


ACM Recommended 
Curricula for 
Computer Science and 
Information Processing 
Programs in Colleges 
and Universities, 
1968-1981 

Compiled by the Committees 
on Computer Curricula 
of the 
ACM Education Board 

Association for Computing Machinery 



acm 
Association for Computing Machinery 

1133 Avenue of the Americas 
New York, NY 10036 

Price: ACM Members: $15.00 
Non-members: $20.00 

Copies may be ordered, prepaid, f rom: 

ACM Order Department 
P.O. Box 64145 
Baltimore, MD 21264 

Use order #201813 

Copyright © 1 9 8 1 by the Association for Computing Machinery 

ISBN: 0-89791-058-3 



CONTENTS 

Page 
Curriculum 68: Recommendations for Academic Programs 

in Computer Science 1 

Curriculum Recommendations for Graduate Professional Programs 

in Information Systems 49 

A Computer Science Course Program for Small Colleges 85 

Curriculum Recommendations for Undergraduate Programs in Information Systems 95 

Curriculum 78: Recommendations for the Undergraduate Program 
in Computer Science 119 

Recommendations for Master's Level Programs 

in Computer Science 139 

Educational Programs in Information Systems 149 

Recommendations and Guidelines for an Associate Level Degree Program in Computer Programming 159 



PREFACE 

When we enter the twenty-first century, computers 
will have influenced our lives more than any other tech-
nology known to civilization. The need for knowledge 
about computers, computer technology, and the theoretical 
aspects of computers has grown exponentially. Since its 
founding in 1947, the Association for Computing Machinery 
has attempted to address this need for computer knowledge. 

The study of computers is an endeavor demanding 
careful, thorough, and organized development. Recognizing 
the need for a comprehensive model curriculum for the 
growing number of institutions offering computer science 
courses, ACM, in the mid-sixties, established the Curricu-
lum Committee on Computer Science to make recom-
mendations and provide guidelines to institutions. Chaired 
by Dr. William Atchison of the University of Maryland, this 
dedicated group of forward-thinking people published 
preliminary recommendations in September 1965. With 
financial assistance from the National Science Foundation, 
they published their final report, "Recommendations for 
Academic Programs in Computer Science," in Communi-
cations of the ACM in March 1968. This curriculum, known 
as "Curriculum '68," formed the basis of formal computer 
science study in colleges and universities for the next ten 
years. 

Circumstances in the world of computers change con-
stantly. As soon as a new idea emerges, as soon as a new 
principle is stated, as soon as a new technology is devel-
oped, it is outdated. Such is the case with curricula. As 
soon as "Curriculum '68" was published, many realized 
that there were other avenues to take, and as a conse-
quence, other curricula were developed. 

Since many small colleges could not afford a computer 
science program similar to the one outlined in "Curri-
culum '68," a small college curriculum was developed. The 
need for information systems curricula, quite different 
from computer science curricula, was recognized; those 
curricula were published in 1972, 1973, and 1981. In 
addition, specialized curricula for Associate Degree pro-
grams in Community and Junior Colleges and Doctoral 
level programs in Health Computing were developed, 
and "Curriculum '68" was updated by "Curriculum '78". 

This volume includes all the curricula published as of 
June 1981, plus the final version of the "Curriculum on 
Computer Programming for Community and Junior Col-
leges" which appeared in draft version in the June 1977 
SIGCSE Bulletin. These curricula are printed in order of 
publication dates. We realize that some of the recent 
curricula included will soon be updated — nothing is 
absolute, nothing is final. ACM's efforts in the develop-
ment of curricula will not end, they will be ongoing. 

Two new curricula, A Model Curriculum for Doc-
toral-Level Programs in Health Computing and Recom-
mendations and Guidelines for Vocation-Technical Career 
Programs for Computer Personnel in Operations were 
published in July 1981 and are available from ACM sep-
arately. 

ACM is aware that there are demands for education 
about computers in areas other than formal, theoretical 
programs. In the middle of 1981, when the computer's 
impact on society is so clear, we realize computer study 
cannot be confined to the post-secondary area. Work is 
now in progress to develop viable programs for the secon-
dary and elementary schools. 

No author of a preface should close without giving 
thanks. Over the past 15 years, each ACM administra-
tion has supported curriculum activity; those administra-
tions are to be thanked. Also, thanks should be given to the 
staffs of ACM Headquarters who helped publish each 
curricula, the authors of each curriculum published, as 
well as to the committees that supported them. I would 
like to list all those who have given their time and energy 
to make these curricula a reality, but I fear if I mention 
one name, than I shall forget another. Therefore, a blanket 
thank you is given to each person who has contributed to 
the development of these curricula. 

William B. Gruener, Chairman 
ACM Curriculum Committee 

on Computer Education 
November 1981 



C U R R I C U L U M 68 
Recommendations for Academic Programs in Computer Science 

A REPORT OF THE A C M CURRICULUM COMMITTEE ON COMPUTER SCIENCE 

Dedicated to the Memory of Silvio 0. Navarro 

This report contains recommendations on academic programs in computer science 
which were developed by the ACM Curriculum Committee on Computer Science. A 
classification of the subject areas contained in computer science is presented and 
twenty-two courses in these areas are described. Prerequisites, catolog descriptions, 
detailed outlines, and annotated bibliographies for these courses are included. Spe-
cific recommendations which have evolved from the Committee's 1965 Preliminary 
Recommendations are given for undergraduate programs. Graduate programs in 
computer science are discussed, and some recommendations are presented for the 
development of master's degree programs. Ways of developing guidelines for doctoral 
programs are discussed, but no specific recommendations are made. The importance 
of service courses, minors, and continuing education in computer science is empha-
sized. Attention is given to the organization, staff requirements, computer resources, 
and other facilities needed to implement computer science educational programs. 
KEY WORDS AND PHRASES: computer science courses, computer science curriculum, computer science 

education, computer science academic programs, computer science graduate programs, computer science 

undergraduate programs, computer science course bibliographies 

CR CATEGORIES: 1.52 



Preface 
The Curriculum Committee on Computer Science (C3S) was initially 

formed in 1962 as a subcommittee of the Education Committee of the As-
sociation for Computing Machinery. In the first few years of its existence 
this subcommittee functioned rather informally by sponsoring a number of 
panel discussions and other sessions a t various national computer meetings. 
The Curriculum Committee became an independent committee of the ACM 
in 1964 and began an active effort to formulate detailed recommendations 
for curricula in computer science. Its first report, "An Undergraduate Pro-
gram in Computer Science—Preliminary Recommendations" [1], was pub-
lished in the September 1965 issue of Communications of the ACM. 

The work of the Committee during the last two years has been devoted 
to revising these recommendations on undergraduate programs and develop-
ing recommendations for graduate programs as contained in this report. The 
primary support for this work has been from the National Science Founda-
tion under Grant Number GY-305, received in July 1965. 

The Committee membership during the preparation of this report was: 

William F. Atchison, University of Maryland (Chairman) 
Samuel D. Conte, Pu rdue University 
John W. Hamblen , S R E B and Georgia Ins t i tu te of Technology 
T h o m a s E. Hull, University of Toronto 
Thomas A. Keenan, E D U C O M and the University of Rochester 
William B. Kehl, University of California a t Los Angeles 
Edward J . McCluskey, Stanford University 
Silvio O. Navarro,* University of Kentucky 
Werner C. Rheinboldt , University of Maryland 
Earl J . Schweppe, University of Mary land (Secretary) 
William Viavant , University of Utah 
David M. Young, Jr . , University of Texas 
* Dr. Navarro was killed in an airplane crash on April 3, 1967. 

In addition to these members many others have made valuable contribu-
tions to the work of the Committee. Their names and affiliations are listed 
at the end of this report. Robert Ashenhurst and Peter Wegner have given 
especial assistance in the preparation of this report. 

CONTENTS 

1. Introduction 
2. Subject Classification 
3. Description of Courses 
4. Undergraduate Programs 
5. Master ' s Degree Programs 
6. Doctoral Programs 
7. Service Courses, Minors, and Continuing 

Educat ion 
8. Implementa t ion 
References 
Acknowledgments 
Appendix. Course Outl ines and Bibliographies 

2 



1. Introduction 
Following the appearance of its Preliminary Recom-

mendations [1], the Curriculum Committee on Com-
puter Science received many valuable comments, 
criticisms, and suggestions on computer science edu-
cation. From these, the advice of numerous consul-
tants, and the ideas of many other people, the Com-
mittee has prepared this report, "Curriculum 68," 
which is a substantial refinement and extension of the 
earlier recommendations. The Committee hopes tha t 
these new recommendations will s t imulate further dis-
cussion in this area and evoke additional contributions 
to its future work from those in the computing pro-
fession. The Committee believes strongly tha t a con-
tinuing dialogue on the process and goals of education 
in computer science will be vital in the years to come. 

In its Preliminary Recommendations the Committee 
devoted considerable at tention to the justification and 
description of "computer science" as a discipline. Al-
though debate on the existence of such a discipline 
still continues, there seems to be more discussion to-
day on what this discipline should be called and what 
it should include. In a recent letter [2], Newell, Perlis, 
and Simon defend the name "computer science." 
Others, wishing perhaps to take in a broader scope 
and to emphasize the information being processed, ad-
vocate calling this discipline "information science" 
[3] or, as a compromise, " the computer and informa-
tion sciences" [4], The Committee has decided to use 
the term "computer science" throughout this report, 
although it fully realizes tha t other names may be 
used for essentially the same discipline. 

In a t tempting to define the scope of this discipline, 
the Committee split computer science into three 
major subject divisions to which two groups of related 
areas were then added. Using this as a framework, the 
Committee developed a classification of the subject 
areas of computer science and some of its related 
fields, and this classification is presented in Section 2. 

As was the case for its Preliminary Recommenda-
tions, the Committee has devoted considerable effort 
to the development of descriptions, detailed outlines, 
and bibliographies for courses in computer science. 
Of the sixteen courses proposed in the earlier recom-
mendations, eleven have survived in spirit if not in 
detail. Two of the other five courses have been split 
into two courses each, and the remaining three have 
been omitted since they belong more properly to other 
disciplines closely related to computer science. In ad-
dition seven new courses have been proposed, of 
which Course B3 on "discrete structures" and Course 
13 on "computer organization" are particularly nota-
ble. Thus this report contains detailed information— 
in the form of catalog descriptions and prerequisites 
in Section 3 and detailed outlines and annotated bib-

liographies in the Appendix—on a total of twenty-two 
courses. 

Another important issue which concerned the Cur-
riculum Committee is the extent to which undergrad-
uate programs as opposed to graduate programs in 
computer science ought to be advocated. Certainly, 
both undergraduate and graduate programs in "com-
puter science" do now exist, and more such programs 
operate under other names such as "information 
science" or "da ta processing" or as options in such 
fields as mathematics or electrical engineering. A re-
cent survey [5], supported by the National Science 
Foundation and carried out by the Computer Sciences 
Project of the Southern Regional Education Board, 
contains estimates of the number of such degree pro-
grams operating in 1964-1965 and projections of the 
number planned to be operating by 1968-1969. These 
estimates and projections can be summarized as fol-
lows: 

Progrmn mime 
Bachelor's 

Program level 
Master's Doctoral 

Progrmn mime 
1964 
1965 

1968 
1969 

1964 
1965 

1968 
1969 

1964 1968 
1965 1969 

C o m p u t e r Science 11 92 17 7(l 12 38 
D a t a Process ing () 15 3 4 1 2 
I n f o r m a t i o n Science 2 4 12 17 4 13 
Similar P r o g r a m s 25 40 29 40 21 28 

The information contained in these figures is interest-
ing for two reasons. First, it shows tha t the number of 
computer science degree programs will continue to 
grow rapidly even if some of the programs now being 
planned do not come into being. Second, it shows a 
strong tendency to use the name "computer science," 
although the availability of academic work in comput-
ing is not limited to institutions having a depar tment 
or a program operating under that title. 

A major purpose of the Committee's recommenda-
tions on undergraduate programs and master 's degree 
programs given in Sections 4 and 5 is to provide a 
sense of direction and a realizable set of goals for 
those colleges and universities which plan to provide 
computer science education for undergraduate and /or 
graduate students. The discussion in Section 6 of how 
guidelines for doctoral programs may be developed is 
very general, mainly because this is a difficult area in 
which to make detailed recommendations. 

The importance of service courses, minors, and con-
tinued education in computer science has also been 
of concern to the Committee. Although detailed work 
still needs to be done, some preliminary discussion of 
the needs in these areas is given in Section 7. In Sec-
tion 8 some of the problems of implementing an edu-
cational program in computer science are discussed. 

3 



In general the difficulties in establishing such pro-
grams are formidable; the practical problems of find-
ing qualified faculty, of providing adequate laboratory 
facilities, and of beginning a program in a new area 
where there are few textbooks are severe. These prob-
lems are magnified for baccalaureate programs in com-
parison with graduate programs, where the admission 
can be more closely controlled. 

The demand for substantially increased numbers of 
persons to work in all areas of computing has been 
noted in a report of the National Academy of Sciences-
National Research Council [6] (commonly known as 
the "Rosser Report") and in a report of the President 's 
Science Advisory Committee [7] (often called the 
"Pierce Report"). Although programs based on the 
recommendations of the Curriculum Committee can 
contribute substantially to satisfying this demand, 
such programs will not cover the full breadth of the 
need for personnel. For example, these recommenda-
tions are not directed to the training of computer op-
erators, coders, and other service personnel. Training 
for such positions, as well as for many programming 
positions, can probably be supplied best by applied 
technology programs, vocational institutes, or junior 
colleges. It is also likely tha t the majority of applica-
tions programmers in such areas as business data 
processing, scientific research, and engineering analy-
sis will continue to be specialists educated in the re-
lated subject mat ter areas, although such students 
can undoubtedly profit by taking a number of com-
puter science courses. 

2. Subject 

The scope of academic programs and curricula in 
computer science will necessarily vary from institu-
tion to institution as dictated by local needs, resources, 
and objectives. To provide a basis for discussion, how-
ever, it seems desirable to have a reasonably compre-
hensive system for classifying the subject areas within 
computer science and related fields. Although any such 
system is somewhat arbitrary, it is hoped tha t any 
substantial aspect of the computer field, unless spe-
cifically excluded for stated reasons, may be found 
within the system presented here. The subject areas 
within computer science will be classified first; those 
shared with or wholly within related fields will be 
discussed later in this section. 

Computer Science. The subject areas of computer 
science are grouped into three major divisions: "infor-
mation structures and processes," "information proc-
essing systems," and "methodologies." The subject 
areas contained in each of these divisions are given 
below together with lists of the topics within each 
subject area. 

In addition to this Committee, several other organi-
zations have set forth guidelines to aid educational 
institutions in the establishment of programs perti-
nent to the needs of today's computer-oriented tech-
nology. Prominent among these are the reports of the 
Committee on the Undergraduate Program in Mathe-
matics (CUPM) of the Mathematical Association of 
America [8], the COSINE Committee of the Commis-
sion on Engineering Education [9], and the Education 
Committee of the British Computer Society [10]. Also, 
the ACM Curriculum Committee on Computer Educa-
tion for Management, chaired by Daniel Teichroew, is 
now beginning to consider educational matters related 
to the application of computers to "management infor-
mation systems." The Curriculum Committee has 
benefited greatly from interchanging ideas with these 
other groups. In addition, the entire Committee was 
privileged to take part in "The Graduate Academic 
Conference in Computing Science" [11] held at Stony 
Brook in June 1967. 

Computer science programs, in common with those 
of all disciplines, must a t t empt to provide a basis of 
knowledge and a mode of thinking which permit con-
tinuing growth on the part of their graduates. Thus, 
in addition to exposing the student to a depth of 
knowledge in computer science sufficient to lay the 
basis for professional competence, such programs 
must also provide the student with the intellectual 
maturi ty which will allow him to stay abreast of his 
own discipline and to interact with other disciplines. 

Classification 

I . I N F O R M A T I O N S T R U C T U R E S A N D P R O C E S S E S 

This subject division is concerned with representations and 
transformations of information structures and with theoreti-
cal models for such representations and transformations. 

1 . D A T A S T R U C T U R E S : includes the description, representation, and 
manipulation of numbers, arrays, lists, trees, files, etc.; storage or-
ganization, allocation, and access; enumeration, searching and sort-
ing; generation, modification, transformation, and deletion tech-
niques; the static and dynamic properties of structures; algorithms 
for the manipulat ion of sets, graphs, and other combinatoric struc-
tures. 
2. P R O G R A M M I N G L A N G U A G E S : includes the representation of algo-
ri thms; the syntactic and semantic specification of languages; the 
analysis of expressions, s ta tements , declarations, control structures, 
and other features of programming languages; dynamic structures 
which arise during execution; the design, development and evalu-
ation of languages; program efficiency and the simplification of 
programs; sequential transformations of program structures; special 
purpose languages; the relation between programming languages, 
formal languages, and linguistics. 

3 . M O D E L S O F C O M P U T A T I O N : includes the behavioral and structural 
analysis of switching circuits and sequential machines; the proper-
t ies and classification of au tomata ; algebraic au tomata theory and 
model theory; formal languages and formal grammars; the classifi-
cation of languages by recognition devices; syntactic analysis; formal 

4 



specification of semantics; syntax directed processing; decidability 
problems for grammars; the t rea tment of programming languages as 
au tomata ; other formal theories of programming languages and com-
putat ion. 

II. INFORMATION PROCESSING S Y S T E M S 

This subject division is concerned with systems having the 
ability to transform information. Such systems usually in-
volve the interaction of hardware and software. 

1 . C O M P U T E R D E S I G N A N D O R G A N I Z A T I O N : includes types of com-
puter structure—von Neumann computers, array computers, and 
look-ahead computers; hierarchies of memory—flip-flop registers, 
cores, disks, drums, tapes—and their accessing techniques; micro-
programming and implementat ion of control functions; ari thmetic 
circuitry; instruction codes; input-output techniques; multiproc-
essing and mult iprogramming structures. 

2 . T R A N S L A T O R S A N D I N T E R P R E T E R S : includes the theory and tech-
niques involved in building assemblers, compilers, interpreters, 
loaders, and editing or conversion routines (media, format, etc.). 

3 . C O M P U T E R A N D O P E R A T I N G S Y S T E M S : includes program monitoring 
and data management ; accounting and utility routines; data and 
program libraries; modular organization of systems programs; inter-
faces and communication between modules; requirements of multi-
access, multiprogram and multiprocess environments; large scale 
systems description and documentat ion; diagnostic and debugging 
techniques; measurement of performance. 

4 . S P E C I A L P U R P O S E S Y S T E M S : includes analog and hybrid com-
puters; special terminals for data transmission and display; periph-
eral and interface units for particular applications; special software 
to support these. 

III. M E T H O D O L O G I E S 

Methodologies are derived from broad areas of applications 
of computing which have common structures, processes, and 
techniques. 

1 . N U M E R I C A L M A T H E M A T I C S : includes numerical algorithms and their 
theoretical and computational properties; computat ional error analy-
sis (for rounding and truncation errors); automat ic error est imates 
and convergence properties. 

2 . D A T A P R O C E S S I N G A N D F I L E M A N A G E M E N T : includes techniques 
applicable to library, biomedical, and management information 
systems; file processing languages. 
3 . S Y M B O L M A N I P U L A T I O N : includes formula operations such as sim-
plification and formal differentiation; symbol manipulat ion lan-
guages. 
4 . T E X T P R O C E S S I N G : includes text editing, correcting, and jus-
tification; the design of concordances; applied linguistic analysis; 
text processing languages. 

5 . C O M P U T E R G R A P H I C S : includes digitizing and digital storage; 
display equipment and generation; picture compression and image 
enhancement; picture geometry and topology; perspective and rota-
tion; picture analysis; graphics languages. 
6 . S I M U L A T I O N : includes natural and operational models; dis-
crete simulation models; continuous change models; simulation lan-
guages. 
7 . I N F O R M A T I O N R E T R I E V A L : includes indexing and classification; 
statistical techniques; au tomat ic classification; matching and search 
strategies; secondary outputs such as abstracts and indexes; selec-
tive dissemination systems; automat ic question answering systems. 
8 . A R T I F I C I A L I N T E L L I G E N C E : includes heuristics; brain models; pat-
tern recognition; theorem proving; problem solving; game playing; 
adaptive and cognitive systems; man-machine systems. 
9 . P R O C E S S C O N T R O L : includes machine tool control; experiment 
control; command and control systems. 
1 0 . I N S T R U C T I O N A L S Y S T E M S : includes computer aided instruction. 

Related Areas. In addition to the areas of computer 
science listed under the three divisions above, there 
are many related areas of mathematics, statistics, 
electrical engineering, philosophy, linguistics, and in-
dustrial engineering or management which are es-
sential to balanced computer science programs. Suit-
able courses in these areas should be developed 
cooperatively with the appropriate departments , al-
though it may occasionally be desirable to develop 
some of these courses within the computer science 
program. 

Since it is not feasible in this report to list all of the 
areas which might be related to a computer science 
program, let alone indicate where courses in these 
areas should be taught, the following listing is some-
what restricted. It is grouped into two major divisions: 
"mathemat ica l sciences" and "physical and engineer-
ing sciences." 

I V . M A T H E M A T I C A L S C I E N C E S 

1 . E L E M E N T A R Y A N A L Y S I S 

2 . L I N E A R A L G E B R A 

3 . D I F F E R E N T I A L E Q U A T I O N S 

4 . A L G E B R A I C S T R U C T U R E S 

5 . T H E O R E T I C A L N U M E R I C A L A N A L Y S I S 

6 . M E T H O D S O F A P P L I E D M A T H E M A T I C S 

7 . O P T I M I Z A T I O N T H E O R Y 

8 . C O M B I N A T O R I A L M A T H E M A T I C S 

9 . M A T H E M A T I C A L L O G I C 

1 0 . N U M B E R T H E O R Y 

1 1 . P R O B A B I L I T Y A N D S T A T I S T I C S 

1 2 . O P E R A T I O N S A N A L Y S I S 

V . P H Y S I C A L A N D E N G I N E E R I N G S C I E N C E S 

1 . G E N E R A L P H Y S I C S 

2 . B A S I C E L E C T R O N I C S 

3 . C I R C U I T A N A L Y S I S A N D D E S I G N 

4 . T H E R M O D Y N A M I C S A N D S T A T I S T I C A L M E C H A N I C S 

5 . F I E L D T H E O R Y 

6 . D I G I T A L A N D P U L S E C I R C U I T S 

7 . C O D I N G A N D I N F O R M A T I O N T H E O R Y 

8 . C O M M U N I C A T I O N A N D C O N T R O L T H E O R Y 

9 . Q U A N T U M M E C H A N I C S 

No a t t empt has been made to include within this 
classification system all the subject areas which make 
use of computer techniques, such as chemistry and 
economics; indeed, to list these would require inclu-
sion of a major portion of the typical university cata-
log. Furthermore, the sociological, economic, and edu-
cational implications of developments in computer 
science are not discussed in this report. These issues 
are undoubtedly important , but they are not the ex-
clusive nor even, the major responsibility of computer 
science. Indeed, other depar tments such as philosophy 
and sociology should be urged to cooperate with com-
puter scientists in the development of courses or 
seminars covering these topics, and computer science 
students should be encouraged to take these courses. 

5 



3. Descript 
The computer science courses specified in this re-

port are divided into three categories: "basic," "inter-
mediate ," and "advanced." The basic courses are 
intended to be taught primarily at the freshrnan-soph-
omore level, whereas both the intermediate and the 
advanced courses may be taught at the junior-senior 
or the graduate level. In general, the intermediate 
courses are strongly recommended as part of under-
graduate programs. The advanced courses are classi-
fied as such either because of their higher level of 
prerequisites and required maturi ty or because of 
their concern with special applications of computer 
science. 

In addition to more elementary computer science 
courses, certain courses in mathematics are necessary, 
or at least highly desirable, as prerequisites for some 
of the proposed courses. More advanced mathematics 
courses may be included as supporting work in the 
programs of some students. Because of the considera-
ble variation in the level and content of mathematics 
courses among (and even within) schools, the courses 
described by the Committee on the Undergraduate 
Program in Mathematics (CUPM) in the report, "A 
General Curriculum in Mathemat ics for Colleges" 
[12] have been used to specify the prerequisites for the 
proposed courses in computer science and require-
ments for degrees. Other pert inent mathematics 
courses are described in the CUPM reports, "Recom-
mendations on the Undergraduate Mathematics Pro-

i of Courses 
gram for Engineers and Physicists" [13] and "A Cur-
riculum in Applied Mathemat ics" [14]. 

The titles and numbers of all the courses proposed 
in this report and the pertinent courses recommended 
by CUPM are shown in Figure 1 along with the pre-
requisite structure linking these courses. The courses 
described below, which make up the core of the under-
graduate program, are also singled out in Figure 1. 
The relatively strong prerequisite structure proposed 
for these core courses allows their content to be 
greatly expanded from what a weaker structure would 
permit. The Committee recognizes tha t other—per-
haps weaker—prerequisite structures might also be ef-
fective and tha t the structure shown will change along 
with the course content as computer science education 
develops. Prerequisites proposed for the advanced 
courses are subject to modification based on many 
orientations which these courses may be given at in-
dividual institutions. 

Most of the courses have been designed on the ba-
sis of three semester hours of credit. Laboratory ses-
sions, in which the more practical aspects of the ma-
terial can be presented more effectively than in formal 
lectures, have been included where appropriate. The 
proposed number of hours of lecture and laboratory 
each week and the number of semester hours of credit 
for the course are shown in parentheses in the catalog 
descriptions below. For example, (2-2-3) indicates two 
hours of lecture and two hours of laboratory per week 
for a total of three semester hours of credit. 

Course Catalog Descriptions and Prerequisites 

For each of the courses listed below, a brief state-
ment on the approach which might be taken in teach-
ing it is given in the Appendix along with the detailed 
outlines of its proposed contents and annotated bib-
liographies of pertinent source materials and textbooks. 

• T h e first course is designed to provide the student 
with the basic knowledge and experience necessary to 
use computers effectively in the solution of problems. 
It can be a service course for students in a number of 
other fields as well as an introductory course for majors 
in computer science. Although no prerequisites are 
listed, it is assumed tha t the s tudent will have had a 
minimum of three years of high school mathematics. 
All of the computer science courses which follow will 
depend upon this introduction. 

Course B1. In t roduct ion to Comput ing (2-2-3) 

Algorithms, programs, and computers. Basic programming and pro-
gram structure. Programming and computing systems. Debugging 

and verification of programs. Data representation. Organization and 
characteristics of computers. Survey of computers, languages, sys-
tems, and applications. Computer solution of several numerical and 
nonnumerical problems using one or more programming languages. 

• The second course is intended to lay a foundation 
for more advanced study in computer science. By 
familiarizing the student with the basic structure and 
language of machines, the content of this course will 
give him a better understanding of the internal behav-
ior of computers, some facility in the use of assembly 
languages, and an ability to use computers more ef-
fectively—even with procedure-oriented languages. 

Course B2. Compute rs and Prog ramming (2-2-3) 

Prerequisite: Course Bl . 

Computer structure, machine language, instruction execution, ad-
dressing techniques, and digital representation of data . Computer 

6 



THE CORE COURSES OF THE PROPOSED UNDERGRADUATE PROGRAM 

Indicates 

Definite 

Prerequisite 

B indicates a Basic Computer Science Course 
I indicates an Intermediate Computer Science Course 

A indicates an Advanced Computer Science Course 
M indicates a CUPM Mathemat ics Course 

Indicates 

Desirable 

Prerequisite 

FIG. 1. Prerequisite structure of courses 

7 



systems organization, logic design, micro-programming, and inter-
preters. Symbolic coding and assembly systems, macro definition 
and generation, and program segmentation and linkage. Systems and 
utility programs, programming techniques, and recent develop-
ments in computing. Several computer projects to illustrate basic 
machine structure and programming techniques. 

• T h i s course introduces the s tudent to those funda-
mental algebraic, logical, and combinatoric concepts 
from mathemat ics needed in the subsequent computer 
science courses and shows the applications of these 
concepts to various areas of computer science. 

Course B3. In t roduc t ion to Discrete St ructures (3-0-3) 

Prerequisite: Course Bl . 

Review of set algebra including mappings and relations. Algebraic 
structures including semigroups and groups. Elements of the theory 
of directed and undirected graphs. Boolean algebra and preposi-
tional logic. Applications of these structures to various areas of 
computer science. 

• This course provides the student with an intro-
duction to the basic numerical algorithms used in sci-
entific computer work—thereby complementing his 
studies in beginning analysis—and affords him an op-
portunity to apply the programming techniques he 
has learned in Course Bl . Because of these aims, many 
of the s tandard elementary numerical analysis courses 
now offered in mathematics depar tments cannot be 
considered as substitutes for this course. 

Course B4. Numer ica l Calculus (2-2-3) 

Prerequisites: Courses Bl , M2, and M3. 

An introduction to the numerical algorithms fundamental to scienti-
fic computer work. Includes elementary discussion of error, polyno-
mial interpolation, quadrature, linear systems of equations, solution 
of nonlinear equations, and numerical solution of ordinary differen-
tial equations. The algorithmic approach and the efficient use of 
the computer are emphasized. 

• T h i s course is concerned with one of the most fun-
damental—but often inadequately recognized—areas of 
computer science. Its purpose is to introduce the stu-
dent to the relations which hold among the elements 
of data involved in problems, the structures of storage 
media and machines, the methods which are useful in 
representing structured da ta in storage, and the tech-
niques for operating upon data structures. 

Course 11. Data St ructures (3-0-3) 

Prerequisites: Courses B2 and B3. 

Basic concepts of data. Linear lists, strings, arrays, and orthogonal 
lists. Representation of trees and graphs. Storage systems and struc-
tures, and storage allocation and collection. Multilinked structures. 
Symbol tables and searching techniques. Sorting (ordering) tech-
niques. Formal specification of data structures, data structures in 
programming languages, and generalized data management systems. 

• T h e following intermediate course is designed to 
present a systematic approach to the study of program-
ming languages and thus provide the student with the 
knowledge necessary to learn and evaluate such lan-
guages. 

Course 12. P rog ramming Languages (3-0-3) 

Prerequisites: Courses B2 and B3. 

Formal definition of programming languages including specification 
of syntax and semantics. Simple statements including precedence, 
infix, prefix, and postfix notation. Global properties of algorithmic 
languages including scope of declarations, storage allocation, group-
ing of statements, binding time of constituents, subroutines, corou-
tines, and tasks. List processing, string manipulation, data descrip-
tion, and simulation languages. Run-time representation of program 
and data structures. 

• The following course discusses the organization, 
logic design, and components of digital computing sys-
tems. It can be thought of as a continuation of the 
hardware concepts introduced in Course B2. 

Course 13. Computer Organizat ion (3-0-3) or (3-2-4) 

Prerequisites: Courses B2 and B3. 

Basic digital circuits, Boolean algebra and combinational logic, data 
representation and transfer, and digital arithmetic. Digital storage 
and accessing, control functions, inputrOutput facilities, system or-
ganization, and reliability. Description and simulation techniques. 
Features needed for multiprogramming, multiprocessing, and real-
time systems. Other advanced topics and alternate organizations. 

• T h e following course is concerned primarily with 
the software organization—and to a lesser extent the 
hardware—of computer systems which support a wide 
variety of users. It is intended to bring together the 
concepts and techniques developed in the previous 
courses on data structures, programming languages, 
and computer organization by considering their role 
in the design of general computer systems. The prob-
lems which arise in multiaccessing, multiprogram-
ming, and multiprocessing are emphasized. 

Course 14. Sys tems Prog ramming (3-0-3) 

Prerequisites: Courses II, 12, and 13. 

Review of batch process systems programs, their components, op-
erating characteristics, user services and their limitations. Im-
plementation techniques for parallel processing of input-output and 
interrupt handling. Overall structure of multiprogramming systems 
on multiprocessor hardware configurations. Details on addressing 
techniques, core management, file system design and management, 
system accounting, and other user-related services. Traffic control, 
interprocess communication, design of system modules, and inter-
faces. System updating, documentation, and operation. 

• T h e following course is intended to provide a de-
tailed understanding of the techniques used in the de-
sign and implementation of compilers. 

8 



Course 15. Compi le r Cons t ruc t ion (3-0-3) 

Prerequisites: Courses II and 12. 

Review of program language structures, translation, loading, execu-
tion, and storage allocation. Compilation of simple expressions and 
statements. Organization of a compiler including compile-time and 
run-time symbol tables, lexical scan, syntax scan, object code gen-
eration, error diagnostics, object code optimization techniques, and 
overall design. Use of compiler writing languages and bootstrapping. 

• T h i s course introduces the theoretical principles 
and mathematical techniques involved in the design 
of digital system logic. A course compatible with the 
content and approach of this course is frequently 
taught in depar tments of electrical engineering. 

Course 16. S w i t c h i n g Theory (3-0-3) or (2-2-3) 

Prerequisites: Courses B3 (desirable) and 13 (desirable, as it would 
allow more meaningful examples to be used). 

Switching algebra, gate network analysis and synthesis, Boolean 
algebra, combinational circuit minimization, sequential circuit 
analysis and synthesis, sequential circuit state minimization, haz-
ards and races, and elementary number systems and codes. 

• This theoretical course is especially recommended 
for undergraduate students planning to do graduate 
work in computer science. It is also an appropriate 
course for electrical engineers and may sometimes be 
available from or jointly developed with an electrical 
engineering depar tment . 

Course 17. Sequent ia l Mach ines (3-0-3) 

Prerequisites: Courses B3 or M6, and 16 (desirable). 

Definition and representation of finite state automata and sequen-
tial machines. Equivalence of states and machines, congruence, re-
duced machines, and analysis and synthesis of machines. Decision 
problems of finite automata, partitions with the substitution prop-
erty, generalized and incomplete machines, semigroups and ma-
chines, probabilistic automata, and other topics. 

• T h e following two courses in numerical analysis are 
intended to be mathematical ly rigorous and at the 
same time computer-oriented. 

Course 18. Numer ica l Analys is I (3-0-3) 

Prerequisites: Courses Bl , B4 (desirable), and M4. 

A thorough t reatment of solutions of equations, interpolation and 
approximations, numerical differentiation and integration, and nu-
merical solution of initial value problems in ordinary differential 
equations. Selected algorithms will be programmed for solution on 
computers. 

Course 19. Numer ica l Analys is II (3-0-3) 

Prerequisites: .Courses Bl , B4 (desirable), M4, and M5 (desirable). 

The solution of linear systems by direct and iterative methods, ma-
trix inversion, the evaluation of determinants, and the calculation 
of eigenvalues and eigenvectors of matrices. Application to bound-

ary value problems in ordinary differential equations. Introduction 
to the numerical solution of partial differential equations. Selected 
algorithms will be programmed for solution on computers. 

• The following course serves as an introduction both 
to the theory of context-free grammars and formal lan-
guages, and to syntactic recognition techniques for 
recognizing languages specified by context-free gram-
mars. 

Course A1 . Formal Languages and Syntact ic 

Analys is (3-0-3) 

Prerequisites: Courses II and 12. 

Definition of formal grammars: arithmetic expressions and prece-
dence grammars, context-free and finite-state grammars. Algorithms 
for syntactic analysis: recognizers, backtracking, operator prece-
dence techniques. Semantics of grammatical constructs: reductive 
grammars, Floyd productions, simple syntactical compilation. Re-
lationship between formal languages and automata. 

• The following advanced course in computer organi-
zation is centered around the comparison of solutions 
to basic design problems which have been incorpo-
rated in a number of quite different computers. 

Course A2 . Advanced Compute r Organizat ion (3-0-3) 

Prerequisites: Courses 13, 14 (desirable), and 16 (desirable). 

Computer system design problems such as arithmetic and nonarith-
metic processing, memory utilization, storage management, address-
ing, control, and input-output. Comparison of specific examples of 
various solutions to computer system design problems. Selected 
topics on novel computer organizations such as those of array or 
cellular computers and variable structure computers. 

• T h i s course is designed to give the computer science 
s tudent some experience with analog, hybrid, and re-
lated techniques. It could also be very valuable as a 
service course. 

Course A 3 . Ana log and Hybr id C o m p u t i n g (2-2-3) 

Prerequisites: Courses Bl and M4. (The CUPM mathematical anal-
ysis courses include some differential equations; more may be 
needed.) 

Analog, hybrid and related digital techniques for the solution of 
differential equations. Analog simulation languages. Scaling meth-
ods. Operational characteristics of analog components. Digital dif-
ferential analyzers. Analog-to-digital and digital-to-analog conver-
sion. Stability problems. Modeling methods. Use of analog and 
hybrid equipment and of digital simulation of continuous systems. 

• The following course is concerned with the simula-
tion and modeling of discrete systems on a computer. 
Since simulation is one of the most common applica-
tions of computers and is used to a great extent in the 
design of computing machines and systems, students 
of computer science should become acquainted with 
simulation techniques and their use. 

9 



Course A4 . Sys tem S imu la t ion (3-0-3) 

Prerequisites: Courses 14 and M7. 

Introduction to simulation and comparison with other techniques. 
Discrete simulation models, and introduction to, or review of, queue-
ing theory and stochastic processes. Comparison of discrete change 
simulation languages. Simulation methodology including generation 
of random numbers and variates, design of simulation experiments 
for optimization, analysis of data generated by simulation experi-
ments, and validation of simulation models and results. Selected 
applications of simulation. 

• T h e purpose of the following course is to provide an 
introduction to natural language processing, particu-
larly as it relates to the design and operation of auto-
matic information systems. Included are techniques 
for organizing, storing, matching, and retrieving struc-
tured information on digital computers, as well as pro-
cedures useful for the optimization of search effective-
ness. 

Course A5. In fo rmat ion Organizat ion and 

Retr ieval (3-0-3) 

Prerequisite: Course II. 

Structure of semiformal languages and models for the representa-
tion of structured information. Aspects of natural language process-
ing on digital computers. The analysis of information content by 
statistical, syntactic, and logical methods. Search and matching 
techniques. Automatic retrieval systems, question-answering sys-
tems. Production of secondary outputs. Evaluation of retrieval ef-
fectiveness. 

• The objective of the following course is to study the 
problems of handling graphic information, such as line 
drawings, block diagrams, handwriting, and three-di-
mensional surfaces, in computers. Input-output and 
representation-storage of pictures will be introduced 
from the hardware and software points of view. The 
course is intended to serve both the student interested 
in specializing in computer graphics per se and the 
student who seeks to apply graphic techniques to his 
particular computing work. 

Course A6. Compute r Graphics (2-2-3) 

Prerequisites: Courses II, 13 (desirable), and 14 (desirable). 

Display memory, generation of points, vectors, etc. Interactive ver-
sus passive graphics. Analog storage of images on microfilm, etc. 
Digitizing and digital storage. Pattern recognition by features, syn-
tax tables, random nets, etc. Data structures and graphics software. 
The mathematics of three-dimensions, projections, and the hidden-
line problem. "Graphical programs," computer-aided design and in-
struction, and animated movies. 

• T h e following course uses abstract machines as 
models in the study of computability and computa-
tional complexity. Emphasis is placed on the multi-
tape Turing machine as a suitable model, but other 
models are also considered. 

Course A7 . Theory of Computab i l i t y (3-0-3) 

Prerequisites: Courses B3 or M6, and 17 (desirable). 

