Software

Engineering
Competency
Model

< IEEE

[EEE@)computer society

Software Engineering
Competency Model

Version 1.0

SWECOM

A Project of the IEEE Computer Society

< IEEE IEEE@)computer society

Copyright and Reprint Permissions. Educational or personal use of this material is per-
mitted without fee provided such copies 1) are not made for profit or in lieu of purchasing
copies for classes, and that this notice and a full citation to the original work appear on the
first page of the copy and 2) do not imply IEEE endorsement of any third-party products
or services. Permission to reprint/republish this material for commercial, advertising or
promotional purposes or for creating new collective works for resale or redistribution must
be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes
Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org.

Reference to any specific commercial products, process, or service does not imply endorse-
ment by IEEE. The views and opinions expressed in this work do not necessarily reflect
those of IEEE.

IEEE makes this document available on an “as is” basis and makes no warranty, express
or implied, as to the accuracy, capability, efficiency merchantability, or functioning of this
document. In no event will IEEE be liable for any general, consequential, indirect, inci-
dental, exemplary, or special damages, even if IEEE has been advised of the possibility of
such damages.

Copyright © 2014 IEEE. All rights reserved.
Paperback ISBN-10: 0-7695-5373-7
Paperback ISBN-13: 978-0-7695-5373-3

IEEE Computer Society Staff for This Publication

Angela Burgess, Executive Director

Anne Marie Kelly, Associate Executive Director, Director of Governance

Evan M. Butterfield, Director of Products and Services

John Keppler, Senior Manager, Professional Education

Dorian McClenahan, Education Program Product Developer

Kate Guillemette, Product Development Editor

Michelle Phon, Professional Education and Certification Program Coordinator

IEEE Computer Society Products and Services. The world-renowned IEEE Computer
Society publishes, promotes, and distributes a wide variety of authoritative computer sci-
ence and engineering journals, magazines, conference proceedings, and professional edu-
cation products. Visit the Computer Society at www.computer.org for more information.

http://www.computer.org

TABLE OF CONTENTS

Abstract

=

8.

9

. Introduction

. SWECOM and the US IT Competency Model
. The Elements of SWECOM

. SWECOM Technical Skills

. SWECOM Competency Levels

. Employer and Individual Gap Analysis

. SWECOM Validation

Acknowledgements

. References

10. Glossary of Terms

1

1. Software Requirements Skill Area

12. Software Design Skill Area

12

16

16

18

18

23

25

31

iv

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

SWECOM

. Software Construction Skill Area

Software Testing Skill Area

Software Sustainment Skill Area

Software Process and Life Cycle Skill Area
Software Systems Engineering Skill Area
Software Quality Skill Area

Software Security Skill Area

Software Safety Skill Area

Software Configuration Management Skill Area
Software Measurement Skill Area
Human-Computer Interaction Skill Area
Appendix A: Contributors

Appendix B: SWECOM Intended Audiences
Appendix C: SWECOM Use Cases

Appendix D: Gap Analysis Worksheets

41

49

57

67

73

89

101

107

115

123

129

141

145

147

153

ABSTRACT

This software engineering competency model (SWECOM) describes
competencies for software engineers who participate in developing
and modifying software-intensive systems. Skill areas, skills within
skill areas, and work activities for each skill are specified. Activities
are specified at five levels of increasing competency. Case studies of
how the SWECOM model can be used by a manager, an employee,
a new hire, or a curriculum designer are provided. The SWECOM-
Staffing Gap Analysis and Individual Gap Analysis worksheets are
included in an appendix.

1. INTRODUCTION

A competent person has the skills needed to perform, at a given level
of competency, the work activities assigned to him or her. Knowl-
edge, in this competency model, is different from skill: knowledge is
what one knows, while skill is what one can do. This document pres-
ents a competency model for use by those who develop software,
their managers, human-resource personnel, curriculum designers,
and others listed in Appendix B of this document. An individual who
develops or maintains software might use this competency model
to assess his or her current competency levels for various software
engineering activities or to develop a plan for improving his or her
competencies (such as requirements elicitation, design synthesis,
software construction, test planning). A manager (project, func-
tional, or line) might use this competency model to inventory staff
skills and identify areas for needed additions and improvements.
Additionally, a manager might use this model to counsel individual
employees, or HR personnel might use the model to identify needed
training and recruitment activities. Each activity in this competency
model is described at five levels of competency.

Skill areas in this competency model include skills that are decom-
posed into activities, rather than job roles, because job roles are
typically dependent on the organizational environment in which the
work activities occur. The activities in this model can be grouped
into job roles by organizations, organizational units, or projects to
satisfy their needs.

This competency model is termed the Software Engineering Com-
petency Model (SWECOM). It has been validated by invited subject

2 SWECOM

matter and interested public reviewers. Subsequent revisions have
been made in response to those reviews. SWECOM contributors are
listed in Appendix A.

Appendix B lists the intended audience for SWECOM. Appendix C
includes use cases to indicate how managers, employees, and new
hires might find SWECOM useful. Appendix D includes gap analysis
worksheets for use by individual practitioners and those who do
staffing for projects and organizational units. A Glossary of Terms
provides definitions of terms whose meanings, as used in SWECOM,
may differ from conventional meanings.

SWECOM includes skill areas, skills, and activities for individuals
who develop and maintain software (that is, software engineers and
others). SWECOM is based on the following primary references:

e SWEBOK Guide Version 3 (Guide to the Software Engineering
Body of Knowledge),

e ISO/IEEE Standard 12207 (software engineering processes),

e Elements of ISO/IEEE Standard 15288 (systems engineering
processes) applicable to the development of software-inten-
sive systems,

e Relevant material in SEBoK (Systems Engineering Body of
Knowledge) and GRCSE (Graduate Reference Curriculum for
Systems Engineering),

e The Software Assurance Competency Model,

e GswE2009 (graduate software engineering curriculum guide-
lines), and

e SE2004 (undergraduate software engineering curriculum
guidelines).

The references section of this document provides citations for
these foundational documents.

This competency model adds to the growing body of knowledge
that characterizes the software engineering profession and soft-
ware engineering professionals. It is based on, and supplements,
the information found in the primary references and in the extensive
list of references found in that section. SWECOM is presented as a
framework that can be tailored to fit the needs of organizations,

SWECOM and the US IT Competency Model 3

programs, and projects. It is not a prescriptive model of the software
engineering profession or a characterization of a software engineer-
ing professional. Various organizations, agencies, and other institu-
tions may choose to adopt and enforce particular elements of the
model to fit their needs and extend SWECOM in various ways.

