the shopping cart is not an independent concept, it should be connected to the controller

because it may exist without a customer and even without items (a shopping cart may be empty).

In class Book, the attribute quantityInStock could probably be a derived attribute if stock was

modeled using the account/transaction pattern (Chapter 7). But here it is kept as a simple attribute.2

The first command in the system sequence diagram creates a shopping cart and returns its iden-

tifier. This is an acceptable exception for the Command-Query Separation principle, because the

interface needs a reference to the shopping cart in order to send further messages to it. If the state-

ful strategy was used instead of the stateless strategy, this return would not be necessary because

the controller would remember which order was just created.

If the customer is not logged in, a fragment named login is called (which could be specified by a reus-

able separated sequence diagram). The fragment returns a customer identifier and replaces the two frag-

ments that were mentioned in Figure 5.40: if the user has an account, she may log in; otherwise she may

create a new account and log in.

The operations (commands and queries) found in Figure 8.2 are the following (the argument passing

shown in the diagram was adapted to a style that is more common in programming languages):

• createCart():CartId � This is a command that creates a new empty instance of Cart and assigns

an identifier to it. It returns the identifier.

Publisher

Book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Whole = 0

<<immutable>>

name

isbn

Item

+quantity : Natural
+unitPrice : Money = book.price
+ / subtotal : Money = quantity*unitPrice

Livir
1 1

0..1

id
Cart

Order

<<immutable>> +date : Date
<<immutable>> +number : Natural
+ / total : Money = cart,total

<<unique>> <<immutable>> +id : Cartld
+ / total : Money = item->sum(subtotal)

id

1

0..1

1

0..1
1

1

<<immutable>>

<<immutable>>

<<immutable>>

<<immutable>>

Customer

<<unique>> <<immutable>> +name : String

<<immutable>> <<unique>> +id : Customerld
+name : String
<<immutable>> +birthDate : Date

*

**

*

1

1

1

0..1

0..1

FIGURE 8.1

Reference conceptual model.

2The type Whole stands for the set {0, 1, 2, 3, …}.

1958.1 Introduction to functional modeling

• searchBook(keywords:Set[String]):OrderedSet[Tuple]� This is a query that returns an ordered set of

tuples that contain information about the books that are relevant to the search. Each tuple has title,

author’s name, price, page count, publisher name, isbn, cover image, and quantity in stock for a book.

• add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Whole) � This is a command that creates a

new instance of Item and links it to the cart and book identified by the parameters.

• getCartSummary(aCartId:CartId):OrderedSet[Tuple] � This is a query that returns an ordered

set of tuples with information on the cart identified by the cart ID. The information returned, as

stated in the note of Figure 8.2, is title, author’s name, quantity, unit price, and total.

• finishOrder(aCartId:CartId, aCustomerId:CustomerId) � This is a command that creates a new

instance of Order and links it to the customer and the cart identified by the parameters.

8.2 Preconditions
Preconditions establish what must be true when a system query or command is performed.

For example, considering the reference conceptual model of Figure 8.1, the operation

Livir interfaceCustomer

1: keyword*

2: book*

cart summary

loop

opt

ref

finish order

finishOrder(cart,customerld)

book=<title, author, price, page count, publisher, isbn, cover image, stock>
cart summary=<total, <title, authors Name, quantity, unit price, subtotal>*>

3: selected book, quantity [<=stock]

Livir controller

cart:=createCart()

add2Cart(cart, selected book,quantity)

cart summary:=getCartSummary(cart)

book*:=searchBook(keyword*)

login:customerld

loop

[customer not logged in]

FIGURE 8.2

Reference system sequence diagram.

196 CHAPTER 8 Functional Modeling with OCL Contracts

add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural) may assume that the cart ID is valid

because it was obtained by the previous operation createCart():CartId. Thus, a precondition that

states that this is true could be written:

Context Livir:: add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)
pre:
cart[aCartId]-.notEmpty()

The OCL expression above states that in the context of the method add2Cart, which is a system

command implemented by the controller Livir, there is a precondition that establishes that there is

indeed an instance of Cart that is identified by the argument aCartId.

If the association between Livir and Cart in Figure 8.1 was not qualified, then the precondition

could be written by applying select to the set of carts:

Context Livir:: add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)
pre:
cart-.select(id5aCartId)-.notEmpty()

However, when an association is qualified as in Figure 8.1, a key value should be used to directly

access the element mapped by the association. Thus, as the add2Cart command has an argument

aCartId, the expression cart[aCartId] produces the same result as the expression cart-.select

(id5aCartId). Remember that the former expression is also an abbreviation of self.cart-.select

(aCartjaCart.id5aCartId).
In order to be useful for software development, preconditions must be expressed in a careful

way. They must reflect facts that can be identified in the previously developed conceptual model,

or the model has to be updated to reflect the new information just discovered. This justifies the use

of formal languages such as OCL for writing contracts (Warmer & Keppe, 1998) instead of natural

language.

Two families of preconditions may be identified:

• Parameter guarantee: Preconditions that assure that the arguments of a command or query

correspond to valid objects (for example, “there exists a shopping cart with the ID passed as an

argument”).

• Complementary constraint: Preconditions that further constrain the conceptual model when

performing a given command or query, in order to assure that the information is in a given state

when the operation is being executed (for example, “the cart has at least one item”).

8.2.1 Parameter guarantee
There is a systematic way to know if a given operation must have a parameter guarantee precondi-

tion (or exception). This technique is also related to the operation’s functional test, as seen in

Chapter 13. The team must look at each parameter of the operation and ask if there are valid and

invalid values considering the type of the parameter.

For example, if the parameter type is Isbn, and the command is add2Cart(. . ., anIsbn:Isbn, . . .),
then, considering the business rules, there is a group of valid values (ISBNs that belong to a registered

book), and a group of invalid values (ISBNs that are valid but not assigned to any book in the system).

1978.2 Preconditions

On the other hand, if the type of the parameter is String and the command is add2Cart(. . .,
anIsbn:String, . . .), then three classes should be considered: one valid (the same as before: ISBNs

for books that are registered), and two invalid classes consisting of the ISBNs that are valid but do

not belong to any registered books (as before), and incorrectly formed ISBNs (because the type

String admits any string, not only ISBNs). That distinction between incorrectly formed and nonex-

istent ISBNs can be useful to prevent, for example, misunderstandings related to typos when the

user is entering ISBN as a search parameter.

Thus, considering the type of the parameter and identifying the groups of invalid parameters,

the rule for finding parameter guarantee preconditions is the following:

For each group of invalid values for a system operation parameter, a precondition or exception

must be defined.

Regarding parameter guarantee preconditions, special care must be taken not to confuse seman-

tic preconditions with simple syntactic verifications. Semantic verification requires that the data-

base is consulted: for example, verifying if there is a book with a given ISBN. However, syntactic

verification may be done by mechanisms other than preconditions. If a parameter has a type

Natural, no database query is needed to verify if a given argument belongs to the type or not.

Then, if a parameter is declared as x:Natural it is not necessary to write any preconditions to assure

that x is a positive number: the type already states that.

Another example is the ISBN, which has a formation rule, and can be checked syntactically.

Instead of writing preconditions to verify if a parameter is a well-formed ISBN, the team should

simply create a primitive type Isbn with a verification method, and use it.

What about PrimeNumber? Could it be a type? The answer is yes, because in order to know if a

given number is a prime number, a syntactic verification is sufficient.

Types must be defined in the command signature. If the type does not exist, a primitive type

can be defined by the team. For example, Figure 8.1 presents primitive types such as CustomerId

and OrderId that may incorporate not only identification and checksum mechanisms but also secu-

rity mechanisms, because those identifiers could be encrypted to avoid unauthorized access. In both

cases, primitive types could be defined to deal with the complexity of the verification mechanism.

8.2.2 Complementary constraints
A complementary constraint consists of assuring that certain constraints stronger than those of the

conceptual model are obtained while a given command is performed. Thus, if the conceptual model

states that a given role has multiplicity 0..1, for example, a complementary constraint could just

say that when performing a given command that role is filled (1) or not (0). For example, in general

a Cart may have an Order associated with it or not (0..1). But the command that finishes an Order

must have a precondition that states that the Cart was not yet linked to any order (the role from

Cart to Order must not be filled: 0).

Thus, a precondition can never contradict the conceptual model. If the conceptual model states

0..1, then no precondition could state a multiplicity of 2 or more for the same role. But if the

conceptual model states 0..2, then the precondition can further restrict it, stating, for example, 0..1

or 1..2.

198 CHAPTER 8 Functional Modeling with OCL Contracts

Complementary constraints are common in designs that use the stateful strategy, because in that

case each command will need information that was left in transient memory by other commands,

such as, for example, the identification of the client, which is passed by one command and used by

others. Thus, those other commands would have established as a precondition that the client was

adequately identified (possibly by a transient association).

It is possible to identify at least three kinds of complementary constraints:

• A specific statement about an instance or about a set of instances.

• An existential statement about a set of instances.

• A universal statement about a set of instances.

One example of a specific statement about an instance, considering again the model of

Figure 8.1, could be to state that a customer with ID 123 has a birthDate equal to July 14th, 1970:

Context Livir::someCommand()
pre:
customer[123].birthDate5Date.getDate(1970,7,14)

As OCL does not define any literals for the Date type, a predefined operation Date.getDate

may be used to define a given date.

An example of an existential statement would be to say that there is at least one customer born

on July 14th, 1970 (does not matter who):

Context Livir::someCommand()
pre:
customer-.exists(aCustomerj

aCustomer.birthDate5Date.getDate(1970,7,14))

An example of a universal statement would be to say that every customer was born on July

14th, 1970:

Customer Livir::someCommand()
pre:
customer-.forAll(aCustomerj

aCustomer.birthDate5Date.getDate(1970,7,14))

Both the expressions exists and forAll may be written in simplified form as

exists(birthDate5Date.getDate(1970,7,14)) and forAll(birthDate5Date.getDate(1970,7,14)), keeping

the same meaning stated above.

8.2.3 Precondition assurance
As the preconditions are not tested by the command that declares them, an external mechanism

should exist to assure that they will be guaranteed before the command is called.

This guarantee can be made by explicitly calling a query that verifies if the condition is true

before calling the command, or by interface mechanisms that prevent the command from being

called with invalid data.

1998.2 Preconditions

For example, instead of allowing the user to type any string in an ISBN field, the user could be

led to select from a list of valid ISBNs. That way, the parameter would be validated before per-

forming the command.

Usually the flow of messages expressed in the system sequence diagram is a way to verify if

preconditions are viable instead of exceptions. For example, in Figure 8.2 observe that the cart ID

received by the operation add2Cart is valid because it was returned by the command createCart;

the ISBN of the book is also valid because it was collected from a list returned by the searchBook

query. Finally, the quantity may be accepted as valid because the interface can compare it to the

quantity available in stock that was returned with other information about the book.3

8.2.4 Preconditions and exceptions versus invariants
Invariants (Section 6.7) are used in the conceptual model to represent rules that are always valid,

independent of any command or query. Preconditions are used for rules that are valid only when a

given command or query is being performed.

When an invariant already exists for a given situation, it is equivalent to the existence of an

exception for any operation. For example, if there is an invariant that states that a student may

enroll only in courses related to her career, then the invariant functions as an exception for any

command. Thus, commands for enrolling a student may consider that the exception already exists

in the form of the invariant and if the student tries to enroll in a course that does not belong to her

career an exception would be raised.

However, an invariant does not work as a precondition. The existence of an invariant does not

assure that the design does not violate it. However, a command may add a precondition that states

that the invariant must be assured before it is executed.

Test mechanisms must verify if the invariants and preconditions are being respected during the

system test activities. If those conditions are violated at any moment, they should raise exceptions.

However, in those cases, the designer must revise the design to correct that error so that it will not

happen again. When the system is delivered to the final user, it must be guaranteed that no invari-

ant and precondition is violated at any time.

8.3 Transient associations
When the stateful strategy is used in the system sequence diagram, it is necessary for the controller

to keep in memory certain information that is not persistent, but that must be stored during the

execution of the use case.

Some objects, attributes, or associations that are not persistent may be defined to indicate infor-

mation that is stored only in main memory during a use case, and discarded after that. Those

elements may be stereotyped with{transientc.

3Remember that race conditions are not yet being considered here and they could invalidate this precondition if concur-

rency is an issue.

200 CHAPTER 8 Functional Modeling with OCL Contracts

For example, a transient association may be used to indicate that the controller should store

information about who is the current customer in the refined conceptual model, as shown in

Figure 8.3.

Thus, a precondition of a command, for example, could state that a current customer already exists:

Context Livir::someCommand()
pre:
currentCustomer-.notEmpty()

Transient attributes or classes, if needed, may be defined with this stereotype as well. In any

case it means that the stereotyped information piece is not persistent.

8.4 Query return
As mentioned before, system commands change data while queries just return data to the user. The

contracts for system queries must define what is returned, and this can be done in OCL by using

the body clause.

Expressions that represent preconditions are all Boolean, but expressions that represent the

return of a query may have other types. They can return strings, numbers, lists, tuples, or even

more complex structures. The following examples are based on the model of Figure 8.1. Initially, a

query is defined that returns the total of a given cart:

Context Livir::getCartTotal(aCartId:CartId):Money
body:
cart[aCartId].total

System queries as well as system commands always have the Controller as their context.

Therefore, in the example above, cart is a property of the controller Livir: an association role from

it to the class Cart.

<<transient>>

0..1

0..1

id
1 0..1

Livir

<<immutable>> <<unique>> +id : Customerld
+name : String
<<immutable>> +birthDate : Date

Customer

currentCustomer

FIGURE 8.3

A transient association.

2018.4 Query return

The following query returns the name and birthdate of a given customer:

Context
Livir::getCustomerNameBirthDate(aCustomerId:CustomerId):Tuple
body:
Tuple {

name5customer[aCustomerId].name,
birthDate5customer[aCustomerId].birthDate

}

The Tuple constructor is one of the ways to represent DTOs4 in OCL; the tuple works as a

Pascal record in the example with two fields: name and birthDate. The values of the fields are

defined by the expressions after the “5”.

To avoid repeating expressions like customer[aCustomerId] or even more complex expressions,

the def clause can be used in order to define a constant that refers to the original expression. Using

the def clause, the contract above would look like the following:

Context
Livir::getCustomerNameBirthDate(aCustomerId:CustomerId):Tuple
def:
aCustomer5customer[aCustomerId]

body:
Tuple {

name5aCustomer.name,
birthDate5aCustomer.birthDate

}

The expression inside the def clause indicates that the identifier aCustomer is referring to the

customer whose ID is the parameter aCustomerId received from the query.

The following expression makes a projection in the set of customers returning the names of all

customers:

Context Livir::listCustomerNames():Set
body:
customer.name

The next expression applies a filter and a projection, returning the names of all customers that

are less than 25 years old:

Context Livir::listYoungCustomers():Set
body:
customer-.select(birthDate.addYear(25).Date.getCurrent()).name

4Data Transfer Objects are a design pattern that indicates that objects passed by the façade-controller to the interface

and vice versa cannot be instances of domain classes (those in the conceptual model). They must be pure data, and not

domain objects with behavior. This may be implemented with objects that only have attributes and their respective get-

ters and setters (if any), nothing else. The record type in Pascal and the OCL Tuple are examples of DTOs.

202 CHAPTER 8 Functional Modeling with OCL Contracts

The idea in the example above is to add 25 years to the birthdate of the customer and com-

pare it with the current date: if the customer reaches her 25th birthday after the current date

then she is younger than 25 years. OCL also has operations to add days and months to dates:

addDay and addMonth, respectively. The expression Date.currentDate returns the system’s cur-

rent date.

The last example is a query that returns the cart summary, as shown in Figure 8.2.

Context Livir::getCartSummary(aCartId:CartId):Tuple
def: aCart5cart[aCartId]
body:
Tuple {

total5aCart.total,
items5aCart.item-.collect(anItemj

Tuple {
title5anItem.book.title,
authorsName5anItem.book.authorsName,
quantity5anItem.quantity,
unitPrice5anItem.unitPrice,
subtotal5anItem.subtotal

}
)

}

The collect expression is a way to obtain a set whose elements are properties or transformations

on properties of another set. The dot notation (“.”) itself is an abbreviated form of collect.

For example, customer.name is equivalent to customer-.collect(aCustomerjaCustomer.name) or

customer-.collect(name).

When possible, the dot notation is preferred because it is shorter. But in the getCartSummary

example, the need to create a tuple instead of accessing a property of the elements of a set prevents

the use of the dot, because the Tuple operator is prefixed. Thus, the collect expression has to be

explicitly used in that case.

In the example, two tuple structures were built: the outer one contains the total of the cart and

the ordered set of its items; the inner one contains for each item the information that is needed as

mentioned in Figure 8.2: book title, author’s name, etc.

8.5 Postconditions
Postconditions establish what changes in the information managed by the system after some com-

mand is performed. Postconditions also must be carefully specified in terms that can be immedi-

ately recognized on the conceptual model structures. Thus, although contracts can be written in

natural language, they should be carefully written so they can be immediately translated into OCL

expressions.

2038.5 Postconditions

An OCL post condition is written in the context of a (system) command by using the post clause:

Context Livir::someCommand()
post:

,OCL expression.

If there is more than one postcondition, then they can be combined by the use of the and

operator:5

Context Livir::someCommand()
post:

,OCL expression. and
,OCL expression. and
. . .

,OCL expression.

In order to classify the types of postconditions that can be used in a contract, we must take into

account that the conceptual model has three basic elements, which are concepts, attributes, and

associations. Thus, considering that instances of classes can be created and destroyed, association

links can be added and removed, and attribute values can be changed, only five types of

postconditions are possible:

• Change an attribute value.

• Create a class instance.

• Add an association link.

• Destroy a class instance.

• Remove an association link.

These commands are the most fundamental or basic commands that may be defined for an

object-oriented system. They may not be decomposed any further and all other commands are

defined as combinations of them.

Thus, a basic command is a command that performs one of the five postconditions listed above.

The meaning and behavior of a basic command is predefined.

Unfortunately, programming languages still do not provide a standard implementation for such

basic commands. Implementing these commands sometimes is left as a difficult manual task for

programmers, especially in the case of commands that add and destroy links.

The basic commands, as defined in the following subsections, are effectively basic in the sense

that they do the task without performing certain consistency verifications. For example, a command

that adds a link would not verify if the upper bounds for both roles of the association were reached.

That kind of consistency verification is preferably made for a whole set of commands belonging to

the same contract.

The discussion about keeping objects consistent in contracts is continued in Section 8.5.6.

5The OCL and operator may be used also to combine preconditions, exceptions, and invariants.

204 CHAPTER 8 Functional Modeling with OCL Contracts

8.5.1 Changing an attribute value
One of the postcondition types consists of indicating that the value of an attribute was changed.

That is usually written in OCL as

object.attribute5value

But, as OCL is a declarative language, this expression must not be understood as an assignment.

It has, in fact, three possible ways to become true:

• object.attribute may be changed to become equal to value. This is usually the default

interpretation.

• value may be changed to become equal to object.attribute.

• Both value and object.attribute may be changed to a third value and become equal.

Therefore, in terms of code generation, this kind of expression may produce ambiguous inter-

pretations. Cabot (2007) proposes a default semantic for interpreting such expressions so that ambi-

guity is reduced. However, another approach is possible, which does not require changing the

original semantics of OCL. The idea is to use the “^” (caret) predicate instead of the “5” (equals

sign) predicate, as explained below.

We can indicate without ambiguity that an attribute was changed just by declaring that a basic

message concerning the change was sent to the object. The basic message is predefined, and its

name should start with the prefix “set” followed by the name of the attribute. The new value is

passed as an argument.

The message setAttribute may be sent to an instance of a class that contains the attribute. For

example, if we are interested in changing the price of a given book, the following OCL expression

could be used:

Context Livir::updateBookPrice(anIsbn:Isbn;newPrice:Money)
post:
book[anIsbn].price5newPrice

But we have already seen that it can be interpreted in ambiguous ways. The expression below

expresses the same intention but without any ambiguity:

Context Livir::updateBookPrice(anIsbn:Isbn;newPrice:Money)
post:
book[anIsbn]^setPrice(newPrice)

The caret notation means that the message at the right was sent to the object or collection of

objects at the left. Thus, it is a Boolean predicate and the result of the expression above is Boolean.

The expression book[anIsbn].price5 newPrice means that two values are equal no matter how

that result was accomplished. But book[anIsbn]^setPrice(newPrice) states unambiguously that the

attribute price of object book[anIsbn] was changed to newPrice.

This form of writing is still considered a declarative specification, not imperative. The expres-

sion book[anIsbn]^setPrice(newPrice) just states that an object has received a message; it does

not say who sent that message. The decision about which object is going to send that message to

book[anIsbn] is left for dynamic modeling (Chapter 9).

2058.5 Postconditions

8.5.2 Creating an instance
The command that creates an instance must just do that: create a class instance. Although OCL is

not an imperative language, it has a constructor to indicate that a new instance of a class was

created. This is expressed as a property of an object, and is referenced as follows:

object.oclIsNew()

Its meaning, when used in a postcondition, is that the object was created during the command

being specified by the postcondition. This property may be used in conjunction with another that

declares the class of the object:

object.isTypeOf(class)

However, as it would be a bit tedious to keep declaring the creation of an instance using two

expressions, the definition of a single predicate that states that an object was created as an instance

of a given class is suggested. The expression object.isNewInstanceOf(class) is therefore defined as

being equivalent to

object.oclIsNew() and object.oclIsTypeOf(class)

Thus, a postcondition that declares that a new instance of Book, referred to as newBook, was

created can be defined as

newBook.newInstanceOf(Book)

In this case, the caret notation is not used because it is not a message sent to an instance of

Book. It is a declaration that an instance newBook of class Book was created.

The message newInstanceOf does not say anything about the instance’s attributes and links,

even the mandatory ones. As before, it can be assumed that other expressions will initialize manda-

tory attributes and links, and that the new instance’s consistency will be checked for the contract as

a whole and not for each individual basic command.

Attributes with initial values are considered automatically initialized when the instance is created.

Thus, it would be redundant to specify postconditions to update the attributes with initial values,

unless values different from the default are desired.

Derived attributes, on the other hand, are calculated, and cannot be directly modified. Thus,

they are not initialized.

Attributes stereotyped with {optionalc may be kept undefined at creation time; defining a

value for them is not mandatory.

But what happens with other (normal and mandatory) attributes at the moment an instance is

created? The basic command represented by the predicate newInstanceOf simply produces the

instance. It does not initialize attributes and links except for those that are defined with default ini-

tial values. If mandatory attributes and links are not initialized the instance may be inconsistent;

thus, the contract should specify further postconditions that assure that all mandatory attributes and

links are initialized when an object is created.

206 CHAPTER 8 Functional Modeling with OCL Contracts

We have seen so far postconditions to create instances and change attributes. This allows us to

combine them to create a contract for a CRUD command that creates a new instance of Book. The

system command createBook may have the following as an initial draft of a contract:

Context Livir::createBook(anIsbn:ISBN;
aTitle,anAuthorsName:String; aPrice:Money;
aPageCount:Natural; aCoverImage:Image)
post:
newBook.newInstanceOf(Book) and
newBook^setIsbn(anIsbn) and
newBook^setTitle(aTitle) and
newBook^setAuthorsName(anAuthorsName) and
newBook^setPrice(aPrice) and
newBook^setPageCount(aPageCount) and
newBook^setCoverImage(aCoverImage)

Note that quantityInStock is defined with an initial value and does not need to be initialized in

this contract.

The coverImage attribute is an optional attribute and for that reason it is the only parameter that

could accept the null value; alternatively, it could be suppressed from the parameter list of

createBook.

The publisherName attribute is derived, and as it is read only it cannot be defined in the con-

tract (instead, the derive clause in the class defines its value for every instance). However, its value

depends on a link between the book and its publisher and the first version of this contract does not

define how that link is added. This is discussed in the next section.

There is one more concern here: if we consider that all information is accessible by navigating

links starting at the controller instance, then it would not be advisable to declare that an instance

was created if it is not linked to any other instance with a path to the façade-controller. Unless

another core search mechanism allows one to find instances that are not linked (directly or not) to

the controller, the newly created instance is unreachable. Therefore, the creation of an instance

should always happen in conjunction with the adding of a link, which will be explained in the next

section.

8.5.3 Adding a link
As mentioned earlier in the chapter, another kind of basic command is one that states that a link

was added between two objects. Although link additions are bounded by the multiplicity of the

roles, this is only checked for the contract as a whole and not for each individual basic command.

Usually, an OCL postcondition to indicate that a link was created would look like the

following:

object.role-.includes(anotherObject)

2078.5 Postconditions

But, again, this expression may be ambiguously interpreted when at the code generation stage,

because there are at least four ways for it to become true:

• Include anotherObject in object.role.

• Assign to anotherObject an object that is already in object.role.

• Assign a third object to anotherObject and include it in object.role.

• Assign the empty set to anotherObject, because independently of the contents of object.role it

includes the empty set.

Usually, the first option is the intended meaning. But again we suggest a notation that does not

cause ambiguous interpretations and at the same time is more familiar to software developers.

Once again, the “^” notation and a basic command are used to indicate that a link was created.

There are many dialects for naming commands that modify association roles. Here, we use the

prefix add followed by the name of the role. Another common option would be to use the set pre-

fix, as in the case of attributes. However, attributes have their values changed or replaced, while

links are added; thus, different goals should have different names.

Considering the association between the Book and Publisher classes, and considering two

instances, aBook and aPublisher, respectively, a link between the instances may be created in

two different ways. First, from the point of view of a book:

aBook^addPublisher(aPublisher)

Second, from the point of view of a publisher:

aPublisher^addBook(aBook)

Both expressions are symmetric and produce exactly the same result (a link based on the associ-

ation is created between the instances).

Associations with mandatory roles, such as the one from Book to Publisher, usually require that

their links are created in the same contract that creates the object that must have the role filled. Thus,

a link from Book to Publisher will be added when an instance of Book is created, as shown below:

Context Livir::createBook(anIsbn:ISBN; aTitle,anAuthorsName:String;
aPrice:Money; aPageCount:Natural; aPublisherName:String; aCoverImage:Image)
post:
newBook.newInstanceOf(Book) and
newBook^setIsbn(anIsbn) and
newBook^setTitle(aTitle) and
newBook^setAuthorsName(anAuthorsName) and
newBook^setPrice(aPrice) and
newBook^setPageCount(aPageCount) and
newBook^setCoverImage(aCoverImage) and
newBook^addPublisher(publisher[aPublisherName]) and
self^addBook(newBook)

In the contract above, two mandatory links were added to the new book: one from it to its pub-

lisher, and another from it to the controller Livir. Remember that as Livir is the context of the con-

tract, self stands for a Livir instance.

208 CHAPTER 8 Functional Modeling with OCL Contracts

8.5.4 Destroying an instance
Although destroying objects is rare in object-oriented systems, it may sometimes occur. Usually

out-of-print books and deceased customers are not deleted from the records: they are simply

marked as inactive or moved to an alternate place. The information must not be lost if

trustable records of the company activities in the past are needed.

However, if a publisher or any other class instance was inserted in the system record twice by

mistake, the instances may be merged if both have already been changed or, if no activity was reg-

istered for the second instance, it may simply be deleted from the records. In this case, an object

must be destroyed.

There are two approaches to indicate that an instance was destroyed:

• Explicit: It is declared that an object was destroyed by sending an explicit destruction message

to it.

• Implicit: All associations to the object are removed so that it becomes inaccessible. In

programming languages it is possible to implement garbage collection to remove from memory

objects that are not accessible anymore.

In this book, the explicit approach is chosen because it makes the modeler’s actual intention

clearer. An object that has to be destroyed, then, must receive a basic message such as the

following:

object^destroy()

The meaning of this expression in a system command postcondition is that the referred object

was destroyed during the execution of the command.

It is assumed that all links to the destroyed object are removed as well. If any object formerly

linked to it became inconsistent, then the contract must specify what happens to that object (if it is

removed as well or if the role is replaced by a link to another object).

8.5.5 Removing a link
The removal of a link between two objects is made by a basic command prefixed by the word

remove,6 followed by the role name and receiving as a parameter the object member of the role

that must be removed. For example, for removing the last item of a given cart, the following con-

tract could be used:

Context Livir::removeLastItem(aCartId:CartId)
def: aCart5cart[aCartId]
def: lastItem5aCart.item-.last()
post:
aCart^removeItem(lastItem)

6Some dialects might use unset.

2098.5 Postconditions

When the multiplicity of the destination role of the link to be removed is 1 or 0..1, it is optional

to inform the parameter, because there is only one possible link to be removed. If instead of remov-

ing the link from the point of view of the cart it was done from the point of view of the item, the

final result would be the same, but the basic command would not need a parameter:

Context Livir::removeLastItem(aCartId:CartId)
def: aCart5cart[aCartId]
def: anItem5aCart.item-.last()
post:
anItem^removeCart()

However, both contracts above leave the item inconsistent, because it has a mandatory associa-

tion to Cart that does not exist anymore if the contract succeeds. The contract must consider that as

the role from Item to Cart is mandatory (1), the removal of this link implies the destruction of the

Item or the linking of it to another Cart, which has to be completed in the same contract.

If the choice is to delete the item, then only that basic command should be used in the contract

because with it, all links to the item are considered automatically removed as well:

Context Livir::removeLastItem(aCartId:CartId)
def: aCart5cart[aCartId]
def: lastItem5aCart.item-.last()
post:
lastItem^destroy()

Trying to remove a nonexistent link is a design error and cannot be declared in well-formed

contracts, which are discussed in the next section.

8.5.6 Well-formed postconditions
If we assume that the basic commands do not check if the objects and links are left in a consistent

state after they are performed, then the designer must do the verification when she is specifying the

system command contracts.

The verifications that must be done can be summarized as follows:

• A command that creates an instance must also have postconditions stating that all the instance

attributes were initialized, except for (1) derived attributes (which are calculated), (2) attributes

with an initial value (which are predefined by an init clause, unless a different value is desired),

and (3) optional attributes, which can be null (in that case, initialization is optional).

• All mandatory links for a newly created instance must be added.

• Even if it has no links or associations, a newly created instance must be linked to at least one

instance that has a link path to the controller or be linked to the controller itself.

• All created links must stay within the lower and upper bounds defined by their association

roles.

• All invariants affected by changes in attributes, links, or instances must stay true.

The invariant-checking mechanism does not assure that the designer is writing a contract that

keeps all invariants true. It is the responsibility of the designer to be aware of the invariants and

210 CHAPTER 8 Functional Modeling with OCL Contracts

avoid raising exceptions. If an invariant happens to raise an exception that is not handled by the

system, then there is certainly a design problem.

Another issue involves attributes declared with initial values. If the definition of the initial value

of an attribute uses information that may be obtained only by navigating its links, how can it be

calculated before the links are created? We must consider that the initialization of attributes with

initial values will be one of the last tasks in the programming code that implements a contract, that

is, attributes with initial values may be defined only after all links are added and the instance is

consistent. For example, the unitPrice of an item in Figure 8.1 may only be initialized after a link

between the item and the book is added, because the initial value depends on the link. The contract

designer does not need to worry about this because contracts are declarative, but the programmer

must be concerned with it when producing code.

8.5.7 Combinations of Postconditions
Usually, a system command will have many postconditions that can be joined by the and operator,

as mentioned before. But it is also possible to use the or operator, which establishes that one of the

postconditions was obtained, but not necessarily the other:

post:
,postcondition1. or
,postcondition2.

The main problem with this operator is that it is inherently ambiguous in terms of code genera-

tion, and thus, its use should be avoided if deterministic expressions are possible.

Another operator that can be used to connect OCL expressions is the implies operator, which

has the same meaning of the implication operator of Boolean logic. Implies is used when a

postcondition is to be obtained only if a certain condition is true. For example, the following con-

tract adds a book to a cart only if it is not there yet:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn,aQuantity:Natural)
def:aCart5cart[aCartId]
def:aBook5book[anIsbn]
def:anItem5aCart.item-.select(book.isbn5anIsbn)
pre:
aCart-.notEmpty() and
aBook-.notEmpty()

post:
anItem-.isEmpty() implies

newItem.isNewInstanceOf(Item) and
aCart^addItem(newItem) and
newItem^setQuantity(aQuantity) and
newItem^addBook(aBook) and
newItem^setUnitPrice(aBook.price)

2118.5 Postconditions

The implies operator can also be replaced by an if-then-endif expression. This expression is

especially useful if an alternate postcondition must be obtained when the condition is false; in this

case the form if-then-else-endif should be used instead. In the case of the last example, if the book

is already in the order, the quantity ordered may be added to the quantity of the existing item. The

contract below shows how to use this operator:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn,aQuantity:Natural)
def:aCart5cart[aCartId]
def:aBook5book[anIsbn]
def:anItem5aCart.item-.select(book.isbn5anIsbn)
pre:
aCart-.notEmpty() and
aBook-.notEmpty()

post:
if anItem-.isEmpty() then

newItem.isNewInstanceOf(Item) and
aCart^addItem(newItem) and
newItem^setQuantity(aQuantity) and
newItem^addBook(aBook) and
newItem^setUnitPrice(aBook.price)

else
anItem^setQuantity(anItem.quantity@pre1 aQuantity)

endif

The meaning of the @pre operator is explained in the next section.

The advantage of implies is that it is shorter. The advantage of if-then-endif or if-then-else-endif

is that it is more familiar to programmers, and includes a way to specify what must be obtained for

both cases of a Boolean expression that is shorter than using two implies structures.

8.5.8 Former values
Sometimes a postcondition is built upon values that attributes and roles had before the command is

performed. Those former values are referred to by the function @pre to indicate that they do not

correspond to the value of the attribute after the command is performed (which could be different).

For example, a postcondition that establishes that a quantity in stock for a given book has increased

may be expressed as

Context Livir::add2Stock(anIsbn:Isbn; aQuantity:Natural)
def:aBook5book[anIsbn]
post:
aBook^setQuantityInStock(

aBook.quantityInStock@pre1 aQuantity
)

212 CHAPTER 8 Functional Modeling with OCL Contracts

So, why was @pre used above? Because after the command is performed, the quantity in stock

would already be incremented, and the argument for the setQuantityInStock basic command has to

be defined as the previous quantity plus the new quantity.

Remember that OCL is declarative, just as arithmetic is. x5 x1 1 is not a true statement in

mathematical notation, because it cannot be true for any value of x. But when you write x :5 x1 1

in a programming language it means the same as x5 x@pre1 1.

The operator @pre may also be used over the links of a given role. For example, to indicate the

set of items that were linked to an order before the system command was performed, the following

expression could be used:

def:anOrder5 . . .

post:
anOrder.item@pre . . .

Another example with a more intense use of this operator is an expression that obtains the total

value derived from an order before the system command is performed. Not only may the quantities

and item prices have changed, but the list of items itself as well. Thus it is necessary to use the

@pre operator three times:

def:anOrder5 . . .

post:
anOrder.item@pre-.sum(unitPrice@pre*quantity@pre) . . .

If, on the other hand, the analyst believes that the values of the attributes and links are not changed

by the system command, then the @pre expression may be omitted, as in the following example:

def:anOrder5 . . .

post:
anOrder.item-.sum(unitPrice*quantity) . . .

8.5.9 Postconditions covering collections of objects
It is possible with a single OCL expression to state that a whole set of objects was changed. For

example, an expression that states that the price of every book was raised by x% may be written

using the forAll expression:

Context Livir::raiseBookPrice(x:Percent)
post:
self.book-.forAll(aBookj

aBook^setPrice(aBook.price@pre*(11x))
)

2138.5 Postconditions

If there is no need to use the former values in the equation, that is, if every object is going to be

updated with the same price, then it is possible to abbreviate this notation. For example, if the price

of all books has to be set to x dollars, then the following expression could be used instead:

Context Livir::setBookPrice(x:Money)
post:
self.book-.forAll(aBookj

aBook^setPrice(x)
)

In this case, there is an even more abbreviated form:

Context Livir::setBookPrice(x:Money)
post:
book^setPrice(x)

Remember that in our examples, book is a role of an association from the controller to the class

Book, and therefore it is equivalent to self.book, that is, it represents the set of all books that are

registered in the system. As in the case of the “.” notation, the “^” notation can be used with sets

as well.

8.5.10 Postconditions and real-world events
The process of creating contracts is intimately related to the expansion of the use case and the con-

ceptual model. The conceptual model should be used as a reference at every moment because it is

the source of information with which assertions can be made about the information.

Contracts should be always written with expressions that can be interpreted in terms of elements

of the conceptual model. Thus, assertions like “the books were shipped” would hardly be

postconditions because they do not represent information contained in the conceptual model; they

describe real-world events. If the team wishes to express this in a contract, they should create a

conceptual structure (attribute, role, or concept) to represent it. For example, the fact that the books

were shipped could be represented by creating an instance of the Delivery class and linking it to

the current instance of Order.

8.6 Exceptions
Exceptions in contracts are fail conditions that the designer cannot or does not wish to avoid before

performing the command itself.

Sometimes, conditions identified as exceptions may be converted into preconditions. If it is pos-

sible to transform an exception into a precondition, it is generally advisable to do so, because it is

preferable to avoid problems as soon as possible. It is preferable to keep the user from performing

a mistaken action rather than allowing her to do it and reporting the error later.

214 CHAPTER 8 Functional Modeling with OCL Contracts

OCL does not present a specific clause to manage exceptions, but they can be simulated in con-

tracts by conditional postconditions such as

post:
if ,condition. then

,raise exception.
else

,all other post conditions, including other exceptions.
endif

As it would not be easy to represent many exceptions using this nested approach, we use a new

stereotyped clause, exception, which is a shorter version of the expression above:

exception:
,condition. implies,raise exception.

Now, for a contract to indicate an exception it is sufficient to identify the condition that pro-

duces the exception and name the exception.

A contract just indicates that exceptions may occur, but their handling must be defined only dur-

ing the design of the interface or application tier, because if an exception is raised by the façade-

controller, it should be handled by the tier immediately above: the application or interface tier.

The following example shows a contract with an exception based on Figures 8.1 and 8.2:.

Context Livir::finishOrder(aCartId:CartId, aCustomerId:CustomerId)
def: aCustomer5customer[aCustomerId]
def: aCart5cart[aCartId]
pre:
aCustomer-.notEmpty() and
aCart-.notEmpty()

post:
newOrder.isNewInstanceOf(Order) and
newOrder^addCart(aCart) and
newOrder^addCustomer(aCustomer) and
newOrder^setDate(Date.getCurrent()) and
newOrder^setNumber(OrderNumberGenerator.getNew())

exception:
aCart.item-.isEmpty() implies Exception.throw(‘Cannot finish an empty order’)

Here, a basic throw message is used to signal the exception to a class named Exception, which

is not a basic OCL class. When the code for that command is generated, the exception must be sig-

naled to the object that called the system command (possibly an object from the application or

interface tier), and we assume none of the postconditions are obtained.

A system command exception should be a condition that cannot be resolved internally by the

implementation of the system command, and that requires the execution flow control to be returned

to the interface tier so that the user can be asked to try other options.

2158.6 Exceptions

Internal software exceptions that a system command can handle internally are not raised to the

interface; therefore, they are simply not mentioned in contracts: they will be addressed when inter-

nal control mechanisms are designed and programmed.

It is also assumed that when an exception is raised the command cannot be executed and none

of its postconditions are obtained, because the data must be kept in a consistent state even when an

exception occurs.

As mentioned a bit earlier, some exceptions may be converted into preconditions if the designer

devises a way to assure the condition before calling the command. Thus, the contract with an

exception shown above could be converted into the following:

Context Livir::finishOrder(aCartId:CartId, aCustomerId:CustomerId)
def: aCustomer5customer[aCustomerId]
def: aCart5cart[aCartId]
pre:
aCustomer-.notEmpty() and
aCart-.notEmpty() and
aCart.item-.notEmpty()

post:
newOrder.isNewInstanceOf(Order) and
newOrder^addCart(aCart) and
newOrder^addCustomer(aCustomer) and
newOrder^setDate(Date.getCurrent()) and
newOrder^setNumber(OrderNumberGenerator.getNew())

In this case, the command assumes that the previous operations in the system sequence diagram

have checked and assured that at this point the cart is not empty; therefore, the command will not

check it again. This prevents the finishOrder command from performing unnecessary verifications

when called, and therefore it simplifies its code.

Only conceptual elements (concepts, attributes, and associations) may appear in the OCL

expressions of the contracts. These elements are necessarily related to the business rules of the

system being analyzed. The exceptions mentioned here must be exceptions related to the busi-

ness rules, and not exceptions related to hardware or communication problems. Exceptions that

may occur in physical storage, communication, or external devices must be addressed by spe-

cific mechanisms in the tiers where those elements belong. Usually, users are not even aware

of them.

8.7 Pattern contracts for CRUD
The following subsections present models for contracts for typical CRUD commands. There are

three system command contracts and one system query contract. The commands and query are per-

formed within the Book class, defined following the model in Figure 8.1. Contracts for CRUD

operations are similar and may be considered patterns.

216 CHAPTER 8 Functional Modeling with OCL Contracts

8.7.1 Create contract
The contract for a create command usually should include the instantiation of a new object, initiali-

zation of its mandatory attributes, and addition of its mandatory links. As an example, the following

is a complete contract for creating a new book:

Context Livir::createBook(anIsbn:ISBN;aTitle,anAuthorsName:String;aPrice:Money;
aPageCount:Natural;aPublisherName:String;aCoverImage:Image)
pre:
publisher[aPublisherName]-.notEmpty()

post:
newBook.newInstanceOf(Book) and
newBook^setIsbn(anIsbn) and
newBook^setTitle(aTitle) and
newBook^setAuthorsName(anAuthorsName) and
newBook^setPrice(aPrice) and
newBook^setPageCount(aPageCount) and
newBook^setCoverImage(aCoverImage) and
newBook^addPublisher(publisher[aPublisherName]) and
self^addBook(newBook)

This contract assumes that the publisher’s name was already checked and is valid; otherwise

that condition should be an exception instead of a precondition.