Introduction to Turing machines, Wang machines, • Shepherdson-
Sturgis, and other machines. Godel numbering and unsolvability re-
sults, the halting problem, Post's correspondence problem, and 
relative uncomputability. Machines with restricted memory access, 
limited memory, and limited computing time. Recursive function 
theory and complexity classification. Models of computation includ-
ing relationships to algorithms and programming. 

• T h e following course is intended for students who are 
interested in the application of information technology 
in large-scale information processing systems. The term 
"information processing system" is used here to include 
the hardware, software, procedures, and techniques 
tha t are assembled and organized to achieve some de-
sired objectives. Examples of such large-scale informa-
tion processing systems are business data processing 
systems, information storage and retrieval systems, 
command and control systems, and computer centers. 

Course A8 . Large-scale In fo rmat ion Processing 

Sys tems (3-0-3) 

Prerequisites: Course A4, and a course in operations research or op-
timization theory. 

Organization of major types of information processing systems. Data 
organization and storage structure techniques. Designing "best" sys-
tems by organizing files and segmenting problems into computer 
programs to make efficient use of hardware devices. Documentation 
methods and techniques for modifying systems. Use of optimization 
and simulation as design techniques. Communication problems 
among individuals involved in system development. 

• The following course introduces the student to those 
nonarithmetical applications of computing machines 
tha t : (1) a t t empt to achieve goals considered to require 
human mental capabilities (artificial intelligence); (2) 
model highly organized intellectual activity (simula-
tion of cognitive behavior); and (3) describe purposeful 
behavior of living organisms or artifacts (self-organizing 
systems). Courses in this area are often taught with few 
prerequisites, but by requiring some or all of the pre-
requisites listed here this course could be taught at a 
more advanced level. 

Course A9. Ar t i f ic ia l Intel l igence and Heur ist ic 

P rogramming (3-0-3) 

Prerequisites: Courses II, A4 (desirable), and M7 (desirable); and 
some knowledge of experimental and theoretical psychology would 
also be useful. 

Definition of heuristic versus algorithmic methods, rationale of heu-
ristic approach, description of cognitive processes, and approaches to 
mathematical invention. Objectives of work in artificial intelligence, 
simulation of cognitive behavior, and self-organizing systems. Heu-
ristic programming techniques including the use of list processing 
languages. Survey of examples from representative application areas. 
The mind-brain problem and the nature of intelligence. Class and 
individual projects to illustrate basic concepts. 

10 



4. Undergraduate Programs 
As indicated in the Introduction, there has been con-

siderable discussion on the desirability of undergradu-
ate degree programs in computer science. Many who 
favor these programs believe tha t an undergraduate 
computer science "major" is as natural today as a major 
in established fields such as mathematics, physics, or 
electrical engineering. Many who oppose these pro-
grams feel that , although undergraduate courses in 
computer science should be available for support of 
work in other areas, to offer an undergraduate degree 
in computer science may encourage too narrow a spe-
cialization at the expense of breadth. They point out 
that the lack of such breadth may be a serious handi-
cap to a s tudent desiring to do graduate work in com-
puter science, and they contend that it would be better 
for the student to major in some established discipline 
while taking a number of computer science courses as 
supporting work. To meet these objections the Com-
mittee has made every effort to present a curriculum 
which includes a broad representation of basic concepts 
and an adequate coverage of professional techniques. 

The number of undergraduate degree programs now 
in existence or in the planning stages—approximately 
one third of all Ph.D. granting institutions in the United 
States either have such computer science programs now 
or expect to have them by 1970 [5]—indicates tha t a 
discussion of the desirability of such programs is much 
less relevant than the early development of guidelines 
and standards for them. The Committee feels strongly, 
however, tha t schools should exercise caution against 
the premature establishment of undergraduate degree 
programs. The pressures created by large numbers of 
students needing to take courses required for the degree 
could easily result in a general lowering of s tandards 
exactly when it is vital tha t such programs be estab-
lished and maintained only with high standards. 

The variation of undergraduate program require-
ments among and within schools dictates tha t this 
Committee's recommendations must be very general. 
It is fully expected tha t each individual school will 
modify these recommendations to meet its specific 
circumstances, but it is hoped that these modifications 
will be expansions of or changes in the emphasis of 
the basic program proposed, rather than reductions in 
quanti ty or quality. The requirements recommended 
herein have been kept to a minimum in order to allow 
the student to obtain a "liberal education" and to en-
able individual programs to add additional detailed 
requirements. Since the liberal education requirements 
of each school are already well established, the Com-
mittee has not considered making recommendations on 
such requirements. 

The Committee's recommendations for an under-

graduate computer science curriculum are stated in 
terms of computer science course work, programming 
experience, mathematics course work, technical elec-
tives, and possible areas of specialization. Some sug-
gestions are also given as to how the courses might fit 
chronologically into a semester-by-semester schedule. 

Computer Science Courses. The basic and interme-
diate course requirements listed below emphasize the 
first two "major subject divisions"—namely, "informa-
tion structures and processes" and "information proc-
essing systems"—described in Section 2 of this report. 
These courses should give the student a firm grounding 
in the fundamentals of computer science." 

The major in computer science should consist of at least 30 
semester hours including the courses: 

Bl . Introduction to Computing 

B2. Computers and Programming 

B3. Introduction to Discrete Structures 

B4. Numerical Calculus 

11. Data Structures 

12. Programming Languages 

13. Computer Organization 

14. Systems Programming 

and at least two of the courses: 

15. Compiler Construction 

16. Switching Theory 

17. Sequential Machines 

18. Numerical Analysis I 

19. Numerical Analysis II 

Programming Experience. Developing programming 
skill is by no means the main purpose of an under-
graduate program in computer science; nevertheless, 
such skill is an important by-product. Therefore such a 
program should insure tha t the s tudent at tains a rea-
sonable level of programming competence. This can be 
done in par t by including computer work of progressive 
complexity and diversity in the required courses, but it 
is also desirable that each student participate in a 
"true-to-life" programming project. This might be ar-
ranged through summer employment, a cooperative 
work-study program, part- t ime employment in com-
puter centers, special project courses, or some other 
appropriate means. 

Mathematics Courses. The Committee feels that an 
academic program in computer science must be well 
based in mathematics since computer science draws so 
heavily upon mathematical ideas and methods. The 
recommendations for required mathematics courses 
given below should be regarded as minimal; obviously 
additional course work in mathematics would be essen-
tial for students specializing in numerical applications. 

11 



The supporting work in mathematics should consist of at least 

18 hours including the courses: 

M l . Introductory Calculus 

M2. Mathematical Analysis I 

M2P. Probability 

M3. Linear Algebra 

and at least two of the courses: 

M4. Mathematical Analysis II 

M5. Advanced Multivariate Calculus 

M6. Algebraic Structures 

M7. Probability and Statistics 

Technical Electiues. Assuming tha t a typical four-
year curriculum consists of 124 semester hours, a num-
ber of technical electives beyond the requirements 
listed above should be available to a student in a com-
puter science program. Some of these electives might 
be specified by the program to develop a particular 
orientation or minor. Because of the temptat ion for the 
s tudent to overspecialize, it is suggested tha t a limit be 
placed on the number of computer science electives a 
s tudent is allowed to take—for example, three such 
courses might be permitted. For many students it will 
be desirable to use the remaining technical electives 
to acquire a deeper knowledge of mathematics, physical 
science, electrical engineering, or some other com-
puter-related field. 

Students should be carefully advised in the choice of 
their electives. In particular, those preparing for gradu-
ate school must insure that they will be qualified for 
admission into the program of their choice. Those seek-
ing a more "professional" education can specialize to 
some extent through the proper choice of electives. 

Areas of Specialization. Although undue specializa-
tion is not appropriate at the undergraduate level, the 
technical electives may be used to orient undergradu-
ate programs in a number of different directions. Some 
of the possible orientations, along with appropriate 
courses (of Section 3) and subject areas (of Section 2) 
from which the optional and elective courses might be 
taken, are given below. 

A P P L I E D S Y S T E M S P R O G R A M M I N G 

Optional courses 

15. Compiler Construction 

16. Switching Theory 

Electiues from courses 
A2. Advanced Computer Organization 

A5. Information Organization and Retrieval 

A6. Computer Graphics 

Electives from areas 
IV.8 Combinatorial Mathematics 

IV.9 Mathematical Logic 

IV. 11 Probability and Statistics 

IV. 12 Operations Analysis 

C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N 

Optional courses 
16. Switching Theory 
17. Sequential Machines 

Electives from courses 
A2. Advanced Computer Organization 

A4. System Simulation 

A8. Large-scale Information Processing Systems 

Electives from areas 

IV.3 Differential Equations 

V 2 Basic Electronics 

V.6 Digital and Pulse Circuits 

V.7 Coding and Information Theory 

S C I E N T I F I C A P P L I C A T I O N S P R O G R A M M I N G 

Optional courses 
18. Numerical Analysis I 

19. Numerical Analysis II 

Electives from courses 
A3. Analog and Hybrid Computing 

A4. System Simulation 

A5 Information Organization and Retrieval 

A6. Computer Graphics 

Electives from areas 
IV.3 Differential Equations 

IV 7 Optimization Theory 

V.4 Thermodynamics and Statistical Mechanics 

V. 5 Field Theory 

D A T A P R O C E S S I N G A P P L I C A T I O N S P R O G R A M M I N G 

Optional courses 
15. Compiler Construction 

16. Switching Theory 

Electives from courses 
A4 System Simulation 

A5. Information Organization and Retrieval 

A8. Large-scale Information Processing Systems 

Electives from areas 
IV 7 Optimization Theory 

IV. 11 Probability and Statistics 

IV. 12 Operation Analysis 

V.7 Coding and Information Theory 

Semester Chronology. Any institution planning an 
undergraduate program based on the recommendations 
of this report should work out several complete four-
year curricula to insure that the required courses mesh 
in an orderly manner with electives and with the "gen-
eral education" requirements of the institution. This 
will help the school to take into account local circum-
stances such as having very few entering freshmen who 
can begin college mathematics with the calculus. 

Table I gives some examples of how a student in com-
puter science might be scheduled for the minimum set 
of courses recommended for all majors. 

T A B L E I 

Year Semester First example Second example Third example 

F r e s h m a n F i r s t M l , B 1 B a s i c M a t h . B a s i c M a t h . 
S e c o n d M 2 , B 2 M l , B 1 B a s i c M a t h . 

S o p h o m o r e F i r s t M 3 , B 3 M 2 , B 2 M l , B 1 
S e c o n d M 4 , B 4 M 3 , B 3 M 2 , B 2 

J u n i o r F i r s t M 2 P , 11 M 4 , B 4 M 2 P , B 3 , B 4 
S e c o n d M S , 12 M 2 P , 11 M 3 , 11, 12 

S e n i o r F i r s t 13, 18 M 7 , 12 , 13 M 6 , 13, 16 
S e c o n d 14, 19 14, 15, 16 M 7 , 14, 17 

12 



5. Master's Degree Programs 
The recommendations given in this section concern 

undergraduate preparation for graduate study in com-
puter science, requirements for a Master of Science de-
gree in computer science, and some possible areas of 
concentration for students who are at the master 's de-
gree level. 

Undergraduate Preparation. T h e r e c o m m e n d e d 
preparation for graduate study in computer science 
consists of three parts as listed below. The course 
work which would provide this background is indi-
cated in parentheses. 

a. Knowledge of computer science including algorith-
mic processes, programming, computer organization, 
discrete structures, and numerical mathematics. 
(Courses Bl , B2, B3, and B4 or 18 of Section 3.) 

b. Knowledge of mathematics, including the calculus 
and linear algebra, and knowledge of probability and 
statistics. (Courses M l , M2, M3, M4, M2P, M7 of 
CUPM.) 

c. Additional knowledge of some field such as com-
puter science, mathematics, electrical engineering, 
physical science, biological science, linguistics, library 
science, or management science which will contribute 
to the s tudent 's graduate study in computer science. 
(Four appropriate courses on an intermediate level.) 

A student with a bachelor's degree in computer sci-
ence, such as recommended in Section 4, can have 
taken all these prerequisites as basic and supporting 
courses and can also have taken further work which 
overlaps with some of the subject matter to be treated 
at the master 's level. Although such a student will be 
able to take more advanced graduate work in computer 
science to satisfy his master 's requirements, he may 
need to take more supporting work than a s tudent 
whose undergraduate degree was in some other field. 
A student with an undergraduate degree in mathe-
matics, physical science, or electrical engineering can 
easily qualify for such a program if he has taken ade-
quate supporting courses in computer science. Other 
applicants should have no more than a few deficiencies 
in order to qualify. 

In the near future many of the potential students, be-
cause of having completed their undergraduate work 
some time ago, will not have had the opportunity to 
meet these requirements. Liberal policies should there-
fore be established so tha t promising students can make 
up deficiencies. 

Degree Requirements. Each student 's program of 
study for the master 's degree should have both breadth 
and depth. In order to obtain breadth, the student 
should take course work from each of the three subject 
divisions of computer science described in Section 2. 
To obtain depth, he should develop an area of concen-

tration in which he would write a master 's thesis or 
complete a master 's project (if required). 

The master's degree program in computer science should con-
sist of at least nine courses. Normally at least two courses— 
each in a different subject area—should be taken from each of 
the following subject divisions of computer science: 

I. Information Structures and Processes 

II. Information Processing Systems 

III Methodologies 

Sufficient other courses in computer science or related areas 
should be taken to bring the student to the forefront of some 
area of computer science. 

In order tha t the student may perform in his required 
course work at the graduate level he must acquire a 
knowledge of related areas, such as mathematics and 
the physical sciences, either as part of his undergradu-
ate preparation or as part of his graduate program. 
Computer science as a discipline requires an under-
standing of mathematical methods and an ability to 
use mathematical techniques beyond the specific un-
dergraduate preparation in mathematics recommended 
above. Hence, a s tudent who does not have a "strong" 
mathematics background should take either further 
courses in mathematics, or he should take computer 
science courses which contain a high mathematical 
content. 

If Courses II, 12, 13, and 14 of Section 3 are taught 
at a sufficiently high level, they can be used to satisfy 
the "breadth" requirements for the first two subject 
divisions listed above. In any case, the student who has 
taken such courses as part of his undergraduate pro-
gram could take more advanced courses in these areas 
so that the requirement for two courses in each subject 
division might be relaxed somewhat. This might permit 
such a student to take more supporting work outside 
computer science. 

Areas of Concentration. The "dep th" requirement 
will often involve courses from fields other than com-
puter science, so tha t a s tudent may have to take addi-
tional courses in these fields just to meet prerequisites 
unless he has anticipated this need in his undergradu-
ate preparation. In any event, the particular courses 
a s tudent selects from each of the three subject divi-
sions of computer science should be coordinated with 
his area of concentration. To illustrate how this might 
be done, six possible concentrations are shown below 
together with lists of the subject areas (of Section 2) 
from which appropriate courses might be selected for 
each of the concentrations. The characterization of 
courses in terms of subject areas instead of explicit con-
tent effectively gives a list of suggested topics which 
can be drawn upon in designing master 's level courses 
suited to the needs of individual institutions. 

13 



T H E O R E T I C A L C O M P U T E R SCIENCE 

1.1 Data Structures 

1.2 Programming Languages 

1.3 Models of Computation 

III.3 Symbol Manipulation 

III.8 Artificial Intelligence 

IV 8 Combinatorial Analysis 

IV.9 Mathematical Logic 

V.7 Coding and Information Theory 

APPLIED SOFTWARE 

I.1 Data Structures 

12 Programming Languages 

II.1 Computer Design and Organization 

II 2 Translators and Interpreters 

II.3 Computer and Operating Systems 

III.3 Symbol Manipulation 

III.6 Simulation 

IV 7 Optimization Theory 

IV 9 Mathematical Logic 

APPLIED HARDWARE 

1.1 Data Structures 

I.3 Models of Computation 

II.1 Computer Design and Organization 

II.3 Computer and Operating Systems 

III.5 Computer Graphics 

IV. 7 Optimization Theory 

IV. 9 Mathematical Logic 

V.6 Digital and Pulse Circuits 

V.7 Coding and Information Theory 

NUMERICAL M A T H E M A T I C S 

1.1 Data Structures 

1.2 Programming Languages 

II.1 Computer Design and Organization 

II 3 Computer and Operating Systems 

III.1 Numerical Mathematics 

III.6 Simulation 

IV.5 Theoretical Numerical Analysis 

IV.6 Methods of Applied Mathematics 

"IV.7 Optimization Theory 

INSTRUMENTATION 

1.1 Data Structures 

1.2 Programming Languages 

11.1 Computer Design and Organization 

II.4 Special Purpose Systems 

III.6 Simulation 

III.9 Process Control 

IV.6 Methods of Applied Mathematics 

IV.7 Optimization Theory 

V.8 Communication and Control Theory 

INFORMATION SYSTEMS 

1.1 Data Structures 

1.2 Programming Languages 

II.1 Computer Design and Organization 

II 3 Computer and Operating Systems 

III.2 Data Processing and File Management 

III.4 Text Processing 

III. 7 Information Retrieval 

IV.7 Optimization Theory 

IV.9 Mathematical Logic 

The requirement of a master 's thesis or other project 
has been left unspecified since general institutional re-
quirements will usually determine this. It is strongly 
recommended, however, tha t a master 's program in 
computer science contain some formal provision for in-
suring that the student gains or has gained project ex-
perience in computer applications. This could be ef-
fected by requiring that students carry out either 
individually or cooperatively a substantial assigned task 
involving analysis and programming, or better, tha t 
students be involved in an actual project on campus 
or in conjunction with other employment. 

This proposed program embodies sufficient flexibility 
to fulfill the requirements of either an "academic" 
degree obtained in preparation for further graduate 
study or a terminal "professional" degree. Until clearer 
s tandards both for computer science research and the 
computing profession have emerged, it seems unwise to 
a t t empt to distinguish more definitely between these 
two aspects of master 's degree programs. 

6. Doctoral Programs 

Academic programs at the doctoral level reflect the 
specific interests of the faculty and, hence, vary from 
university to university. Therefore, the Committee 
cannot expect to give recommendations for such doc-
toral programs in as great a detail as has been done for 
the undergraduate and master 's degree programs. The 
large number of institutions planning such programs 
and the variety of auspices under which they are being 
sponsored, however, suggest tha t a need exists for 
guidelines as to what constitutes a "good" doctoral 
program. While recommendations on doctoral programs 

will not be given at this time, the problem of how to 
obtain such guidelines has been of considerable inter-
est to .the Committee. 

One possible source of such guidelines is the existing 
doctoral programs. A description of the program at 
Stanford University [15] has already been published 
in Communications of the ACM and descriptions of 
many other programs are available from the universi-
ties concerned. Information based on a number of such 
programs is contained in the report of the June 1967, 
Stony Brook Conference [11]. This report also contains 

14 



a list of thesis topics currently being pursued or re-
cently completed. In the future the Curriculum Com-
mittee hopes to encourage wide dissemination of the 
descriptions of existing programs and research topics. 
Perhaps it can take an active role in coordinating the 
interchange of such information. 

In 1966 Professor Thomas Hull was asked by ACM 
to examine the question of doctoral programs in com-
puter science. After discussion with the members of 
this Committee and with many other interested per-
sons, Professor Hull decided to solicit a series of articles 
on the research and teaching areas which might be in-
volved in doctoral programs. Each article is to be 
written by an expert in the particular subject area, 
such as programming languages, systems programming, 
computer organization, numerical mathematics, auto-
mata theory, large systems, and artificial intelligence. 
Each article is to a t t empt to consider all aspects of the 
subject area which might be helpful to those develop-

ing a 'graduate program, including as many of the fol-
lowing topics as possible: 

a. Definition of the subject area, possibly in terms of 
an annotated bibliography. 

b. Prerequisites for work in the area a t the doctoral 
level. 

c. Outlines of appropriate graduate courses in the 
area. 

d. Examples of questions for qualifying examinations 
in the area. 

e. Indication of suitable thesis topics and promising 
directions for research in the area. 

f. The extent to which the subject area ought to be 
required of all doctoral s tudents in computer 
science. 

These articles are scheduled for publication in Com-
munications of the ACM and it is hoped that they will 
s t imulate further articles on doctoral programs. 

7. Service Courses, Minors, and Continuing Education 

Though it is now generally recognized tha t a signifi-
cant portion of our undergraduate students needs some 
knowledge of computing, the amount and type of com-
puting knowledge necessary for particular areas of 
study are still subject to considerable discussion. The 
Pierce Report [7] estimates tha t about 75 percent of 
all college undergraduates are enrolled in curricula 
where some computer training would be useful. This 
estimate, based on figures compiled by the US Office 
of Education, involves dividing the undergraduate stu-
dent population into three groups. The first group, 
about 35 percent of all undergraduates, consists of 
those in scientific or professional programs having a 
substantial quanti tat ive content (e.g. mathematics, 
physics, and engineering). At least some introductory 
knowledge of computing is already considered highly 
desirable for almost all of these students. The second 
group, some 40 percent, is made up of those majoring 
in fields where an understanding of the fundamentals 
of computing is steadily becoming more valuable (e.g. 
business, behavioral sciences, education, medicine, 
and library science). Many programs in these areas are 
already requiring courses in computing, and most are 
expected to add such requirements in the future. The 
third group, roughly 25 percent, comprises those un-
dergraduates who are majoring in areas which do not 
necessarily depend on the use of computers (e.g. music, 
drama, literature, foreign languages, liberal arts, and 
fine arts). There are many persons who maintain tha t 
even these students could benefit from a course which 
would give them an appreciation of this modern tech-
nology and its influence on the structure of our society. 

The extent and nature of the courses on computing 

needed for these three groups of students should be 
given further careful study, but the existence of a sub-
stantial need for service courses in computer science 
seems undeniable. Students in the more quanti tat ive 
fields are usually well-equipped to take the basic 
courses designed for the computer science major. In 
particular, Course Bl should serve as an excellent in-
troductory course for these students and, depending 
upon their interests, Course B2 or B4 might serve as a 
second course. When these students develop a greater 
interest in computing, they should normally be able to 
select an appropriate "minor" program of study from 
the courses described in Section 3. In developing a 
minor program careful consideration should be given 
to the comparative values of each course in the de-
velopment of the individual student. 

Some special provisions appear to be necessary for 
students in the second and third groups described 
above. A special version of Course Bl which would 
place more emphasis on text processing and other 
nonnumeric applications might be more appropriate 
for students in the second group. However, it is im-
portant tha t this course provides adequate prepara-
tion for such courses as B2 and B3, since many of these 
students might be expected to take further courses in 
computer science. It may also be desirable to develop 
courses giving primary emphasis to the economic, polit-
ical, sociological, and other implications of the growing 
use of computer technology. Such courses would not be 
considered substi tutes for basic technical courses such 
as Bl , but they could serve the needs of the third 
group of students. 

Professional programs at all levels offer limited op-

15 



portunity for courses outside their highly structured 
curricula, and they also present special problems. In 
some cases it may be necessary to develop special 
courses for students in such programs or to integrate 
work on computing into existing courses. Those prepar-
ing for graduate professional programs will often find it 
desirable to include some of the basic computer science 
courses in their undergraduate work. 

The responsibility for developing and conducting the 
basic service courses in computer science should be con-
centrated within the academic structure and combined 
with the operation of educational programs in computer 
science. By properly aggregating students from similar 
fields, those responsible for planning academic courses 
can make them more generally applicable and broadly 
directed. Under this arrangement teachers can be used 
more effectively and course content can more easily be 
kept current with the rapidly moving developments in 
the field. Also, s tudents who find a need or a desire to 
delve further into computer science are more likely to 
have the necessary background to take advanced 

courses. On the other hand, it must be recognized tha t 
some departments will have many situations where 
special applications of the computer can best be intro-
duced in their own courses. Certainly those responsible 
for the basic computer science service courses must be 
sensitive to the needs of the students for whom these 
courses are intended. 

Finally, the need for continuing education in com-
puter science must be recognized. Much of the course 
material discussed in this report did not exist ten or 
fifteen years ago, and practically none of this material 
was available to students until the last few years. Any-
one who graduated from college in the early 1960's and 
whose "major" field of study is related to computing is 
already out-of-date unless he has made a determined 
effort to continue his education. Those responsible for 
academic programs in computer science and those 
agencies which help to direct and support continuing 
education should be especially alert to these needs in 
this unusually dynamic and important field. 

8. Implementation 
In educational institutions careful consideration 

should be given to the problems of implementing a 
computer-related course of study—be it a few introduc-
tory or service courses, an undergraduate degree pro-
gram, or a graduate degree program. Some of these 
problems involve organization, staff requirements, and 
physical facilities (including computing services). Al-
though individual ways of providing a favorable en-
vironment for computer science will be found in each 
school, the following discussion is intended to call at-
tention to the extent of some of these problems. 

Organization for Academic Programs. It should be 
realized tha t the demands for education in computer 
science are strong. If some suitable place in the institu-
tional structure is not provided for courses and pro-
grams in computer science to be developed, they will 
spring up within a number of existing departments and 
a possible diffusion of effort will result as has been ex-
perienced with statistics in many universities. 

If degree programs in computer science are to be of-
fered, it is desirable to establish an independent aca-
demic unit to administer them. Such a unit is needed 
to provide the appropriate mechanisms for faculty ap-
pointments and promotions, for attention to continuing 
curriculum development, and for the allocation of re-
sources such as personnel, budget, space, and equip-
ment. This academic unit should also be prepared to 
provide general service courses and to cooperate in 
developing computer-oriented course work in other 
depar tments and professional schools. 

Many universities have established departments of 
computer science as part of their colleges of arts and 

sciences, and some have established divisions of mathe-
matical sciences, which include such depar tments as 
mathematics, applied mathematics, statistics, and com-
puter science. Other institutions have located computer 
science departments in colleges of engineering and ap-
plied science. Academic units in computer science have 
also been affiliated with a graduate school, associated 
with more than one college, or even established inde-
pendent of any college in a university. 

The organizational problems for this new field are 
serious, and their solution will inevitably require new 
budget commitments from a university. However, fail-
ure to come to grips with the problem will probably 
prove more costly in the long run; duplicated courses 
and programs of diluted quality may result, and a ma-
jor upheaval may eventually be required for reorgani-
zation. 

Staff Requirements. Degree programs in computer 
science require a faculty dedicated to this discipline— 
tha t is, individuals who consider themselves computer 
scientists regardless of their previous academic training. 
Although graduate programs in computer science are 
now producing a limited number of potential faculty 
members, the demand for such people in industry and 
government and the competition for faculty among uni-
versities are quite intense. Hence educational institu-
tions will have to obtain most of their computer science 
faculty from other sources—at least for the immediate 
future. Many faculty members in other depar tments 
of our universities have become involved with comput-
ing and have contributed to its development to the 
point that they are anxious to become par t of a com-

16 



puter science program. Within industry and govern-
ment there are also people with the necessary academic 
credentials who are willing to teach the technology 
they have helped develop. Thus, extensive experience 
and academic work in computer science, accompanied 
by academic credentials in a related area such as 
mathematics, electrical engineering, or other appro-
priate disciplines, can serve as suitable qualifications 
for staff appointments in a computer science program. 
Joint appointments with other academic depar tments 
or with the computing center can help fill some of the 
need, but it is desirable that a substantial portion of 
the faculty be fully committed to computer science. 
Moreover, there is some critical size of faculty—perhaps 
the equivalent of five full-time positions—which is 
needed to provide a reasonable coverage of the areas 
of computer science discussed in Section 2. 

Since relatively few good textbooks are available in 
the computer sciences, the computer science faculty 
will need to devote an unusually large part of its time 
to searching the literature and developing instructional 
materials. This fact should be taken into consideration 
in determining teaching loads and staff assignments. 

Physical Facilities. Insofar as physical facilities are 
concerned, computer science should generally be in-
cluded among the laboratory sciences. Individual fac-
ulty members may need extra space to set up and use 
equipment, to file cards and voluminous computer 
listings, and otherwise to, carry out their teaching and 
research. In addition to normal library facilities, special 
collections of material, such as research reports, com-
puter manuals, and computer programs, must be ob-
tained and facilities made available for their proper 
storage and effective use. Space must also be provided 
for keypunches, remote consoles to computers, and any 
other special equipment needed for education and/or 
research. Laboratory-type classrooms must be avail-
able to allow students, either as individuals or as 
groups, to spread out and study computer listings. 

It is no more conceivable that computer science 
courses—let alone degree programs—can exist without 
a computer available to s tudents than that chemistry 
and physics offerings can exist without the associated 
laboratory equipment. Degree programs require regular 
access to at least a medium-sized computer system of 
sufficient complexity in configuration to require the 
use of an operating system. The total operating costs 
of such systems are at least $20,000 per month. In terms 
of hours per month, the machine requirements of com-
puter science degree programs will vary according to 
the number of s tudents enrolled, the speed of the 
computer and the efficiency of its software, and the 
philosophy of the instructors. It is entirely possible 
tha t an undergraduate degree program might require 
as much as four hours of computing on a medium-sized 
computer per class day. 

Space for data and program preparation and program 
checking must be provided, and the logistics of han-
dling hundreds and possibly thousands of student pro-
grams per day must be worked out so that each student 
has frequent access to the computer with a minimum 
of waiting and confusion. Although many of these same 
facilities must be provided for students and faculty 
other than those in computer science, the computer 
science program is particularly dependent on these 
services. It is simply false economy to hamper the use 
of expensive computing equipment by crowding it into 
unsuitable space or in some other way making it inac-
cessible. 

The study and development of systems programs 
will require special forms of access to at least medium-
scale computing systems. This will place an additional 
burden on the computer center and may possibly re-
quire the acquisition of completely separate equip-
ment for educational and research purposes. In ad-
vanced programs it is likely that other specialized 
equipment will be necessary to handle such areas as 
computer graphics, numeric control of machines, proc-
ess control, simulation, information retrieval systems, 
and'computer-assisted instruction. 

Although assistance in financing computer services 
and equipment can be obtained from industry and from 
federal and state governments, the Committee feels 
that universities should provide for the costs of equip-
ment and services for computer science programs just 
as they provide for costs of other laboratory sciences. 
Based on its knowledge of costs at a number of schools 
the Committee estimates that computer batch proc-
essing of student jobs for elementary courses presently 
costs an average of about $30 per semester hour per 
student, whereas the Pierce Report [7] estimates that 
it costs colleges about $95 per chemistry student per 
year for a single chemistry laboratory course. Although 
computer costs are decreasing relative to capacity, it is . 
expected that students will be able to use more com-
puter time effectively in the future as computers be-
come more accessible through the use of such tech-
niques as time-sharing. On the basis of these estimates 
and expectations, future computer costs for academic 
programs may well approach faculty salary costs. 

Relation of the Academic Program to the Computing 
Center. As indicated above, the demands which an 
academic program in computer science places on a uni-
versity computing center are more than routine. Com-
puter and programming systems must be expanded and 
modified to meet the growing and varied needs of these 
programs as well as the needs of the other users. The 
service function of a computer center must therefore 
be enhanced by an activity which might be described 
as "applied computer science." In a complementary 
way, it is appropriate for a computer science faculty to 
be deeply involved in the application of computers, 

17 



particularly in the development of programming sys-
tems. For these reasons, the activities of a computer 
center and a computer science depar tment should be 
closely coordinated. The sharing of staff through joint 
appointments helps facilitate such cooperation, and it 
is almost necessary to provide such academic appoint-
ments in order to a t t rac t and retain certain essential 
computer center personnel. 

It should be realized, however, tha t the basic phi-
losophies of providing services and of pursuing aca-
demic ends differ to such an extent tha t conflicts for 

attention may occur. At one extreme, the research of a 
computer science faculty may so dominate the activities 
of a. computer center that its service to the academic 
community deteriorates. At the other extreme, the 
routine service demands of a computer center may in-
hibit the faculty's ability to do their own research, or 
the service orientation of a center may cause the edu-
cational program to consist of mere training in tech-
niques having only transient value. Considerable and 
constant care must be taken to maintain a balance 
between these extremes. 

R E F E R E N C E S 

1. Association for Computing Machinery, Curriculum Committee on 
Computer Science. An undergraduate program in computer 
science—preliminary recommendations. Comm. ACM 8, 9 
(Sept. 1965), 543-552. 

2. N E W E L L , A., P E R L I S , A. J. , A N D S I M O N , H. A. Computer science. 
(Letter to the Editor). Science 157, 3795 (22 Sept. 1967), 1373-
1374. 

3. University of Chicago. Graduate programs in the divisions, an-
nouncements 1967-1968. U. of Chicago, Chicago, pp. 167-169. 

4 . G O R N , S . The computer and information sciences: a new basic 
discipline. SIAM Review 5, 2 (Apr. 1963), 150-155. 

5 . H A M B L E N , J . W . Computers in higher education: expenditures, 
sources of funds, and utilization for research and instruction 
1964-65, with projections for 1968-69. (A report on a survey 
supported by NSF). Southern Regional Education Board, At-
lanta, Ga., 1967. 

6. R O S S E R , J . B . , E T AL. Digital computer needs in universities and 
colleges. Publ. 1233, National Academy of Sciences-National 
Research Council, Washington, D. C., 1966. 

7. President 's Science Advisory Committee. Computers in higher 
education. The White House, Washington, D. C., Feb. 1967. 

8. Mathemat ical Association of America, Committee on the Under-
graduate Program in Computer Science (CUPM). Recom-
mendations on the undergraduate mathemat ics program for 
work in computing. CUPM, Berkeley, Calif., May 1964. 

9. Commission on Engineering Education, COSINE Committee. 
Computer sciences in electrical engineering. Commission in 
Engineering Education, Washington, D. C., Sept. 1967! 

10. British Computer Society, Education Committee. Annual edu-
cation review. Comput. Bull. 11, 1 (June 1967), 3-73. 

11. F I N E R M A N , A. (Ed.) University Education in Computing Science. 
(Proceedings of the Graduate Academic Conference in Com-
puting Science, Stony Brook, New York, June 5-8, 1967) ACM 
Monograph, Academic Press, New York, 1968. 

12. Mathemat ical Association of America, Commit tee on the Under-
graduate Program in Mathemat ics (CUPM). A general cur-
riculum in mathemat ics for colleges. CUPM, Berkeley, Calif., 
1965. 

13. . Recommendations in the undergraduate mathemat ics pro-
gram for engineers and physicists. CUPM, Berkeley, Calif., 
1967. 

14. . A curriculum in applied mathematics . CUPM, Berkeley. 
Calif., 1966. 

1 5 . F O R S Y T H E , G . E . A university's education program in computer 
science. Comm. ACM 10, 1 (Jan. 1967), 3-11. 

18 



Acknowledgments 

The following people have served as consultants 
to the Committee on one or more occasions or have 
given considerable other assistance to our work. 

Richard V. Andree, University of Oklahoma 
Robert L. Ashenhurst, University of Chicago 
Bruce H. Barnes, Pennsylvania State University 
Robert S. Barton, University of Utah 
J . Richard Buchi, Purdue University 
Harry Cantrell, General Electric Company 
Mary D'Imperio, Depar tment of Defense 
Arthur Evans, Massachuset ts Inst i tute of Technology 
David C. Evans, University of Utah 
Nicholas V. Findler, State University of New York a t Buffalo 
Patrick C. Fischer, University of British Columbia 
George E. Forsythe, Stanford University 
Bernard A. Galler, University of Michigan 
Saul Gorn, University of Pennsylvania 
Preston C. Hammer , Pennsylvania State University 
Richard W. Hamming, Bell Telephone Laboratories 
Harry D. Huskey, University of California a t Berkeley 
Peter Z. Ingerman, Radio Corporation of America 
Donald E. Knuth , California Inst i tute of'Technology 
Robert R. Korfhage, Purdue University 
Donald J . Laird, Pennsylvania State University 
George E. Lindamood, University of Maryland 
William C. Lynch, Case Insti tute of Technology 
M. Douglas Mcllroy, Bell Telephone Laboratories 
Robert McNaughton, Rensselaer Polytechnic Inst i tute 
Michel Melkanoff, University of California at Los Angeles 
William F. Miller, Stanford University 
Anthony G. Oettinger, Harvard University 
Elliott I. Organick, University of Houston 
Robert H. Owens, University of Virginia 
Charles P. Reed, Jr. , Georgia Insti tute of Technology 
Saul Rosen, Purdue University 
Daniel Teichroew, Case Insti tute of Technology 
Andries van Dam, Brown University 
Robert J . Walker, Cornell University 
Peter Wegner, Cornell University 

Written comments on the Committee 's work, 
contributions to course outlines, and other as-
sistance have been rendered by the following: 

Bruce W. Arden, University of Michigan 
John E. Bakken, Midwest Oil Corporation 
Larry L. Bell, Auburn University 
Robert D. Brennan, International Business Machines Corp. 
Yaohan Chu, University of Maryland 
Charles H. Davidson, University of Wisconsin 
Harold P. Edmundson, University of Maryland 
Charles W. Gear, University of Illinois 
Robert T. Gregory, University of Texas 
Keith Hastings, University of Toronto 
Carl F. Kossack, University of Georgia 
Ralph E. Lee, University of Missouri a t Rolla 
George Mealy, Massachusetts Insti tute of Technology 
Harlan D. Mills, International Business Machines Corp. 
Jack Minker, University of Maryland and Auerbach Corp. 
Jack Noland, General Electric Company 
James C. Owings, Jr. , University of Maryland 
David L. Parnas, Carnegie-Mellon University 
Charles R. Pearson, J . P. Stevens and Co. 
Tad Pinkerton, University of Michigan 
Roland L. Porter, Los Angeles, California 
Anthony Ralston, State University of New York a t Buffalo 
Roy F. Reeves, Ohio State University 
John R. Rice, Purdue University 
Gerard Salton, Cornell University 
Gordon Sherman, University of Tennessee 
Vladimir Slamecka, Georgia Institute of Technology 
Joseph F. Traub, Bell Telephone Laboratories 

Numerous other people have contributed to 
the work of the Committee through informal dis-
cussions and other means. The Committee is 
grateful for all of the assistance it has received 
and especially for the cooperative spirit in which 
it has been given. 

19 



Appendix. Course Outlines and Bibliographies 

For each of the twenty-two courses described in Section 3, this Appendix contains a brief discus-
sion of the approach to teaching the course, a detailed outline of the content of the course, and a 
bibliography listing material which should be useful to the teacher and/or the student in the 
course. The amount of attention which might be devoted to the various topics in the content of 
some of the courses is indicated by percentage or by number of lectures. Whenever possible, each 
bibliographic entry is followed by a reference to its review in Computing Reviews. The format used 
for these references is CR-xyvi-n, where xy indicates the year of the review, v the volume number, 
i the issue number, and n the number of the review itself. Most of the bibliographic entries are 
followed by a brief annotation which is intended to indicate the way in which the item would be 
useful and perhaps to clarify the subject of the item-. In some cases the title is sufficient for this 
purpose, and no annotation is given. In other cases the items are simply keyed in various ways to 
the sections of the content to which they apply. Although an effort has been made to cite a wide 
variety of texts and reference materials for each course, space and other considerations have pre-
vented the listing of all books and papers which might bear on the topics treated. 

Course B1. In t roduc t ion to Compu t ing (2-2-3) 

APPROACH 

This first course in computing concentrates on the solution of 
computational problems through the introduction and use of an 
algorithmic language. A single such language should be used for 
most of the course so that the students may master it well enough 
to attack substantial problems. It may be desirable, however, to use 
a simple second language of quite different character for a problem 
or two in order to demonstrate the wide diversity of the computer 
languages available. Because of its elegance and novelty, S N O B O L 

can be used quite effectively for this purpose. In any case, it is essen-
tial tha t the student be aware that the computers and languages he 
is learning about are only particular instances of a widespread 
species. 