SWECOM covers technical skills but does not include project man-
agement or general management skills other than to identify the
behavioral attributes and skills of effective software developers and
the leadership skills needed for software project technical leaders
of various skill areas. The PMBOK® Guide—Fifth Edition [PMBOK
2013], the Software Extension to the PMBOK® Guide—Fifth Edi-
tion [SWX 2013], and many other references address project man-
agement and general management. Also, SWECOM does not rec-
ommend specific software tools or development methods (such as
waterfall, Scrum, XP).

2. SWECOM AND THE US IT
COMPETENCY MODEL

SWECOM includes elements similar to those in the US Department
of Labor Information Technology (US IT) Competency Model, which
was developed to identify the knowledge, skills, and abilities needed
for workers to perform successfully in the field of information tech-
nology [INFOCOMP 2012].!

Table 1 indicates the correspondences between the US IT Compe-
tency Model and the analogous elements of SWECOM.

1 “Information technology” is broadly interpreted in the US IT competency model.

4 SWECOM

Table 1. Correspondences between the US IT Competency
Model and SWECOM

US IT Competency Model SWECOM
Personal Effectiveness Behavioral Attributes and Skills

Requisite Knowledge for SWECOM
Technical Skills

Workplace Competencies Cognitive Skills

Academic Competencies

Industry-Wide Technical

. SWECOM Technical Skills
Competencies

Possible extensions to SWECOM for
software applications, embedded

Industry-Sector Technical software, and domain-specific
Competencies competencies (for example, health
sciences, communication, automotive
domains)
Skills related to scheduling,
Management Competencies budgeting, and resource management
are excluded from SWECOM
Occupation-Specific Requirements Excluded from SWECOM

As indicated in Table 1, knowledge, behavioral attributes and skills,
and cognitive skills in SWECOM are the counterparts of personal
effectiveness, academic competencies, and workplace competen-
cies in the US IT Competency Model. Technical skills are the primary
focus of SWECOM and are the counterpart of industry-wide techni-
cal competencies. The other elements of SWECOM are included to
support the technical competencies. Industry-sector competencies
for various sectors of the software engineering industry represent
extensions that could be added to SWECOM. Management compe-
tencies other than leadership skills related to leading technical con-
tributors are not included because management includes a distinct,
though related, set of competencies that are covered in the PMI
Guide to the Project Management Body of Knowledge (PMBOK®
Guide) [PMBOK 2013], the Software Extension to the PMBOK®
Guide [SWX 2013], and other similar documents. Occupation-spe-
cific requirements include factors such as certifications and licens-
ing requirements needed to pursue specific occupations; they are
not included in SWECOM.

The Elements of SWECOM 5

3. THE ELEMENTS OF SWECOM

The elements of SWECOM are illustrated in Figure 1. Cognitive skills
and behavioral attributes and skills are described below. These
foundations are not unique to SWECOM but were developed for
SWECOM as necessary for the effective performance of software
engineering technical activities. Requisite knowledge is the intellec-
tual basis for the software engineering profession. The references
listed above, those cited in the references section, and those in
the consolidated reference list in the SWEBOK Guide (www.swebok.
org, Appendix C) characterize requisite knowledge.

Behavioral
Attributes
and Skills

Cognitive
Skills

Requisite Related
Knowledge Disciplines

Figure 1. The Elements of SWECOM

Related disciplines include but are not limited to:

Computer Engineering,
Computer Science,
General Management,
Mathematics,

Project Management,

http://www.swebok.org
http://www.swebok.org

6 SWECOM

e Quality Management, and
e Systems Engineering.

There are many related disciplines; these listed are closely related
disciplines, as cited in [SWEBOK 2014].

Cognitive skills apply across all the skill areas, skills, and activi-
ties of SWECOM. They are exhibited in the ability to apply knowledge
and reasoning while performing SWECOM activities within technical
skill areas. Competency levels for cognitive skills are not included
in SWECOM, but cognitive skills become increasingly important at
higher levels of technical competency because the scope and com-
plexity of work activities increases and expands as the levels of
competency and related job assignments increase. Some examples
of cognitive skills are listed and briefly described in Table 2.

As shown in Table 2, the SWECOM cognitive skills include four
classifications. It should be emphasized that these classifications
are not independent: the skills listed across classifications overlap
and combine to support effective cognitive competencies. Further-
more, the list in Table 2 is intended to be illustrative—not exhaus-
tive—of cognitive skills for software engineers. Citations that pro-
vide the basis for and details of these cognitive skills are listed in
the references section of this document.

Table 2. SWECOM Cognitive Skills
Cognitive Skills Examples

Inductive Reasoning

Deductive Reasoning

Heuristic Reasoning

Use of Abstraction

Hierarchical and Associative
Reasoning

Reasoning provides the basis for
making decisions in a logical and
effective manner.

Analytical skills are related

to techniques that involve data
collection, organization and
aggregation of data, and analysis
and evaluation in order to draw
conclusions or make decisions.

Application of Measurement Principles
Statistical/Data Analysis

Root Cause Analysis

Risk Identification and Analysis
Impact Analysis

The Elements of SWECOM 7

Table 2. SWECOM Cognitive Skills

Cognitive Skills

Examples

Problem solving is concerned
with various methods that employ
reasoning, analytic techniques, and
prioritizing information to solve
problems.

Divide and Conquer

Stepwise Refinement

Top-down Approach

Bottom-up Approach

Analogy and Reuse

Patterns and Pattern Recognition
Iterative and Incremental Approaches

Innovation involves skills used to
create models and abstractions that
support analysis and problem solving.

Brainstorming
Prototype Development
Modeling and Simulation

Behavioral attributes and skills are exhibited in the ability

to productively apply knowledge, cognitive skills, and technical
skills; they are not unique to software engineering but allow soft-
ware engineers to effectively contribute to desired outcomes. Some
important behavioral attributes and skills for software engineers
are listed in Table 3; other behavioral attributes and skills could be

added.

Table 3. SWECOM Behavioral Attributes and Skills

Exhibited by the ability to effectively perform a software
engineering task. Aptitude is not the same as knowledge

Aptitude or skill but rather indicates the ability (either intuitive or
learned) to apply knowledge in a skillful way.
Initiative Exhibited by enthusiastically starting and following

through on a software engineering work task.

Enthusiasm

Exhibited by expressing and communicating interest in
performing a work task.

Work ethic

Exhibited by being reliable, acquiring new skills, and
being willing to perform work tasks.

Willingness

Exhibited by undertaking a task when asked and capably
performing it, even if it is a task the individual is not
enthusiastic about performing.

Trustworthiness

Demonstrated over time by exhibiting ethical behavior,
honesty, integrity, and dependability in an individual’s
decisions and actions.