As the isbn attribute is already stereotyped with {uniquec, it is not necessary to establish an

exception related to the issue of creating a book with an existing ISBN, because that exception

would be raised by the class invariant defined by the {uniquec stereotype. The designer might

want to make it explicit in the contract that such an exception exists; however, it is redundant to

declare an exception that is already defined as an invariant, and as redundancy is a possible source

of problems it should be avoided.

However, if the team wants to assure that the argument anIsbn passed to the command is really

an ISBN that is not registered yet, they can do it by adding a precondition to the contract. This

does not invalidate the exception that could be raised by the invariant, but it assures that this spe-

cific operation is not going to raise that exception:

Context Livir::createBook(anIsbn:ISBN;aTitle,anAuthorsName:String;aPrice:Money;
aPageCount:Natural;aPublisherName:String;aCoverImage:Image)
pre:
publisher[aPublisherName]-.notEmpty() and
book[anIsbn]-.isEmpty()

post:
newBook.newInstanceOf(Book) and
newBook^setIsbn(anIsbn) and
newBook^setTitle(aTitle) and
newBook^setAuthorsName(anAuthorsName) and
newBook^setPrice(aPrice) and
newBook^setPageCount(aPageCount) and

2178.7 Pattern contracts for CRUD

newBook^setCoverImage(aCoverImage) and
newBook^addPublisher(publisher[aPublisherName]) and
self^addBook(newBook)

8.7.2 Update contract
The update command usually involves just changing the value of some attributes, although some-

times it may involve adding or removing links. Before defining a contract for updating an object

however, the designer must decide which attributes and links are immutable. The {immutablec
stereotype added to some attributes and association roles in Figure 8.1 declares that those properties

cannot change after an object is created. It is only meaningful when one begins to consider if

objects can change or not, and the time for writing contracts is just the time to take that feature

into consideration. In the case of an immutable attribute, its value can be defined when an instance

is created, but it cannot change after that. An example is the ISBN of a book. An immutable role

refers to a link that is usually mandatory and added when the object is created. The object at that

role cannot be changed. For example, an item is linked to a cart when created and cannot change to

a different cart after that.

The update command cannot change immutable attributes and links. In the case of a Book in

Figure 8.1 only the following attributes may be updated: price, coverImage, and quantityInStock.

The update contract in this case might look like the following:

Context Livir::updateBook(anIsbn:ISBN; aPrice:Money; aCoverImage:Image;
aQuantity: Natural)
def: aBook5book[anIsbn]
pre:
aBook-.notEmpty()

post:
aBook^setPrice(aPrice) and
aBook^setCoverImage(aCoverImage) and
aBook^setQuantityInStock(aQuantity)

The ISBN is only used to find the book. But as it is immutable, it cannot be updated. If it could

be updated, then two ISBN values should be passed as parameters: the old ISBN used to locate the

book, and the new ISBN that would replace the old value.

Remember that unique attributes are not primary keys, as explained in Chapter 6; they are just

attributes with values that do not repeat in different instances. They may or may not be

immutable depending on the nature of the concept.

8.7.3 Delete contract
The command that deletes an object must consider structural rules of the conceptual model before

deciding if an object can or cannot be destroyed.

218 CHAPTER 8 Functional Modeling with OCL Contracts

In the case of Figure 8.1, for example, an instance of Book cannot be deleted without a decision

on what happens to possible instances of Item eventually linked to it, because, from the point of

view of an Item, a link to a Book is mandatory.

In order to perform deletion without violating any structural rules, one must choose one of the

three approaches below:

• Assure by precondition that the object being deleted would not leave other objects inconsistent

regarding the lower bound of their associations. With this approach, only books with no

associated items may be selected for deletion. This means that only books that were never sold

may be deleted.

• Use an exception to abort the delete command if it is attempted for an object that will leave

other objects inconsistent. If a user tries to delete book that has items linked to it, an exception

would be raised.

• Assure by postcondition that all objects that would be left inconsistent after deletion are deleted

as well. In this case, items linked to a book to be deleted would be deleted as well.

The third approach is used when we want to propagate the delete command to every object that

has mandatory associations to the object being deleted. This propagation is recursive: deletion will

continue until no more objects with mandatory links to objects that were deleted are found.7 This

approach may not always be used; there are situations in which propagating deletion is against

business rules. In the case of books, for example, deleting items linked to a book that is being

deleted would create problems with old orders that are already registered; it is not acceptable.

However, deleting items when a cart is being deleted is acceptable, because if a cart is deleted it is

expected by business rules that all information related to its items are deleted as well.

A possible contract that uses the precondition approach would look like the following:

Context Livir::deleteBook(anIsbn:ISBN)
pre:
book[anIsbn]-.notEmpty() and
book[anIsbn].item-.isEmpty()

post:
book[anIsbn]^destroy()

As indicated earlier, the destroy message removes the instance of Book as well as its eventual

links, which do not need to be removed one by one. The preconditions assure that the book exists

and that the book does not have any items linked to it. If a given book has items, then the com-

mand cannot be called.

A possible contract that uses the exception approach would be something like the following:

Context Livir::deleteBook(anIsbn:ISBN)
pre:
book[anIsbn]-.notEmpty()

post:

7In fact, in the general case, the lower bound of the role is the information that must be considered. For example, if a

role has multiplicity 3..�, than removing a link when only 3 are left makes the object inconsistent.

2198.7 Pattern contracts for CRUD

book[anIsbn]^destroy()
exception:
book[anIsbn].item-.notEmpty() implies

self^throw(‘The book cannot be deleted because copies of it have already been sold’)

A possible contract using the postcondition approach that propagates deletion to all items linked

to a cart would look like the following:

Context Livir::deleteCart(aCartId:CartId)
pre:
cart[aCartId]-.notEmpty()

post:
cart[aCartId].item^destroy() and
cart[aCartId]^destroy()

The postcondition above states that besides the cart, every item linked to it is deleted as well. As

the Item class does not have associations with mandatory links coming from other classes, the destruc-

tion process may stop there (the books linked to the items, for example, are not destroyed). Otherwise

it would be necessary to destroy other objects, and that should be established by the contract.

The postcondition approach must be chosen when it is desirable to propagate deletion to all objects

that depend on the object that is being deleted. Is it also useful when the composite aggregation is deleted;

by definition, all components must be deleted as well, unless previously removed from the composite.

However, as mentioned earlier, there are situations in which this propagation is not desirable. For

example, removing a book from the catalog is not possible if there are already sales registered for that

book. In this case, the precondition or exception approaches must be chosen. The first requires that a

book that cannot be deleted is prevented from having its ISBN passed as an argument to that command.

For example, the list of books available for deletion at the interface could contain only those books that

could really be deleted. If this assurance is not possible or desirable, the exception approach should be

chosen. In this case, the interface lets the user try to delete, and if it is not possible, an exception is raised.

Usually, information systems do not allow information to be deleted. A book that is removed

from a catalog, for example, is not deleted, but marked as inactive; if the information about the

book is removed, then the information about former sales would be left inconsistent with reality.

For implementing this approach, one simple solution is to define a new Boolean active attribute for

the class whose members may be inactivated instead of deleted. The default value for this attribute

is true, because the object usually is active when it is created. In the example, for the Book class,

the solution is shown in Figure 8.4.

In this case, a contract to inactivate a book would be

Context Livir::inactivateBook(anIsbn:ISBN)
pre:
book[anIsbn]-.notEmpty()

post:
book[anIsbn]^setActive(false)

There is no need to check if the book has items in this case because none will be actually deleted.

220 CHAPTER 8 Functional Modeling with OCL Contracts

Another approach is to move inactive objects to a different space, by for example using a new

association to the controller that keeps inactive objects separated from active ones. Figure 8.5

shows an example of this approach for the Book class.

In Figure 8.5 there are two sets of books: (active) book and inactiveBook. The constraint in the

Book class assures that a book belongs only to one or the other set.

Still another approach is to use the state design pattern to model the two states of an object, as

shown in Figure 8.6. Again, there are two sets of books; the usual set of (active) books may be

accessed directly by a derived association while the set of inactive books in the figure must be accessed

by consulting the set of books linked to the instances of Inactive (however, nothing prevents the crea-

tion of another derived association to access inactive books if desired).

This model is a bit more complex visually but it avoids the need for a constraint. It also could

be transformed into a pattern and a stereotype could be created for it.

8.7.4 Retrieve contract
The simple CRUD retrieve query returns available data about an instance of a given concept that is

identified by one of its unique identifiers. These queries do not return data that is not explicitly in

the class definition. Queries that return data calculated from one or more objects are reports (use

cases stereotyped with{reportc). Retrieve operations do not perform calculations.

Book

+active : Boolean = true
<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Whole = 0

FIGURE 8.4

A variation of the Book class whose instances cannot be deleted, but instead are marked as inactive.

Book
{active->size()+inactive->size()=1}

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Whole = 0

isbn

isbn

Livir

0..1

inactiveBook
inactive 0..1

active 0..1

0..1

FIGURE 8.5

Alternate way to represent inactive books with two associations.

2218.7 Pattern contracts for CRUD

A simple retrieve query for the class Book of Figure 8.1 could be defined as follows:

Context Livir::retrieveBook(anIsbn:ISBN):Tuple
body:
Tuple {

isbn5anIsbn,
title5book[anIsbn].title,
authorsName5book[anIsbn].authorsName,
price5book[anIsbn].price,
pageCount5book[anIsbn].pageCount,
publisherName5book[anIsbn].publisherName,
coverImage5book[anIsbn].coverImage,
quantityInStock5book[anIsbn].quantityInStock,

}

The retrieve query returns a tuple or record with the data from the attributes of the object

selected by the query parameter.

8.8 Pattern contracts for listing objects
Frequently it is necessary to list objects where one or more attributes are presented. A first example

of this kind of contract is listing the title of all books available in the bookstore:

Context Livir::listBook():Set
body:
book.title

BookBookState

Active

Livir

1

1

1 1

0..1

1

*

1

Inactive

/book=active.book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

isbn

FIGURE 8.6

An alternative way to represent inactive objects using the state design pattern.

222 CHAPTER 8 Functional Modeling with OCL Contracts

As the book role from the controller is a strict set in Figure 8.1, the result of the expression

book.title will be a set as well. Thus, if there are two books with the same title, they will be listed

just once, even if the books have a different ISBN.

If a list with multiple columns is desired (for example, author and title), then it is necessary to

return a collection of tuples:

Context Livir::listBook():Set
body:
book-.collect(aBookj

Tuple {
authorsName5aBook.authorsName,
title5aBook.title

}
)

Sometimes, it is necessary to apply a filter to the list, for example returning only the author and

title of books that do not have any items linked to them (books that were never sold). In this case,

select may be applied to the set before forming the tuples:

Context Livir::listBookNotSold():Set
body:
book-.select(

item-.isEmpty()
)-.collect(aBookj

Tuple {
authorsName5aBook.authorsName,
title5aBook.title

}
)

Most listing queries likely have only these two constructors: select (filter) followed by collect

(projection). But more complex queries may be created. In those cases, they do not necessarily fit

the list pattern ({listc) and are considered more complex reports ({reportc).

8.9 Contracts related to use cases
An expanded use case is a chain of commands and queries than will be performed in a given

sequence. Usually, each operation will supply information or assure preconditions for other opera-

tions. The best approach to write contracts for this sequence of operations is to follow the use case

flow that is depicted in the system sequence diagram. In this sequence, the designer must ask:

• What is the goal of each operation?

• What do they produce in terms of information?

• What do they expect their predecessors have produced?

• Which exceptions could happen during execution?

2238.9 Contracts related to use cases

• Can their exceptions be reconfigured as preconditions?

• Do their parameters include groups of values that are invalid?

• Do the operations follow a known pattern?

When answering these questions, the designer will be building contracts that allow the commands

and queries to be performed in a consistent way in the context of the use case transaction. If it is nec-

essary to add new queries or commands to the sequence diagram in order to assure certain precondi-

tions, then this is the right moment to do that.

This chapter shows many examples related to the system sequence diagram of Figure 8.2. The

reader is encouraged to review that figure and ask the questions above for each operation to under-

stand how they have been answered during the chapter.

8.10 The process so far

Inception Elaboration

Business Modeling Build a general view of the system:

• Build a business use case diagram
and determine the automation
scope for the project.

• Build preliminary activity diagrams
for business use cases.

• Build preliminary state machine
diagrams for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
the activity and state machine
diagrams from business modeling.

• Identify the main flow.
• Identify alternate flows: variants and

exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual
model by observing system use cases
and the concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence
diagram.

• Represent the system commands
and queries using stateful or
stateless strategies.

(Continued)

224 CHAPTER 8 Functional Modeling with OCL Contracts

(Continued)

Inception Elaboration

• Complete system sequence
diagrams with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of
expanded use cases.

• Detail attributes and associations
with stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes,
and temporal specifications.

• Add invariants as needed.
• Improve the conceptual model with

the application of analysis patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and
exceptions based on invalid
parameters and complementary
constraints.

• Identify postconditions for
commands and returns for
queries.

Implementation

Test

Project
Management

Estimate total effort, ideal calendar
time, and average team size for the
project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration
plan for the first iteration.

8.11 Questions
1. Explain and present an example on how an exception may be transformed into a precondition and

vice versa.

2. What is the difference between exceptions in command contracts and in query contracts?

3. What are the five possible postconditions, and what basic commands define each of them? How

can they be represented in OCL contracts?

4. Produce the contract for the searchBook query in Figure 8.2.

2258.11 Questions

This page intentionally left blank

CHAPTER

9Domain Tier Design

KEY TOPICS IN THIS CHAPTER

• Responsibility

• Visibility

• Low coupling

• Delegation

• Dynamic modeling

• Design class diagram

9.1 Introduction to domain tier design
Software design in general aims to produce a solution to a problem that has already been suffi-

ciently clarified by analysis. The static aspects of the problem are represented in the conceptual

model and the functional aspects are represented in the expanded use cases, system sequence dia-

grams, and system operation contracts. Now it is time to design a software (and possibly hardware)

solution to implement the logical and technological aspects of the system. In this sense design is a

solution for a problem modeled by analysis.

During iterations, after expanding use cases, refining the conceptual model, and writing con-

tracts, the team may conduct design activities, which can be divided into two groups:

• Logical design (this chapter), which includes the aspects of the problem that are related to the

business logic. Usually the logical design is represented in the design class diagram (DCD),

which evolves from the conceptual model, and by interaction diagrams, which show how

objects exchange messages in order to perform system operations and achieve the

postconditions of the contracts.

• Technological design, which includes all aspects of the problem that are inherent to the

technology used: interface, data storage, security, communication, fault tolerance, etc. Activities

related to technological design are addressed later:

• Interface tier design (Chapter 12), which consists of designing the user interface and

preferably keeping it decoupled from the domain tier.

• Persistence tier design (Chapter 13), which consists of the definition of a persistency

mechanism to allow data load and save, which can be performed automatically, preventing

the designer from being (over) concerned about those aspects.

227Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00009-0

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00009-0

Logical design is also known as domain tier design. The domain tier corresponds to the set of

classes that perform all data transformation and queries. Other tiers implement technological

aspects of the system: persistency, interface, communication, security, etc. They are usually

derived from and dependent on the domain tier and their utility is to connect the pure logic of the

domain to the physical computer aspects (communication networks, human interfaces, storage

devices, etc.).

The design of the domain tier consists basically of two activities that can be performed

iteratively:

• Dynamic modeling, which consists of building execution models for the system operation

contracts. In object-oriented systems, such models are usually represented by interaction

diagrams such as communication and sequence diagrams, or even as pure text algorithms.

• DCD building, which consists basically of adding to the conceptual model some information that

was not possible or desirable to obtain earlier, such as, for example, the association’s navigation

direction, and the methods to be implemented in each class. Those aspects can be effectively

included in the software design if dynamic modeling is done. Additionally, the structure of design

classes may be a little different from the conceptual model as new classes or a different class

organization may be necessary to perform some functions that will be required at this point.

The logical design can be performed systematically if the team is in possession of two artifacts:

• The evolving design class diagram.

• The functional model represented by system operation contracts.

The logical design activities consist of building interaction diagrams for system operations

found in the system sequence diagrams (especially system commands, as explained later), taking

into account the DCD and the respective system operation contract.

Dynamic modeling, as mentioned before, can make use of communication or sequence dia-

grams, or even algorithms. Each of those forms has advantages and disadvantages:

• Algorithms, for programmers, are easier to write, but it may be difficult to realize clearly

the connections among objects in simple text. Thus, the choice for algorithms to use object-

oriented dynamic modeling may raise the risk of high coupling among classes, generating

bad design.

• Communication diagrams are better than algorithms for visualization and responsibility

distribution purposes, and they are better than sequence diagrams for providing an explicit view

of the visibility lines between objects. However, these diagrams may be difficult to organize and

in the case of complex collaborations they may become harder to read than sequence diagrams.

• Sequence diagrams are usually easier to read than communication diagrams, but they do not

show explicitly the visibility lines between objects. If the designer is not vigilant, invalid or

impossible communications may be included in the diagram.

This chapter uses communication diagrams for dynamic modeling in order to ease the visualiza-

tion of the visibility lines between objects. In some cases, the equivalent sequence diagrams are

shown for comparison.

The class diagram examples in this chapter assume that it is design time. Thus, associations

may be directed and classes may have methods and private attributes.

228 CHAPTER 9 Domain Tier Design

The chapter initially discusses object responsibility, which is a key concept in understanding

how to distribute methods among objects. Knowing which object should implement which responsi-

bility allows design classes to be highly cohesive.

Another key concept that is presented in detail is visibility, which establishes that communica-

tion among objects must occur only when visibility lines exist. If the quantity of those lines is mini-

mized, low coupling (Meyer, 1988) is achieved in the design.

Finally, the chapter explains how to transform contracts into dynamic models by using respon-

sibility distribution and visibility, as well as other design patterns, to produce the best design

possible.

9.2 Object responsibility distribution
Responsibility distribution among objects has to do with the following question: What methods

must be implemented in which classes?

Many designers find it difficult to build an elegant solution to that problem when they simply

try to add methods to a class diagram. The use of interaction diagrams and design patterns may,

however, provide a more efficient and effective way to discover the most suitable place to imple-

ment each method.

The DCD is built from the conceptual model, which provides the basic set of classes, attributes,

and associations that are needed. Then, it is necessary to develop interaction diagrams for each sys-

tem operation contract. Those diagrams show objects exchanging messages in order to achieve the

postconditions of the respective contracts. There are techniques that help in building those diagrams

in an elegant way. The use of diagrams is better than algorithms, especially for novice designers,

because with algorithms, the designer may fall for the temptation of concentrating all responsibili-

ties in a single class, while the diagrams allow better visualization of the distribution of responsibil-

ities among the objects. An example of that situation is presented later in this chapter.

When a team builds object-oriented code without an adequate method for dynamic modeling

(that is, simply making a class diagram and adding ad-hoc methods to it) there is a risk that the

responsibilities may be poorly distributed among the classes, and the final result may be as unstruc-

tured as the old spaghetti code. Usually, object-oriented systems are well organized at the class

level, but unhappily the code written inside methods is often poorly designed.

Thus, for a system to be elegant, responsibilities have to be well distributed. If a systematic

method is not used, responsibilities can become concentrated in the controller class, or in classes

that represent business actors, such as Customer or Clerk. In the end, classes such as Book, Order,

and Payment would have no relevant method besides their own attribute getters and setters.

When one or two classes do all the work, and others are passive, there is no object-oriented

code worthy of that name, but a concentrating structure. It would be preferable perhaps to make a

good structured design than a bad object-oriented design.

On the other hand, designers, sometimes, make the mistake of believing that an object-oriented

system is a simulation of the real world. But that is not usually true. An object-oriented model

represents the information about the real world, and not the things themselves. The difference is

subtle: methods do not correspond to real-world action, but to the internal information processing

2299.2 Object responsibility distribution

of the system. That is why concepts such as Book that are passive in the real world may perform

commands in object-oriented systems.

Thus, designing object-oriented software must be understood as a precise method, guided by

learned patterns, and not simply as the act of creating classes and associating ad hoc methods to

them.

Before explaining how to distribute responsibilities among objects, a taxonomy of those respon-

sibilities will be defined. Basically, there are two high-level groups of responsibilities:

• The responsibility of knowing, which corresponds to the queries on objects.

• The responsibility of updating, which corresponds to the commands performed by objects.

Both high-level groups are divided into three subgroups:

• Things that the object knows or updates within itself (its attributes).

• Things that the object knows or updates in its neighborhood (its links).

• Other things that the object knows or updates that are not classified in the previous two groups.

Normally these things correspond to derived knowledge (derived attributes and associations, and

other queries in general) and coordinated activities (delegate methods).

In the case of the responsibilities of knowing, the three subgroups could be characterized as

follows:

• Things that the object knows about itself: This is equivalent to being able to access the

attributes of an object. Such responsibilities are incorporated to the classes by basic query

methods named with the prefix get followed by the name of the attribute.1 For example, if the

class Person has an attribute birthDate, then the method getBirthDate has the responsibility of

knowing the value of that attribute.

• Things that the object knows about its neighborhood: This is equivalent to being able to access

directly linked objects. This responsibility is incorporated in the methods that obtain the set of

objects linked through a given role. Such methods are usually prefixed with get and followed by

the role name (or the name of the class in the absence of the role name). For example, if Car is

associated to Person and the role name for Person is driver, then the method getDriver returns

the set of people that are drivers of a given car.

• Derived things that the object knows: This is equivalent to information that is composed or

calculated from other information. This responsibility may be associated to derived attributes

and derived associations, in which case the methods are also prefixed by get followed by the

name of the derived attribute or association. For example, if totalValue is the name of a derived

attribute of class Order, then getTotalValue is a method that returns that derived attribute.

Derived knowledge also includes other queries about an object that cannot be represented as

derived attributes or associations, such as, for instance, queries with parameters; in that case,

names may vary.

1That is valid for normal attributes belonging to classes of the conceptual model, though. During the construction of the

DCD, new design attributes that represent the internal state and influence the behavior of an object may become neces-

sary and those attributes do not necessarily have to be accessed by other objects: in that case, they should not have get-

ters (they are private or protected).

230 CHAPTER 9 Domain Tier Design

In the case of responsibilities related to updating information, the three subgroups could be

characterized as:

• Things that the object does over itself: This corresponds to the basic command that updates a

single attribute, which is prefixed with set,2 followed by the attribute name. For example, if the

class Person has an attribute weight then setWeight is a method that incorporates the

responsibility of changing that attribute.

• Things that the object does over its neighborhood: This corresponds to the basic commands that

add and remove links between objects. These commands are identified respectively by the

prefixes add and remove,3 followed by the name of the association role. For example, if the

class Customer has an association with Reservation, the methods addReservation and

removeReservation incorporate that responsibility.

• Things that the object coordinates: This corresponds to commands that perform multiple tasks,

possibly in different objects. These commands are known as delegated methods and they are

crucial for class design because the methods of the other groups are just basic commands with

previously known behavior; but delegate methods must be designed. For example, if all the

books in a given order must be marked as delivered, the coordination of the marking activities

must be made by the instance of Order itself, because it is the object with the most immediate

access to the objects that participate at the operation.

Table 9.1 summarizes the six kinds of responsibilities and the methods typically associated to

each kind.

Table 9.1 Object Responsibilities

Know Update

About itself Query on attributes: Update attributes:

� getAttribute � setAttribute

About its Query on association roles: Update links:

neighborhood � getRole � addRole
� removeRole
� replaceRole

Others Queries on derived attributes and roles, and general queries: Delegated methods:

� getAttribute
� getRole
� names vary (in the case of general queries)

� names vary

2Remember that not every attribute must have a setter. Immutable attributes should not have a setter. Derived attributes

never have setters, and private attributes also should not have public setters.
3The add and remove prefixes could be used here even for associations to 1, because conceptually they are links like any

other. However, usually associations to 1 do not implement commands such as add and remove: they implement the set

or replace command instead, which can replace the current mandatory link with another, leaving the role always

consistent.

2319.2 Object responsibility distribution

There is no standard name for delegated methods and general queries, which are named depending

on the operation they perform. Usually, these names must not include the name of the class where they

are implemented. For example, if Livir implements a system command finishOrder, and that command

delegates that responsibility to the class Order, then the name of the method implemented in class

Order must be simply finish, because it would be probably invoked as anOrder.finish().

9.3 Visibility
For two objects to be able to exchange messages to perform their responsibilities, it is necessary

that some kind of visibility exists between them. There are four basic forms of visibility between

objects:

• By association: If there is a link between two objects defined by an association between their

classes.

• By parameter: If an object, when performing a method, receives another object as parameter.

• Locally declared: If an object that is performing a method receives another object as a query return.

• Global: If an object is visible by any other object.

None of the visibility forms are symmetric. That is, if x has visibility to y that does not mean

that y necessarily has visibility to x. Visibility by association may be symmetric if the association

is bidirectional, but this is not always the case.

9.3.1 Visibility by association
There is visibility by association between two objects only when there is an association between

their respective classes. The kind of visibility allowed depends on the role multiplicity and other

features, such as the association being qualified, ordered, and so on.

An association role may be considered a collection of instances, especially if its upper bound is

greater than 1. But, in the case of multiplicity 1 or 0..1, it is possible to interpret the role as a set or

as an individual object. OCL, in these cases, considers the role both as an object and a collection.

Regarding multiplicity, then, the following kinds of visibility may be identified:

• If the multiplicity is 1, then there is straight visibility to one instance and to the set that contains

one instance.

• Any other multiplicity allows only visibility to a set of instances.4

The DCD is not the only specification that determines the multiplicity of a role. It is comple-

mented by the preconditions of the contracts, which can constrain multiplicity bounds even more,

as seen in the following sections.

4It could be considered that a 0..1 role is filled with a single object or a null value. However, that is not coherent with

the interpretation of other multiplicities such as, for example, 0..2 or �, where 0 stands for the empty set and not for the

null value. To avoid such inconsistency it is preferable to consider that multiplicity 0..1 refers to a set that can be empty

or contain a single element.

232 CHAPTER 9 Domain Tier Design

9.3.1.1 Visibility to a single object
Figure 9.1 shows a Payment class that has a unidirectional association to Order with multiplicity

1. In this case, any instance of Payment has straight visibility to an instance of Order.5

In this way, when an instance of Payment is represented in an interaction diagram, as shown in

the communication diagram in Figure 9.2, it can send messages directly to the instance of Order

that is linked to it.

9.3.1.2 Visibility to multiple objects
Multiplicity values different from 1, such as �, 1..�, 0..1, or 5, provide visibility to a collection6 of

objects, not just to a single instance. From now on, all those cases will be addressed as � multiplic-

ity, or association to many.

Figure 9.3 shows class Order with a unidirectional association with multiplicity � to class Item.

In this case, an instance of Order can send a message to a set of instances of Item. It is possible

to send messages to the set structure itself,7 as shown in Figure 9.4. In the example, the message

verifies if the set is empty.

But it is possible to send a message iteratively to each element of the set, as shown in

Figure 9.5. In the example, the message requests the subtotal value of each item.

Thus, messages, in communication diagrams, may be addressed to the collection structure or to

the collection elements individually. When a message is sent to the structure, the type of the object

that receives the message should be a collection, such as Set, Item. in Figure 9.4. The fact that

the message is iterative and sent to all elements in the set is represented by the “�” that precedes

the message. The condition [for all] indicates that all elements of the set receive the message.

A filter could be used here if the message was intended just for some selected elements. For

example, if the message getSubtotal is intended only for items with quantity greater than 1 then it

could be written as �[quantity. 1]: anAmount:5 getSubtotal().

9.3.1.3 Visibility by association with ordered roles
If the association role is ordered with the use of the {ordered} or {sequence} constraints, the visi-

bility to the collection as a whole is kept, but additionally straight visibility to individual elements

indexed by their position is allowed.

Figure 9.6 presents a class diagram with a unidirectional association with an ordered role.

In Figure 9.7 the message is sent to each element of the ordered collection, as in the case of

Figure 9.5.

Part (A) of Figure 9.7 is the explicit way to represent an iterative message sent to the elements

of an ordered set or sequence. Part (B) is a shorter acceptable way to represent the same thing. The

form �[for all]: used for sets would be acceptable as well.

In Figure 9.8 only the third element of the ordered set receives the message, and visibility is not

to multiple objects like before, but to a single object. This is indicated in the index used to

5And additionally to a set that contains an order, even if that option would not be used often.
6A set by default.
7In this text it is assumed that the operations available for sets and other collections are the ones defined by OCL

(Object Management Group, 2010). However, if different languages or packages are used, a different set of operations

would be available.

2339.3 Visibility

: Item: Order

*[for all]: anAmount:= getSubtotal()

FIGURE 9.5

Communication diagram with a message being sent to each element of the set.

Customer Order{ordered}

*
orders

FIGURE 9.6

Ordered association role.

 items : Set<Item>: Order
x:=isEmpty()

FIGURE 9.4

Communication diagram with a message being sent to a set structure.

Payment

1

Order

FIGURE 9.1

Association role with multiplicity 1.

: Order: Payment
aDate:=getDate()

FIGURE 9.2

Communication diagram where a payment has visibility to a single order.

Order Item

*
items

FIGURE 9.3

Association role with multiplicity �.

234 CHAPTER 9 Domain Tier Design

represent the name of the object: orders[3]. The value between brackets may be a constant, as in

the example, or a variable known by the Customer instance, or even a math expression that results

in an integer.

In Figure 9.9 only the last element of the ordered collection receives the message.

9.3.1.4 Visibility by association with qualifiers
If the association is qualified as a map (only one element for each value of the qualifier), there are

at least two forms of straight visibility:

• Visibility to the set of elements as a whole (as if it were a regular set).

• Visibility to a single element if the object has a key to access the element in the association

role.

Figure 9.10 presents a class diagram with a qualified association from Customer to CreditCard.

orders[3] : Order: Customer

aDate:=getDate()

FIGURE 9.8

Communication diagram with a message being sent to a specific element of an ordered set.

orders[n] : Order: Customer

aDate:=getDate()

FIGURE 9.9

Communication diagram with a message being sent to the last element of an ordered set.

orders[i] : Order: Customer

*[i:=1..n]: aDate:=getDate()

(A)

(B)

orders[i] : Order: Customer

*: aDate:=getDate()

FIGURE 9.7

Communication diagram with a message being sent to an ordered set structure.

2359.3 Visibility

Figure 9.11 shows that in this case, an instance of Customer has visibility to the set of instances

of CreditCard that are linked to it.

Figure 9.12 shows a message being sent to each of the credit cards in the mapped set.

Finally, Figure 9.13 shows that if the instance of Customer has a key value for the qualifier

(aNumber in the example), then it has straight visibility to the element of the mapped set qualified

by that key value.

: Set<CreditCard>: Customer

aNatural:=size()

FIGURE 9.11

Communication diagram with a message being sent to the structure of the mapped set.

: CreditCard: Customer

*[for all]: aCreditCardNumber:=getNumber()

FIGURE 9.12

Communication diagram with a message being sent to each element of the mapped set.

Customer

number

CreditCard

0..1 creditCards

<<unique>> <<immutable>> +number : CreditCardNumber

FIGURE 9.10

Class diagram with a qualified association defining a map.

creditCards[aNumber] : CreditCard: Customer

aDate:=getValidity()

FIGURE 9.13

Communication diagram showing an object with straight visibility to a qualified object in a mapped set.

236 CHAPTER 9 Domain Tier Design

On the other hand, if the qualified association represents a partition, as in Figure 9.14, a set of

values is associated to each qualifier.

In this case, the whole set may be accessed (all the books in the example of Figure 9.15).

But the use of the qualifier allows for access to books belonging to a given subset (thriller

books, in the example of Figure 9.16).

Both examples in Figure 9.15 and Figure 9.16 show messages that are sent to the set elements

and not to the set structure.

9.3.1.5 Association visibility with association class
As explained in Section 6.6.2, an association class instance is created and deleted when links are added

and removed from the participating classes’ instances. Thus, if Person has a unidirectional association

to Company and that association has an association class Job, as shown in Figure 9.17, when a link

between instances of Person and Company is added, an instance of Job is created; and every time a

link from Person to Company is removed, the respective instance of Job is deleted. Therefore, an

: Book

: Livir

*[′thriller ′]: anAmount:=getPrice()

FIGURE 9.16

Iterative message to each element of a partition of a qualified set.

: Book

: Livir

*[for all]: anAmount:=getPrice()

FIGURE 9.15

Communication diagram with a message being sent to each element of the partitioned set.

Book

Livir

+genre : BookGenre
genre

*

FIGURE 9.14

Class diagram with a qualified association defining a partition.

2379.3 Visibility

instance of Person has visibility to two sets8 with the same size: one with instances of Company, and

another with instances of Job. An instance of Job has visibility only to a single instance of Company.

If the association in Figure 9.17 were bidirectional, then an instance of Company would also

have visibility to a set of Person and a set of Job. Additionally, any instance of Job would have

visibility to one instance of Person and one instance of Company.

Figure 9.18 represents the visibility that an instance of Person has to the set of instances of

Company. That corresponds to the default visibility obtained for multiplicity �.
Figure 9.19 represents the visibility that an instance of Person has to a set of instances of Job,

the association class.

The association class also works as a mapping in a way that is very similar to the qualified asso-

ciation. The model in Figure 9.17 is equivalent to mapping a job for each company a person works

for. Thus, if an instance of Person has visibility to a specific instance of Company, it may find its

job at the company, as illustrated in Figure 9.20.

Also in Figure 9.20, we can see that aCompany must be an instance of Company and that the

instance of Person must have some kind of visibility to it in order to use it to access the respective

instance of Job.

8The association probably would be physically implemented not as two sets, though (see Chapter 10). Here the visibility

means that two sets of objects may be obtained by an instance; this does not mean that they are implemented like that.

*[for all]: anAddress:=getAddress()

: Person : Company

FIGURE 9.18

A message being sent to the elements of the set linked by an association with an association class.

*[for all]: anAmount:=getWage()

: Person : Job

FIGURE 9.19

A message being sent to the elements of the set of instances of the association class.

Person

Job

*

Companycompanies

FIGURE 9.17

Association class.

238 CHAPTER 9 Domain Tier Design

Finally, Figure 9.21 shows the visibility that instances of the association class have to the

instances of the participating classes: a visibility that is strictly one.

9.3.1.6 The influence of preconditions on visibility by association
When a precondition in a contract states a multiplicity that is more restrictive than the one allowed

in the class diagram, it is the visibility established by the precondition that must be considered valid

in the context of that operation.

For example, consider the class diagram of Figure 9.22, which defines that an order may or

may not have a payment linked to it.

Consider now that a given operation contract has a precondition that states

pre:
anOrder.payment-.notEmpty()

Then, in the context of that operation, and for the specific instance anOrder, a more restrictive

visibility must be considered, as shown in Figure 9.23.

anAddress:=getAddress()

: Job : Company

FIGURE 9.21

Visibility from the association class instance to one of the participating classes’ instances.

Order Payment

0..1

FIGURE 9.22

Association with optional role.

: Person

anAmount:=getWage()

aCompany : Company

companies[aCompany] : Job

FIGURE 9.20

A message being sent to a specific element of the association class.

2399.3 Visibility

9.3.2 Visibility by parameter
Visibility by parameter is obtained when an object A, performing a method, receives an object B as a

parameter. In that case, the object A can communicate to B even if their classes are not associated.

Consider the example of Figure 9.24, where the Book class has no association to the Delivery class.

Therefore, no instance of Book may send a message directly to an instance of Delivery or vice versa.

Consider an instance of Order that is linked to an instance of Book and to an instance of

Delivery as shown in Figure 9.25.

Now, consider that the instance of Order sends a message registerWeight to the instance of

Delivery, passing a reference to the instance of Book as an argument, as shown in Figure 9.26.

Then, the instance of Delivery acquires visibility by parameter to the instance of Book.

In the case of visibility by parameter, it should be assumed that the object that sends the argu-

ment originally has some kind of visibility to the object that was sent.

Order Book

Delivery

*

0..1

FIGURE 9.24

Reference class diagram.

Order Payment

1

FIGURE 9.23

How the original visibility of Figure 9.22 must be considered for a specific instance if a contract has a more

restrictive precondition.

: Delivery

aBook : Book

: Order

FIGURE 9.25

Initial situation where the instance of Delivery has no direct visibility to the instance of Book.

240 CHAPTER 9 Domain Tier Design

Good design practice demands care with visibility by parameter. This is not the same kind of

coupling that is obtained with visibility by association. With visibility by association, the participat-

ing classes are already coupled by a semantic association, that is, they are linked anyway because

the meaning of one is attached to the meaning of the other (for example, an order and its items).

But in the case of visibility by parameter, any object may be passed as a parameter to another

object, even if they have absolutely no relation between them.

Each time a class declares methods with parameters belonging to classes it is not associated to,

a new (and possibly unnecessary) coupling may be created. High coupling means poor design.

Thus, it is convenient to avoid that whenever possible.

The best use for visibility by parameter is to receive and resend objects until they reach the terminal

(basic) operations. In practice, what happens is that certain objects will be passed to other objects in a

chain until they reach some object that must be linked or unlinked to them, as in the example below.

Initially, consider the class diagram of Figure 9.27, with classes Livir (the façade-controller),

Book, Customer, and Reservation.

Figure 9.28 presents a collaboration where instances of these classes cooperate to perform the

system command reserveBook, which adds a reservation for a given book to a given customer. The

system command, implemented in the controller, is called by the interface tier, which passes as

arguments the ISBN of the book and the ID of the customer. The controller, initially, gets visibility

isbn

id

1

1

*

*

1

1

0..1

0..1

Livir

Customer Reservation

Book

FIGURE 9.27

Reference class diagram.

: Order
registerWeight(aBook)

aBook : Book

: Delivery

{parameter}

FIGURE 9.26

The instance of Delivery acquires visibility by parameter to aBook.

2419.3 Visibility

to the specific instance of Book (message labeled “1”) by sending to itself a query message on

the role book: the message getBook(anIsbn). Then it gets visibility to the instance of Customer

(message labeled “2”) in a similar way. The instances returned by the messages are assigned to the

local variables aBook and aCustomer. Finally, the controller delegates to the instance of Customer

the reservation of the book (message labeled “3”).

The message labeled “3,” reserveBook(aBook), is sent from the controller to the customer

whose ID is aCustomerId. The controller should not be responsible for creating the reservation

because it has no association to Reservation, and thus it delegates the responsibility to aCustomer.

At this point, aCustomer acquires visibility by parameter to aBook.

At this point, aCustomer can start performing its responsibilities. It creates a new instance of

Reservation and links it to itself and to aBook. Figure 9.29 shows the constructor message Create

being sent in order to create a reservation with its initialization parameters: aBook and aCustomer.

This message is labeled with 3.1 because it is called inside the implementation of message 3, which

was received by aCustomer.

As a last observation on the example, try to figure out what would happen if instead of passing

the instance of Book to the customer, the controller had passed its ISBN code as received from the

interface. When the instance of Reservation is going to add the book to its links it would have to

obtain the instance, because it cannot just add the ISBN code. How could the instance of

Reservation seek an instance of Book by its ISBN if it has no access to the set of all books? It

would have to send a message to the controller, asking for the book. This is not good quality design

because the flow of messages in this case goes back to the controller for no reason. In the example

shown in Figure 9.29, the controller obtains the book as soon as it gets the original message. There

is no motive to delay it in order to reverse the flow of control later.

9.3.3 Locally declared visibility
Another form of visibility happens when an object sends a query to another and receives as return a

third object, as shown in Figure 9.31. The collaboration is based on the class diagram of Figure 9.30.

aCustomer : Customer

3: reserveBook(aBook)

: Livir

{parameter}

aBook : Book

1: aBook:=getBook(anlsbn)

2: aCustomer:=getCustomer(aCustomerId)

reserveBook(anlsbn, aCustomerId)

FIGURE 9.28

Creation of visibility by parameter.

242 CHAPTER 9 Domain Tier Design

In the example, an instance of Customer sends a message getPayment to an instance of Order.

The customer and the order are initially linked, but the customer and the payment are not.

However, after the getPayment method is performed, and an instance of Payment is returned to the

customer, it acquires local visibility to the payment, because, at that point, the payment is assigned

to a local variable (aPayment) of the method the customer is executing.

From this moment on, the instance of Customer acquires local visibility to the payment and

may communicate directly with it.

However, a design pattern known as Don’t talk to strangers (Larman, 2004)9 does not recom-

mend that an object send messages to objects that are only locally visible. According to that pattern

the customer should not send messages to aPayment. As seen in Section 9.6, there is always a

design option that avoids this kind of communication. The problem here again is high coupling: if

the customer acquires local visibility to an instance of Payment, it acquires a link that is not seman-

tically supported by the conceptual model. On the other hand, the price to pay for low coupling in

this case is sometimes having to implement more methods, as seen later.

An acceptable use for local visibility occurs when a basic command that creates an object is invoked.

When an object is created, the new instance is usually referenced by a local variable. That local visibility

may be immediately transformed into visibility by association, as shown in Figure 9.32.

9A summarization of the Law of Demeter (Lieberherr & Holland, 1989)

aCustomer : Customer

3.1: newReservation:=Create(aBook,aCustomer)

{new} newReservation:Reservation

3: reserveBook(aBook)

: Livir

{parameter}

aBook : Book

1: aBook:=getBook(anlsbn)

2: aCustomer:=getCustomer(aCustomerId)

reserveBook(anlsbn,aCustomerId)

FIGURE 9.29

A communication diagram where a new instance of Reservation is created.

{ordered}Customer PaymentOrder

*
orders

0..1

FIGURE 9.30

Reference class diagram.

2439.3 Visibility

In the example, the first message is a basic command, a constructor that produces the instance

of Payment. At that moment the instance of Order gets a new local visibility to it, through the local

variable aPayment. The second message links that new instance to the order, which acquires visibil-

ity by association to it.

Both local and parameter visibilities are valid only in the scope of the method that originated

them; just like parameters and local variables in programming languages, they are only valid inside

the methods where they have been declared, and disappear after the methods go out of scope. But

visibility by association is permanent, persisting until it is explicitly removed by a basic command

that removes a link.