The notion of an algorithm should be stressed throughout the 
course and clearly distinguished from that of a program. The lan-
guage structures should be carefully motivated and precisely de-
fined using one or more of the formal techniques available. Every 
effort should be made to develop the student 's ability to analyze 
complex problems and formulate algorithms for their solution. Nu-
merous problems should be assigned for computer solution, begin-
ning early in the course with several small projects to aid the student 
in learning to program, and should include at least one major project, 
possibly of the student 's own choosing. Careful verification of pro-
gram operation and clear program documentation should be em-
phasized. 

CONTENT 

This outline reflects an order in which the material might be pre-
sented; however, the order of presentation will be governed by the 
choice of languages and texts as well as individual preferences. In 
particular, the treatment of some of the topics listed below might 
be distributed throughout the course. Although not specifically 
listed in the following outline, programming and computer projects 
should constitute an important part of the content of this course. 

1. Algorithms, Programs, and Computers. The concept and prop-
erties of algorithms. Flowcharts of algorithms and the need for pre-
cise languages to express algorithms. The concept of a program, ex-
amples of simple programs, and description of how computers 
execute programs. Programming languages including the description 
of their syntax and semantics. (10%) 

2. Basic Programming. Constants, identifiers, variables, sub-
scripts, operations, functions, and expressions. Declarations, substi-

tution statements, input-output statements, conditional statements, 
iteration statements, and complete programs. (10%) 

3. Program Structure. Procedures, functions, subroutine calling, 
and formal-actual parameter association. Statement grouping, nested 
structure of expressions and statements, local versus global variables, 
run-time representation, and storage allocation. Common data, seg-
menting, and other structural features. (10%) 

4. Programming and Computing Systems. Compilers, libraries, 
loaders, system programs, operating systems, and other information 
necessary for the student to interact with the computer being used. 
(5%) 

5. Debugging and Verification of Programs. Error conditions and 
messages, techniques of debugging, selection of test data, checking of 
computer output, and programming to guard against errors in data. 
(5%) 

6. Data Representation. Systems of enumeration and binary 
codes. Representation of characters, fixed and floating-point num-
bers, vectors, strings, tables, matrices, arrays, and other data struc-
tures. (10%) -

7. Other Programming Topics. Formatted input and output . Ac-
curacy, truncation, and round-off errors. Considerations of efficiency. 
Other features of language(s) being considered. (10%) 

8. Organization and Characteristics of Computers. Internal or-
ganization including input-output, memory-storage, processing and 
control. Registers, arithmetic, instruction codes, execution of instruc-
tion, addressing, and flow of control. Speed, cost and characteristics 
of various operations and components. (10%) 

9. Analysis of Numerical and Nonnumerical Problems. Appli-
cations of algorithm development and programming to the solution 
of a variety of problems (distributed throughout the course). (15%) 

10. Survey of Computers, Languages, Systems, and Applications. 
The historical development of computers, languages, and systems 
including recent novel applications of computers, and new develop-
ments in the computing field. (10%) 

11. Examinations. (5%) 
ANNOTATED BIBLIOGRAPHY 

In addition to the materials listed here, there are numerous books 
and manuals on specific computer languages which would be appro-
priate as part of the textual material for this course. Very few books, 
however, place sufficient emphasis on algorithms and provide the 
general introductory material proposed for this course. 

1. A R D E N , B . W. An Introduction to Digital Computing. Addison-
Wesley, Reading, Mass., 1963, 389 pp. CR-6345-4551. 

20 



This text uses MAD and emphasizes the solution of numerical 
problems, although other types of problems are discussed. Nu-
merous examples and exercises. 

2 . F O R T E , A . SNOBOL3 Primer. M . I . T . Press, Cambridge, Mass., 
1967, 107 pp. 
An elementary exposition of S N O B O L 3 which might well be used 
to introduce a "second" language. Many exercises and examples. 
( S N O B O L 4 is now becoming available.) 

3. G A L L E R , B . A. The Language of Computers. McGraw-Hill, 
New York, 1962, 244 pp. CR-6341-3574. 
Emphasizes "discovering" the structure of algorithms needed 
for the solution of a varied set of problems. The computer lan-
guage features necessary to express these algorithms are care-
fully motivated. The language introduced is primarily based on 

M A D , but F O R T R A N and A L G O L are also discussed. 

4. G R U E N B E R G E R , F . The teaching of computing (Guest editorial). 
Comm. ACM8, 6 (June 1965), 348 and 410. CR-6565-8074. 
Conveys eloquently the philosophy which should be used in 
developing and teaching an introductory computing course. 

5. G R U E N B E R G E R , F . A N D J A F F R A Y , G . Problems for Computer 
Solution. Wiley, New York, 1965, 401 pp. CR-6671-8757. 
Contains a collection of problems appropriate for computer so-
lution by students. Student is guided into the analysis of the 
problems and the development of good computational solutions, 
but actual computer programs for the solutions are not given. 

6. H U L L , T. E. Introduction to Computing. Prentice-Hall, Engle-
wood Cliffs, N. J., 1966, 212 pp. 
Text on fundamentals of algorithms, basic features of stored-
program computers, and techniques involved in implementing 
algorithms on computers. Presents a complete description of 
F O R T R A N I V with examples of numerical methods, nonnumerical 
applications, and simulations. Numerous exercises. 

7. M A R C O V I T Z , A . B . A N D S C H W E P P E , E . J . An Introduction to 
Algorithmic Methods Using the MAD Language. Macmillan, 
New. York, 1966, 433 pp. CR-6781-11,199. 
Emphasizes algorithms and their expression as programs, char-
acteristics of computers and computer systems, formal definition 
of computer languages, and accuracy and efficiency of programs. 
Numerous examples and exercises. 

8. P E R L I S , A. J . Programming for digital computers. Comm. ACM 
7, 4 (Apr. 1964), 210-211. 
Description of course developed by Perlis at Carnegie Institute 
of Technology which has strongly influenced the course proposed 
here. 

9. R I C E , J . K . A N D R I C E , J . R . Introduction to Computer Science: 
Problems, Algorithms, Languages and Information, Preliminary 
edition. Holt, Rinehart and Winston, New York, 1967, 452 pp. 
Presentation revolves around the theme of "problem solving," 
emphasizing algorithms, languages, information representations, 
and machines necessary to solve problems. Problem solution 
methods classified, and many sample problems included. The 
nature of errors and uncertainty is considered. Detailed ap-
pendix on F O R T R A N I V by E . Desautels. 

10. School Mathematics Study Group. Algorithms, Computation 
and Mathematics, rev. ed. Stanford University, Stanford, Calif., 
1966. Student Text, 453 pp., Teacher's Commentary, 301 pp.; 
Algol Supplement: Student Text, 133 pp., Teacher's Commen-
tary, 109 pp.; Fortran Supplement: Student Text, 132 pp., 
Teacher's Commentary, 102 pp. Available from A. C. Vroman, 
Inc., 367 South Pasadena, Pasadena, Calif. A MAD Language 
Supplement by E. I. Organick is available from Ulrich's Book 
Store, 549 E. University Avenue, Ann Arbor, Mich. 
Although developed for high school students and teachers, this 
work contains much material appropriate for this course. De-
velops an understanding of the relationship between mathe-
matics, computing, and problem solving. Basic text uses English 
and flow charts to describe algorithms; supplements introduce 
the computer language and give these algorithms in A L G O L , 

F O R T R A N , a n d M A D . 

Course B2. Compute rs and P rog ramming (2-2-3) 

APPROACH 

This course is designed to introduce the student to basic computer 
organization, machine language programming, and the use of as-
sembly language programming systems. A particular computer, ma-
chine language and programming system should be used extensively 
to illustrate the concepts being taught and to give the student actual 
experience in programming. However, it is important that the course 
not degenerate into mere training in how to program one machine. 
Alternative machine languages, machine organization, and program-
ming systems should be discussed and compared. Emphasis should 
be placed on the overall structure of the machines and programming 
techniques considered. A "descriptive" presentation of various com-
puter features and organizations may be very effective; nevertheless, 
it is recommended that a precise language be introduced and used to 
describe computer organizations and instruction execution (as the 
Iverson notation has been used to describe the IBM System/360). 

CONTENT 

The following outline indicates a possible order in which the ma-
terial for this course might be taught, but other arrangements might 
be equally suitable depending upon the choice of text, availability 
of computing facilities, and preferences of the instructor. Computer 
projects—although not specifically listed below—should be an essen-
tial part of the course content. 

1. Computer Structure and Machine Language. Organization of 
computers in terms of input-output, storage, control, and processing 
units. Register and storage structures, instruction format and execu-
tion, principal instruction types, and machine language program-
ming. Machine arithmetic, program control, input-output operations, 
and interrupts. Characteristics of input-output and storage devices. 
(10%) 

2. Addressing Techniques. Absolute addressing, indexing, indi-
rect addressing, relative addressing, and base addressing. Memory 
mapping functions, storage allocation, associative addressing, paging, 
and machine organization to facilitate modes of addressing. (5%) 

3. Digital Representation of Data. Bits, fields, words, and other 
information structures. Radices and radix conversion, representation 
of integer, floating-point, and multiple-precision numbers in binary 
and decimal form, and round-off errors. Representation of strings, 
lists, symbol tables, arrays and other data structures. Data trans-
mission, error detection and correction^ Fixed versus variable word 
lengths. (10%) 

4. Symbolic Coding and Assembly Systems. Mnemonic opera-
tion codes, labels, symbolic addresses and address expressions. 
Literals, extended machine operations, and pseudo operations. Error 
flags and messages, updating, and program documentation. Scanning 
of symbolic instructions and symbol table construction. Overall de-
sign and operation of assemblers. (10%) 

5. Selected Programming Techniques (chosen from among the 
following). Techniques for sorting, searching, scanning, and con-
verting data . String manipulation, text editing, and list processing. 
Stack management, arithmetic expression recognition, syntactic 
recognition, and other compilation techniques. (10%) 

6. Logic Design, Micro-programming, and Interpreters. AND, 
OR, and NOT elements, design of a half-adder and an adder, storage 
and delay elements, and design of an arithmetic unit. Parallel versus 
serial arithmetic, encoding and decoding logic, and micro-program-
ming. Interpreters, simulation, and emulation. Logical equivalence 
between hardware and software. (5%) 

7. Macros. Definition, call, and expansion of macros. Nested and 
recursive macro calls and definitions. Parameter handling, condi-
tional assembly, and assembly time computations. (10%) 

8. Program Segmentation and Linkage. Subroutines, coroutines, 
and functions. Subprogram loading and linkage, common data link-
age, transfer vectors, and parameters. Dynamic storage allocation, 

21 



overlays, re-entrant subprograms, and stacking techniques. Linkage 
using page and segment tables. (10%) 

9. Computer Systems Organization. Characteristics and use of 
tapes, disks, drums, cores, data-cells, and other large-volume de-
vices in storage hierarchies. Processing unit organization, input-
output channels and devices, peripheral and satellite processors, 
multiple processor configurations, computer networks, and remote 
access terminals. (10%) 

10. Systems and Utility Programs. Loaders, input-output sys-
tems, monitors, and accounting programs. Program libraries. Or-
ganization, documentation, dissemination, and maintenance of sys-
tem programs. (10%) 

11. Recent Developments. Selected topics in computer organiza-
tion, technology, and programming systems. (5%) 

12. Examinations. (5%) 
ANNOTATED BIBLIOGRAPHY 

Whereas many of the books on "computer programming" might 
seem to be appropriate texts or references for this course, only 
a few even begin to approach the subject as proposed for this course. 
Most books deal with specific machines, actual or hypothetical, 
but very few discuss computer organization from any general point 
of view or consider the techniques of symbolic programming by any 
method other than examples. A few of the many books which deal 
with specific machines have been included in this list, but no manu-
facturers' manuals have been listed even though they may be used 
effectively as supplemental material. 

1 . B R O O K S , F . P . , J R . , A N D I V E R S O N , K . E . Automatic Data 
Processing. Wiley, New York, 1963, 494 pp. CR-6673-9523. 
On computing fundamentals, machine language organization 
and programming using IBM 650 as the principal example. 

2. D A V I S , G. B. An Introduction to Electronic Computers. Mc-
Graw-Hill, New York, 1965, 541 pp. 
Informally written text containing a general introduction to com-
puting, rather complete coverage of F O R T R A N and C O B O L , and 
considerable material on machines and machine language pro-
gramming. 

3. F I S C H E R , F . P . , A N D S W I N D L E , G . F . Computer Programming 
Systems. Holt, Rinehart and Winston, New York, 1964, 643 pp. 
CR-6455-6299. 
Par t I is concerned with machine oriented programming and pro-
gramming systems using IBM 1401 as the illustrative computer. 

4. F L O R E S , I . Computer Programming. Prentice-Hall, Englewood 
Cliffs, N. J. , 1966, 386 pp. CR-6674-10,060. 
Covers machine language and software techniques using the 
Flores Assembly Program (FLAP) for illustrative purposes. 

5. H A S S I T T , A. Computer Programming and Computer Systems. 
Academic Press, New York, 1967, 374 pp. CR-6784-12,355. 
Discusses various features of computer organization and pro-
gramming languages using examples from a number of machines 
including IBM 1401, 1620, 7090 and System/360, and CDC 1604 
and 3600. 

6. I V E R S O N , K. E. A Programming Language. Wiley, New York, 
1962, 286 pp. CR-6671-9004. 
Introduces a language used extensively for description of com-
puters as well as for description of computer programs. Contains 
material on machine organization, sorting and data structures. 

7 . S T A R K , P. A. Digital Computer Programming. Macmillan, New 
York, 1967, 525 pp. 
Presents machine language and symbolic programming for a 
24-bit computer. 

8 . S T E I N , M . L . , A N D M U N R O , W . D . Computer Programming: A 
Mixed Language Approach. Academic Press, New York, 1964, 
459 pp. CR-6455-6140. 
A text on computer organization and assembly language pro-
gramming using CDC 1604 as the basic computer. 

9 . W E G N E R , P . Programming Languages, Information Structures 

and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Covers machine languages, multiprogramming, assembler con-
struction and procedure-oriented languages. Programming lan-
guages are treated as information structures. 

Course B3. In t roduct ion to Discrete St ructures (3-0-3) 

APPROACH 

The theoretical material should be introduced in a mathematically 
precise manner with all concepts and results being amply motivated 
and being illustrated with examples from computer science. The 
student should be given extensive homework assignments of both a 
theoretical and a programming nature which further the under-
standing of the applications of the concepts in computer science. 

CONTENT 

Since the material listed below is more than can normally be of-
fered in a one-semester three-credit course on this level, care must 
be taken to select those topics which will support the more ad-
vanced courses as they are developed at each particular school. The 
description in each of the four sections is divided into two parts la-
beled (a) Theory and (b) Applications, but in practice the material 
in both parts would be intermixed. 

1. Basic Set Algebra. 
a. Theory: Sets and basic set algebra. Direct products. Map-

pings, their domains and ranges, and inverse mappings. Finite and 
denumerable sets. Relations including order relations. Set inclusion 
as partial ordering. Equivalence relations, equivalence classes, 
partition of sets, congruences. The preservation of relations under 
mappings. Finite sets and their subsets. Permutations, combina-
tions, and related combinatorial concepts. 

b. Applications: Examples of sets. The Peano axioms for the set 
of integers. Congruences and ordering relations over the integers. 
Relations over the integers defined by arithmetic operations. The 
set of all subsets of an n-element set and the set of all n-digit 
binary numbers. The set of all strings over a finite alphabet. Lan-
guages over an alphabet as subsets of the set of all strings over 
the alphabet. Algorithms for listing combinations, compositions, 
or partitions. Algorithms for ranking combinations. 
2. Basic Algebraic Structures. 

a. Theory: Operations on a set. Algebraic structures as sets with 
particular functions and relations defined on it. Groups, subgroups, 
cyclic groups, and other examples of groups. The concepts of 
homomorphism and isomorphism on a set with operations. Semi-
groups and semigroups of transformations. Definition and general 
discussion of examples of structures with several operations, e.g. 
fields and possibly lattices. 

b. Applications: Computer use for working group theoretic 
problems, e.g. with permutation groups as they occur as input 
transformation in switching networks. The semigroup of all words 
over a fixed finite alphabet under the operation of concatenation. 
The letters of the alphabet as generators. Pair algebra. 

3. Boolean Algebra and Propositional Logic. 
a. Theory: The axioms of set algebra. Axiomatic definition of 

Boolean algebras as algebraic structures with two operations. 
Duality. Basic facts about Boolean functions. Propositions and 
propositional functions. Logical connectives. Truth values and 
truth tables. The algebra of propositional functions. The Boolean 
algebra of t ruth values. Conjunctive and disjunctive normal forms. 

b. Applications: Boolean algebra and switching circuits. Basic 
computer components. Decision tables. 
4. Graph Theory. 

a. Theory: Directed and undirected graphs. Subgraphs, chains, 
circuits, paths, cycles, connectivity, trees. Graphs and their rela-

22 



tion to partial orderings. Graph isomorphisms. Cyclomatic and 
chromatic numbers. The adjacency and the incidence matrices. 
Minimal paths. Matchings of bipartite graphs. Elements of trans-
port networks. 

b. Applications: Flow charts and state transition graphs. Con-
nectivity in flow charts. Syntactic structure of arithmetic expres-
sions as trees. Graph theoretic examples in coding theory. Algo- i 
rithms for determining cycles and minimal paths. Basic elements 
of list structures. Accessing problems. Graphs of a game. Matching 
algorithms and some related applications. 

ANNOTATED BIBLIOGRAPHY 

1 . B E C K E N B A C H , E. F . (Ed.) Applied Combinatorial Mathematics. 
Wiley, New York, 1964, 608 pp. 
A collection of articles on a broad spectrum of topics. Not di-
rectly suitable as a text, but an excellent source of ideas and 
an important reference. 

2. B E R G E , C. Theory of Graphs and Its Applications. Wiley, 
New York, 1962, 244 pp. 
A good presentation of directed and undirected graph theory, 
with some attention to algorithms. The work suffers from many 
misprints and errors which have been carried over into the 
English translation. A general reference text for this course. 

3 . B I R K H O F F , G., A N D B A R T E E , T . Modern Applied Algebra, Pre-
liminary edition, Parts I and II. McGraw-Hill, New York, 1967. 
Preliminary edition available only in limited quantities, but 
the full text expected by the fall of 1968. Appears to be very 
close in spirit to the material proposed for this course, but the 
content is more algebraically oriented and includes little on 
graphs. 

4 . B U S A C K E R , R . , A N D S A A T Y , T . Finite Graphs and Networks: 
An Introduction with Applications. McGraw-Hill, New York, 
1965, 294 pp. 
A good work on graph theory with a very nice collection of appli-
cations. Useful as source and reference for the graph theory part 
of this course. 

5. G R O S S M A N , I., A N D M A G N U S , W . Groups and Their Graphs. 
Random House, New York, 1965, 195 pp. CR-6564-8003. 
An elementary but very well written discourse on basic connec-
tions between group and graph theory. 

6. H A R A R Y , F . , N O R M A N , R. Z . , A N D C A R T W R I G H T , D . Structural 
Models: An Introduction to the Theory of Directed Graphs. 
Wiley, New York, 1965, 415 pp. CR-6566-8421. 
Excellent on directed graphs and probably the best source book 
on that field. Should be an important reference for the corre-
sponding portion of this course. 

7. H O H N , F . Applied Boolean Algebra, 2nd ed. Macmillan, New 
York, 1966, 273 pp. 
Very good introduction to basic facts of Boolean algebra and 
especially its applications in electrical engineering. Important 
reference for the corresponding portion of this course. 

8. K E M E N Y , J . , M I R K I I . , H., S N E I A , J . , A N D T H O M P S O N , G. Finite 
Mathematical Structures. Prentice-Hall, Englewood Cliffs, 
N. J . , 1959, 487 pp. 
A text for physical science and engineering students who have 
completed the calculus. First two chapters on compound state-
ments, sets, and functions should be particularly useful. 

9. K E M E N Y , J . , S N E L L , J., A N D T H O M P S O N , G. Introduction to 
Finite Mathematics, 2nd ed. Prentice-Hall, Englewood Cliffs, 
N. J., 1966, 352 pp. 
Freshman-sophomore level text designed primarily for students 
in biological and social sciences. Follows CUPM recommenda-
tions for the mathematical education of such students. First 
three chapters on compound statements, sets and subsets, par-
titions, and counting cover similar material as proposed for this 
course. • 

1 0 . K O R F H A G E , R . Logic and Algorithms: With Applications to 
the Computer and Information Sciences. Wiley, New York, 
1966, 194 pp. CR-6782-11,339. 

A fine new text introducing those basic topics from mathematical 
logic important in computer science—for instance Boolean alge-
bra, Turing machines, and Markov algorithms. Written in the 
spirit which should pervade this course. 

1 1 . L E D E R M A N . W . Introduction to the Theory of Finite Groups. 
Interscience, New York, 1953, 160 pp. 
A very readable introduction to finite groups. Particularly inter-
esting to this course is the chapter on permutation groups. 

1 2 . M A C L A N E , S., A N D B I R K H O F F , G. Algebra. Macmillan, New 
York, 1967, 598 pp. 
A substantially revised and updated version of A Survey of Mod-
ern Algebra, which has been a classic text on modern algebra. 
Should be one of the main references for the algebraic parts of 
this course. 

13. ORE, 0 . Graphs and Their Uses. Random House, New York, 
1 9 6 3 , 1 3 1 p p . 

An introduction to the elementary concepts of graph theory. 
Very pleasant to read. 

1 4 . R I O R D A N , J . An Introduction to Combinatorial Analysis. Wiley, 
New York, 1958, 244 pp. 
One of the best source books on enumerative combinatorial 
analysis. However, it is too advanced for use as a text in a course 
of this type. 

1 5 . R Y S E R , H. Combinatorial Mathematics. Wiley, New York, 
1 9 6 3 , 1 5 4 p p . C R - 6 5 6 2 - 7 3 7 1 . 

An excellent introduction to such topics as (0,1) matrices, 
Latin-squares, and block-design, but containing almost no graph 
theory. 

1 6 . W H I T E S I T T , J . E. Boolean Algebra and Its Applications. Addi-
son-Wesley, Reading, Mass., 1961, 182 pp. 
An introductory text designed for readers with a limited mathe-
matical background. 

Course B4. Numer ica l Calculus (2-2-3) 

APPROACH 

In this course the emphasis is placed upon building algorithms for 
the solution of numerical problems, the sensitivity of these algo-
rithms to numerical errors, and the efficiency of these algorithms. 
In the laboratory portion of the course the student is to complete 
a substantial number of computational projects using a suitable 
procedure-oriented language. 

CONTENT 

1. Basic Concepts of Numerical Error. Significant digit arith-
metic rounding procedures. Classification of error, evaluation of ex-
pressions and functions. 

2. Interpolation and Quadrature. Polynomial interpolation, ele-
ments of difference calculus, Newton and Lagrange formulas, Ait-
ken's interpolation method, quadrature formulas, Romberg inte-
gration, numerical differentiation, and the inherent error problems. 

3. Solution of Nonlinear Equations. Bisection method, successive 
approximations including simple convergence proofs, linearization 
and Newton's method, method of false-position. Applications to 
polynomial equations. Generalization to iterative methods for sys-
tems of equations. 

4. Linear Systems of Equations. Solution of linear systems and 
determinant evaluation by elimination procedures. Roundoff errors 
and ill-conditioning. Iterative methods. 

5. Numerical Solution of Ordinary Differential Equations. 
Euler's method, modified Euler's method, simplified Runge-Kutta. 

ANNOTATED BIBLIOGRAPHY 

Listed below are some of the books which might be used as texts 
and/or references for this course. Most of the books cover the follow-
ing topics: solution of polynomial and other nonlinear equations; 

23 



interpolation, numerical quadrature, and numerical differentiation; 
ordinary differential equations; and linear algebra. Significant devia-
tions from these topics are indicated by the annotation. 

1 . C O N T E , S . D . Elementary Numerical Analysis: An Algorithmic 
Approach. McGraw-Hill, New York, 1965, 278 pp. 
Designed as a text for a one-semester, three-hour course for 
engineering and science undergraduate students. Machine-
oriented treatment with many illustrative examples including 
flow charts and F O R T R A N programs. Except for the chapter on 
differential equations, a knowledge of basic calculus and of 
programming in a procedure-oriented language is sufficient back-
ground. Numerous exercises. 

2. . J E N N I N G S . W. First Course in Numerical Methods. Macmillan, 
New York, 1964, 233 pp. CR-6671-9036. 
Designed as a text for a one-semester course for advanced under-
graduate students in science and engineering. Brief treatment of 
the standard topics. Presupposes calculus, differential equations, 
some experience with the computer, and, for later chapters, 
matrices. Some exercises. 

3 . M A C O N , N. Numerical Analysis. Wiley, New York, 1 9 6 3 , 161 
* pp. 

Designed as a text for a one-semester first course in numerical 
analysis. Emphasis is more on the mathematical aspects rather 
than the computational aspects although there is an introduc-
tory chapter on the elements of computing, flow charting, and 
F O R T R A N programming. For the early chapters calculus provides 
sufficient background. For later chapters an elementary knowl-
edge of matrix theory, differential equations, and advanced cal-
culus is recommended. Examples and exercises. 

4 . M C C O R M I C K , J . M . , A N D S A I . V A D O R I , M . G . Numerical Meth-
ods in FORTRAN. Prentice-Hall, Englewood Cliffs, N.J., 1964, 
3 2 4 p p . C R - 6 6 7 6 - 1 0 , 8 8 3 . 

Designed as a text either for an elementary course in numerical 
analysis at the junior-senior level or for a course in programming. 
First part presents the methods without reference to program-
ming techniques. There are 320 examples and problems. The 
last part contains 53 completely worked illustrative F O R T R A N 

programs. Presupposes beginning analysis. 

5 . M C C R A C K K N , D . , A N D D O R N . W . S . Numerical Methods and 
FORTRAN Programming. Wiley, New York, 1964, 457 pp. 
C R - 6 5 6 2 - 7 1 0 7 . 

Designed as a text for a four semester-hour course in science or 
engineering at the sophomore-senior level. Emphasis on practi-
cal methods—for example, the treatment of simultaneous linear 
algebraic equations does not make use of matrices. Chapters on 
various aspects of F O R T R A N are interspersed with chapters on 
numerical methods. Includes a brief chapter on partial differen-
tial equations. Presupposes beginning analysis. Examples and 
exercises. 

6. M I I . N E , W . E . Numerical Calculus. Princeton University Press, 
Princeton, N. -]., 1949, 393 pp. 
V/ritten in 1949 in the early days of computing, this is a very 
useful reference even though the treatment is oriented toward 
manual computation and though some of the methods have been 
superseded. Presupposes a knowledge of calculus and different ial 
equations. Examples and exercises. 

7. N I E L S E N , K. L. Methods in Numerical Analysis, 2nd ed. Mac-
millan, New York, 1956 and 1964, 382 pp. CR-6455-6333. 
Designed as a textbook for a practical course for engineers. Pri-
mary emphasis on the use of desk calculators and tables. Pre-
supposes calculus. Examples and exercises. 

8. P E N N I N G T O N , R. H . Introductory Computer Methods and Nu-
merical Analysis. Macmillan, New York, 1965, 452 pp. CR-6565-
8060. 
Designed as a text for a one-year elementary course for scientists 
and engineers to be taken immediately after integral calculus. 
The first part treats digital computers and programming. Nu-
merical methods are then discussed from a computer viewpoint 
with the aid of flow diagrams. Little knowledge of computing is 
assumed. For some of the topics a knowledge of matrices and 

ordinary differential equations would be helpful. Many examples 
and exercises. 

9. S I N G E R , J . Elements of Numerical Analysis. Academic Press, 
New York. 1964, 395 pp. C.R-6561-6959. 
Designed as a text for junior undergraduate students in mathe-
matics. Treatment geared more to manual computation than to 
the use of computers. Presupposes beginning analysis and, for 
some parts, differential equations and advanced calculus. Ex-
amples and exercises. 

10. S T I E E E L , E. L . An Introduction to Numerical Mathematics, 
transl. by W. C. and C. -J. Rheinboldt. Academic Press, New 
York, 1963, 286 pp. CR-6455-6335. 
Appropriate for a junior-senior level course in mathematics, 
science, and engineering. Emphasis is on the algorithmic ap-
proach, although there are only a few flow charts and specific 
references to programs. A wide variety of topics and methods 
is treated. Basic calculus is required for the early chapters, but 
for later chapters familiarity with ordinary differential equations 
is desirable. Examples are given. There is a separate problem 
supplement with 36 exercises. 

Course 11. Data Structures (3-0-3) 

APPROACH 

This course is intended to present the data structures which may 
be used in computer storage to represent the information involved 
in solving problems. However, emphasis should be placed on treat-
ing these data structures independently of' the applications in which 
they are embedded. Each data structure should be motivated care-
fully in terms of the operations which may conveniently be per-
formed. and illustrated with examples in which the structure is use-
ful. The identification of the natural relations between entities 
involved in problems and alternate representations of information 
should be stressed. Computer storage structures should also be de-
scribed and classified according to their characteristics, and the 
interaction between data structures and storage structures should be 
studied. 

The student should be required to apply the techniques pre-
sented to problems which illustrate a wide variety of data structures. 
Solutions to a number of these problems should be programmed 
and run on a computer. 

CONTENT 

More material is listed here than can normally be covered in a 
one-semester course. The instructor should carefully select material 
which gives the student a broad introduction to this subject, but 
which fits together pedagogically. It may be desirable to develop an 
advanced course to cover some of these topics more completely. 

1. Basic Concepts of Data. Representation of information as 
data inside and outside the computer. Bits, bytes, fields and data 
items. Records, nodes and data elements. Data files and tables. 
Names, values, environments, and binding times of data. Use of 
pointer or linkage variables to represent data structure. Identifying 
entities about which data is to be maintained, and selecting data 
nodes and structures which are to be used in problem solution. Stor-
age media, storage structures, encoding of data and transformations 
from one medium and/or code to another. Alternative representa-
tions of information and data. Packing, unpacking, and compression 
of data. Data formats, data description languages, and specification 
of'data transformations. 

2. Linear Lists and Strings. Stacks, last-in-first-out, first-in-first-
out, double-ended, and other linear lists. Sequential versus linked 
storage allocation. Single versus double linkage. Circular lists. Char-
acter strings of variable length. Word packing, part-word addressing, 
and pointer manipulation. Insertion, deletion and accessing of list 
elements. 

3. Arrays and Orthogonal Lists. Storage of rectangular arrays in 
one-dimensional media. Storage /napping functions, direct and in-

24 



direct address computation, space requirements, set-up time, ac-
cessing time, and dynamic relocation time. Storage and accessing 
triangular arrays, tetrahedral arrays, and sparse matrices. 

4. Tree Structures. Trees, subtrees, ordered trees, free trees, 
oriented trees and binary trees. Representation of trees using binary 
trees, sequential techniques, or threaded lists.. Insertion, deletion, 
and accessing elements of trees. Relative referencing, finding suc-
cessors and predecessors, and walking through trees. Examples of 
tree structures such as algebraic formulas, arrays, and other hier-
archic data structures (PL/I and C O B O L ) . 

5. Storage Systems and Structures. Behavioral properties of 
unit record (card), random access (core), linear (tape), and inter-
mediate (disk, drum, etc.) storage media and devices including cost, 
size, speed, reusability, inherent record and file structure, and 
deficiencies and interrelation of these properties. Influence of ma-
chine structure—in particular addressing—on data structuring. 
Hierarchies of storage, virtual memory, segmentation, paging, and 
bucketing. Influence of data s tructures and data manipulat ion on 
storage systems. Associative structures, both hardware and software. 

6. Storage Allocation and Collection. Static versus dynamic al-
location. Sequential versus linked allocation. Last-in-first-out data 
versus data of unrelated life times. Uniform block size and available 
space lists. Variable block size and stratified available space lists. 
Explicit release of available storage. Coalescing adjacent free space 
and compacting occupied space or data . Accessing disciplines for 
movable data, unmovable anchors, and updat ing of pointers. Refer-
ence counts and list borrowing. Garbage collection by surveying 
active data . 

7. Multilinked Structures. Use of different types of data nodes 
or elements. Use of different types of linkage to sequence, adjoin, or 
associate data elements and to build hierarchies of data structures. 
Sublists, list names, list heads, and a t t r ibute lists. Multidimensional 
linked lists and mixed list structures. Accessing, insertion, deletion 
and updating. Relative referencing, finding successors and predeces-
sors, and walking through structures. Representation of graphs and 
networks. Structures used for string manipulat ion and list processing 
languages. 

8. Sorting (Ordering) Techniques. Radix sorting, radix ex-
change sorting, merge sorting, bubble sorting, address table sorting, 
topological sorting and other sorting methods. Comparative efficiency 
of sorting techniques. Effect of data s tructures and storage structures 
on sorting techniques. 

9. Symbol Tables and Searching. Linear, stack, tree and scatter 
structured tables, and table lookup techniques. Hash code algo-
ri thms. Use of index lists and associative techniques. Comparison 
of search strategies in terms of speed and cost. Batching and order-
ing of requests to remote storage to minimize number of accesses. 
TRIE memory as an example of structure organized for searching. 

10. Data Structures in Programming Languages. Compile-time 
and run-t ime da ta structures needed to implement source language 
da ta structures of programming languages. Linkage between par-» 
tially executed procedures, data structures for coroutines, scheduled 
procedures, and other control structures, and storage management of 
data structures in procedure-oriented languages. Examples of higher 
level languages which include list processing and other data struc-
turing features. 

11. Formal Specification of Data Structures. Specification of 
syntax for classes of da ta structures. Predicate selectors and con-
structors for data manipulation, data definition facilities, programs 
as data structures, computers as data structures and transformations, 
formal specification of semanticsTand formal systems viewed as data 
structures. 

12. Generalized Data Management Systems. Structures of gen-
eralized data management systems: directory maintenance, user 
languages (query), data description maintenance, and job manage-
ment . Embedding data structures in generalized data management 
systems. Examples of generalized data management systems and 
comparison of system features. 

ANNOTATED BIBLIOGRAPHY 

Although a great deal of material is available in this area, very 
little of it is appropriate for classroom use. 

1. Association for Computing Machinery. ACM sort symposium, 
Nov. 29-30, 1962, Princeton, N. J . Comm. ACM 6, 5 (May 
1963), 194-272. 
Seventeen papers oh various aspects of sorting. 

2. Association for Computing Machinery. Papers presented at the 
ACM Storage Allocation Symposium, June 23-24, 1961, Prince-
ton, N. J . Comm. ACM 4, 10 (Oct. 1961), 416-464. 
Eleven papers on various techniques of storage allocation. 

3. Association tor Computing Machinery. Proceedings of the 
ACM Symposium on Symbolic and Algebraic Manipulat ion, 
Washington, D. C., Mar. 29-31, 1966. Comm. ACM 9, 8 (Aug. 
1966), 547-643. 
Eleven papers some of which discuss applications of data struc-
turing techniques. One paper by Knowlton describes the list 
language L1'. 

4. C L I M E N S O N , W. D. File organization and search techniques. In 
C. A. Cuadra (Ed.), Annual Review of Information Science and 
Technology, Vol. /, (Amer. Doc. Inst., Ann. Rev. ser.), Inter-
science, New York, 1966, pp. 107-135. CR-6783-11,900. 
Surveys file organizations and data structures with particular 
emphasis on developments during 1965. Provides framework for 
some of the material covered by this course. An extensive bib-
liography. 

5. C O H E N , J. A use of fast and slow memories in list-processing 
languages. Comm. ACM 10, 2 (Feb. 1967), 82-86. 
Describes a paging scheme which keeps the "most often called 
pages in the fast memory" and involves a slow down of 3 to 10 
as compared with in-core operations. 

6. Control Data Corporation. 3600/3800 INFOL Reference Manual. 
Publication No. 60170300, CDC, Palo Alto, Calif., July 1966. 
Describes the / ^Fo rma t ion Oriented Language which is designed 
for information storage and retrieval applications. 

7 . D A H L , O . - J . , AND N Y G A A R D , K . SIMULA—an ALGOL-based 
simulation language. Comm. ACM 9, 9 (Sept. 1 9 6 6 ) , 6 7 1 - 6 7 8 . 

Contains interesting data and control structures. 

8. D ' I M P E R I O , M. Data structures and their representation in 
storage. In M. Halpern (Ed.), Annual Review in Automatic 
Programming, Vol. 5, Pergamon Press, New York, spring 1968. 
Defines certain basic concepts involved in the representation of 
data and processes to be performed on data . Analyzes a problem 
and describes nine different solutions involving different data 
structures. Discusses ten list processing languages and gives 
examples of their data and storage structures. 

9 . F I T Z W A T E R , D. R . A storage allocation and reference structure. 
Comm. ACM 7, 9 (Sept. 1 9 6 4 ) , 5 4 2 - 5 4 5 . C R - 6 5 6 1 - 6 9 3 3 . 

Describes a method of structuring and referencing dynamic-
structures in A U T O C O D E R for the IBM 7 0 7 0 / 7 2 / 7 4 . 

10. General Electric Company. Integrated Data Store—A New 
Concept in Data Management. Application Manual AS-CPB-
483A, Revision of 7-67, GE Computer Division, Phoenix, Ariz., 
1967. 
Describes a sophisticated data management system which uses 
paging and chaining to develop complex data structures. 

11. G R A Y , J . C. Compound data structures for computer-aided de-
sign: a survey. Proc. ACM 22nd Nat . Conf., 1967, Thompson 
Book Co., Washington, D. C., pp. 355-365. 
Considers requirements of a data structure software package and 
surveys a number of such packages. 

12. H E U . E R M A N , H . Addressing multidimensional arrays. Comm. 
ACM 5, 4 (Apr. 1962), 205-207. CR-6235-2619. 
Surveys direct and indirect methods for accessing arrays. 

13. I V E R S O N , K. E. A Programming Language. Wiley, New York. 
1962, 286 pp. CR-6671-9004. . 

25 



Contains considerable material on data structures, graphs, trees, 
and sorting, as well as a language for describing these. 

1 4 . K L E I N , M . M . Scheduling project networks. Comm. ACM 10. 
4 ( A p r . 1 9 6 7 ) , 2 2 5 - 2 3 4 . C R - 6 7 8 4 - 1 2 , 2 7 5 . 

Discusses project networking and describes the C-E-I-R critical 
path algorithm. 

15. K N U T H , D . E . The Art of Computer Programming, Vol. 1, Fun-
damental Algorithms. Addison-Wesley, Reading, Mass., 1968, 
634 pp. 
Chap. 2 on "Information Structures" contains the first compre-
hensive classification of data structures to be published. Each 
structure considered is carefully motivated and generously 
illustrated. Includes a brief history of data structuring and an 
annotated bibliography. 

1 6 . L A N D I N , P. -J . The mechanical evaluation of expressions. Com-
put.J. 6. 4 (.Ian. 1 9 6 4 ) , 308-320. C R - 6 4 5 6 - 6 6 7 7 . 

Presents a mathematical language based on Church's A-notation 
and uses it to describe computational structures such as expres-
sions and lists. 

1 7 . L A W S O N , H . W . , J R . P L / I list processing. Comm. ACM 10, 6 

(June 1 9 6 7 ) , 3 5 8 - 3 6 7 . 