8 SWECOM

Table 3. SWECOM Behavioral Attributes and Skills

Exhibited by an awareness of and accommodation for
differences in communication styles, social interactions,
dress codes, and overall behavior based on ethnic,
religious, gender orientation, and other behavioral
characteristics.

Cultural
sensitivity

Exhibited by expressing concepts, techniques, thoughts,
and ideas in both oral and written forms in a clear and

Communication : o) .
concise manner while interacting with team members,

skills managers, project stakeholders, and others; includes
effective listening.

Tearp s Exhibited by working enthusiastically and willingly with

participation h b hil lab , hared K

skills other team members while collaborating on shared tasks.
Exhibited by effectively communicating a vision, strategy,

Technical method, or technique that is then accepted and shared

leadership skills | by team members, managers, project stakeholders, and
others.

Behavioral attributes and skills apply to all elements and at all
levels of technical skill areas, skills, and activities. Behavioral attri-
butes and skills and cognitive skills are not specified by compe-
tency level; however, increasing competency in cognitive skills and
behavioral attributes and skills becomes more important as the lev-
els of technical competencies, the scope of responsibilities, and the
breadth of interactions increase.

4. SWECOM TECHNICAL SKILLS

Technical skills and associated activities are the primary focus of
SWECOM; they are grouped as life cycle skill areas and crosscutting
skill areas. A life cycle skill area is one that includes skills needed
to accomplish various work activities within a phase of software
development or sustainment—for example, software requirements
engineering. Life cycle skill areas are categorized by typical phases
of software development and modification. In practice, software
phases are often intermixed, interleaved, and iterated in vari-
ous ways; however, no implication of development processes (for
example, predictive versus adaptive) is intended.

SWECOM Technical Skills 9

A crosscutting skill area is one that applies across all life cycle
skill areas (for example, quality assurance) and, in some cases, a
crosscutting skill may apply to other crosscutting skill areas (for
example, a software process model). Crosscutting skill areas are
sometimes called “specialty disciplines” that are practiced by spe-
cialists in those skill areas (such as safety, security, systems engi-
neering). Software engineers who are competent in one or more life
cycle skill areas typically have some working knowledge of cross-
cutting skill areas.

The five life cycle skill areas and eight crosscutting skill areas of
SWECOM are listed in Tables 4 and 5, respectively. The references
cited in the tables are in the references section of this document;
they provide the knowledge foundations for each skill area.

Table 4. Software Engineering Life Cycle Skill Areas and
Skills

Life Cycle Skill Areas Skills
Software Requirements Skills | Software Requirements Elicitation
References: Software Requirements Analysis
[ACM 2004] Software Requirements Specification
[Laplante 2009] Software Requirements Verification and
[Robertson 2012] Validation
[SWEBOK 2014] Software Requirements Process and
[Wiegers 2013] Product Management

Software Design Skills
References:

[IEEE 1016-2009]

[IEEE 12207-2008]

[IEEE 15528-2008]

Software Design Fundamentals
Software Design Strategies and Methods
Software Architectural Design

Software Design Quality Analysis and

[SWEBOK 2014] Evaluation

Software Construction Skills

References: Software Construction Planning
[ACM 2004] Managing Software Construction
[Fowler 1999] Detailed Design and Coding
[Hunt 1999] Debugging and Testing
[McConnell 2004] Integrating and Collaborating

[SWEBOK 2014]

10 SWECOM

Table 4. Software Engineering Life Cycle Skill Areas and

Skills

Life Cycle Skill Areas

Skills

Software Testing Skills
References:

[IEEE 730-2002]

[IEEE 829-2008]

[IEEE 1012-2012]

[Myers 2011]

[SWEBOK 2014]

Software Test Planning

Software Testing Infrastructure

Software Testing Techniques

Software Testing Measurement and
Defect Tracking

Software Sustainment Skills
References:

[IEEE 12207-2008]
[ISO/IEC/IEEE 24765:2010]
[IEEE 828-2012]

[Lapham 2006]

[SWEBOK 2014]

Software Transition
Software Support
Software Maintenance

Table 5. Software Engineering Crosscutting Skill Areas

Crosscutting Skill Areas

Skills

Software Process and Life
Cycle Skills

References:

[IEEE 12207-2008]

[IEEE 15528-2008]
[SWEBOK 2014]

Software Development Life Cycle
Implementation

Process Definition and Tailoring

Process Implementation and
Management

Process Assessment and Improvement

Software Systems Engineering
Skills

References:

[IEEE 12207-2008]

[IEEE 15528-2008]

[SEBoK 2013]

[SWEBOK 2014]

System Development Life Cycle Modeling
Concept Definition

System Requirements Engineering
System Design

Requirements Allocation

Component Engineering

System Integration and Verification
System Validation and Deployment
System Sustainment Planning

Software Quality Skills
References:

[IEEE 730-2002]

[IEEE 829-2008]

[IEEE 1012-2012]

[IEEE 12207-2008]

[IEEE 15528-2008]
[SWEBOK 2014]

Software Quality Management (SQM)

Reviews (review, walkthrough,
inspection)

Audits (concentrate on both product
and process, but are done by an
independent internal or external
organization)

Statistical Control

SWECOM Competency Levels

11

Table 5. Software Engineering Crosscutting Skill Areas

Crosscutting Skill Areas

Skills

Software Security Skills
References:

[Allen 2008]

[BITS 2012]

[Hilburn 2013]

[Merkow 2010]

[Seacord 2005]

Requirements
Design
Construction
Testing
Process

Quality

Software Safety Skills
References:

Requirements

[Babich 1986]
[IEEE 828-2012]
[SWEBOK 2014]

[Hilburn 2013] g(?rswlsgt:uction
[IEEE 12207-2008] Testin
[Leveson 1995] Procesgs
[Stephans 2004] Qualit
[Vincoli 2006] Y
Software Configuration

Management Skills

References: Plan SCM
[Aiello 2010] Conduct SCM

Manage Software Releases

Software Measurement Skills
References:

[IEEE 12207-2008]

[IEEE 15528-2008]

[IEEE 15939-2008]

[SWEBOK 2014]

Plan Measurement Process
Perform Measurement Process

Human-Computer Interaction
Skills

References:

[ISO 9241-210:2010]

[Rogers 2011]

[SWEBOK 2014]

Requirements

Interaction Style Design

Visual Design

Usability Testing and Evaluation
Accessibility

The activities for each skill in Tables 4 and 5 are listed in each skill
area’s Tables A and B; see below. Table A lists the activities for each
skill and Table B lists activities by competency level. SWECOM does
not address competency in using tools or adherence to prescribed
standards to accomplish activities because these will be specific to

organizations and projects.