9.3.4 Global visibility
There is global visibility for an object when it is accessible by any object at any time. The singleton

design pattern (Gamma, Helm, Johnson, & Vlissides, 1995) suggests that an instance may be glob-

ally visible if it is the only instance of a class. This makes sense, because if that class has only one

instance, it is not necessary to create associations from other objects to it. Also, if that class has a

single instance, it is not necessary to pass it as an argument to a function because the idea with

parameters is that they may vary, and that does not happen if the class has a single instance. Global

visibility is the choice in this case.

Examples of singletons are classes that represent services, such as CurrencyConverter,

TimeCounter, OrderNumberGenerator, etc. There must be a single instance of service classes that

can be accessed by any object at any time. An example is shown in Figure 9.33.

1: aPayment:=Create()

2: addPayment(aPayment)

:Order
{new} aPayment:Payment

FIGURE 9.32

An example of new local visibility being transformed into visibility by association.

: Customer

1: aPayment:=getPayment()

aPayment : Paymentorders[n] : Order

{local}

FIGURE 9.31

An example of the creation of local visibility.

244 CHAPTER 9 Domain Tier Design

If the singleton pattern is overused it may turn into an anti-pattern. Designers must not use sin-

gletons for entities of the conceptual model; for example, if the system is single user and a single

shopping cart may exist at a time, it should not be declared a singleton because it is a conceptual

entity, not a service class. A conceptual entity that is unique today may admit multiple instances in

the future and declaring it a singleton would hinder the evolution of that class.

Also, a singleton, in principle, should not have direct references to entities, because that reduces

its reusability potential and creates high coupling problems. Service classes must not be associated

to entity classes; they are globally visible but grant access to no other instances.

9.4 Dynamic modeling based on postconditions
We saw that system command contracts present a set of postconditions that correspond to certain

basic commands for creating and deleting instances, adding and removing links, and modifying

attribute values. These contracts only indicate what is supposed to happen, but they do not show

how messages are exchanged between objects in order to achieve those goals. UML interaction

diagrams may be used to exactly design how these collaborations may happen. The following

principles are recommended:

• The kind of visibility among objects depends fundamentally on the role features, such as

multiplicity, ordering, and qualification, that are defined in the class diagram and sometimes

further constrained by preconditions (Section 9.3).

• Each postcondition in the contract must be achieved in the interaction diagram by a message

that calls a basic command in the object that holds the responsibility (Section 9.2).

• The control flow in a dynamic model begins at the instance of the façade controller that

receives a message from the interface.

• When an object that is executing has no visibility to the object that must perform a basic

operation, it should delegate the responsibility and the execution to another object that is closer

to the one that holds the responsibility.

Santos (2007) presents a systematization of those principles by defining an automatic search-

based production system capable of generating well-designed communication diagrams from a

broad selection of contracts.

In addition to these principles, design patterns should be applied whenever possible to help the

designer build methods that are effectively reusable and maintainable.

:Order

Date

aDate:=getCurrent()

{global}

FIGURE 9.33

Global visibility.

2459.4 Dynamic modeling based on postconditions

9.4.1 Instance creation
When a contract establishes that some instance was created, some other object must actually create

it by sending a basic create message in the respective communication diagram. The creator design

pattern (Larman, 2004) states that the choice should be preferably:

• An instance of a class that has a composite or shared aggregation to the class of the object to be

created.

• An instance of a class that has a one to many association to the class of the object to be created.

• An object that has the initialization data for the object to be created, and that is preferably

associated to it.

Each rule applies only if the previous one does not apply.

To serve as a reference for the following examples, let’s go back to the operations of the use

case 01: Order books, presented in Chapter 8. The reference conceptual model of Figure 8.1 is

repeated here as Figure 9.34.

The first system command of the system sequence diagram of use case 01 is add2Cart(aCartId:

CartId, anIsbn:ISBN, aQuantity:Natural). Its contract establishes that if the book is not in the cart

already, a new item is created and linked to the book and cart. The item quantity is set to the value

received as an argument, and unitPrice is set to the price of the book. Otherwise, if the book is

already in the order, the new quantity is added to the current one. The contract again is the

following:

Context Livir::add2Cart(aCartId:CartId; anIsbn:ISBN; aQuantity:Natural)
def:aCart5cart[aCartId]
def:aBook5book[anIsbn]
def:anItem5aCart.item-.select(book.isbn5anIsbn)

Publisher

Book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

<<immutable>>

name

isbn

Item

+quantity : Natural
+unitPrice : Money = book.price
+ / subtotal : Money = quantity*unitPrice

Livir
1 1

0..1

id
Cart

Order

<<immutable>> +date : Date
<<immutable>> +number : Natural
+ / total : Money = cart,total

<<unique>> <<immutable>> +id : Cartld
+ / total : Money = item->sum(subtotal)

id

1

0..1

1

0..1
1

1

<<immutable>>

<<immutable>>

<<immutable>>

<<immutable>>

Customer

<<unique>> <<immutable>> +name : String

<<immutable>> <<unique>> +id : Customerld
+name : String
<<immutable>> +birthDate : Date

*

*
*

*

1

1

1

0..1

0..1

FIGURE 9.34

Reference class diagram.

246 CHAPTER 9 Domain Tier Design

pre:
aCart-.notEmpty() and
aBook-.notEmpty()

post:
if anItem-.isEmpty() then

newItem.isNewInstanceOf(Item) and
aCart^addItem(newItem) and
newItem^setQuantity(aQuantity) and
newItem^addBook(aBook) and
newItem^setUnitPrice(aBook.price)

else
anItem^setQuantity(anItem.quantity@pre1 aQuantity)

endif

Among other postconditions, an instance of Item must be created if the book is not yet in the

cart. The question at this moment is: If the control flow starts at the façade controller (Livir), which

class has to create an instance of Item? The options are:

• The façade controller itself, which already holds the control flow (it would be the choice of

novice designers).

• An instance of the Book class, because it has a one-to-many association to Item.

• An instance of the Cart class, because it is a composite aggregation of Item.

If the controller option is chosen, then a coupling that did not exist before between it and the

class Item would be created. That would be a bad choice for design.

Following the creator design pattern, the best choice would be Cart. The association between

Item and Book is normal while the association between Cart and Item is a composite aggregation.

For the first version of the communication diagram, let us forget for a while the conditional if,

and the postconditions that add links and change attributes values. Let us concentrate on creating

an instance of Item.

The first task for the designer is to obtain the correct instance of Cart given its ID, and delegate

to it the creation of the new instance of Item. This is shown in Figure 9.35.

This diagram implements only one postcondition: creation of an instance of Item. Initially, the

controller must determine which cart is given aCartId. This is performed by the message labeled

“1,” getCart, which queries the cart role of the controller Livir and stores the resulting instance in

the variable aCart, which is a local variable for the system command add2Cart that is being mod-

eled. As the precondition aCart-. notEmpty() assures that aCartId is valid, the dynamic model

does not need to check it again.10

In the sequence, the message labeled “2,” createItem, delegates to the cart the responsibility of

creating an item, because the controller does not have any association to Item. If the controller has

created the new item without delegating, then Livir would need to be coupled to class Item and

10This is true in normal conditions. However, if the system is subjected to complex race conditions and if security is a

big issue, sometimes double-checking would be advisable.

2479.4 Dynamic modeling based on postconditions

issues related to high coupling would occur. The parameters of createItem were left to be added

later as they are not yet necessary.

Finally, the instance of Cart achieves the postcondition by sending a basic message Create,

labeled “2.1” in the diagram, which produces a new instance of Item. This instance is stored in a

variable named newItem that is local to the createItem method in the Cart class.

Some designers would prefer to visualize the collaboration among objects shown in Figure 9.35

as a sequence diagram. Figure 9.36 presents a sequence diagram that is equivalent to the communi-

cation diagram of Figure 9.35.

The sequence and communication diagrams used for dynamic modeling here have three kinds

of messages:

• A message that invokes a system operation, which is sent by the interface and received by the

controller: add2Cart in the example.

• Basic messages that invoke operations that need not be refined further: getCart and Create in

the example.

• Delegate messages that may be used when an instance does not have visibility to the object that

must perform a responsibility: createItem in the example.

The first and second types of messages are always present in those diagrams. The message

that invokes the system operation is the root of the messages tree of the dynamic model. The

basic messages are the leaves of the messages tree, which correspond to the final object queries

and updates.

Basically, there is one basic message for each individual postcondition. Those messages are

basic in the sense that they do not need to be refined further: the control flow ceases when they are

reached.

The third kind of messages referred to above, delegate messages, are optional. They may be

used if the controller, instead of sending the basic messages itself, has to delegate responsibilities

to other objects that have more immediate visibility to the objects that must be queried or

updated.

Delegated messages are the branches of the messages tree, and the flow usually must continue

after them. The message flow only finishes when a basic message is reached.

add2Cart(aCartId,anIsbn,aQuantity)

2: createItem(...)

2.1: newItem:=Create()

1: aCart:=getCart(aCartld)

aCart : Cart {new} newItem : Item

:Livir

FIGURE 9.35

Communication diagram that shows an instance being created.

248 CHAPTER 9 Domain Tier Design

9.4.2 Link addition
It was mentioned that when an instance is created, it must be immediately linked to another

instance so that it may be accessible from the façade controller. The contract for add2Cart

presented in Section 9.4.1 states that the recently created instance of Item must be linked to a book

and an order. Figure 9.37 shows an evolution of the dynamic model with those two postconditions

being achieved.

Now, when the cart is performing the createItem method, it creates the new item (message 3.1),

adds a link between itself and the new item (message 3.2), and adds a link between new item and

the book identified by anIsbn (message 3.3).

This design could be acceptable because it reproduces almost literally what is specified by the

contract. However, this would be the case only if the code generated by that design would not be

add2Cart(aCartId,anIsbn,aQuantity)

3: createItem(aBook,aQuantity) 3.1: newItem:=Create()

3.2: addItem(newItem)

3.3: addBook(aBook)

1: aCart:=getCart(aCartld)

2: aBook:=getBook(anIsbn)

{new} newItem : ItemaCart : Cart

: Livir

FIGURE 9.37

Evolution of the model in Figure 9.35 showing the addition of links.

aCart : Cart

newItem : Item

:Livir

add2Cart(aCartId,anIsbn,aQuantity)

1: aCart:=getCart(aCartId)

2: createItem(...)
2.1: newItem:=Create()

FIGURE 9.36

Sequence diagram equivalent to the communication diagram of Figure 9.35.

2499.4 Dynamic modeling based on postconditions

manually changed later. If the final programming code is going to be directly changed some time

in the future then additional precautions must be taken, and that is almost always the case.

The problem is that when an Item is created by a basic constructor with no parameters, it is not

consistent with its definition until every mandatory attribute and link is defined for it. In the case

of Figure 9.37, newItem is inconsistent in the interval between messages 3.1 and 3.3. The solution

to this problem is to avoid having the constructors return inconsistent objects. The constructor in

this case has to receive all parameters that are needed to generate a consistent instance. Therefore,

the Create constructor is not simply a basic message in the initial conception of the term, because

it must be further refined. Figure 9.38 shows a new version of the dynamic model where the

constructor of Item produces an instance with the necessary mandatory associations.

Now, even if the final programming code is changed manually in the future, the designer knows

that anytime an instance of Item is used it is consistent to its definition.

9.4.3 Attribute value modification
Another kind of postcondition that must be considered in dynamic modeling is the attribute value

modification, which may be achieved by the basic setter message that can be sent by the object that

owns the attribute or by one of its neighbors. Continuing the example, the quantity attribute of the

new instance of Item must be filled with the respective aQuantity parameter of add2Cart, and the

unitPrice attribute of Item must be initialized with the respective book price, as stated by the initial

value declaration for that attribute in the diagram. These postconditions are added to the diagram

and shown in Figure 9.39.

9.4.4 Instance destruction
The destruction of an instance is dynamically modeled by sending a destroy basic message to an

object. The same principles of the creator design pattern apply here: the object that destroys an

instance must have a shared or composite aggregation relationship with the object that is supposed

to be destroyed, or an association from one to many, or, at least, be associated to the object.

add2Cart(aCartId,anIsbn,aQuantity)

3: createItem(aBook,aQuantity)

3.1: newItem:=Create(aBook,aCart)

1: aCart:=getCart(aCartld)

3.1.1: addBook(aBook)
3.1.2: addCart(aCart)

2: aBook:=getBook(anIsbn)

aCart : Cart {new} newItem : Item

: Livir

FIGURE 9.38

A variation of the model of Figure 9.37 where the constructor of Item produces a consistent instance.

250 CHAPTER 9 Domain Tier Design

Care must be taken to avoid leaving objects with mandatory links inconsistent after an object

is destroyed. If the contract is well formed no orphan objects will be left, and the communication

diagrams only need to represent the postconditions that are mentioned in the contract.

Figure 9.40 presents a dynamic model for the CRUD delete command for an instance of Book. The

contract assumes that only ISBNs of instances that can be deleted may be passed as an argument:11

Context Livir::deleteBook(anIsbn:ISBN)
pre:

book[anIsbn]-.notEmpty() and
book[anIsbn].item-.isEmpty()

post:
book[anIsbn]^destroy()

9.4.5 Removing and replacing a link
When a postcondition establishes that a link must be removed, some object in the dynamic model

has to send a remove basic message to one of the participating instances. Figure 9.42 shows an

example of a dynamic model, based on the class diagram of Figure 9.41, where a link is removed

and replaced by another; it is the dynamic version of the following contract that specifies how a car

changes its owner:

Context Control::
changeOwner(newOwnerId:IdNumber,aLicense:CarLicense)

11For example, the delete command could be called only for books selected from a list that contains only books that can

be deleted, i.e., books with no items linked to them.

add2Cart(aCartId,anIsbn,aQuantity)

3: createItem(aBook,aQuantity)

3.1: newItem:=Create(aBook,aCart,aQuantity)

1: aCart:=getCart(aCartld)
3.1.1: addBook(aBook)
3.1.2: addCart(aCart)

3.1.3: setQuantity(aQuantity)

3.1.5: setUnitPrice(aPrice)

2: aBook:=getBook(anIsbn)

aCart : Cart

: Livir

{new} newItem : Item

aBook:Book

3.1.4: aPrice:=getPrice()

FIGURE 9.39

Evolution of the model in Figure 9.38 showing attributes being changed.

2519.4 Dynamic modeling based on postconditions

pre:
person[newOwnerId]-.notEmpty() and
car[aLicense]-.notEmpty

post:
car[aLicense]^removeOwner() and
car[aLicense]^addOwner(person[aNewOwnerId])

As the owner role has multiplicity 1, the command removing the link does not require the speci-

fication of the parameter.

Also, as the role has multiplicity 1, a new basic message to replace the association could be

created instead of the remove/add sequence. That message could be called setOwner(newOwner:

Person) or replaceOwner(newOwner:Person), and it would be thread-safe. The remove/add

sequence may be dangerous if in the short time between those commands some other process

(thread) makes a query on the object that is in a temporarily inconsistent state. If a single command

deleteBook(anIsbn)

2: destroy()

aBook : Book

1: aBook:=getBook(anIsbn)

: Livir

FIGURE 9.40

Communication diagram with an object being destroyed.

license

Car

Person

owner

Control

id
1

1

1

0..1

0..1

1

1

*

FIGURE 9.41

Reference class diagram.

252 CHAPTER 9 Domain Tier Design

such as replace is used instead and if it is assured that while it is being performed the object is

locked even for reading, then the dangerous situation described above would not occur.

9.4.6 Conditional postconditions
As explained before, sometimes a postcondition must be obtained only if the given conditions

are valid. In these cases, it is possible to use conditioned messages in interaction diagrams that are

similar to the guard conditions used in machine state and activity diagrams.

Resuming the add2Cart example, the conditional expression verifies if the cart already has one

item with the book. That expression does not qualify as a derived attribute because it is parameter-

ized (it is Boolean, but its value depends on the book), and therefore it may be defined as a normal

query in the Cart class:

Context Cart::includeBook(aBook:Book):Boolean
body:

item.book-.exists(aBook)

Figure 9.43 shows the evolution of the model of Figure 9.39, now testing if a book already

belongs to the cart or not. Notice that message 3 was renamed insertItem, because it is not just

creating a new item anymore: it may be created or incremented.

If the conditional is simply an “implies,” then a conditional message would be sufficient in

the diagram. But if the conditional involves a structure of the if-then-else-endif kind, as in

Figure 9.43, two mutually exclusive conditional messages must be used. In Figure 9.43, message

3.1 is executed only if includeBook(aBook) is true, and message 3.2 is executed only if that con-

dition is false.

:Livir

changeOwner(newOwnerld,aLicense)

3: replaceOwner(newOwner)

aCar:Car

2: aCar:=getCar(aLicense)

1: newOwner:=getPerson(newOwnerId)

FIGURE 9.42

Communication diagram with a link replacing command.

2539.4 Dynamic modeling based on postconditions

Notice that messages 3.1.1 to 3.1.5 are subordinated to 3.1 and they are executed only if 3.1 is

executed. Similarly, messages 3.2.1 and 3.2.2 are subordinated to 3.2 and are executed only if 3.2

is executed.

Message 3.2.1, selectItemFor, is another query that is useful for the Cart class. It may be

defined as

Context Cart::selectItemFor(aBook:Book):Item
body:

item-.select(book5aBook)

Message 3.2.2 is also important: if only basic messages (as defined earlier) were used,

instead of message 3.2.2, a sequence of currentQuantity:5 getQuantity() and setQuantity

(currentQuantity1 aQuantity) would be used. However, that construction is not thread-safe. Unless

concurrency is perfectly controlled, that sequence of messages could leave the quantity in an inconsis-

tent state if it is updated between those two messages by another process. Thus, usually, instead of per-

forming a sequence of get and set to increment numeric attributes, it is preferable to define an increase

basic message that simply adds the quantity passed as a parameter to the respective numeric attribute.

Up to this point, dynamic modeling produced two new queries for the Cart class: includeBook

and selectItemFor. It also produced two delegate methods for the Cart class: insertItem and

incrementItem. For the Item class, a constructor was defined, and as the quantity item must be

incremented, a new basic message was defined too: increaseQuantity. The other messages in the

diagram such as getCart, setQuantity, etc., are all basic messages.

However, another concern must be addressed now: Are the items, after their creation, supposed

to change? This question is related to the immutability design pattern that establishes that an object

that is not supposed to change should not implement public update methods. Specifically, in the

case of the Item class, which has an instance created in Figure 9.43, we must consider if its book,

cart, price, or quantity may be changed later. That depends, of course on other dynamic models

add2Cart(aCartId,anIsbn,aQuantity)

3: insertItem(aBook,aQuantity)

1: aCart:=getCart(aCartld)
3.1.1: addBook(aBook)

3.1.2: addCart(aCart)

3.1.3: setQuantity(aQuantity)

3.1.5: setUnitPrice(aPrice)

2: aBook:=getBook(anIsbn)

3.1 [not includeBook(aBook)]: newItem=Create(aBook,aCart,aQuantiy)

aCart : Cart

: Livir

anItem : Item3.2.1: anItem:=selectItemFor(aBook)

3.2 [includeBook(aBook)]: incrementItem(aBook,aQuantity)

{new} newItem : Item

aBook:Book

3.2.2: increaseQuantity(aQuantity)

3.1.4: aPrice:=getPrice()

FIGURE 9.43

A complete draft of a dynamic model for the add2Cart contract.

254 CHAPTER 9 Domain Tier Design

that will be constructed for other system operations, but we can assume now that quantity and

unitPrice may change while the linked book and cart are immutable. Therefore, the item must not

leave addBook and addCart as public methods. Private methods may be declared in UML class dia-

grams by adding a minus (“2 ”) sign before the method name. They are shown in the diagram in

Figure 9.50. Private methods exist but can be called only by the instance that owns them; for other

objects they are not accessible.

9.4.7 Exceptions
Conditionals may also be used to model exceptions. Consider again the contract for deleting a

book, but this time, instead of assuring that the book may be deleted by precondition, an exception

is raised if the book is linked to at least one item:

Context Livir::deleteBook(anIsbn:ISBN)
pre:

book[anIsbn]-.notEmpty() and
post:

book[anIsbn]^destroy()
exception:

book[anIsbn].item-.notEmpty() implies
Exception.throw(‘Cannot delete a book that was sold’)12

Exceptions usually are the first conditions to be tested in the dynamic model, because if one of

them occurs, all other postconditions must not be obtained. Thus, a conditional message would be

used to test the exception condition before anything else.

The diagram in Figure 9.44 shows how to test and raise an exception if the book has items.

The model in Figure 9.44 assumes that the throw message is terminal, that is, the execution of

the system operation is interrupted by it. This means that if the exception condition is true, message

3 (the actual destructor) is not executed.

9.4.8 Postconditions over collections
When system commands have contracts with postconditions that specify updates over collections of

objects, the iteration structure may be used in the communication diagram to indicate that a mes-

sage is iteratively sent to all of the elements in the collection. For example, the following system

command increases the price of every book by aPercentage:

Context Livir::raisePrices(aPercentage:Percentage)
post:

book-.forAll(aBookj
aBook^setPrice(aBook.price@pre*(11aPercentage))

)

12Usually exceptions would not receive the very message as a parameter, but an exception code that refers to a list of

messages. However, to keep examples simpler they are left here as they are.

2559.4 Dynamic modeling based on postconditions

The diagram in Figure 9.45 is a dynamic model for that contract.

Again, the choice to define a new basic message raisePrice instead of a sequence of getPrice

and setPrice is because it is thread-safe. The basic message raisePrice changes the value of the

attribute price by multiplying it by 1 plus the parameter aPercentage.

Another common situation occurs when the iteration must not occur over every object in the

collection, but only over those that satisfy a given condition. The following command raises by

aPercentage the prices of books with more than aPageCount pages:

Context Livir::raiseThickBooks(aPercentage:Percentage; aPageCount:Natural)
post:

book-.select(pageCount.aPageCount)-.forAll(aBookj
aBook^setPrice(aBook.price@pre*(11aPercentage))

)

: Book: Livir

raisePrices()

1 *[for all]: raisePrice(10%)

FIGURE 9.45

Dynamic model for a contract with a postcondition over a collection of objects.

deleteBook(anIsbn)

:Livir

:Set<Item>

2.1: numberOfItems:=getSize()

1: aBook:=getBook(anIsbn)

2.2 [numberOfItems>0]: throw
(‘Cannot delete a book that was sold’)

Exception2.3: destroy()

2:delete()

aBook:Book

FIGURE 9.44

A dynamic model for a contract with an exception.

256 CHAPTER 9 Domain Tier Design

The communication diagram for that contract is shown in Figure 9.46.

9.5 System queries
The system query contracts usually define only combinations of data that are obtained from the

objects. It is possible, although not always useful, to develop communication or sequence diagrams

for such contracts, as, for example, the communication diagram of Figure 9.47 that was built for

the contract of the listBooks system query below:

Context Livir::listBooks():Set
body:

book->collect(aBook|
Tuple {
isbn=aBook.isbn,
title=aBook.title,
authorsName=aBook.authorsName,
price=aBook.price,
pageCount=aBook.pageCount,
publisherName=aBook.publisher.name,
coverImage=aBook.coverImage,
quantityInStock=aBook.quantityInStock

}
)

The most difficult aspect related to these diagrams when they are used to model system queries

is that they do not ease the representation of data composition. For example, in Figure 9.47 the con-

troller sends eight messages to each instance of Book; each message produces a different return.

What does the controller do with all those values? We know, from the contract of the query, that it

forms a tuple with the eight values and groups the tuples into a set that is the final return data for

the query. But representing that on the diagram would only repeat what is already known in the

contract. Therefore, the utility of these diagrams in the case of queries is limited.

raise ThickerBooks(aPageCount,aPercentage)

1 *[pageCount>aPageCount]: raisePrice(aPercentage)

: Book: Livir

FIGURE 9.46

Communication diagram with iteration and selection.

2579.5 System queries

There are some important issues about modeling queries, however. First of all, three types of

query messages may be identified:

• The system query, which is implemented in the controller and is called directly by the interface.

As the domain objects are encapsulated into the domain tier and the interface deals with fields

and buttons, system queries should receive alphanumeric data as parameters and return

alphanumeric data as well.

• Basic queries, which consult actual attributes and links corresponding to the basic get queries.

• The intermediate queries, which correspond to the derived attributes and associations.

Derived attributes return alphanumeric data and derived associations return objects or data

structures holding objects. Another type of intermediary query is the parameterized query,

which cannot be defined as a derived attribute or association, such as includeBook in

Figure 9.43.

In Figure 9.47, the only intermediary query is getPublisherName, sent by the controller to the

book. The book, during its turn, sends the basic query getName to its publisher. Thus,

publisherName may be considered a derived attribute of Book.

books:=listBooks()=<isbn,title,author,price,numberOfPages,publisher,coverImage,
quantityInStock>*

1 *[for all]: aBook:=getBook()

2: isbn:=getIsbn()

3: title:=get Title()

4: authorsName:=getAuthorsName()

5: price:=getPrice()

6: pageCount:=getPageCount()

7: publisherName:=getPublisherName()=publisherName

8: coverImage:=getCoverImage()

9: quantityInStock:=getQuantityInStock()

7.1: publisherName:=getName()

:Publisher

:Book:Livir

aBook:Book

FIGURE 9.47

Collaboration diagram for a system query.

258 CHAPTER 9 Domain Tier Design

With regard to the question, “Should the intermediary query return the publisher name or the

publisher itself?” some considerations must be taken into account:

• If a single attribute of an object is needed, avoid returning the object, because it may generate a risk

of nonconformance to the “Don’t talk to strangers” pattern. If a single alphanumeric value is

needed, then it is better to define it as a derived attribute such as publisherName in the Book class.

• When a set of attributes or values must be obtained from one or more objects, and the intention

is to operate over them, for example, performing a sum, or finding the highest value or the

average, it is preferable to perform the operation on the class that has the most immediate

access to the values. In other words, the operation should be performed as soon as possible, and

the already processed result should be returned as a derived attribute. For example, totalValue,

which is a derived attribute of Cart, must be calculated by the cart itself, not by the customer or

the controller. It would be a bad design if the cart returned the items to the controller for it to

perform the sum over the subtotals.

• When collections of values with a complex structure must be returned and cannot be

transformed into a single alphanumeric value, it is preferable to return that information as a

collection of objects, defining it as a derived association, because that way, the methods that

the classes already have to perform calculations and operations over the data remain available.

However, this choice can possibly create more coupling, and it must be used only if the other

choices are really not applicable.

9.6 Delegation and low coupling
To this point, we have seen some techniques for building communication diagrams. But in most

situations there is more than one design option, and more than one way to send a message.

As discussed earlier, sometimes the object that has control does not have visibility to the object

that can perform the responsibility. In this case, two opposite design approaches can be identified:

• The object that has control tries to obtain a reference to the object that can perform the

responsibility, and communicate directly with it.

• The object delegates the message to another object that is closer to the object that can perform

the responsibility.

In order to understand the difference between these two approaches, imagine that Mary is the

boss of Peter. The boss wants to order a buffet for the office party, but she does not know any

catering companies. The boss knows that Peter has contact with some catering companies, and

then, two approaches are possible:

• The boss asks Peter for the phone numbers of the companies and makes the arrangements

herself. The only thing that Peter does is to pass his contacts to the boss.

• The boss sends Peter the parameters for the party: how many people, what kind of food, how

much to spend, etc., and asks Peter to do the arrangements. The party happens, and the boss

was never informed about the catering contact: he delegated to Peter.

Although in real life it may be interesting to make contact with many people and companies,

this is not the case in object-oriented systems. When objects are highly coupled, the system is more

2599.6 Delegation and low coupling

complex than it really needs to be. Thus, it is necessary to avoid creating connections between

objects that were not connected in the first place.

The first approach discussed just above is called concentration. With it the object that has exe-

cution control manages to obtain references to all objects needed and performs the operation itself.

The second approach is called delegation, and it consists of making the objects delegate responsi-

bilities when they cannot perform them. The second approach is usually preferable, because it pro-

vides more potential for reusing classes and methods, because the intermediary queries or delegated

methods that this approach creates usually are reusable.

A concrete example of this is shown below. Consider a system query getCartTotal defined as

follows:

Livir::getCartTotal(aCartId:CartId):Money
body:

cart[aCartId].item-.sum(quantity*unitPrice)

The system query contract above has as objective of obtaining the total value of a given cart

(the definition of the contract intentionally does not use the derived attributes defined in

Figure 9.34, assuming that they are not yet defined). This value must be calculated from the value

and quantity of each of the items of the order.

With the concentration approach, the whole process would be implemented in the Livir class.

This class would obtain all necessary data to perform the calculation and return the result to the

interface. The concentration communication diagram has all the messages that are sent by Livir. No

delegation happens, as no object sends messages besides the Livir instance. The pseudocode for

that system query could be described as follows:

CLASS Livir
ASSOCIATION VAR carts:MAP[CartId-.Cart]
. . .

METHOD getCartTotal():Money
LOCAL VAR aCart:Cart
LOCAL VAR cartsItems:SET,Item.

LOCAL VAR total:Money
aCart:5carts.at(aCartId)
cartsItems:5aCart.getItem()
total:50
FOR EACH item IN cartsItems DO

total:5total1(item.getValue()*item.getQuantity())
END FOR
RETURN total

END METHOD
END CLASS

We can take the following away from this code:

• It solves the problem.

• It produces no reusable software element besides the query itself that is implemented in the

Livir class.

260 CHAPTER 9 Domain Tier Design

• It increases coupling among classes, because Livir acquires visibility to Item, which was not the

case in the class diagram of Figure 9.34.

By using the delegation approach, the query can be implemented correctly as well, but at the

same time, new reusable structures with more cohesion and less coupling are created.

In the first place, the Livir class must be prevented from having access to any instance of Item,

since there are no connections between those classes in the class diagram. In order to perform the

required responsibilities, Livir must delegate the calculation to the cart. As the return value is

Money (a specific alphanumeric), creating this intermediate query for the Cart class is equivalent to

defining a derived attribute for it with the following OCL specification:

Context Cart::total:Money
derive:

item-.sum(subtotal)

Besides creating a derived attribute in Cart, a derived attribute should also be created in the

Item class, in order to return the subtotal:

Context Item::subtotal:Money
derive:

unitPrice*quantity

Now, with those two derived attributes, the pseudocode may be defined with responsibilities

distributed among the classes:

CLASS Livir
ASSOCIATION VAR carts:MAP[CartId-.Cart]
. . .

METHOD getCartTotal(aCartId:CartId):Money
RETURN carts.at(aCartId).getTotal()

END METHOD
END CLASS

CLASS Cart
ASSOCIATION VAR items:SET,Item.

. . .

METHOD getTotal ():Money
LOCAL VAR total:Money
total:50
FOR EACH item IN items DO

total:5total1item.getSubtotal()
END FOR
RETURN total

END METHOD
END CLASS

CLASS Item
ATTRIBUTE VAR quantity:Natural

2619.6 Delegation and low coupling

ATTRIBUTE VAR unitPrice:Money
. . .

METHOD getSubtotal():Money
RETURN quantity*unitPrice

END METHOD
END CLASS

With that approach, most of the calculation happens in the class that effectively has the most

immediate access to the necessary information, which is Cart. Thus, the calculation procedure here

is more reusable than the one produced by the concentration approach, because it is now inside the

Cart class. If the Cart class is reused it can calculate its own total without depending on a class

that is not a component of it (Livir). The same is true for Item, which now knows how to calculate

its own subtotal.

In the case of system commands, the low coupling principle is also obtained when the designer

chooses to delegate instead of returning an object. Consider again the class diagram of Figure 9.34, but

suppose that the role from Cart to Item is marked with {ordered}. The communication diagram of

Figure 9.48 shows the system command deleteLastItem, using the concentration approach. Figure 9.49

shows the same command with the delegation approach, avoiding unnecessary coupling among classes.

The price for using delegation is usually having more methods declared in the intermediary

classes. However, reusable methods are usually produced to counteract this issue. The price for

using the concentration approach is having a design where responsibilities are concentrated in the

façade controller instead of being distributed among the objects; this produces a model that is hard

to evolve and maintain in the long term.

9.7 Design class diagram
One of the goals of the logical design is to build and refine the design class diagram (DCD), which

is created from the conceptual model and from information obtained during dynamic modeling

(when the interaction diagrams for the contracts are being built).

The first version of the DCD is an exact copy of the conceptual model, which will be modified

later. The basic modifications that are made in the DCD during domain tier design are the following:

• Methods are added. During analysis, only system commands and queries were discovered and

added to the façade controller class. During design, delegate and basic methods belonging to

other classes are added.

• Associations are directed. During analysis, associations were nondirectional. During design

their direction is determined by the direction of the messages flowing between objects in the

interaction diagrams.

• Attributes and associations may be detailed. It is not mandatory to present details about

attributes and associations during analysis. These details may be added during design.

Additionally, in analysis only abstract data types are used to specify association roles, and they

may be replaced by concrete data types during design (for example, replacing sequence by

array list or linked list).

262 CHAPTER 9 Domain Tier Design

• The structure of classes and associations may change. It may be necessary to create new classes

to implement certain design structures, such as strategies and services, for example. Thus, it is

possible that the class structure of the DCD does not correspond exactly to the structure of the

conceptual model, in some cases.

• Possible creation of protected and private attributes. In the conceptual model all attributes are public,

because they represent static information and not behavior. However, when the dynamic aspects of

objects are represented, it may be necessary to work with private attributes in order to encapsulate

internal states that determine the behavior of some objects. These attributes sometimes may not be

directly accessible through a getter or setter, but their influence on some methods is felt.

During the construction of a communication diagram, each time an object receives a delegated

message, its class must implement the corresponding method.

1: aCart:=getCart(aCartId)

deleteLastItem(aCartId) 2:deleteLastItem()

2.1: destroy()

aCart : Cart

items[n] : Item

FIGURE 9.49

Delegation design style.

1: aCart:=getCart(aCartId)

deleteLastItem(aCartId) 2: lastItem:=getLastItem()

3: destroy()

:Livir

aCart : Cart

lastItem : Item

FIGURE 9.48

Concentration design style.

2639.7 Design class diagram

In Figure 9.43, the communication diagram shows that a number of messages must be imple-

mented as methods in some classes:

• Livir must implement:

• add2Cart(aCartId:CartId, anIsbn:ISBN, aQuantity:Natural) � the system command.

• getCart(aCartId:CartId):Cart � basic query.

• getBook(anIsbn):Book � basic query.

• Cart must implement:

• insertItem(aBook:Book, aQuantity:Natural) � delegate command.

• includeBook(aBook:Book):Boolean � query or predicate.

• incrementItem(aBook:Book, aQuantity:Natural) � delegate command.

• selectItemFor(aBook:Book):Item � query.

• Item must implement:

• Create(aBook:Book, aCart:Cart, aQuantity:Natural) � constructor.

• addBook(aBook:Book) � private basic command.

• addCart(aCart:Cart) � private basic command.

• setQuantity(aQuantity:Natural) � basic command.

• increaseQuantity(aQuantity:Natural) � basic command.

• setUnitPrice(aValue:Money) � basic command.

• Book must implement:

• getPrice():Money� basic query.

The DCD may also include information about the direction of the associations if the designer chooses

not to implement every association as bidirectional. This is usually the case because unidirectional asso-

ciations tend to be simpler to implement and more efficient when compared to bidirectional associations.

Deciding whether an association is unidirectional or bidirectional depends on the flow of messages

on the interaction diagrams. No association should be, in principle, navigable in the direction of the con-

troller: the controller sees the classes, but they do not see it. Other associations may be unidirectional if

the messages only flow in one direction, and bidirectional if messages flow in different directions, even

if that occurs in different diagrams. Figure 9.50 presents an evolution of the diagram in Figure 9.34

where methods and association directions discovered in the dynamic model of Figure 9.39 are included.

Not every association in Figure 9.50 is directed because the diagram in Figure 9.39 shows

messages being sent just from the controller to Cart, Cart to Item, and Item to Book. Associations

that were not followed by messages in the communication diagram are left undefined until another

diagram eventually decides on their direction.

If other collaboration diagrams developed for different system operations require messages navi-

gating in the opposite direction as those that were already discovered, then the respective associa-

tions should be bidirectional.

As the direction of the associations depends on the direction of the messages sent in the

dynamic models, it would not make sense to try to define that direction during preliminary concep-

tual modeling (Chapter 3). At that time the information available is insufficient to make those

design decisions. The same is valid for deciding on which methods a class must implement.

It is assumed by default that unidirectional associations have no restrictions on their origin.

However, that is not always the case. It is true, for example, for the association from Item to Book,

which has no multiplicity restriction at its origin. But the association from Cart to Item is restricted

264 CHAPTER 9 Domain Tier Design

at the origin, because it demands that an item is linked to exactly one cart. If the association is

implemented simply as a variable in the Cart class holding a set of Items, then that constraint

would not be easily assured. This is why, in the next chapter, unidirectional associations with

restrictions at the origin are handled as bidirectional associations: they may not be navigated in

both directions, but they must be implemented at both ends.

The logical design activity finishes when the DCD has enough information to implement the

domain tier classes. That usually happens when all system operation contracts have been examined

and their dynamic models incorporated into the design.

9.8 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

(Continued)

Publisher

Book

<<immutable>> <<unique>> +isbn : ISBN

<<immutable>> +title : String

<<immutable>> +authorsName : String

+price : Money

<<immutable>> +pageCount : Natural

+ / publisherName : String = publisher.name

<<optional>> +coverImage : Image

+quantityInStock : Natural = 0

name

isbn

Item

+quantity : Natural

+unitPrice : Money = book.price

+ / subtotal : Money = quantity*unitPrice

Livir

+add2Cart(aCartld : Cartld, anlsbn : ISBN, aQuantity : Natural)

+getCart(aCartId : CartId) : Cart

+getBook(anIsbn) : Book

1

1

0..1

<<immutable>>

+Create(aBook : Book, acart : Cart, aQuantity : Natural

–addBook(aBook : Book)

–addCart(aCart : Cart)

+setQuantity(aQuantity : Natural)

+increaseQuantity(aQuantity : Natural)

+setUnitPrice(aValue : Money)

id
Cart

Order

<<unique>> <<immutable>> +id : Cartld

+ / total : Money = item->sum(subtotal)
id

1

0..1

1

1

0..1

1

1

<<immutable>>

1

<<immutable>>

<<immutable>>

<<immutable>>

+intsertItem(aBook : Book, aQuantity : Natural)

+includeBook(aBook : Book) : Boolean

+incrementItem(aBook : Book, aQuantity : Natural)

+selectItemFor(aBook : Book) : Item

Customer
<<immutable>> <<unique>> +id : Customerld

+name : String

<<immutable>> +birthDate : Date

*

*

*

*

1

0..1

0..1

<<immutable>> +date : Date

<<immutable>> +number : Natural

+ / total : Money = cart,total

<<unique>> <<immutable>>

+name : String

FIGURE 9.50

Design class diagram with methods and association direction.

2659.8 The process so far

(Continued)

Inception Elaboration

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
the activity and state machine
diagrams from business modeling.

• Identify the main flow.
• Identify alternate flows: variants and

exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual
model by observing system use cases
and the concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence diagram.

• Represent the system commands
and queries using stateful or stateless
strategies.

• Complete system sequence diagrams
with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations with
stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

• Add invariants as needed.
• Improve the conceptual model

with the application of analysis
patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for commands
and returns for queries.

(Continued)

266 CHAPTER 9 Domain Tier Design

(Continued)

Inception Elaboration

Design the domain tier:

• Create a sequence or
communication diagram for each
system command contract.

• Use those diagrams to decide
which methods to implement in
each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them as
such.

• Look at system query contracts
and decide which delegate queries
could be implemented; some of
them could be derived attributes or
derived associations.

• Produce or refine the design class
diagram.

Implementation

Test

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan
for the first iteration.

9.9 Questions
1. What are the six kinds of responsibilities that objects may have? What kind of method is used

to perform each responsibility?

2. What are the four kinds of visibility that may exist between objects? Are they symmetrical?

How does each of them influence high coupling among classes?

3. Read again the last paragraph of Section 9.3.2. Try to draw a communication diagram that

illustrates that situation. Why is it a worse design than the diagram presented in Figure 9.29?

4. Explain the influence of contract preconditions and exceptions in dynamic models. How do

they affect the complexity of the dynamic model?

5. Draw a sequence diagram equivalent to the one in Figure 9.43.

2679.9 Questions

This page intentionally left blank

CHAPTER

10Code Generation

Note: This chapter is available on the companion website:

http://booksite.elsevier.com/9780124186736

1 Abstract
This chapter presents some techniques to automatically or systematically generate source code

from design diagrams, specifically for the design class diagram and communication diagrams.

Structural rules are presented to explain how code may be generated for a class’s structures, such

as attributes and associations. A significant part of the chapter is dedicated to the explanation of

the many kinds of associations and the code generation patterns available for them. Finally, the

chapter explains how running code may be generated for interaction diagrams that represent

dynamic models.

2 Contents
10.1 Introduction to code generation

10.2 Classes and attributes

10.3 Unidirectional associations

10.3.1 Unidirectional association to one

10.3.2 Unidirectional association to many

10.3.3 Unidirectional qualified association

10.3.4 Unidirectional association with association class

10.4 Bidirectional associations

10.4.1 Mutual friends

10.4.2 Unidirectional implementation

10.4.3 Implementation with an intermediary object

10.5 Delegated methods and system operations

10.6 Patterns for filtered queries

10.7 The process so far

10.8 Questions

269Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00023-5

© 2014 Elsevier Inc. All rights reserved.

http://booksite.elsevier.com/9780124186736
http://dx.doi.org/10.1016/B978-0-12-418673-6.00023-5

This page intentionally left blank

CHAPTER

e10Code Generation

KEY TOPICS IN THIS CHAPTER:

• Code generation for classes, attributes, and associations

• Code generation for delegated methods and system operations

• Patterns for filtered queries

10.1 Introduction to code generation
The Implementation discipline of UP includes code generation activities for design models. It is

necessary to generate code for the classes from the domain tier, and also for the other technological

tiers of the system. This chapter concentrates on code generation for the domain tier.

Once the communication diagram and the DCD are produced, code generation is an activity

that may be systematized to a point that it can be practically done automatically. Automatic code

generation is feasible for domain classes, which perform all the logical processing specified by the

system operation contracts.

This chapter presents rules for code generation for the DCD and communication diagrams.