Discusses the list processing facilities in PL/I. 

1 8 . M A D N I C K , S. E . String processing techniques. Comm. ACM 10, 
7 (July 1 9 6 7 ) , 420-424. 
Presents and evaluates six techniques for string data storage 
structures. One of these techniques is used for an implementa-
tion of S N O B O I . on an IBM System/360. 

19. M A R R O N , B. A., AND OF. M A I N E , P. A. D. Automatic data com-
pression. Comm. ACM 10, 11 (Nov. 1967). 711-715. 
Describes a three-part compressor which can be used on "any" 
body of information to reduce slow external storage require-
ments and to increase the rate of information transmission 
through a computer. 

2 0 . M E A L Y , G . H . Another look at data. Proc. AFIPS 1 9 6 7 Fall 
Joint Comput. Conf., Vol. 31, Thompson Book Co., Washington, 
D . C . , p p . 5 2 5 - 5 3 4 . 

Sketches a theory of data based on relations. Includes some 
rather precise definitions of concepts such as data structure, 
list processing, and representation. 

2 1 . M I N K E R , J . , A N D S A B L E , J . File organization and data manage-
ment. In C. A. Cuadra (Ed.), Annual Review of Information 
Science and Technology, Vol. 2, (Amer. Doc. Inst., Ann. Rev. 
ser.). Interscience, New York, 1967, pp. 123-160. 
Surveys file organizations and generalized data management 
systems developed during 1966. Describes linkage types, data 
structures, storage structures, and how data structures have 
been mapped into storage structures. Extensive bibliography. 

2 2 . M O R R I S , R . Scatter storage techniques. Comm. ACM 11, 1 (Jan. 
1 9 6 8 ) , 3 8 - 4 4 . 

Surveys hashing schemes for symbol table algorithms. 

23. R O S E N , S. (Ed.) Programming Languages and Systems. Mc-
Graw-Hill, New York, .1967, 734 pp. 
Part 4 of this collection contains papers on I P L - V , C O M I T , S L I P , 

S N O B O I , , L I S P and a comparison of list-processing computer lan-
guages. 

24. Ross, I). T. The AED free storage package. Comm. ACM 10, 8 
(Aug. 1967), 481-492. 
Describes a storage allocation and management system for the 
mixed n-component elements ("beads") needed for "plex pro-
gramming." 

2 5 . S A I . T O N , G . Data manipulation and programming problems in 
automatic information retrieval. Comm. ACM .9, 3 (Mar. 1 9 6 6 ) , 

2 0 4 - 2 1 0 . C R - 6 6 7 4 - 1 0 , 0 7 8 . 

Describes a variety of representations for tree structured data 
and examines their usefulness in retrieval applications. 

2 6 . S A V I T T , D . A . , L O V E , H . H . , J K . , AND T R O O P , R . E . A S P : a n e w 

concept in language and .machine organization. Proc. 1967 

Spring Joint Comput. Conf., Vol. 30, Thompson Book Co.. 
Washington. D. C„ pp. 87-102. 
Describes the data bases used in the "Association-Storing 
Processor." These structures are complex in organization and 
may vary dynamically in both organization and content. 

27. S C H O R R , H., AND W A I T E , W . M. An efficient machine-independ-
ent procedure for garbage collection in various list structures. 
Comm. ACM 10, 8 (Aug. 1967), 501-506. 
Reviews and compares past garbage collection methods and 
presents a new algorithm. 

28. S T A N D I S H , T. A. A data definition facility for programming 
languages. Ph.D. Thesis, Carnegie Institute of Technology. 
Pittsburgh, Pa., 1967. 
Presents a descriptive notation for data structures which is em-
bedded in a programming language. 

29. W E G N E R , P. (Ed.) Introduction to Systems Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest for this course: Iliffe, pp. 256-275; Jenkins, pp. 
283-293; and Burge, pp. 294-312. 

30. W E G N E R , P. Programming Languages, Information Structures, 
and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Introduces information structures and uses them in describing 
computer organization and programming languages. 

Course 12. P rogramming Languages (3-0-3) 

APPROACH 

This course is intended to survey the significant features of exist-
ing programming languages with particular emphasis on the under-
lying concepts abstracted from these languages. The relationship 
between source programs and their run-time representation during 
evaluation will be considered, but the actual writing of compilers 
is to be taught in Course 15. 

CONTENT 

There are four basic parts of this course: the structure of simple 
statements; the structure of algorithmic languages; list processing 
and string manipulation languages; and topics in programming lan-
guages. 

Part A. Structure of Simple Statements. (10 lectures) 
1. Informal syntax and semantics of arithmetic expressions and 

statements, translation between infix, prefix, and postlix notation, 
and the use of pushdown stores for translation and execution of 
arithmetic expressions and statements. Precedence hierarchy of 
arithmetic operations, relational operators, and Boolean operators. 
Backus normal form representation of syntax of arithmetic state-

men t s and the semantics of arithmetic statements. (6 lectures) 
2. Precedence relations, precedence grammars, and syntactic 

analysis of precedence grammars. Application to arithmetic ex-
pressions, code generation, error diagnostics and error correction lor 
syntactic arithmetic expression compilation. (4 lectures) 

Part B. Structure of Algorithmic Languages. (20 lectures) 
3. Review of program constituents, branching statements and 

loops. (2 lectures) 
4. Grouping of statements, declarations, "types " of program con-

stituents, nomenclature, scopes, local and nonlocal quantities, in-
dependent blocks (FORTRAN), and nested blocks (ALGOL). (2 lectures) 

5. Function and statement type procedures, formal parameters 
and actual parameters, and call by value, name and reference. Bind-
ing time of program constituents, recursive procedures, and side ef-
fects during execution of procedures. (3 lectures) 

6. Storage allocation for independent blocks ( F O R T R A N ) and stor-
age allocation for nested blocks and procedures using a run-time 

26 



pushdown store. Overall structure of an ALGOL-style compiler. (3 
lectures) 

7. Coroutines, tasks, interrupt specification, and classification of 
control structures in procedure-oriented languages. (2 lectures) 

8. Syntactic specification of procedures, blocks and statements . 
Formal semantics corresponding to syntactic specification. Survey of 
principal concepts of syntactic analysis. (5 lectures) 

9. Generalized arrays. Data definition facilities, pointer-valued 
variables, and list creation and manipulation using pointer-valued 
variables. Templates and controlled storage allocation. Distinction 
between data specification by a data template and the creation of 
instances of a specified da ta structure. (3 lectures) 

Part C. List Processing and String Manipulation Languages. (7 
lectures) 

10. List structures, basic operations on list structures, LiSP-iike 
languages, machine-oriented list processing languages (IPL-V), em-
bedding of list operations in algorithmic languages ( S L I P ) , dynamic 
storage allocation for list languages, and garbage collection. (5 lec-
tures) 

11. String structures, operations on strings, and functions which 
have strings as arguments and strings as their values. ( S N O B O L ) . ( 2 

lectures) 

Part D. Topics in Programming Languages. (8 lectures) 
12. Additional features of programming languages, simulation 

languages, algebraic manipulat ion languages, and languages with 
parallel programming facilities. (2-6 lectures) 

13. Formal description of languages and their processors. The 
work of Floyd, Wirth, and others. (2-6 lectures) 

14. Other topics selected by the instructor. 

ANNOTATED BIBLIOGRAPHY 

1. American Standards Association X3.4.1 Working Group. To-
ward better documentat ion of programming languages. Comm. 
ACM 6, 3 (Mar. 1963), 76-92. 
A series of papers describing the documentat ion of significant 
current programming languages. 

2. Association for Computing Machinery. Proceedings of the 
ACM programming languages and pragmatics conference, San 
Dimas, Calif., August 8-12, 1965. Comm. ACM 9, 3 (Mar. 1966), 
137-232. 
Includes a number of papers applicable to this course. 

3. Association for Computing Machinery. Proceedings of the ACM 
symposium on symbolic and algebraic manipulation, Washing-
ton, D. C., March 29-31, 1966. Comm. ACM 9, 8 (Aug. 1966), 
547-643. 
A number of languages for symbolic and algebraic manipulation 
are described in this special issue. 

4 . D A H I . . O . - J . , A N D N Y G A A R D , K . S I M U L A — a n A L G O L -

based simulation language. Comm. ACM .9, 9 (Sept. 1966), 671-
678. 
Describes a language encompassing A L G O L , but having many 
additional features including those needed for simulation. 

5. G A L L E R , B. A., A N D P E R L I S , A. J . A proposal for definitions 
in ALGOL. Comm. ACM 10, 4 (Apr. 1967), 204-219. 
Describes a generalization of A L G O L which allows new data 
types and operators to be declared. 

6 . G O O D M A N , R . (Ed.) Annual Review in Automatic Program-
ming, Vols. 1, 2, 3, 4. Pergamon Press, New York, 1960 to 1965. 
C R - 6 1 2 3 - 0 8 1 1 , C R - 6 2 3 5 - 2 6 0 2 , a n d C R - 6 5 6 4 - 7 9 0 1 . 

These volumes contain several papers which are applicable to 
this course. 

7. H A L S T E A D , M. H . Machine-Independent Computer Program-
ming. Spar tan Books, New York, 1962. 
Contains both internal and external specifications of the 
N E L I A C programming language. 

8. IEEE Computer Group. The special issue on computer lan-
guages. IEEE Trans. EC-13, 4 (Aug. 1964), 343-462. 
Contains articles on A L G O L , F O R T R A N , F O R M A C , S O L and 
other computer languages. 

9. International Business Machines. PL/I Language Specification. 
Form C28-6571-4, IBM System/360 Operating System, IBM 
Corporation, White Plains, N. Y., 1967. 
A specification of the PL/I language. 

10. International Standards Organization Technical Committee 97, 
Subcommittee 5. Survey of programming languages and proc-
essors. Comm. ACM 6, 3 (Mar. 1963). 93-99. 
An international survey of current and imminent programming 
languages. 

11. K N U T H , D. E. The remaining trouble spots in ALGOL 60. 
Comm. ACM 10, 10 (Oct. 1967), 611-618. 
This paper lists the ambiguities which remain in A L G O L 60 and 
which have been noticed since the publication of the Revised 
A L G O L 60 Report in 1963. 

1 2 . M A R K O W I T Z , H . M . , K A R R , H . W . , A N D H A U S N E R , B . S I M -

SCRIPT: A Simulation Programming Language. Prentice-Hall, 
Englewood Cliffs, N. -J., 1963, 138 pp. 
A description of the S I M S C R I P T simulation language. There is a 
new S I M S C R I P T 1.5 supplement now available which describes 
a generalization of the original language. 

13. M O O E R S , C. N. TRAC, a procedure-describing language for the 
reactive typewriter. Comm. ACM 9, 3 (Mar. 1966), 215-219. 
CR-6674-10,079. 
Describes a language for the manipulat ion of text from an on-
line typewriter. 

14. N A U R , P. (Ed.) Revised report on the algorithmic language, 
A L G O L 60. Comm. ACM 6, 1 (Jan. 1963), 1-17. CR-6016-0323. 
The Backus normal form notation was developed to help de-
scribe the syntax of A L G O L in the original version of this report 
(Comm. ACM 3, 5 (May 1960), 299-314). 

15. P E R L I S , A. J . The synthesis of algorithmic systems—first annual 
A. M. Turing lecture. J. ACM 14, 1 (Jan. 1967), 1-9. CR-6782-
11,512. 
A st imulating talk on the nature of programming languages and 
the considerations which should underlie their future develop-
ment. 

16. R O S E N , S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp. 
This collection of papers contains many of the important refer-
ences for this course. In particular, Par ts 1 and 2 of the collec-
tion are useful for Par ts A and B of the course and Par t 4 of 
the collection is useful for Part C of the course. 

17. S H A W , C. J . A comparative evaluation of JOVIAL and FOR-
TRAN IV. Automatic Programming Inf., No. 22. Technical Col-
lege, Brighton, England, Aug. 1964, 15 pp. CR-6562-7265. 
A descriptive point-by-point comparison of these two languages. 
Concerned mainly with the features of the languages rather 
than their processors. 

18. S H A W , C. J . A programmer's look at JOVIAL, in an ALGOL 
perspective. Datamation 7, 10 (Oct. 1961), 46-50. CR-6233-1933. 
An interesting article showing how A L G O L and J O V I A L evolved 
from A L G O L 58 and how they differ. 

19. USA Standards Institute. Standards X3.9-1966. FORTRAN 
and X3.10-1966. Basic FORTRAN. USASI, 10 East 40th Street, 
New York, N. Y. 10016, 1966. 
Standard definitions of essentially F O R T R A N II and F O R T R A N IV. 
These also appeared in almost final form in Comm. ACM 7. 
10 (Oct. 1964), 591-625. 

20. W E G N E R , P. Programming Languages. Information Structures, 
and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Develops a unified approach to the study of programming lan-
guages emphas iz ing ' the t reatment of such languages as infor-

27 



mation structures. First two chapters devoted to machine or-
ganization, machine language, and assembly language, but 
much of Chap. 3 and essentially all of Chap. 4 devoted to the 
topics of this course. 

21. W I R T H , N. A generalization of ALGOL. Comm. ACM 6, 9 
(Sept. 1963), 547-554. CR-6451-5030. 
Proposes a generalization of A L G O L which involves the elimina-
tion of " type" declarations and the replacement of procedure 
declarations by an assignment of a so-called "quotation." 

2 2 . W I R T H , N . , AND W E B E R , H . E U L E R — a generalization of 
A L G O L and its formal definition, Parts I and I I . Comm. ACM 
9, 1 ( J a n . 1 9 6 6 ) , 1 3 - 2 3 , a n d 2 ( F e b . 1 9 6 6 ) , 8 9 - 9 9 . 

Develops a method for defining programming languages which 
introduces a rigorous relationship between structure and mean-
ing. The structure of a language is defined by a phrase struc-
ture syntax and the meaning is defined in terms of the effects 
which the execution of a sequence of interpretation rules has 
upon a fixed set of variables called the "environment." 

Course 13. Compute r Organizat ion (3-0-3) or (3-2-4) 

APPROACH 

This course is intended to introduce the student to the basic 
ideas of computer elements and logic design techniques and to the 
principles of computer systems organization. Emphasis should be 
placed on the various alternative possibilities which must be con-
sidered in arriving at a computer design; choices such as character 
or word organized data, serial or parallel data transmission, syn-
chronous or asynchronous control should be compared and evaluated. 

In addition to using block diagrams, it is recommended tha t a 
formal descriptive language for computer specification be introduced 
and used to provide a uniform method for the presentation of much 
of the material. The student should carry out a detailed computer 
design project and evaluate his design by simulation, if possible. A 
laboratory in which simple logic elements may be combined to 
perform digital functions is also desirable. 

CONTENT 

The following topics are to be covered, although not necessarily 
in the order listed. 

1. Basic Digital Circuits. Switches, relays, transistors, diodes, 
magnetic cores, circuits of individual elements, and integrated cir-
cuits. (These topics may be spread throughout the course.) (5%) 

2. Boolean Algebra and Combinational Logic. Boolean values, 
variables, operations, expressions and equations. Logic elements 
such as AND, OR, NOT, NAND and NOR. Correspondence between 
Boolean functions and combinations of logic elements. (5%) 

3. Data Representation and Transfer. Flip-flops, registers, core 
storage, and other memory elements. Review of number representa-
tions, binary versus binary-coded decimal representation, and integer 
versus floating-point representation. Weighted and nonweighted 
codes, redundancy, and coding of character information. Coders and 
decoders. Clearing, gating and other transfer considerations. (10%) 

4. Digital Arithmetic. Counters, comparators, parity checkers, 
and shift registers. Half and full adders. Serial versus parallel ad-
ders. Subtraction and signed magnitude versus complemented arith-
metic. Multiplication and division algorithms. Integer versus float-
ing-point arithmetic. Double precision arithmetic. Elementary 
speed-up techniques for arithmetic. (10%) 

5. Digital Storage and Accessing. Structure of core memory, 
memory control, data buses, and address buses. Addressing and ac-
cessing methods including index registers, indirect addressing, base 
registers, and other techniques. Overlapping, interleaving, protec-
tion, dynamic relocation, and memory segmentation methods. Char-
acteristics of drum, disk, tape, and other surface recording media 
and devices. Data flow in multimemory systems and hierarchies of 
storage. (10%) 

6. Control Functions. Synchronous versus asynchronous control. 
Time pulse distributors, controlled delay techniques, and Gray code 
control sequencers. Instruction repertoire, decoding networks, and 
sequencing methods. Centralized, decentralized, and micro-pro-
grammed control units. Internal, external and trapping interrupts. 
Interrupt sensing, priority, selection, recognition, and processing. 
Input-output control. (10%) 

7. Input-Output Facilities. Characteristics of input-output de-
vices and their controllers. Relationship between input-output de-
vices, main storage, auxiliary storage, buffers, data channels, and 
multiplexers. Serial versus parallel transmission. Low speed, high 
speed, and burst mode data flow. (10%) 

8. System Organization. Overall organization of modules into a 
system. Interface between modules. Word-oriented versus character-
oriented machines. Simplex and multiprocessor machines. Special 
purpose computers. Relationship between computer organization 
and software. (15%) 

9. Reliability. Error detection and correction. Diagnostics and 
preventive maintenance. Start-up, power-down, and recovery pro-
cedures. (5%) 

10. Description and Simulation Techniques. Definition of a 
formal computer description language which would be used in dis-
cussing most of the other topics listed for the course. Use of a com-
puter simulator to design and test simple computers or computer 
modules. (10%) 

11. Selected Topics. Multiple arithmetic units, instruction 
overlapping, and look-ahead techniques. Discussion of alternate 
organizations including highly parallel machines. (5%) 

12. Examinations. (5%) 

ANNOTATED BIBLIOGRAPHY 

As indicated, several of the books listed below might possibly 
be used as texts for this course, but it probably would be good to 
supplement any of them with additional material. Only a few of the 
many references on computer description languages and programs 
for simulating computer designs are listed; no annotations are given 
for these. 
General textbooks 

1. B A R T E E , T. C. Digital Computer Fundamentals. McGraw-Hill, 
New York, 1960, 1966, 401 pp. CR-6676-10,647. 
Not advanced enough but a very useful supplement for circuits 
and equipment. 

2 . B A R T E E , T. C . , L E B O W , I. L . , AND R E E D , I. S. Theory and De-
sign of Digital Systems. McGraw-Hill, New York, 1962, 324 pp. 
C R - 6 3 4 4 - 4 4 1 6 . 

Very mathematical and somewhat out-of-date. An interesting 
reference. 

3. B R A U N , E. L. Digital Computer Design—Logic, Circuitry, and 
Synthesis. Academic Press, New York, 1963, 606 pp. CR-6453-
5484. 
Somewhat out-of-date for a text but useful as a reference. 

4. B U C H H O L Z , W. Planning a Computer System. McGraw-Hill, 
New York, 1962, 336 pp. CR-6346-4786. 
Good reference on systems concepts bu t somewhat dated. 

5. Burroughs Corporation. Digital Computer Principles. Mc-
Graw-Hill, New York, 1962, 507 pp. 
Restricted scope (engineering oriented) and dated, but could be 
used as a reference. 

6. CHU, Y. Digital Computer Design Fundamentals. McGraw-
Hill, New York, 1 9 6 2 , 4 8 1 pp. C R - 6 3 4 3 - 4 1 9 8 . 

Good reference which contains a wealth of material on logic de-
sign. 

7. F L O R E S , 1. Computer Logic. Prentice-Hall, Englewood Cliffs, 
N. J. , 1960, 458 pp. CR-6122-0641 and CR-6124-0936. 
Dated and unorthodox but possibly useful for supplementary 
reading. 

8. F L O R E S , I. The Logic of Computer Arithmetic. Prentice-Hall, 

28 



Englewood Cliffs, N. J., 1963, 493 pp. CR-6452-5458. 
Very detailed, unorthodox treatment of computer arithmetic. 

9 . G S C H W I N D , H . W . Design of Digital Computers. Springer-
Verlag, New York, 1967. 
A possible text. 

10. H E L L E R M A N , H . Digital Computer System Principles. Mc-
Graw-Hill, New York, 1967, 424 pp. 
A possible text. Uses Iverson notation throughout. Would have 
to be supplemented on circuits and equipment as well as novel 
organizations. 

11. M A I . E Y , G . A . , A N D S K I K O , E. J . Modern Digital Computers. 
Prentice-Hall, Englewood Cliffs, N. J., 1964, 216 pp. CR-6561-
7081. 
A possible reference. Somewhat dated but contains a good de-
scription of the IBM 7090 and 7080 machines. 

12. M U R T H A , J . C. Highly parallel information processing systems. 
In F. L. Alt (Ed.), Advances in Computers, Vol. 7. Academic 
Press, New York, 1966, pp. 1-116. CR-6782-11,678. 
A useful reference on highly parallel systems. 

13. P H I S T E R , M . , J R . Logical Design of Digital Computers. Wiley, 
New York, 1958, 408 pp. 
Somewhat dated. Relies heavily on sequential circuit theory 
and concentrates on serial, clocked machines. 

1 4 . R I C H A R D S , R . K . Arithmetic Operations in Digital Computers. 
D. Van Nostrand, Princeton, N. J., 1955, 397 pp. 
Somewhat dated but still a good reference for arithmetic. 

1 5 . R I C H A R D S , R . K . Electronic Digital Systems. Wiley, New 
York, 1966, 637 pp. CR-6676-10,649. 
An interesting reference for reliability and design automation. 
Discusses telephone systems and data transmission. 

References on computer description languages 
16. CHU, Y. An ALGOL-like computer design language. Comm. 

ACM 8, 1 0 ( O c t . 1 9 6 5 ) , 6 0 7 - 6 1 5 . C R - 6 6 7 2 - 9 3 1 5 . 

1 7 . F A L K H O F F , A . D . , I V E R S O N , K . E . , A N D S U S S E N G U T H , E . H . A 

formal description of System / 3 6 0 . IBM Syst. J. 3, 3 ( 1 9 6 4 ) , 1 9 8 -

2 6 3 . 

1 8 . G O R M A N , D . F., A N D A N D E R S O N , J . P. A logic design trans-
lator. Proc. AFIPS 1962 Fall Joint Comput. Conf., Vol. 22, Spar-
tan Books, New York, pp. 2 5 1 - 2 6 1 . 

1 9 . I V E R S O N , K . E. A Programming Language. Wiley, New York, 
1962, 286 pp. CR-6671-9004. 

2 0 . M C C I . U R E , R . M . A programming language for simulating 
digital systems. J. ACM 12, 1 (Jan. 1 9 6 5 ) , 1 4 - 2 2 . C R - 6 5 6 3 - 7 6 3 4 . 

21. P A R N A S , D . L., A N D D A R R I N G E R , J . A . S O D A S and a meth-
odology for system design. Proc. A F I P S 1967 Fall Joint Comput. 
Conf., Vol. 31, Thompson Book Co., Washington, D. C., pp. 
449-474. 

22. W I I . B E R , J . A. A language for describing digital computers. 
M.S. Thesis, Report No, 197, Dept. of Comput. Sci., U. of Illi-
nois, Urbana, 111., Feb. 15, 1966. 

Course 14. Sys tems Prog ramming (3-0-3) 

APPROACH 

This course is intended to bring the student to grips with the 
actual problems encountered in systems programming. To accom-
plish this it may be necessary to devote most of the course to the 
study of a single system chosen on the basis of availability of com-
puters, systems programs, and documentation. 

The course should begin with a thorough review of "ba tch" 
processing systems programming, emphasizing loading and subrou-
tine linkage. The limitations of these systems should be used to 
motivate the more complex concepts and details of multiprogram-
ming and multiprocessor systems. The theoretical concepts and 

practical techniques prescribed in Course U should be used to 
focus on the data bases, their design for the support of the func-
tions of the key system components (hardware and software), and 
the effective interrelation of these components. Problem assign-
ments should involve the design and implementation of systems 
program modules; the design of files, tables or lists for use by such 
modules; or the critical use and evaluation of existing system pro-
grams. Other problems might involve the attaching or accessing of 
procedure or data segments of different "ownership" that are resi-
dent in a single file system or the development of restricted access-
ing methods (i.e. privacy schemes) and other such techniques. 

CONTENT 

This description has been written with MULTICS in mind as the 
system chosen for central study, but the description can be modi-
fied to fit any reasonably comprehensive system. There is con-
siderably more material listed here than can normally be covered 
in one semester, so that careful selection of topics should be made 
or the course should be extended to two semesters. 

1. Review of Batch Process Systems Programs. Translation, 
loading, and execution. Loader languages. Communication between 
independent program units. Limitations imposed by binding at pre-
execution times. Incremental linkage. 

2. Multiprogramming and Multiprocessor Systems. General in-
troduction to the structure of these systems, the techniques in-
volved in their construction and some of the problems involved in 
their implementation. 

3. Addressing Techniques. Review of indexing and indirect ad-
dressing. Relocation and base registers. Two-dimensional address-
ing (segmentation). Segmented processes. Concepts of virtual mem-
ory. Effective address computation. Modes of access control. 
Privileged forms of accessing. Paging. Physical register (address) 
computation, including use of associative memories. 

4. Process and Data Modules. Concept of a process as a col-
lection of procedure and data components (segments). Process data 
bases. Controlled sharing of segments among two or more processes. 
Intersegment linking and segment management, Interprocedure 
communication. Process stacks. Levels of isolation within a process 
(rings of protection). 

5. File System Organization and Management. File data bases 
and their storage structures. Accessing, protection and maintenance 
of files. Storage and retrieval of segments and/or pages from files in 
secondary storage (segment and page control, directory control, and 
core management). Search strategies. 

6. Traffic Control. State words. Running, ready, blocked, and in-
active processes. Process switching. Priority control of waiting 
processes. Scheduling algorithms. Pseudo processes. System tables 
for process management. 

7. Explicit Input-Output References. Auxiliary (secondary) 
memory references. Communication with peripheral devices. Man-
agement of input-output and other request queues. Effects of data 
rates on queue management. 

8. Public and Private Files. On line and off line memory. Au-
tomatic shifting of data among devices in the storage hierarchy and 
"flushing" of online memory, i.e. multilevel storage management. 
File backup schemes and recovery from system failures. 

9. Other Topics. Some of the following topics may be studied 
if time permits. They might also be covered in subsequent semi-
nars. 

a. System accounting for facilities employed by the user. Spe-
cial hardware features for metering different uses. Accounting for 
system overhead. Factors which determine system overhead. 

b. Characteristics of large systems. Overall discussion of large 
system management including effect of binding times for system 
and user process variables. Other selected topics on large systems 
such as the effect of new hardware components (e.g. mass mem-
ories) on the overall system design. 

c. Foreground and background processes. Foreground-initiated 

29 



background processes. Remote job control. Hierarchical job con-
trol. Broadcasting. 

d. Microprogramming as an equivalent of various hardware 
and/or software component subprograms in a computing system. 

e. Command languages. Commands of a mult iprogramming sys-
tem. Command language interpreters. 

f. Provisions for dynamic updat ing of the operating system 
without shutdown. 

g. Operating behavior, e.g. system star tup, (graceful) degrada-
tion, and shutdown. 

ANNOTATED BIBLIOGRAPHY 

In addition to the following sources of information, there are 
many manuals available from manufacturers which describe spe-
cific systems programs for a wide range of computers. 

1. C H O R O F A S , D. N. Programming Systems for Electronic Com-
puters. Butterworths, London, 1962, 188 pp. CR-6566-8553. 
Chapters 14, 15, and 16 contain a general discourse on the con-
trol and diagnostic functions of operating systems.. 

2 . C L A R K , W . A . , M E A L Y , G. H . , A N D W I T T , B . I . The functional 
structure of OS/360. IBM Syst. J. 5, 1 (1966), 3-51. 
A general description in three parts of the operating system for 
the IBM System/360. Part I (Mealy), Introductory Survey; 
Par t II (Witt), Job and Task Management ; and Par t III (Clark), 
Data Management . 

3. D E S M O N D E , W . H. Real-Time Data Processing Systems. Intro-
ductory Concepts. Prentice-Hall, Englewood Cliffs, N. J. , 1964, 
192 pp. CR-6562-7236. 
An elementary survey of the design and programming of real-
t ime data processing systems based on three IBM systems: 
Sabre, Mercury, and Gemini. 

4. E R D W I N N , J . D. (Ch.) Executive control programs—Session 8. 
Proc. AFIPS 1967 Fall Joint Comput. Conf., Vol. 31, Thompson 
Book Co., Washington, D. C., pp. 201-254. 
Five papers on control programs for a variety of circumstances. 

5 . F I S C H E R , F . P . , A N D S W I N D L E , G . F . Computer Programming 
Systems. Holt, Rinehart and Winston. New York, 1964, 643 pp. 
C R - 6 4 5 5 - 6 2 9 9 . 

Sets out to "discuss the entire field of computer programming 
systems," but in reality considers primarily the systems pro-
grams for the IBM 1401; "other computer systems are men-
tioned only where a part icular characteristic of a programming 
system, found on that computer, warrants discussion." Only 
IBM computer systems and (with a very few exceptions) only 
IBM literature are referenced. 

6. F L O R E S , I . Computer Software. Prentice-Hall, Englewood 
Cliffs, N. J. , 1965, 464 pp. CR-6671-8995. 
Elementary and conversational text primarily concerned with 
assembly systems using FLAP (Flores Assembly Program) as 
its example. Some material on service programs, supervisors 
and loaders. 

7. G L A S E R , E. (Ch.) A new remote accessed man-machine sys-
tem—Session 6. Proc. AFIPS 1965 Fall Joint Comput. Conf., 
Vol. 27, Pt . 1, Spar tan Books, New York, pp. 185-241. (Re-
prints available from the General Electric Company.) 
Six papers on the MULTICS system. 

8. H E I S T A N D , R. E . An executive system implemented as a finite-
state automaton. Comm. ACM 7, 11 (Nov. 1964), 669-677. CR-
6562-7282. 
Describes the executive system for the 473L command and 
control system. The system was considered as a finite autom-
aton and the author claims this approach forced a modularity 
on the resulting program. 

9. L E O N A R D , G . F., A N D G O O D R O E , J . R. An environment for an 
operating system. Proc. ACM 19th Nat . Conf., 1964, Associa-
tion for Computing Machinery, New York, pp. E2.3-1 to E2.3-11. 
CR-6561-6546. 
An approach to computer utilization involving the extension 

of the operations of a computer with software so as to provide a 
proper environment for an operating system. 

10. M A R T I N , J . Design of Real-Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N. J . , 1967, 629 pp. 
A general text covering many aspects of reaLtime da ta proc-
essing systems including design, applications, management , 
and operation. 

11. M A R T I N , J . Programming Real-Time Computer Systems. Pren-
tice-Hall, Englewood Cliffs, N. J. , 1965, 386 pp. 
Based on some of the early systems such as Sage, Project Mer-
cury, Sabre, and Panamac. A general coverage designed for 
managers, systems analysts, programmers, salesmen, students. 

12. M I L L E R , A. E. (Ch.) Analysis of time-shared computer system 
performance—Session 5. Proc. ACM 22nd Nat . Conf., 1967, 
Thompson Book Co., Washington, D. C., pp. 85-109. 
Three papers on measurement of time-shared system perform-
ance. 

13. M.I.T. Computat ion Center. Compatible Time-Sharing Sys-
tem: A Programmer's Guide, 2nd ed. M.I.T. Press, Cambridge, 
Mass., 1965. 
A handbook on the use of CTSS which contains valuable in-
formation and guidelines on the implementat ion of such sys-
tems. 

14. Project MAC. MULTICS System Programmer's Manual. 
Project MAC, M.I.T., Cambridge, Mass., 1967, (limited distrib-
ution). 
A description of and guide to systems programming for MUL-
TICS. 

15. R O S E N , S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp. 
Collection of important papers in the area of which Par t 5 
(Operating Systems) is particularly relevant to this course. 

16. R O S E N B E R G , A. M. (Ch.) Program structures for the multipro-
gramming environment—Session 6A. Proc. ACM 21st Nat . 
Conf., 1966, Thompson Book Co., Washington, D. C., pp. 223-
239. 
Two papers: one on program behavior under paging; the other 
on analytic design of look-ahead and program segmenting sys-
tems. 

17. R O S E N B E R G , A. M. (Ch.) Time-sharing and on-line systems— 
Session 7. Proc. ACM 22nd Nat . Conf., 1967, Thompson Book 
Co., Washington, D. C., pp. 135-175. 
Three papers on various topics related to the subject. 

18. S A L T Z E R , J . H. Traffic control in a multiplexed computer 
system. M.I.T. Ph.D. Thesis, June 1966. (Also available as 
Project MAC publication MAC-TR-30.) 
On traffic control in the MULTICS system. 

19. S M I T H , J . W. (Ch.) Time-shared scheduling—Session 5A. Proc. 
ACM 21st Nat . Conf., 1966, Thompson Book Co., Washington, 
D. C., pp. 139-177. 
Four papers on time-sharing which are more general than the 
session title indicates. 

20. T H O M P S O N , R. N., A N D W I L K I N S O N , J . A. The D825 automat ic 
operating and scheduling program. Proc. AFIPS 1963 Spring 
Joint Comput. Conf., Vol. 23, Spar tan Books, New York, pp. 
41-49. CR-6453-5699. 
A general description of an executive system program for han-
dling a multiple computer system tied to an automat ic input-
output exchange containing a number of input-output control 
modules. Discusses many of the problems encountered in such 
systems and the general plan of a t tack in solving these prob-
lems. 

21. W E G N E R , P. (Ed.) Introduction to System Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest for this course: Gill, pp. 214-226; Howarth, 
pp. 227-238; and Nash, pp. 239-249. 

30 



Course 15. Compi ler Cons t ruc t ion (3-0-3) 

APPROACH 

This course is to emphasize the techniques involved in the 
analysis of source language and the generation of efficient object 
code. Although some theoretical topics must be covered, the course 
should have the practical objective of teaching the student how 
compilers may be constructed. Programming assignments should 
consist of implementations of components of a compiler and possi-
bly the design of a simple but complete compiler as a group project. 

CONTENT 

There is probably more material listed here than can reasonably 
be covered, so some selection will be necessary. 

1. Review of assembly techniques, symbol table techniques, and 
macros. Review of syntactic analysis and other forms of program 
recognition. Review of compilation, loading, and execution with 
emphasis on the representation of programs in the loader language. 

2. One-pass compilation techniques. Translation of arithmetic 
expressions from postfix form to machine language. Efficient use of 
registers and temporary storage. 

3. Storage allocation for constants, simple variables, arrays, tem-
porary storage. Function and statement procedures, independent 
block structure, nested block structure, and dynamic storage allo-
cation. 

4. Object code for subscripted variables, storage mapping func-
tions, and dope vectors. Compilation of sequencing statements. 

5. Detailed organization of a simple complete compiler. Symbol 
tables. Lexical scan on input (recognizer), syntax scan (analyzer), 
object code generators, operator and operand stacks, output sub-
routines, and error diagnostics. 

6. Data types, transfer functions, mixed mode expressions and 
statements. 

7. Subroutine and function compilation. Parameters called by 
address, by name and by value. Subroutines with side effects. Re-
strictions required for one pass execution. Object code for trans-
mission of parameters. Object code for subroutine body. 

8. Languages designed for writing compilers: TMG (McClure), 
COGENT (Reynolds), GARGOYLE (Garwick), META II (Schorre), 
and TGS-II (Cheatham). 

9. Bootstrapping techniques. Discussion of a meta-compiler in 
its own language. 

10. Optimization techniques. Frequency analysis of use of pro-
gram structures to determine most important features for optimiza-
tion. 

11. Local optimization to take advantage of special instructions. 
Loading registers with constants, storing zeros, changing sign, 
adding to memory, multiplication or division by two, replacement 
of division with multiplication by a constant, squaring, raising to 
integer powers, and comparing to zero. Subscript optimization. 

12. Expression optimization. Identities involving minus signs, 
common subexpression evaluation and other techniques. Minimiza-
tion of temporary storage and the number of arithmetic registers 
in multiple register machines. 

13. Optimization of loops. Typical loops coded several ways. In-
dex register optimization in the innermost loop. Classification of 
loops for optimization purposes. 

14. Problems of global optimization. Determination of flowchart 
graph of program. Analysis of program graphs. Rearrangement of 
computation to do as little as possible in innermost loop. Factoring 
of invariant subexpressions. Object code for interfaces between 
flow blocks. 

ANNOTATED BIBLIOGRAPHY 

1. ACM Compiler Symposium. Papers presented at the ACM 
Compiler Symposium, November 17-18, 1960, Washington, 
D. C., Comm. ACM 4, 1 (Jan. 1961), 3-84. 

Contains a number of relevant papers including one by R. W. 
Floyd entitled "An Algorithm for Coding Efficient Arithmetic 
Operations" and one by P. Z. Ingerman on "Thunks ." 

2. A R D E N , B. W., G A L L E R , B. A., A N D G R A H A M , R. M. An algo-
rithm for translating Boolean expressions. J. ACM 9, 2 (Apr. 
1962), 222-239. CR-6341-3567. 
Description of code generation in the MAD Compiler. 

3. B R I N C H - H A N S E N , P., A N D H O U S E , R. The C O B O L compiler for 
the Siemens 3003. BIT 6, 1 (1966), 1-23. 
Describes the design of a ten-pass compiler with extensive 
error detection. 

4. C H E A T H A M , T. E., J R . The TGS-II translator generator sys-
tem. Proc. IFIP Congress, New York, 1965, Vol. 2, Spartan 
Books, New York, pp. 592-593. 
A report on the "current position" of Computer Associates 
"translator generator system." 

5 . C H E A T H A M , T. E . , J R . The Theory and Construction of Com-
pilers. Document CA-6606-0111, Compi „er Associates, Inc., 
Wakefield, Mass., June 2, 1966, limited distribution. 
Notes for course AM 295 at Harvard, fall 1967. 

6. C H E A T H A M , T. E., J R . , A N D S A T T L E Y , K . Syntax-directed com-
piling. Proc. AFIPS 1964 Spring Joint Comput. Conf., Vol. 25, 
Spartan Books, New York, pp. 31-57. CR-6455-6304. 
An introduction to top-down syntax directed compilers. 

7. C O N W A Y , M. E. Design of a separable transition-diagram 
compiler. Comm. ACM 6, 7 (July 1 9 6 3 ) , 3 9 6 - 4 0 8 . C R - 6 4 5 1 - 5 0 2 4 . 

Describes the organization of a C O B O L compiler. The methods 
are largely applicable to construction of compilers for other 
languages such as A L G O L . 

8. C O N W A Y , R. W„ A N D M A X W E L L , W. L . CORC— the Cornell 
computing language. Comm. ACM 6, 6 (June 1963), 317-321. 
Description of a language and compiler which are designed to 
provide extensive error diagnostics and other aids to the pro-
grammer. 

9. E R S H O V , A . P . A L P H A — a n automatic programming system of 
high efficiency. J. ACM 13, 1 (Jan. 1966), 17-24. CR-6673-9720. 
Describes a compiler for a language which includes most of 
A L G O L as a subset. Several techniques for optimizing both 
the compiler and the object code are presented. 

10. E R S H O V , A. P. Programming Programme for the BESM com-
puter, transl. by M. Nadler. Pergamon Press, New York, 1959, 
158 pp. CR-6235-2595. 
One of the earliest works on compilers. Introduced the use of 
stacks and the removal of common subexpressions. 