12 SWECOM

5. SWECOM COMPETENCY LEVELS

SWECOM is organized by skill area (for example, software require-
ments), skills within skill areas (for example, software require-
ments elicitation), and activities within skills (for example, proto-
typing to elicit requirements). Activities are specified at five levels
of competency:

e Technician

Entry Level Practitioner
Practitioner

Technical Leader

Senior Software Engineer

In general, a Technician follows instructions, an Entry Level Prac-
titioner assists in performance of an activity or performs an activity
with supervision; a Practitioner performs activities with little or no
supervision; a Technical Leader leads individuals and teams in the
performance of activities; and a Senior Software Engineer modifies
existing methods and tools and creates new ones. Some organiza-
tions may choose to merge the Technician and Entry Level Prac-
titioner levels. A Senior Software Engineer may serve as a “chief
engineer” for a software organization and some Senior Software
Engineers may be recognized as industry experts who contribute to
shaping and advancing the profession of software engineering.

In addition to the activities specified at the various competency
levels, an additional competency of all software engineers is to
instruct and mentor others, as appropriate, in the methods, tools,
and techniques used to accomplish those activities. For example,
a Technician or Entry Level Practitioner might instruct or mentor
others on the use of configuration management tools as needed to
perform their activities, or a Team Leader might instruct or mentor
a Practitioner on how to lead inspections and reviews.

The following notations are also used in SWECOM:

e Follows (F),
e Assists (A),

SWECOM Competency Levels 13

e Participates (P),
e Leads (L), and
e Creates (C).

For the requirements prototyping activity cited above, a Tech-
nician would be competent to use software tools while following
instructions (F) to create prototypes. An Entry Level Practitioner
would be competent to assist in creating prototypes and to develop
prototypes under supervision (A); a Practitioner would create pro-
totypes and interact with customers and users in evaluating the
prototypes (P); a Technical Leader would supervise and lead proto-
typing activities (L); and a Senior Software Engineer would create
new approaches to prototyping (C).

There may be situations where an Entry Level Practitioner might be
competent, for example, to lead a prototyping activity, or a Technical
Leader might be competent to create a new approach to prototyping,
so notations are used in SWECOM to distinguish specific competen-
cies from the named competency levels when it is appropriate.

A Practitioner, for example, might be competent to either par-
ticipate in an activity (P) or lead the activity (L), depending on the
scope and complexity of the work to be accomplished. In this case,
the activity is labeled (P/L) at the Practitioner level. Similarly, an
Entry Level Practitioner might be competent to assist or fully par-
ticipate in an activity, which would be labeled (A/P).

SWECOM does not prescribe the knowledge level or years of
experience associated with these competency levels; however, the
following general guidelines are typical:

An individual who is competent at the Technician level to perform
the activities in one or more skills or skill areas might have some
advanced education (for example, a two-year US associate’s degree
or equivalent), one or more industrial certifications, and any num-
ber of years of experience.

An individual who is competent as an Entry Level Practitioner to
perform the activities in one or more skills or skill areas would prob-
ably have requisite knowledge equivalent? to that provided by an

2 Knowledge equivalence might be gained by a combination of education, mentoring,
training, and on-the-job experience.

14 SWECOM

ABET-accredited software engineering degree program or equiva-
lent and zero to four or five years of relevant experience.3

An individual who is competent at the Practitioner level to per-
form the activities in one or more skills or skill areas would probably
have knowledge equivalent to or greater than that of an Entry Level
Practitioner, might have a master’s degree in software engineer-
ing or a related discipline, and would probably have more than five
years of experience in the relevant skill areas.

An individual who is competent as a Technical Leader for one or
more SWECOM activities, skills, or skill areas would likely have rel-
evant knowledge and experience equal to or greater than that of a
Practitioner plus the behavioral attributes and skills needed to be an
effective technical leader.

A Senior Software Engineer is an individual who is competent
to develop policies, procedures, and guidelines for the technical
processes and work products within an organizational unit that is
engaged in software engineering.

These characterizations of education and experience are exam-
ples and not to be interpreted as prescriptive requirements.

Some activities may not have corresponding lower level activities.
For example, conducting an impact analysis to determine the effect
of modifying or adding requirements for product security or perfor-
mance might be a Practitioner skill and not an activity that a person
at a lower level of competency would be competent to perform.

An individual may be at different levels of competency for differ-
ent skill areas, skills within skill areas, and activities within skills,
depending on his or her educational background, work experiences,
and aptitude. The SWECOM activities, skills, and skill areas are pre-
sented as a framework that can be tailored to fit the needs of indi-
vidual organizations, programs, and projects. Some organizations
may choose to use SWECOM in a prescriptive manner by requiring
software engineers who are competent in a skill area at a given
competency level to be competent in all of the skills and activities
in that skill area at that level and at all lower levels. Other orga-
nizations, programs, and projects may use SWECOM to pick and

3 Relevant experience is the experience needed to acquire ability, at a given level of
competency, for a SWECOM skill area, skill, or activity.

SWECOM Competency Levels 15

choose skill areas, skills, and activities needed for particular mis-
sions, programs, or projects without regard to other competencies
and competency levels.

An example of activities competency levels from the require-
ments management skill within the software requirements skill area
illustrates the approach taken in subsequent sections of this com-
petency model; see Table 6. In general, these notations correspond
to the five levels of competency. In some cases, an individual at a
lower level of skill competency may be competent to perform some
activities—but not all—at a higher level. For example, an Entry Level
Practitioner may be competent to perform traceability analysis (P),
or a Practitioner may be competent to lead certain activities (L).

Table 6. Competency Levels for Software Requirements
Management Work Activities

Skill Area: Software Requirements

Skill: Requirements Management

Senior
Competency Entry Level Team Software
Levels Technician | Practitioner | Practitioner Leader Engineer
1. Modifies
. existing
1. Follows :e A;siilas_ts 1. Imple- 1. Prepares | @nd cre-
defined q ments - FTep ates new
ments - require- o
procedures require- guidelines,
manage- ments
N to support ments templates,
Activities . ment manage-
require- manage- tools, and
through ment plans .
ments ment plans . techniques
the use of . for projects .
manage- appropriate for projects (L) for require-
ment (F) tools (A) (P/L) ments
manage-
ment (C)

Note that in some cases (such as for the Practitioner level in Table
6) an individual may be competent to either participate in or lead
a work activity such as implementing a requirements management
plan. Whether that individual is competent to participate or lead
may depend on the size, scope, and complexity of the project and
product; in such cases, the notation is (P/L).

16 SWECOM

6. EMPLOYER AND INDIVIDUAL GAP
ANALYSIS

Appendix D includes two worksheets similar to those in the US IT
Competency Model [INFOCOMP 2012]. The first spreadsheet (SWE-
COM staffing Gap Analysis Worksheet) is for use by managers,
human resources personnel, and others who analyze available and
needed skills within an organizational unit.