Examples are presented in pseudocode, which may be translated to most programming languages

(preferably object-oriented ones).

10.2 Classes and attributes
DCD classes are usually directly converted into programming language classes. Class attributes are

converted into private instance variables in the respective class.

As explained in Chapter 6, attribute types should be alphanumeric (such as Integer, Real,

String, Boolean, etc.), primitive (such as Date, Money, Isbn, etc.), or enumerations (such as

CalendarDay, Gender, PhoneType, etc.).

If other objects can access the attribute then it should be implemented with a getter method. If

the attribute can be updated then it must be implemented with a setter, which can be a straight

setAttribute method or another type such as incrementAttribute if the attribute is numeric, for exam-

ple. Figure e10.1 presents an example of a design class that is used to show how programming

code is generated.

The following code corresponds to the pseudocode implementation of the class shown in

Figure e10.1. First, the attributes of the class are transformed into programming code private

attributes:

e35Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00010-7

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00010-7

CLASS Book
PRIVATE ATTRIBUTE VAR isbn:Isbn
PRIVATE ATTRIBUTE VAR title:String
PRIVATE ATTRIBUTE VAR authorsName:String
PRIVATE ATTRIBUTE VAR price:Money
PRIVATE ATTRIBUTE VAR pageCount:Natural
PRIVATE ATTRIBUTE VAR coverImage:Image
PRIVATE ATTRIBUTE VAR quantityInStock:Natural
. . .

Observe that all attributes, except for publisherName, which is derived, are defined as pseudo-

code attributes. Most languages would not differentiate ATTRIBUTE VAR from ASSOCIATION

VAR. In this book those names are used to make a clear distinction between variables that represent

attributes and variables that implement association roles. However, for most languages any instance

variable would be simply declared as VAR, or an equivalent language specific expression.

On the other hand, most languages differentiate between PRIVATE and PUBLIC variables and

methods. Whenever private variables are allowed, they are the best choice, because this way, attri-

butes are encapsulated into the object, and they may not be changed by objects that have no autho-

rization to do that.

Now, we must consider how the class attributes are going to be updated. Some of them can be

updated virtually at any time, while others should be defined only at creation time and prevented

from changing after that: these are immutable attributes. In Figure e10.1 attributes that must not be

changed after the object is created are stereotyped as {immutablec.

A set of setters and one1constructor may be defined following these recommendations:

• The constructor must receive as parameters the initial values for all attributes that are not

optional, derived or with a defined initial value (if any).

• The implementation of the constructor initializes attributes with initial values with the

respective values (if any).

• The constructor must receive as parameters the objects to fill the mandatory roles (if any) of the

associations (later this will be shown in a more complete example).

Book
<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ /publisherName : String=publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e10.1

A reference class for code generation.

1In some cases, classes may allow more than one constructor, though.

e36 CHAPTER e10 Code Generation

• Only attributes that are not derived and immutable should define one or more setters

(setAttribute, incrementAttribute, etc., depending on the case).

Thus, the following code may be created as a continuation of the definition of the implementa-

tion class that started above:

. . .

CONSTRUCTOR METHOD create(anIsbn:Isbn; aTitle:String,
anAuthorsName:String; aPrice:Money; aPageCount:Natural)
isbn:5anIsbn
title:5aTitle
authorsName:5anAuthorsName
price:5aPrice
pageCount:5aPageCount
quantityInStock:50

END CONSTRUCTOR METHOD

METHOD setPrice(aPrice:Money)
price:5aPrice

END METHOD

METHOD raisePrice(aPercentage:Percent)
price:5aPrice*(11aPercentage)

END METHOD

METHOD setCoverImage(aCoverImage:Image)
coverImage:5aCoverImage

END METHOD

METHOD increaseQuantityInStock(anIncrement:Integer)
quantityInStock:5quantityInStock1anIncrement

END METHOD
. . .

Notice that inside the constructor, each attribute is assigned to the respective argument and that

quantityInStock is assigned 0 (its initial default value).

Only three attributes may be updated. The attribute price has two setters: setPrice, which

defines a brand new price independent from the original one, and raisePrice, which raises the price

by a percentage.

The quantityInStock attribute is updated only by adding an increment to it. As the anIncrement

parameter may be negative, decrements may be done with this method as well.

Let us suppose now that the design produced interaction diagrams that demonstrate that all attri-

butes of this class must be accessed by other objects. In this case, all attributes must implement a

getter method, even the derived attribute. Thus, the following code may be a continuation of the

code started above:

. . .

METHOD getIsbn():Isbn
RETURN isbn

e3710.2 Classes and attributes

END METHOD

METHOD getTitle():String
RETURN title

END METHOD

METHOD getAuthorsName():String
RETURN authorsName

END METHOD

METHOD getPrice():Money
RETURN price

END METHOD

METHOD getPageCount():Natural
RETURN pageCount

END METHOD

METHOD getPublisherName():String
RETURN . . .

2

END METHOD

METHOD getCoverImage():Image
RETURN coverImage

END METHOD

METHOD getQuantityInStock():Natural
RETURN quantityInStock

END METHOD

At this point the reader could be asking why authorsName is still an attribute typed as String

and not a class with a many-to-many association to Book. The reason is that the example is simulat-

ing an ongoing project and not the final version of it. Up to this point, the only use cases examined

did not require authors to be addressed as a complex concept. The authorsName attribute is

perfectly adequate for the functionalities discovered to this point. We may even believe that this

would change as other use cases are examined in the future, but as William of Ockham (1495) said

“Numquam ponenda est pluralitas sine necessitate” (plurality must never be posited without neces-

sity). This also adheres to the agile principle of never implementing functionality before it is neces-

sary just because it would be easy to do so now.

10.3 Unidirectional associations
Unidirectional associations with no multiplicity constraints at the origin and unidirectional associa-

tions from singletons such as the façade controller may be implemented similarly to attributes as

instance variables, and if necessary they should have methods for updating and querying.

2This method involves associations, which are explained in Sections 10.3 and 10.4.

e38 CHAPTER e10 Code Generation

However, if there are multiplicity constraints at the origin role, these associations must be han-

dled as bidirectional, even if they are navigable only in one direction. Figure e10.2 shows an exam-

ple of that situation, where although the association is only navigable from Car to Person, every

car must be linked to a single person. If the association is implemented as an instance variable in

the Person class, it will be hard to assure that a car belongs to a single person.

There are still some considerations we must discuss about the differences between an attribute

and a unidirectional association. First, attributes are always implemented by variables whose types

are alphanumeric, primitive, or enumerations. Associations, on the other hand, are implemented by

variables whose types are domain classes (in the case of associations to one) or data structures (in

the case of associations to many).

In addition, considering different role multiplicities and other features of associations, there are

distinctions to be made regarding the methods to be implemented for each type of association.

Code generated for transient or persistent associations and attributes is the same. The only

difference between these kinds of elements resides in the way they are stored.

In general and if necessary, a class may implement three kinds of methods for each association:

• Methods to add links: Usually referred to as addRole.

• Methods to remove links: Usually referred to as removeRole.

• Methods to get linked objects. Usually getRole would be implemented to return the whole set of

linked objects. This set must be protected in the sense that it may be consulted and its elements

may be iterated, but no element can be added or removed from the original set. Additionally,

methods to get a specific element or subset given a key or other search criterion may be

implemented if necessary.

Usually associations to one may be implemented as a single variable and not as a collection. In

this case, the addRole and removeRole methods do not apply and the class implements instead a

replaceRole method that replaces the current link with a new link.

Associations to 0..1 also require the implementation of the replaceRole method. But, in this

case, addRole and removeRole may be implemented as well. If the addRole and removeRole methods

are implemented for 0..1 roles, then they must check the role bounds.

Derived associations must implement only the get method, in accordance with their definition.

Other methods would still be necessary depending on the kind of the association, such as:

• If the association is qualified, there may be an additional get that receives as an argument the

qualifier key and returns the qualified object or subset. Additionally, if the qualifier is external,

the add method should receive the value for the qualifier; if it is an internal qualifier that

argument must not be passed because it may be obtained from the object itself. A new remove

method also may be added to remove a link to an object based in the value of its qualifier.

Person Car

1 *

FIGURE e10.2

Unidirectional association with multiplicity constraint at the origin role.

e3910.3 Unidirectional associations

• In the case of ordered associations, an additional get method may return an object based on its

position in the collection. Also, the add method could add elements at a given position, which

is indicated as a new parameter for the method, and the remove method may remove a link

from a given position. Ordered associations may also have methods to access, add, and remove

elements from their head or tail.

• Stacks and queues may have special methods such as push and pop that follow specific rules for

those structures.

Table e10.1 presents a summary of the methods that may be implemented for each kind of asso-

ciation in a class, depending on the design needs.

Observe that in Table e10.1, each kind of association has a different set of methods for acces-

sing and changing links. The implementation of these methods follows definitions that are usually

kept the same from class to class. The following subsections show examples of some of those

methods.

10.3.1 Unidirectional association to one
The unidirectional association with role multiplicity 1 may be stored in a single instance variable in

the origin class, and its type should be the destination class. Figure e10.3 shows a unidirectional

association to one from Car to Person with role name owner.

The implementation of the Car class requires an instance variable named owner implemented

with type Person. Regarding the association methods, following Table e10.1, only getOwner and

replaceOwner should be implemented. The pseudocode for the Car class in this case could be

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

owner:5anOnwer
END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD replaceOwner(newOwner:Person)
owner:5newOwner

END METHOD

END CLASS

In the case of a role with multiplicity 0..1, there are two possibilities:

• It may be implemented as a set, that is, similar to the role with multiplicity �. In this case, if

there is no object linked, the get method would return the empty set.

• It may be implemented as a single variable, that is, similar to the roles with multiplicity 1. In this

case, as shown above, if there is no object linked, the get method would return the null object.

The second approach is widely adopted. There is even the possibility of using the null object

design pattern (Woolf, 1998) instead of the language-provided null value. The advantage is that the

e40 CHAPTER e10 Code Generation

Table e10.1 Typical Operations over Associations Depending on their Type

Type To 1 To 0..1 To Many (�)

Get getRole():Object getRole():Object getRole():Set

Add Does not apply addRole(obj) addRole(obj)

Remove Does not apply removeRole() removeRole(obj)

Replace replaceRole(obj) replaceRole(obj) replaceRole(oldObj,newObj)

Type Ordered Set Sequence

Get getRole():OrderedSet getRole():Sequence

getRole(position):Object getRole(position):Object

getFirstRole():Object getFirstRole():Object

getLastRole():Object getLastRole():Object

Add addRole(position,obj) addRole(position,obj)

addFirstRole(obj) addFirstRole(obj)

addLastRole(obj) addLastRole(obj)

Remove removeRole(obj)

removeRole(position) removeRole(position)

removeFirstRole() removeFirstRole()

removeLastRole() removeLastRole()

Replace replaceRole(oldObj,newObj) replaceRole(position,obj)

replaceRole(position,obj) replaceFirstRole(obj)

replaceFirstRole(obj) replaceLastRole(obj)

replaceLastRole(obj)

Type Map (Internal Qualifier) Map (External Qualifier)

Get getRole():Set getRole():Set

getRole(key):Object getRole(key):Object

Add addRole(obj) addRole(key,obj)

Remove removeRole(obj) removeRole(obj)

removeRole(key) removeRole(key)

Replace replaceRole(oldKey,
newObj)

replaceRole(oldObj,newObj) replaceRole(oldObj,
newObj)

Type Partition (Internal Qualifier) Partition (External
Qualifier)

Get getRole():Set getRole():Set

getRole(key):Set getRole(key):Set

Add addRole(obj) addRole(key,obj)

Remove removeRole(obj) removeRole(obj)

Replace replaceRole(oldObj, newObj) replaceRole(oldObj,newObj)

(Continued)

null object is language independent. The null object is an instance of a Null class whose behavior

consists of doing nothing. If there is iteration over a null object it produces nothing, just as with an

empty set. On the other hand, iterating over a null or nil value would produce an exception, which

would not be desired in that case.

If we assume that the role multiplicity in Figure e10.3 is 0..1, there are two possible implemen-

tations. The first one considers the association as a set:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Set,Person.

CONSTRUCTOR METHOD Create()
owner:5Set.new()

END CONSTRUCTOR METHOD

METHOD getOwner():Set,Person.

RETURN owner.protected()
END METHOD

METHOD addOwner(newOwner:Person)
IF owner.size().0 THEN

Table e10.1 (Continued)

Type Set with Association Class Bag Array (Fixed Size)

Get getRole():Set getRole():Bag getRole():Array

getAssociationClass():Set getRole(position):Object

getAssociationClass(obj):Object

Add addRole(obj) addRole(obj) Does not apply

Remove removeRole(obj) removeRole(obj) Does not apply

removeAssociationClass(obj)

Replace replaceRole(oldObj,newObj) Does not apply replaceRole(position,obj)

Type Stack Queue

Get getRole():Object getRole():Object

Add pushRole(obj) queueRole(obj)

Remove popRole() removeRole()

Replace Usually does not apply Usually does not apply

Car Personowner

1
*

FIGURE e10.3

A class with unidirectional association to 1.

e42 CHAPTER e10 Code Generation

Exception.throw(‘Car already has an owner’)
ENDIF
owner.add(newOwner)

END METHOD

METHOD removeOwner()
IF owner.size()50 THEN

Exception.throw(‘Car does not have an owner’)
ENDIF
owner.removeOneElement()

END METHOD

METHOD replaceOwner(newOwner:Person)
IF owner.size()51 THEN

owner.removeOneElement()
ENDIF
owner.add(newOwner)

END METHOD
END CLASS

Every time a method such as getOwner returns a set of objects, the collection must be protected

against change. That is explained in more detail later in this chapter.

The removeOwner method was implemented by calling the removeOneElement method over a

set. That method removes one element (any one) from the set without the need to specify which

one. As the set would have only one element at this point it would not be necessary to know which

element it is in order to remove it from the set. The removeOwner method could also be implemen-

ted as owner:5 Set.new(), with the same final result. However, as most programmers should notice,

that implementation would produce a lot of garbage in memory if objects are often added and

removed from that role, and this could degrade performance.

The second approach considers the association as a single variable, and uses the Null object

design pattern:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create()

owner:=NullObject.instance()
END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD addOwner(newOwner:Person)
IF owner, .NullObject.instance() THEN

Exception.throw(‘Car already has an owner’)
ENDIF
owner:5newOwner

END METHOD

e4310.3 Unidirectional associations

METHOD removeOwner()
IF owner5NullObject.instance() THEN

Exception.raise(‘Car does not have an owner’)
ENDIF
owner:5NullObject.instance()

END METHOD
METHOD replaceOwner(newOwner:Person)

owner:5newOwner
END METHOD

END CLASS

Both implementations of replaceOwner shown above assume that if the owner exists it is

replaced, and that if it does not exist it is defined. No exception is raised if replaceOwner is called

for a car that does not have an owner. In that case, it behaves just like addOwner.

10.3.2 Unidirectional association to many
The unidirectional association to many may be implemented as a data structure. If it is a simple

association with multiplicity � in the destination role, then it may be implemented as a set. Below

is a pseudocode example for the association represented in Figure e10.4:

CLASS Customer
PRIVATE ASSOCIATION VAR wishes:SET,Book.

METHOD getWishes():SET,Book.

RETURN wishes.protected()
END METHOD

METHOD addWish(aBook:Book)
wishes.add(aBook)

END METHOD

METHOD removeWish(aBook:Book)
wishes.remove(aBook)

END METHOD
END CLASS

It is not necessary to implement the replaceWish method here, because wishes usually are only

added and removed from a customer. It is not common to replace a wish with another. Thus, that

method is not considered for implementation.

Customer Bookwish

*
*

FIGURE e10.4

A class with a simple unidirectional association to many.

e44 CHAPTER e10 Code Generation

The protected message sent to a collection produces a noneditable version of that collection, to

avoid elements being removed or added to the original collection by means other than the add and

remove messages that are implemented in the class.

The implementation of that protection may be done in a number of ways; some of them are lan-

guage specific. Examples include making a copy of the original collection (shallow copy or deep

copy depending on the degree of protection intended), or using the protection proxy design pattern

(Gamma, Helm, Johnson, & Vlissides, 1995), which suggests the implementation of a class that

encapsulates the original collection, and implements only a method to iterate over the elements but

not to modify the original collection.

If the association role is labeled with {ordered} or {sequence} the data type of the variable

that represents the role must be replaced by the corresponding data type supported by the

language, and additionally, other specific methods must be implemented, as mentioned in

Table e10.1.

In the case of a role with identical lower and upper bounds, it may be implemented as an

array. For example a multiplicity of 5 could be implemented as an array of 5 positions. The

original add and remove commands are not applicable to the array structure because its size can-

not be changed. However, elements may be replaced based on their position, as shown in

Table e10.1.

Roles whose multiplicity is an interval, such as 3..8, may be implemented just like roles to

many (�). The only difference is that the collection must have its bounds checked when objects are

added or removed from it.

10.3.3 Unidirectional qualified association
The unidirectional qualified association is implemented in a manner similar to the association with

multiplicity to many. However, instead of the data type Set, we use a mapping, or dictionary struc-

ture (MAP) that associates an alphanumeric, primitive, or enumeration type (key) to one object or a

set of objects (values).

As for any other unidirectional associations, we must keep in mind that the unidirectional imple-

mentation is only possible when the association has no multiplicity bounds in its origin, that is, the

origin role must have multiplicity �. If this is not the case, a bidirectional implementation must be

considered.

Figure e10.5 shows the implementation of a qualified association defining a map to 0..1 with an

internal qualifier. The customer wish list is now considered a qualified association. The respective

code is presented below:

BookCustomer
isbn

* wish
<<unique>> <<immutable>> +isbn : Isbn0..1

FIGURE e10.5

Qualified association with an internal qualifier.

e4510.3 Unidirectional associations

CLASS Customer
PRIVATE ASSOCIATION VAR

wishes:MAP,Isbn,Book.

METHOD getWishes():SET,Book.

RETURN wishes.getValues()
END METHOD

METHOD getWish(anIsbn:Isbn):Book
RETURN wishes.atKey(anIsbn)

END METHOD

METHOD addWish(aBook:Book)
wishes.add(aBook.getIsbn(),aBook)

END METHOD

METHOD removeWish(aBook:Book)
wishes.removeValue(aBook)

END METHOD

METHOD removeWish(anIsbn:Isbn)
wishes.removeKey(anIsbn)

END METHOD

METHOD replaceWish(oldBook,newBook:Book)
-- not implemented

END METHOD

END CLASS

The replace method is not implemented for wishes again because it would not make sense to

replace a book with another.

We note here that the basic map data structure has the usual operations for accessing a value

given its key (atKey), accessing the set of all values (getValues), including a key/value pair (add),

removing a pair given its key (removeKey) or given its value (removeValue), and so on.

It is important to stress that the design of the qualified association with an internal qualifier only

works if the qualifier attribute is immutable. If this was not the case, the attribute could change and

that change would not necessarily propagate to the value that is the key for the association. This

would create an inconsistency. That constraint, however, does not apply to maps with external quali-

fiers, because in that case the qualifier is not an attribute of the qualified class.

Figure e10.6 presents a map with an external qualifier. The corresponding code is shown below:

CLASS Customer
PRIVATE ASSOCIATION VAR phones:MAP,PhoneType,Phone.

METHOD getPhones():SET,Phone.

RETURN phones.getValues()
END METHOD

METHOD getPhone(aType:PhoneType):Phone
RETURN phones.atKey(aType)

END METHOD

e46 CHAPTER e10 Code Generation

METHOD addPhone(aType:PhoneType;aPhone:Phone)
phones.add(aType,aPhone)

END METHOD

METHOD removePhone(aPhone:Phone)
phones.removeValue(aPhone)

END METHOD

METHOD removePhone(aType:PhoneType)
phones.removeKey(aType)

END METHOD
END CLASS

In the case of Figure e10.6 there is an issue to be considered: as the origin of the association

has no multiplicity restriction, and the qualifier is not an attribute of the class, nothing assures that

the same phone is not associated to two or more keys. For example, the following sequence of

commands would produce a phone associated to two different types:

aCustomer.addPhone(“residential”,aPhone)
aCustomer.addPhone(“comercial”,aPhone)

If that is what is expected, nothing else must be said. But if that is not what is meant, the role on the

left side should be 1 and the association should be implemented as a bidirectional association, and con-

trol mechanisms should be implemented to avoid a phone from being associated to more than one type.

For the next example, we consider that different publishers could edit the same book. Thus we

have books and book specifications: a book has one single publisher, but a book specification has a

set of publishers. The ISBN of the book for each publisher may be different, but the book specifica-

tion is the same for different publishers, and so is its genre. Figure e10.7 illustrates that a book

specification has the genre as an attribute, and therefore each book specification has only one genre

that may be associated to different publishers. Figure e10.7 presents a partition, that is, a qualified

association to many, with an internal qualifier. The corresponding code is shown below:

CLASS Publisher
PRIVATE ASSOCIATION VAR bookSpecs:RELATION,BookGenre,BookSpec.

METHOD getBookSpecs():SET,BookSpec.

Customer

<<enumeration>>
PhoneType

type:PhoneType

<<Constant>> +home
<<Constant>> +work
<<Constant>> +mobile
<<Constant>> +fax

Phone

0..1

*

FIGURE e10.6

Qualified association with an external qualifier.

e4710.3 Unidirectional associations

RETURN bookSpecs.getValues()
END METHOD

METHOD getBookSpec(aGenre:BookGenre):SET,BookSpec.
RETURN bookSpec.atKey(aGenre)

END METHOD

METHOD addBookSpec(aBookSpec:BookSpec)
bookSpecs.add(aBookSpec.getGenre(),aBookSpec)

END METHOD

METHOD removeBookSpec(aBookSpec:BookSpec)
bookSpecs.removeValue(aBookSpec)

END METHOD
END CLASS

The implementation above uses a data structure named RELATION, which does not exist in

most programming languages. But it can be easily implemented. It has an interface similar to MAP,

but it allows the same key to be associated to many values and not just one. In the example above,

for each BookGenre the structure associates a set of instances of BookSpec.

There is an issue here too. The qualifier attribute genre in class BookSpec must be immutable

because the qualifier is internal. If this was not the case, problems like the one aforementioned for

the qualified map could jeopardize the design. The attribute is not unique because different book

specifications may have the same genre.

Does the design presented in Figure e10.7 allow a book specification to be linked to a publisher

or different publishers with different genres? The answer is no. As the genre is immutable and the

addBookSpec method takes the key from the BookSpec attribute genre, it is only possible to add a

book specification once to the publisher. As the genre is immutable, the book specification should

never be added again with a different genre.

This would not be the case if the genre were not immutable: the same book specification could

change its genre and be linked again to one or another publisher. In that case, an inconsistent link

to the book specification with the old genre would be left behind.

Publisher

<<enumeration>>
BookGenre

<<Constant>> +mystery
<<Constant>> +romance
<<Constant>> +science fiction
<<Constant>> +historical romance
<<Constant>> +thriller

BookSpec
<<immutable>> +genre : BookGenregenre:BookGenre

*

*

FIGURE e10.7

Qualified association as a partition with an internal qualifier.

e48 CHAPTER e10 Code Generation

10.3.4 Unidirectional association with association class
When the association has an association class, it is necessary to implement the creation and destruc-

tion of instances of that class each time a corresponding link is added or removed.

Association classes may exist in associations with any multiplicity. However, they are more

common and useful in associations that are many to many.

One possible implementation for this kind of association is to create a map associating instances

of the opposite class to instances of the association class.

Figure e10.8 shows an association class, and its implementation is shown below:

CLASS Company
PRIVATE ASSOCIATION VAR employees:MAP,Person,Job.

METHOD getEmployee():SET,Person.
RETURN employees.getKeys()

END METHOD

METHOD getJob():SET,Job.

RETURN employees.getValues()
END METHOD

METHOD getJob(aPerson:Person):Job
RETURN employees.atKey(aPerson)

END METHOD

METHOD addEmployee(aPerson:Person)
employees.add(aPerson,Job.Create())

END METHOD

METHOD removeEmployee(aPerson:Person)
LOCAL VAR aJob:Job
aJob:5employees.atKey(aPerson)
employees.removeKey(aPerson)
aJob.destroy()

END METHOD

METHOD removeJob(aJob:Job)
employees.removeValue(aJob)
aJob.destroy()

END METHOD

employeesCompany Person

Job

*

*

FIGURE e10.8

Unidirectional association with association class.

e4910.3 Unidirectional associations

METHOD replaceEmployee(oldEmployee,newEmployee:Person)
self.removeEmployee(oldEmployee:Person)
self.addEmployee(newEmployee:Person)

END METHOD
END CLASS

In Figure e10.8 we see that when a new link is created from Company to Person, a new instance

of Job is automatically created.

The operations that explicitly destroy a job when the link is removed are included in the code

to make clear that this is what must be done, as the job cannot exist independently of the link that

created it. In languages with a garbage collector and no explicit disposal of objects, it must be

ensured that after the link is removed, no other references remain to the object.

The replace command only deletes the old link with its job and creates a new one. The instance

of Job is not maintained when the role is replaced. However, in some cases that could be the mean-

ing intended.

10.4 Bidirectional associations
As mentioned before, the unidirectional implementation of associations is only possible when they

are navigable in one direction and there is no multiplicity constraint in the origin role. In other

situations, the bidirectional implementation is necessary.

At least three patterns for implementing bidirectional associations have been proposed (Fowler,

2003):

• Implementing the association as two unidirectional associations (mutual friends pattern).

• Implementing the association as a unidirectional association in just one of the classes.

Navigation would be possible from the opposite direction by means of a query.

• Implementing an intermediary object that represents the association.

In all of the cases above, if the association is navigable in both directions the get method must

be implemented in both participating classes, because navigation must be allowed in both direc-

tions. However, if we have the case of a unidirectional association with a multiplicity restriction at

the origin, then the get method must be implemented only at the origin class.

The add and remove methods, if required, may be implemented only in one of the classes, because

if they exist in both classes they would be redundant as they would do exactly the same thing.

10.4.1 Mutual friends
The option for implementing bidirectional associations in both directions is the most efficient in

terms of time, but it is less efficient in terms of space allocation because each association is imple-

mented twice. It may also require more control overhead, because the implementation of the associ-

ation in both classes must be synchronized.

e50 CHAPTER e10 Code Generation

The implementation of the unidirectional components of the association follows the

recommendations given in Section 10.3. However, three subcases still have to be considered

here:

• Both roles are optional.

• Only one role is mandatory.

• Both roles are mandatory.

10.4.1.1 Both roles optional
If both roles are optional and no other constraints are present, then links may be added and

removed at will. As links must be added and removed from both sides of the association, auxiliary

methods would be needed to add and remove the individual unidirectional links.

These auxiliary methods must not be called in any other place except the add and remove

methods. That is why they must be declared as private, but the opposite class must have access to

them; thus, they are exported exclusively to that class.

Figure e10.9 presents a bidirectional many-to-many association. The corresponding implementa-

tion code is shown below:

CLASS Customer
PRIVATE ASSOCIATION VAR wishes:SET,Book.

METHOD getWishes():SET,Book.

RETURN wishes.protected()
END METHOD

METHOD addWish(aBook:Book)
self.privateAddWish(aBook)
aBook.privateAddWisher(self)

END METHOD

METHOD removeWish(aBook:Book)
self.privateRemoveWish(aBook)
aBook.privateRemoveWisher(self)

END METHOD

PRIVATE METHOD privateAddWish(aBook:Book)
EXPORTED TO: Book

wishes.add(aBook)
END METHOD

Book Customerwisher

wish *

*

FIGURE e10.9

Bidirectional association from many to many.

e5110.4 Bidirectional associations

PRIVATE METHOD privateRemoveWish(aBook:Book)
EXPORTED TO: Book

wishes.remove(aBook)
END METHOD

END CLASS

CLASS Book
PRIVATE ASSOCIATION VAR wishers:SET,Customer.

METHOD getWishers():SET,Customer.

RETURN wishers.protected()
END METHOD

PRIVATE METHOD privateAddWisher(aCustomer:Customer)
EXPORTED TO: Customer

wishers.add(aCustomer)
END METHOD

PRIVATE METHOD privateRemoveCustomer(aCustomer:Customer)
EXPORTED TO: Customer

wishers.remove(aCustomer)
END METHOD

END CLASS

The auxiliary methods in the code above are declared as private but exported to the other

participating class.

As mentioned before, the access (get) methods must be implemented in both classes if the asso-

ciation is navigable in both directions. But the add and remove methods may be implemented in

just one class. In the example above, they are implemented only in Customer class.

10.4.1.2 Only one mandatory role
If one of the roles is mandatory, as for example 1 to �, then the team must ask if the mandatory

role is immutable or not. For example, a payment has one order and cannot change to another order

(it is immutable), but a car has an owner and can change to another owner if it is sold.

Let us first examine the case of an association link that can be updated, as shown in

Figure e10.10.

The code for implementing the classes in Figure e10.10 might be like the following:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

*

1

Car owner Person

FIGURE e10.10

A bidirectional association with one mandatory role that can be updated.

e52 CHAPTER e10 Code Generation

owner:5anOwner
anOwner.privateAddCar(self)

END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD replaceOwner(anOwner:Person)
owner.privateRemoveCar(self)
anOwner.privateAddCar(self)
owner:5anOwner

END METHOD
END CLASS

CLASS Person
PRIVATE ASSOCIATION VAR cars:SET,Car.

METHOD getCars():SET,Car.

RETURN cars.protected()
END METHOD

PRIVATE METHOD privateAddCar(aCar:Car)
EXPORTED TO: Car

cars.add(aCar)
END METHOD

PRIVATE METHOD privateRemoveCar(aCar:Car)
EXPORTED TO: Car

cars.remove(aCar)
END METHOD

END CLASS

As we can see, the Car class implements the only public updating method, which is

replaceOwner. An ownership link is created every time a new instance of Car is created, as defined

in the car’s constructor. Then, the ownership may only be changed from one person to another. The

Person class only implements the private methods to add and remove a car from its own local

collection.

When a car owner is replaced, it is done in three steps: first the car is removed from the

old owner, then it is added to the new owner, and finally the owner is updated to be the new

owner.

The second case to be considered here is when the role is immutable. This is the case of a 1

to � association from Customer to Order, for example: it is mandatory for Order and an order can

never change its customer. This situation is shown in Figure e10.11, and the corresponding code

follows:

CLASS Order
PRIVATE ASSOCIATION VAR customer:Customer
CONSTRUCTOR METHOD create(aCustomer:Customer)

e5310.4 Bidirectional associations

customer:5aCustomer
aCustomer.privateAddOrder(self)

END CONSTRUCTOR METHOD

METHOD getCustomer():Customer
RETURN customer

END METHOD
END CLASS

CLASS Customer
PRIVATE ASSOCIATION VAR orders:SET,Order.

METHOD getOrders():SET,Order.

RETURN orders.protected()
END METHOD

METHOD removeOrder(anOrder:Order)
orders.remove(anOrder)
anOrder.destroy()

END METHOD

PRIVATE METHOD privateAddOrder(anOrder:Order)
EXPORTED TO: Order

orders.add(anOrder)
END METHOD

END CLASS

In this case, an order is immediately associated to a customer when it is created. If an order is

removed from a customer then it must be destroyed.

10.4.1.3 Two mandatory roles
There are situations when the two roles of an association are mandatory. In this case, no object can

exist without being linked to another. This means that the creation of the links must happen in the

constructor of both classes. Figure e10.12 shows an example of a 1 to 1..� association; it is manda-

tory on both ends.

Once more, the methods that will be implemented depend on deciding if the roles are

immutable or not. The customer role from the point of view of an address is immutable. This

means that an address cannot change from one customer to another.3

Customer 1

*

Order

<<immutable>>

FIGURE e10.11

A bidirectional association with one mandatory immutable role.

3In fact, in real life an address could change from one customer to another if we consider that a customer could move to

the house of another customer whose address is already registered. However, usually systems do not treat addresses in

such a precise way: pragmatically, if a customer moves, it is always a new address that is registered.

e54 CHAPTER e10 Code Generation

When a customer is created it must be created with at least one address. This means that the

creator of a customer should receive all the data needed to instantiate that address (only street and

number in the example, for simplification).

An existing customer may add a new address, but the method that adds an address cannot

simply receive an instance of address as an argument because no address may exist without

being linked to a customer. Thus, the customer should implement a method to add a new address

that receives the data necessary to instantiate such an address. The code for implementing this

situation is shown below:

CLASS Address
PRIVATE ASSOCIATION VAR customer:Customer
PRIVATE ATTRIBUTE VAR street:String
PRIVATE ATTRIBUTE VAR number:Natural

CONSTRUCTOR METHOD Create(aCustomer:Customer;
aStreet:String; aNumber:Natural)
customer:5aCustomer
street:5aStreet
number:5aNumber

END CONSTRUCTOR METHOD

METHOD getCustomer():Customer
RETURN customer

END METHOD
END CLASS

CLASS Customer
PRIVATE ASSOCIATION VAR addresses:SET,Address.

PRIVATE ATTRIBUTE VAR name:String
PRIVATE ATTRIBUTE VAR birthDate:Date

CONSTRUCTOR METHOD create(aName:String; aBirthDate:Date;
aStreet:String; aNumber:Natural)
name:5aName
birthDate:5aBirthDate
addresses:5Set.new()
addresses.add(Address.Create(self,aStreeet,aNumber))

END CONSTRUCTOR METHOD

Customer 1

1..*<<immutable>>+name : String
<<immutable>> +birthDate : Date

Address
<<immutable>> +street : String
<<immutable>> +number : Natural

FIGURE e10.12

A bidirectional association that is mandatory on both ends.

e5510.4 Bidirectional associations

METHOD getAddresses():SET,Address.

RETURN addresses.protected()
END METHOD

METHOD addAddress(aStreet:Street; aNumber:Natural)
addresses.add(Address.create(self,aStreet,aNumber))

END METHOD

METHOD removeAddress(anAddress)
IF address.size()>1 THEN
addresses.remove(anAddress)
anAddress.destroy()

ELSE
Exception.throw(‘Customer must have at least one address’)

ENDIF
END METHOD

METHOD getName():String
RETURN name

END METHOD

METHOD getBirthDate():Date
RETURN birthDate

END METHOD

METHOD setName(aName:String)
name:5aName

END METHOD
END CLASS

If the role from Address to Customer was not immutable, then a replaceCustomer command

could be implemented as well in the Address class. But that is not the case.

10.4.2 Unidirectional implementation
Even if the association is bidirectional, it may be the case that navigation occurs much more

often or is more critical in just one direction. If that happens, an option is to implement

the association physically in only one direction, and implement the get method for the opposite

side as a search query. The advantage is that the code is simpler, faster in one direction, and

space saving. The disadvantage is that the navigation from the opposite direction would be

much slower.

This form of implementation is also only possible when the role on the origin of the implemen-

ted direction has no multiplicity restriction. If there is a restriction, then the unidirectional imple-

mentation is possible only if additional mechanisms to control multiplicity at the origin of the

association are implemented, with loss of performance. Below there is an example of unidirectional

implementation for the association of Figure e10.10, where the association is physically implemen-

ted only in the Car class:

e56 CHAPTER e10 Code Generation

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

owner:5anOwner
END CONSTRUCTOR METHOD
METHOD getOwner():Person

RETURN owner
END METHOD
METHOD replaceOwner(newOwner:Person)

owner:5newOwner
END METHOD

END CLASS
CLASS Person

METHOD getCars():SET,Car.

LOCAL VAR cars:SET,Car.

cars:5Set.new()
FOR EACH car IN Car.getAllInstances() DO

IF car.getOwner()5self THEN
cars.add(car)

END IF
END FOR
RETURN cars

END METHOD
END CLASS

The Car class above is implemented just like if the association was unidirectional from it to

Person. The Person class implements only the getCars method through a search query on the set of

all instances of Car. This implementation only works well if the role multiplicity at the origin has

is unconstrained.

Regarding the time complexity of the get methods, the bidirectional implementation runs in con-

stant time4 in both directions, and the unidirectional implementation has constant time for getOwner

and linear time5 for getCars, that is, the performance of the getCars method depends on the number

of cars registered. This design may be optimized by using hash techniques to index the set of custo-

mers relative to their orders. This way, the complexity of the getCars query may almost become con-

stant in practice with the cost of some extra memory space.

A limitation of this technique is that the programming language must provide a method to

access all instances of a class. Otherwise, the programmer must supply such a mechanism.

Unfortunately, this is a hazardous design that may cause trouble due to the global visibility of those

instances (Cardoso, 2011).

4Time remains the same even if the number of cars increase.
5Time increases as the number of customers increase. Linear time means that time is a function t(x)5 ax1 b, where x is

the size of the set for customers and a and b are constants.

e5710.4 Bidirectional associations

10.4.3 Implementation with an intermediary object
A bidirectional association may also be implemented by means of an intermediary object that repre-

sents the association. The intermediary object consists of a table with pairs of linked instances.

Possible implementation for the bidirectional association from many to one of Figure e10.11 with

an intermediary object follows:

GLOBAL VAR orderXcustomer:MAP,Order,Customer.

VISIBILITY RESTRICTED TO: Order, Customer

CLASS Customer
METHOD getOrders():Set,Order.

RETURN orderXcustomer.getKeysFor(self)
END METHOD

METHOD addOrder(anOrder:Order)
orderXcustomer.add(anOrder,self)

END METHOD

METHOD removeOrder(anOrder:Order)
orderXcustomer.remove(anOrder,self)

END METHOD
END CLASS

CLASS Order
CONSTRUCTOR METHOD Create(aCustomer:Customer)
orderXCustomer.add(self,aCustomer)

END CONSTRUCTOR METHOD
METHOD getCustomer():Customer

RETURN orderXcustomer.atKey(self)
END METHOD

END CLASS

If the programming language allows it, the association should be declared a global variable that

is visible only by the participating classes. Unfortunately, most commercial languages would not

allow such feature and the association would be implemented as a global variable with no visibility

restriction.

If the association was many to many instead of one to many, then the MAP data

type used above should be replaced by RELATION with small adjustments in the getters and

setters.

The intermediary object approach tends to be much simpler and maintainable than the former

ones. It also mimics the structure of a relational database because associations, as seen in

Chapter 13, are implemented as intermediary tables, which correspond to the intermediary object

here.

The disadvantage of this method is that getters are slower in both directions when compared to

the bidirectional approach and the global visibility of the intermediary object may cause design

hazards if not used carefully.

e58 CHAPTER e10 Code Generation

10.5 Delegated methods and system operations
To this point, we have shown how to generate code for classes, attributes, associations, and their

corresponding basic methods that may be considered part of their basic structure. Now it is the

time to explain how to implement delegate methods and system operations. These should be imple-

mented by following the dynamic models explained in Chapter 9.

System operations are implemented as a sequence of messages labeled 1, 2, 3, . . ., n that are

sent by the controller. A delegate method labeled with x in the interaction diagram should be imple-

mented by a sequence of messages labeled x.1, x.2, x.3, x.n that are sent by the object that receives

the message labeled with x.

Let us look again at Figure 9.43, reproduced here as Figure e10.13.

The add2Cart system command should therefore be implemented as a sequence of messages

labeled with 1, 2, and 3. The corresponding pseudocode could be something like the following:

CLASS Livir
ASSOCIATION VAR carts:MAP,CartId,Cart.

ASSOCIATION VAR books:MAP,Isbn,Book.

METHOD add2Cart(aCartId:CartId; anIsbn:Isbn;
aQuantity:Natural)
LOCAL VAR aCart:Cart
LOCAL VAR aBook:Book
aCart:5carts.at(aCartId) -- message 1
aBook:5books.at(anIsbn) -- message 2
aCart.insertItem(aBook,aQuantity) -- message 3

END METHOD
. . .

END CLASS

3.2 [not includeBook(aBook)]: incrementItem(aBook,aQuantity)
3.2.1:anItem:=selectItemFor(aBook)

3.1.1: addBook(aBook)
3.1.2: addCart(aCart)
3.1.3: setQuantity(aQuantity)
3.1.5: setUnitPrice(aPrice)

3.2.2: increaseQuantity(aQuantity)

3.1.4: aPrice:=getPrice()

1: aCart:=getCart(aCartld)
2:aBook:=getBook(anIsbn)add2Cart(aCartld,anlsbn,aQuantity)

3: insertItem(aBook,aQuantity)
3:1 [includeBook(aBooK)]: newItem:=Create(aBook,aCart,aQuantity)

Livir

aCart : Cart

anItem : Item

{new} newItem : Item

aBook:Book

FIGURE e10.13

Reference communication diagram.

e5910.5 Delegated methods and system operations

The implementation of the insertItem delegate method in the Cart class consists of the sequence of

messages 3.1 and 3.2, because insertItem is labeled with 3. These messages are conditional and mutually

exclusive. Thus, their implementation corresponds to an if-then-else-endif structure, as shown below:

CLASS Cart
. . .

METHOD insertItem(aBook:Book,aQuantity:Natural)
LOCAL VAR newItem:Item
IF self.includeBook(aBook) THEN

newItem:5Item.Create(aBook,self,aQuantity) --3.1
ELSE

self.incrementItem(aBook,aQuantity) --3.2
ENDIF

END METHOD
END CLASS

Notice that the variable name aCart is not known in this method and must be replaced here by

self, which stands for the instance of Cart that is performing the method.

The incrementItem delegate method in the Cart class is labeled with 3.2. Therefore, its imple-

mentation is the sequence of messages 3.2.1 and 3.2.2:

CLASS Cart
. . .

METHOD incrementItem(aBook:Book; aQuantity:Natural)
LOCAL VAR anItem:Item
anItem:5self.selectItemFor(aBook) --3.2.1
anItem.increaseQuantity(aQuantity) --3.2.2

END METHOD
END CLASS

The constructor of the Item class is complex and as it is labeled with 3.1, its implementation

consists of the sequence of messages 3.1.1 to 3.1.5. The Item class would look like this:

CLASS Item
CONSTRUCTOR METHOD Create(aBook:Book; aCart:Cart;aQuantity:Natural)

LOCAL VAR aPrice:Money
self.addBook(aBook) --3.1.1
self.addCart(aCart) --3.1.2
self.setQuantity(aQuantity) --3.1.3
aPrice:5aBook.getPrice() --3.1.4
self.setPrice(aPrice) --3.1.5

END CONSTRUCTOR METHOD
END CLASS
. . .