11. E R S H O V , A. P. On programming of arithmetic operations. 
Comm. ACM 1, 8 (Aug. 1958), 3-6 and 9 (Sept. 1958), 16. 
Gives an algorithm for creating rough machine language in-
structions in pseudoform and then altering them into a more 
efficient form. 

12. F R E E M A N , D. N. Error correction in CORC. Proc. AFIPS 1964 
Fall Joint Computer Conf., Vol. 26, Part I, Spartan Books, New 
York, pp. 15-34. 
Discusses techniques of correcting errors in programs written 
in the Cornel] computing language. 

13. G A R W I C K , J. V. G A R G O Y L E , a language for compiler writing. 
Comm. ACM 7, 1 (Jan. 1964), 16-20. CR-6453-5675. 
Describes an ALC.OL-like language which uses syntax-directed 
methods. 

14. G E A R , C. W. High speed compilation of efficient object code. 
Comm. ACM 8, 8 (Aug. 1965), 483-488. CR-6671-9000. 
Describes a three-pass compiler which represents a compro-
mise between compilation speed and object code efficiency. 
Primary attention is given to the optimization performed by 
the compiler. 

31 



15. C R I E S . D., P A U L . M., A N D W I E H I . E . H. R. Some techniques used 
in the A I X O R I L L I N O I S 7090. Comm. ACM «, 8 (Aug. 1965), 
496-500. CR-6566-8556. 
Describes portions of an A L G O L compiler for the IBM 7090. 

16. H A W K I N S , E. N., AND H U X T A B L E , D. H . R. A multipass trans-
lation scheme for ALGOL 60. In R. Goodman (Ed.), Annual Re-
view in Automatic Programming, Vol. :j, Pergamon Press, New 
York, 1963, pp. 163-206. 
Discusses local'and global optimization techniques. 

1 7 . H O R W I T Z , L . P . , K A R P , R . M . , M H . I . E R , R . E . , AND W I N O G R A D , S . 

Index register allocation. J. ACM 13, 1 (.Jan. 1 9 6 6 ) , 4 3 - 6 1 . C R -

6 6 7 4 - 1 0 , 0 6 8 . 

A mathematical treatment of the problem. Useful in compiler 
writing. 

18. International Computation Centre (Eds.) Symbolic Languages 
in Data Processing, Proceedings of the Symposium in Rome, 
March 26-31, 1962. Gordon and Breach, New York, 1962, 849 pp. 
The twelve papers listed under "Construction of Processors 
for Syntactically Highly Structured Languages" in this volume 
are particularly of interest for this course. 

19. K N U T H , D. E. A history of writing compilers. Comput. Autom. 
11, 12 (Dec. 1962), 8-18. 
Describes some of the earlv techniques used in writing Ameri-
can compilers, 

20. M C C I . U R E , R. M . T M G — a syntax directed compiler. Proc. 
ACM 20th Nat. Conf., 1965, Association for Computing Ma-
chinery, New York, pp. 262-274. 
The compiler writing system described in this paper was de-
signed to facilitate the construction of simple one-pass trans-
lators for some specialized languages. It has features which 
simplify the handling of declarative information and errors. 

21. N A U R . P. The design of the GIER ALGOL compiler. In R. 
Goodman (Ed.), Annual Review in Automatic Programming. 
Vol. 4, Pergamon Press, New York. 1964. pp. 49-85. CR-6564-
7904. 
Describes a multipass compiler written for a computer with a 
small high-speed memory. 

22. R A N D E L L , B . , AND R U S S E L L , L . -J . ALGOL 60 Implementation. 
Academic Press, New York, 1964, 418 pp. CR-6565-8246. 
Contains a survey of A L G O L implementation techniques and a 
description of an error-checking and debugging compiler for 
the KDF9 computer. 

23. R E Y N O L D S , J . C. An introduction to the COGENT program-
ming system. Proc. ACM 20th Nat. Conf., 1965, Association for 
Computing Machinery, New York, pp. 422-436. 
Describes the structure and major facilities of a compiler-
compiler system which couples the notion of syntax-directed 
compiling with that of recursive list processing. 

24. R O S E N , S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp." 
A collection of papers of which the following are of special in-
terest for this course: Backus, et al., pp. 29-47; Bauer and 
Same'lson, pp. 206-220; Dijkstra, pp. 221-227; Kanner, Kosin-
ski, and Robinson, pp. 228-252; Rosen, Spurgeon, and Don-
nelly, pp. 264-297; and Rosen, pp. 306-331. 

25. S C H O R R E , D. V . META I I , a syntax-oriented compiler writing 
language. Proc. ACM 19th Nat. Conf., 1964, Association for 
Computing Machinery, New York, pp. Dl.3-1 to Dl.3-11. CR-
6561-6943. 
Describes a compiler writing language in which its own com-
piler can be written. 

26. W E G N E R , P. (Ed.) Introduction to System Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest for this course: Pyle, pp. 86-100; Wegner, pp. 
101-121; Randell, pp. 122-136; Huxtable, pp. 137-155; Hoare, 
pp. 156-165; and d'Agapeyeff, pp. 199-214. 

Course 16. Sw i t ch ing Theory (3 0-3) or (2-2-3) 

APPROACH 

This course should present the theoretical foundations and 
mathematical techniques concerned with the design of logical cir-
cuits. Examples should be chosen to illustrate the applicability 
to computers or other digital systems whenever possible. Facility 
with Boolean algebra and appreciation for the effects of delays 
should be developed. Some laboratory experiments are highly de-
sirable. 

CONTENT 

1. Review of nondecimal number systems. Introduction to unit-
distance, error-correcting, and other codes. 

2. Development of switching algebra and its relation to Boolean 
algebra and propositional logic. Brief discussion of switching ele-
ments and gates. Analysis of gate networks. Truth tables and com-
pleteness of connectives. 

3. Simplification of combinational networks. Use of map and 
tabular techniques. The prime implicant theorem. Threshold logic. 

4. Different modes of sequential circuit operation. Flow table, 
state diagram, and regular expression representations. Clocked cir-
cuits. Flip-flop and feedback realizations. 

5. Synthesis of sequential circuits. State minimization and in-
ternal variable assignments for pulse and fundamental mode cir-
cuits. Race considerations. Iterative and symmetric networks. 

6. Effects of delays. Static, dynamic, and essential hazards. 

ANNOTATED BIBLIOGRAPHY 

As is indicated, several of the books listed below could be used 
as texts for this course, but it probably would be desirable to sup-
plement any of them with additional material. 

General textbooks 
1 . C A L D W E L L , S. H. Switching Circuits and Logical Design. 

Wiley, New York, 1958, 686 pp. 
The classic book on relay-oriented switching theory. 

2. H A R R I S O N , M. A. Introduction to Switching and Automata 
Theory. McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109. 
A mathematical and abstract reference for advanced topics. 

3. H I G O N N E T , R. A., AND G R E A , R. A. Logical Design of Electrical 
Circuits. McGraw-Hill, New York, 1958, 220 pp. 
Almost exclusively devoted to relay networks. 

4. H U M P H R E Y , W. S., - JR . Switching Circuits with Computer Ap-
plications. McGraw-Hill. New York, 1958, 264 pp. 
A somewhat out-of-date undergraduate level text. 

5. K R I E G E R , M. Basic Switching Circuit Theory. Macmillan, 
New York, 1967, 256 pp. CR-6784-12,510. 
Basic elementary treatment which does not discuss hazards or 
codes. 

6 . M C C L U S K E Y , E. - J . , J R . Introduction to the Theory of Switch-
ing Circuits. McGraw-Hill, New York, 1 9 6 5 , 3 1 8 pp. C R - 6 6 7 3 -

9 8 3 4 . 

A possible text for this course. 

7 . M C C L U S K E Y , E. J . , J R . , AND B A R T E E , T. C . (Eds.) A Survey of 
Switching Circuit Theory. McGraw-Hill, New York, 1962, 205 
p p . C R - 6 3 4 2 - 3 9 5 8 . 

A collection of papers. Weak as a text since there are no prob-
lems. Possibly of some value as reading to illustrate different 
approaches. 

8. M A L E Y , G. A., AND E A R L E , J . . The Logic Design of Transistor 
Digital Computers. Prentice-Hall. Englewood Cliffs, N. J., 
1963, 322 pp. CR-6345-4582. 
Despite its title, this book covers a considerable amount of 
switching theory. Emphasis is on NOR circuits and asynchron-
ous systems, and on techniques rather than theorems. Numer-
ous examples. 

32 



9. M A R C U S , M . P. Switching Circuits for Engineers. Prentice-
Hall, Englewood Cliffs, N. J. , 1962, 296 pp. CR-6341-3681. 
Broad but not too mathematical coverage of switching theory. 

10. M I L L E R , R. E. Switching Theory, Vol. 1, Combinational Cir-
cuits. Wiley, New York, 1965, 351 pp. CR-6565-8369. 
Highly mathematical and somewhat advanced for an under-
graduate course. Interesting discussion of the effects of delays. 

1 1 . P R A T H E R , R . E . Introduction to Switching Theory: A Mathe-
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp. 
A highly mathematical and broad coverage of both combina-
torial switching theory and sequential machine theory. 

12. T O R N G , H . C. Introduction to the Logical Design of Switching 
Systems. Addison-Wesley, Reading, Mass., 1965, 286 pp. CR-
6456-6806. 
General elementary coverage including a discussion of switch-
ing elements and magnetic logic. Outmoded discussion of iter-
ative (cascaded) networks. Many computer-related examples. 

13. W A R F I E L D , J . N. Principles of Logic Design. Ginn and Co., 
Boston, 1963, 291 pp. CR-6451-5136. 
Covers some elementary switching theory in the context of 
computer logic. 

More specialized books 
14. C U R T I S , V. A . A New Approach to the Design of Switching 

Circuits. D. Van Nostrand, Princeton, N. J. , 1962, 635 pp. CR-
6346-4818. 
Devoted mainly to decomposition theory for combinational cir-
cuits. Useful as a reference in this area and as a source of ex-
amples since it contains many detailed sample problems. 

15. D E R T O U Z O S , M. L . Threshold Logic: A Synthesis Approach. 
M.I.T. Press, Cambridge, Mass., 1965, 256 pp. CR-6676-10,929. 
Concentrates on the characterization and application of thres-
hold elements in terms of logical design. 

16. Hu, S. T. Threshold Logic. University of California Press, 
Berkeley, Calif., 1965, 338 pp. 
A comprehensive reference which also contains some of the 
author's original research. 

17. L E W I S , P. M., A N D C O A T E S , C . L . Threshold Logic. Wiley, 
New York, 1967, 483 pp. 
Emphasizes single and multigate networks for controlled sen-
sitivity. 

18. P H I S T E R , M., J R . Logical Design of Digital Computers. Wiley, 
New York, 1958, 401 pp. 
Covers the application of sequential circuit theory to design of 
computer logic. Considers only clocked circuits and (for the 
most part) serial operation. 

Course 17. Sequent ia l Mach ines (3-0-3) 

APPROACH 

This is to be a rigorous theoretical course. The material is about 
evenly devoted to three major points of view: the structural aspects 
of sequential machines, the behavioral aspects of sequential ma-
chines, and the variants of finite automata. Machines with un-
bounded storage such as Turing machines and pushdown-store au-
tomata are to be covered in course A7. 

CONTENT 

1. Definition of finite automata and sequential machines. Various 
methods of representing automata including state tables, state dia-
grams, set theoretic methods, and sequential nets. (3 lectures) 

2. Equivalent states and equivalent machines. Reduction of 
states in sequential machines. (3 lectures) 

3. Right-invariant and congruence relations. The equivalence of 
nondeterministic and deterministic finite automata. Closure prop-

erties of languages definable by finite automata and the Kleene-
Myhill theorem on regular languages. (4 lectures) 

4. Decision problems of finite automata. Testing equivalence, 
acceptance of a nonempty set, acceptance of an infinite set. (3 lec-
tures) 

5. Incomplete sequential machines. Compatible states and algo-
rithms for constructing minimal state incomplete sequential ma-
chines. (3 lectures) 

6. The state assignment problem. Series-parallel decomposi-
tions. Coordinate assignments. (2 lectures) 

7. Algebraic definition of a sequential machine. Homomorphisms 
of monoids. (2 lectures) 

8. Partitions with the substitution property. Homomorphism de-
compositions into a series-composition. (2 lectures) 

9. Decomposition of permutation automata. (1 lecture) 
10. The decomposition of finite-state automata into a cascade of 

permutation-reset automata using the method of set systems 
(covers). (2 lectures) 

11. Final series-parallel decomposition into .a cascade of two-
state automata and simple-group automata. (2 lectures) 

12. Brief introduction to undecidability notions. The halting 
problem. (2 lectures) 

13. Multi tape nonwriting automata. (4 lectures) 
14. Generalized sequential machines. (2 lectures) 
15. Subsets of regular languages. Group-free automata. (3 lec-

tures) 
16. Regular expressions. Algebra, derivatives and star height. (5 

lectures) 
17. Probabilistic automata. (3 lectures) 

ANNOTATED BIBLIOGRAPHY 

Except for two survey articles, only books are included in the 
following list. Since this field has developed within the last fifteen 
years, much of the material is still in the periodical literature. 

1 . C A I A N I E L L O , E. R . (Ed.) Automata Theory. Academic Press, 
New York, 1 9 6 6 , 3 4 3 pp. C R - 6 6 7 6 - 1 0 , 9 3 5 . 

A collection of research and tutorial papers on automata, for-
mal languages, graph theory, logic, algorithms, recursive func-
tion theory, and neural nets, which, because of varying interest 
and difficulty, might be useful for supplementary reading by 
ambitious students. 

2 . F I S C H E R , P . C . Multitape and infinite-state automata—a sur-
vey. Comm. ACM8, 1 2 (Dec. 1 9 6 5 ) , 7 9 9 - 8 0 5 . C R - 6 6 7 5 - 1 0 , 5 6 1 . 

A survey of machines which are more powerful than finite au-
tomata and less powerful than Turing machines. Also an ex-
tensive bibliography. 

3. G I L L , A. Introduction to the Theory of Finite-State Machines. 
McGraw-Hill, New York, 1962, 207 pp. CR-6343-4207. 
An automata theory approach to finite-state machines which 
is somewhat engineering oriented and written a t a fairly ele-
mentary level. 

4. G I N S B U R G , S. An Introduction to Mathematical Machine 
Theory. Addison-Wesley, Reading, Mass., 1962, 137 pp. CR-
6452-5431. 
A text on the behavior of the sequential machines of Huff-
man-Moore-Mealy, abstract machines of Ginsburg, and tape 
recognition devices of Rabin and Scott. 

5. G L U S H K O V , V. M. Introduction to Cybernetics, transl. by 
Scripta Technica, Inc. Academic Press, New York, 1966, 324 pp. 
A translation of the Russian text which assumes only a limited 
background. Approaches subject from somewhat different point 
of view than most Western texts. Contains much relevant ma-
terial. 

6. H A R R I S O N , M. Introduction to Switching and Automata 
Theory, McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109. 
This text for engineers and mathematicians develops the 
foundations of both switching and automata theory in abstract 

33 



mathematical terms. Emphasis is on switching theory. Coverage 
includes sequential machines, regular events, definite events, 
probabilistic machines, and context-free languages. 

7. H A R T M A N I S , J., A N D S T E A R N S , R . E. Algebraic Structure 
Theory of Sequential Machines. Prentice-Hall, Englewood 
Cliffs, N. J., 1966, 211 pp. CR-6782-11,635. 
The first thorough treatment of the structure theory of se-
quential machines and its applications to machine synthesis 
and- machine decomposition. A research monograph selected 
from a series of papers by the authors and not written as a text. 
Practically no exercises. 

8. H E N N I E , F . C., I I I . Iterative Arrays of Logical Circuits. M . I . T . 
Press, Cambridge, Mass., and Wiley, New York, 1961, 242 pp. 
CR-6232-1733. 
Currently the most complete treatise on iterative arrays. 

9. K A U T Z , W . H. (Ed.) Linear Sequential Switching Circuits— 
Selected Technical Papers. Holden-Day, San Francisco, 1965, 
234 pp. CR-6674-10,205. 
A collection of papers on linear sequential machines. 

10. M C N A U G H T O N , R. The theory of automata—a survey. In F. L. 
Alt (Ed.), Advances in Computing, Vol. 2, Academic Press, New 
York, 1961, pp. 379-421. CR-6342-3920. 
Most of the areas of automata theory are included with the ex-
ception of switching theory and other engineering topics. 

11. M I L L E R , R. E. Switching Theory, Vol. 2, Sequential Circuits 
and Machines. Wiley, New York, 1965, 250 pp. CR-6783-12,120. 
Highly mathematical and somewhat advanced as a text for an 
undergraduate course. 

12. M I N S K Y , M . Computation: Finite and Infinite Machines. Pren-
tice-Hall, Englewood Cliffs, N. J., 1967, 317 pp. 
The concept of an "effective procedure" is developed in this 
text. Also treats algorithms, Post productions, regular expres-
sions, computability, infinite and finite-state models of digital 
computers, and computer languages. 

13. M O O R E , E . F. (Ed.) Sequential Machines: Selected Papers. 
Addison-Wesley, Reading, Mass., 1964, 266 pp. 
This collection of classical papers on sequential machines in-
cludes an extensive bibliography by the editor. 

14. P R A T H E R , R . E . Introduction to Switching Theory: A Mathe-
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp. 
A mathematical and broad treatment of both combinatorial 
switching theory and sequential machines. 

15. S H A N N O N , C . E., A N D M C C A R T H Y , J . (Eds.) Automata Studies. 
Princeton University Press, Princeton, N. J., 1956, 285 pp. 
A collection of many of the early papers on finite automata, 
Turing machines, and synthesis of automata which stimulated 
the development of automata theory. Philosophical papers, in 
addition to mathematical papers, are included, since the aim of 
the collection is to help explain the workings of the human 
mind. 

Courses 18 and 19. Numer ica l Analysis I and II 

(3-0-3) and (3-0-3) 

APPROACH 

The numerical methods presented in these courses are to be de-
veloped and evaluated from the standpoint of efficiency, accuracy, 
and suitability for high-speed digital computing. While other ar-
rangements of the material in these courses are possible, the ones 
suggested here do allow the two courses to be taught independently 
of one another. 

CONTENT OF COURSE 1 8 

1. Solution of Equations. Newton's method and other iterative 
methods for solving systems of equations. Aitken's <52 process. 
Newton-Bairstow method. Muller's method and Bernoulli's method 

for polynomial equations. Convergence conditions and rates of con-
vergence for each method. 

2. Interpolation and Approximation. Polynomial interpolation. 
Lagrange's method with error formula. Gregory-Newton and other 
equal interval interpolation methods. Systems of orthogonal poly-
nomials. Least-squares approximation. Trigonometric approxima-
tion. Chebyshev approximation. 

3. Numerical Differentiation and Quadrature. Formulas involv-
ing equal intervals. Romberg integration. Extrapolation to the limit. 
Gaussian quadrature. 

4. Solution of Ordinary Differential Equations. Runge-Kutta 
methods. Multistep methods. Predictor-corrector methods. Stability. 

CONTENT OF COURSE 19 

5. Linear Algebra. Rigorous treatment of elimination methods 
and their use to solve linear systems, invert matrices, and evaluate 
determinants. Compact schemes. Methods for solving the eigen-
value-eigenvector problem including the power method, the in-
verse power method, -Jacobi's method, Givens' method and House-
holder's method. Roundoff analysis and conditioning. 

6. Numerical Solution of Boundary Value F^oblems in Ordinary 
Differential Equations. 

7. Introduction to the Numerical Solution of Partial Differential 
Equations. Computational aspects of finite difference methods for 
linear equations. Determination of grids. Derivation of difference 
equations. Solution of large linear systems by iterative methods such 
as simultaneous displacements, successive displacements, and suc-
cessive overrelaxation. 

ANNOTATED BIBLIOGRAPHY 

Listed below are some but by no means all of the books which 
could be used as texts and/or references for these courses. The more 
general texts normally include solution of polynomial and other 
nonlinear equations; interpolation, numerical quadrature, and nu-
merical differentiation; ordinary differential equations; and linear 
algebra. Significant deviations from these are indicated by the an-
notations. 

Besides listing books which might be used as texts for part or all 
of these courses, the following includes books for those desiring to 
go deeper into the various areas. In particular, Refs. 1, 3, 10, 17, and 
18 have been included for linear algebra; Refs. 2 and 16 for partial 
differential equations; Ref. 15 for the solution of nonlinear equa-
tions; and Ref. 7 for ordinary differential equations. 

1. F A D D E E V , D. K., A N D F A D D E E V A , V . N. Computational Meth-
ods of Linear Algebra, transl. by R. C. Williams. W. H. Free-
man, San Francisco, 1963. 621 pp. CR-6016-0374. 
An excellent reference on the theory of computational methods 
in linear algebra. Does not treat the theory of computational 
errors. Introductory chapter could serve as a text for a course in 
linear algebra. Beginning analysis and an elementary knowledge 
of complex variables is assumed. Examples but no exercises. 

2 . F O R S Y T H E , G . E . , A N D W A S O W , W . R. Finite-Difference Meth-
ods for Partial Differential Equations. Wiley, New York, 1960, 
444 pp. 
A fundamental reference on the numerical solution of partial 
differential equations by finite-difference methods. Provides a 
thorough treatment of hyperbolic, parabolic, and elliptic equa-
tions. Orientation is toward the use of high-speed computers, 
but it is not intended as a guide for programmers. For most of 
the book, advanced calculus and linear algebra provide sufficient 
background. Previous knowledge of partial differential equa-
tions not required. Some illustrative examples but no exercises. 

3. Fox, L. An Introduction to Numerical Linear Algebra. Oxford 
University Press, New York, 1964, 295 pp. CR-6456-6723. 
A basic reference on computational methods in linear algebra. 
Designed for engineers and scientists as well as mathematicians. 
Emphasis on the principles involved rather than the details of 
applications to computers. Intended to prepare the reader for a 
more advanced book such as Wilkinson's The Algebraic Eigen-
value Problem. Introductory chapter on matrix algebra. Illus-
trative examples and exercises. 

34 



4 . F R O B E R G , C. E. Introduction to Numerical Analysis. Addison-
Wesley, Reading, Mass., 1965, 340 pp. CR-6671-9037. 
Designed as a text for an undergraduate numerical analysis 
course. Includes, in addition to tHe s tandard topics, partial 
differential equations (briefly), approximation by Chebyshev 
polynomials and other functions, Monte Carlo methods, and 
linear programming. Emphasis on modern methods well-adapted 
for computers. Mathematical ly rigorous t rea tment with detailed 
error analysis given in typical cases. Presupposes differential 
and integral calculus and differential equations. Illustrative 
examples and exercises. 

5. H A M M I N G , R. W. Numerical Methods for Scientists and Engi-
neers. McGraw-Hill, New York, 1962, 411 pp. CR-6236-3367. 
Excellent as a reference. Provides interesting and different point 
of view. Treats interpolation and approximation; numerical 
differentiation and integration; and ordinary differential equa-
tions by polynomial and other methods such as Fourier methods, 
and exponentials. Brief t rea tments of nonlinear equations and 
linear algebra, simulation, and Monte Carlo methods. Presup-
poses beginning analysis, Fourier series, mathematical statis-
tics, feed-back circuits, noise theory. Illustrative examples and 
exercises. 

6. H E N R I C I , P. Elements of Numerical Analysis. Wiley, New York, 
1964, 328 pp. 
Designed as a text for a one-semester course in numerical analy-
sis. Covers the s tandard topics except linear algebra. Emphasis 
on numerical analysis as a mathematical discipline. A distinc-
tion is made between algorithms and theorems. Introductory 
chapters on complex variables and difference equations. Be-
ginning analysis (12 semester hours) and ordinary differential 
equations are assumed. Illustrative examples and exercises. 

7. H E N R I C I , P . Discrete Variable Methods in Ordinary Differ-
ential Equations. Wiley, New York, 1962, 407 pp. CR-6341-
3733. 
A basic reference on the numerical methods for solving ordinary 
differential equations. Designed as a text for a senior-level 
course on ordinary differential equations. Includes a mathemati -
cally rigor.ous t rea tment of various methods. Emphasis is on the 
study of discretization errors and round-off errors. Presupposes 
differential equations, advanced calculus, linear algebra, and 
elementary complex variables (though large parts of the book 
do not require all of these topics). Illustrative examples and 
exercises. 

8. H I L D E B R A N D , F. B. Introduction to Numerical Analysis. Mc-
Graw-Hill, New York, 1956, 511 pp. 
A good book for supplementary reading though written in 1956. 
Gives primary emphasis to methods adapted for desk calculators. 
Includes s tandard topics except for linear algebra. Separate 
chapters on least-squares, polynomial approximation, Gaussian 
quadrature , and approximation of various types. Beginning 
analysis sufficient background for most of the book. An exten-
sive set of exercises. 

9. H O U S E H O L D E R , A. S. Principles of Numerical Analysis. Mc-
Graw-Hill, New York, 1953, 274 pp. 
Good for supplementary reading. Designed as mathematical 
textbook rather than a compendium of computational rules. 
Published in 1953, the book includes many methods applicable 
only to hand computation though it was written with computers 
in mind. Includes the s tandard topics except ordinary differen-
tial equations. Presupposes beginning analysis plus some knowl-
edge of probability and statistics. Some exercises. 

10. H O U S E H O L D E R , A. S. The Theory of Matrices in Numerical 
Analysis. Blaisdell, New York, 1964, 257 pp. 
Good for supplementary reading. Considers the development 
and appraisal of computat ional methods in linear algebra from 
the theoretical point of view. Does not develop specific com-
puter flowcharts or programs. Presupposes a knowledge of 
matrix algebra. Illustrative examples and exercises. 

11. I S A A C S O N , E . , AND K E L L E R , H . B . Analysis of Numerical Meth-
ods. Wiley, New York, 1966, 541 pp. CR-6783-11,966. 
A very well written and rather comprehensive text presenting a 

careful analysis of numerous important numerical methods with 
a view toward their applicability to computers. With an appro-
priate selection of material the book lends itself well to use as a 
text; otherwise, it is an excellent reference. 

12. M I L N E , W. E. Numerical Solution of Differential Equations. 
Wiley, New York, 1953, 275 pp. 
Since it was written in 1953, much of this material has been 
superseded by more recent work; yet it remains very suitable 
for supplemental reading. Ordinary and partial differential 
equations are treated as well as some problems in linear al-
gebra. Many of the methods are adapted for hand computation 
rather than for computers. Beginning analysis should provide 
sufficient background for most of the book. Illustrative examples 
and some exercises. 

1 3 . R A L S T O N , A. A First Course in Numerical Analysis. McGraw-
Hill, New York, 1 9 6 5 , 5 7 8 pp. G R - 6 6 7 1 - 9 0 3 5 . 

Designed as a text for a one-year course in numerical analysis 
(though not all of the material could be covered) to be taken 
by graduate students and advanced undergraduate students, 
primarily in mathematics . Although numerical analysis is 
treated as a full-fledged branch of applied mathematics, ori-
entation is toward the use of digital computers. Basic topics in 
numerical analysis covered thoroughly. Separate chapters de-
voted to functional approximation by least-squares techniques 
and by minimum-maximum error techniques. Presupposes 
beginning analysis, advanced calculus, orthogonal polynomials, 
and complex variables. A course in linear algebra is assumed 
for the chapters in tha t area. An extensive set of illustrative 
examples and exercises. 

1 4 . T O D D , J . (Ed.) A Survey of Numerical Analysis. McGraw-
Hill, New York, 1 9 6 2 , 5 8 9 pp. C R - 6 2 3 6 - 3 3 6 8 . 

Written by a number of authors. Some of the early chapters 
have been used in connection with introductory courses. Be-
cause of its breadth of coverage.it is especially suited as a 
reference for these courses. Besides the usual topics, there are 
separate chapters on orthogonalizing codes, partial differential 
equations, integral equations, and problems in number theory. 
The prerequisites vary with the chapters but for early chapters 
beginning analysis and linear algebra would suffice. Exercises 
given in some of the early chapters. 

15. T R A U B , J . F. Iterative Methods for the Solution of Equations. 
Prentice-Hall, Englewood Cliff's, N. J. , 1964, 310 pp. CR-6672-
9339. 
A good reference on the numerical solution of equations and 
(briefly) systems of equations by iteration algorithms. The 
methods are treated with rigor, though rigor in itself is not the 
main object. Contains a considerable amount of new material. 
Many illustrative examples. 

1 6 . V A R G A , R I C H A R D . Matrix Iterative Analysis. Prentice-Hall, 
Englewood Cliff's, N. J. , 1962, 322 pp. CR-6343-4236. 
An excellent reference giving theoretical basis behind methods 
for solving large systems of linear algebraic equations which 
arise in the numerical solution of partial differential equations 
by finite-difference methods. Designed as a text for a first-year 
graduate course in mathematics . 

1 7 . W I L K I N S O N . .J . H. Rounding Errors in Algebraic Processes. 
Prentice-Hall, Englewood Cliffs, N. J. , 1964, 161 pp. CR-6455-
6341. 
Studies the cumulative effect of rounding errors in computat ions 
involving large numbers of ar i thmetic operations performed by 
digital computers. Special at tention given to problems involv-
ing polynomials and matrices. A very important reference f o r n 
computer-oriented course in numerical analysis. 

18. W I L K I N S O N , J . H. The Algebraic Eigenvalue Problem. Claren-
don Press, Oxford, England, 1965, 662 pp. 
A basic 'reference on computational methods in linear algebra. 
Provides a thorough t rea tment of those methods with which 
the author has had direct numerical experience on the com-
puter. Treats the methods theoretically and also from the stand-
point of rounding errors. Presupposes beginning analysis, 
linear algebra, and elementary complex variables. Illustrative 
examples bu t no exercises. 

35 



Course A1. Formal Languages and Syntact ic 

Analysis (3-0-3) 

APPROACH 

This course combines the theoretical concepts which arise in for-
mal language theory with their practical application to the syntac-
tic analysis of programming languages. The objective is to build a 
bridge between theory and practical applications, so that the mathe-
matical theory of context-free languages becomes meaningful to the 
programmer and the theoretically oriented student develops an un-
derstanding of practical applications. Assignments in this course 
should include both computer programming assignments and theo-
rem proving assignments. 

CONTENT 

The following topics should be covered, but the organization of 
the material and relative emphasis on individual topics is subject 
to individual preference. 

1. Definition of a formal grammar as notation for specifying a 
subset of the set of all strings over a finite alphabet, and of a formal 
language as a set specified by a formal grammar. Production notation 
for specifying grammars. Recursively enumerable, context-sensitive, 
context-free, and finite-state grammars. Examples of languages 
specified by grammars such as anb°, a"bncn. 

2. Specification of arithmetic expressions and arithmetic state-
ments as context-free grammars. Use of context-free grammars as 
recognizers. Use of recognizers as a component in compilation or 
interpretive execution of arithmetic statements. 

3. Syntactic analysis, recognizers, analyzers and generators. Top-
down and bottom-up algorithms. The backtracking problem and the 
reduction of backtracking by bounded context techniques. Theory 
of bounded context analysis and LR(k) grammars. 

4. Precedence and operator precedence techniques. The algo-
rithms of Floyd, Wirth and Weber, etc. Semantics of precedence 
grammars for arithmetic statements and simple block structure. 

5. Top-down and bottom-up algorithms for context-free lan-
guages. The algorithms of Cheatham, Domolki, and others. 

6. Languages for syntactic analysis and compilation such as 
C O G E N T and T M G . A simple syntactic compiler written in one of 
these languages. 

7. Reductive grammars, Floyd productions, and semantics for 
arithmetic expressions. The work of Evans, Feldman, and others. 

8. Theory of context-free grammars, normal forms for context-free 
grammars, elimination of productions of length zero and one. Chom-
sky and Greibach normal forms. Ambiguous and inherently am-
biguous grammars. The characteristic sequence of a grammar. Strong 
equivalence, weak equivalence and equivalence with preservation 
of ambiguity. Asymptotic time and space requirements for context-
free language recognition. 

9. Combinatorial theorems for context-free grammars. Proof that 
anbnc° cannot be represented by a context-free grammar. Linear and 
semilinear sets. Parikh's theorem. 

10. Grammars and mechanical devices. Turing machines, linear 
bounded automata, pushdown automata, finite-state automata, and 
the corresponding grammars. 

11. Properties of pushdown automata. Deterministic and non-
deterministic automata and languages. Stack automata. Program-
m'ing languages and pushdown automata. 

ANNOTATED BIBLIOGRAPHY 

1. B A R - H I L L E L , Y . , P E R L E S , M., AND S H A M I R , E. On formal prop-
erties of simple phrase structure grammars. Zeitschrift fur 
Phonetik, Sprachwissenschaft und Kommunikationsforschung 
14 (1961), 143-172. (Reprinted in Y. Bar-Hillel (Ed.), Languages 
and Information, Selected Essays. Addison-Wesley, Reading, 
Mass., 1964. CR-6562-7178.) 
A well-written paper containing the first s tatement of many of 
the principal results of context-free languages. 

2. B A U E R , F. L . , AND S A M E L S O N , K . Sequential formula transla-
tion. Comm. ACM3, 2 (Feb. 1960), 76-83. CR-6015-0219. 
The first systematic paper on the translation of programming 
languages from left to right using precedence techniques. 

3. B R O O K E R , R . A., A N D M O R R I S , D. A general translation program 
for phrase structure grammars. J. ACM 9, 1 (Jan. 1962), 1-10. 
Summarizes the design and machine-oriented characteristics of 
a syntax-directed compiler and describes both its syntactic and 
semantic features. 

4. C H E A T H A M , T. E., J R . , AND S A T T L E Y , K. Syntax directed com-
piling. Proc. AFIPS 1964 Spring Joint Comput. Conf., Vol. 25, 
Spartan Books, New York, pp. 31-57. CR-6455-6304. 
A description of one of the earliest operational top-down syntax-
directed compilers. 

5. C H O M S K Y , N. Formal properties of grammars. In R . R . Bush, 
E. H. Galanter, and R. D. Luce (Eds.), Handbook of Mathe-
matical Psychology, Vol. 2, Wiley, New York, 1962, pp. 323-
4 1 8 . C R - 6 6 7 6 - 1 0 , 7 3 1 . 

An excellent review of the work of both Chomsky and others in 
this field. Contains a good bibliography. See also the two com-
panion chapters in this volume written by Chomsky and G. A. 
Miller. 

6. E V A N S , A. An ALGOL 60 compiler. In R. Goodman (Ed.), 
Annual Review in Automatic Programming, Vol. 4, Pergamon 
Press, New York, 1964, pp. 87-124. CR-6564-7905. 
The first compiler design application of a reductive syntax with 
labelled productions. 

7. F E L D M A N , J. A. A formal semantics for computer languages 
and its application in a compiler-compiler. Comm. ACM 9, 1 
(Jan. 1966), 3-9. CR-6674-10,080. 
A description of a formal semantic language which can be used 
in conjunction with a language for describing syntax to specify 
a syntax-directed compiler. 

8. F L O Y D , R. W. A descriptive language for symbol manipulation. 
J. ACM 8, 4 (Oct. 1961), 579-584. CR-6234-2140. 
The first discussion of reductive grammars, including a reduc-
tive grammar from which the first example in Ref. 9 was de-
rived. The association of semantics with syntactic recognition 
is directly illustrated. 

9. F L O Y D , R. W. Syntactic analysis and operator precedence. J. 
ACM 10, 3 (July 1963), 316-333. 
Defines the notions of operator grammars, precedence grammars 
(here called "operator precedence grammars"), precedence 
functions, and a number of other concepts. Examples of prece-
dence grammars and nonprecedence grammars. 

10. F L O Y D , R. W. Bounded context syntactic analysis. Comm. 
ACM 7, 2 (Feb. 1964), 62-67. CR-6454-6074. 
Introduces the basic concepts of bounded context grammars 
and gives a set of conditions for testing whether a given gram-
mar is of bounded context (m, n). 

11. F L O Y D , R. W. The syntax of programming languages—a sur-
vey. IEEE Trans. EC-13, 4 (Aug. 1964), 346-353. 
An expository paper which defines and explains such concepts 
as phrase-structure grammars, context-free languages, and syn-
tax-directed analysis. Extensive bibliography. 

12. G I N S B U R G , S. The Mathematical Theory of Context-Free 
Languages. McGraw-Hill, New York, 1966, 232 pp. CR-6783-
12,074. 
Presents a rigorous discussion of the theory of context-free lan-
guages and pushdown automata. 

13. G R E I B A C H , S. A. A new normal-form theorem for context-free 
phrase structure grammars. J. ACM 12, 1 (Jan. 1965), 42-52. 
CR-6564-7830. 
Shows that every grammar is equivalent with preservation of 
ambiguities to a grammar in the "Greibach Normal Form." 

1 4 . G R I F F I T H S , T . V . , A N D P E T R I C K , S . R . On the relative efficien-
cies of context-free grammar recognizers. Comm. ACM 8, 5 
( M a y 1 9 6 5 ) , 2 8 9 - 3 0 0 . C R - 6 5 6 4 - 7 9 9 9 . 

36 



A comparative discussion of a number of syntactic analysis al-
gorithms. 

15. IEEE Computer Group, Switching and Automata Theory Com-
mittee. Conf. Rec. 1967 8th Ann. Symposium on Switching 
and Automata Theory. Special Publication 16 C 56, Institute of 
Electrical and Electronic Engineers, New York, 1967. 
Contains a number of papers relevant to this course including 
those by: Rosenkrantz, pp. 14-20; Aho, pp. 21-31; Hopcroft 
and Ullman, pp. 37-44; Ginsburg and Greibach, pp. 128- 139. 

16. I R O N S , E. T. A syntax directed compiler for ALGOL 60. Comm. 
ACM 4, I (Jan. 1961), 51-55. 
The first paper on syntactic compilation. It discusses both a 
top-down implementation of a syntactic compiler and the way 
in which semantics is associated with the generation steps of 
such a compiler. 

17. I R O N S , E . T . Structural connections in.formal languages. Comm. 
ACM 7, 2 (Feb. 1964), 67-72. CR-6455-6212. 
The concept of structural connectedness defined is essentially 
the same as that of a bounded context grammar. 

1 8 . K N U T H , D. E . On the translation of languages from left to 
right. Inf. Contr. 8, 6 (Dec. 1 9 6 5 ) , 6 0 7 - 6 3 9 . C R - 6 6 7 4 - 1 0 , 1 6 2 . 

The concept of a grammar which permits translation from left 
to right with forward context k (LR(fe) grammar) is developed 
and analyzed. 

19. M C C L U R E , R. M . TMG—a syntax directed compiler. Proc. 
ACM 20th Nat. Conf., 1965, pp. 262-274. 
A description of a compiler in which the syntax is specified by 
an ordered sequence of labeled productions and in which se-
mantics can be explicitly associated with productions. 

' 2 0 . N A U R , P . (Ed.) Revised report on the algorithmic language, 
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17. CR-6345-4540. 
The first systematic application of context-free languages to the 
description of actual programming languages. 

21. R E Y N O L D S , J . C. An introduction to the COGENT program-
ming system. Proc. ACM 20th Nat. Conf., 1965, pp. 422-436. 
Describes the structure and major facilities of a compiler-com-
piler system which couples the notion of syntax-directed com-
piling with that of recursive list processing. 