The second spreadsheet (SWECOM Individual Gap Analysis) is for
use by an individual who desires to assess his or her levels of com-
petency for different skills and activities at different competency
levels. An individual can use the spreadsheet for self-assessment
or an individual and manager can use it as a basis for developing
a plan of improvement for the individual; the improvement plan
might include future work assignments, mentoring, and/or addi-
tional education and training.

7. SWECOM VALIDATION

SWECOM has been validated by 22 subject matter reviewers and 40
public reviewers.

Many narrative review comments were received from both sub-
ject matter reviewers (SMEs) and public reviewers. The SWECOM
author team adjudicated all comments and informed reviewers of
their decisions.

Members of the SWECOM team interviewed six software engi-
neering professionals. The purpose of the interviews was to deter-
mine the value of a software engineering competency model and the
relevancy and usefulness of various SWECOM elements (for exam-
ple, cognitive attributes, behavioral attributes and skills, skill areas,
competency levels, and so forth). These interviews also allowed
the SWECOM developers to conduct a “sanity check” on SWECOM
before releasing a draft for external review.

SWECOM Validation 17

The interview results can be summarized as follows:

e All those interviewed had degrees in computing-related disci-
plines and 12 to 29 years of experience in the software indus-
try, and were serving in mid- to high-level positions in their
organizations (for example, system architect, quality assur-
ance director, software development manager, technical sup-
port manager, software development director).

e There was unanimous agreement that SWECOM will provide
valuable support for recruiting, evaluating, developing, and
advancing software engineering professionals.

e Most interviewees voiced the opinion that nontechnical com-
petencies were essential to the success of a software engi-
neering professional: good people skills, flexibility, and the
ability to communicate, work in teams, work with customers,
learn new things, and work with people from different cul-
tures. As a result of the last observation, the SWECOM devel-
opers added a behavioral attribute of “"Cultural Sensitivity.”

e Most of those interviewed thought five or six levels of compe-
tency were appropriate. However, none of those interviewed
who have used other competency models have ever before
used the Technician Level or equivalent.

e Some interviewees expressed the view that no degree or min-
imum years of experience should be specified for the compe-
tency levels. SWECOM only describes “typical” backgrounds,
and no requirements or precise expectations are stated.

e There were no recommendations for major changes to SWECOM.

These six interviews did not provide a statistically significant
sample of opinions but they did indicate that the SWECOM effort
is well conceived. The SME and public review comments provided
many valuable recommendations, but none invalidated the SWE-
COM concept.

The following sections of this document specify life cycle and cross-
cutting skill areas plus skills and activities at various competency
levels within each skill area. Each skill area includes two tables:
Table A lists skills and corresponding activities for that skill area,
and Table B lists the activities across all five competency levels.

18 SWECOM

8. ACKNOWLEDGEMENTS

Appendix A lists individuals who developed this competency model,
the subject matter expert reviewers, the public reviewers, and those
who were interviewed.

9. REFERENCES

[Abran 2010] Alain Abran, Software Metrics and Software
Metrology, Wiley-IEEE Computer Society Press, 2010.

[ACM 2004] ACM/IEEE-CS Joint Task Force on Computing
Curricula, Software Engineering 2004, Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering, Aug.
2004; www.acm.org/education/curricula.html.

[Aiello 2010] Bob Aiello and Leslie Sach, Configuration Management
Best Practices: Practical Methods that Work in the Real World,
Addison-Wesley Professional, 2010.

[Allen 2008] Julia Allen et al., Software Security Engineering: A
Guide for Project Managers, Addison-Wesley Professional, 2008.

[Babich 1986] Wayne A. Babich, Software Configuration
Management: Coordination for Team Productivity, Addison-
Wesley, 1986.

[BITS 2012] BITS Software Assurance Framework, Financial
Services Roundtable, 2012; www.bits.org/publications/security/

BITSSoftwareAssurance0112.pdf.

[Bozzano 2010] Marco Bozzano and Adolfo Villafiorita, Design and
Safety Assessment of Critical Systems, CRC Press, 2010.

http://www.acm.org/education/curricula.html

References 19

[Buxton 2007] Bill Buxton, Sketching User Experiences: Getting
the Design Right and the Right Design, Morgan Kaufmann
Publishers, 2007.

[CMMI 2014] Capability Maturity Model Integrated, CMMI Institute,
2014; http://cmmiinstitute.com.

[Fowler 1999] M. Fowler et al., Refactoring: Improving the Design
of Existing Code, Addison-Wesley, 1999.

[Hilburn 2013] Thomas Hilburn et al., Software Assurance
Competency Model, Technical Note CMU/SEI-2013-TN-004,
Software Engineering Institute, Mar. 2013; http://resources.sei.
cmu.edu/library/asset-view.cfm?assetID=47953.

[Hunt 1999] A. Hunt and D. Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley, 1999.

[IEEE 730-2002] IEEE Std. 730-2002, IEEE Standard for Software
Quality Assurance Plans, IEEE, 2002.

[IEEE 828-2012] IEEE Std. 828-2012, IEEE Standard for
Configuration Management in Systems and Software
Engineering, 1IEEE, 2012.

[IEEE 829-2008] IEEE Std. 829-2008, IEEE Standard for Software
and System Test Documentation, IEEE, 2008.

[IEEE 1012-2012] IEEE Std. 1012-2012, IEEE Standard for System
and Software Verification and Validation, IEEE, 2012.

[IEEE 1016-2009] IEEE Std. 1016-2009, IEEE Standard for
Information Technology-Systems Design—Software Design
Descriptions, IEEE, 2009.

[IEEE 12207-2008] IEEE Std. 12207-2008, IEEE Standard for
Systems and Software Engineering—Software Life Cycle
Processes, 1IEEE, 2008.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=47953
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=47953

20 SWECOM

[IEEE 15528-2008] IEEE Std. 15528-2008, IEEE Standard for
Systems and Software Engineering—System Life Cycle
Processes, 1EEE, 2008.

[IEEE 15939-2008] IEEE Std. 15939-2008, Standard Adoption
of ISO/IEC 15939:2007 System and Software Engineering
Measurement Process, 1EEE, 2008.

[IEEE/ISO/IEC 24765-2010] IEEE/ISO/IEC 24765:2010, Systems
and Software Engineering—Vocabulary, 1IEEE, 2010.

[INFOCOMP 2012] Information Technology Competency Model,
Employment and Training Administration, United States
Department of Labor, Sep. 2012; www.careeronestop.org/
competencymodel/pyramid_download.aspx?IT=Y.