The other methods that appear in Figure e10.13 are basic ones and must be implemented follow-

ing their default definition.

e60 CHAPTER e10 Code Generation

10.6 Patterns for filtered queries
In the examples shown to this point, basically two kinds of get queries were implemented: those

that return all objects linked by a role, and those that return a single object given its identification,

such as a qualifier or position.

However, sometimes it will be necessary to obtain a subset of objects in a given role. That sub-

set is usually obtained by a filter such as “customers older than 30 years old,” “orders between 100

and 200 dollars,” “orders above 100 dollars issued last week,” etc.

There are at least three patterns to deal with this diversity of queries (Fowler, 2003):

• Implement a single query that returns all objects, and let the object that needs the information

apply a filter to that collection.

• Implement specific queries, each one with a different filter, so that the object that needs the

information calls a specific method in each case.

• Implement a generic query that uses a filter object.

The single query and filter object approaches imply the implementation of a single method that

leaves the class that has the responsibility simpler. However, it requires more code to be written in

the classes that need the information.

The specific queries approach has as a consequence a greater number of methods in the class

that holds the responsibility. But the classes that need the information would make simple calls and

receive the information without any need for postfiltering.

The choice of one pattern or another must be made by the designer depending on the number of

possible filters and potential calls. If there are only a few possibilities for filtering and many calls,

the best choice is specific queries. If the quantity of filters is high and there are only a few calls for

each filter, then the single query or filter object approach would be better. Single query is more

straightforward, but produces more work during the coding phase: each time a filter is used, the

respective code must be implemented in the class that calls the query. Filter object requires defin-

ing a class that implements the filter object, but after that investment is done, filter object tends to

be simpler than single query.

A filter object is a parameter that is passed to the general query method. The filter object must

contain attributes and associations to other objects. Those attributes and associations are used by

the query to decide which objects must be returned.

For example, let us revisit the definition of the Book class shown in Figure e10.14.

Suppose now that we need to query books filtered by title, authorsName, or price.

Applying the single query approach, a getBooks() method should be implemented in the Livir

class, which is responsible for returning the set of all books. If another object needs to filter that

set, it must apply the filter to the resulting set.

If the specific queries approach is used, the Livir class should implement three queries that may

be considered variants of the base query:

• getBooksByTitle(aTitle:String).

• getBooksByAuthorsName(anAuthorName:String).

• getBooksByPrice(aRange:Range,Money.).

e6110.6 Patterns for filtered queries

Each of these queries return only the elements that satisfy the respective filters indicated as

arguments. If a combination of criteria is needed, then new queries usually should be created for

the combined criteria.

The filter object approach requires the definition of a class to represent the filter object. For the

example, a BookFilter class could be defined as shown in Figure e10.15.

In this case, the Livir class should implement a single getBooks(aBookFilter:BookFilter):

Set,Book. method for querying the set of all books.

Using this method, a query to return the books written by “Douglas N. Adams” that cost less

than 10 dollars could be written like this:

. . .

myFilter:5BookFilter.Create()
myFilter.setAuthorsName(“Douglas N. Adams”)
myFilter.setPriceRange(Range(US$0,US$10))
cheapAdamsBooks:5self.getBooks(myFilter)
. . .

As a result, the variable cheapAdamsBooks contains the set of all instances of Book whose

author is “Douglas N. Adams” and that cost less than 10 dollars. As the attribute title of BookFilter

was not filled for the query, it is ignored, and any title would qualify for the filter.

<<filter>>
BookFilter

<<optional>> +title : String
<<optional>> +authorsName : String
<<optional>> +priceRange : Range<Money>

FIGURE e10.15

A class for a filter object.

Book
<<immutable>> <<unique>> +isbn
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

Livir

isbn
0..1

FIGURE e10.14

Reference class for queries.

e62 CHAPTER e10 Code Generation

10.7 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
the activity and state machine
diagrams from business modeling.

• Identify the main flow.
• Identify the alternate flows: variants

and exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence diagram.

• Represent the system commands
and queries using stateful or stateless
strategies.

• Complete system sequence
diagrams with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations with
stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

(Continued)

e6310.7 The process so far

(Continued)

Inception Elaboration

• Add invariants as needed.
• Improve the conceptual model with

the application of analysis patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for commands
and returns for queries.

Design the domain tier:

• Create a sequence or communication
diagram for each system command
contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them as
such.

• Look at system query contracts and
decide which delegate queries could
be implemented; some of them could
be derived attributes or derived
associations.

• Produce or refine the design class
diagram.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary

basic methods such as get, set,
add, remove, create, destroy, and
others.

• Generate code for system
operations and delegate methods
using dynamic models as
reference.

(Continued)

e64 CHAPTER e10 Code Generation

(Continued)

Inception Elaboration

Test

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.

Estimate the duration and quantity of
iterations for each phase.

Prepare the phase plan and iteration plan
for the first iteration.

10.8 Questions
1. Explain in detail how a delegate message that appears in a communication diagram must be

implemented.

2. What are the basic operations that must be implemented for most kinds of associations? Which

ones must be implemented for specific kinds of associations?

3. Propose a generic implementation for the query getBooks(aBookFilter:BookFilter):

Set,Book.. Try to keep it as general and reusable as possible.

4. Propose an implementation for the system commands and delegate methods presented in

Figures 9.42 and 9.44.

e6510.8 Questions

This page intentionally left blank

CHAPTER

11Testing

KEY TOPICS IN THIS CHAPTER

• Functional testing

• Stubs and drivers

• Test-driven development

• Unit testing

• System operations testing

• Use case testing

11.1 Introduction to testing
No matter how sophisticated the modeling and specification techniques used to develop software

are, no matter how disciplined and competent the team is, there is a factor that makes software test-

ing always necessary: human error. It is a myth to think that good developers working with state-

of-the-art tools are capable of developing error-free software (Beizer, 1990).

Murphy’s Law (Bloch, 1980) in many of its corollaries seems to speak directly to the software

industry. For example:

• Anything that can go wrong will go wrong.

• If everything seems all right, you have not checked appropriately.

• Nature always sides with the hidden flaw.

For many years, software-testing activities were considered a punishment to programmers. Testing

was considered as a waste of time because software was supposed to be correct from the beginning.

However, things have changed. The test discipline now is considered extremely important.

Today it is an integral part of the software development process and one of the disciplines of the

Unified Process.

Furthermore, leading software development companies started to outsource software testing, by

hiring test factories. That means that not only developers, but teams are specially trained to conduct

testing.

This chapter presents test activities that are strongly adapted for use with the techniques shown

in previous chapters.

Unit tests are used basically to check the behavior of classes, including their basic and delegate

methods. If automatic code generation is used, such tests may be suppressed, because it is assumed

that automatic code generators do not make human errors.

271Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00011-9

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-418673-6.00011-9

System operation tests are top-level functional tests that may be based on the examination of

the system operation contract: its parameters, preconditions, and exceptions determine sets of valid

and invalid parameters that must be systematically checked, and the postconditions determine the

results that must be accomplished when valid entries are tested.

Finally, system tests are performed as systematic use case tests. Each use case is a script that estab-

lishes normal and alternative flows for accomplishing business goals. Use case tests may be executed

manually or may be automated. If the client executes use case tests, they are called acceptance tests.

There are two major categories of test techniques:

• Structural tests, which evaluate the internal structure of the code.

• Functional tests, which evaluate operations based only on their inputs and outputs.

In this book, only functional techniques applied specifically to the three levels of testing are

introduced:

• Functional unit test for basic and delegate operations.

• Functional system operation tests based on contracts.

• System and acceptance tests based on system use cases.

Readers interested in understanding automated testing in more detail should take a look at the

book of Meszaros (2007), whch presents a significant set of xUnit style test patterns, a family of

frameworks for innumerous languages based on the design originally created by Kent Beck (1989).

11.2 Functional testing
Functional testing consists of a sequence of tests that define entry values for an operation and

observe if the result is what was expected. Functional tests may be run without any knowledge of

the programming code that implements the operation; only its behavior is observed. The quantity

of tests to be conducted in order to assure that an operation is correct may be virtually infinite.

Functional testing may use techniques to reduce the number of necessary tests without losing cover-

age. The most useful techniques for accomplishing that goal are equivalence partitioning and limit

value analysis, which are explained in the following subsections.

11.2.1 Equivalence partitioning
One of the principles of functional testing is the identification of equivalent situations. For exam-

ple, if an operation accepts a set of data (normality) and rejects another set (exception) then it may

be said that there are two equivalence sets1 of input data for that operation: accepted and rejected

values. It is usually impossible to test every value included in those sets, because they may be

virtually infinite. Thus, the technique of equivalence partitioning indicates that at least one element

in each equivalence set must be tested (Burnstein, 2003).

1Although literature usually uses the term equivalence classes, which is a mathematical concept, in this book the term

equivalence sets is used instead to avoid becoming confused with object-oriented classes.

272 CHAPTER 11 Testing

Classically, the equivalence partitioning technique considers the division of the inputs through

the following criteria (Myers, Sandler, Badgett, & Thomas, 2004):

• If the valid values are specified as an interval (for example, from 10 to 20), then we define one

valid set (10 to 20) and two invalid sets (less than 10, and greater than 20).

• If the valid values are specified as a quantity of values (for example, a list with five elements)

then we define a valid set (list with five elements) and two invalid sets (lists with less than five

elements, and lists with more than five elements).

• If the valid entries are specified as a set of acceptable values that may be processed in different

forms (for example, the strings of an enumeration such as “male” and “female”), then we define

a valid set for each of the valid options and an invalid set for any other value.

• If the valid values are specified by a logical condition (for example “final date must be greater

than initial date”) then we must define a valid set (when the condition is true) and an invalid set

(when the condition is false).

The sets of valid inputs may be defined not only in terms of restrictions on the input data but also

in terms of the results that may be produced. If the operation that is being tested has different behav-

ior depending on the value of the input, then different valid sets must be defined for each behavior.

For example, consider a simple operation half(x:Integer):Integer. This operation accepts that x may

be any positive number. Consider also that the operation is defined so that it cannot accept zero or

negative numbers. Finally, consider that the operation produces (x2 1)/2 for odd numbers and x/2 for

even numbers. Thus, we must consider that half has three equivalence sets for the parameter x:

• A valid set composed of odd positive integers: 1, 3, 5,
• A valid set composed of even positive integers: 2, 4, 6,
• An invalid set composed of nonpositive integers: 0, 21, 22, 23,

The equivalence set values must be always restricted to the domain defined by the type of the

parameter. For example, if the type of the parameter were something other than Integer, then differ-

ent equivalence sets would be defined. If the operation was half(x:Natural):Integer, then the equiva-

lence sets should be redefined so that they remain inside the Natural domain, which does not

include zero and negative numbers:

• A valid set composed of odd positive integers: 1, 3, 5,
• A valid set composed of even positive integers: 2, 4, 6,
• No invalid sets.

On the other hand, assume the operation is defined with a broader parameter type such as half

(x:Real):Integer; then the equivalence sets would be:

• A valid set composed of odd positive integers: 1, 3, 5,
• A valid set composed of even positive integers: 2, 4, 6,
• An invalid set composed of nonnatural numbers: ℝ2ℕ.

We can see from the examples above that if the designer restricts the type of the parameter as much

as possible, then fewer or simpler invalid equivalence sets are defined. That is why examples in previous

chapters use the Natural type instead of Integer whenever zero or negative numbers could not be

accepted. And that is why enumerations should be used rather than unrestricted strings whenever possible.

27311.2 Functional testing

11.2.2 Limit value analysis
People that work in software testing used to say that (software) bugs hide in the slits. Due to this,

the equivalence partitioning technique is usually used in conjunction with another technique known

as limit value analysis.

Limit value analysis consists of not choosing any random value from an equivalence set, but

choosing two or more limit values if they can be determined.

In ordered domains, such as numbers, this criterion may be applied. For example, if an opera-

tion requires an integer parameter that is valid only if included in the interval [10..20], then there

are three equivalence sets:

• Invalid for any x, 10.

• Valid for x$ 10 and x# 20.

• Invalid for any x. 20.

Limit value analysis suggests that eventual errors in the logic of a program are not at arbitrary

points inside those intervals but at the boundary points where two intervals meet. Thus if the

domain of the parameter is Integer:

• For the first invalid class, the value 9 must be tested.

• For the valid class, 10 and 20 must be tested.

• For the second invalid class, the value 21 must be tested.

Thus, if there is a logic error in the operation for some of these inputs it is much more probable

that it will be found in this way rather than if a random value is chosen inside each interval that

defines an equivalence set.

11.3 Stubs and drivers
Frequently, parts of the software must be tested separately from the main body of code, but at the

same time they must communicate with other parts.

When a component A that is going to be tested calls operations from a component B that has not yet

been implemented, component B may be replaced by a simplified version of it that implements only the

behavior that is absolutely necessary to perform the test of component A. This simplified implementation

that is used in the place of a component that has not yet been implemented is called a stub.

For example, suppose that a class A needs a prime number generator B that has not yet been

implemented. The nth prime number would be generated by a function prime(n:Natural):Natural.

A simplified version of B may be implemented just for allowing class A to be tested. Suppose that

the first five prime numbers are enough to adequately test class A. Thus, a stub for B could be

implemented like this:

CLASS B
STUB METHOD prime(n:Natural):Natural

CASE n OF
1: RETURN 2
2: RETURN 3

274 CHAPTER 11 Testing

3: RETURN 5
4: RETURN 7
5: RETURN 11

OTHWERWISE Exception.throw(‘Stub implementation
requires argument less or equal to 5’)

END CASE
END STUB METHOD

END CLASS

In this way, class A may be tested without investing time in implementing a more complex function

in class B.

On the other hand, operations implemented in class A will be called by other components of the

system. But when class A is being tested, these components may not yet exist. Furthermore, if we

are testing class A we usually desire that that test occurs in a systematic and reproducible way. In

order to assure this, a test driver for class A may be implemented. The driver is a component of

code (possibly a new class) that aims uniquely to systematically test a component.

For class A mentioned above, a driver could be implemented as a new class named Driver4A,

for example. An example of a driver is shown in Section 11.5.

Thus, stubs and drivers are simple implementations that simulate the behavior of other compo-

nents. The stub is used in the place of a component that should be called but is not yet implemen-

ted. The driver is used in the place of a component that should call the component to be tested in a

systematic and reproducible way.

Stubs are usually throwaway code. When the real component is implemented the stub is not

necessary anymore and may be discarded.

On the other hand, drivers are important pieces of code that must be kept forever. Every time a

component must be tested � and it happens frequently during software development and evolution �
the driver would be available for automatically performing the test.

11.4 Test-driven development
Test-driven development or TDD (Beck, 2003) is a technique and a programming philosophy that

incorporates automatic testing to the process of producing code. It works like this:

1. First, the programmer that receives the specification for a new functionality that must be

implemented should create a set of automatic tests for the code that does not yet exist.

2. This set of tests must be executed and observed to fail. This is done to show that the tests won’t

succeed unless a new feature is implemented in the code. If the test passes at this time there are

two explanations: either the test is badly written or the feature that is being tested is already

available in the code, supposing that it is an update on existing code that is being produced and

not new code from scratch.

27511.4 Test-driven development

3. Then, the code must be developed with the only objective being passing the tests. If any other

feature is detected, then the tests must be updated before it is introduced in the code. In that

case, the process restarts from step 1.

4. After the code passes all tests it must be cleaned and improved if necessary in order to meet

internal quality standards. After passing final tests it is considered stable and may be integrated

into the main body of code of the system.

The contracts that were developed in Chapter 8 and the dynamic models of Chapter 9 are excep-

tional sources of information for developing complete and consistent test cases before producing

any code, as explained in the following sections.

The motivation for TDD is to incentivize the programmer to keep the code simple and to pro-

duce a test asset that allows any part of the system to be automatically tested.

11.5 Unit testing
Unit tests are the most elementary tests and consist of verifying if an individual component (unit)

of the software was implemented correctly. That component may be a complex method, or an entire

class. Usually, this unit is still disconnected from the system it will be integrated with later.

Unit tests are usually performed by the programmer and not by the test team. TDD requires that

the programmer develop the test code before writing the code to be tested. This test code is a driver

that must systematically generate the set of data necessary to test all valid and invalid equivalence

sets, applying limit value analysis when possible.

An example of unit testing consists of checking if a method was correctly implemented in a

class. Take a look again at Figure 10.13 and delegate method 3.2, incrementItem(aBook:Book;

aQuantity:Natural), which must be implemented in the Cart class.

Now let us consider what the equivalence sets are for these parameters. First let us consider the

parameter aBook:Book. As the type of the parameter is Book, it can be assumed that no other kind of

object could be passed as an argument. For example, this operation would never receive an instance

of Customer or Delivery instead of a Book2 because the language typing mechanisms would avoid

that. The team must be concerned about whether objects that can be received here are valid or not.

If the language mechanisms cannot prevent a method from receiving a null value as a parame-

ter, then the null case would always be considered a (usually invalid) equivalence set for any

parameter that is typed with a class name.

The incrementItem method was developed with the following goal: to increment the quantity of

an item that is already in the cart. We may start by considering that there are three equivalence sets

for the aBook parameter:

• A valid equivalence set that contains instances of Book that are linked to an item in aCart.

• An invalid equivalence set that contains instances of Book that are not linked to any item in aCart.

• An invalid equivalence set that contains only the null value.

2Unless they were subclasses of Book, which is not the case.

276 CHAPTER 11 Testing

The second parameter of incrementItem is a natural number identified as aQuantity. The operation

assumes that the existing quantity of the item already in the order will be incremented by aQuantity.

The Natural type does not include zero and thus that potentially invalid quantity is not allowed as an

argument. However, ordering a number of copies of a book that exceeds its quantity in stock could

be considered an error condition unless the system allows ordering books that are not yet available.

Assuming that the system operation add2Cart that calls incrementItem has not defined as a precondi-

tion that the order quantity is available in stock (see its contract in the next section), then the

incrementItem operation may receive invalid quantities regarding that business rule. Therefore, the

following equivalence sets may be considered for the aQuantity:Natural parameter:

• A valid equivalence set that includes natural values that added to the quantity of the respective

item produce a result that is less or equal to the quantityInStock attribute of aBook.

• An invalid equivalence set that includes all natural values that added to the quantity of the

respective item are greater than the quantityInStock attribute of aBook.

The potential test cases for incrementItem are combinations of the equivalence sets for the two

parameters, as seen in Table 11.1.

There is only one success condition, which is obtained when valid values are obtained for both

parameters. It happens when aBook is linked to an item in the cart and aQuantity plus the current

quantity is less than or equal to the quantity in stock. In OCL that condition can be expressed in

the context of aCart as

self.item.book-.include(aBook) and
self.item-.select(book5aBook).quantity1aQuantity, 5aBook.quantityInStock

Although there are five combinations in Table 11.1 that produce failure, only three have to be

tested because if the book is not linked to any item or if the book is null, the value of aQuantity

cannot be determined to be valid or invalid because there is no current quantity to be compared to

it. Usually the rules to obtain combinations for testing are:

• Get all the success combinations and define a test case for each of them.

Table 11.1 Combinations of Equivalence Sets for IncrementItem

aBook

aBook is Linked to
an Item in the Cart
(Valid)

aBook is not Linked
to an Item in the Cart
(Invalid)

aBook is
Null
(Invalid)

aQuantity

aQuantity plus current
quantity is less than or equal
to stock (valid)

Success Exception Exception

aQuantity plus current
quantity is greater than stock
(invalid)

Exception Exception
(cannot be tested)

Exception
(cannot be
tested)

27711.5 Unit testing

• Get one invalid set at a time. Even if the operation has n parameters, consider only one invalid

set for just one parameter at a time. The other parameters should be valid or it should be

impossible to determine their validity.

• Only take a combination with more than one invalid set if that combination is possible and useful.

Therefore, there are three failure tests that must be performed to determine how incrementItem

behaves with invalid parameters. The first happens when aBook is not in aCart. The second happens

when aBook is null. The third happens when the desired quantity surpasses the quantity in stock:

(1) not self.item.book-.includes(aBook)
(2) aBook.isNull()
(3) self.item-.select(book5aBook).quantity1aQuantity .

aBook.quantityInStock

In order to avoid tests that leave side effects on the system, they are usually performed in three steps:

1. Prepare the stage for the test. Usually special objects called fixtures are created with the sole

purpose of allowing the test to be performed.

2. Execute the test.

3. Clean the environment. The system must return to the state it was in prior to the test. Fixtures

must be disposed of at this point.

Let’s consider first the success test scenario for incrementItem. Any fixture created for this test

should evaluate true for the success condition mentioned above. An example of code for generating

such fixtures is the following:

CLASS Driver4Cart
METHOD testIncrementItemSuccess()

FIXTURE VAR aBook:Book
FIXTURE VAR aCart:Cart
FIXTURE VAR anItem:Item
aBook:5Book.Create(‘0752201360’,

’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
US$12.30, 128, 5) -- quantity in stock is 5.

aCart:5Cart.Create() -- cart id is assigned internally
anItem:5Item.Create(aBook,aCart,3)
. . .

As we are going to test the Cart class it is possible that some of its methods or methods from

other classes such as Book and Item are not yet implemented. In that case, stubs could be used here

to allow the test on incrementItem to be performed.

After the initialization code, the test itself may be performed:

. . .

aCart.incrementItem(aBook,2) -- using limit value analysis
IF anItem.getQuantity()55 THEN

Write(‘incrementItem success test: successful’)

278 CHAPTER 11 Testing

ELSE
Write(‘incrementItem success test: failed’)

ENDIF
. . .

Finally, we must dispose of the fixtures:

. . .

anItem.destroy()
aCart.destroy()
aBook.destroy()

END METHOD

Now, the failure conditions should be tested as well. Here, they are implemented as three inde-

pendent methods in the Driver4Cart class:

. . .

METHOD testIncrementItemFailure1 ()
-- not self.item.book-.includes(aBook)

FIXTURE VAR aBook:Book
FIXTURE VAR aCart:Cart
aBook:5Book.Create(‘0752201360’,

’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
US$12.30, 128, 5)

aCart:5Cart.Create() -- the book is not in the cart
TRY

aCart.incrementItem(aBook,2)
Write(‘incrementItem failure test 1: failed’)

CAPTURE Exception.itemAbsent
Write(‘incrementItem failure test 1: successful’)

END TRYCAPTURE
aCart.destroy()
aBook.destroy()

END METHOD

METHOD testIncrementItemFailure2 ()
-- aBook.isNull()
FIXTURE VAR aBook:Book
FIXTURE VAR aCart:Cart
aCart:5Cart.Create() -- the book is null
TRY

aCart.incrementItem(aBook,2)
Write(‘incrementItem failure test 2: failed’)

CAPTURE Exception.bookIsNull
Write(‘incrementItem failure test 2: successful’)

END TRYCAPTURE

27911.5 Unit testing

aCart.destroy()
END METHOD
METHOD testIncrementItemFailure3 ()

-- item-.select(book5aBook).quantity1aQuantity . aBook.quantityInStock
FIXTURE VAR aBook:Book
FIXTURE VAR aCart:Cart
FIXTURE VAR anItem:Item
aBook:5Book.Create(‘0752201360’,

’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
US$12.30, 128, 5) -- quantity in stock is 5.

aCart:5Cart.Create() -- cart id is filled internally
anItem:5Item.Create(aBook,aCart,3))
TRY

aCart.incrementItem(aBook,3) -- limit analysis
Write(‘incrementItem failure test 3: failed’)

CAPTURE Exception.quantityAboveStock
Write(‘incrementItem failure test 3: successful’)

END TRYCAPTURE
anItem.destroy()
aCart.destroy()
aBook.destroy()

END METHOD
END CLASS

The style of the code of the test case depends on the language and framework used. Here a generic

pseudocode implementation is illustrated to allow the logic of the test to be understood by readers with

knowledge about programming languages but not necessarily experience with test frameworks.

As we can see in the code above, fixtures and test procedures are usually similar, and thus uni-

form and parameterized methods could be used to create such objects, reducing the quantity of

code that is being produced. This is usually provided by frameworks such as xUnit.

Unit tests may be extremely minimized if an automatic code generator is used to generate the

basic operations and delegate methods. In that case, it may be assumed that the code is correct

because the generator does not make human mistakes. The test could begin at the level of system

operations, which is explained in the next section.

11.6 System operations testing
The top level of functional testing occurs when the team verifies if the system operations really per-

form according to the contract specifications.

System operations may call methods from many classes, delegate responsibilities, and coordi-

nate the execution of basic and delegate methods. Thus, at the level of integration of the classes

280 CHAPTER 11 Testing

that perform a consistent set of responsibilities, the system operation test verifies if each system

operation correctly implements its contract.

The system operations test, then, consists of verifying if in normal conditions (preconditions are

true and exceptions false), the desired postconditions are really obtained, and if in abnormal condi-

tions, exceptions are effectively raised. System operation tests are very similar to unit tests, except

that now the operation has a contract, and this eases the identification of the necessary test cases.

Let us now examine the system operation add2Cart in Figure 10.13. Its contract was defined in

Chapter 8 and is the following:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)
def:aCart5cart[aCartId]
def:aBook5book[anIsbn]
def:anItem5aCart.item-.select(book.isbn5anIsbn)
pre:

aCart-.notEmpty() and
aBook-.notEmpty()

post:
if anItem-.isEmpty() then

newItem.isNewInstanceOf(Item) and
aCart^addItem(newItem) and
newItem^setQuantity(aQuantity) and
newItem^addBook(aBook) and
newItem^setUnitPrice(aBook.price)

else
anItem^setQuantity(anItem.quantity@pre1 aQuantity)

endif
exception:

anItem.quantity1aQuantity . aBook.quantityInStock implies
Exception.throw(‘quantity not available’)

The precondition aCart-. notEmpty() implies that there is an invalid set for the parameter aCartId.

The precondition aBook-. notEmpty() implies that there is an invalid set for the parameter anIsbn.

Finally, the exception in that contract establishes that there are invalid values for aQuantity as well.

Regarding valid values, each parameter must have at least one valid equivalence set, otherwise

the method would always fail. However, as the postconditions are conditional (they include an

if-then-else-endif structure), there are at least two possible behaviors for this operation, and this

defines two valid equivalence sets: one when anItem is empty and another when anItem is not

empty. The test cases for this system operation are presented in Table 11.2.

Combinations of exceptional conditions could be tested as well. For example, one situation that

does not appear in Table 11.2 is when both the ISBN and cart ID are invalid. If that is the case,

just one of the exceptions would be raised in any case. Furthermore, as mentioned before, some-

times invalid conditions are not compatible. For example, if the ISBN is invalid, there is no

quantityInStock to be compared to the ordered quantity, and thus the corresponding exceptions

could never occur together.

28111.6 System operations testing

This is usually why the only combinations that are tested are the ones that just include success

conditions or just one failure condition combined with success conditions. However, if the team

finds it easy and safer to add new variations that include combinations of invalid failure conditions

that may be implemented.

Thus, although not every combination is tested, it is necessary to test at least:

• All possible combinations of valid equivalence sets.

• All combinations of one invalid equivalence set with valid sets.

This means that after testing the valid combinations, the tester must include one invalid set at a

time for the exception test.

The code for testing system operations is very similar to the one presented for unit tests: fixtures must

be created before each test, success and failure tests are run, and the environment is cleaned after each test.

11.7 Use case testing (System, acceptance, and business cycle tests)
Use case tests consist of manually or automatically following all the possible flows of a use case

and checking if the desired results (usually stated as the use case postconditions) are obtained.

If the test is run over a single use case by the development team, then it is a system test. If the

test is run by the client or under her supervision, then it is an acceptance test. If a whole set of sys-

tem use cases related to a business use case are performed in a logical sequence such as the one

defined by the business activity diagram, then it is a business cycle test.

The use case test aims to verify if the current version of the system correctly performs the use

case processes from the point of view of a user that performs a sequence of system operations in an

interface (not necessarily a graphic interface) and is able to obtain the expected results.

Table 11.2 Functional Test Cases for a System Operation

Type Condition to Be Tested Expected Result

Success aCart-.notEmpty() and
aBook-.notEmpty() and
anItem-.isEmpty() and
aQuantity ,5

aBook.quantityInStock

aCart.item-.

select(book5aBook).quantity5

aQuantity

Success aCart-.notEmpty() and
aBook-.notEmpty() and
anItem-.notEmpty() and
anItem.quantity1aQuantity ,5

aBook.quantityInStock

anItem.quantity5

anItem.quantity@pre1

aQuantity

Exception aCart-.isEmpty() ‘There is no such cart’

Exception aBook-.isEmpty() ‘There is no such book’

Exception anItem-.notEmpty() and
anItem.quantity1aQuantity ,5

aBook.quantityInStock

‘Quantity not available’

282 CHAPTER 11 Testing

The use case test may be understood as a systematic execution of the use cases flows. If each of the

system operations and queries has already passed their own tests, then it must be verified that the main

flow and alternate flows of the use case can be performed correctly and that they produce the desired

results.

It is possible to automate these tests so that they can be performed by a test robot that makes

calls directly to the controller or simulates the actions of the user on the graphic interface.

Consider, for example, a system test that must be conducted to evaluate the use case of

Figure 5.7, reproduced here as Figure 11.1.

A use case test would deal with scenarios that are successful but run through different paths.

First of all, the main flow of the use case must be considered as a base scenario for test purposes.

Then, each variant or exception may be included one at a time for testing alternate scenarios. This

is the least that is expected of a use case test suite. Combinations of exceptions and variants may

be tested as well if the team considers them useful and viable.

The technique for elaborating use case tests then consists of selecting a set of paths that passes

at least once by each variant and exception flow. The test cases for the example of Figure 11.1

may be defined as the following:

• 1,2,3,4,5.

• 1,2,3a(1,2,3),4,5.

• 1,2,3,4,5a(1).

• 1,2,3,4,5b(1).

• 1,2,3,4,5c(1),1,2,3,4,5.

• 1,2,3,4,5d,1,2,3,4,5.

The system test plan for the use case of Figure 11.1 is shown in Table 11.3.

The use case test is only performed on a system version in which all system operations were

already tested. If many errors are still detected in system operations during the system test, the

usual approach is to abort the use case test and redo the system operation tests until a sufficiently

stable version of the system is produced and made available for use case tests.

Although automatic use case testing3 may check if the functionality is correct or not, human-

powered use case tests are also recommended because there are aspects of the test that are hard for

a machine to assess. For example, are the error messages clear? Are the buttons and text fields well

positioned and sized?

Furthermore, a whole set of nonfunctional tests may be necessary depending on the supplemen-

tary specifications and nonfunctional requirements of the system (Chapter 3). Examples of nonfunc-

tional tests are compatibility, compliance, endurance, load, localization, performance, recovery,

resilience, security, scalability, stress, and usability. Explaining all these kinds of tests is beyond the

scope of this book. Nonfunctional testing demands heterogeneous techniques and are covered by a

large number of books such as: Molyneaux (2009) on performance testing, Nelson (2004) on stress test-

ing, and Nielsen (1994) on usability testing.

3An example of a robot framework for interface testing is: http://robotframework.googlecode.com/hg/doc/userguide/

RobotFrameworkUserGuide.html?r5 2.7.4. Accessed September 1st, 2013.

28311.7 Use case testing (System, acceptance, and business cycle tests)

http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.4
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.4
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.4

Use case 01: Order books

1. The customer provides keywords for searching books.

2. The system generates a list of books for sale that matches the keywords,
including at least the title, author’s name, price, page count, publisher, ISBN, and
cover image.

3. The customer selects books from the list and indicates the desired quantity for
each one.

4. The system generates the order summary (title, author, quantity, unit price, and
subtotal for each book) and total value.

5. The customer finishes the order.

Exception 3a: The quantity requested is higher than the quantity in stock for one
or more books.

3a.1. The system informs the use of the available quantities for each book
 that was ordered over availability.

3a.2. The user changes the desired quantities to meet the quantities in stock.

3a.3. Advance to step 4.

Exception 5a: The customer is not yet identified.

5a.1. The customer provides valid identification.

Exception 5b: The customer does not have an account.

5b.1. The customer registers herself by providing a username, password, and
 email address.

Exception 5c: No book was selected for purchase.

5c.1. Return to step 1.

Variant 5d: The customer decides to continue shopping.

5d.1. Return to step 1.

FIGURE 11.1

Reference use case.

284 CHAPTER 11 Testing

11.8 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

(Continued)

Table 11.3 Example of a Test Plan for a Use Case

Goal Path How to Test Result

Main flow 1,2,3,4,5 A previously identified customer
searches and selects at least one
book and finishes the order.

An order is created with
the book(s) selected.

Exception 3a 1,2,3a(1,2,3),4,5 A previously identified customer
searches and selects a quantity
of at least one book that is above
stock. Then she changes the
quantity to meet the stock and
finishes the order.

An order is created with
the book(s) selected.

Exception 5a 1,2,3,4,5,5a(1). A registered customer that was
not yet identified yet searches and
selects at least one book. She
provides identification and finishes
the order.

An order is created with
the book(s) selected.

Exception 5b 1,2,3,4,5,5b(1). A nonregistered customer
searches and selects at least one
book. She registers herself and
finishes the order.

An order is created with
the book(s) selected. A
record for a new
customer is created.

Exception 5c 1,2,3,4,5,5c(1),1,2,3,4,5. A previously identified customer
tries to finish an empty order and
is prevented from doing so by the
system. Then she searches and
selects at least one book and
finishes the order.

An order is created with
the book(s) selected.

Variant 5d 1,2,3,4,5d,1,2,3,4,5 A previously identified customer
searches and selects at least one
book. Then she searches and
selects another book and finishes
the order.

An order is created with
the books selected.

28511.8 The process so far

(Continued)

Inception Elaboration

Requirements Prepare the system use case diagram
(functional requirements):

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
activity and state machine diagrams
from business modeling.

Detail requirements by expanding use
cases:

• Identify the main flow.
• Identify the alternate flows: variants

and exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use case
as a system sequence diagram.

• Represent the system commands
and queries using stateful or
stateless strategies.

• Complete system sequence
diagrams with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations
with stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

• Add invariants as needed.
• Improve the conceptual model with

the application of analysis patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for
commands and returns for queries.

(Continued)

286 CHAPTER 11 Testing

(Continued)

Inception Elaboration

Design the domain tier:

• Create a sequence or
communication diagram for each
system command contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them as
such.

• Look at system query contracts and
decide which delegate queries could
be implemented; some of them could
be derived attributes or derived
associations.

• Produce or refine the design class
diagram.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary basic

methods such as get, set, add,
remove, create, destroy, and others.

• Generate code for system operations
and delegate methods using
dynamic models as reference.

Test Plan and execute tests:

• Perform unit tests for methods
and classes that were not
generated automatically.

• Perform system operation tests
based on system operation
contracts.

• Perform use case tests based on
use case scenarios.

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.

Estimate the duration and quantity of
iterations for each phase.

Prepare the phase plan and iteration plan
for the first iteration.

28711.8 The process so far

11.9 Questions
1. Consider the methods defined in Section 10.2 for the class in Figure 10.1, and write a sequence

of unit tests for each of the basic operations defined for that class.

2. Look at the four contracts for the deleteBook operation in Section 8.7.3. Write a system test in

your favorite language or in pseudocode to test each of the versions of that operation.

3. Prepare a use case test table for the use case in Figure 5.4.

288 CHAPTER 11 Testing

CHAPTER

12Interface Tier Design with IFML

KEY TOPICS IN THIS CHAPTER

• The interaction flow modeling language (IFML)

• View components

• Hypertext organization

• Web page patterns

• Operations in IFML

12.1 Introduction to interface tier design
The interface tier design of a system depends fundamentally on the detailed use cases or system

sequence diagrams, because the interface must allow a user to follow all use case flows. Design

class diagrams and contracts may be very useful as well.

During interface design the nonfunctional requirements that were annotated with the use cases

should be revised again, because they may contain indications on how to design the use case interface.

The Interaction Flow Modeling Language (IFML) is an extension of UML for modeling data

intensive user interfaces. It is an evolution of WebML (Ceri, Fraternali, Bongio, Brambilla, Comai,

& Matera, 2003). IFML is being adopted as an OMG standard.1

This chapter intends to present the most fundamental concepts of IFML, and its modeling poten-

tial. More information may be found at the official site of the language.2 As IFML is still evolving

as a pattern, the reader may expect to find some discrepancies between this text and the current

specification of IFML, which may have changed after this book was published.

12.2 Interaction flow modeling language (IFML)
IFML is suitable for modeling interfaces, especially those that make intensive use of data such as

information systems. The development method proposes the building of five models in order to

define an application:

1IFML is currently an ongoing standards project, and the first draft was published in March 2013. It may be accessed at

http://www.omg.org/spec/IFML/.
2Available at www.IFML.org/.

289Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00012-0

© 2014 Elsevier Inc. All rights reserved.

http://www.omg.org/spec/IFML/
http://www.IFML.org/
http://dx.doi.org/10.1016/B978-0-12-418673-6.00012-0

• Structural model: This represents the data structure and data organization. Ceri et al. use the

entity-relationship diagram to define the structural model. However, the UML class diagram

(Chapters 6 and 7) may be used for the same purpose.

• Derivation model: This was originally proposed for modeling data that can be calculated from

other data. The derivation model may be understood as the set of definitions of derived

attributes and associations that usually are defined in the conceptual model and may be written

in OCL (Sections 6.2.3 and 6.4.3).

• Composition model: This includes the definition of containers as aggregates of basic view

components (Section 12.3), pages (Section 12.4), and areas (Section 12.6.2).

• Navigation model: Where the flows between pages and view components are defined (Sections

12.5 and 12.6).

• Presentation model: Where the positioning of view components at the interface and their

appearance are defined.

This chapter addresses particularly the composition and navigation models. The structural and

derivation models were already discussed in Chapters 6 and 7). For the presentation model, the

WebRatios tool3 provides the use of XSL Style Sheets.4 The code generator of the tool uses these

presentation rules to produce pages according to the design produced with other tools. For the

examples presented in this chapter, the standard interfaces rendered by the tool, without the use of

styles, are shown. Even names of fields were left identical to the names of class attributes in the

aim of promoting understandability instead of graphic quality.

12.3 View components
View components are the most basic elements in an IFML specification. View components may be

directly associated to design classes and allow the viewing of instances of these classes.

There are many types of view components in IFML. Some examples are:

• Details: Displays information about a single object.

• Multiple details: Displays information about a collection of instances of the same class.

• Simple list: Displays multiple instances of a class in the form of a list.

• List: An enhancement of simple list that allows scrolling and dynamic sorting.

• Checkable list: A list that allows multiple selection.

• Hierarchy: Displays multiple instances of different classes organized in a hierarchy, such as

master-detail or whole-part.

• Recursive hierarchy: Displays multiple instances of a single class that are organized

hierarchically, such as organizational structures.

• Scroller: Allows the typical scroll operations on a sequence of objects.

• Form: Allows form-based data entry.

• Multiple form: Similar to form, but allows editing multiple objects at once.

3The first IFML-compliant tool.
4www.w3.org/Style/XSL/

290 CHAPTER 12 Interface Tier Design with IFML

http://www.w3.org/Style/XSL/

• Message: Allows printing messages on the page.

• Calendar: Shows a perpetual calendar.

There are other view components and new ones may be defined. This chapter presents details

on the most fundamental ones. For each kind of view component a graphical definition is pre-

sented, as well as the possible appearance of the web page rendered by WebRatio for the definition.

All examples are based on the DCD of Figure 12.1.

12.3.1 Details
The details view component presents information about a single object of a given class. It is

defined by the following properties:

• A name, which is chosen by the designer.

• An entity or source of data, which is usually a class from the design class diagram.

• Display attributes, which is a list of attributes from the class to be displayed when the details

view is rendered.

Most view components such as details also allow for the definition of one or more conditional

expressions that work like selectors or filters over the set of instances to be shown. There are three

kinds of conditional expressions:

• Key condition: Each object in the data model is identified by an OID (Object IDentifier)� an

attribute that is unique, mandatory, and immutable. It must not be confused with any of the attributes

of a conceptual class, even the ones stereotyped with{uniquec and{immutablec, such as ISBN

and Social Security number. The OID is an internally generated code that corresponds to the primary

key of an object. OIDs cannot be known or updated by the user. A key condition allows one to select

one or more instances from a given class based on the value of its OID attribute.

Book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

isbn

name

Livir

<<immutable>> <<unique>> +name : String
+city : CityName

<<immutable>>

*

1

0..1

0..1

Publisher

FIGURE 12.1

Reference design class diagram.

29112.3 View components

• Attribute condition: This allows for the selection of one or more instances based on the values

of their attributes. Operations such as greater than, equal, or contains may be used to compare

the value of an attribute to a given parameter.

• Relationship role condition: This allows for the selection of one or more instances based on

their association links.

Figure 12.2 presents a details view component intended to show data about an instance of a

book for a given ISBN. The conditional expression isbn5 0517149257 determines which instance

is shown. If such an instance does not exist, then no information is rendered by that component.

The attributes property usually does not appear in the graphical representation. If a modeling

tool is being used, this property may probably be accessed by browsing the component. As an

ISBN is an attribute that is unique and mandatory, it is safe to assume that no more than one book

is presented by this details view.

Figure 12.3 shows a possible web rendering for the details view component shown in

Figure 12.2.

FIGURE 12.2

A details view component with a simple attribute condition.

FIGURE 12.3

A possible rendering for a details view component with all attributes of class Book.

292 CHAPTER 12 Interface Tier Design with IFML

The final rendered page may vary, because it is possible to add style definitions so that inter-

faces with different designs and appearance are produced.

If the details view component of Figure 12.2 is changed to show only the title and authorsName

attributes, it would produce the rendered result shown in Figure 12.4.

12.3.2 Multiple details
Multiple details presents a group of instances of a single class at once. Besides the three properties

already shown for details view components, they add new optional properties:

• Sort attributes: Defines the attributes used for sorting the instances.

• Max results: Specifies the maximum number of instances to be retrieved. By default, all

instances are retrieved.