22. W I R T H , N., A N D W E B E R , H. EULER: a generalization of 
ALGOL, and its formal definition, Parts I & II. Comm. ACM 9, 
1 (Jan. 1966), 13-23, and 2 (Feb. 1966), 89-99. 
The first discussion of pure precedence grammars and their use 
in ALGOL-like languages. Many of the concepts introduced by 
other authors are discussed in an illuminating way. 

Course A2 . Advanced Compute r Organizat ion (3-0-3) 

This title could label either a course in the organization of ad-
vanced'computers or an advanced course in computer organization. 
It is meant to be primarily the latter, with some material on novel 
computer organizations included. The approach is that of "compara-
tive anatomy": first, each of several organization and system design 
problems should be identified; then, a comparison of the solutions 
to the problem should be made for several different computers; 
next, the rationale of each solution should be discussed; and finally, 
an a t tempt should be made to identify the best solution. Students 
should prepare papers on designs used in other machines for several 
of the problem areas. These papers should include discussions of 
the circuit technology available at the time the machine was de-
signed and the intended market for the machine, and they should 
compare the machine design with other designs. 

The computer system design problem areas which should be 
covered in this course are listed below followed by a list of some of 

the machines which might be used to illustrate various solutions to 
these problems. Each major problem area should be discussed in 
general and at least three actual machine designs should be used to 
illustrate the widest possible range of solutions. A brief overall sys-
tem description of each machine should be given before it is used 
to illustrate a particular design area. 

Computer System Design Problem Areas 

1. Arithmetic Processing. Integer and floating point representa-
tion, round-off and truncation, word and register lengths. Number 
and types of arithmetic units, malfunction detection and reaction, 
arithmetic abort detection, and reaction (overflow, etc.). 

2. Nonarithmetic Processing. Addressable quanta and operation 
codes. Compatibility and interaction of nonarithmetic and arith-
metic operands. Types of additional processing units. 

3. Memory Utilization. Relationship between memory width 
and addressable quanta, memory block autonomy and phasing, 
memory access priorities (operands, instructions, input-output, etc.). 
Factoring of command-fetch processes (look-ahead). 

4. Storage Management. Relocation, paging, and renaming. 
Storage protection. Hierarchy storage provisions and transfer mech-
anisms. 

5. Addressing. Absolute addressing, indexing, indirect address-
ing, relative addressing, and base addressing. 

6. Control. Clocking, interrupt processing, privileged mode 
operations, and autonomy of control functions. 

7. Input-Output. Buffer facilities, channels (autonomy, inter-
action, interrupts), processing options (editing, formatting), input-
output byte size versus memory width versus addressing quanta. 
Rate-matching (especially for input-output devices with inertia) 
and channel-sharing. 

8. Special System Designs. Array or cellular computers, vari-
able structure computers, and other advanced designs. 

Illustrative Computt 

ATLAS 
Bendix G-15 
Burroughs B5000 

CDC 6600 

GIER (Denmark) 

IBM 701 
IBM 1401 

IBM STRETCH 

IBM 360/ij 

KDF-9 
PB 440 
SDS Sigma 7 
UNIVAC I 

one of the first machines to use paging 
a bit serial machine with drum store 
a zero-address machine with stacks and Polish 

processing 
a very high-speed computer using look-ahead, 

instruction stacking and multiple peripheral 
processors 

a machine which uses a small core storage with 
an auxiliary drum 

a classic Von Neumann binary machine 
a serial character machine with peculiar ad-

dressing 
a machine which was intended to incorporate 

all state-of-the-art knowledge 
a series of machines which combine character 

and word handling capabilities 
a computer using a nesting store 
a microprogrammable computer 
a real-time time-sharing computer 
a classic decimal machine 

ANNOTATED BIBLIOGRAPHY 

In addition to the references cited below, it is important that a 
collection of reference manuals for the actual computers be avail-
able to the student. These can be obtained from the computer 
manufacturers in most cases or from various reports such as the 
Auerbach Standard EDP Reports. In some cases where the title of 
the citation is self-explanatory, no annotation is given. 

General references 
1 . A M D A H L , G. M . , B L A A U W , G. A., A N D B R O O K S , F. P., J R . Archi-

tecture of the IBM System/360. IBM J. Res. Develop. 8, 2 (Apr. 
1964), 87-101. CR-6465-8374. 
Although not a technical paper, it does give some insight into 

37 



the decisions which determined many of the features of this 
family of computers . 

2 . B L A A U W , G. A . , E T AL. T h e s t ructure of System/360. IBM Syst. 
J. 3, 2 (1964), 119-195. 
Describes the design considerations relating to the implementa-
tion, performance, and programming of the Syst.em/360 family 
of computers . 

3 . B O U T W E L L , E . 0 . , J R . , AND H O S K I N S O N , E . A. The logical or-
ganization of the P B 440 microprogrammable computer . Proc. 
AFIPS 1963 Fall Joint Comput . Conf., Vol. 24, Spar tan Books, 
New York, pp. 2 0 1 - 2 1 3 . 

Describes the use of a fast-read, slow-write memory for micro-
programs. The bus s t ructure connecting the processing registers 
allows da ta t ransfers under control of the microprogram. 

4. B U C H H O L Z , W. The system design of the I B M 701 computer . 
Proc. IRE 41, 10 (Oct. 1953), 1262-1274. 
Describes one of the first commercial binary computers . 

5 . B U C H H O L Z , W. (Ed.) Planning A Computer System. McGraw-
Hill, New York, 1962, 336 pp. CR-6346-4786. 
Describes in reasonable detail a design philosophy and its bear-
ing on specific design decisions for an entire computer system— 
in this case, S T R E T C H . 

6. D E V O N A L D , C. H . , A N D F O T H E R I N G H A M , J . A. The ATLAS com-
puter . Datamation 7, 5 (May 1961), 23-27. CR-6231-1405. 

7. Digital Computer Laboratory, University of Illinois. On the 
Design of a Very High Speed Computer. Rep. No. 80, U. of 
Illinois, Urbana , 111., 1957. 
A description of the first design for I L L I A C II. 

8. E C K E R T , J . P., E T AL. The UNIVAC system. Rev. of Elec. Dig. 
Comput., Proc. Joint I R E - A I E E Conf., Phi ladelphia , Pa. , 10-12 
Dec. 1951, pp. 6-14. 
A description of the U N I V A C I computer . 

9. Engineering Summer Conference, University of Michigan. 
Theory of comput ing machine design (course notes). U. of Mich-
igan, Ann Arbor, Mich., 1960-1962. (Distribution of these notes 
was l imited to part icipants .) 
Cover many aspects of design—from the appl icat ions of au tom-
ata theory to the system design of parallel computers . 

10. F E R N B A C H , S. Very high-speed computers , 1964—the manufac-
turers ' point of view. Proc. AFIPS 1964 Fall Jo in t Comput . Conf., 
Vol. 26, P t . II, Spa r t an Books, New York, 1965, pp. 33-141. 
Contains detailed reports on the CDC 6600, the IBM System/360 
Model 92, and a Philco multiprocessing system. 

1 1 . G R A M , C . , E T AL. G I E R — a Danish computer of medium size. 
IEEE Trans. EC-12, 6 (Dec. 1 9 6 3 ) , 6 2 9 - 6 5 0 . 

Gives an evaluation of the order s t ructure and the hardware 
organization and describes the operating system and the A L G O L 

60 system. 

12. G R A Y , H. J . Digital Computer Engineering. McGraw-Hill , 
New York, 1963, 381 pp. CR-6341-3654.-
Chap. 1 discusses E N I A C and E D V A C as examples of parallel and 
serial organization. Chaps. 2-4 deal with organization problems. 

13. G S C H W I N D , H. W. Design of Digital Computers. Springer-Ver-
lag, New York, 1967, 530 pp. 
A general reference. 

14. H E L L E R M A N , H . Digital Computer System Principles. McGraw-
Hill, New York, 1967, 424 pp. 
A possible text . A good reference. 

15. H O L L A N D E R , G. L. (Ch.) The best approach to large computing 
capacity—a debate . Proc. AFIPS 1967 Spring Joint Comput . 
Conf., Vol. 30, Thompson Book Co., Washington, D. C., pp. 
463-485. 
Presents four approaches to achieving large comput ing capacity 
through: aggregation of conventional system elements (G. P. 
West); associative parallel processing (R. H. Fuller); an array 
computer (D. L. Slotnick); and the single-processor approach 
(G. M. Amdahl) . 

16. M E N D E L S O N , M . J . , A N D E N G L A N D , A. W. The SDS Sigma 7: a 
real-t ime t ime-sharing system. Proc. AFIPS 1966 Fall Jo in t 
Comput . Conf., Vol. 29, Spa r t an Books, New York, pp . 51-64. 
CR-6700-0752. 
Discusses seven critical design problems—including in te r rup t 
processing, memory protection, space sharing, and recursive 
processing—and their solutions. 

17. R I C H A R D S , R . K. Electronic Digital Systems. Wiley, New York, 
1966, 637 pp. CR-6676-10,649. 
Contains a good discussion of reliability and design au tomat ion . 

18. W A L Z , R. F. Digital computers—general purpose and DDA. 
Instrum. and Automat. 28, 9 (Sept. 1955), 1516-1522. 
Describes the G-15 computer and the use of a digital differen-
tial analyzer (DDA) in general purpose digital systems. 

1 9 . W A R E , W . H. Digital Computer Technology and Design: Vol. 
I, Mathematical Topics, Principles of Operation and Program-
ming: Vol. II, Circuits and Machine Design. Wiley. New York. 

• 1963, 237 pp. and 521 pp. CR-6562-7103 and 7104. 
Useful because of its coverage of early design techniques. Con-
ta ins extensive bibliographies (at the end of each chapter) , 
which refer to papers presenting the design features of numerous 
machines. 

References on arithmetic and control 

20. B L A A U W , G. A. Indexing and control-word techniques. IBM J. 
Res. Develop. 3, 3 (July 1959), 288-301. 
Describes some of the control techniques used in the S T R E T C H 

computer . 

2 1 . B E C K M A N , F . S . , B R O O K S , F . P . , J R . , AND L A W L E S S , W . •}., . JR . 

Developments in the logical organization of computer ari th-
metic and control units. Proc. IRE 49, 1 (Jan. 1961), 53-66. CR-
6232-1680. 
Summarizes the developments in logical design and in ari th-
metic and control uni ts through 1960. Contains a good bibliog-
raphy. 

22. B R O O K S , F. P., J R . , B L A A U W , G. A., AND B U C H H O L Z , W. Proc-
essing da ta in bi ts and pieces. IEEE Trans. EC-8, 3 (June 1959), 
118-124. CR-6012-0035. 
Describes a da ta -handl ing unit which permi ts variable length 
binary or decimal ar i thmet ic . 

23. S U M N E R , F. H. The central control unit of the ATLAS com-
puter . Proc. IFIP Congress, Munich , 1962, North-Holland Pub . 
Co., Amsterdam, pp. 292-296. CR-6342-3961. 

References on storage management 

2 4 . A R D E N , B . W . , G A L L E R , B . A . , O ' B R I E N , T . C . , AND W E S T E R V E L T , 

F. H. Program and addressing s t ructure in a t ime-sharing en-
vironment . J. ACM 13, 1 (Jan. 1966), 1-16. CR-6781-11,210. 
Describes the hardware and software devices used to facil i tate 
program switching and efficient use of storage in a t ime-sharing 
computer system. 

25. B E L A D Y , L. A. A s tudy of replacement algori thms for a virtual 
memory computer . IBM Syst. J. 5, 2 (1966), 78-101. 
DiscusSes several algori thms for au tomat ic memory allocation 
and compares them using the results of several s imulat ion runs. 

2 6 . C O C K E , J . , AND K O L S K Y , H. G. The vir tual memory in the 
S T R E T C H computer . Proc. AFIPS 1959 Eastern Joint Comput . 
Conf., Vol. 1 6 , Spar tan Books, New York, pp. 8 2 - 9 3 . 

27. E V A N S , D. C., AND L E C L E R K , J . Y. Address mapping and the 
control of access in an interactive computer . Proc. AFIPS 1967 
Spring Joint Comput . Conf., Vol. 30, Thompson Book Co., 
Washington, D. C„ pp. 23-30. 
Describes the hardware implementa t ion of a design based on 
separate program and da ta entit ies. 

28. G I B S O N , D. H. Considerations in block-oriented systems de-
sign. Proc. AFIPS 1967 Spring Joint Comput . Conf., Vol. 30, 
,Thompson Book Co., Washington. D. C., pp. 75-80. 
Analyzes block size, high-speed storage requirements , and job 
mix as they affect system design. 

38 



Reference on stack computers 

2 9 . A L L M A R K , R. H., A N D L U C K I N G , J . R. Design of an arithmetic 
unit incorporating a nesting store. Proc. IFIP Congress, Munich, 
1 9 6 2 , North-Holland Pub. Co., Amsterdam, pp. 6 9 4 - 6 9 8 . CR-
6 4 5 5 - 6 4 6 0 . 

Describes the arithmetic unit for the KDF-9 computer. 

30. H A L E Y , A. C. D. The KDF-9 computer system. Proc. AFIPS 
1962 Fall Joint Comput. Conf., Vol. 22, Spartan Books, New 
York, pp. 108-120. CR-6452-5466. 
Describes the stack register concept, the means used to com-
municate with it, and the use of zero-address instructions of 
variable length. 

31. B A R T O N , R. S. A new approach to the functional design of a 
digital computer. Proc. AFIPS 1961 Western Joint Comput. 
Conf., Vol. 19, Spartan Books, New York, pp. 393-396. CR-
6234-2158. 
The earliest published description of a Polish string processor— 
the B5000. 

Parallel and variable structure organizations 

32. E S T R I N , G. Organization of computer systems: the fixed plus 
variable structure computer. Proc. AFIPS 1960 Western Joint 
Comput. Conf., Vol. 17, Spartan Books, New York, pp. 33-40. 
CR-6235-2643. 

3 3 . E S T R I N , G . , A N D V I S W A N A T H A N , C . R. Organization of a fixed 
plus variable structure computer for computation of eigenvalues 
and eigenvectors of real symmetric matrices. J. ACM 9, 1 (Jan. 
1962), 41-60. 

3 4 . E S T R I N , G . , A N D T U R N , R . Automatic assignment of computa-
tions in a variable structure computer system. IEEE Trans. EC-
12, 6 ( D e c . 1 9 6 3 ) , 7 5 5 - 7 7 3 . 

3 5 . G R E G O R Y , J . , A N D M C R E Y N O L D S , R . T h e S O L O M O N c o m -

puter. IEEE Trans. EC-12, 6 (Dec. 1 9 6 3 ) , 7 7 4 - 7 8 1 . 

Presents the system organization, functional description, and 
circuit design from a total systems viewpoint. 

36. H O L L A N D , J . H . A universal computer capable of executing an 
arbitrary number of subprograms simultaneously. Proc. AFIPS 
1959 Eastern Joint Comput. Conf., Vol. 16, Spartan Books, New 
York, pp. 108-113. 

37. H O L L A N D , J . H . Iterative circuit computers. Proc. AFIPS 1960 
Western Joint Comput. Conf., Vol. 17, Spartan Books, New 
York, pp. 259-265. 

3 8 . S L O T N I C K , D . L . , B O R C K , W . C . , A N D M C R E Y N O L D S , R . C . T h e 

SOLOMON computer. Proc. AFIPS 1962 Fall Joint Comput. 
Conf., Vol. 22, Spartan Books, New York, pp. 97-107. 

A general description of the philosophy and organization of a 
highly parallel computer design which is a predecessor of 
I L L I A C I V . 

3 9 . S C H W A R T Z , J . Large parallel computers. J. ACM 13, 1 (Jan. 
1 9 6 6 ) , 2 5 - 3 2 . 

Considers various classes of machines incorporating parallelism, 
outlines a general class of large-scale multiprocessors, and dis-
cusses the problems of hardware and software implementation. 

Course A3 . Ana log and Hybr id Compu t ing (2-2-3) 

APPROACH 

This course is concerned with analog, hybrid, and related digital 
techniques for solving systems of ordinary and partial differential 
equations, both linear and nonlinear. A portion of the course should 
be devoted to digital languages for the simulation of continuous or 
hybrid systems (MIDAS, PACTOLUS, DSL/90, etc.). The course 
will have both lecture and laboratory sessions. The laboratory will 
allow the students to solve some problems on analog and /or hybrid 
computers and other problems through digital simulation of analog 
or hybrid computers. (Digital simulators of analog computers are 

now available for digital machines of almost any size [13-22]. Some 
simulators are written in problem oriented languages such as FOR-
T R A N and may be adapted to almost any computer.) 

CONTENT 

1. Basic Analog Components. Addition, multiplication by a con-
stant, integration, function generation, multiplication, division, 
square roots, noise generation, and other operations. Laboratory as-
signments are used to familiarize the student with the operation of 
the components. (15%) 

2. Solution of Differential Equations. The block-oriented ap-
proach to the solution of linear, nonlinear, and partial differential 
equations. Magnitude and time scaling. Estimation of maximum 
values. Equations with forcing functions and variable coefficients. 
Simultaneous equations. Statistical problems. (20%) 

3. Analog Computer Hardware. Description of various analog 
computers. Amplifiers, potentiometers, and other linear and non-
linear components. The patch board and the control panel. Record-
ing and display equipment. Slow and repetitive operation. Several 
laboratory assignments to give the student "hands-on" experience 
with the available machines. (15%) 

4. Hybrid Computer Systems. Different types of hybrid sys-
tems. Patchable logic and mode control. Comparators, switches, and 
different types of analog memories. Control of initial conditions or 
parameters. (15%) 

5. Analog and Digital Conversion. Brief t reatment of analog-to-
digital and digital-to-analog conversion. Methods of conversion, 
sampling, interpolation, smoothing. Accuracy and speed considera-
tions. Multiplexing of analog-to-digital converters. (10%) 

6. Digital Simulation of Analog and Hybrid Systems. Compari-
son of available languages. (One language should be presented in 
detail. The students should compare some of the previous analog 
solutions to those obtained by simulation.) (20%) 

7. Exams. (5%) 

ANNOTATED BIBLIOGRAPHY 

In the citations which follow, applicable chapters are sometimes 
indicated in parentheses after.the annotation. 

General textbooks or references for the major part of the course 
1. A S H L E Y , J . R., Introduction to Analog Computation. Wiley, 

New York, 1963, 294 pp. 
A compact textbook which stresses the use rather than the de-
sign aspects of analog computing. The text could be used for 
an undergraduate course, but hybrid computers would have to 
be covered from separate sources. (All chapters) 

2 . C A R L S O N , A . , H A N N A U E R , G . , C A R E Y , T . , A N D H O L S B E R G , P . I n 

Handbook of Analog Computation. Electronics Associates, Inc., 
Princeton, N. J. , 1965. 
Although this manual is oriented to EAI equipment, it is a 
good basic reference and has an extensive bibliography on se-
lected applications. 

3. F I F E R , S. Analog Computation, Volumes I-IV. McGraw-Hill, 
New York, 1961, 1,331 pp. CR-6126-1122. 
This series of four volumes contains a complete coverage of an-
alog computers, including hardware and applications. It is a 
good source of problems and references up to 1961. 

4. H U S K E Y , H . D., A N D K O R N , G. A. (Eds.) Computer Handbook. 
McGraw-Hill, New York, 1962, 1,225 pp. CR-6234-2179. 
This comprehensive volume on both analog and digital com-
puters is somewhat hardware-oriented although applications 
are also included. 

5. J A C K S O N , A. S. Analog Computation. McGraw-Hill, New York, 
1960, 652 pp. CR-6015-0190. 
Although now somewhat out-of-date, this is an excellent text 
for serious students in engineering, especially those with an 
interest in feedback-control theory. The text has many refer-
ences and an appendix with problem sets. (Chaps. 2-5, 7, 8, 11, 
14) 

39 



6 . J E N N E S S , R . R . Analog Computation and Simulation: Labora-
tory Approach. Allyn and Bacon, Boston, 1955, 298 pp. 
Two parts: the first introduces the analog computer; the sec-
ond gives the solutions of 21 problems in great detail. 

7 . J O H N S O N , C. L . Analog Computer Techniques, 2nd ed. Mc-
Graw-Hill, New York, 1963, 336 pp. CR-6451-5162. 
The text assumes a knowledge of basic electrical and mathe-
matical principles. Some parts require an understanding of 
servo-mechanism theory and the Laplace transform. Each chap-
ter has references and problems. (Chaps. 1-3, 7, 10, 12) 

8 . K A R P L U S , W . J . Analog Simulation, Solution of Field Problems. 
McGraw-Hill, New York, 1958, 434 pp. CR-6123-0729. 
A reference on analog techniques for partial differential equa-
tions. Includes material on the mathematical background for 
analog study of field problems, a description of analog hard-
ware, and a mathematical discussion of applications of analog 
techniques to different classes of differential equations. Prob-
lem-oriented. Extensive bibliographies. 

9 . K A R P L U S , W . J . , A N D S O R O K A , W . J . Analog Methods, 2nd ed. 
McGraw-Hill, New York, 1959, 496 pp. 
Three parts: on indirect computing elements; on indirect 
computers; and on direct computers. Describes both electro-
mechanical and electronic computers and covers applications 
comprehensively. 

1 0 . K O R N , G. A . , AND K O R N , T. M. Electronic Analog and Hybrid 
Computers. McGraw-Hill, New York, 1963, 584 pp. CR-6562-
7468. 
This text covers the theory, design, and application of analog 
and hybrid computers and has one of the most complete bibli-
ographies available. Its compactness makes it more suitable 
for an undergraduate text. 

11. L E V I N E , L . Methods for Solving Engineering Problems Using 
Analog Computers. McGraw-Hill, New York, 1964, 485 pp. CR-
6455-6477. 
One of the best available texts, but it needs supplementing on 
equipment. (Ref. 2 might be good for this purpose.) In addition 
to the usual topics, there are chapters on optimization tech-
niques, estimation and testing of hypotheses, and applications 
in statistics. (Chaps. 1-7). 

1 2 . S M I T H , G . W . , A N D W O O D , R . C . Principles of Analog Compu-
tation. McGraw-Hill, New York, 1 9 5 9 , 2 3 4 pp. C R - 6 1 2 1 - 0 4 1 1 . 

Introduces analog computers and illustrates various program-
ming techniques in simulation and computation. 

Descriptions of digital simulators of continuous systems 
13. B R E N N A N , R . D „ AND S A N O , H . PACTOLUS—a digital analog 

simulator program for the IBM 1620. Proc. AFIPS 1964 Fall 
Joint Comput. Conf., Vol. 26, Spartan Books, New York, pp. 
299-312. CR-6563-7630. 
Well-written article describes a digital program for the simu-
lation of an analog computer. The program is written in FOR-
T R A N and may be adapted to most machines. It allows man-ma-
chine interaction. 

1 4 . F A R R I S , G . J . , AND B U R K H A R T , L . E . , The DIAN digital simu-
lation program. Simulation 6, 5 (May 1 9 6 6 ) , 2 9 8 - 3 0 4 . 

Describes a digital computer program which has some of the 
features of a digital differential analyzer and which is particu-
larly suitable for the solution of boundary value problems. 

15. H A R N E T T , R. T., A N D S A N S O M , F. J . MIDAS Programming 
Guide. Report No. SEG-TDR-64-1, Analog Comput. Divn., 
Syst. Engng. Group, Res. and Techn. Divn., US Air Force Sys-
tems Command, Wright-Patterson Air Force Base, Ohio, Jan. 
1964. CR-6672-9510. 
This is the programming manual for the M I D A S simulation 
language. It is well-written and contains four examples com-
plete with problem descriptions, block diagrams, coding sheets, 
and computed results. 

1 6 . J A N O S K I , R . M . , S C H A E F E R , R . L . , A N D S K I L E S , J . J . C O B L O C — 

a program for all-digital simulation of a hybrid computer. 
IEEE Trans. EC-15, 2 (Feb. 1966), 74-91. 

COBLOC is a compiler which allows all-digital simulation of a 
hybrid computer having both analog and digital computation 
capability. 

17. M O R R I S , S . M . , A N D S C H I E S S E R , W. E. Undergraduate use of 
digital simulation. Simulation 7, 2 (Aug. 1966), 100-105. CR-
6781-11,027. 
Describes the LEANS (Lehigh Analog Simulator) program and 
shows the solution of a sample problem. 

18. R I D E O U T , V. C., AND T A V E R N I N I , L. MADBLOC, a program for 
digital simulation of a hybrid computer. Simulation 4, 1 (Jan. 
1965), 20-24. 
Gives a brief description of the hybrid simulation language 
M A D B L O C (one of the Wisconsin " B L O C " programs) which is 
written in the MAD language. Parameter optimization of a sim-
ple feedback system is given as an example. 

19. S T E I N , M. L., R O S E , J., AND P A R K E R , D. B. A compiler with an 
analog oriented input language. Simulation 4, 3 (Mar. 1965), 
158-171. 
Gives a description of a compiler program called "ASTRAL" 
which accepts analog oriented statements and produces FOR-
T R A N statements. It is a reprint of the same paper from the 
Proc. of 1959 Western Joint Comput. Conf. 

2 0 . S Y N , W. M., A N D L I N E B A R G E R , R. M. D S L / 9 0 — a digital simula-
tion program for continuous system modeling. Proc. AFIPS 

,, 1966 Spring Joint Comput. Conf., Vol. 28, Spartan Books, New 
York, pp. 165-187. CR-6676-10,708. 
A program which accepts block-oriented statements and com-
piles them into F O R T R A N IV statements. Mixing of DSL /90 and 
F O R T R A N statements is allowed. The program is available for 
the IBM 7090 /94 and 7040 /44. 

Comparisons of digital simulators for continuous systems 
21. L I N E B A R G E R , R. N., AND B R E N N A N , R. D. A survey of digital 

simulation: digital analog simulator programs. Simulation 3, 6 
(Dec. 1964), 22-36. CR-6671-9009. 
Gives a brief account of the following digital-analog simula-
tion languages: S E L F R I D E , D E P I , A S T R A L , D E P I 4 , D Y S A C , P A R T -

N E R , D A S , J A N I S , M I D A S , a n d P A C T O L U S 

22. L I N E B A R G E R , R. N., AND B R E N N A N , R. D. Digital simulation for 
control system design. Instr. Contr. Syst. 38, 10 (Oct. 1965), 147-
152. CR-6675-10,425. 
This paper has a very complete bibliography of digital simu-
lators and a table classifying them. 

Course A4. Sys tem Simula t ion (3-0-3) 

APPROACH 

This course can be taught from several different points of view: 
simulation can be treated as a tool of applied mathematics; it can 
be treated as a tool for optimization in operations research; or it 
can be treated as an example of the application of computer science 
techniques. Which orientation is used and the extent to which com-
puter programs are an integral part of the course should depend 
upon the interests of the instructor and the students. Most in-
structors will find it useful to require several small programs and a 
term project. The availability of a simulation language for student 
use is desirable. 

CONTENT 

The numbers in square brackets refer to the items listed in the 
bibliography which follows. 

1. What is simulation? (5'7) [1, 2, 3] 
a. Statistical sampling experiment. [20] 
b. Comparison of simulation and other techniques. [7] 
c. Comparison of discrete, continuous, and hybrid simulation. 

[12, 21] 
2. Discrete Change Models. (20r,) 

a. Queueing models. [13] 
b. Simulation models. [1, 2, 3] 

40 



3 . Simulation languages. ( 2 0 ' V ) [ 1 6 , 2 1 , 2 2 ] 

4. Simulation Methodology. (20<7) [1, 2, 3] 
a. Generation of random numbers and random variates. [14] 
b. Design of experiments and optimization. [6, 8, 9, 17] 
c. Analysis of data generated by simulation experiments. [10, 

11, 15] 
d. Validation of models and results. [8, 19] 

5 . Selected Applications of Simulation. (10'V) [ 4 , 5 ] 

a. Business games. 
b. Operations research. [18] 
c. Artificial intelligence. 

6. Research Problems in Simulation Methodology. (5'V) 
7. Term Project. (20',) 

BIBLIOGRAPHY 

Textbooks covering a number of the topics of this course 
1 . C H O R A F A S , D. N. Systems and Simulation. Academic Press, 

New York, 1965, 503 pp. 
2 . N A Y L O R , T . H . , B A L I N T F Y , J . L . , B U R D I C K , D . S . , A N D C H U , K . 

Computer Simulation Techniques. Wiley, New York, 1966, 
352 pp. CR-6781-11,103. 

3. T O C H E R , K . D . The Art of Simulation. D . Van Nostrand, 
Princeton, N. -J., 1963, 184 pp. CR-6454-6091. 

Bibliographies devoted to simulation 
4. IBM Corporation. Bibliography on Simulation. Report 320-

0924-0, 1966. 
5 . S H U B I K , M . Bibliography on simulation, gaming, artificial in-

telligence, and allied topics. J. Amer. Statist. Assoc. 55, 292 
( D e c . 1 9 6 0 ) , 7 3 6 - 7 5 1 . C R - 6 1 2 2 - 0 5 8 1 . 

Other works on simulation (which also contain extensive bibliog-
raphies) 
6. B U R D I C K , D. S . , AND N A Y L O R , T . Design of computer simula-

tion experiments for industrial systems. Comm. ACM 9, 5 (May 
1966), 329-338. CR-6783-11,714. 

7. C O N N O R S , M . M . , A N D T E I C H R O E W , D . Optimal Control of Dy-
namic Operations Research Models. International Textbook 
Co., Scranton, Pa., 1967, 118 pp. 

8. C O N W A Y , R. W. Some tactical problems in digital simulation. 
Management 10, 1 (Oct. 1963), 47-61. 

9 . E H R E N F E L D , S . , AND B E N - T U V I A , S . The efficiency of statistical 
simulation procedures. Technometrics 4, 2 (May 1 9 6 2 ) . 2 5 7 -

2 7 6 . C R - 6 3 4 1 - 3 7 4 2 . 

10. F I S H M A N , G. S. Problems in the statistical analysis of simula-
tion experiments: The comparison of means and the length of 
sample records. Comm. ACM 10, 2 (Feb. 1967), 94-99. CR-6783-
12,103. 

11. F I S H M A N , G. S., A N D K I V I A T , P. J . The analysis of simulation-
generated time series. Mgmt. Sci. 13, 7 (Mar. 1967), 525-557. 

12. F O R R E S T E R , J . W. Industrial Dynamics. M.I.T. Press, Cam-
bridge, Mass., and Wiley, New York, 1961, 464 pp. 

1 3 . G A L L I H E R , H . Simulation of random processes. In Notes on 
Operations Research, Operations Research Center, M.I.T., 
Cambridge, Mass., 1 9 5 9 , pp. 2 3 1 - 2 5 0 . 

14. H U L L , T. E., A N D D O B E L L , A. R. Random number generators. 
SIAM Rev. 4, 3 (July 1962), 230-254. CR-6341-3749. 

1 5 . J A C O B Y , J . E . , A N D H A R R I S O N , S . Multivariable experimenta-
tion and simulation models. Naval Res. Log. Quart. 9, ( 1 9 6 2 ) , 

1 2 1 - 1 3 6 . 

1 6 . K R A S N O W , H . S., A N D M E R I K A L L I O , R . The past, present and 
future of general simulation languages. Mgmt. Sci. 11, 2 (Nov. 
1 9 6 4 ) , 2 3 6 - 2 6 7 . C R - 6 5 6 6 - 8 5 2 1 . 

1 7 . M C A R T H U R , D . S. Strategy in research—alternative methods 
for design of experiments. IRE Trans. Eng. Man. EM-8, 1 (Jan. 
1 9 6 1 ) , 34-40. 

1 8 . M O R G E N T H A L E R , G . W. The theory and application of simula-
tion in operations research. In Russel L. Ackoff (Ed.), Progress 
in Operations Research, Wiley, New York, 1 9 6 1 , pp. 3 6 3 - 4 1 9 . 

19. S C H E N K , H „ J R . Computing " A D A B S U R D U M . " The Na-
tion 196, 12 (June 15, 1963), 505-507. 

20. T E I C H R O E W , D. A history of distribution sampling prior to the 
era of the computer and its relevance to simulation. J. Amer. 
Statist. Assoc. 60, 309 (Mar. 1965), 27-49. CR-6673-9823. 

21. T E I C H R O E W , D. Computer simulation—discussion of the tech-
nique and comparison of languages. Comm. ACM 9, 10 (Oct. 
1966), 723-741. CR-6782-11,466. 

22. T O C H E R , K. D. Review of simulation languages. Oper. Res. 
Quart. 15, 2 (June 1965), 189-218. 

Course A5. In fo rmat ion Organizat ion and 

Retr ieval (3-0-3) 

APPROACH 

This course is designed to introduce the student to information 
organization and retrieval of natural language data. Emphasis 
should be given to the development of computer techniques rather 
than philosophical discussions of the nature of information. The 
applicability of the techniques developed for both data and docu-
ment systems should be stressed. The student should become famil-
iar not only with the techniques of statistical, syntactic and logical 
analysis of natural language for retrieval, but also with the ex-
tent of success or failure of these techniques. The manner in which 
the techniques may be combined into a system for use in an opera-
tional environment should be explored. In the event tha t a com-
puter is available together with natural language text in a com-
puter-readable form, programming exercises applying some of the 
techniques should be assigned. If this is not possible, the student 
should present a critique and in-depth analysis of an article selected 
by the instructor. 

CONTENT 

1. Information Structures. Graph theory, document and term-
document graphs, semantic road maps, trees and lists, thesaurus 
and hierarchy construction, and multilists. 

2. Dictionary Systems. Thesaurus look-up, hierarchy expansion, 
and phrase dictionaries. 

3. Statistical Systems. Frequency counts, term and document 
associations, clustering procedures, and automatic classification. 

4. Syntactic Systems. Language structure, automatic syntactic 
analysis, graph matching, and automatic tree matching. 

5. Vector Matching and Search Strategies. Keyword matching, 
direct and inverted files, combined file systems, correlation func-
tions, vector merging and matching, matching of cluster vectors, 
and user feedback systems. 

6. Input Specifications and System Organization. Input op-
tions. Supervisory systems, their general organization, and operat-
ing procedures. 

7. Output Systems. Citation indexing and bibliographic cou-
pling. Secondary outputs including concordances, abstracts, and in-
dexes. Selective dissemination. Catalog systems. 

8. Evaluation. Evaluation environment, recall and precision, 
presentation of results, and output comparison. 

9. Automatic Question Answering. .Structure and extension of 
data bases, deductive systems, and construction of answer state-
ments. 

ANNOTATED BIBLIOGRAPHY 

There is no one book currently available tha t could be used as 
a text for this course, so most of the material must be obtained 
from the literature. References 2 and 6 provide excellent state-of-
the-art surveys and guides^to the literature. 

1 . B E C K E R , J., A N D H A Y E S , R. M. Introduction to Information 
Storage and Retrieval: Tools, Elements, Theories. Wiley, New 
York, 1963, 448 pp. 
A standard textbook, perhaps the best of those presently avail-
able. 

41 



2. C U A D R A , C . (Ed.) Annual Review of Information Science and 
Technology. Interscience, New York, Vol. 1, 1966 and Vol. 2, 
1967. 
A survey and review publication. 

3. H A Y S , D. G. (Ed.) Readings in Automatic Language Processing. 
American Elsevier, New York, 1966. 
Includes examples of text processing applications. 

4 . S A L T O N , G . Progress in automatic information retrieval. IEEE 
Spectrum 2, 8 (Aug. 1 9 6 5 ) , 9 0 - 1 0 3 . C R - 6 6 7 5 - 1 0 , 4 0 9 . 

A survey of current capabilities in text processing. 

5 . S A L T O N , G . Automatic Information Organization and Retrieval. 
McGraw-Hill, New York, to be published in 1968. 
A text concentrating on automatic computer-based information 
retrieval systems. 

6. S T E V E N S , M. E. Automatic Indexing: A State-of-the-Art Re-
port. Monograph 91, National Bureau of Standards, US Dept. 
of Commerce, Washington, D.C., March 30, 1965. 
A survey article tha t covers the historical development of auto-
matic indexing systems through 1964. 

7 . S T E V E N S , M. E., G I U L I A N O , V . E., A N D H E I L P R I N , L . B . (Eds.) 
Statistical Association Methods for Mechanized Documentation 
—Symposium Proceedings. Miscellaneous Publication 269, 
US Dept. of Commerce, Washington, D. C., 1964. 
A collection of papers concerned with statistical association 
techniques. 

Course A6 . Compute r Graphics (2-2-3) 

APPROACH 

Since this field is basically only a few years old, it is not sur-
prising that no underlying theories are uniformly accepted by the 
researchers and implementers. Rather, the pertinent information 
exists as a number of loosely related project descriptions in con-
ference proceedings and professional journals. This situation is 
similar to tha t in the information retrieval field, where those con-
ducting courses a t a number of major universities report on current 
accomplishments and research in an effort to coordinate and struc-
ture the mass of available information and to teach those tech-
niques which have been found useful. Thus, for the present, this 
course probably should be taught as a seminar where the literature 
is read and perhaps reported by selected students. After some texts 
become available and after more experience has been gained, a 
more formal course atmosphere could be established. 

Although the literature is plentiful, this course clearly assumes 
substantial value to the student only when it includes an intensive 
laboratory (hopefully using a display console) where the various 
algorithms can be tested, compared, and extended. The laboratory 
periods are meant to be used for explaining the details of algorithms 
or hardware and software that are not appropriate to a more formal 
lecture. A variety of programming projects in pattern recognition or 
display programming, for example, are within the scope of a one-
semester course. The time spent on these projects would be in 
addition to the laboratory time. 

CONTENT 

The thread running through the topics listed below is the unit of 
information—the picture. The course should deal with common ways 
in which the picture is handled in a variety of hitherto largely un-
related disciplines. First hardware and then software topics should 
be considered, since the software today is still a function of present 
hardware. 

The order and depth of coverage of the material suggested below 
is quite flexible—another sensible order of the material might be 
topics 1, 2, 6, 7, 8, and 3, 4, 5 optional, which would then constitute 
a course in displays. (In any case some material in Sections 6 and 7 

would have to be covered briefly to prepare students for their proj-
ects.) Also an entire semester could be devoted to pattern recogni-
tion. 