[ISO 9241-210:2010] ISO 9241-210:2010, Ergonomics of Human-
System Interaction, 1SO, 2010.

[ISO/IEC 25060:2010] ISO/IEC 25060:2010, Systems and
Software Engineering—Systems and Software Product Quality
Requirements and Evaluation (SQuaRE)—Common Industry
Format (CIF) for Usability: General Framework for Usability-
Related Information, 1SO, 2010.

[ISO/IEC/IEEE 15289:2011] ISO/IEC/IEEE 15289:2011, Systems
and Software Engineering—Content of Life-Cycle Information
Products (Documentation), 1SO, 2011.

[Kan 2002] Stephen H. Kan, Metrics and Models in Software
Quality Engineering, 2nd ed., Addison-Wesley, 2002.

[Lams 2009] Alex van Lamsweerde, Requirements Engineering:
From System Goals to UML Models to Software Specifications,
John Wiley and Sons, Inc., 2009.

[Lapham 2006] M. Lapham and C. Woody, Sustaining Software-
Intensive Systems, CMU/SEI-2006-TN-007, Software

http://www.careeronestop.org/competencymodel/pyramid_download.aspx?IT=Y
http://www.careeronestop.org/competencymodel/pyramid_download.aspx?IT=Y

References 21

Engineering Institute, 2006; http://resources.sei.cmu.edu/
library/asset-view.cfm?assetID=7865.

[Laplante 2009] Phillip A. Laplante, Requirements Engineering for
Software and Systems, 2nd ed., CRC Press, 2009.

[Laplante 2013] Phillip A. Laplante, Beth Kalinowski, and Mitchell
Thornton, “A Principles and Practices Exam Specification to
Support Software Engineering Licensure in the United States
of America,” Software Quality Professional, vol. 15, no. 1, Jan.
2013, pp. 4-15.

[Leveson 1995] N. Leveson, Safeware: System Safety and
Computers, Addison-Wesley, 1995.

[Leveson 2011] N. Leveson, Engineering a Safer World: Systems
Thinking Applied to Safety, The MIT Press, 2011.

[McConnell 2004] S. McConnell, Code Complete, 2nd ed., Microsoft
Press, 2004.

[Merkow 2010] M. Merkow and L. Raghavan, Secure and Resilient
Software Development, CRC Press, 2010.

[Myers 2011] Glenford J. Myers, The Art of Software Testing, 3rd
ed., Wiley, 2011.

[PMBOK 2013] Project Management Institute, A Guide to the
Project Management Body of Knowledge (PMBOK® Guide)—Fifth
Edition, Project Management Institute, 2013.

[Pohl 2010] Klaus Pohl, Requirements Engineering: Fundamentals,
Principles, and Techniques, Springer-Verlag, 2010.

[Rierson 2013] Leanna Rierson, Developing Safety-Critical
Software: A Practical Guide for Aviation Software and DO-178C
Compliance, CRC Press, 2013.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7865
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7865

22 SWECOM

[Robertson 2012] Suzanne Robertson and James C. Robertson,
Mastering the Requirements Process: Getting Requirements
Right, 3rd ed., Addison-Wesley Professional, 2012.

[Rogers 2011] Y. Rogers, H. Sharp, and J. Preece, Interaction Design:
Beyond Human Computer Interaction, 3rd ed., Wiley, 2011.

[RTCA DO-178C] RTCA, Inc., Software Considerations in Airborne
Systems and Equipment Certification, DO-178C/ED-12C, 13 Dec.
2011.

[Seacord 2005] R. Seacord, Secure Coding in C and C++, Addison-
Wesley, 2005.

[SEBoK 2013] A. Pyster and D.H. Olwell, eds., The Guide to the
Systems Engineering Body of Knowledge (SEBoK), The Trustees
of the Stevens Institute of Technology, vol. 1.2, 2013; http://
sebokwiki.org.

[Stephans 2004] R.A. Stephans, System Safety for the 21st
Century: The Updated and Revised Edition of System Safety
2000, Wiley, 2004.

[SWEBOK 2014] P. Bourque and R.E. Fairley, eds., Guide to the
Software Engineering Body of Knowledge, Version 3.0, IEEE
Computer Society, 2014; www.swebok.org.

[SWX 2013] Project Management Institute and IEEE Computer
Society, Software Extension to the PMBOK® Guide—Fifth
Edition, Project Management Institute, 2013.

[Vincoli 2006] J.W. Vincoli, Basic Guide to System Safety, Wiley, 2006.

[Westfall 2009] Linda Westfall, The Certified Software Quality
Engineering Handbook, Quality Press, 2009.

[Wiegers 2013] Karl E. Wiegers and Joy Beatty, Software
Requirements, 3rd ed., Microsoft Press, 2013.

Glossary of Terms 23

10. GLOSSARY OF TERMS

This glossary provides definitions of terms whose meanings, as used
in SWECOM, may differ from conventional meanings. Other terms
used in SWECOM are intended to convey the meanings in IEEE/
ISO/IEC Standard 24765:2010, Systems and Software Engineer-
ing—Vocabulary, 1IEEE, 2010 (SEVOCAB). The Guide to the Soft-
ware Engineering Body of Knowledge [SWEBOK 2014] also provides
detailed discussions of many of the terms used in SWECOM.

Terms italicized in the definitions of other terms are also defined
in this glossary.

Activity: a self-contained unit of work to be performed. Activities
are the smallest units of technical skills in SWECOM.

Behavioral Attribute: a characteristic of personality and charac-
ter that enables an individual to apply knowledge, experience,
and cognitive attributes to perform activities in a productive
manner within the work environment.

Cognitive Skill: a characteristic of intellect that allows an individ-
ual to apply knowledge and reasoning ability while performing
activities within technical skill areas.

Competency: the demonstrated ability to perform work activities
at a stated competency level.

Competency Level: one of five increasing levels of ability to per-
form an activity; denoted as Technician, Entry Level Practitioner,
Practitioner, Technical Leader, or Senior Software Engineer.

Entry Level Practitioner: an individual who is competent to
assist in performing an activity or to perform activities with
some supervision.

24 SWECOM

Gap Analysis: the process of specifying the competencies an indi-
vidual or organization has, the competencies needed, and gaps
between what is had and what is needed.

Senior Software Engineer: an individual who is competent to
create new—and modify existing—processes, procedures, meth-
ods, and tools for performing activities, groups of activities
within skills, and skills within skill areas.

Practitioner: an individual who is competent to perform an activ-
ity with little or no supervision.

Skill: a grouping of logically related activities.

Skill Area: a grouping of logically related skills.

Technical Leader: an individual who is competent to lead and
direct participants in the performance of activities in a skill or

skill area.