• Distinct: Specifies that duplicate elements will not be shown more than once.

Multiple details also allows for the definition and use of conditional expressions in order to

select which elements are to be shown. Figure 12.5 presents an example of multiple details.

Figure 12.6 presents a possible rendering for the multiple details of Figure 12.5 considering that

only three books satisfy the conditional expression and that sorting is by title.

As opposed to the details view component that shows only one instance at a time, multiple

details presents all the objects that satisfy the conditional expression.

If it is necessary to use more than one attribute to determine the objects to be presented

by the component, then a combination of conditional expressions may be used. This

FIGURE 12.4

A possible rendering for a details view with fewer attributes selected.

FIGURE 12.5

A multiple details view component.

29312.3 View components

combination may use the operands and and or. Figure 12.7 presents a multiple details view

component that shows instances that have pageCount higher than 100 and price lower than

US$150.00.

12.3.3 Simple list
The simple list presents one or more attributes of a set of instances of a class in the form of a list.

While multiple details are normally used to visualize the details of many objects in the same page,

a simple list and its variations are used when a list or menu is necessary for the user to select one

or more elements and perform actions with them. The properties of simple lists are the same as

those of the multiple details view component.

It is possible, for example, to define simple lists for selecting books based on their titles.

Figure 12.8 presents the view component for a simple list of book titles, and Figure 12.9 shows a

possible rendering. The absence of a conditional expression in the simple list view component

means that all instances of Book are listed.

FIGURE 12.6

A possible rendering for a multiple details view component.

FIGURE 12.7

Multiple details view with a composite conditional expression.

294 CHAPTER 12 Interface Tier Design with IFML

12.3.4 List
A list is an enhanced version of the simple list that allows one to scroll elements and dynamically

reorder them by a simple click on the head of the respective attribute column. Besides the proper-

ties already defined for simple lists, it includes the following specific properties:

• Sortable: A Boolean attribute that when true defines that the list may be dynamically sorted.

• Default sort attributes: If the list is sortable it defines the sorting attributes that may be selected

by the user to sort the list and also the default sorting criteria when the list is rendered for the

first time.

• Sort history size: Specifies how many sort actions from the user must be remembered by the list.

• Checkable: If true, a check box is rendered for each element of the list.

• Block factor: Specifies how many elements are shown at a time. If unspecified or set to 21, all

elements are shown. If the block factor is defined, then scrolling commands are rendered for the list.

FIGURE 12.8

Simple list.

FIGURE 12.9

Possible rendering of a simple list.

29512.3 View components

Figure 12.10 shows the IFML view component for a list. This list is defined for the Book class

with three attributes: authorsName, title, and price. The block factor is defined as 3. Figure 12.11

shows a rendered version of that list.

Observe at the top of Figure 12.11 the commands to scroll the list from the first to the

last group of three elements. Currently the first three elements are being shown, sorted by

their title.

If the user clicks one of the links at the top of each data column, then the elements on the list

are rearranged and sorted by that column. If the user clicks, for example, on authorsName, the lines

will be sorted by the author’s names, as seen in Figure 12.12.

Notice that the elements shown are different because the entire list is sorted again and the elements

that are being viewed are the first three.

FIGURE 12.10

List.

FIGURE 12.11

Possible rendering for a list.

296 CHAPTER 12 Interface Tier Design with IFML

12.3.5 Checkable List
The checkable list allows the user to select a set of elements from a list. Otherwise it is very similar

to a simple list. Figure 12.13 presents the IFML definition of a checkable list and Figure 12.14

presents its rendering.

While simple lists allow the selection of only one object at a time, checkable lists allow the

selection of any quantity of objects.

12.3.6 Forms
A form is used for data input. It is very useful for creating new instances, and also to provide para-

meters for searches, queries, and commands.

A form is composed of a set of fields. Each field holds an alphanumeric value. There are text

fields, selection fields, and multiselection fields.

A form may or may not be associated to a class. If it is associated to a class, then its fields may

be associated to the attributes of a class.

Forms that are used to collect parameters for a query or command usually do not need to be

associated to classes. For example, a form that collects keywords for searching books does not

need to be associated to any class.

FIGURE 12.12

Rendering of Figure 12.11 after a user action.

FIGURE 12.13

A checkable list.

29712.3 View components

The fields of a form have the following properties (among others):

• Name: The name of the field, given by the designer.

• Attribute: If the form is associated to a class, then the field may be associated to one of its

attributes.

• Content type: Defines the type of the field, which may be string, text, blob, or url.

• Preloaded: The field may be preloaded with values that are shown to the user when the form is

rendered.

• Modifiable: Defines whether the initial value of the field may be changed or not. The default is

that a field value may be changed.

Figure 12.15 presents a form that is associated to the Book class, and Figure 12.16 presents its

rendering.

12.3.7 Hierarchies
Hierarchies are used to show object dependencies with two or more levels. They are useful, for

example, for showing objects that are related by a one-to-many association such as Publisher and

Book, or whole-part associations such as Book and Chapter. Figure 12.17 shows a definition of a

two-level hierarchy with Publisher at the top and Book at the second level.

The second level usually defines a role-based conditional expression. In the example, the role-

based conditional expression defines that only books that are linked to a given publisher are shown

below it. In the absence of a conditional expression, all books would be shown below each pub-

lisher, but that is not the case now.

FIGURE 12.14

Rendering for a checkable list.

298 CHAPTER 12 Interface Tier Design with IFML

FIGURE 12.16

Rendering of a form.

FIGURE 12.15

A form.

FIGURE 12.17

A hierarchy.

29912.3 View components

Figure 12.18 shows a rendering for the hierarchy of Figure 12.17 with books linked to their

respective publishers.

There are situations that require the application of the organizational hierarchy pattern

explained in Section 7.8, where a concept has subconcepts that belong to the same class, which

may be recursively nested. For these cases, IFML provides a recursive hierarchy view component.

Figure 12.19 shows a recursive hierarchy defined for the OrganizationalStructure class shown in

Figure 7.15.

The definition and rendering of a recursive hierarchy is similar to that of a normal hierarchy.

The only differences are that the detail class and the master class are the same and the number of

levels is undetermined.

FIGURE 12.18

Rendering of a hierarchy.

FIGURE 12.19

A recursive hierarchy.

300 CHAPTER 12 Interface Tier Design with IFML

12.4 Pages
Pages are the interface elements that are effectively accessed by the user. Typically, a page

contains one or more view components and possibly some other pages.

The IFML representation of a page contains a name and an optional set of included view

components and subpages. For example, Figure 12.20 presents a page that contains a list of pub-

lishers and a list of books, and Figure 12.21 presents its rendering.

FIGURE 12.20

A page with two view components.

FIGURE 12.21

Rendering of a page with two view components.

30112.4 Pages

The symbol in Figure 12.20 indicates that this page is a homepage, that is, the initial page of

an application. The other symbol in the upper-right corner of the page does not have any special

meaning in IFML; it is just a tool-specific command to highlight and obscure graphic elements.

The view components that appear inside the page in Figure 12.20 are independent of each other

because there are no flows between them.

By default, view components defined in the same page are rendered one on top of the other,

and occupy the entire width of the page. But it is possible to use the presentation model, as

mentioned before, to define view components in different positions and sizes. The presentation

model consists basically of a grid in which the view components are positioned and dimensioned

inside a page. In the example of Figure 12.22 the view components were placed side to side.

12.5 Flows
A flow is an oriented connection between two pages or view components. Flows may be used not

only to define navigation possibilities between pages, but also to define data dependencies. For exam-

ple, selecting an element in a list view component may cause information about the element to appear

in a details view component. This can be accomplished by defining a flow from the list to the details.

12.5.1 Normal navigation flow
Normal navigation flows are a type of flow that is rendered as a clickable link in its origin page or

view component. When the link is clicked it navigates to the destination page or view component.

It is represented by an arrow.

Figure 12.23 shows an example of a normal navigation flow between two pages. The resulting ren-

dering of the Publishers page contains a link to the Books page (at the right top corner of Figure 12.24).

We can see in Figure 12.23 that the flow is not attached to the view components, but to the pages.

Therefore, the link will be rendered only once in the page where the list of books is visualized.

If the flow had its origin at the list view component as in Figure 12.25, then each line in the list

would have an individual link to the Books page.

Figure 12.26 shows how the model in Figure 12.25 would be rendered.

FIGURE 12.22

A different rendering arrangement for the page shown in Figure 12.21.

302 CHAPTER 12 Interface Tier Design with IFML

FIGURE 12.23

A normal navigation flow between pages.

FIGURE 12.24

Rendering of a normal navigation flow as a link.

FIGURE 12.25

A flow from a view component to a page.

30312.5 Flows

This list is still just a set of links that have the same effect: navigating to the Books page. The fol-

lowing sections show how this kind of flow can be used to transport information from one view com-

ponent to another, making it possible, for example, to visualize only the books of a given publisher.

12.5.2 Data flow
Data flows are a kind of flow that is not rendered, but that define data dependency between view

components.5 Dashed arrows represent data flows.

Data flows do not define navigation between view components. They are used to get values

from one component without navigating from it. They are particularly useful when a component

needs data from more than one component. The following sections present examples of data flows

that get data from different sources.

12.5.3 Parameter binding
A parameter binding is a piece of information that is transmitted from the origin to the destination

of a flow. A parameter binding has a name and a value, which is obtained at its origin component.

A flow may have a multiple parameter binding, passing a set of values instead of a single one.

Usually, object keys or attribute values are passed by parameter bindings. By default, a flow

from a view component binds the key of the selected object at the origin component and takes it to

the destination, where it can be used, for example, by a conditional expression.

In previous examples only constants were used in conditional expressions to select the elements

to be shown in view components such as lists and details. Now, with flows and parameter binding, it

is possible to use a view component to define which elements are shown in another view component.

The IFML diagram shown in Figure 12.27 shows a list of books with a flow to a details view

component. The details view has a key condition [oid5 ?]. As the key of the selected book at the

FIGURE 12.26

Rendering a link for each element of a list.

5And operations as explained later.

304 CHAPTER 12 Interface Tier Design with IFML

list is bound to the flow that goes to the details view, only that book is shown when the details

view is rendered.

When the user selects a book in the list, by clicking the respective link, the details view presents

information about the book. Figure 12.28 shows the state of the page when the link associated to

the first book is clicked.

Parameter binding may also be used to associate a form to another view component. For exam-

ple, the form may provide a search field, and a list would present only the elements that satisfy

some search criteria.

Figure 12.29 shows an example where a search field is used to find the books of a given author.

The user may type the author’s name or part of it in the search field, and the results are shown in

the Books list.

The parallelogram that is next to the flow indicates that this flow has a parameter binding that

is not the default object key.

In the rendering shown in Figure 12.30, the user just typed “Clarke” in the search field, and the

results produced are shown in Figure 12.31.

12.5.4 Multivalued parameter binding
It is possible to define flows from multiple-choice components such as checkable lists. In these

cases, a parameter binding passes a set of values (checked elements keys, for example).

If a checkable list is linked to a multiple details view like in Figure 12.32, the user may select a

number of elements on the checkable list as in Figure 12.33 and press the button on the bottom to

navigate to the page that shows the details of the selected books only (Figure 12.34). The multiple

details view has a key condition that states that only books whose OID belong to the set that is

bound to the flow are shown.

12.6 Hypertext organization
View components, flows, and their organization inside pages constitute the most local interface

models. However, it is also necessary to create wider models for an interface, including groups of

FIGURE 12.27

A normal navigation flow connecting two view components.

30512.6 Hypertext organization

FIGURE 12.28

Rendering of the model of Figure 12.27 when the first book is selected in the list.

FIGURE 12.29

A flow that transports data from a form to a list.

306 CHAPTER 12 Interface Tier Design with IFML

interrelated pages, navigation regions, landmarks, and so on. This kind of model is described in this

section and is referred to as hypertext organization.

12.6.1 Site views
A site view is a package that contains an entire application that may be delivered for users. It usually

contains a group of areas (see next section) and pages for the application. Figure 12.35 presents an

example of a site view with a page (Main) and two areas (Administrative and Customer).

FIGURE 12.32

A flow with multivalued parameter binding.

FIGURE 12.31

Rendering of the model of Figure 12.29 after the search is performed.

FIGURE 12.30

Rendering of the model of Figure 12.29 before the search is performed.

30712.6 Hypertext organization

This example has not yet been fully developed, though. Only the top-level structure is shown in

Figure 12.35.

12.6.2 Areas
A site view may be organized in areas. Areas and pages are referenced in IFML as containers.

Areas are groups of containers that have affinities, such as, for example, a set of functions related

to a given user goal.

In the IFML model of Figure 12.35, the areas appear as shadowed rectangles. Areas provide

hierarchical organization to a site view.

FIGURE 12.33

Rendering of the model in Figure 12.32 before clicking on the button.

FIGURE 12.34

Rendering of the model in Figure 12.32 after clicking on the button.

308 CHAPTER 12 Interface Tier Design with IFML

12.6.3 Home, landmark, and default
In Figure 12.35 some containers have special properties:

• [H] or indicates the homepage. The homepage is the initial page of an application. When a user

accesses the website she will access the home page by default. Areas do not have this property.

• [D] indicates the default page of an area. When a user navigates to a given area, she will land

on the default page. Thus, the default page is a kind of “homepage” for a specific area. Areas

do not have this property.

• [L] represents a landmark page or area. This means that the page or area is directly accessible

from any other page included in the same area. Thus, it avoids the need to create lots of flows

to pages that must be accessed from many places.

Only one homepage may exist for a given site view and only one default page for a given area.

However, any number of landmark areas or pages may exist.

12.7 Web Interface Patterns
Most web interface patterns presented in this section are adapted from Ceri et al. (2003) and

Tidwell (2005).

12.7.1 Cascade Index
A cascade index is a sequence of menus based on lists that eventually reaches a details view. For

example, a user could begin by selecting a publisher. Then, the user could select a book from a

publisher’s list, and finally access the book details. Figure 12.36 illustrates that pattern.

FIGURE 12.35

A site view.

30912.7 Web Interface Patterns

In the diagram of Figure 12.36, as the parameter bindings are default, the flows carry the OIDs

of the selected elements. Those OIDs may be used by the conditional expressions at the destination

view component to define which elements are to be shown.

The view component Books List uses a role-based conditional expression that shows only the

books linked to the publisher whose OID is bound to the entry flow that comes from Publishers List.

Notice that the Books List has a conditional expression that is based on the role PublisherToBook,

that is, only books linked to the publisher at the origin of the flow are shown by Books List.

The Book details view shows the complete information of the book selected in Books List. The

selected book’s OID is bound to the flow that comes from Books List to the details view.

Figures 12.37 to 12.39 show a sequence of rendered interfaces that illustrates that pattern. In

FIGURE 12.36

Example of a cascade index.

FIGURE 12.37

Rendering of Publishers List.

310 CHAPTER 12 Interface Tier Design with IFML

Figure 12.37 a publisher may be selected. In Figure 12.38, after selecting the second publisher, one of

its books may be selected. Finally in Figure 12.39 the third book was selected and its details are shown.

One variant of this pattern consists of showing some data from the object selected in one of the

intermediary lists. Figure 12.40 illustrates that situation.

There, when a publisher is selected, the interface shows the publisher’s details and a list of

books for further selection. Notice that in the intermediary page Publisher Details is connected to

Books List by a data flow. It is not necessary for the user to navigate from Publisher Details to its

list of books: both view components are shown at the same time when the Select Book page is

accessed. Figure 12.41 shows how the intermediary page could be rendered.

FIGURE 12.38

Rendering of Books List.

FIGURE 12.39

Rendering of Book details.

31112.7 Web Interface Patterns

12.7.2 Filtered index
In some cases it may be necessary to show a list with selected elements. For example, if the book-

store has thousands of books in its catalog, it would not be feasible for a user to simply browse for

a book in that list. A filtered list could be used instead, for example, asking the user to provide a

keyword in order to show a reduced book list.

This pattern is accomplished by a connection between a form, a list, and a details component,

as shown in Figure 12.42.

FIGURE 12.40

Cascade index with intermediary data presentation.

FIGURE 12.41

Rendering of the intermediary page of a cascade index with intermediary data.

FIGURE 12.42

An example of a filtered index.

312 CHAPTER 12 Interface Tier Design with IFML

As the results are shown by a list (not a simple list), a scroll block factor may be defined as well as

the possibility of dynamically sorting the results. Furthermore, a maximum number of results may be

defined for this list so that unnecessarily large lists are not presented.

12.7.3 Guided tour
A guided tour is a pattern that allows one to visualize details of a set of objects one at a time by using

scroll operations. It is implemented by using a scroller component with blockFactor 1 linked to a details

view, as seen in Figure 12.43.

Figure 12.44 shows a rendering of that specification where the fifth of eight books was selected by

the user.

12.7.4 Viewpoints
Sometimes, it may be interesting to present different faces of certain objects in different moments.

For example, summarized data about a book may be presented by default, but that data may be

expanded or contracted again at the user’s will.

In order to implement the viewpoints pattern, two or more details components may be defined

for the same class, with different sets of attributes. Flows may be defined between the different

components to allow the user to change from one view to another, as shown in Figure 12.45.

Figure 12.46 shows the appearance of the summarized viewpoint and Figure 12.47 shows the

complete information viewpoint.

12.7.5 Overview plus detail
The overview plus detail pattern is very common in applications such as email browsers, but it can be

applied to a variety of other situations. The idea is to have in the same page a scrolling list of elements

and the details view of one selected element in a region next to the list.

Figure 12.48 shows an IFML definition that uses this pattern with a list with block factor 3 and

a details view component linked to it by a flow.

Figure 12.49 shows a rendering for the page specified in Figure 12.48.

FIGURE 12.43

Specification of a guided tour.

31312.7 Web Interface Patterns

12.7.6 Top-level navigation
Top-level navigation is a frequent pattern in web pages where a top-level menu allows access to dif-

ferent areas of the site. The example in Figure 12.50 illustrates top-level navigation being defined by

a set of landmark areas, each containing one page (they could contain more pages if needed).

FIGURE 12.44

Rendering of a guided tour.

FIGURE 12.45

Specification of viewpoints.

314 CHAPTER 12 Interface Tier Design with IFML

For the example, only the third area was partially defined. A rendering of that model is shown

in Figure 12.51 where the third area, “Catalog,” is selected from the top menu showing the default

page Books.

A variation of this pattern is menu-based top level navigation. This may be accom-

plished by adding a set of landmark pages to each of the top landmark areas, as shown in

Figure 12.52.

Figure 12.53 shows the rendering when the mouse is positioned over the menu item “Catalog.”

FIGURE 12.46

Summarized viewpoint.

FIGURE 12.47

Complete information viewpoint.

31512.7 Web Interface Patterns

FIGURE 12.48

Specification of an overview plus detail pattern.

FIGURE 12.49

Example of rendering of a page using the overview plus detail pattern.

316 CHAPTER 12 Interface Tier Design with IFML

12.8 Modeling operations in the interface
IFML allows basic operations to be modeled by using operation components that allow for the creation,

deletion, update, connection, disconnection, and reconnection6 of instances. These components perform

FIGURE 12.51

Example of rendering of a page using top-level navigation.

FIGURE 12.50

Example of specification of top-level navigation.

6Replacing a link.

31712.8 Modeling operations in the interface

most of the basic operations that were presented in Section 8.5. Figure 12.54 shows the graphical repre-

sentation of those operations.

The operation components do not hold or render information; they just process information.

Therefore, they are represented graphically outside the pages.

Every operation component should have at least one input flow. Sometimes all the information

the operation needs is obtained from a single view component, but sometimes more than one view

component may be necessary to supply all the data needed by an operation.

Operation components have special output flows. Two different kinds of output flows exist for

operations:

• OK flow, which defines where the focus goes when the operation is successfully performed for

every object.

• KO flow, which defines where the focus goes when the operation fails for at least one of the

objects affected by it.

FIGURE 12.52

Example of specification of menu-based top-level navigation.

FIGURE 12.53

Example of rendering of a page using menu-based top-level navigation.

318 CHAPTER 12 Interface Tier Design with IFML

The operation components are based on classes or associations that are their data sources.

Create, delete, and update operations are defined over a single class, while connect, disconnect,

and reconnect are defined over an association, and therefore they have a source and a target class.

For example, a delete operation could be defined over the Book class as in Figure 12.54; this opera-

tion would be responsible for deleting instances of Book.

A connect operation, on the other hand, would be defined over an association such as

BookToPublisher, as shown in Figure 12.54. Therefore, it would be responsible for connecting (adding

links between) instances of the Book class (source) and the Publisher class (target).

12.8.1 Create operation
The create operation creates new instances of a given class. A navigation or data flow may be used

to provide initialization data for the new instance. Usually, the initialization data are obtained from

a form based on the same class. A flow from the form to the create operation passes the values for

all necessary attributes except for the OID, which is generated automatically by the create opera-

tion. For example, Figure 12.55 shows a structure for creating instances of Book.

Figure 12.56 shows the rendering of the form that is the origin of the flow to the create opera-

tion. The flow is rendered as the Save button.

As we can see, the user may type in the form the initialization values for the new book. The flow

from the form binds the data and takes the data to the create operation. The create operation then creates

the new instance and defines its attributes with the values received from the flow.

If the operation is successful, then the OK flow is followed to a details component that shows

the newly created book. The OK flow binds automatically the OID of the new book so that the con-

ditional expression at the details may be used to define which book to present.

If the operation fails, the control goes to an error page following the KO flow.

12.8.2 Delete operation
The delete operation may be performed over one or more objects that satisfy the conditional expression

defined for it.

The delete operation may be used in conjunction with a list (any kind of list), where the user

may select the object(s) to be deleted. Figure 12.57 shows an example where the user selects a

book to delete from a simple list. Notice that the selector of the delete operation is based on the

book’s OID, which is received as a parameter from the input flow.

This page may be rendered as in Figure 12.58, where the word “delete” corresponds to the

flow name.

FIGURE 12.54

Operation components: create, delete, modify, connect, disconnect, and reconnect.

31912.8 Modeling operations in the interface

FIGURE 12.55

Example of application of a create operation.

FIGURE 12.56

Rendering of a form with a flow to a create operation.

320 CHAPTER 12 Interface Tier Design with IFML

When all objects that qualify to be deleted are really deleted, the OK flow is followed. When at

least one object cannot be deleted, the KO flow is followed and passes as a parameter binding the

OIDs of the objects that could not be deleted. Thus, the KO flow could, for example, lead to a list

or a multiple details view where the objects that could not be removed are shown, as seen in

Figure 12.57.

FIGURE 12.57

A delete operation being activated from a list.

FIGURE 12.58

Rendering of a simple list associated to a delete operation by a flow named “delete.”

32112.8 Modeling operations in the interface

12.8.3 Update operation
An update operation contains a selector for one or more objects of the same class and a set of

assignments for updating the attributes of those objects. Usually, new values for attributes are

received by normal navigation or data flows.

Figure 12.59 shows how to use an update operation to change the price of an existing book.

On the Book Prices page, a book is selected from a list (Figure 12.60). Then a new page

(Update Price) shows details of the book and a field preloaded with the old price. The user may

change that value and update it by pressing “Save” (Figure 12.61).

The old price is loaded in the New Price field by a data flow from Book Details. The update

operation is activated by the navigation flow that is rendered as the Save button on the Update

Price page. That navigation flow has a parameter binding that passes the new price of the book

FIGURE 12.59

An update operation being used to change the price of a book.

FIGURE 12.60

Rendering of the Book Prices page.

322 CHAPTER 12 Interface Tier Design with IFML

from the respective field in the New Price form to the update operation. Other attributes of the

book, including its OID, are received by a data flow from Book Details.

In Figure 12.59, the OK flow from the update operation leads back to the list on the Book

Prices page, where the new price may be visualized. The KO flow leads to an error window.

Again, the OK flow is followed when all objects qualified by the conditional expression are chan-

ged. If at least one object cannot be updated, the KO flow is followed with the set of OIDs of the

objects that could not be updated as binding parameters.

12.8.4 Connect, disconnect, and reconnect operations
The connect, disconnect, and reconnect operations have an association as a source of data. The connect

and disconnect operations have two conditional expressions: one for the origin role and the other for the

target role of the association. The reconnect operation may be understood as a combination of the for-

mer ones. It has three conditional expressions: one for the origin role, another for objects in the target

role to be disconnected, and a third for objects in the target role to be connected to the source objects.

The connect, disconnect, and reconnect operations may add, remove, or replace links between

sets of objects. If, for example, five objects satisfy the source conditional expression and three

objects satisfy the target conditional expression, then a connect operation would create 15 links:

each of the five origin objects will be linked to each of the three target objects.

The example in Figure 12.62 shows how a link between a book and a publisher may be created.

First of all, the link is mandatory from the book to the publisher. Thus, it is not possible simply to

get a list of books and a list of publishers and choose which ones should be linked. A link between

a book and a publisher must be created as soon as the book is created. Furthermore, that link is

immutable and cannot change later.

On the first page, Choose Publisher, there is a simple list of publishers. The user may choose

one and be taken to Publisher Page. There, the publisher’s details and a list of books already linked

FIGURE 12.61

Rendering of the Update Price page.

32312.8 Modeling operations in the interface

to it are shown. Notice that Publisher Details has a key condition and a flow from Publishers List,

and therefore, it shows the publisher selected in the list. The Publisher’s Books list has a data flow

coming from Publisher Details and a role-based conditional expression so that only books that are

linked to the publisher of Publisher Details are shown. Figure 12.63 shows the Publisher Page ren-

dered after the publisher “Bantam” was selected from the list.

From the Publisher Page the user may navigate to the New Book Form by using a normal navi-

gation flow between both pages, which is rendered as the New Book link. In this page the user may

fill in the form with information about the new book, which will be automatically linked to the

FIGURE 12.62

IFML model showing an interface in which books may be created and linked to publishers.

FIGURE 12.63

Rendering of the Publisher Page.

324 CHAPTER 12 Interface Tier Design with IFML

publisher presented in the Publisher Page. Initially the create operation creates the new instance of

book. Its OK flow leads to a connect operation that is based on the association BookToPublisher.

The flow that comes from the create operation has the new book key as a parameter binding; that

key is used in the source conditional expression. The publisher is the target and it is obtained by a

data flow coming from Publisher Details.

If the connect operation is successful, it returns focus to the Publisher Page, where the new

book can be seen in the list of the current publisher’s books. If the create or connect operation fail

then focus goes to a page with an error message.

However, the design shown in Figure 12.62 is not safe. If a book is created and the connect

operation fails, that book would remain inconsistent regarding its definition. IFML allows a transac-

tion to be defined as a group of operations. Figure 12.64 shows an operation group being defined

to include both the create and connect operations. As the operation group may be defined as a

transaction ([T]), either all of the operations inside the group succeed or the whole group fails. In

that case a single KO flow from the group is followed.

12.9 IFML models for CRUD operations
This section shows step-by-step how to implement a CRUD-style interface for managing informa-

tion about publishers using IFML view components and operations.

The CRUD main page, Manage Publishers, presents a list of existing publishers. The creation

of a new publisher is initiated by clicking on a link on the main page that gives access to a new

page with a form. If the creation of a new publisher is successful, control returns to the main page,

and the new publisher appears in the list. If there is an error, control goes to an error page, from

which it is possible to return to the main page (Figure 12.65).

The second operation of a CRUD, retrieve, is the query that allows the visualization of all attri-

butes of a given publisher. This query may be modeled by a flow from the main list that leads to a

page with a details view component, as shown in Figure 12.66.

FIGURE 12.64

A safer design for Figure 12.62 using an operation group.

32512.9 IFML models for CRUD operations

The third operation, update, allows a publisher to be selected in the main list, and the attributes

of the selected book are used to fill the fields of a form with Publisher as the source class. There

they can be edited by the user and saved as shown in Figure 12.67.

Finally, the operation for deleting a publisher is added, as shown in Figure 12.68. A delete oper-

ation may be accessed from the main list.

Figure 12.69 shows the rendering of the main page of the CRUD of Publisher, as defined in

Figure 12.68. At the top of the page, we can see the link for creating a new book, and just below is

the main list, where the options for retrieving, updating, and deleting each publisher are available.

Figure 12.70 shows the rendering for the retrieve page, which is accessed by selecting the

details option for the third publisher on the main page list. The Back link on the top of the page

allows a user to return to the main page.

FIGURE 12.66

“Create” and “retrieve” defined.

FIGURE 12.65

Defining an interface for “create”.

326 CHAPTER 12 Interface Tier Design with IFML

Figure 12.71 presents the publisher update page, which is accessed by pressing the update link

on the main page list. This page is identical to the page for creating a new publisher except for the

fact that it preloads data instead of being blank, and that as the name attribute is immutable, the

respective field is defined as not modifiable.

FIGURE 12.67

“Create,” “retrieve,” and “update” defined.

FIGURE 12.68

Complete CRUD interface specification.

32712.9 IFML models for CRUD operations

FIGURE 12.70

Rendering for the publisher retrieve page.

FIGURE 12.69

Main window for the CRUD for Publisher.

FIGURE 12.71

Rendering for the publisher update page.

328 CHAPTER 12 Interface Tier Design with IFML

12.10 Use case interface modeling with IFML
As seen in the previous section, working with basic operations at this level may rapidly make the dia-

gram too complex to be read easily. One option to deal with this complexity is to separate the interface

project into different areas and deal with one at a time. This is possible at this time because use cases

have already been explored and the team has a deeper understanding about the system structure and

user needs, which allows them to design an acceptable interface.

The design of the customer interface may start with the use case diagram of Figure 3.11, part of

which is presented in Figure 12.72.

Based on this use case diagram one possible interface design that could be prepared has three

main areas:

• Shopping cart: orders and payment.

• My account: login and personal data.

• Reports.

This is still a very crude design, in the sense that no usability issues were raised in deciding on

the best organization. However, it is effective. Figure 12.73 shows the IFML design of those areas.

Now let us take a look at the use case 01: Order books. Its system sequence diagram is depicted

in Figure 12.74.

In order to prepare an interface design based on that sequence diagram, the team should look at

the system operations, including their parameters and results:

• Any system operation, be it a command or query, must be activated somewhere in the interface.

The activation can be obtained by clicking a button or a link, by selecting an item from a list,

<<crud>>
Manage customer

Customer

<<system>>
Credit card operator

<<rep>>
Order status

<<rep>>
Past sales

Pay order

Order books

FIGURE 12.72

Partial use case diagram of Livir with the customer’s use cases.

32912.10 Use case interface modeling with IFML

FIGURE 12.73

Initial high-level design for the customer site view of Livir.

Customer Livir interface Livir controller
cart:=createCart()

book*:=searchBook(keyword*)

add2Cart(cart, selected book,quantity)

cart summary: =getCartSummary(cart)

loop

loop

opt

ref

1: keyword*

2: book*

3: selected book, quantity [<=stock]

cart summary

login: customerId

finish order

book=<title, author, price, page count, publisher, isbn, cover image, stock>
cart summary=<total, <title, authorsName, quantity, unit price, subtotal>*>

finishOrder(cart,customerId)

[customer not logged in]

FIGURE 12.74

System sequence diagram for use case 01: Order books.

330 CHAPTER 12 Interface Tier Design with IFML

etc. Sometimes the same event may activate more than one system operation: if two or more

system operations happen just after a system event (left side of the sequence diagram), then

they are possibly activated by the same user action.

• Any parameter a system operation has must be obtained somewhere. Some parameters could be

obtained from other sources (such as a clock, for example), but most parameters would be

obtained in the interface. Thus, for most parameters there will be an interface view component

(usually a form field) that allows the user to introduce the necessary data.

• Any result obtained by a system query must be presented somewhere. Some results may be

hidden from the user in some cases, but usually they are presented. View components such as

lists, details, and others may be used to show system query results.

In order to proceed with the interface design the recommendations above are followed and view

components are created to hold all necessary parameters and results. System operation actions (shaped

as hexagons) are added to the diagram as well. Figure 12.75 presents the evolution of the interface

design for theMy shopping cart page, which implements part of the use case 01: Order books.

The system operation createCart produces a new cart which is presented by the details

Shopping Cart. The user can use the form Search to search for books, which are presented in list

Search Results. There the user can select a book and define the desired quantity at the form

Quantity. That activates the system operation add2Cart. That operation takes parameters from

Shopping Cart (the cartId), Search Results (the isbn) and Quantity (the quantity). After a book is

inserted in the cart it is automatically shown in the multiple details Cart Summary.

Before finishing the order, the customer should login if she has not yet done that. Finally,

the order may be finished by performing the system operation finishOrder, which takes para-

meters from Customer (the customerId) and Shopping Cart (the cartId).

Thus, instead of using IFML operations for defining system operations, the team can use

procedures defined externally as in Figure 12.75. In this case, the team may implement them in

their favorite programming language.

FIGURE 12.75

Further refinement of the interface design for the My shopping cart page.

33112.10 Use case interface modeling with IFML

12.11 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the
system:

• Build a business use case
diagram and determine the
automation scope for the
project.

• Build preliminary activity
diagrams for business use
cases.

• Build preliminary state machine
diagrams for key business
objects.

Requirements Prepare the system use case
diagram (functional requirements):

• Identify the system actors from
the business use case model.

• Identify the system use cases
from the business use case
model, and the activity and
state machine diagrams from
business modeling.

Detail requirements by expanding use cases:

• Identify the main flow.
• Identify the alternate flows: variants and

exception handlers.

Identify nonfunctional
requirements as use case
annotations:

• Identify the main business
rules associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary
requirements.

Analysis and
Design

Prepare the preliminary
conceptual model by observing
system use cases and the
concepts needed by them.

Elaborate the system sequence diagrams:

• Represent the main flow of a use case as a
system sequence diagram.

• Represent the system commands and
queries using stateful or stateless strategies.

• Complete system sequence diagrams with
alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded use
cases.

• Detail attributes and associations with
stereotypes, multiplicity, and constraints as
needed.

(Continued)

332 CHAPTER 12 Interface Tier Design with IFML

(Continued)

Inception Elaboration

• Organize the model by using inheritance,
association classes, and temporal
specifications.

• Add invariants as needed.
• Improve the conceptual model with the

application of analysis patterns.

Write system operation contracts for
commands and queries in system sequence
diagrams:

• Identify preconditions and exceptions based
on invalid parameters and complementary
constraints.

• Identify postconditions for commands and
returns for queries.

Design the domain tier:

• Create a sequence or communication
diagram for each system command contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover which
associations can be unidirectional and define
them as such.

• Look at system query contracts and decide
which delegate queries could be
implemented; some of them could be
derived attributes or derived associations.

• Produce or refine the design class diagram.

Design the interface tier:

• Design the top-level interface
organization based on areas and pages.

• Refine pages, including view components
for parameters of system operations and
results for system queries.

• Associate operation activation to
interface events such as buttons and
menus.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary basic methods

such as get, set, add, remove, create,
destroy, and others.

• Generate code for system operations and
delegate methods using dynamic models as
reference.

(Continued)

33312.11 The process so far

(Continued)

Inception Elaboration

Test Plan and execute tests:

• Perform unit tests for methods and classes
that were not generated automatically.

• Perform system operation tests based on
system operation contracts.

• Perform use case tests based on use case
scenarios.

Project
Management

Estimate total effort, ideal calendar
time, and average team size for
the project.
Estimate the duration and quantity
of iterations for each phase.
Prepare the phase plan and
iteration plan for the first iteration.

12.12 Questions
1. Chose at least three use cases of the Livir system (Table 4.7): a CRUD, a report, and a

nonstereotyped use case. Create a complete interface model for them.

2. Research some sources concerning the MVC (Model-View-Controller) and MVP (Mode-View-

Presenter) design patterns. How many different definitions and variations for those models are

you able to find? How do they differ from each other?

334 CHAPTER 12 Interface Tier Design with IFML

CHAPTER

13Data Persistence

Note: This chapter is available on the companion website:

http://booksite.elsevier.com/9780124186736

1 Abstract
This chapter explains how to transform object-oriented models into relational databases and also

how to load and save data automatically. Initially the object-relational mapping (ORM) technique,

used to convert objects into relational database records, is explained. Then, we present a persistence

mechanism based on virtual proxies, brokers, and caches.

2 Contents
13.1 Introduction to data persistence

13.2 Object-relational mapping (ORM)

13.2.1 Classes and attributes

13.2.2 Associations

13.2.3 Inheritance

13.3 Saving and loading objects

13.3.1 Virtual proxy

13.3.2 Brokers and materialization

13.3.3 Caches

13.4 The whole process

13.5 Questions

335Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00027-2

© 2014 Elsevier Inc. All rights reserved.

http://booksite.elsevier.com/9780124186736
http://dx.doi.org/10.1016/B978-0-12-418673-6.00027-2

This page intentionally left blank

CHAPTER

e13Data Persistence

KEY TOPICS IN THIS CHAPTER

• Object-relational mapping (ORM)

• Virtual proxy

• Brokers

• Virtual caches

13.1 Introduction to data persistence
The availability of persistence mechanisms for commercial languages1 has made database design

much easier for many projects. With adequate tools, it is possible to automatically generate the per-

sistence tier for a great number of information systems. For some critical and legacy systems, how-

ever, database adjustments may be still necessary in order to accommodate special features or to

satisfy performance or security requirements.

Usually, object-oriented systems are implemented in object-oriented languages, but persistent2

data storage is accomplished with relational databases. Although other techniques such as object-

oriented databases (Won, 1990) and XML databases (Bourret, 2010) are also options for imple-

menting permanent storage of data, ORM, object-relational mapping, is still the preferred approach.

The goal of this chapter is to explain what happens inside the persistence tier of a system when a

persistence mechanism based on ORM is used. First of all, a good persistence mechanism requires

domain and data storage to be separated into different tiers within the application. Remember that the

interface tier is modeled with essential use cases and the domain tier is designed using the conceptual

model and contracts as the basis. None of the aforementioned tiers addresses data storage or persis-

tence. Persistence should be designed as a separate concern: a background system that will keep data

securely and permanently in its place without interfering on the domain or interface logic.

The persistence mechanism should assure that the objects are saved in a permanent memory

device, and that they are loaded from there when necessary. Domain and interface logic should not

be polluted by persistence concerns.

Object-oriented design provides lots of good concepts such as encapsulation, responsibility, and

delegation that help designers deal with the complexities of the logic for accessing and transforming

1See, for example: http://www.hibernate.org/.
2Persistent in this context is the opposite of transient, that is, persistent information is information that must be kept until

some user explicitly deletes it. Transient information is kept only during a session of use of the system.

e67Object-Oriented Analysis and Design for Information Systems. DOI: http://dx.doi.org/10.1016/B978-0-12-418673-6.00013-2

© 2014 Elsevier Inc. All rights reserved.

http://www.hibernate.org/
http://dx.doi.org/10.1016/B978-0-12-418673-6.00013-2

information. But when data must be stored in a more permanent way � disks and tapes, for

example � the relational database is a good option because it is very efficient in terms of time perfor-

mance and there are lots of optimization techniques to improve relational database operations. Thus,

if the team wants to work in the best of two worlds (object and relational), the mapping between

them must be understood.

The literature refers to the problem of object-relational impedance mismatch (Ireland, Keynes,

Bowers, Newton, & Waugh, 2009), because most of the good features obtained by object-oriented

design are lost when a flat relational database is used.

The implementation of a persistence mechanism minimizes that problem by using a set of pre-

defined classes not belonging to the domain tier that take care of all logic involving domain objects

being saved and retrieved from a relational database.

13.2 Object-relational mapping (ORM)
A complete and detailed design class diagram (DCD) allow for the automatic generation of a rela-

tional database structure that reflects in secondary memory3 the information that the objects repre-

sent in main memory. The following sections present some equivalence rules that should be

observed when using ORM.

13.2.1 Classes and attributes
The first set of rules addresses classes and their attributes. Each persistent class of the DCD corre-

sponds to a relational table. Each attribute is a column of the table, and each instance is a line or

record of the table.

The stereotypes of some attributes such as {uniquec, {optionalc, and {immutablec
affect the properties of the columns of the relational tables. Some of the features described here

may not be implemented by some commercial database management systems. In that case, adjust-

ments might be necessary in order to provide a safe implementation free from the object-relational

impedance mismatch.

Attributes stereotyped with {uniquec are represented as columns marked as unique or uniq,

which cannot repeat values. However, even objects with no unique attribute have an identity that

distinguishes them from other objects. Even objects with the same value for every single attribute

may be differentiated by their identity. In the case of relational tables, this is accomplished by

defining a primary key to each relational table. A primary key, just like a unique column, may not

repeat elements. An element in a primary key column may also not be null. Primary keys usually

are simply sequential numbers generated automatically by the application in such a way that the

3Secondary memory is usually slower than main memory. However it is also much cheaper, and thus it is widely used to

store large quantities of data that do not fit in the more expensive main memory. Usually secondary memory consists of

media such as magnetic or optical discs or tapes. Data stored in secondary memory usually cannot be processed directly

by the computer unless it is loaded into main memory. Main memory is also known as RAM (random access memory)

and physically it is usually implemented by electronic integrated circuits.

e68 CHAPTER e13 Data Persistence

same number is never generated twice for the same table. Primary keys do not correspond to any

of the attributes of an object: they correspond to the object identity.

Figure e13.1 shows the class that is the basis for the following examples, and Table e13.1 shows

the equivalent relational table with three instances of that class represented.

Although other formats could be used to specify the constraints on the columns here they are

presented as acronyms for quick reference:

• Uniq, or unique, means that the column cannot repeat values.

• Im, or immutable, means that the value in the column cannot be updated.

• NN, or not null, means that the column does not admit the null value. It is exactly the opposite

of the {optionalc stereotype used for design classes. It is used here because not null is a

common constraint implemented in databases.

Book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e13.1

Reference class.

Table e13.1 Relational Table Equivalent to the Class of Figure e13.1

Table: Book

PK,Uniq,
Im,NN

Uniq,Im,NN Im,NN Im,NN NN Im,NN NN

pkBook isbn title authorsName price pageCount cover
Image

quantity
InStock

10001 0553286587 Rama II Arthur C. Clarke and
Gentry Lee

6.99 466 2

10002 0553293370 Foundation
and Empire

Isaac Asimov 5.99 282 3

10003 0671742515 The Long Dark
Tea-Time of
the Soul

Douglas N. Adams 6.99 307 21

e6913.2 Object-relational mapping (ORM)

• PK, or primary key, means that the column is the primary key of the table. If a column is PK it

is necessarily immutable and not null. If only a single column is PK then it must be unique as

well. However, if the PK is composite, spreading over more than one column, then each

individual column may or may not be unique.