1. Motivation for graphical data processing and its history, par-
ticularly tha t of displays. (5%) 

2. Brief introduction to psycho-physical photometry and display-
parameters such as resolution and brightness. Block diagram of dis-
play systems and delineation of the functions of their components: 
the computer subsystem; buffer or shared memory; command de-
coder; display generator; and producer(s) of points, lines, vectors, 
conic sections, and characters. Extended capabilities such as sub-
routining, windowing, hardware matrix operations, and buffer ma-
nipulation. Comparison of various types of CRTs with other display 
producing techniques such as photochromies and electrolumines-
cence. Brief discussion of passive graphics (output only) devices 
such as x-y plotters, and microfilm recorders. Interrupts, manual 
inputs and human interaction with active displays via light pens, 
voltage pens, function keys, tablets, wands, joy sticks, etc. Dem-
onstration of equipment. (10%) 

3. Contrast of information retrieval with document retrieval and 
definition of indexing and locating. Image recording parameters such 
as resolution, and their comparison with display parameters. Dem-
onstration or discussion of microfilm and microfilm handling de-
vices (manual and automated). Brief discussion of photochromies, 
thermoplastics and other nonconventional media. Brief discussion 
of electro-optical techniques for recording, modulating, and deflect-
ing. (5%) 

4. Scanning and digitizing of paper or film, and subsequent trans-
mission of digitized information, including band-width /cost trade-
offs. Brief review of digital storage techniques and parameters, and 
discussion of tradeoffs in bulk digital versus image storage for pic-
torial and digital data. Introduction of the notion of a combination 
of a digital and an image system. (5%) 

5. Digitizing as an input process for pattern description and recog-
nition and preprocessing of this input (cosmetology and normaliza-
tion). Contrast of symbol manipulative, linguistic, and mathemati-
cal techniques, such as gestalt, caricatures, features, moments, 
random nets, decision functions, syntax-directed techniques and 
real-time tracking techniques using scopes and tablets. Electro-
optical techniques such as optical Fourier transforms may also be 
covered briefly. (20%) 

6. Picture models and data structures. Geometry, topology, syn-
tax, and semantics of pictures, stressing picture /subpicture hier-
archy. The differences between block diagram, wire frame, and sur-
face representations. Use of tables, trees, lists, plexes, rings, as-
sociative memory, and hashing schemes for data structures, and 
the data structure (or list processing) languages which create and 
manipulate them. Mathematics of constraint satisfaction, window-
ing, three-dimensional transformations and projections, and hidden-
line problems. (25%) 

7. Display software (probably specific to a given installation). 
Creation and maintenance of the display file, translations between 
the data structure and the display file, interrupt handling, pen 
pointing and tracking, and correlation between light pen detects and 
the data structure. Use of macros or compiler level software for 
standard functions. Software for multiconsole time-shared graphics 
with real-time interaction. (20%) 

8. Selected applications: (10%) 
a. Menu programming and debugging 
b. Flowchart and block diagram processing 
c. Computer assisted instruction 
d. Computer aided design 
e. Chemical modeling 
f. Business 
g. Animated movies 

ANNOTATED BIBLIOGRAPHY 

This bibliography is not complete in its coverage and consists 

42 



primarily of survey articles, as no textbooks exist. A number of the 
more detailed technical articles in the literature were omitted be-
cause they were concerned with specific situations or machines. 
Most of the survey articles listed have good bibliographies. A se-
lection of topics from the outline above can thus be followed by a 
selection of appropriate research papers from the literature. 

1. F E T T E R , W . A . Computer Graphics in Communications. Mc-
Graw-Hill, New York, 1965, 110 pp. 
This volume is strong on engineering applications and illustra-
tions. 

2. G R A Y , J . C. Compound data structures for computer-aided de-
sign: a survey. Proc. ACM 22nd Nat. Conf., 1967, Thompson 
Book Co., Washington, D. C., pp. 355-366. 
A brief survey and comparison of various types of data struc-
tures currently in use. 

3 . G R U E N B E R G E R , F . (Ed.) Computer Graphics: Utility /Produc-
tion /Art. Thompson Book Co., Washington, D. C„ 1967, 225 pp. 
Collection of survey papers, useful for orientation. 

4 . N A R A S I M H A N , R. Syntax-directed interpretation of classes of 
pictures. Comm. ACM 9, 3 (Mar. 1966), 166-173. 
An introduction to syntactic descriptive models for pictures, 
implemented using simulated parallel processing. This linguis-
tic approach is also taken by Kirsch, Grenander, Miller, and 
others. 

5. P A R K E R , D. B. Solving design problems in graphical dialogue. 
In W. J. Karplus (Ed.), On-Line Computing, McGraw-Hill, 
1967, pp. 176-219. 
A software-oriented survey of display console features. 

6. Ross, D . G . , A N D R O D R I G U E Z , J . E . Theoretical foundations for 
the computer-aided design system. Proc. AFIPS 1963 Spring 
Joint Comput. Conf., Vol. 23, Spartan Books, New York, pp. 
305-322. 
Introduction of the "plex" as a compound list structure for 
both graphical and nongraphical entities. Outline of the AED 
philosophy and algorithmic theory of language. 

7 . S U T H E R L A N D , I. E . Sketchpad: a man-machine graphical com-
munication system. Lincoln Lab. Tech. Rep. No. 296, M.I.T., 
Lexington, Mass., 1963, 91 pp. 
Presents the pace-setting Sketchpad system: its capabilities, 
data structure, and some implementation details. 

8. S U T H E R L A N D , W. R. The on-line graphical specification of 
computer procedures. Ph.D. Dissertation, M.I.T., Cambridge, 
Mass., Jan . 1966, and Lincoln Lab. Tech. Rep. No. 405, May 
1966. 
Describes a graphical language, executed interpretively, which 
avoids written labels and symbols by using data connections 
between procedure elements to determine both program flow 
and data flow. 

9. VAN DAM, A. Bibliography on computer graphics. ACM SlG-
GRAPHICS Newsletter 1, 1 (Apr. 1 9 6 7 ) , Association for Com-
puting Machinery, New York. 
This extensive bibliography is being kept up-to-date in suc-
cessive issues of the Newsletter. 

10. VAN DAM, A. Computer-driven displays and their uses in man/ 
machine interaction. In F. L. Alt (Ed.), Advances in Computers, 
Vol. 7, Academic Press, New York, 1966, pp. 239-290. 
A hardware-oriented description of CRT console functions. 

Course A7 . Theory of Computab i l i t y (3-0-3) 

APPROACH 

This is a theoretical course which should be taught in a formal 
and precise manner, i.e. definitions, theorems, and proofs. The 
theory of recursive functions and computability should, however, 
be carefully motivated and illustrated with appropriate examples. 

CONTENT 

More material is listed than can easily be covered in a three-hour 
one-semester course. The first three topics should definitely be 
covered, but the instructor can select material from the remaining 
topics. 

1. Introduction to Turing machines (TM's) and the invariance of 
general computability under alterations of the model. Wang ma-
chines, Shepherdson-Sturgis machines, machines With only 2 sym-
bols, machines with only 2 states, machines with nonerasing tapes, 
machines with multiple heads and multidimensional tapes. (4 lec-
tures) 

2. Universal Turing machines. (2 lectures) 
3. Godel numbering and unsolvability results, the halting prob-

lem, and Post's correspondence problem. (3 lectures) 
4. Relative uncomputability, many-one reducibility and Turing 

reducibility, and the Friedberg-Muchnik theorem. (6 lectures) 
5. TM's with restricted memory access, machines with one 

counter, pushdown automata and their relation to context-free lan-
guages. Universality of machines with two counters. (3 lectures) 

6. TM's with limited memory, linear bounded automata and 
their relation to context-sensitive languages, and the Stearns-Hart-
manis-Lewis hierarchy. (5 lectures) 

7. TM's with limited computing time and the Hartmanis-Stearns 
time hierarchy. (5 lectures) 

8. Models for real-time computation, TM's with many tapes ver-
sus 1 or 2 tapes, and TM's with many heads per tape versus 1 head 
per tape. (4 lectures) 

9. Random-access stored-program machines, iterative arrays, gen-
eral bounded activity machines, n-counter real-time machines, and 
other computing devices. (8 lectures) 

10. Complexity classification by functional definition, primitive 
recursive functions, the Grzegorczyk hierarchy and its relation to 
A L G O L programming, real-time countability, and an algorithm for 
fast multiplication. (6 lectures) 

ANNOTATED BIBLIOGRAPHY 

1. A A N D E R A A , S., A N D F I S C H E R , P. C. The solvability of the halt-
ing problem for 2-state Post machines. J. ACM 14, 4 (Oct. 1967), 
677-682. 
A problem unsolvable for quintuple Turing machines is shown 
to be solvable for the popular quadruple version of Post. 

2 . C A I A N I E L L O , E. R . (Ed.) Automata Theory. Academic Press, 
New York, 1 9 6 6 , 3 4 2 pp. C R - 6 6 7 6 - 1 0 , 9 3 5 . 

A collection of research and tutorial papers on automata, formal 
languages, graph theory, logic, algorithms, recursive function 
theory, and neural nets. Because of varying interest and diffi-
culty, the papers might be useful for supplementary reading 
by ambitious students. 

3. D A V I S , M. Computability and Unsolvability. McGraw-Hill, 
New York, 1958, 210 pp. 
Contains an introduction to the theory of recursive functions, 
most of Kleene's and Post 's contributions to the field and some 
more recent work. 

4. D A V I S , M. (Ed.) The Undecidable—Basic Papers on Unde-
cidable Propositions, Unsolvable Problems and Computable 
Functions. Raven Press, Hewlett, New York, 1965, 440 pp. 
CR-6673-9790. 
An anthology of the fundamental papers of Church, Godel, 
Kleene, Post, Rosser, and Turing on undecidability and unsolva-
bility. 

5. F I S C H E R , P. C. Multi tape and infinite-state automata—a sur-
vey. Comm. ACM8, 12 (Dec. 1965), 799-805. CR-6675-10,561. 
A survey of machines which are more powerful than finite 
automata and less powerful than Turing machines. Extensive 
bibliography. 

6. F I S C H E R , P. C. On formalisms for Turing machines. J. ACM 12, 
4 (Oct. 1965), 570-580. CR-6675-10,558. 

43 



Variants of one-tape Turing machines are compared and trans-
formations from one formalism to another are analyzed. 

7 . F R I E D B E R G , R . M . T W O recursively enumerable sets of incom-
parable degrees of unsolvability (Solution of Post's Problem, 
1 9 4 4 ) . Proc. Nat. Acad. Sci.43, ( 1 9 5 7 ) , 2 3 6 - 2 3 8 . 

The "priority" method for generating recursively enumerable 
sets is introduced and used to solve this famous problem. 

8 . G I N S B U R G , S . Mathematical Theory of Context-Free Lan-
guages. McGraw-Hill, New York, 1966, 243 pp. 
The first textbook on the theory of context-free languages. It 
gives a detailed mathematical treatment of pushdown automata, 
ambiguity, and solvability. 

9. H A R T M A N I S , J. , A N D S T E A R N S , R. E. On the computational com-
plexity of algorithms. Trans. AMS 117, 5 (May 1965), 285-306. 
Turing computable sequences are classified in terms of the rate 
with which a multi tape Turing machine can output the terms 
of the sequence, i.e. the "Hartmanis-Stearns time hierarchy." 

10. H E R M E S , H . Enumerability, Decidability, Computability. 
Academic Press, New York, 1965, 245 pp. CR-6673-9781. 
A systematic introduction to the theory of recursive functions, 
using Turing machines as a base. 

11. K L E E N E , S. C. Mathematical Logic. Wiley, New York, 1967, 
398 pp. 
A thorough yet elementary treatment of first-order mathemati-
cal logic for undergraduates. Contains much of the material of 
the author's graduate text, Introduction to Metamathematics, 
(D. Van Nostrand, Princeton, N. J. , 1952, 550 pp.). The material 
has been updated and reorganized to be more suitable for the 
beginning student. 

12. M C N A U G H T O N , R. The theory of automata, a survey. In F. L. 
Alt (Ed.), Advances in Computers, Vol. 2. Academic Press, New 
York, 1961, pp. 379-421. CR-6342-3920. 
Most of the areas of automata theory are included with the ex-
ception of switching theory and other engineering topics. A 
list of 119 references. 

13. M I N S K Y , M . L. Computation: Finite and Infinite Machines. 
Prentice-Hall, Englewood Cliffs, N. J., 1967, 317 pp. 
The concept of an "effective procedure" is developed. Also 
treats algorithms, Post productions, regular expressions, com-
putability, infinite and finite-state models of digital computers, 
and computer languages. 

1 4 . M Y H I L L , J . Linear bounded automata. WADD Tech. Note 60-
165, Wright-Patterson Air Force Base, Ohio, 1960. 
The paper which first defined a new class of automata whose 
power lies between those of finite automata and Turing ma-
chines. 

15. P O S T , E. L. Recursive unsolvability of a problem of Thue. J. 
Symbol. Logic 11, (1947), 1-11. 
Contains results on one variant of the "word problem" for semi-
groups using Turing machine methods. 

1 6 . R O G E R S , H., J R . Theory of Recursive Functions and Effective 
Computability. McGraw-Hill, New York, 1967, 482 pp. 
A current and comprehensive account of recursive function 
theory. Proceeds in an intuitive semiformal manner, beginning 
with the recursively enumerable sets and ending with the analy-
tical hierarchy. 

1 7 . S H A N N O N , C . E., AND M C C A R T H Y , J . (Eds.) Automata Studies. 
Princeton University Press, Princeton, N. J. , 1956, 285 pp. CR-
6 5 6 5 - 8 3 3 0 . 

A collection of many of the early papers on finite automata, 
Turing machines, and synthesis of automata which stimulated 
the development of automata theory. Philosophical papers, in 
addition to mathematical papers, are included since the aim of 
the collection is to help explain the workings of the human 
mind. 

18. S H E P H E R D S O N , J . C., A N D S T U R G I S , H. E. Computability of 
recursive functions. J. ACM 10, 2 (Apr. 1963), 217-255. CR-
6451-5105. 
A class of machines which is adequate to compute all partial 

recursive functions is obtained by relaxing the definition of a 
Turing machine. Such machines can be easily designed to carry 
out some specific intuitively effective procedure. 

19. S T E A R N S , R. E., H A R T M A N I S , J., AND L E W I S , P. M. Hierarchies 
of memory limited computations. 1965 IEEE Conference Record 
on Switching Circuit Theory and Logic Design, Special Publi-
cation 16 C 13, Institute of Electrical and Electronic Engineers, 
New York, Oct. 1965, pp. 179-190. 
Turing computable functions are classified according to the 
relationship of the amount of storage required for a computation 
to the length of the input to the computation, i.e. the "Stearns-
Hartmanis-Lewis hierarchy." 

20. T R A K H T E N B R O T , B. A. Algorithms and Automatic Computing 
Machines, transl. by J. Kristian, J . D. McCawley, and S. A. 
Schmitt . D. C. Heath, Boston, 1963, 101 pp. 
A translation and adaptation from the second Russian edition 
(1960) of the author's elementary booklet on solvability and 
Turing machines. 

21. T U R I N G , A. M. On computable numbers,-with an application 
to the Entscheidungsproblem. Proc. London Math. Soc., Ser. 2, 
42, (1936-1937), pp. 230-265. 
The famous memoir on decision problems which initiated the 
theory of automata. 

22. V O N N E U M A N N , J . Theory of Self-Reproducing Automata. 
(Edited and completed by A. W. Burks.) University of Illinois 
Press, Urbana, Illinois, 1966, 388 pp. CR-6700-0670. 
Consists of all previously unpublished sections of Von Neu-
mann's general theory of automata. Part I includes the kine-
matic model of self-reproduction. Part II, which is much longer, 
treats the logical design of a self-reproducing cellular autom-
aton. 

23. W A N G , H. A variant to Turing's theory of computing machines. 
J. ACM 4,1 (Jan. 1957), 61-92. 
An abstract machine is defined which is capable of carrying out 
any computation and which uses only four basic types of instruc-
tions in its programs. 

Course A8. Large-scale In fo rmat ion Processing 

Systems (3-0-3) 

APPROACH 

This course is intended to give the student some appreciation of 
how computers fit into information systems and how information 
systems fit into a "large organization framework." As this field is 
evolving rapidly, the most interesting and relevant material ap-
pears in articles; moreover, the field is so large tha t not all the rele-
vant material can be covered. The course may be conducted as a 
lecture course, but assignment of individual readings in a seminar-
type situation might be more suitable. 

Many information processing systems are so large that they re-
quire a number of computer programs to be run on a continuing 
basis using large quantities of stored data. The process of establish-
ing such a large system involves a number of steps: (1) the determi-
nation of the processing requirements; (2) the statement of those 
requirements in a complete and unambiguous form suitable for the 
next steps; (3) the design of the system, i.e. the specification of 
computer programs, hardware devices, and procedures which to-
gether can "best" accomplish the required processing; (4) the con-
struction of the programs and procedures, and the acquisition of the 
hardware devices; and (5) the testing and operation of the assembled 
components in an integrated system. This course is designed to help 
prepare the student to participate in the development of such sys-
tems. 

CONTENT 

The numbers in square brackets after each topic listed below refer 
to the items listed in the bibliography which follows. 

1. Examples of large-scale information systems. (10rr) [12, 28, 30] 

44 



a. Computer centers. [20, 27, 34] 
b. Information retrieval. [2] 
c. Real-time and time-sharing. [15, 16, 33] 
d. Business data processing. [14, 18, 19, 31, 32] 

2. Data structures and file management systems. (20'r) [1, 4, 5, 9, 
10, 13, 17, 29, 38] 

3. Systems design methodology. (40r<) [22, 32] 
a. "Nonprocedural" languages. [8, 26, 38, 40] 
b. Systems design. [3, 11, 21, 23, 24, 25, 36, 37] 
c. Evaluation. [7] 

4. Implementation problems. (10%) [6, 35] 
5. Term project. (20%) 

BIBLIOGRAPHY 

1 . B A U M , C., AND G O R S U C H , L. (Eds.) Proceedings of the second 
symposium on computer-centered data base systems. TM-2624/ 
100/00, System Development Corporation, Santa Monica, Calif., 
1 Dec. 1965. 

2 . B E R U L , L . Information storage and retrieval, a state-of-the-art 
report. Report AD-630-089, Auerbach Corporation, Philadel-
phia, Pa., 14 Sept. 1964. 

3 . B R I G G S , R . A mathematical model for the design of informa-
tion management systems. M.S. Thesis, U. of Pittsburgh, Pitts-
burgh, Pa., 1966. 

4 . B R O O K S , F . P . , J R . , A N D I V E R S O N , K . E . Automatic Data Proc-' 
essing. Wiley, New York, 1963, 494 pp. 

5 . B R Y A N T , J . H . , A N D S E M P L E , P., J R . G I S and file management. 
Proc. ACM 21st Nat. Conf., 1966, Thompson Book Co., Wash-
ington, D. C., pp. 97-107. 

6. BUCHHOLZ, W. (Ed.) Planning a Computer Systefn. McGraw-
Hill, New York, 1962, 322 pp. CR-6346-4786. 

7 . C A L I N G A E R T , P. System evaluation: survey and appraisal. 
Comm. ACM 10, 1 (Jan. 1 9 6 7 ) , 1 2 - 1 8 . C R - 6 7 8 2 - 1 1 , 6 6 1 . 

8. Codasyl Development Committee, Language Structure Group. 
An information algebra, phase I report. Comm. ACM 5, 4 (Apr. 
1962), 190-201. CR-6235-2621. 

9. C O N N O R S , T. L. ADAM—generalized data management system. 
Proc. AFIPS 1966 Spring Joint Comput. Conf., -Vol. 28, Spartan 
Books, New York, pp. 193-203. CR-6676-10,822. 

10. Control Data Corporation. 3600/3800INFOL Reference Manual. 
Publ. No. 60170300, CDC, Palo Alto, Calif., July, 1966. 

11. DAY, R. H. On optimal extracting from a multiple file data 
storage system: an application of integer programming. J. ORSA 
13, 3 (May-June, 1 9 6 5 ) , 4 8 2 - 4 9 4 . 

12. D E S M O N D E , W . H. Computers and Their Uses. Prentice-Hall, 
Englewood Cliffs, N. J. , 1964, 296 pp. CR-6561-6829. 

13. D O B B S , G. H. State-of-the-art survey of data base systems. 
Proc. Second Symposium on Computer-Centered Data Base 
Systems, TM-2624/100/00, System Development Corporation, 
Santa Monica, Calif., 1 Dec. 1965, pp. 2-3 to 2-10. 

1 4 . E L L I O T T , C . O . , A N D W A S L E Y , R. S . Business Information Proc-
essing Systems. Richard D. Irwin, Homewood, 111., 1965, 554 pp. 

15. F I F E , D. W. An optimization model for time-sharing. Proc. 
AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan Books, 
New York, pp. 97-104. CR-6676-10,869. 

16. F R A N K S , E. W. A data management system for time-shared file 
processing using a cross-index file and self-defining entries. 
Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan 
Books, New York, pp. 79-86. CR-6676-10,754. 

17. General Electric Company. Integrated Data Store—A New Con-
cept in Data Management. Application Manual AS-CPB-483A, 
Revision of 7-67, GE Computer Division, Phoenix, Ariz., 1967. 

18. G O T L I E B , C. C. General purpose programming for business 
applications. In F. L. Alt (Ed.), Advances in Computers, Vol. 1, 
Academic Press, New York, 1960, pp. 1-42. CR-6016-0206. 

19. G R E G O R Y , R. H . , A N D V A N H O R N , R. L . Automatic Data Proc-
essing Systems, 2nd ed. Wadsworth Pub. Co., San Francisco, 
1963, 816 pp. CR-6016-0301, of 1st ed. 

2 0 . H U T C H I N S O N , G . K . A computer center simulation project. 
Comm. ACM8, 9 (Sept. 1965), 559-568. CR-6673-9617. 

21. K A T Z , J . H . Simulation of a multiprocessor computer system. 

Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan 
Books, New York, pp. 127-139. CR-6676-10,870. 

22. L A D E N , H. N., AND G I L D E R S L E E V E , T. R. System Design for 
Computer Application. Wiley, New York, 1963, 330 pp. 

23. L A N G E F O R S , B. Some approaches to the theory of information 
systems. BIT 3, 4 (1963), 229-254. CR-6455-6399. 

24. L A N G E F O R S , B. Information system design computations using 
generalized matrix algebra. BIT5, 2 (1965), 96-121. 

25. L O M B A R D I , L . Theory of files. Proc. 1960 Eastern Joint Comput. 
Conf., Vol. 18, Spartan Books, New York, pp. 137-141. CR-
6236-3165. 

26. L O M B A R D I , L . A general business-oriented language based on 
decision expressions. Comm. ACM 7, 2 (Feb. 1964), 104-111. 
CR-6671-9013. 

27. L Y N C H , W. C. Description of a high capacity, fast turnaround 
university computer center. Comm. ACM 9, 2 (Feb. 1966), 117-
123. CR-6673-9546. 

28. M A L E Y , G . A., A N D S K I K O , E. J . Modern Digital Computers. 
Prentice-Hall, Englewood Cliffs, N. J. , 1964 , 216 pp. CR-6561-
7081. 

29. M C C A B E , J . On serial files with relocatable records. J. ORSA 
13, 4 (July-Aug. 1965), 609-618. 

3 0 . M C C A R T H Y , E. J. , M C C A R T H Y , J. , AND H U M E S , D. Integrated 
Data F*rocessing Systems. Wiley, New York, 1966, 565 pp. 

3 1 . M C C R A C K E N , D. D., W E I S S , H., A N D L E E , T.-H. Programming 
Business Computers. Wiley, New York, 1 9 5 9 , 5 1 0 pp. C R - 6 0 1 3 -

0 0 7 6 . 

32. M C G E E , W. C . The formulation of data processing problems 
for computers. In F. L. Alt (Ed.) Advances in Computers, Vol. 4, 
Academic Press, New York, 1964, pp. 1-52. 

33. N I E L S O N , N . R. The simulation of time sharing systems. Comm. 
ACM 10, 7 (July 1967), 397-412. 

34. R O S I N , R . F. Determining a computer center environment. 
Comm. ACM 8, 7 (July 1965), 463-488. 

35. S C H U L T Z , G . P., A N D W H I S T E R , T. L . (Eds.) Management Or-
ganization and the Computer. Free Press, Macmillan, New 
York, 1960, 310 pp. 

36. S M I T H , J . L . An analysis of time-sharing computer systems 
using Markov models. Proc. AFIPS 1966 Spring Joint Comput. 
Conf., Vol. 28, Spartan Books, New York, pp. 87-95. CR-6676-
10,835. 

37. T U R N B U R K E , V. P., J R . Sequential data processing design. IBM 
Syst. J. 2, (Mar. 1963), 37-48. 

38. V E R H O E F , E. W. Design of a multilevel file management sys-
tem. Proc. ACM 21st Nat. Conf., 1966, Thompson Book Co., 
Washington, D. C., pp. 75-86. CR-6781-11,185. 

39. Y O U N G , J . W., J R . Nonprocedural languages—a tutorial. Paper 
7th Ann. Tech. Symposium, Mar. 23, 1965. South Calif. Chap-
ters of ACM. Copies may be obtained from the author, Elec-
tronics Division, MS 50, National Cash Register, 2815 W. El 
Segundo Blvd., Hawthorne, Calif. 90750. 

40. Y O U N G , J . W., J R . , A N D K E N T , H. Abstract formulation of data 
processing problems. J. Ind. Eng. 9, 6 (Nov.-Dec. 1958), 471-
479. (Also reprinted in Ideas for Management, 1959.) 

Course A9. Ar t i f ic ia l In te l l igence and Heur ist ic 

P rog ramming (3-0-3) 

APPROACH 

As this course is essentially descriptive, it might well be taught 
by surveying various cases of accomplishment in the areas under 
study. Each student should undertake some independent activity as 
part of his course work. This might take the form of a survey article 
on some aspect of the field: a program which simulates some of the 
rudimentary features of learning and forgetting; a program which 
plays some simple game like three-dimensional tic-tac-toe; or some 
other comparable activity. It would probably be best for the student 
to write any such programs in a list processing language. 

45 



CONTENT 

The following outl ine is only a guide. Depending on the instruc-
tor 's preferences and experience, var iat ions will be introduced and 
new mater ia l will be added to the subject ma t t e r to be presented. 

1. Definit ion of heurist ic versus a lgor i thmic methods using an 
example such as game playing. Descript ion of cognitive processes 
t ak ing place in deriving a new ma thema t i ca l theorem. Out l ine of 
Polya 's and H a d a m a r d ' s approaches to ma thema t i ca l invention. 
Discussion of the heurist ic method as an exploratory and as an ex-
clusive philosophy (cf. theorem proving a la Newell-Shaw-Simon, 
Robinson and Wang). Objectives, goals and purposes of work in 
areas under discussion. (3 lectures) 

2. G a m e playing programs (chess, checkers, go, go-moku, bridge, 
poker, etc.). (3 lectures) 

3. Theorem proving in logic and geometry. (3 lectures) 
4. Formula manipu la t ion on computers . (3 lectures) 
5. P a t t e r n recognition and pic ture processing. (3 lectures) 
6. General problem solvers and advice takers. (4 lectures) 
7. Quest ion answering programs. (3 lectures) 
8. Verbal and concept learning s imulators . (3 lectures) 
9. Decision making programs. (3 lectures) 
10. Music composit ion by computers . (3 lectures) 
11. Learning in random and s t ruc tured nets . Neural networks. (3 

lectures) 
12. Adapt ive systems. (3 lectures) 
13. S ta te -of - the-ar t in machine t rans la t ion of languages and 

na tu ra l language processing. (4 lectures) 
14. Quest ions of philosophical impor t : the mind-bra in problem 

a n d the na tu re of intelligence, the relevance of operat ional defini-
t ions, a n d wha t is missing in present day " th ink ing mach ines . " (2 
lectures) 

BIBLIOGRAPHY 

The entr ies given below are grouped according to the i tems of 
the ' " C o n t e n t " above to which they apply . Th i s list serves only as a 
s t a r t ing poin t and can be extended easily using the bibliographies 
listed below. 
General reference 

1. F E I G E N B A U M , E. A . , AND F E L D M A N , J . (Eds.) Computers and 
Thought. McGraw-Hil l , New York, 1966, 535 pp. CR-6563-7473. 
Conta ins many of the articles listed below and a "Selected 
Descriptor-Indexed Bibl iography" by Marvin Minsky. 

Heuristic versus algorithmic methods [Item 1] 
2. A R M E R , P . At t i tudes toward intell igent machines . In Computers 

and Thought, pp. 389-405. CR-6125-0977 and CR-6236-2900. 
3. F I N D L E R , N. V. Some fu r the r thoughts on the controversy of 

th ink ing machines . Cybernetica 6, (1963), 47-52. 
4. H A D A M A R D , J . The psychology of invention in the mathemati-

cal field. Dover Publ icat ions , New York, 1945, 145 pp. CR-6345-
4614. 

5. M I N S K Y , M . Steps toward artificial intelligence. In Computers 
and Thought, pp . 406-450. CR-6232-1528. 

6 . N A G E L , E . The Structure of Science: Problems in the Logic of 
Scientific Explanation. Harcour t , Brace & World, New York, 
1961, 612 pp. 

7. P O L Y A , G. Mathematics and Plausible Reasoning: Vol. I, In-
duction and Analogy in Mathematics; Vol. II, Patterns of Plausi-
ble Inference. Pr inceton Universi ty Press, Pr inceton, N. J . , 1954, 
280 and 190 pp. 

Game playing programs [Item 2] 
8. B E R L E K A M P , E . R . Program for doub l e -dummy bridge prob-

lems—a new strategy for mechanica l game playing. J. ACM 10, 
3 (July 1 9 6 3 ) , 3 5 7 - 3 6 4 . C R - 6 4 5 2 - 5 2 9 7 . 

9. F I N D L E R , N. V. Compute r models in the learning process. In 
Proc. Internat. Symposium on Mathematical and Computational 
Methods in the Social and Life Sciences, Rome, 1966. 

10. N E W E L L , A.,' S H A W , J . C., AND S I M O N , H . A. Chess playing 
programs and the problem of complexity. In Computers and 
Thought, pp. 39-70. CR-6012-0048. 

11. P E R V I N , I. A. On algor i thms and programming for playing a t 
dominoes, t ransl . f rom Russian. Automation Express 1 (1959), 
26-28. CR-6235-2328. 

12. R E M U S , H. Simulat ion of a learning machine for playing Go. 
Proc. IFIP Congress, Munich , 1962, Nor th-Hol land P u b . Co., 
Ams te rdam, pp . 192-194. CR-6341-3420. 

13. S A M U E L , A. L. Some studies in machine learning using the 
game of checkers. In Computers and Thought, pp . 71-105. 

Theorem proving in logic and geometry [Item 3} 
14. D A V I S , M., L O G E M A N N , G., AND L O V E L A N D , D . A mach ine pro-

gram for theorem-proving. Comm. ACM 5, 7 (July 1962), 394-
397. 

15. G E L E R N T E R , H . , H A N S E N , J . R., AND L O V E L A N D , D. W. Empi r i -
cal exploration of the geometry- theorem proving machine . In 
Computers and Thought, pp. 134-152. CR-6233-1928. 

16. N E W E L L , A., S H A W , J . C . , AND S I M O N , H. A. Empir ica l ex-
plorations with the logic theory machine: a case s tudy in heu-
ristics. In Computers and Thought, pp . 109-133. 

1 7 . R O B I N S O N , J . A. Theorem proving on the computer , J. ACM 10, 
2 ( A p r . 1 9 6 3 ) , 1 6 3 - 1 7 4 . C R - 6 4 5 2 - 5 4 6 0 . 

18. W A N G , H. Proving theorems by pa t t e rn recognition. Comm. 
ACM 3, 4 (Apr. 1960), 220-234. CR-6016-0369. 

Formula manipulation on computers [Item 4] 
1 9 . B O N D , E . , A U S L A N D E R , M . , G R I S O F F , S . , K E N N E Y , R . , M Y S Z E W -

SKI , M . , S A M M E T , J . E . , T O B E Y , R . G . , A N D Z I L L E S , S . F O R -

MAC—an exper imenta l FORmuIa MAnipu la t ion Compiler . 
Proc. ACM 19th Na t . Conf., 1964, Association for Comput ing 
Machinery, New York, pp. K2.1-1 to K2.1-19. 

20. B R O W N , W. S. The ALPAK system for nonnumer ica l algebra 
on a digital computer , I and II. Bell Syst. Tech. J. 42 (1963), 
2081-2119, and 43 (1964), 785-804. 

21. P E R L I S , A. J . , AND I T U R R I A G A , R. An extension to ALGOL for 
man ipu la t ing formulae. Comm. ACM 7, 2 (Feb. 1964), 127-130. 

22. S A M M E T , J . E. An anno ta t ed descriptor based bibl iography on 
the use of computers for nonnumer ica l ma thema t i c s . Com. Rev. 
7, 4 ( Ju l . -Aug. 1966), B- l to B-31. 

23. S L A G L E , J . R. A heurist ic program t h a t solves symbolic in-
tegrat ion problems in f r e shman calculus. In Computers and 
Thought, pp . 191-203. CR-6236-3068. 

Pattern recognition and picture processing [Item 5] 
2 4 . M C C O R M I C K , B . H . , R A Y , S . R . , S M I T H , K . C . , AND Y A M A D A , S . 

ILLIAC III: A processor of visual informat ion . Proc. IFIP Con-
gress, New York, 1965, Vol. 2, Spar tan Books, New York, pp. 
359-361. 

2 5 . T I P P E T T , J . T . , B E R K O W I T Z , D . A . , C L A P P , L . C . , K O E S T E R , C . J . , 

AND V A N D E R B U R G H , A . , - JR . (Eds.) Optical and Electro-Optical 
Information Processing, Proc. Symp. Opt ical and Electro-Opti-
cal Inf. Proc. Tech. , Boston, Nov. 1964. M. I .T . Press, Cambridge, 
Mass. , 1965, 780 pp. CR-6673-9829. 

26. UHR, L. (Ed.) Pattern Recognition. Wiley, New York, 1966, 
393 pp. CR-6674-10,028. 

General problem solver and advice taker [Item 6] 

27. M C C A R T H Y , J . P rograms with common sense. In D. V. Blake 
and A. M. Utt ley (Eds.), Proc. Symp. on Mechanisation of 
Thought Processes, Two volumes, Nat iona l Physical Labora-
tory, Teddington , Eng land . H .M. Sta t ionery Office, London, 
1959, pp . 75-84. 

28. N E W E L L , A., S H A W , J . C., A N D S I M O N , H . A. A variety of in-
tell igent learning in a general problem solver. In M. Yovits and 
S. Cameron (Eds.), Self-Organizing Systems, Pergamon Press, 
New York, 1960, pp. 153-159. CR-6236-2908. 

29. N E W E L L , A., AND S I M O N , H . A. Compute r s imula t ion of h u m a n 
thinking. Science 134, 3495 (22 Dec. 1960), 2011-2017. CR-6234-
2062. 

46 



Question answering programs [Item 7] 
3 0 . B O B R O W , D . G . A question answering system for high school 

algebra word problems. Proc. AFIPS 1964 Fall Joint Comput . 
Conf., Vol. 26, Spar tan Books, New York, pp. 591-614. CR-6562-
7 1 8 3 . 

3 1 . G R E E N , B . F . , W O L F , A . K . , C H O M S K Y , C . , AND L A U G H E R Y , K . 

Baseball: an automat ic question answerer. In Computers and 
Thought, pp. 2 0 7 - 2 1 6 . C R - 6 3 4 1 - 3 4 1 7 . 

32. L I N D S A Y , R . K . Inferential memory as the basis of machines 
which understand natural language. In Computers and Thought, 
pp.217-233. 

33. R A P H A E L , B. A computer program which "unders tands ." Proc. 
AFIPS 1964 Fall Joint Comput. Conf.. Vol. 26, Spartan Books, 
New York, pp. 577-589. CR-6562-7207. 

3 4 . S I M M O N S , R. F . Answering English questions by computer—a 
survey. Comm. ACM 8, 1 (Jan. 1 9 6 5 ) , 5 3 - 7 0 . C R - 6 5 6 3 - 7 6 4 3 . 

Verbal and concept learning [Item S] 
35. F E I G E N B A U M , E . A . The simulation of verbal learning behavior. 

In Computers and Thought, pp. 297-309. CR-6234-2060. 
36. F E I G E N B A U M , E. A., A N D S I M O N , H. A. Forgetting in an associa-

tive memory. Preprints of papers presented a t the 16th Nat. 
Meeting of the ACM, Los Angeles, Sept. 5-8, 1961, Association 
for Computing Machinery, New York. CR-6232-1667. 

37. H U N T , E. B. Concept Learning: An Information Processing 
Problem. Wiley, New York, 1962, 286 pp. CR-6561-6872. 

3 8 . M I L L E R , G . A . , G A L A N T E R , E . , AND P R I B R A M , K . Plans and the 
Structure of Behavior. Holt, Rinehart and Winston, New York, 
1960. 

Decision making programs [Item 9] 
3 9 . C L A R K S O N , G . P. E. A model of the t rust investment process. 

In Computers and Thought, pp. 3 4 7 - 3 7 1 . C R - 6 5 6 3 - 7 4 7 3 . 

4 0 . F E L D M A N , J . Simulation of behavior in the binary choice ex-
periment. In Computers and Thought, pp. 3 2 9 - 3 4 6 . C R - 6 3 4 2 -

3 7 6 0 . 

41. F I N D L E R , N. V. Human decision making under uncertainty and 
risk: computer-based experiments and a heuristic simulation 
program. Proc. AFIPS 1965 Fall Joint Comput . Conf., Pt . I. 
Spar tan Books, New York, pp. 737-752. CR-6673-9594. 

Music composition [Item 10] 
42. Computers in Music. Session 7, Tues. Nov. 8, a t the AFIPS 

1966 Fall Joint Computer Conf., San Francisco. (The papers for 
this session were not published in the conference proceedings.) 

4 3 . G I L L , S. A technique for the composition of music in a com-
puter. Comput. J. 6, 2 (July 1 9 6 3 ) , 1 2 9 - 1 3 3 . C R - 6 4 5 1 - 4 9 8 3 . 

4 4 . H I L L E R , L . A . , J R . , A N D I S A A C S O N , L . M . Experimental Music. 
McGraw-Hill, New York, 1 9 5 9 , 1 9 7 pp. C R - 6 0 1 2 - 0 0 4 7 . 

45. M A T H E W S , M . V. The digital computer as a musical instrument . 
Science 142, 3592 (1 Nov. 1963), 553-557. 

46. R E I T M A N , W. R . Cognition and Thought: An Information Proc-
essing Approach. (Chap. 6). Wiley, New York, 1965, 312 pp. 

47. S E A Y , A. The composer of music and the computer. Comput. 
Autom. 13, 8 (Aug. 1964), 16-18. CR-6563-7548. 

Learning nets and, neural networks [Item 11] 
48. A R B I B , M. Brains, Machines and Mathematics. McGraw-Hill, 

New York, 1964, 163 pp. CR-6455-6254. 
49. B L O C K , H. D. Adaptive neural networks as brain models. 

Experimental Arithmetic, High Speed Computing and Mathe-
matics, Proc. of Symposia in Appl. Math . 15, American Mathe-
matical Society, Providence, R. I., 1963, pp. 59-72. CR-6453-
5608. 

5 0 . L E T T V I N , J . Y . , M A T U R A N A , H . , M C C U L L O C H , W . S . , A N D P I T T S , 

W. What the frog's eye tells the frog's brain. Proc. IRE 41, 
(1959), 1940-1951. 

51. R O S E N B L A T T , F . Principles of Neurodynamics. Cornell Aero-
naut . Lab. Rep. 1196-G-8, Spartan Books, New York, 1962. 

5 2 . Y O U N G , J . Z . A Model of the Brain. Clarendon Press, Oxford, 
England, 1964, 384 pp. 

Adaptive systems [Item 12] 
5 3 . F O G E L , L . J . , O W E N S , A . J . , AND W A L S H , M . J . Artificial In-

telligence Through Simulated Evolution. Wiley, New York, 
1966, 170 pp. 

54. N I L S S O N , N. J . Learning Machines. McGraw-Hill, New York, 
1965, 137 pp. CR-6565-8177. 

55. Tou, J . T., A N D W I L C O X , R. H. (Eds.) Computer and Informa-
tion Sciences. Proc. of Symposium at Northwestern University, 
1963, Spartan Books, New York, 1964, 544 pp. 