Technician: an individual who is competent to follow instructions
while performing an activity.

Usability Test: a test case that states what the user needs to do
but does not tell the user how to do it. It measures the user
interface’s ability to support user behavior.

11. SOFTWARE REQUIREMENTS SKILL AREA

Software requirements engineering consists of activities performed
to discover what functional and nonfunctional attributes and inter-
faces a software system should have to satisfy the needs of the
customer. It also includes analysis and management activities per-
formed in order to discover flaws in requirements artifacts and to
manage the requirements engineering process.

REFERENCES

[ACM 2004] ACM/IEEE-CS Joint Task Force on Computing
Curricula, Software Engineering 2004, Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering, Aug.
2004; www.acm.org/education/curricula.html.

[Laplante 2009] Phillip A. Laplante, Requirements Engineering for
Software and Systems, 2nd ed., CRC Press, 2009.

[Robertson 2012] Suzanne Robertson and James C. Robertson,
Mastering the Requirements Process: Getting Requirements
Right, 3rd ed., Addison-Wesley Professional, 2012.

[SWEBOK 2014] P. Bourque and R.E. Fairley, eds., Guide to the
Software Engineering Body of Knowledge, Version 3.0, IEEE
Computer Society, 2014; www.swebok.org.

25

http://www.swebok.org

26 SWECOM

[Wiegers 2013] Karl E. Wiegers and Joy Beatty, Software
Requirements, 3rd ed., Microsoft Press, 2013.

Table Al11

Software Requirements
Skill Sets

Software Requirements Activities

Software Requirements
Elicitation

Identifies stakeholders for elicitation of
requirements.

Engages stakeholders in elicitation of
requirements.

Uses appropriate methods to capture
requirements.

Negotiates conflicts among stakeholders
during elicitation.

Software Requirements
Analysis

Uses appropriate domain analysis techniques.
Performs analysis of requirements for
feasibility and emergent properties.

Software Requirements
Specification

Uses appropriate notations for describing
requirements.

Software Requirements
Verification and Validation

Checks requirements for accuracy, lack
of ambiguity, completeness, consistency,
traceability, and other desired attributes.
Constructs and analyzes prototypes.
Negotiates conflicts among stakeholders
during verification.

Software Requirements
Process and Product
Management

Uses appropriate methods for management
of requirements, including configuration
management.

Software Requirements Skill Area 27

The following notations are used in Table B11: Follow (F), Assist
(A), Perform (P), Lead (L), Create (C).

ments. (A)

Table B11
Software Requirements Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
1. Identifies
important
stakehold-
g ers. (P/L)
F=} 1. Assists
S in engag- 2.‘ Engages
‘0 ing differ- different
i ent stake- stakehold-
2 holders to | SrS 0
c) determine
) determine needs and
£ needs and .
() . require-
= require- ments. (P)
;3,- ments. (A)
x 2. Assists | 3 Applies
= n applying different
© different methods t
3 methods to ethods to
=) the project
] the project .
0 as appropri- as appropri
ate to elicit ate t_o elicit
require- require-
ments. (P)

28 SWECOM

cycle. (P)

Table B11
Software Requirements Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
1. Creates
new ways
1. Assists L. Selec_ts to engage
require- appropriate and com-
= ments engi- methods municate
=} , to engage .
=] neers with with stake-
S | preparation and com- holders
5 municate !
= of surveys with stake- | the man-
w and other - agement
] elicitation holdgrs n team, and
]) require-
o instru- ments fjevelopers
GE) ments. activities. in require-
= (F/A) ments
= (L) L
g_ activities
o (©)
v ﬁq ?gsfézt_ 2. Negotiates
© . gotl conflicts
S ing conflicts
& between between
o stake-
n stake- .
holders in holdgrs n
require- require-
ments elici- ments elici-
tation. (A) tation. (P/L)
@ 1. Leads
5 identifi-
£ 1. Selects C?}:'Orn orf]t
g " the most emergel 1. Creates
ER 1. Assists appropri- properties new domain
gz. o d : te d . and require- lvsi
S5 in domain ate domain | . analysis
c analysis. (A) | analysis methods.
0« methods throughout ©)
© (P/L)) the soft-
E ware devel-
"ma opment life

Software Requirements Skill Area 29

Table B11
Software Requirements Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
2. Identifies
@ emergept
= properties
oS (7 R
L) = and require-
3 qE,z. ments
£=0 throughout
S < the soft-
&’ ware devel-
opment life
cycle. (P)
1. Prepares 1. Selects
. - rrep the most
1. Assists require- abpropriate
with prepa- | ments doc- PProp
. - formal and
ration of umentation | . 1. Creates
.) - informal
require- including . new
c L notations 1. Leads .
o ments for descriptions for describ- | develop- require-
o consistency | of inter- o P ments
S s ing inter- ment of the L
(3} with inter- faces and specification
= . faces and SRS. (L)
b= nal and functional . methods.
3} . functional
[} published and non- (C)
o - and non-
(7)) standards. | functional .
- functional
(0] (F/A) require- .
= ments. (P) | Fcdure”
GEJ ments. (P/L)
[2. Selects
'S the most
o appropriate
Q
[~ formal and
o informal
© notations
E for describ-
] ing inter-
0 faces and
functional
and non-
functional
require-

ments. (L)

30 SWECOM

Table B11
Software Requirements Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
c 1. Selects
=} 1. Reviews | 1. Reviews the most 1. Creates
e} . o appropriate
[} specifica- specifica- new
o ;) formal and)
= tions of tions of . require-
© . : informal .
S require- require- o ments vali-
require .
o ments for ments for . dation and
c ments vali- o .
errors and errors and . verification
© o o dation and -
c omissions. omissions. | |- ie otion techniques.
2 (P) (L) - ©
=] techniques.
S (L
&
= 2. Assists in 2. Creates
]
> prototype prototypes
a construction of different
5 and testing. types as
£ (F/A) needed. (P)
.g 3. Assists 2. Negotiates
g_ in negotiat- | conflicts
g ing conflicts | between
between stake-
0 .
5 stake- holders in
2 holders in require-
& require- ments
8 ments veri- | verification.
fication. (A) | (P/L)
o 1. Sets
tE strategy
o @ |1.Follows and direc-
€ € |and applies | 1. Assists 1. Performs .
00 . ; tion for the
= o | defined in apply- tradeoff .
3 © ing defined | analysis of require-
3 ¢ |Pprocesses ing define analy ments pro-
o ® |for require- | processes require-
s . cess across
ments for require- | ments .
[T} . . . L projects
> % engineering | ments engi- | activities. and func-
3 0 | with guid- neering. (A) | (P/L) - .
£ 2 |ance. (F/A) tional units
oa ' of an orga-
(7]

nization. (L)

12. SOFTWARE DESIGN SKILL AREA

Software design skills are used to develop and describe the soft-
ware architecture of a system based on its software requirements:
this consists of a description of how software is decomposed into
components and the interfaces between those components. The
components are specified at a level of detail that enables their con-
struction. This skill area also includes skills related to processes and
techniques for software design quality, analysis, and evaluation.