The first column in Table e13.1 is pkBook. Notice that it does not correspond to any attribute of

the reference class. Its value is artificially generated by a number sequence generator so that it is

unique for the whole application or at least for that table. Some authors (Wieringa & Jonge, 1991)

refer to it as a surrogate key, that is, a value that has no semantic meaning, and is unique system-

wide, never reused, system generated, and not handled by the user or application.

The other columns correspond to the attributes of the reference class:

• isbn is a unique attribute. Therefore the equivalent column is unique, immutable, and not null.

• title, authorsName, and pageCount are normal attributes that are immutable and mandatory.

Therefore the equivalent column is immutable and not null, but not unique.

• price and quantityInStock are normal attributes that may change but cannot be null. Therefore

the equivalent column is not null only.

• coverImage is an optional attribute that may be updated. Therefore, the respective column has

no constraint: it may be updated and may be null.

• publisherName is a derived attribute. Therefore it is not represented in the relational table.

If an attribute of the design class is marked with {transientc then it also should not appear in

the relational table.

13.2.1.1 Number sequence generator
Most database management systems provide number sequence generators that generate numbers

that never repeat. This is necessary to provide values for primary keys, especially when multiple

users are producing new records at the same time. The number sequence generator must assure that

different users would not produce the same number at the same time.

Number sequence generators may be associated directly to the column of the table that contains

primary keys. Every time a new record is inserted in the table, a new number in the sequence is

created.

The database designer may choose an initial value for the sequence as well as an increment. For

example, beginning with 500 with an increment of 5 the sequence generated would be 500, 505,

510, 515, etc.

13.2.1.2 Index selection
By default, a relational table is just a set of records. Finding a given object at a table would require

iterating over all elements until the desired element is found. For example, looking for a book given

its ISBN would require an exhaustive search.

Databases usually provide, however, the possibility of indexing columns. An indexed column

has an auxiliary table that allows specific records to be found in almost constant time. For example,

if the isbn column of the table is indexed, then when a book is searched based on its ISBN, no iter-

ation is performed over the set of all records: the system simply would translate the value of the

ISBN into a position in memory by using a hash function and retrieve the element from that

e70 CHAPTER e13 Data Persistence

position. If that is not the desired element, then it looks for the next, and so on until finding it. If

the hash function is well implemented and the hash table has enough space to avoid collisions (two

values being translated to the same hash value), then usually the desired element is really in the

first place searched, or very close to it at least.

The use of indices improves query speed. However, it slows database updating because every

time a record is updated, inserted, or deleted, the auxiliary table must be updated as well (Choenni,

Blanken, & Chang, 1993). Furthermore, indices also require more storage space for accommodating

the auxiliary tables.

A primary key is indexed by default. Other columns may be indexed if the designer chooses to

do that. Given the restrictions mentioned before, creating other indices may be an advantage in the

case of an attribute that is used as internal qualifier. In that case, finding the objects quickly may

be crucial for the application’s performance. Otherwise, indices should be avoided. For example,

columns that are rarely used for searching purposes (for example, a book’s page count) should not

be indexed.

13.2.2 Associations
Generally, associations between classes (except transient associations that do not persist) corre-

spond to associative tables in the relational model, that is, tables with a primary key composed by

the primary keys values of the tables that represent the participating classes.

In this case, the primary key of the associative table is in fact composed of two (or more)

columns. Each column may repeat values individually depending on the association multiplicity;

but the pair (or tuple) of values that compound the primary key can never be repeated.

Depending on the multiplicity of the association roles, some rules must be observed. Many-to-

many associations will have no individual unique restrictions. However one-to-many and one-to-

one associations require primary keys in which one or both columns are unique. This is explained

in further details in the following subsections.

13.2.2.1 Many-to-many associations
If the association is many to many with both role multiplicities defined as �, then there is no restric-

tion on the columns that compose the primary key of the associative table. Figure e13.2 shows an

example of a many-to-many association.

Book

interested

Customer

<<immutable>> <<unique>> +idNumber : idNumber
+name : String
<<immutable>> +birthDate : StringwishList

*

*

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e13.2

Many-to-many association.

e7113.2 Object-relational mapping (ORM)

Consider again the three books of Table e13.1 and the three customers shown in Table e13.2.

Notice that in Table e13.2 a customer has two codes: one is its idNumber, for example, a Social

Security number. That value is known outside the information system. It is usually preformatted

and although in normal conditions it does not change, nobody may prevent the government from

changing all citizens’ Social Security numbers if that is necessary. Therefore, though idNumber is

unique for a customer, it does not qualify as a good primary key. The primary key for Table e13.2

is pkCustomer, which is a number created automatically by the number sequence generator; it is

unique and assured never to change, because it has no meaning outside the database.

Table e13.3 shows an associative relational table that represents the links between some customers

and some books desired by them. Notice that the PK spreads over two columns now. Each column

contains a foreign key (FK), that is, a value that corresponds to the primary key of another table.

Table e13.2 Relational Table for the Customer Class

Table: Customer

PK,Uniq,Im,NN Uniq,Im,NN NN Im,NN

pkCustomer idNumber Name birthDate

20001 98726524320 Abe 01/04/1970

20002 98726524329 Beth 02/23/1982

20003 98726524325 Charles 12/05/1979

Table e13.3 Associative

Table Representing a Many-to-

Many Association

Table: interested_wishList

PK

NN NN

fkCustomer fkBook

20001 10001

20002 10001

20001 10003

e72 CHAPTER e13 Data Persistence

In the associative table interested_wishList, the columns fkCustomer and fkBook together form

the composed primary key. Both of them cannot be null, and pairs of fkCustomer/fkBook cannot be

repeated. However, as the association is many to many, each individual column may repeat values,

as seen in the table.

Table e13.3 shows that Abe (customer 20001) desires the books “Rama II” (10001) and “The

Long Dark Tea-Time of the Soul” (10003). Beth (customer 20002) only desires “Rama II” (10001),

and Charles (20003) has no wishes.

Instead of naming the associative table with the names of the classes (Customer_Book), it is

preferable to name it with the names of the roles (interested_wishList), because more than one asso-

ciation may exist between two classes.

If the association is mandatory in one direction or both directions, then special considerations

must be observed:

• If the association is mandatory on one side, then all instances from the other side must appear at

least once in the associative table. If in the example of Figure e13.2, the role interested was

mandatory (1..�), then each book should have at least one associated customer. Then each primary

key value from the Book table should appear in the interested_wishList table at least once.

• If the association is mandatory on both sides, then all instances from both classes should appear

at least once in the associative table. If in the example of Figure e13.2, both roles were

mandatory (1..�), then each book from the Book table and each customer from the Customer

table should appear at least once in the associative table.

More generally, considering that A has an association to B, and that the lower bound of the B

role is n while the upper bound is m (multiplicity is n..m), the number of times that each instance

of A must appear in the associative table is at least n, and no more than m. For example, if the mul-

tiplicity of role B is 2..5, then each instance of A must appear in the associative table at least twice

and no more than five times. Unfortunately that constraint is not usually present in database man-

agement systems.

13.2.2.2 One-to-many associations
When the association is one to many, then the column on the many side must have a unique con-

straint. This means that the column may not repeat elements individually while the other column

may repeat elements. The elements that cannot be repeated in the associative table therefore can be

linked to a single element of the other table; this constraint assures that the association is one to

many. Figure e13.3 shows an example of a one-to-many association.

Table e13.4 shows an associative table for the one-to-many association represented in

Figure e13.3. Notice that the unique constraint in the right column prevents the table from associat-

ing a book to more than one publisher.

As seen in Table e13.4, publisher 30001 has one book (10002) and publisher 30002 has two

books (10001 and 10003). As books cannot be repeated in this table, no book can belong to more

than one publisher.

It is also possible to represent associations from many to one as foreign keys in the table that

represents the class at the many side of the association. For example, as each book may have only

one publisher, then the association between book and publisher could be implemented as in

Table e13.5.

e7313.2 Object-relational mapping (ORM)

The foreign key publisher is a direct reference to the primary key of the Publisher table. If

the association is straight to 1, then the foreign key column must not be null. If the association

is to 0..1, then the foreign key column should not have that constraint.

Although this approach is not as homogeneous as associative tables, it is usually preferred by

designers because it avoids the need to implement a new table. One disadvantage is that in this

case many-to-many associations are implemented as associative tables and many-to-one associa-

tions are implemented inside one of the original tables. Also, if the association is not mandatory

(if its multiplicity is 0..1), and relatively few elements are associated, there would be lots of null

values in the foreign key column, wasting storage space and degrading performance. However,

if the association is straight to 1, this disadvantage does not apply.

Publisher

Book

<<immutable>>
1 *

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

<<immutable>> <<unique>>+name : String
+city : CityName

FIGURE e13.3

Example of a one-to-many association.

Table e13.4 Associative

Table Representing a One-to-

Many Association

Table: publisher_book

PK

Im,NN Uniq,NN

fkPublisher fkBook

30002 10001

30001 10002

30002 10003

e74 CHAPTER e13 Data Persistence

13.2.2.3 One-to-one associations
One-to-one associations, mandatory or optional, require that the associative table have a unique

constraint in both columns of the composed primary key in order to prevent any element on both

sides from appearing more than once in the associative table. Figure e13.4 shows an example of

one-to-one association that is mandatory on one side and optional on the other.

Table e13.6 shows the relational table that implements the one-to-one association of

Figure e13.4.

As the role is mandatory for payments, all instances of Payment must appear in the associative

table, but not all instances of Order must appear, because the role is not mandatory for them.

As in the case of many-to-one associations, one-to-one associations may also be implemented

as foreign keys in one of the original tables. The foreign key column must necessarily be unique in

that case. If the association role is also mandatory, then the foreign key column should not be null.

Table e13.5 Alternative Way to Implement a Many-to-One Association Without an Associative Table

Table: Book

PK,
Uniq,
Im,NN

Uniq,Im,
NN

Im,NN Im,NN NN Im,NN NN Im,NN

pkBook isbn title authors
Name

price page
Count

cover
Image

quantity
InStock

fkpublisher

10001 0553286587 Rama II Arthur
C. Clarke
and
Gentry
Lee

6.99 466 2 30002

10002 0553293370 Foundation
and Empire

Isaac
Asimov

5.99 282 3 30001

10003 0671742515 The Long
Dark Tea-
Time of the
Soul

Douglas
N. Adams

6.99 307 21 30002

Order

<<immutable>> 0..1

1 Payment

FIGURE e13.4

Example of one-to-one association.

e7513.2 Object-relational mapping (ORM)

13.2.2.4 Ordered associations
An association with an ordered role (sequence or ordered set) may be implemented as an associa-

tive table with an extra column to represent the order of the element in the role’s collection of

elements. Figure e13.5 shows an example with two situations: ordered set and sequence (a list in

which elements may be repeated).

The difference between the relational implementation of an ordered set and a sequence is that in

the case of the ordered set the order column must not be included in the composed primary key,

as shown in Table e13.7. However, in the case of a sequence (elements may be repeated), the

order column must be part of the composed primary key, which in this case is composed of three

columns (Table e13.8).

In Table e13.8, the fact that the order column is included in the primary key allows the same

person to reserve the same book more than once (for example, 20001, Abe, has two reservations for

book 10001, Rama II, in the first and fourth positions on the reservation list. A repetition like this

would not be possible in Table e13.7, because the primary key does not include the order column:

the same pair fkBook/fkChapter cannot appear more than once in the table, regardless of its position.

In both cases, to prevent a given position to be occupied more than once, a uniq constraint

spreading over the origin class and the position should be defined. In the case of Table e13.7 and

Table e13.8 the pair fkBook/order should be unique.

Table e13.6 Associative

Table Representing a One-to-One

Association

Table: order_payment

PK

Im,Uniq,NN Uniq,NN

fkOrder fkPayment

50001 60001

50003 60002

50005 60003

50011 60004

50016 60005

50021 60006

50030 60007

e76 CHAPTER e13 Data Persistence

13.2.2.5 Associations representing bags
In the case of bags, in which elements may be repeated but have no position, the usual solution is

to add an extra column to the associative table with a counter for the number of times a given pair

participates in the association. Figure e13.6 shows an example of this kind of association.

Table e13.9 shows the implementation of the associative table for the example in Figure e13.6.

Book Chapter

Customer

reserved

{sequence}*

*

1

<<immutable>>

{ordered}<<immutable>>

FIGURE e13.5

Example of ordered roles.

Table e13.7 Relational

Table Representing an Ordered Set

Table: book_chapter

PK

Im,NN Im,Uniq,NN NN

fkBook fkChapter order

10001 130001 1

10001 130002 2

10001 130003 3

10002 130004 1

10002 130005 2

10003 130006 1

10003 130007 2

e7713.2 Object-relational mapping (ORM)

Table e13.9 specifies that Abe (20001) has viewed the book “Foundation and Empire” (10002)

six times. Beth (20002) viewed “Rama II” (10001) twice, “Foundation and Empire” (10002) once,

and “The Long Dark Tea-Time of the Soul” (10003) once. It is not necessary to represent in the

table any pair whose quantity is zero; this is why Charles (20003) does not appear in the table: he

has never viewed any book.

Table e13.8 Relational

Table Representing a Sequence

Table: book_customer

PK

NN NN NN

fkBook fkCustomer order

10001 20001 1

10001 20003 2

10001 20002 3

10001 20001 4

10002 20003 1

10003 20001 1

10003 20002 2

Book viewer Customer

{bag}*

*

FIGURE e13.6

Example of a bag.

e78 CHAPTER e13 Data Persistence

13.2.2.6 Qualified associations
In the case of a qualified association defined as a map (multiplicity 1 or 0..1) with an internal

qualifier (the qualifier is an attribute of the qualified class), it is sufficient to implement the asso-

ciation as a regular one-to-many or many-to-many association depending on the multiplicity on

the side of the qualifier, as explained in previous sections.

The only special care that the database designer must take in that case is to ensure that the column

of the qualifier attribute is unique and immutable. It may be indexed if quick access to the records is

necessary.

However, when the qualifier is external, it is necessary to add a third column to the associative

table to allow for the representation of the qualifier. Figure e13.7 shows an example of that

situation.

Table e13.10 shows the implementation for the map defined in Figure e13.7. The associative

table has a primary key that is composed only of the origin class key and the qualifier. The destina-

tion class is left out of the primary key. However, it must be marked as unique because, in the

example, each phone has a single type.

Table e13.9 Associative Table Representing a Bag

Table: book_viewer

PK

NN NN NN

fkBook fkCustomer quantity

10002 20002 1

10001 20002 2

10002 20001 6

10003 20002 1

Customer
type

1

0..1

Phone

+areaCode : AreaCodeNumber
+number : PhoneNumber

FIGURE e13.7

Example of a map with an external qualifier.

e7913.2 Object-relational mapping (ORM)

If the external qualifier defines a partition (multiplicity �), as shown in Figure e13.8, it is imple-

mented as shown in Table e13.10. But in the case of a partition with an external qualifier, the primary

key must have three parts, including the origin and destination foreign keys as well as the qualifier.

Also, as the origin role multiplicity is 1, the destination class column must be marked with unique.

In the example shown in Table e13.11, this means that a book may not have more than one genre.

If the role multiplicity at the origin were � (defining a relation where a book could have more

than one genre), the implementation would basically be the same. The only difference is that the

unique constraint in the destination column (fkBook) should not exist.

13.2.2.7 Association classes
An association with an association class is represented in two parts: a relational table for the associ-

ation class with its attributes, and an associative table for the association with a reference to the

association class table.

Figure e13.9 shows an association class, and Tables e13.12 and e13.13 implement its relational

equivalent.

Thus, one way to represent associations with association classes is to use a table to represent

the association class (Table e13.12), and an associative table (Table e13.13) with three columns:

the primary keys of the participating classes (which forms the composite primary key of the

Table e13.10 Associative Table Representing a

Map With an External Qualifier

Table: customer_phone

PK

NN NN Uniq,NN

fkCustomer type fkPhone

20001 Home 70001

20001 Cellphone 70002

20002 Home 70003

Publisher
genre

1

*

Book

FIGURE e13.8

Example of a partition with an external qualifier.

e80 CHAPTER e13 Data Persistence

association) and the primary key of the association class, which is not part of the composite pri-

mary key of the association, but must be immutable and unique in that table.

A further constraint is that all values for pkJob in the Job table must appear in the fkJob column

of the employee_employer table.

13.2.2.8 n-ary associations
In the case of associations among three or more classes (n-ary), an associative table is defined in

which the primary key is formed by the primary keys of all participating classes. Figure e13.10

shows an example of a ternary association and Table e13.14 shows its relational representation.

In Table e13.14, pairs such as fkBudgetItem/fkProject may repeat elements (90001/100001, for

instance). But the triple fkBudgetItem/fkFinancialYear/fkProject may never repeat.

Table e13.11 Associative Table Representing a Partition with

an External Qualifier

Table: publisher_book

PK

NN NN Uniq,NN

fkPublisher genre fkBook

60001 sci-fi 10001

60001 sci-fi 10002

60002 humor 10003

Person employer

*employee

*

Job

Company

+wage : Money
<<immutable>> +hired : Date

FIGURE e13.9

Example of an association class.

e8113.2 Object-relational mapping (ORM)

13.2.2.9 Transient and façade controller associations
Transient associations are not represented in relational tables because, by their own definition, they

exist only in primary memory, and it is not necessary neither desirable to persist them.

Some of the associations from the façade controller also do not need to persist. Associations

from a controller to all instances of a class, which are mandatory for the instances, do not need to

Table e13.12 Relational Representation of an Association

with an Association Class � Part 1: The Association Class

Table: Job

PK,NN,Im,Uniq NN NN,Im

pkJob Wage Hired

80001 1,500.00 02/15/2008

80002 1,200.00 03/01/1999

80003 2,000.00 04/16/2005

80004 900.00 01/17/2001

Table e13.13 Relational Representation of an Association

with Association Class � Part 2: The Association

Table: employee_employer

PK

NN NN NN,Im,Uniq

fkPerson fkCompany fkJob

20001 70001 80001

20001 70005 80002

20002 70001 80003

20003 70002 80004

e82 CHAPTER e13 Data Persistence

be transformed into association tables, because they always repeat the same value for the controller

and have all the elements of the other side. That information is already available in the primary key

column of the table representing the conceptual class, and, therefore, that association table would

be redundant. For example, in Figure e13.11, the association between the controller and Customer

with no explicit role name is mandatory for all customers. Thus, an associative table for represent-

ing that association would contain only the primary keys of all customers. As they are already

represented in the Customer table, repeating them in a different table is unnecessary.

However, this observation is valid only if the association role is strictly 1 on the controller side. If

the controller side has multiplicity 0..1, then the association should be represented separately. In

Figure e13.11 the premium association must be represented because not every customer belongs to it.

Budgetltem

Project
*

* *

FinancialYear

FIGURE e13.10

An example of a ternary association.

Table e13.14 Relational Equivalent of a Ternary Association

Table: budgetItem_financialYear_project

PK

NN NN NN

fkBudgetItem fkFinancialYear fkProject

90001 100001 110001

90001 100002 110002

90002 100001 110003

e8313.2 Object-relational mapping (ORM)

Not every customer is a premium customer,4 and thus they must be listed somewhere. There are at

least two choices for representing premium customers: adding a Boolean field to the Customer

table indicating which customers are premium, or creating a single column table that contains the

primary keys of premium customers.

The premium customer table does not have to include a column that represents the primary key

of the controller (1) because the controller is not an entity (and therefore it has no primary key),

and (2) because the controller is a singleton and even if a primary key is assigned to it, repeating

the same value in all rows of the table would be unnecessary.

Table e13.15 shows a possible implementation for this optional association.

According to Table e13.15 only Abe (20001) and Bea (20002) are premium customers, and

Charles (20003) is not.

13.2.3 Inheritance
Relational databases do not support inheritance directly. Mapping inheritance relations to relational

databases is an issue that demands attention. There are many different approaches and this section

discusses some of them. All examples in the following subsections are based on Figure e13.12.

Customer

premium
0..1

1

Livir

FIGURE e13.11

A mandatory and an optional association to a façade controller.

Table e13.15 Implementation

of an Optional Association

from the Façade Controller

Table: premium

PK

NN

fkCustomer

20001

20002

4Note that this is a normal association and not a derived one.

e84 CHAPTER e13 Data Persistence

13.2.3.1 Implementing the entire hierarchy in a single table
One solution for representing inheritance that sounds straightforward at first glance is to implement

the entire hierarchy in a single table. This table contains all the attributes of all classes in the hier-

archy. It also has to identify which class is being represented in each record; this can be accom-

plished by adding a type column, as in Table e13.16.

Only attributes that belong to the class at the top of the hierarchy may not be null, because all

other attributes could be null when the record belongs to one subclass and the attribute to another

subclass. For example, if the type of the record is promptPayment, then firstDate and

numberOfInstallments must necessarily be null. If it is assumed that an object cannot change its

class after instantiation, then the type type should be immutable.

Payment
{abstract}

PromptPayment

+date : Date

+value : Money

PaymentInInstallments

+firstDate : Date
+numberOfInstallments : Natural

FIGURE e13.12

A situation with inheritance of attributes.

Table e13.16 Implementation of Inheritance in a Single Table with a Type Field

Table: Payment

PK,NN,Uniq,Im NN,Im NN

pkPayment type value date firstDate numberOf
Installments

200001 promptPayment 300.00 04/09/2014

200002 promptPayment 251.00 07/02/2014

200003 paymentIn
Installments

1,890.00 12/09/2013 12

e8513.2 Object-relational mapping (ORM)

If multiple inheritance is used (for example, if a payment could be prompt and installments at

the same time),5 then the type column should be replaced by a set of Boolean columns:

isPromptPayment and isPaymentInInstallments. In this case, a payment could be prompt, in install-

ments, or both (or neither, if they could also be instances of Payment, which in the present example

cannot occur because it is an abstract class).

This approach has some disadvantages. It is hard to manage consistency between subclasses

because all data is stored in the same place. Managing it adequately would require various complex

control mechanisms. Also, lots of fields in the table would be null all the time and the big

table would be a very sparse one, especially if a big and complex hierarchy is being represented.

13.2.3.2 Each concrete class as a single table
Another approach to represent inheritance is to represent each concrete class as a separate table.

Each table would contain the attributes of the concrete class and the attributes of all of its super-

classes. Tables e13.17 and e13.18 show a possible implementation using that approach.

Table e13.17 Implementation of Inheritance Using a

Table for Each Concrete Class: PromptPayment

Table: PromptPayment

PK,NN,Uniq,Im NN NN

pkPromptPayment value date

200001 300.00 04/09/2014

200002 251.00 07/02/2014

5Of course this cannot be true. It’s just a supposition for the sake of the example.

Table e13.18 Implementation of Inheritance Using a Table for Each Concrete Class:

PaymentInInstallments

Table: PaymentInInstallments

PK,NN,Uniq,Im NN NN NN

pkPayment value firstDate numberOfInstallments

200003 1,890.00 12/09/2013 12

e86 CHAPTER e13 Data Persistence

If only attributes are inherited, this approach may work. However if superclasses define their

own associations that must be inherited, then managing this becomes a headache because either an

associative table should fill in data from different tables in a single column, or a single associative

table should be implemented for each subclass that inherits the association.

13.2.3.3 Each class in a single table
A better choice for implementing inheritance given the aforementioned problems is to define one

table for each class of the hierarchy, even the abstract ones. That way, attributes and association

inheritance may be easily implemented. The main disadvantage is that for instantiating an object,

a number of tables equal to the number of its superclasses plus one should be accessed.

Tables e13.19 to e13.21 show how to implement this approach. There must be references from the

subclasses’ tables to each immediate superclass table.

Table e13.19 Implementation of Inheritance

Using a Table for Each Class: Payment

Table: Payment

PK,NN,Uniq,Im NN

pkPayment value

200001 300.00

200002 251.00

200003 1,890,00

Table e13.20 Implementation of Inheritance Using a

Table for Each Class: PromptPayment

Table: PromptPayment

PK,NN,Uniq,Im NN,Uniq,Im NN

pkPromptPayment fkPayment Date

300001 200001 04/09/2014

300002 200002 07/02/2014

e8713.2 Object-relational mapping (ORM)

Table e13.21 Implementation of Inheritance Using a Table for Each Class: PaymentInInstallments

Table: PaymentInInstallments

PK,NN,Uniq,Im NN,Uniq,Im NN NN

pkPaymentInInstallments fkPayment firstDate numberOfInstallments

400001 200003 12/09/2013 12

13.3 Saving and loading objects
The equivalence between object-oriented design and the relational database is just part of the com-

patibility issue between these two models. It is necessary also to decide how and when objects will

be loaded and saved to the database. Some designers prefer to determine themselves the moment

when such operations should be performed. However, that handcrafted approach for saving and

loading objects is subject to logic errors, and usually it pollutes the domain-level code.

In addition, if the designer is the one who decides when to save and load objects, sometimes

those operations could be performed unnecessarily (for example, loading objects that are already in

memory and saving objects that were not changed). Controlling these issues case by case, method

by method is not the most productive way to develop software.

It is possible to implement the processes for saving and loading objects with automatic mechan-

isms. In this case, the designer should only decide which classes, attributes, and associations are

persistent, and a whole set of methods and data structures will be automatically created to allow

those elements to be loaded and saved at the appropriate moments. Initially this section presents

the basic or naı̈ve implementation of this mechanism. Later, the limitations of the technique are

explained and possible solutions drafted.

13.3.1 Virtual proxy
In order to implement an automatic mechanism for saving and loading objects, we can use a design

pattern called virtual proxy (Gamma, Helm, Johnson, & Vlissides, 1995). A virtual proxy is a very

simple object that implements only two responsibilities:

• It must know the value of the primary key of the real object it represents.

• It must redirect to the real object all messages it receives in its name.

Below is a draft of the way a virtual proxy works:

Class VirtualProxy
var realObjectPk:PrimaryKey
for any message msg received do

realObject:5BrokerManager.get(realObjectPk)
realObject.msg()

end for
end class

Later, in the following sections, the way the BrokerManager works is gradually explained.

Thus, the design with virtual proxies requires that instead of associating domain objects directly

with other domain objects, they must be associated to their proxies. In this way, it is possible to

bring into memory an instance of Publisher without loading all instances of Book that are linked to

it. The instance of Publisher is associated to the proxies of books, which are very simple objects.

The proxies are created in main memory and require much less space than the instances of the real

class, such as those of Book. An instance of Book is loaded only if necessary, that is, only if a mes-

sage is sent to it through its proxy. This economic way of using memory is called lazy load, and it

is very efficient in terms of time and main memory in some situations.

e8913.3 Saving and loading objects

To prevent the designer from worrying about when the objects must be loaded, the virtual proxy

mechanism must be interposed to all persistent links in main memory. Real objects send messages

to each other as if the proxies did not exist. But proxies intercept every message. The proxies

ensure that the real object will be loaded if it is not in memory.

Figure e13.13 is an example of the lazy load mechanism. Initially (Figure e13.13a), only an

instance of Publisher is in main memory. It is associated to three books. However, instead of hav-

ing the books in memory, only their proxies are there. If the instance of Publisher must send a mes-

sage to one of the books, it simply sends the message through the link; the message is intercepted

by the proxy that calls the BrokerManager, which ensures that the book is loaded into the memory

(Figure e13.13b). As the book is associated to some chapters, only the chapters’ proxies are created

in memory, not the real objects.

If one of the chapters receives a message from the book, then only that chapter would be

brought into memory.

13.3.1.1 Virtual data structures
The implementation of virtual proxies for each object may be very inefficient when an object has

many links; for example, a publisher with 50,000 registered books would demand the instantiation

of 50,000 proxies to be associated to it when it is brought into memory. Fortunately, there is a way

to avoid instantiating large quantities of proxies, which is the implementation of virtual data struc-

tures to physically replace the implementation of the associations in main memory.

:Publisher

:BookProxy

:BookProxy

:BookProxy

pk = 10002

pk = 10003

pk = 10001

(a)

:Publisher

:BookProxy

:BookProxy

:ChapterProxy

pk = 3004

(b)

pk = 3005

:ChapterProxy

:BookProxy

pk = 10002

pk = 10003

pk = 10001

:Book

FIGURE e13.13

(a) Initial state in which only a publisher and book proxies are in main memory. (b) Situation after the

publisher sends a message to one of the books.

e90 CHAPTER e13 Data Persistence

Thus, a publisher would not have 50,000 links to 50,000 proxies of Book, but a single link to a

VirtualSet structure with 50,000 PKs. The VirtualSet implements regular operations to add, remove,

update, and query objects: the same operations a normal set must implement. The only difference

is that it does not store the real objects, but only their primary keys. The virtual set does not bring

objects into memory; it brings only their primary key numbers. The VirtualSet and its counterparts,

VirtualSequence, VirtualOrderedSet, VirtualBag, VirtualMap, etc., use the BrokerManager to load

real objects when necessary instead of holding all the real objects.

A virtual data structure may be implemented with the following principles:

• Instead of a physical representation of a collection of objects, it is a physical representation of a

collection of the primary key values of the real objects.

• The method that adds an object to the collection must only add the primary key of the real

object to the physical representation.

• The method that removes an object from the collection must only remove the primary key of

the real object from the physical representation.

• Any method that performs a query on the data structure to return one or more objects receives

the real object(s), which are requested from the broker manager.

Thus, adding and removing links between objects may be performed without having the real

objects in memory (at least from one side of the link). An object is only brought into memory

when information about it becomes necessary, that is, when it receives a message.

13.3.1.2 Discussion
Lazy load is useful because it only brings into memory objects that are going to receive a message.

For example, if an instance of Publisher is in main memory and one of its books is going to be

updated, then it is not necessary to load all instances of Book linked to the publisher, but only one.

On the other hand, if the instance of Publisher must search its books to find the most expensive

of them, then all instances of Book that are linked to it must be loaded into main memory. This is

the drawback of the technique. Performing all operations on objects in main memory can be an

extraordinary waste of time. Imagine loading 50,000 instances of books to main memory just to dis-

cover which one of them has the highest price.

Virtual proxies work well when relatively few objects are brought into memory for each user

operation. For example, a user searching for books to buy will only view a relatively small quantity

of books in the list. That user would operate over just a single shopping cart and order. Those kinds

of operations over small sets of objects are perfectly handled automatically by virtual proxies.

However, when queries or commands involve iterating over large collections of objects, such as

increasing the price of all books in the store, then using virtual proxies should be avoided, unless

wasting processing time is not a problem; but that usually is not the case.

Thus, for performing queries or commands over large collections of objects, if the query or

command uses just a few attributes of the objects, it would be advisable to consider replacing the

virtual proxy mechanism in that specific case by a query or command directly performed over the

database. Therefore, some messages, when they reach specific objects, would be redirected to a

specific encapsulated implementation that performs the necessary actions in the database and

returns the results as necessary, rather than being redirected to a proxy.

e9113.3 Saving and loading objects

13.3.2 Brokers and materialization
The process of loading an object from the database into main memory is called materialization.

Materialization is usually requested by a proxy from a broker manager, which may in turn delegate

materialization to a specialized broker. The broker manager looks if the requested object is in memory.

If it is not, then the broker manager activates the specialized broker to materialize the object.

Each class may have its own specialized broker. However, a single broker may also be imple-

mented to serve all classes. A specialized broker must implement a method called materialize that

does the following:

1. It creates in main memory an instance of the persistent class.

2. It initializes the values of the attributes of the new instance with values taken from the

respective line and column in the database.

3. It loads and initializes the virtual data structures that implement the associations of the object

with the primary keys of the respective linked objects.

In order to obtain the values for the primary keys of the linked objects, the specialized broker

must know what associations are attached to the object being loaded; then it searches the occurrences

of the primary key of the object in the associative tables that implement those associations. The pri-

mary keys of other objects associated to the primary key of the object being materialized are added

into the virtual data structure, which has the responsibility of holding the respective association.

For example, Broker4Book should materialize instances of Book, as defined in Figure e13.14.

According to this conceptual model, Broker4Book must implement the materialize method by

performing the following operations:

1. Create an instance of Book.

2. Fill in the isbn, title, authorsName, price, pageCount, coverImage, and quantityInStock

attributes of the new instance with the values stored in the respective columns of the Book

column in the database.

3. Search the book_chapter table for occurrences of the primary key of the book in the fkBook

column. For every occurrence, add the corresponding value found in the fkChapter column to

the virtual set chapters of the new instance of Book, which implements the association role for

the book.

Book

1

1..*

Chapter

<<immutable>> +number : Natural
<<immutabe>> +title : String

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e13.14

Reference conceptual model.

e92 CHAPTER e13 Data Persistence

The materialization performed by the specialized broker must not be confused with the creation

of a new instance as defined by the system operation contracts (Chapter 8). In the contracts, the

creation of an instance refers to the insertion of new information in the system, independent of

the physical storage (main memory or secondary memory). The materialization performed by the

broker only refers to the operation of bringing into the main memory an existing object that is not

there physically yet. Materialization is, therefore, an operation that belongs exclusively to the

persistence tier; it has nothing to do with the business tier.

13.3.3 Caches
Objects in main memory may be classified as follows regarding their state related to the database:

• Clean or dirty, depending on whether or not they are consistent with the version stored in the database.

• Old or new, depending on whether or not they already exist in the database.

• Deleted or kept, depending on whether they have been deleted in main memory but not yet

deleted in the database.

A cache is a data structure, similar to a map or dictionary, that associates primary key values to

the real objects it represents.

Although there are eight possible combinations for the features defined above, in practice only

four combinations are sufficient to manage objects in main memory:

• Old clean cache: Keeps objects that are consistent with the database.

• Old dirty cache: Keeps objects that exist in the database but have been updated in main

memory and are, therefore, inconsistent with the database.

• New cache: Keeps objects that have been created in main memory, but which are not yet in the

database.

• Delete cache: Keeps objects that were deleted in memory, but still exist in the database.

The broker manager verifies that an object is in main memory by performing a query on the

existing caches, asking for the primary key of the object being requested. If the broker manager

finds a reference to that object in one of the caches, it returns the reference to the proxy that asked

for it. On the other hand, if the broker manager does not find any reference to the requested object

in any cache, then it asks a specialized broker (as, for example, Broker4Book) to materialize the

object. The object is then materialized and inserted into the old clean cache.

If, by any chance, that object is updated in main memory, that is, if some of its attributes or

links have been changed, it must be moved to the old dirty cache.

The persistence mechanism must have ways to assure that every time the inner state of an object

in the old clean cache is changed it is moved to the old dirty cache. This could be accomplished,

for example, by adding a special command such as BrokerManager.becomeDirty(self) to any

method that changes the object. If the object originally is in the old clean cache, that method will

move it to the old dirty cache.

Objects that were created in memory as a result of a contract postcondition are stored into the

new cache. An object that is in the new cache may not be moved to the old dirty cache, even if its

attributes have been changed. It stays in the new cache until a commit is performed. After the

commit it is moved to an old clean cache.

e9313.3 Saving and loading objects

When an object is deleted from main memory, the result will depend on which cache the object

came from. If it was in the old clean cache or in the old dirty cache, then it is moved to the delete

cache. However, if it was in the new cache, then it may be simply deleted from main memory.

13.3.3.1 Commit and rollback
The commit and rollback operations are usually activated by the interface tier to indicate that a

transaction was successful and confirmed, or that it was cancelled, respectively. These operations

are implemented by the broker manager. In the case of a commit, the broker manager should do the

following:

1. Perform an update in the database for every object in the old dirty cache, and move those

objects to the old clean cache.

2. Perform an insert in the database for every object in the new cache, and move those objects to

the old clean cache.

3. Perform a remove in the database for every object in the delete cache, and delete those objects

from main memory.

In the case of a rollback, the broker manager must simply remove all objects from all caches,

except those in the old clean cache.

As the old clean cache may grow indefinitely, it is necessary to implement some mechanism to

remove the oldest objects from it every time its size reaches some previously established threshold.

The other caches only grow up to the moment a commit or rollback is performed. At that

moment, they are emptied.

13.3.3.2 Cache control in a multiuser server
If more than one user connects to the system, it is necessary to determine how to share objects

among different users. Assuming we have a client/server architecture with interface, domain, and

persistence tiers, at least two approaches are possible:

• The three tiers are executed in the client. There is no main memory share in the server, only the

database. The client is heavy and the server is used only to access or store data after a commit

is performed. In this case, what travels in the network is data in the form of relational

table records and SQL6 instructions. Information travels only when an object must be

materialized or committed. The disadvantage of this design is that the client node is overloaded.

However, client applications have recently become richer and more complex: not depending on

a server to process the logic of the application may be a crucial requirement.

• The domain and persistence tiers are implemented in the server, and the interface tier is

implemented in the client. In this case, the objects will exist in main memory only in the server,

and what travels through the network are the parameters of the system operations and the

returns from queries. The advantage is that clients are lighter, and usually it is cheaper to

upgrade a server than upgrading thousands of clients. However, for some applications that

require fast processing of the data, waiting for the server may not be viable.

6Structured Query Language, the dominant language for defining, accessing, and updating relational databases

(Date, 1982).

e94 CHAPTER e13 Data Persistence

If the objects are physically in the server only, there are still more possibilities. In one case, all

users share the four caches, with the disadvantage that a user could have access to objects that are

being modified but have not yet been committed by another user. This option seems to be unadvisa-

ble for most applications.

The other option is to share only the objects in the old clean cache among the users. There should

be multiple instances of other caches that are private to each user. If an object is in a private cache of

one user, then the other users cannot access it. They must wait for a commit or rollback from the first

user. Thus, the persistence mechanism for multiuser access could be implemented like this:

• An old clean cache is shared by all users.

• Each user has a private old dirty cache, delete cache, and new cache.

By doing this, it is possible to ensure that no user would have access to objects that are being

modified by other users. Therefore, it is possible to use the caches to implement a lock mechanism,

that is, when a user is updating an object, the other users cannot access it. Only when the user that

has the object performs a commit or rollback, and the object is moved to the old clean cache or

cleaned from main memory, can the other users gain access to it again.

An advantage of this method is the optimized usage of server main memory. All users share the

objects in the old clean cache, which is the only one that grows indefinitely. The other four caches,

which are specific for each user, only grow during a transaction. When a commit or rollback hap-

pens, those caches are emptied.

However, this may negatively affect scalability, because some users could be stuck while others

are dealing with some objects. It is possible to implement a more sophisticated control mechanism

based on optimistic merges: two or more users may edit the same object as long as they do not

update the same attribute or association.

This must be used with care, however. Concurrency issues are always complicated concerns and

many decisions may depend on business rules. For example, may the price of a book be updated

while a user is finishing an order?

Some applications could even require a more pessimistic locking strategy: if a user is browsing

an object, no other user may even have access to view it. This is the case for banking applications,

for example, which require maximum data security.

13.4 The whole process

Inception Elaboration

Business
Modeling

Build a general view of the system:
• Build a business use case

diagram and determine the
automation scope for the project.

• Build preliminary activity diagrams
for business use cases.

• Build preliminary state machine
diagrams for key business objects.

(Continued)

e9513.4 The whole process

(Continued)

Inception Elaboration

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the main flow.
• Identify the alternate flows: variants

and exception handlers.

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and the
activity and state machine diagrams
from business modeling.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify the supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence diagrams:

• Represent the main flow of a use
case as a system sequence diagram.

• Represent the system commands
and queries using stateful or stateless
strategies.

• Complete system sequence diagrams
with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations with
stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

• Add invariants as needed.
• Improve the conceptual model

with the application of analysis
patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for commands
and returns for queries.

(Continued)

e96 CHAPTER e13 Data Persistence

(Continued)

Inception Elaboration

Design the domain tier:

• Create a sequence or communication
diagram for each system command
contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them
as such.

• Look at system query contracts and
decide which delegate queries could
be implemented; some of them could
be derived attributes or derived
associations.

• Produce or refine the design class
diagram.

Design the interface tier:

• Design the top-level interface
organization based on areas and
pages.

• Refine pages, including view
components for parameters of
system operations and results for
system queries.

• Associate operation activation to
interface events such as buttons and
menus.

Design the persistence mechanism:

• Reuse or build a persistence
mechanism based on ORM, virtual
proxies, caches, and brokers.

• Decide where to apply the default
persistence mechanism and where
to implement direct database
access for performance
optimization.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary basic

methods such as get, set, add,
remove, create, destroy, and others.

• Generate code for system operations
and delegate methods using dynamic
models as reference.

(Continued)

e9713.4 The whole process

(Continued)

Inception Elaboration

Test Plan and execute tests:

• Perform unit tests for methods and
classes that were not generated
automatically.

• Perform system operation tests based
on system operation contracts.

• Perform use case tests based on use
case scenarios.

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan
for the first iteration.

13.5 Questions
1. What kind of associative table should be used to represent an association that is ordered in both

directions? How do you represent it in the case of two ordered sets, or two sequences, or one

ordered set and one sequence?

2. What kind of association table should be used to represent an association with an association

class that is marked with {bag} on one side?

e98 CHAPTER e13 Data Persistence

Postface

At this point the reader must have been asking why a picture of a loom is on the front cover of this

book. Even if you are not asking that, I’ll tell you anyway. The reason is twofold: symbolic and

historical.

The symbolic reason is that there are similarities between the process of producing software and

producing fabrics with a loom. First you plan, and you draft the result you intend to produce; and

then you execute your work and see if it is going well. The many colors of string used to produce a

fabric may be compared to the many aspects of information and technology that must be weaved to

produce the patterns that are desired in the product. Work done on a loom can be undone as work

done on software can. After that, it can be refactored.

Producing nice patterns in fabrics may appear complex and confusing for unskilled people; the

same is true for producing software. But if the best practices, techniques, and tools are used, the

process is smoothed.

A difference between these processes is that working on looms has been automated since the

eighteenth century, while the software industry is just taking the first steps towards automation.

Furthermore, software development is so complex that many people doubt that it could be success-

fully automated someday. However, although the complexity of software is growing each year,

new techniques to improve our capacity to cope with that complexity are being learned and used.

The historical reason that links looms to this book is based on the six degrees of separation:

1. One of the first automatic complex machines were looms controlled by punched cards that were

invented in France around 1725 and greatly improved by Joseph Marie Jacquard in 1801. They

became a big commercial success and almost cost Jacquard his life because of the fierce

opposition of silk weavers that were afraid of losing their jobs.

2. Punched cards were used by Herman Hollerith as a data entry mechanism for his Electric

Tabulating Machine, which was used in the American census of 1890, reducing drastically the

time to obtain results.

3. Hollerith’s company, the Tabulating Machine Company, fused with other companies in 1911 to

form the Computing Tabulating Recording Company (CTR), which in 1924 changed its name

to the International Business Machines Corporation (IBM).

4. In 2003, IBM acquired, for 2.3 billion dollars, the Rational Company, which was responsible,

among other products, for the Unified Process and the Unified Modeling Language (UML).

5. The present book addresses many aspects of the Unified Process, and uses UML and its

byproducts OCL and IFML for modeling.

As far as I can see, five degrees of separation were sufficient.

Raul Sidnei Wazlawick, September 12th, 2013.

337

http://dx.doi.org/10.1016/B978-0-12-418673-6.00025-9

This page intentionally left blank

References

Adams, D.N., 1979. The Hitchhiker’s Guide to the Galaxy. Completely Unexpected Productions Ltd..

Albrecht, A.J., 1979. Measuring application development productivity. Proceedings of the Joint SHARE/

GUIDE and IBM Application Development Symposium, Chicago. pp. 83�92.

Albrecht, A.J., Gaffney Jr., J.E., 1983. Software function, Source lines of code, and development effort predic-

tion: a software science validation. IEEE Trans. Softw. Eng. 9 (6), 639�648, November.

Alford, M., 1991. Requirements-Driven Software Design. McGraw-Hill.

Ambler, S.W., 2000. Web Services Programming Tips and Tricks: Modeling essential use cases. Available at:

,http://www.ibm.com/developerworks/library/ws-tip-essentialuse/index.html..

Ambler, S.W., 2004. The Object Primer: Agile Model-Driven Development with UML 2.0. third ed.

Cambridge University Press.

Ambler, S.W., Jeffries, R., 2002. Agile Modeling: Effective Practices for eXtreme Programming and the

Unified Process. John Wiley and Sons.

Anda, B., 2001. Estimating software development effort based on use cases: Experiences from industry. Fourth

International Conference on the Unified Modeling Language. Springer-Verlag, Toronto, pp. 487�502.

Beck, K., 1989. Simple Smalltalk Testing with Patterns. Available at: ,http://www.xprogramming.com/test-

fram.htm. (accessed 31.08.13).

Beck, K., 2003. Test-Driven Development by Example. Addison-Wesley.

Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace Change. second ed. Addison-Wesley.

Beizer, B., 1990. Software Testing Techniques. second ed. Van Nostrand Reinhold.

Bloch, A., 1980. Murphy’s Law, and Other Reasons Why Things Go Wrong. Price/Stern/Sloan Publishers,

Inc., Los Angeles.

Boehm, B.W., 2000. Software Cost Estimation with COCOMO II. Prentice-Hall.

Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Conallen, J., Houston, K.A., 2007. Object-Oriented

Analysis and Design with Applications. third ed. Addison-Wesley Professional.

Bourret, R., 2010. XML Database Products. Available at, ,http://www.rpbourret.com/xml/XML

DatabaseProds.htm. (accessed 11.09.13).

Braz, M., Vergilio, S., 2006. Software effort estimation based on use cases. Proceedings of the 30th Annual

International Computer Software and Applications Conference, pp. 221�228.

Burnstein, I., 2003. Practical Software Testing. Springer-Verlag.

Cabot, J., 2007. From declarative to imperative UML/OCL operation specifications. Lect. Notes Comput. Sci.

198�213.

Cardoso, I.S., 2011. Introducing support to the declaration of associations in UML 2 in an object-oriented lan-

guage. Masters Dissertation. UFSC � Federal University of Santa Catarina, PPGCC � Computer Science,

Florianópolis, Brazil.

Carr, M.J., Konda, S.L., Monarch, I., Ulrich, F.C., Walker, C.F., 1993. Taxonomy-Based Risk Identification.

SEI. Carnegie Mellon University, Pittsburgh.

Center for Software Engineering, USC, 2000. COCOMO II � Model definition manual � version 2.1.

Available at: ,http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf..

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M., 2003. Designing Data-Intensive

Web Applications. Morgan Kaufmann.

Choenni, S., Blanken, H., Chang, T., 1993. Index selection in relational databases. Proc. Int. Conf. Comput.

Inf. 491�496.

339

http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref1
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref2
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref2
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref2
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref3
http://www.ibm.com/developerworks/library/ws-tip-essentialuse/index.html
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref4
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref4
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref5
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref5
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref6
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref6
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref6
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref7
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref8
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref9
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref10
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref10
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref11
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref12
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref12
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref13
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref14
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref14
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref14
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref15
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref15
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref15
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref15
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref15
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref16
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref16
http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref17
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref17
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref18
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref18
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref18
http://dx.doi.org/10.1016/B978-0-12-418673-6.00026-0

Cockburn, A., 2001. Writing Effective Use Cases. Addison-Wesley.

Crain, A., 2004. RUP Iteration Planning. IBM. Available at: ,http://www.ibm.com/developerworks/rational/

library/5335.html. (accessed 15.09.13).

Date, C.J., 1982. An Introduction to Database Systems. Addison-Wesley.

Dustin, E., 2002. Automate regression tests when feasible. In: Dustin, E. (Ed.), Effective Software Testing: 50

Specific Ways to Improve Your Testing. Addison-Wesley Professional.

Emam, K.E., Melo, W., Drouin, J.-N., 1997. Spice: The Theory and Practice of Software Process

Improvement and Capability Determination. IEEE Computer Society Press, Los Alamitos, CA, USA.

English, A.V., 2007. Business Modeling with UML: Understanding the Similarities and Differences between

Business Use Cases and System Use Cases. Retrieved November 14, 2012, from ,http://www.ibm.com/

developerworks/rational/library/apr07/english/..

Fowler, M., 2003. Patterns of Enterprise Application Architecture. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley.

Gause, D.C., Weinberg, G.M. Exploring Requirements: Quality before Design. Dorset House Pub.

Goldberg, A., Robson, D., 1989. Smalltalk 80: The Language. Addison-Wesley.

Grady, R., 1992. Practical Software Metrics for Project Management and Process Improvement. Prentice-Hall.

Ibarra, G., Vilain, P., 2010. Software estimation based on use case size. Brazilian Symposium on Software

Engineering, Florianópolis. pp. 178�187.

Ireland, C., Keynes, M. Bowers, D., Newton, M., Waugh, K., 2009. A classification of object-relational impedance

mismatch. Advances in Databases, Knowledge, and Data Applications, DBKDA ’09, Gosier pp. 36�43.

Jacobson, I., 1994. The Object Advantage: Business Process Reengineering with Object Technology. Addison-

Wesley.

Jacobson, I., Christenson, M., Jonsson, P., Övergaard, G., 1992. Object-Oriented Software Engineering: A Use

Case Driven Approach. Addison-Wesley.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development Process. Addison-Wesley.

Jacobson, I., Spence, I., Bittner, K., 2011. Use Case 2.0: The Guide to Succeeding with Use Cases. Ivar

Jacobson International.

Jones, C., 2007. Software Estimating Rules of Thumb � version 3. Available at: http://www.compaid.com/

caiinternet/ezine/capers-rules.pdf.

Kamal, M.W., Ahmed, M.A., 2011. A proposed framework for use case based effort estimation using fuzzy

logic: building upon the outcomes of a systematic literature review. Int. J. New Comput. Archit. Appl. 1

(4), 976�999.

Karner, G., 1993. Use Case Points: Resource Estimation for Objectory Projects. Objective Systems.

Krasner, G.E., Pope, S.T., 1988. A cookbook for using the model-view controller user interface paradigm in

smalltalk-80. The Journal of Object Technology � JOT. SIGS Publications, August-September.

Kroll, P., 2004. Planning and Estimating a RUP Project Using IBM Rational SUMMIT Ascendant. Available

at: ,http://www.ibm.com/developerworks/rational/library/4772.html..

Kroll, P., Kruchten, P., 2003. The Rational Unified Process Made Easy: A Practicioner’s Guide to RUP.

Addison-Wesley.

Kroll, P., MacIsaac, B., 2006. Agility and Discipline Made Easy: Practices from OpenUp and RUP. Addison-

Wesley Professional.

Kruchten, P., 2003. The Rational Unified Process: An Introduction. third ed. Addison-Wesley.

Larman, C., 2004. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and

the Unified Process. third ed. Prentice-Hall.

Lieberherr, K., Holland, I., 1989. Assuring good style for object-oriented programs. IEEE Softw. pp. 38�38,

September.

340 References

http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref19
http://www.ibm.com/developerworks/rational/library/5335.html
http://www.ibm.com/developerworks/rational/library/5335.html
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref21
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref22
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref22
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref23
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref23
http://www.ibm.com/developerworks/rational/library/apr07/english/
http://www.ibm.com/developerworks/rational/library/apr07/english/
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref24
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref25
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref25
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref26
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref27
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref28
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref28
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref29
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref29
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref30
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref31
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref31
http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref32
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref32
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref32
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref32
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref33
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref34
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref34
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref34
http://www.ibm.com/developerworks/rational/library/4772.html
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref35
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref35
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref36
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref36
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref37
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref38
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref38
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref39
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref39
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref39

Liskov, B., 1974. Programming with abstract data types, in Proceedings of the ACM SIGPLAN Symposium

on Very High Level Languages (pp. 50�59), Santa Monica, California.

McConnell, S., 1996. Rapid Development. Microsoft Press.

Meszaros, G., 2007. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley.

Meyer, B., 1988. Object-Oriented Software Construction. Prentice Hall.

Miles, R., Hamilton, K., 2006. Learning UML 2.0. O’Reilly.

Mohagheghi, P., Anda, B., Conradi, R., 2005. Effort estimation of use cases for incremental large scale soft-

ware development. Int. Conf. Softw. Eng.

Molyneaux, I., 2009. The Art of Application Performance Testing: Help for Programmers and Quality

Assurance. O’Reilly Media.

Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M., 2004. The Art of Software Testing. second ed. John

Wiley & Sons, New Jersey.

Nelson, W.B., 2004. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. John Wiley & Sons.

Nielsen, J., 1994. Usability Engineering. Academic Press.

Object Management Group, 2010. OCL 2.3.1 Specification. OMG.

Object Management Group, 2011. OMG Unified Modeling LanguageTM (OMG UML), Superstructure, Version

2.4.1. OMG.

Ockhan, W., 1495. Questions and decision in four books - Sentences of Petri Lombardi. Johannes Trechsel.

Potel, M., 1996. MVP: Model-View-Presenter: The Taligent Programming Model for C11 and Java.

Available at: ,http://www.wildcrest.com/Potel/Portfolio/mvp.pdf. (accessed 01.09.13).

Pressman, R.S., 2008. Web Engineering: A Practicioner’s Approach. McGraw Hill.

Pressman, R.S., 2010. Software Engineering: A Praticioner’s Approach. McGraw Hill.

Probasco, L., 2001. What Makes a Good Use Case Name? The Rational Edge, March.

Ribu, K., 2001. Estimating Object-Oriented Software Projects with Use Cases. Master of Science Thesis,

University of Oslo, Department of Informatics.

Robiolo, G., Orosco, R., 2008. Employing use cases to early estimate effort with simpler metrics. Innov.

Sytems Softw. Eng. 4 (1), 31�43.

Royce, W.W., 1970. Managing the development of large software systems. Proceedings of the IEEE

WESCON. IEEE, Los Angeles, pp. 1�9.

Santos, C.C., 2007. Automatic generation of communication diagrams from OCL contracts. Masters

Dissertation, UFSC, Florianópolis.

Satzinger, J.W., Jackson, R.B., Burd, D.S., 2011. Systems Analysis and Design in a Changing World. sixth ed.

Course Technology.

Schneider, G., Winters, J.P., 1998. Applying Use Cases: A Practical Guide. Addison-Wesley.

Scott, K., 2001. The Unified Process Explained. Addison-Wesley.

SEI-CMU, 2010. CMMI for Development version 1, 3. Carnegie Mellon University.

Sommerville, I., 2006. Software Engineering. seventh ed. Addison-Wesley.

Symons, C.R., 1988. Function points analysis: Difficulties and improvements. IEEE Trans. Softw. Eng. 14 (1), 2�11.

Tidwell, J., 2005. Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly Media.

UKSMA Metrics Practices Committee, 1998. Mk II Function Point Analysis Counting Practice Manual �
Version 1.3.1. Available from ,http://uksma.co.uk/products.asp. upon registration.

Warmer, J., Keppe, A., 1998. The Object Constraint Language: Precise Modeling with UML. Addison-Wesley.

West, D., 2002. Planning a Project with the Rational Unified Process. Rational White Paper. Available at: http://

www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/PlanningProjWithRUP.pdf. (accessed 15.09.13).

Won, K., 1990. Introduction to Object-Oriented Databases. The MIT Press.

Woolf, B., 1998. Null object. In: Martin, R., Riehle, D., Buschmann, F. (Eds.), Pattern Languages of Program

Design 3. Addison-Wesley.

341References

http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref40
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref41
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref42
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref43
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref44
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref44
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref45
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref45
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref46
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref46
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref47
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref48
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref49
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref50
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref50
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref50
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref51
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref52
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref53
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref54
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref55
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref55
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref55
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref56
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref56
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref56
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref57
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref57
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref58
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref59
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref60
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref61
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref62
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref62
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref63
http://uksma.co.uk/products.asp
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref64
http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/PlanningProjWithRUP.pdf
http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/PlanningProjWithRUP.pdf
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref65
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref66
http://refhub.elsevier.com/B978-0-12-418673-6.00026-0/sbref66

This page intentionally left blank

Index

Note: Page numbers followed by “f ”, “t ” and “b ” refers to figures, tables and boxes respectively.

A
Abstract data types, 133

Abstract superclasses, 139, 140f

Acceptance tests, 272, 282�283

Ad hoc techniques, e1�e3

Adapted use case points, e26

Adjusted use case points (UCP), e22

Aggregation, 129�130, 130f

Aggregation

composite, 129, 130f

shared, 129, 130f

Agile process, 5

Algorithms, 228

Analysis patterns, 165

Apparent functionality, e3

Association classes, 141�144

reservation modeled as, 143f

reservation modeled as intermediary concept, 143f

suitable representation of many records, 144f

suitable representation of roles, 142f

unsuitable representation of many records, 143f, 144f

unsuitable representation of roles, 141f

Associations, 115, 122�132

derived, 126�129, 127f, 128f

direction, 126

n-ary, 130�132, 131f, 132f

role multiplicity, 124�126, 125f

Associative information, 157

Attributes, 115�120, 116f

derived, 117�118, 117f

enumerations, 118�119, 119f

initial values, 116�117, 117f

primitive types, 119�120, 120f

types, 116, 116f

Average team size, e24�e25

B
Backfire table, e9

Bag structure, 134, 134f

Basic queries, 258

Bidirectional associations, e39, e50�e60

implementation

with intermediary object, e59�e60

unidirectional, e57�e59

many-to-many associations, e52f

mutual friends, e51�e57

both roles optional, e51�e53

one mandatory role, e53�e55, e53f

two mandatory roles, e55�e57, e56f

Brokers, e90�e92

Business activity diagram, 18�22

control flow nodes, 20�22

decision control flow, 20, 20f

parallel control flow, 20, 21f

elements, 18�19, 19f

Business actors, 13, 15, 15f. see also System actors

Business cycle test, 282�283

Business modeling, 7�9. see also Business activity diagram;

Business use cases; State machine diagram

general view of system, 9�13

deliverables, 10

example of, 12f

product acceptance criteria, 10�11

scope declaration, 7�8, 10

goals of, 8

need for, 8�9

scenarios in

domain modeling, 8

generic business model, 9

new business, 9

one company, many systems, 9

organizational chart, 8

renewal, 9

Business Process Model and Notation (BPMN), 7�8

Business renewal, 9

Business use cases, 13�18, 13f. see also System use cases

automation, 15�18

candidates for automation, 17f

system boundary, 16, 17f

updated, 22f

use case names, 13�14

Business workers, 13, 15, 15f

C
Caches, e92�e94

commit and rollback operations, e93

control, e93�e94

Calendar time, e24�e25

Calling operation, 194

Cascade index, 309�311, 310f, 311f, 312f

Casual use cases, 37

COCOMO II, e3, 10

scale factors, 9�10

Code generation, e35

343

Code generation (Continued)

for attributes, e35�e38

automatic, e35

for classes, e35�e38, e36f

for delegated methods, e60�e62

for system operations, e60�e62

Command-Query Separation (CQS), 92

Communication diagrams, 228

Composition, 129�130, 130f

Composition model, 290

Concentration, 260, 263f

Conceptual model

organization of, 138�149

associative, 138

structural, 138

temporal, 138

refinement of, 152�162

associations, 157�158, 159f

concepts and attributes, 152�155, 154f

dependent concepts, 156�157

example of, 159�162

independent concepts, 156�157

static aspect, 113

Conceptual model patterns, 165

account/transaction, 178�181, 178f, 180f, 181f, 182f

composite, 173�174, 174f

high cohesion, 165�168, 166f, 167f, 168f

measure, 171, 171f

object joining, 175�178

copy and replace, 176

essence/appearance, 177, 177f

superseding, 176�177, 176f

undoing join, 177�178

organizational hierarchy, 174�175, 175f

quantity, 170�171, 170f, 171f

range, 182�183, 185f

specification classes, 168�170, 169f

strategy, 172, 173f

temporal, 183�189

bitemporal pattern, 187�189, 188f

effectivity, 185, 185f

history association, 185�186, 186f

temporal association, 186�187, 187f, 188f

Conceptual modeling, 113�115, 114f. see also Preliminary

conceptual model

associations, 115, 122�132

attributes, 115�120, 116f

collections, 132�138, 133f

concepts, 115, 120�122

Concrete data types, 133

Concrete use cases, 36

Contingency plan, e5, e7

Contracts

for CRUD, 216�222

create contract, 217�218

delete contract, 218�221, 221f

retrieve contract, 221�222, 221f

update contract, 218

for listing objects, 222�223

for use cases, 223�224

CRUD (Create, Retrieve, Update, and Delete), 32, 55

CRUD expanded use case, 86�89

with access restrictions, 90f

example of, 88f, 91f

template for, 87f

CRUD operations, IFML models for, 325�328, 326f, 327f, 328f

D
Data flow, 304

Data model, 113

Data persistence, e67�e68

Database management system (DBMS), 30�31

DCD building, 228

DCD (design class diagram), 227

Delegate methods, e60�e62

Delegation, 2, 259�262, 263f

Derivation model, 290

Derived associations, 117

Design class diagram (DCD), 113, 227, 262�265, 265f

Design patterns, 165

Disaster recovery plan, e5, e7

Domain modeling, 8

Domain tier design, 227�229

Dynamic model, 113

Dynamic modeling, 228, 245�256

attribute value modification, 250, 251f

conditional postconditions, 253�255, 254f

exceptions, 255, 256f

instance creation, 246�248, 248f, 249f

instance destruction, 250�251, 252f

link addition, 249�250, 249f, 250f

postconditions over collections, 255�256, 256f

removing link, 251�253, 253f

E
Effort, e23�e24

Effort estimation, e1, e7

Effort per use case point, e28

Effort value, e23

Electronic focus groups, 11

Equivalence partitioning, 272�273

Essential use cases, 36, 75�76

Estimation by analogy, e2

344 Index

Exception handler

corrective actions, 72

example of, 73f

exception, 72

finalization, 72

identification code, 72

Exceptions, 69, 194, 214�216

in command contracts, 194

in query contracts, 194

transformed into precondition, 214

Expanded use cases, 61�62

alternate flows, 64�74

exception handling, 69�74, 70f, 73f

scenarios, 65�66

variants, 66�69, 67f, 68f

main flow of, 62�64

exception handling, 63�64, 65f

first draft, 63f, 64f

open issues, 92

preconditions, 91�92

stakeholders, 91

success post conditions, 92

as system sequence diagrams, 95�97, 96f

uses, 92

writing recommendations, 74�83

complementary steps, 81, 81f

essential vs real use case, 75�76

explicit information, 76�77

identification and selection, 77

mandatory steps, 77�81, 78f, 80f

unsuitable steps, 82�83, 82f, 83f

Expert judgment, e1

Exploratory surveys, 11

F
Filter object, e63, e63f

Filtered index, 312, 312f

Filtered queries, patterns for, e62�e64

Full use case size method, e26

Fully dressed use cases, 37

Function point analysis, e3

Function points, e3, 10

Functional modeling, 193�196

Functional requirements, 41, 45

Functional testing, 272�274

Functional tests, 272

FUSP (Fuzzy Use Case Size Points), e26

G
Generalization, 139�140, 139f, 140f

Generic business model, 9

Guided tour, 313, 313f, 314f

H
Hardware attributes, e4

High-level requirements, 29�30

Human actors, 30

I
If-then-else-endif, 147

IFML (Interaction Flow Modeling Language), 289�290

Immutable attributes, e36

Included fragments, 83�84, 84f

Included use cases, 83�84

Indexed column, e71

Inheritance, 139�140

Instance variables, e38

Interaction Flow Modeling Language (IFML), 289�290

areas, 308

default page, 309

flows, 302�305

homepage, 309

hypertext organization, 305�309

landmark page, 309

pages, 301�302, 301f, 302f

site view, 307�308, 309f

view components, 290�300

checkable list, 297, 297f

details, 291�293, 292f, 293f

forms, 297�298, 299f

hierarchies, 298�300, 299f, 300f

list, 295�296, 296f, 297f

multiple details, 293�294, 293f, 294f

simple list, 294, 295f

Interface tier design, 227, 289

Intermediate queries, 258

Invariants, 149�152

constraint, 149f

example of, 150f

IsEmpty(), 147

Iteration planning, e30�e32

Iterative surveys, 11

K
Kilo source lines of code (KSLOC), e3

KO flow, 319

L
Lazy load, e88, e89f, e90

Limit value analysis, 274

Lines of code, e3

Logical design, 227�228. see also Domain tier design

Low coupling, 259�262

345Index

M
Map, 135�136, 135f, 136f

Mark II counting, e7�e9

Materialization, e90�e92

Modal classes, 144�149

Modeling operations in interface, 317�325, 318f

connect, disconnect, and reconnect operations, 323�325,

324f, 325f

create operation, 319, 320f

delete operation, 319�320, 321f

update operation, 321�322, 322f, 323f

Monotonic increasing transition, 145�147, 146f

effective way to model, 147f

unsuitable way to model, 146f, 147f

Multivalued parameter binding, 305, 307f, 308f

N
Navigation model, 290

New business, 9

Nonfunctional requirements, 45�46

Nonfunctional tests, 283�284

Nonmonotonic transition, 145, 147�149

modeled with state machine diagram, 148f

modeled with the state design pattern, 149f

Nonparametric estimation, e1�e2

Nonpattern use cases, e11

Normal navigation flow, 302�304, 303f, 304f

Number sequence generator, e71

O
Object equivalence, 177

Object-oriented CASE tools, 2

Object-oriented databases, e67

Object-oriented design, e67�e68

Object-oriented systems development, 2

Object-relational impedance mismatch, e68

Object-relational mapping (ORM), e67, e68�e87

associations, e71�e83

association class, e80�e82, e81f, e81t

bags, e78, e78f, e79t

façade controller, e83f

many-to-many associations, e72�e73, e72f, e73t

n-ary, e82, e82f, e82t

one-to-many associations, e74�e76, e74f, e74t, e75t

one-to-one associations, e76�e77, e76f, e76t

ordered associations, e77�e78, e77f, e77t

qualified associations, e79�e80, e79f, e80t

transient, e83

attributes, e68�e71

classes, e68�e71, e69f, e70t

inheritance, e83�e87, e84f

each class, e86�e87, e87t

each concrete class, e86, e86t

implementation of, e84�e86, e85t

Object responsibility distribution, 229�232, 231t

Object visibility, 232�245

by association, 232�239

with association class, 237�239, 238f, 239f

multiple objects, 233, 234f

with ordered roles, 233�235, 234f, 235f

preconditions, 239, 239f, 240f

with qualifiers, 235�237, 236f, 237f

single object, 233, 234f

global, 244�245, 245f

locally declared, 242�244, 244f

by parameter, 240�242, 240f, 241f, 242f, 243f

OCL (Object Constraint Language), 23, 116

OK flow, 319

One company, many systems, 9

Open-close principle, 44

Ordered set structure, 134, 134f

Organizational chart, 8

Overview plus detail pattern, 313, 316f

P
Parameter binding, 304�305, 305f, 306f, 307f

Parametric techniques, e3�e4

Parkinson’s Law, e2

Partition, 136�137, 137f

Pattern use cases, e10, 84�89

Persistence tier design, 227

Personnel attributes, e4

Phase planning, e29, e32t

Postconditions, 194, 203�214

changing attribute value, 205

collections of objects, 213�214

combinations of, 211�212

former values, 212�213

instance creation, 206�207

Instance destruction, 209

link addition, 207�208

and real-world events, 214

removing link, 209�210

well-formed, 210�211

Preconditions, 194, 196�200

assurance, 199�200

complementary constraints, 198�199

and exceptions versus invariants, 200

parameter guarantee, 197�198

Preliminary conceptual model, 52�56, 53f, 54f, 56f

Presentation model, 290

Pricing to win, e2

Primary actors, 31

346 Index

Product attributes, e3

Project attributes, e4

Project planning, e26�e32

duration of iterations, e27

number of iterations, e27�e28

Q
Query return, 201�203

R
Real use cases, 75�76

Reference class, e69f

Reference conceptual model, e91f, 195f

Refined conceptual model,

193

Relation, 137�138, 137f

Relational databases, e67

Relational table, e68

Report expanded use case, 85�86

example of, 86f

template for, 86f

Reports, e10

Requirements, 41�51

challenges, 44�45

desired, 47

functional, 45

evident, 45

hidden, 45

mandatory, 47

nonfunctional, 45�46

logical issues, 45

permanent, 46

technological issues, 45

transient, 46

supplementary, 45, 47�51

classification, 48t

example of, 51t

Requirements elicitation, 41�42

Responsibility assignment, 2

Risk, e4�e5

cause of, e7

control, e5

effects of, e7

exposure, e6, e6t

identification, e4

impact, e6

planning, e5, e7, e8t

probability, e6

sources of, e5�e6

Risk analysis, e4�e7, 59�60

Risk mitigation plans, e5, e7

S
Scenario building, 11

Secondary actors, 31

Semantic verification, 198

Sequence diagrams, 93, 228

Sequence structure, 134�135, 135f

Smalltalk, 138�139

Source lines of code (SLOC), e3

Spaghetti code, 2

Specialization, 139�140, 141f

Stable state transition, 145, 145f

State machine diagram, 23�26, 25f, 26f

Stereotyped use cases, 84�89

Story points, e2

Structural model, 289�290

Structural tests, 272

Stubs and drivers, 274�275

Subclass, 139

Superclass, 139

Supplementary requirements, 45, 47�51

Surrogate key, e69

Syntactic verification, 198

System actors, 30�31

System command contract, 193

exceptions, 193

postconditions, 193

preconditions, 193

System commands, 92, 97�98, 99f

System control class, 121�122, 121f

System events, 79, 97, 98f

System operation contracts, 193

System operations testing, 272, 280�282, 282t

System queries, 92, 98, 99f, 257�259, 258f

System query contract, 194

exceptions, 194

preconditions, 194

results, 194

System returns, 79, 97, 98f

System sequence diagrams, 92�109

alternate flows in, 104�109, 105f, 106f, 107f

complete, 109f

connecting interface to façade-controller, 97�101, 100f,

101f, 104�109

construction of, 95

defined, 93

elements of, 93�95, 93f

inadequate, 94f

main flow, 94�95, 102f, 104f

stateful strategy, 103, 104f

stateless strategy, 101�103, 102f

user identification, 108f

System tests, 272, 282�283

347Index

System use cases, 29, 31�38, 32f

avoiding fragments, 33f

brief, 37

and business use cases, 31, 38�41, 40f

consistent result, 35�36, 35f, 36f

essential, 36

high-level, 29, 31

interactive, 35

single session, 33�34, 34f

system boundary, 37�38

uses, 29�30

T
TCF (technical complexity factor), e11�e17, e12t, e18t

Team load capacity (TLC), e29

Team productivity index (TPI), e23

Technical adjustment factors, e3

Technical complexity factor (TCF), e11�e17

environmental factors, e17�e22, e19t

technical factors, e11�e17, e12t, e18t

Technological design, 227

Test-driven development, 275�276

Testing, 271�272. see also Functional testing

Top-level navigation, 314�316, 317f, 318f

Traditional focus groups, 11

Transient associations, 200�201, 201f

U
UAW (unadjusted actor weight), e9�e10

UML (Unified Modeling Language), 3

Unadjusted actor weight (UAW), e9�e10

Unadjusted use case points (UUCP), e9

Unadjusted use case weight (UUCW), e10�e11

Unidirectional associations, e38�e50, e39f, e41t

to 1, e40�e44, e42f

advantages, 126

with association class, e49�e50, e49f

to many, e44�e45, e44f

qualified association, e45�e49, e45f, e47f, e48f

Unified Modeling Language (UML), 3

diagrams

behavior diagrams, 3

interaction diagrams, 3

structure diagrams, 3

Unified Process (UP), 3�5

phases of, 4f

construction, 5

elaboration, 5

inception, 4�5, 7

transition, 5

vs waterfall phases, 4

principles of, 3�4

Unique attributes, 121, 121f

Unit testing, 276�280

Unit tests, 271, 276

UP (Unified Process), 3�5

Use case complexity, e29

Use case diagram, 56f

Use case interface modeling, 328�331, 329f, 330f, 331f

Use case point analysis, e7�e26

Use case points, e3, e7�e9, 10

Use case priority, e29�e30, e30t

Use case testing, 282�284, 285t

Use case tests, 272, 282

Use cases. see also Business use cases; System use cases

complex, e10

dependencies among, e29

detailed, counting methods, e26

expanded. see Expanded use cases

importance of, 61

medium, e10

simple, e10

User stories, e2, 11

UUCP (unadjusted use case points), e9, e11

UUCW (unadjusted use case weight), e10�e11

V
Viewpoints, 313, 314f, 315f

Virtual proxy, e88�e90

data structures, e89�e90

W
Web interface patterns, 309�316

WebRatios tool, 290

X
XML databases, e67

348 Index

	Front Cover
	Object-Oriented Analysis and Design for Information Systems
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	Foreword
	Preface
	1 Introduction
	1.1 This book
	1.2 Object-oriented systems development
	1.3 Unified Modeling Language (UML)
	1.4 Unified Process (UP)
	1.5 The process so far
	1.6 Questions

	2 Business Modeling
	2.1 Introduction to business modeling
	2.2 General view of the system
	2.3 Business use cases
	2.3.1 Business actors and business workers
	2.3.2 Automation opportunities

	2.4 Business activity diagram
	2.4.1 Basic elements
	2.4.2 Control flow nodes

	2.5 State-dependent aspects of a business
	2.6 Remarks
	2.7 The process so far
	2.8 Questions

	3 High-Level Requirements
	3.1 Introduction to high-level requirements
	3.2 System actors
	3.3 System use cases
	3.3.1 Single session
	3.3.2 Interactive
	3.3.3 Consistent result
	3.3.4 Essential
	3.3.5 Brief
	3.3.6 System boundary

	3.4 How to find system use cases in the business model
	3.5 Requirements
	3.5.1 Requirements elicitation
	3.5.2 Eliciting requirements is not design!
	3.5.3 Requirements challenges
	3.5.4 Evident and hidden functional requirements
	3.5.5 Nonfunctional requirements
	3.5.6 Permanence and transience of nonfunctional requirements
	3.5.7 Mandatory and desired requirements
	3.5.8 Supplementary requirements

	3.6 Preliminary conceptual model
	3.7 The process so far
	3.8 Questions

	4 Use Case Based Project Planning
	4.1 Introduction to effort estimation and risk analysis in software projects
	4.1.1 Ad hoc techniques
	4.1.2 Parametric techniques
	4.1.3 Risk analysis

	4.2 Use case point analysis
	4.2.1 UAW – unadjusted actor weight
	4.2.2 UUCW – unadjusted use case weight
	4.2.3 UUCP – unadjusted use case points
	4.2.4 TCF – technical complexity factor
	4.2.5 EF – environmental factors
	4.2.6 UCP – adjusted use case points
	4.2.7 Effort
	4.2.8 Calendar time and average team size
	4.2.9 Counting methods for detailed use cases

	4.3 Planning an iterative project
	4.3.1 Estimating the duration of iterations
	4.3.2 Number of iterations
	4.3.3 Effort per use case point
	4.3.4 Team load capacity
	4.3.5 Defining use case priority
	4.3.6 Planning phase and iterations

	4.4 The process so far
	4.5 Questions

	5 Expanded Use Cases
	5.1 Introduction to expanded use cases
	5.2 Main flow
	5.3 Alternate flows
	5.3.1 Scenarios
	5.3.2 Variants
	5.3.3 Exception handling

	5.4 Writing recommendations
	5.4.1 Essential versus real use case
	5.4.2 Explicit information
	5.4.3 Identification and selection
	5.4.4 Mandatory steps
	5.4.5 Complementary steps
	5.4.6 Unsuitable steps

	5.5 Included use cases and fragments
	5.6 Expansion of stereotyped use cases
	5.6.1 Report expanded
	5.6.2 CRUD expanded

	5.7 Other sections of an expanded use case
	5.7.1 Stakeholders
	5.7.2 Preconditions
	5.7.3 Success post-conditions
	5.7.4 Open issues

	5.8 System sequence diagrams
	5.8.1 Elements of a sequence diagram
	5.8.2 Expanded use cases as system sequence diagrams
	5.8.3 Connecting the interface to the façade-controller
	5.8.4 Stateless strategy
	5.8.5 Stateful strategy
	5.8.6 Alternate flows in system sequence diagrams

	5.9 The process so far
	5.10 Questions

	6 Conceptual Modeling: Fundamentals
	6.1 Introduction to conceptual modeling
	6.2 Attributes
	6.2.1 Attribute types
	6.2.2 Initial values
	6.2.3 Derived attributes
	6.2.4 Enumerations
	6.2.5 Primitive types

	6.3 Concepts
	6.3.1 Unique attributes
	6.3.2 System control class

	6.4 Associations
	6.4.1 Role multiplicity
	6.4.2 Association direction
	6.4.3 Derived association
	6.4.4 Aggregation and composition
	6.4.5 n-ary associations

	6.5 Collections
	6.5.1 Set
	6.5.2 Ordered set
	6.5.3 Bag
	6.5.4 Sequence
	6.5.5 Map
	6.5.6 Partition
	6.5.7 Relation

	6.6 Organization of the conceptual model
	6.6.1 Generalization, specialization, and inheritance
	6.6.2 Association classes
	6.6.3 Modal classes
	6.6.3.1 Stable transition
	6.6.3.2 Monotonic increasing transition
	6.6.3.3 Nonmonotonic transition

	6.7 Invariants
	6.8 Iterative construction of the conceptual model
	6.8.1 How to find concepts and attributes
	6.8.2 Dependent and independent concepts
	6.8.3 How to find associations
	6.8.4 Example of iterative construction of the conceptual model

	6.9 The process so far
	6.10 Questions

	7 Conceptual Modeling: Patterns
	7.1 Introduction to conceptual model patterns
	7.2 High cohesion
	7.3 Specification classes
	7.4 Quantity
	7.5 Measure
	7.6 Strategy
	7.7 Composite
	7.8 Organizational hierarchy
	7.9 Object joining
	7.9.1 Copy and replace
	7.9.2 Superseding
	7.9.3 Essence/Appearance
	7.9.4 Undoing a join

	7.10 Account/Transaction
	7.11 Range
	7.12 Temporal patterns
	7.12.1 Effectivity
	7.12.2 History
	7.12.3 Temporal
	7.12.4 Bitemporal

	7.13 Discussion
	7.14 The process so far
	7.15 Questions

	8 Functional Modeling with OCL Contracts
	8.1 Introduction to functional modeling
	8.2 Preconditions
	8.2.1 Parameter guarantee
	8.2.2 Complementary constraints
	8.2.3 Precondition assurance
	8.2.4 Preconditions and exceptions versus invariants

	8.3 Transient associations
	8.4 Query return
	8.5 Postconditions
	8.5.1 Changing an attribute value
	8.5.2 Creating an instance
	8.5.3 Adding a link
	8.5.4 Destroying an instance
	8.5.5 Removing a link
	8.5.6 Well-formed postconditions
	8.5.7 Combinations of Postconditions
	8.5.8 Former values
	8.5.9 Postconditions covering collections of objects
	8.5.10 Postconditions and real-world events

	8.6 Exceptions
	8.7 Pattern contracts for CRUD
	8.7.1 Create contract
	8.7.2 Update contract
	8.7.3 Delete contract
	8.7.4 Retrieve contract

	8.8 Pattern contracts for listing objects
	8.9 Contracts related to use cases
	8.10 The process so far
	8.11 Questions

	9 Domain Tier Design
	9.1 Introduction to domain tier design
	9.2 Object responsibility distribution
	9.3 Visibility
	9.3.1 Visibility by association
	9.3.1.1 Visibility to a single object
	9.3.1.2 Visibility to multiple objects
	9.3.1.3 Visibility by association with ordered roles
	9.3.1.4 Visibility by association with qualifiers
	9.3.1.5 Association visibility with association class
	9.3.1.6 The influence of preconditions on visibility by association

	9.3.2 Visibility by parameter
	9.3.3 Locally declared visibility
	9.3.4 Global visibility

	9.4 Dynamic modeling based on postconditions
	9.4.1 Instance creation
	9.4.2 Link addition
	9.4.3 Attribute value modification
	9.4.4 Instance destruction
	9.4.5 Removing and replacing a link
	9.4.6 Conditional postconditions
	9.4.7 Exceptions
	9.4.8 Postconditions over collections

	9.5 System queries
	9.6 Delegation and low coupling
	9.7 Design class diagram
	9.8 The process so far
	9.9 Questions

	10 Code Generation
	10.1 Introduction to code generation
	10.2 Classes and attributes
	10.3 Unidirectional associations
	10.3.1 Unidirectional association to one
	10.3.2 Unidirectional association to many
	10.3.3 Unidirectional qualified association
	10.3.4 Unidirectional association with association class

	10.4 Bidirectional associations
	10.4.1 Mutual friends
	10.4.1.1 Both roles optional
	10.4.1.2 Only one mandatory role
	10.4.1.3 Two mandatory roles

	10.4.2 Unidirectional implementation
	10.4.3 Implementation with an intermediary object

	10.5 Delegated methods and system operations
	10.6 Patterns for filtered queries
	10.7 The process so far
	10.8 Questions

	11 Testing
	11.1 Introduction to testing
	11.2 Functional testing
	11.2.1 Equivalence partitioning
	11.2.2 Limit value analysis

	11.3 Stubs and drivers
	11.4 Test-driven development
	11.5 Unit testing
	11.6 System operations testing
	11.7 Use case testing (System, acceptance, and business cycle tests)
	11.8 The process so far
	11.9 Questions

	12 Interface Tier Design with IFML
	12.1 Introduction to interface tier design
	12.2 Interaction flow modeling language (IFML)
	12.3 View components
	12.3.1 Details
	12.3.2 Multiple details
	12.3.3 Simple list
	12.3.4 List
	12.3.5 Checkable List
	12.3.6 Forms
	12.3.7 Hierarchies

	12.4 Pages
	12.5 Flows
	12.5.1 Normal navigation flow
	12.5.2 Data flow
	12.5.3 Parameter binding
	12.5.4 Multivalued parameter binding

	12.6 Hypertext organization
	12.6.1 Site views
	12.6.2 Areas
	12.6.3 Home, landmark, and default

	12.7 Web Interface Patterns
	12.7.1 Cascade Index
	12.7.2 Filtered index
	12.7.3 Guided tour
	12.7.4 Viewpoints
	12.7.5 Overview plus detail
	12.7.6 Top-level navigation

	12.8 Modeling operations in the interface
	12.8.1 Create operation
	12.8.2 Delete operation
	12.8.3 Update operation
	12.8.4 Connect, disconnect, and reconnect operations

	12.9 IFML models for CRUD operations
	12.10 Use case interface modeling with IFML
	12.11 The process so far
	12.12 Questions

	13 Data Persistence
	13.1 Introduction to data persistence
	13.2 Object-relational mapping (ORM)
	13.2.1 Classes and attributes
	13.2.1.1 Number sequence generator
	13.2.1.2 Index selection

	13.2.2 Associations
	13.2.2.1 Many-to-many associations
	13.2.2.2 One-to-many associations
	13.2.2.3 One-to-one associations
	13.2.2.4 Ordered associations
	13.2.2.5 Associations representing bags
	13.2.2.6 Qualified associations
	13.2.2.7 Association classes
	13.2.2.8 n-ary associations
	13.2.2.9 Transient and façade controller associations

	13.2.3 Inheritance
	13.2.3.1 Implementing the entire hierarchy in a single table
	13.2.3.2 Each concrete class as a single table
	13.2.3.3 Each class in a single table

	13.3 Saving and loading objects
	13.3.1 Virtual proxy
	13.3.1.1 Virtual data structures
	13.3.1.2 Discussion

	13.3.2 Brokers and materialization
	13.3.3 Caches
	13.3.3.1 Commit and rollback
	13.3.3.2 Cache control in a multiuser server

	13.4 The whole process
	13.5 Questions

	Postface
	References
	Index