REFERENCES

[IEEE 1016-2009] IEEE Std. 1016-2009, IEEE Standard for
Information Technology-Systems Design—Software Design
Descriptions, 1IEEE, 2009.

[IEEE 12207-2008] IEEE Std. 12207-2008, IEEE Standard for
Systems and Software Engineering—Software Life Cycle
Processes, 1EEE, 2008.

[IEEE 15528-2008] IEEE Std. 15528-2008, IEEE Standard for
Systems and Software Engineering—System Life Cycle
Processes, 1EEE, 2008.

[SWEBOK 2014] P. Bourque and R.E. Fairley, eds., Guide to the
Software Engineering Body of Knowledge, Version 3.0, IEEE
Computer Society, 2014; www.swebok.org.

31

http://www.swebok.org

32 SWECOM

Table A12

Software Design
Skill Sets

Software Design Activities

Software Design
Fundamentals

Employ enabling techniques (such as
abstraction, coupling/cohesion, information
hiding, and so forth) in software design.

Apply exception handling and fault tolerance
techniques in software design.

Use restructuring and refactoring methods in
software design.

Apply, as appropriate, design techniques in
the areas of concurrency, event handling, data
persistence, or distributed software.

Software Design
Strategies and Methods

Determine the process and strategy to be
used in software design (such as top-down
or bottom-up, stepwise refinement, use of
patterns and pattern languages, iterative and
incremental processes, and so forth).

Select and apply the appropriate design
methodology (such as a structural or object-
oriented approach).

Consider design alternatives and perform
trade-off analysis.

Manage software design activities.

Software Architectural
Design

Use architectural styles, views, models, and
patterns to specify the high-level organization
of a software system.

Specify the component interfaces.

Design software components and modules
using models, design patterns, notations, and
diagramming techniques.

Software Design Quality
Analysis and Evaluation

Utilize software design reviews.

Perform static analysis tasks to evaluate
design quality.

Develop and use simulation and prototypes to
evaluate software design quality.

Manage requirements change.

Software Design Skill Area 33

The following notations are used in Table B12: Follow (F), Assist
(A), Perform (P), Lead (L), Create (C).

(P)

Table B12
Software Design Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
1. Assists L. Applies
software . enabll_ng 1. Analyzes
- 1. Assists techniques
designers in th i h 1. Eval and makes
with tools in t_ e appli- | (suc as . Evaluates recom-
and tech- cation of abstraction, | the effec- mendations
niques for enabling coupling/ tiveness of related to
4 . techniques | cohesion, the applica- .
gathering in th inf ! . f sof organiza-
information | I the Information | tion of SOft- | 4,1 \ige
. | design of hiding, and | ware design —
(") about appli- . application
= . software so forth) to | enabling
g cation and : . of software
- use of soft- | components the design | techniques. desian fun-
Q . and mod- of software | (P/L) 9
£ ware design | A damentals.
H fundamen- | ules: (A) components ()
2 |tals. (F/A) and mod-
2) ules. (P)
g 2. As appro-
7 2. Assists priate in 2. Provides
Q ; the domain ; }
a in the of abplica- direction
(0] application " applica and advice
b tion, applies
[of design a Fo - on methods
E techniques at?elzjdepsi n |and tech-
° in the areas ~519 niques to
techniques .
) of concur- in the areas be used in
rency, event | o o i the areas
handling, rency. event of concur-
data per- handyllin rency, event
sistence, or data e?‘: handling, or
distributed sister[l)ce or distributed
software. o software.
(A) distributed (L)
software.

34 SWECOM

ules. (A)

Table B12
Software Design Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
3. Assists
in the appli- | 3. Applies
cation of exception
exception handling
handling and fault
L) and fault tolerance
8 tolerance techniques
5 techniques | in the
£ in the design of
g design of software
:=: software components
L components | and mod-
c and mod- ules. (P)
-% ules. (A)
[0} .
a 4 Assists 4. Uses
[} in the use
et restructur-
© of restruc- ing and
S turing and 9 .
Frad . refactoring
o refactoring methods in
0 methods in .
. the design
the design
of software
of software
components
components
and mod-
and mod-
ules. (P)

Software Design Skill Area 35

Table B12
Software Design Skill Sets and Activities by Competency Level
Levels
Senior
Skill Entry Technical Software
Sets | Technician Level Practitioner Leader Engineer
1. Determines
the pro-
1. Provides . . cess and
. 1. Assists in
assistance . . strategy to
. the applica- | 1. Applies .
in the . . be used in .
. . tion of the | the desig- 1. Examines
installation . software
designated | nated soft- - and
and use of . design at
software ware design ; assesses
tools appro- . the project
: design strategy the effec-
priate for level (such .
o strategy and meth- tiveness,
a project’s as top-down
. and meth- | odology to across an
" designated or bottom- -
S . odology to | create a ; organiza-
b design ¢ up, step . £ th
2 trate create a software wise refine- tion, of the
w | Strategy fit desi >¢e refine lication
[J) and meth- software esign ment, use applicatio
s design (such as an ! of software
odology) of patterns)
o (such as an | incremen- design
c (such asan || . and pattern .
H . incremen- | tal object- strategies
incremen-) . languages,
) . tal object- oriented : . and meth-
) tal object- : iterative
S . oriented approach). . ods. (M)
oriented and incre-
() approach). (P))
s approach). (A/P) mental pro
5 (F/A) cesses, and
0 so forth).
& (L)
3 2. Selects
(a] the appro-
o priate 2. Analyzes
g design and makes
& methodol- recom-
[} ogy (such mendations
“ as object- related to
oriented, organiza-
function- tion-wide
oriented, software
component- | design
based) and | strategies
strategies and meth-
to be used odologies.
at the proj- | (M)
ect level.

L

36 SWECOM

Table B12

Software Design Skill Sets and Activities by Competency Level

Skill
Sets

Levels

Technician

Entry
Level

Practitioner

Technical
Leader

Senior
Software
Engineer

Software Design Strategies and Methods

3. Provides
guidance
and advice
on the use
of software
design
strategies
and meth-
ods. (L)

4, Evaluates
the effec-
tiveness of
the applica-
tion of the
selected
software
design
methodol-
ogy. (P/L)

3. Creates
new tech-
niques
evaluating
software
design qual-
ity. (M)

2. Determines
design
alterna-