5 6 . V O N F O E R S T E R , H., AND Z O P F , G . W . , JR . , (Eds.) Principles of 
Self-Organization. Pergamon Press, New York, 1962. 

57. Y O V I T S , M. C., J A C O B I , G . T., AND G O L D S T E I N , G . D. (Eds.) 
Self-Organizing Systems, 1962. Spartan Books, New York, 1962, 
563 pp. CR-6456-6603. 

Natural language processing [Item 13] 
58. B A R - H I L L E L , Y. Language and Information: Selected Essays on 

Their Theory and Application. Addison-Wesley, Reading, 
Mass., 1964, 388 pp. CR-6562-7178. 

59. B O B R O W , D. G. Syntactic analysis of English by computer—a 
survey. Proc. AFIPS 1963 Fall Joint Comput . Conf., Vol. 24, 
Spartan Books, New York, pp. 365-387. CR-6671-8838. 

60. C H O M S K Y , N. Aspects of the Theory of Syntax. M.I .T. Press, 
Cambridge, Mass., 1965, 251 pp. CR-6676-10,735. 

61. G A R V I N , P. L. (Ed.) Natural Language and the Computer. 
McGraw-Hill, New York, 1963, 398 pp. CR-6456-6569. 

62. H A Y S , D. (Ed.) Readings in Automatic Language Processing. 
American Elsevier, New York, 1966, 202 pp. 

Questions of philosophical import [Item 14] 
63. M A C K A Y , D. M. Mind-like behavior in artifacts. Brit. J. Phil. 

Sci. 2, (1951), 105-121. 
6 4 . S A Y R E , K . M . , A N D C R O S S O N , F. J . (Eds.) The Modeling of 

Mind: Computers and Intelligence. University of Notre Dame 
Press, Notre Dame, Ind., 1 9 6 3 , 2 7 5 pp. C R - 6 4 5 5 - 6 2 0 5 . 

65. S I M O N , H. A. The architecture of complexity. Proc. Am. Phil. 
Soc. 106, (1962), 467-482. 

66. T U R I N G , A. M. Computing machinery and intelligence. In 
Computers and Thought, pp. 11-35. 

47 



A Report of the ACM 
Curriculum Committee on 
Computer Education 
for Management 

R.L. Ashenhurst 
Editor 

Curriculum 
Recommendations 
for Graduate Pro-
fessional Programs| 
in Information 
Systems 

The need for education related to informa-
tion systems in organizations is discussed, 
and a curriculum is proposed for graduate 
professional programs in universities, at the 
Master's level. Material necessary for such 
programs is identified, and courses incorporating 
it are specified. Detailed course descriptions 
are presented, program organization 
discussed, and implementation questions 
considered. 

Key Words and Phrases: education, man-
agement systems, systems analysis, management 
information systems, information systems 
development, information analysis, system 
design 

CR Categories: 1.52, 3.51 

Copyright © 1972, Association for Computing 
Machinery, Inc. 

General permission to republish, but not for profit, 
all or part of this material is granted, provided that 
reference is made to this publication, to its date of 
issue, and to the fact that reprinting privileges were 
granted by permission of the Association for Computing 
Machinery. 

This work was supported by Grant GJ-356 from the 
National Science Foundation. 



Contents Preface 

Preface 

1. Introduction 

2 . Information Systems Development 
2 . 1 Information Systems in Organizations 
2 . 2 The Development Process 
2 . 3 Information Systems Positions 
2 . 4 Educational Needs 

3 . Curriculum Requirements 
3 . 1 Output—Characteristics of Graduates 
3 . 2 The Educational Process 
3 . 3 Input—Prerequisites 

4 . Courses 
4 . 1 Course Group A: Analysis of Organizational 

Systems 
4 . 2 Course Group B: Background for Systems 

Development 
4 . 3 Course Group C: Computer and Information 

Technology 
4 . 4 Course Group D: Development of Information 

Systems 

5 . Programs 
5 . 1 Schedule for a Two-year Program 
5 . 2 Schedule for a One-year Program 
5 . 3 Options in MBA Degree Programs 
5 . 4 Options in Computer Science Master 's Degree 

Programs 
5 . 5 Options in Other Graduate Programs 

6 . Implementation 
6 . 1 Institutional Considerations 
6 . 2 Course Interactions 
6 . 3 Instructional Materials 

7 . Summary 

Appendices 
A. Detailed Descriptions and References for Course 

Group A 
B. Detailed Descriptions and References for Course 

Group B 
C. Detailed Descriptions and References for Course 

Group C 
D. Detailed Descriptions and References for Course 

Group D 

This report contains curriculum recommendations 
prepared by the ACM Curriculum Committee on Com-
puter Education for Management. 

After extensive discussion with representatives of 
industry and educational institutions, the Committee 
prepared a position paper presenting preliminary con-
clusions concerning requirements for education relevant 
to information systems in organizations and outlining its 
proposed future activities [ l] .1 Two of these activities 
are listed as: (1) developing detailed course outlines for 
major new courses necessary for a professional program 
in systems design; (2) recommending new fields of 
specialization in existing programs. This report is the re-
sult of the Committee's efforts in these two areas. The 
Subcommittee on Curriculum for Information Analysis 
and System Design undertook basic responsibility for 
the report. The entire Committee, however, partici-
pated actively in its preparation. 

Other activities of the Committee are organized 
around Subcommittees concerned with Course Ma-
terials for Business Schools, Nondegree Programs in 
Systems Design, Faculty Training, and Undergraduate 
Curricula. The Subcommittee on Course Materials for 
Business Schools conducted a number of regional meet-
ings on the current status of computer education in busi-
ness schools, and compiled a report of its findings [2], 

The Committee is indebted to the definitive report 
of the ACM Curriculum Committee on Computer 
Science [3], which provided a model for presenting its 
recommendations in this different but related area. 

Many people assisted the Committee in its work on 
curricula. A draft version of this report was circulated 
for review to members of the academic and profes-
sional community. Subsequently a meeting for industry 
and government representatives was held to discuss 
the report (at Arden House, Harriman Campus of 
Columbia University in New York, January 12-14, 
1972). Many suggestipns and constructive criticisms 
from both the review process and the meeting have 
been incorporated in the report. The Committee is ex-
tremely grateful to the reviewers and the meeting par-
ticipants, and to others whose assistance was helpful. 
Their names are listed at the end of the main body of 
the report. The Committee, of course, undertakes full 
responsibility for the substance of the. report and the 
conclusions and recommendations contained in it. 

1 References cited within the body of the report are listed on 
page 383. 

50 



The Committee membership during the prepara-
tion of this report was: 

Daniel Teichroew, University of Michigan, Chairman 
Russell M. Armstrong, Weyerhaeuser Company. 
Robert L. Ashenhurst, University of Chicago 
Robert I. Benjamin, Xerox Corporation 
J. Daniel Couger, University of Colorado 
Gordon B. Davis, University of Minnesota 
John F. Lubin, University of Pennsylvania 
James L. McKenney, Harvard University 
Howard L. Morgan, California Institute of Technology 
Frederic M. Tonge Jr., University of California, Irvine 

The members of the Subcommittee on Curriculum 
for Information Analysis and System Design were: 
R.L. Ashenhurst, Chairman; J.L. McKenney, H.L. 
Morgan, and F.M. Tonge Jr . 

1. Introduction 

This report presents recommendations for a grad-
uate professional program in information systems de-
velopment, at the Master 's level. The program is in-' 
tended for the education of individuals who will de-
velop complex information systems. Concomitantly, 
recommendations are given for information systems 
specialization options within existing Master 's degree 
programs. 

As documented in the position paper [1, Sec. 2.6], 
there is a widely felt need for individuals who can bring 
to bear the relevant computer technology on the in-
formation requirements of particular organizations. To 
meet this need requires the introduction of new pro-
fessional programs and the modification of existing 
ones in institutions of higher learning. 

A body of knowledge exists for both organizational 
functions and information technology, but this knowl-
edge is currently offered in diverse areas of graduate 
education. The curriculum in information systems de-
velopment presented here represents an attempt to 
integrate this knowledge and add new definition and 
perspective to the field. 

Career positions related to information systems are 
themselves only beginning to be standardized. Section 
2 gives a model of the information systems environ-
ment and development process on which the present 
curriculum approach is based. Section 3 characterizes 
the students for whom the program is intended and 
outlines the capabilities they are expected to acquire. 

Section 4 presents a set of 13 courses which en-
compass the material needed to achieve the program 
aims. Section 5 treats the framework in which these 
courses form an independent graduate program in in-
formation systems development and also indicates how 
the content may be adapted to business administra-
tion, computer science, and other graduate degree pro-
grams. 

Section 6 discusses aspects of implementing effec-

tive programs of this type. Faculty from diverse fields 
must be assembled. Courses must be developed and 
taught in a manner which leads the student to appre-
ciate the relationships among topics and their cumula-
tive implications. Program coordination and avail-
ability of appropriate instructional materials are of 
prime importance. 

Section 7 gives conclusions and acknowledgments. 
Detailed course specifications are presented as ap-
pendices. The format is similar to that of the ACM 
Curriculum 68 [3] with an added section which keys 
bibliographical references to individual topics within 
courses. 

2. Information Systems 
Development 

Organizations today are becoming increasingly large 
and complex. Even in organizations of moderate size 
activities are becoming increasingly diverse. The mon-
itoring of operations becomes more complicated, re-
porting requirements more extensive, and planning 
more difficult. Managers must be prepared to re-
spond to an ever-broadening range of internal and ex-
ternal situations, subject to ever-narrowing time con-
straints. In large organizations there is the additional 
factor that the sheer volume of operations has in-
creased enormously, and this during a time when labor 
has become more costly. 

The information systems available to those in 
charge of operating and directing organizational ac-
tivities must keep pace with these trends. Information 
systems have always existed in organizations, and with 
the advent of computer techniques their operation has 
become a highly technical subject. As a result, in-
formation processing activities are becoming insti-
tutionalized within organizations. This gives rise to the 
need for professional and technical personnel to staff 
these activities. 

As information systems increase in importance, their 
ongoing development becomes a further specialized 
organizational function. The cost of modifying existing 
systems and introducing new ones becomes a significant 
portion of the organizational budget. Questions of com-
petitive efficiency replace earlier questions of mere 
feasibility. More coordination with line management 
is required to insure that information needs are ap-
propriately addressed. 

As the relationship of information systems to man-
agerial effectiveness becomes more obvious, organiza-
tions come to consider the capital needed for future de-
velopment of information systems as an investment in 
their management capacity. This gives rise to an in-
formation systems planning activity. Information sys-
tems planners must be able to work closely with top 
management, interpreting the capabilities of informa-
tion systems and setting forth the options available. 

51 



2.1 Information Systems in Organizations 
Information systems in organizations can exist on 

several levels. On the operational level, an information 
system can be an integral part of actions and transac-
tions which take place on a time scale measured in 
seconds, minutes, or hours. On the control level, an in-
formation system may function to give line managers 
a summary picture of an operating unit or group of 
units over intervals measured in days or weeks. On the 
planning level, an information system may serve to 
indicate trends over months or years, providing top 
management with the basis for determining major pol-
icies and directions. There is some controversy about 
the relative ultimate importance of information sys-
tems at these various levels, and different organiza-
tions have different priorities in their development ac-
tivities. 

Information systems appropriate to the various 
levels and types of organizations have common aspects, 
which serve to focus the requirements for their suc-
cessful development. A key quality by which any in-
formation system must be assessed is the extent to 
which if is consonant with the needs of people, those 
whom it affects directly or indirectly. 

One aspect is the viewpoint of managers and others 
in the organization for whose benefit the system exists 
or of the customers or clients outside who interact with 
it. The system must have the capability to perform its 
intended functions in a manner suited to human action 
and decision making. In addition, the system must have 
a certain permanence or stability, which persists 
through changes in, hardware, software, and develop-
ment personnel. Contrasting with this, but equally im-
portant, the system must be responsive to inevitable 
changes in organizational requirements. Thus it must 
have an attribute of modifiability, whereby changes 
in its functioning and function can be accomplished in 
an orderly fashion by information systems professionals 
at the request of organization managers. 

Other aspects of human interaction concern those 
who have day-to-day contact with the system—the 
direct users, operators, or maintenance personnel 
charged with incorporating the changes mentioned 
above. The attributes the system must have to meet 
their needs can be characterized respectively as usa-
bility, operability, and maintainability. 

The organizational activities pertaining to informa-
tion systems can be distinguished by the differing roles 
of those who pursue them, as indicated by the boxes in 
Figure 1. The "organization operation and control" 
box represents those whom the information system is 
designed to aid, together with the data administrators 
and information handlers needed for dealing effectively 
with the system. Customers and clients of the organi-
zation may interact with the information system in es-
sentially the_ same way. The "information systems 
operation" box represents the operators and systems 
programmers, along with their supervisors and man-

Fig. 1. Information systems attributes and organizational functions. 
r O R G A N I Z A T I O N P̂TANNING 

I N K O R M A T I O N SYSTKMS 
DKVEL.OPMKNT 

^ O R G A N I Z A T I O N " " 
I OPERATION AN DCONTROI . 
r 
I C A P A B I L I T Y — ™ 

STABIL ITY 
. MODI H A BL I . ITY 

' " I N F O R M A T I O N SYSTKMS 
I OPERATION 

I OPFCR-
A B I L I T Y 

MAINTAI-NABILITY ̂  
i r - i . 
I H A R D W A R H / S O R R W A R M 

I-

'agers, who have charge of the hardware/software on 
which the information system runs. This function often 
exists as an information processing department or 
center within the organization. The "information sys-
tems development" box represents those who must in-
teract with the rest of the organization in regard to 
changing needs and translate these into systems changes 
for the operation group. It is assumed by the desig-
nation that the development group is also the one in 
charge of developing new and improved systems for the 
organization. The focal points of the "abilities" men-
tioned as attributes are shown in Figure 1 as they relate 
to these organizational functions. 

Finally, the "organization planning" box represents 
those who formulate long-range plans for the organiza-
tion and specify development efforts. An information 
systems perspective must be included here if planning is 
adequately to reflect technological possibilities for ful-
filling organizational information needs. 

The distinction between systems operation and sys-
tems development is not always recognized, and in-
deed, some of the difficulties encountered have come 
from entrusting the development function to the 
operating group. Increasingly, however, there are being 
established separate information systems development 
departments which are responsible for modifying ex-
isting systems and developing new ones. These depart-
ments contain analysts and designers—some perhaps 
specializing in configuration and conversion efforts— 
and project leaders who coordinate and direct them. 

Although computer-based aspects of information 
systems have been stressed in this discussion, any in-
formation system involves manual operations and pro-
cedures which must be considered part of it. An im-
portant component of the development of an informa-
tion system is determining which functions should be 

52 



•in the "manual subsystem" and specifying these func-
tions and their interaction with the "computer sub-
system." 

2.2 The Development Process 
For purposes of this report the information systems 

development process is viewed as consisting of analysis, 
design and implementation phases, prior to the opera-
tion phase. Other essentially equivalent characteriza-
tions are cited in the position paper [1, Sec. 2.3] and 
elsewhere [4, Sec. 4], These phases do not ordinarily 
take place strictly in the order given, but rather exist 
together in a continuing pattern of interaction. Analysis 
and design proceed in steps together, each affecting the 
other. An operation phase follows successful imple-
mentation, but analysis, design, and implementation 
activities generally continue as the system is modified 
and eventually supplanted. A special case is that of the 
conversion, in which the outward characteristics of the 
information system do not change radically but the 
hardware/software configuration on which it runs is re-
placed. 

Operation involves the routine running of the sys-
tem and is thereby appropriately the function of an in-
formation processing department, as indicated in Fig-
ure 1. This department also has responsibility for com-
puter configuration planning and procurement in con-
sultation with the information systems development 
group. Major conversion efforts require particularly 
close coordination between the two groups. 

Implementation involves writing and debugging 
programs, gathering information for data bases, train-
ing personnel who will use, operate and maintain the 
system, and finally installing and checking out the sys-
tem. Implementation is also necessarily a cooperative 
effort between development and operation groups. 

The analysis and design functions, however, are 
pure developmental activities, and it is here that sys-
tem inadequacies often have their origins. Such in-
adequacies may stem from failure to achieve a proper 
balance between organizational and technological fac-
tors, both of which are subject to continuing change. If 
technological aspects are given too much weight the re-
sulting system may not be responsive to the needs of 
people, in both the capability-stability-modifiability 
aspects and the usability-operability-maintainability 
aspects. If organizational considerations are overem-
phasized, the resulting system although perhaps con-
ceptually pleasing may not permit satisfactory imple-
mentation. To highlight the need for balance between 
these two sets of factors, the analysis and design phase 
of systems development is explicitly recognized as con-
sisting of two activities: information analysis and 
tem design. 

The main emphasis in information analysis is on the 
determination of information needs and the patterns 
of information flow which will satisy these needs. This 
requires interaction with organizational personnel and a 

good understanding of how the organization functions. 
An important aspect of information analysis is willing-
ness to consider that information problems may some-
times best be solved without resort to the computer. In 
fact, information analysis should start with a determi-
nation of what the problem is, and a decision whether 
the problem can be or should be subjected to an in-
formation systems approach at all. 

The main emphasis in system design is the transla-
tion of specified information requirements into a de-
tailed implementation plan which can be realized in 
hardware/software. This requires interaction with the 
information processing department and a good under-
standing of computer technology. 

Information analysis and system design can be com-
pared to product design and manufacturing system 
design in an industrial operation. The former looks to 
the question of purpose and function for potential users 
of the product, and the latter looks to the question of 
what machines are needed to manufacture the product 
and how they should be organized [1, Sec. 2.3], In 
these terms, the function of the information processing 
department becomes analogous to that performed by 
the. production control and manufacturing departments 
for the industrial operation. 

The terms "logical system design" and "physical 
system design" are sometimes used to differentiate be-
tween the specification of the information system itself 
and its implementation in hardware/software. In a 
sense logical syStem design develops specifications for 
capability-stability-modifiability and physical system 
design develops specifications for usability-operability-
maintainability. Both of these phases concentrate on 
the system, whereas information analysis concentrates 
on the organization. Two phases of information analy-
sis may also be distinguished: analysis of information 
needs and analysis of how they may be satisfied in terms 
of requirements on an information system. These two 
phases are sometimes called "feasibility study" and 
"system specification" [4, Sec. 4], 

The development of information systems then con-
sists of an iterated process of information analysis, sys-
tem design, and implementation. This "system life 
cycle," it has been pointed out [4, Sec. 3], applies to 
other kinds of development effort as well.2 

Distinguishing between information analysis and 
system design does not imply that the two processes 
take place sequentially and not interactively, that there 
is no overlap between them, or that the same person 
may not often do both. Recognizing this distinction is * 

2 Sections 2, 3, 4, 5, and 6 of this report document respectively 
the two phases of information analysis, the two phases of system de-
sign, and the prospective implementation phase of the educational 
program development recommended here. 

Interestingly enough, this observation was only made after the 
report had reached essentially its final form. The Committee's experi-
ence in developing the report was certainly that of the iterative proc-
ess characterizing the system life cycle. In particular, sections 2 and 
3 were introduced rather than the rest, in response to review commen-
tary. Thus the typical tendency to neglect information analysis in favor 
of system design was manifested. 

53 



appropriate because of the different styles which 
characterize the two processes, and because the per-
vasiveness of technological considerations frequently 
obscures the important function of information analysis 
in the development of effective and efficient systems. 

A person functioning in either of these roles must 
have an understanding of systems relationships and 
human behavior. Information analysis requires that 
the organization be viewed in systematic terms to form-
ulate means and ends effectively. It also requires under-
standing of the limitations imposed by human behav-
ior on formal organizational functioning so that feasible 
information system specifications may be produced. 
System design requires an understanding not only of 
computer system technology but also of human be-
havior, since systems are used, operated, and main-
tained by people. If an information system is to inter-
act with people outside the organization, it must also 
take their needs into account in both information analy-
sis and system design. A further requirement for either 
role is the ability to model situations in quantitative 
terms in order to measure system performance. 

For some organizational situations the foregoing 
model of the development process may seem too elab-
orate. A simpler version is one where an information 
processing center is run as a service by a group of highly 
capable technicians with "applications programmers" 
developing programs for this center which manipulate 
organizational information as required by the other de-
partments. More and more it appears that this simpler 
model is inadequate even for smaller organizations be-
cause of the demands of the constantly changing or-
ganizational environment, by virtue of natural evolution 
of practices, and of the constantly changing informa-
tion processing environment, by virtue of the dynamics 
of computer technology. Organizations and computer 
complexes are both systems undergoing constant tran-
sition, and information processing functions must be 
developed along similarly systematic lines to cope with 
the situation. 

Throughout what follows, terminology is used con-
sistently with this picture: information systems are de-
veloped to fulfill the needs of organization systems, and 
computer systems are the major (but not the sole) con-, 
stituent in the operation of information systems. The 
developers of information systems must therefore be 
cognizant of the key aspects of both organization sys-
tems and computer systems. Information analysis must 
recognize organization system dynamics, and system de-
sign must recognize computer system dynamics. 

2.3 Information Systems Positions 
There are as yet no industry-wide standards for 

positions related to information systems in organiza-
tions. The larger organizations, however, are beginning 
to develop specializations, and their definitions seem 
generally consistent with the model introduced in the 
last section [1, Sees. 2.4, 2.5]. The following discussion 

concerns functions, ignoring for the most part the dis-
tinction that employers must make regarding experi-
ence levels (trainee, junior, senior) and supervisory levels. 

Programmers exist in all groups associated with 
information systems but are generally involved in im-
plementation, not analysis and design. Programming 
positions are not within the scope of the present recom-
mendations and are therefore not considered further. 

The title Analyst or Systems Analyst was created 
when it was recognized that information systems de-
velopment required more advanced skills than those of 
programmer. More and more, however, a further dis-
tinction is being made between Information Analyst 
and System Designer, particularly in larger organiza-
tions. Positions in the system development group 
carry these titles, or equivalents such as MIS Analyst for 
the former and System Developer or Computer Spe-
cialist for the latter. The Information Analyst is de-
scribed as people-oriented or organization-oriented and 
is viewed by some as evolving out of the "methods and 
procedures" positions of less complicated times. The 
System Designer is described as computer-oriented or 
technology-oriented. 

Entry-level positions in the development activity 
can thus be distinguished in two categories. Because 
of the intimate interaction required between informa-
tion analysis and system design, however, the job re-
quirements for either include a good understanding of 
the other. In smaller organizations there are positions 
involving the performance of both functions, for which 
the two sets of skills must be even more integrated. 

An individual with either orientation can advance 
to Project Leader in the development group, and it is 
clear that a background combining information analy-
sis and system design is a virtual necessity for promo-
tion to this position and for successful functioning at 
the supervisory levels. 

Positions in the information processing department 
tend to be more technology-oriented, but an apprecia-
tion of organizational considerations is still useful for 
them. Titles such as Computer Systems Analyst de-
scribe a person who is able to deal with the computer 
and its operating system—the hardware/software con-
figuration—and tailor it to the efficient running of in-
formation systems. The departmental organization and 
its operating personnel must be taken into account in the 
process. More advanced positions are those of the 
specialist involved in planning and procurement of 
equipment, sometimes called a Configurator, and the 
specialist equipped to deal with systems conversion 
from one hardware/software system to another. For 
these positions a knowledge of organizational functions 
is again desirable. 

Positions in departments that interact with the in-
formation systems actively tend to be more organiza-
tion-oriented, but an appreciation of technological con-
siderations is a practical necessity for them. Entry-
level positions of this type may be as Assistants to vari-

54 



ous line and staff managers, which would lead to a 
supervisory positions in these areas. A more ad-
vanced information systems project specialist can per-
form the valuable function of interfacing the two cul-
tures of organization environment and computer en-
vironment. People in such positions are ordinarily 
oriented and motivated toward achieving high line 
managerial status, and an information systems planning 
specialty might well provide a route to top corporate 
positions. 

Other advanced positions for information technology 
professionals are emerging as information systems be-
come increasingly integrated into the organizational 
structure. Titles such as Data Base Administrator and 
Information Security Officer describe responsible pos-
itions associated with an ongoing information systems 
activity. 

Manager of either the systems development group 
or of the information processing center is a line man-
agerial position which may be attained after several 
years experience in one group or the other, perhaps 
after being an Assistant or Associate Manager. Com-
bined technological and organizational qualifications 
are appropriate for these positions also. 

Consulting positions are attractive opportunities for 
individuals with professional qualifications in informa-
tion analysis and system design. These positions require 
a good perception of both organizational and techno-
logical considerations, with perhaps more emphasis on 
information analysis. In addition, knowledge is needed 
of auditing procedures, legal requirements, and other 
external aspects of information systems use. The de-
mand for consulting services, already great, can only 
expand as information systems become increasingly 
complicated and more organizations have to seek out-
side help to deal with them. 

Companies in the computer industry, which in-
clude hardware manufacturers and software develop-
ers, and in addition the newer facilities management 
and computer service companies, have specialized 
needs in the information systems area. Like consulting 
firms, these companies deal with other organizations 
representing a range of information systems applica-
tions. Entry-level positions here tend to emphasize 
the technological more than the organizational, al-
though once again a combined orientation is useful. 
Advanced positions require abilities in technical 
marketing and supervision of diverse projects involving 
other organizations. Highly qualified professionals are 
needed to fill these positions. 

Although the foregoing discussion has used "or-
ganization" in the commercial sense, information sys-
tems development is also necessary for government and 
other noncommercial organizations. People often enter 
such organizations motivated by societal preference 
rather than by management aspirations or a purely tech-
nical proficiency. The problems of information systems 
development are as difficult or more so for these or-

ganizations. Qualifications in both information analysis 
and system design, perhaps specialized to the type of 
organization involved, are required for entry-level po-
sitions. 

2.4 Educational Needs 
Many individuals currently being hired for entry-

level positions of the type discussed above have an edu-
cational background inadequately suited to the job re-
quirements, and those already filling such positions or 
more advanced ones often have only experience to qual-
ify them. This will not be sufficient for the future, and 
the purpose of this report is to make recommenda-
tions for the educational programs appropriate for the 
entry-level positions which also provide support for 
later career advancement. 

Adequate preparation for positions in information 
systems requires an intensive educational program, one 
which provides concentration on both organizational and 
computer systems, as well as on the development process 
itself. Earlier analysis [1, Sec. 3.1] has led to the conclu-
sion that such programs do not now exist in American 
universities. Much existing education for management 
deals with making decisions on the basis of available 
data and does not prepare the student for clinically 
analyzing information needs in a systematic fashion. 
Similarly, existing computer science education, usually 
emphasizing algorithmic problem solving rather than 
system dynamics, does not prepare the student for the 
discipline of evolving system specifications. The problem 
then is to make up for these deficiencies on both the 
organizational and the technological sides and to offer 
an integrated approach to information analysis and sys-
tem design. 

The fact that the development activity requires 
working in communication with both these highly com-
plex and changing environments at a time when the 
practice of the field itself is in a stage of evolution and 
rapid development imposes stringent requirements on the 
educational process. Professional programs in other 
areas are viewed as offering some basic tools and tech-
niques which, when combined with practical apprentice-
ship, aid the graduate in becoming an experienced prac-
titioner. This assumes, however, that professional prac-
tice is reasonably definitive and effective, which is more 
true for the established areas than for information sys-
tems development. This puts an even greater burden on 
the academic component of professional preparation. 

The complexity of the field plus the requirement 
for specialization within it point to the need for a pro-
fessional program at the graduate level. In fact, an un-
dergraduate program providing the intense concentra-
tion needed to integrate the diverse aspects of this field 
presents formidable implementation difficulties.3 A 
graduate program has the added advantage of ena-

3 Recommendations for incorporating some aspects of the ma-
terial of this report into undergraduate programs are now being evolved 
by the Subcommittee on Undergraduate Curricula. 

55 



bling the student to acquire at the undergraduate level 
the broad general education desirable for entering any 
professional field, particularly one that is changing at 
so rapid a pace. 

The main focus of the present recommendations is 
thus an independent graduate professional program in 
information systems development, leading to a Master 's 
degree [1, Sec. 3.3]. 

The program is based on a common core curriculum 
suitable for people who will take entry-level positions 
either as information analysts or system designers, or 
will combine the two specialties. Elective choices over 
and above the core curriculum can serve to reinforce 
a preference toward one specialty or the other. 

In Section 4 a set of 13 courses is described which 
forms the basis for this curriculum. Section 5 describes 
the manner in which these courses are incorporated into 
the program, and how related variants can de derived 
from them. Section 6 deals with implementation ques-
tions for the program, which also apply to the variants 
in some degree. 

Since this is a new curriculum, it could be offered 
as an independent program in either a school of business 
administration, a department of computer science, or 
some other appropriate academic unit. 

The variants include options to be introduced into 
existing degree programs, such as Master 's level pro-
grams in business administration or computer science, 
which cannot incorporate the recommended material 
in full because of their other requirements [1, Sec. 3.4], 
These options would impart a flavor of the organiza-
tional-technological balance necessary for dealing with 
information systems effectively, as well as giving some 
exposure to information systems development methods. 
In these respects they would remedy a deficiency from 
which MBA programs and computer science MS pro-
grams suffer at present [2, 3]. These modifications of 
existing programs would also help satisfy the need for 
education geared to the entry-level positions in informa-
tion processing centers and other organizational de-
partments described in the previous section. 

As a byproduct, courses in an MBA program de-
signed to give a general acquaintance with the informa-
tion systems field, of the "what every manager should 
know" variety, also can be developed out of the same 
basic material. 

Further educational needs related to information 
systems, but not specifically addressed by these recom-
mendations, are: (1) programs for individuals at an ad-
vanced stage of their careers, to allow them better to 
cope with the new technology of information systems; 
(2) programs for individuals in technical positions who 
seek to switch over to more managerially-oriented 
careers; and (3) programs for individuals in technical 
positions who need to keep up-to-date on the latest 
technological developments. Prescription for a program 
addressing need (1) is given in the position paper [1, 
Sec. 3.3], Need (2) is currently being met by six- or 

eight-week programs or evening offerings of graduate 
schools of business administration. Need (3) could 
possibly be met in a similar manner by computer science 
departments. 

3.Curriculum Requirements 

The need for graduate professional programs in in-
formation systems development having been established, 
the next question to be addressed is the educational re-
quirements for students in such programs. 

From analysis of the skills required for information 
systems development it is possible to formulate knowl-
edge and abilities needed for entry-level positions in de-
velopment groups. This may be regarded as a prescrip-
tion for output of a degree program of the type under 
consideration. 

Section 3.1 lists the knowledge and abilities students 
may be expected to achieve, along with the experiences 
they may be expected to have had, in a graduate pro-
fessional program in information systems development. 
Section 3.2 gives a preliminary indication of how these 
aims may be achieved in the educational process. Finally, 
since a characterization of input to the process as well as 
output is needed, Section 3.3 rounds out the "informa-
tion analysis" with a discussion of appropriate prepara-
tion for such a program, which in particular gives pre-
requisites for the courses described in Section 4. 

3.1 Output—Characteristics of Graduates 
The starting point of this discussion is that the grad-

uate of a professional program in information systems 
development should be equipped to function in an entry-
level position and also have a basis for continued ca-
reer growth. The knowledge and abilities necessary to 
work effectively in this field may be characterized as 
obtainable by integrating concepts relating to people, 
models, and systems for the application of computer 
technology in the context of organizations and society. 

Thus the requisite knowledge and abilities are con-
veniently grouped in six categories: (a) people; (b) 
models; (c) systems; (d) computers; (e) organizations; 
and (f) society. The first three categories are fundamen-
tal, and may be looked upon as providing tools for 
applications in the last three categories. A suggested 
list of needed knowledge and abilities is: 

(a) people 
ability to hear others, as well as listen to them; 
ability to describe individual and group behavior and to predict 

likely alternative future behavior in terms of commonly used 
variables of psychology and economics; 

ability to describe and predict task-oriented, time-constrained 
behavior in an organizational setting. 

(b) models 
ability to formulate and solve simple models of the operations re-

search type; 
ability to recognize in context the appropriate models for situa-

ations commonly encountered. 

56 



(c) systems 
ability to view, describe, define any situation as a system—speci-

fying components, boundaries, and so forth; 
ability to apply this "systems viewpoint" in depth to some class 

of organizations—manufacturing firms, government bureaus, 
universities, hospitals, service providers, etc.; 

ability to perform an economic analysis of proposed resource 
commitments (includes ability to specify needs for additional 
information and to make a set of conditional evaluations if 
information is unavailable); 

ability to present in writing a summary of a project for manage-
ment action (suitable to serve as a basis for decision); 

ability to present in writing a detailed description of part of a 
project, for use in completing or maintaining same. 

(d) computers 
knowledge of basic hardware/software components of computer 

systems, and their patterns of configuration; 
ability to program in a higher-level language; 
ability to program a defined problem involving data files and 

communications structures; 
ability to develop several logical structures for a specified prob-

lem; 
ability to develop several different implementations of a speci-

fied logical structure; 
ability to develop specifications for a major programming proj-

ect, in terms of functions, modules and interfaces: 
knowledge of sources for updating knowledge of technology; 
ability to develop the major alternatives (assuming current 

technology) in specifying an information processing system, 
including data files and communications structures, to the level 
of major system components; 

ability to make an economic analysis for selecting among alterna-
tives above, including identification of necessary information 
for making that analysis, and also to identify noneconomic fac-
tors; 

ability to make "rough-cut" feasibility evaluations (in terms of 
economic and behavioral variables) of proposed new techniques 
or applications of current technology, identifying critical var-
iables and making estimates and extrapolations; 

ability to develop specifications for the computer-based part of a 
major information system, with details of task management 
and data base management components. 

(e) organizations 
knowledge of the function of purposeful organizational structure, 

and of the major alternatives for that structure; 
knowledge of the functional areas of an organization—operations, 

finance, marketing, product specification and development; 
ability to identify in an ongoing organizational situation the key 

issues and problems of each functional area; 
knowledge of typical roles and role behavior in each functional 

area; 
ability to identify possible short-term and long-term effects of a 

specified action on organizational goals; 
ability to identify information needs appropriate to issues and 

roles above; 
knowledge of how information systems are superimposed on or-

ganizational patterns, on the operational, control, and planning 
levels; 

knowledge of techniques for gathering information; 
ability to gather information systematically within an organiza-

tion, given specified information needs and/or specified infor-
mation flows; 

ability to specify, given information needs and sources, several 
alternative sets of information transfers and processings to 
meet needs; 

ability to make "rough-cut" feasibility evaluations of such al-
ternatives; 

ability to develop positive and negative impacts of a specified in-
formation system on specified parts of an organization; 

ability to develop specifications for a major information system, 
addressing a given organizational need, and determine the 
breakdown into manual and computer-based parts. 

(f) society 
ability to articulate and defend a personal position on some im-

portant issue of the impact of information technology and sys-
tems on society (important, as defined by Congressional in-
terest, public press, semitechnical press, etc.); 

ability to develop several positive and several negative impacts 
of a specified information system in a specified part of society; 

ability, given such specifications of impacts, to perform a "rough-
cut" feasibility analysis of them in terms of behavioral and 
economic variables. 

The last four abilities in both the "computers" and 
"organizations" categories, (d) and (e), are the key to 
the information systems development approach here. 
The ability to analyze alternatives and to make "rough-
cut" designs is particularly critical in the changing in-
formation systems environment of today. 

The knowledge and abilities listed are testable in the 
academic environment—by written or oral examinations, 
successfully operating computer programs, case dis-
cussions, judgment by a panel of experts and/or peers, 
and other commonly accepted means. Besides attaining 
knowledge and abilities, however, it is important for the 
student to have gained some experience in prototype 
work situations. A suggested list is: 

having gathered information in a "real" organization; 
having worked with an operations research specialist to model a 

complicated situation; 
having served as a member of a project team developing a spec-

ified programming system; 
having served as a member of a project team developing a speci-

fied information system; 
having participated in planning and conducting an oral presenta-

tion (and selling) of the results of a team project. 

3.2 The Educational Process 
Academic programs in universities have courses as 

major constituents, and the particular courses in a par-
ticular program represent one way of packaging its con-
tent. The courses presented in Section 4 represent a 
packaging of material and experience dictated by con-
ditions of program flexibility and institutional accepta-
bility. 

The courses are intended collectively to impart to the 
student the knowledge, abilities, and experiences of the 
preceding section. The list may thus be viewed as a set 
of curriculum objectives. These objectives are not met 
automatically, however, and the list can serve to give 
guidelines for assessing the extent to which a given pro-
gram implementation meets the requirements of entry-
level positions. 

Institutions adopting the general recommendations of 
this report may wish to modify the courses as dictated 
by existing circumstances. In particular, they may 
wish to expand some of the courses into two or three of-
ferings. The list of knowledge, abilities, and experiences 
of the preceding section can also serve for assessing 
such modifications and for developing curriculum fur-
ther. 

Although the full list of knowledge, abilities, and ex-
periences is aimed at preparation for entry-level positions 
in information systems development, selected parts can 
be used to characterize the entry-level requirements for 
the other more organizationally or more technologically 
oriented positions described earlier, and hence to assess 
program variants. 

57 



In considering the design, or redesign, of a curricu-
lum it is important not to associate each entry in the list 
of knowledge and abilities only with the course for which 
it is most relevant. The principles of accumulation of 
knowledge and reinforcement of abilities are a desirable 
feature of any curriculum. Thus objectives of instilling 
these characteristics are best met through applying them 
as themes throughout a sequence of courses. For exam-
ple, knowledge related to the behavior of humans in or-
ganizations should not be confined to a course on hu-
man and organizational behavior, but should be reflected 
in specific readings and activities in many courses. In-
tegrational experiences such as games, cross-disciplin-
ary projects (often cases), and seminars are further 
means beyond the formal course structure for achieving 
these objectives of a professional education. These pos-
sibilities are discussed in detail in Section 6. 

There is merit in considering the value of some prior 
job experience for students in a program in information 
systems. It is certainly true that the course material will 
have more impact if measured against the real world in 
this way. In some other countries it may be possible to 
design programs which assume such experience, but it is 
difficult to envision large-scale changes in the pattern of 
education in this country, where graduate education 
normally follows directly after undergraduate educa-
tion. So prior experience must be regarded as a desirable, 
but not necessary, factor in the process whereby these 
objectives are achieved. 

A professional program might be envisioned, how-
ever, specifically tailored to the individual with a few 
years of job experience between undergraduate and grad-
uate education. The material could be condensed, more 
motivation assumed, and the graduate could be prepared 
for returning to or entering the information systems field 
at a higher level than the person who had not had the in-
tervening experience. Such a program would be particu-
larly appropriate for a university in an urban environ-
ment. 

3.3 Input—Prerequisites 
A graduate professional program in information 

systems development should have a set of prerequisites 
which are easily attainable on the undergraduate level 
and which do not conflict with the aim of achieving a 
broad general education. The following list is consistent 
with the program of an undergraduate majoring in math-
ematics or engineering, and can presumably be worked 
into almost any program whose aims are known suffi-
ciently early in the student's undergraduate career. 

Prerequisite qualifications are identified in five sub-
jects as follows: 

(i) finite mathematics, including the funadmentals of 
formal logic, sets and relations, and linear algebra; 

(ii) elementary statistics, including the fundamentals of 
probability, expected value, and construction of 
sample estimates; 

(iii) elementary computer programming, including prob-
lem analysis and algorithm synthesis, and compe-
tence in a higher-level language; 

(iv) elementary economics, including microeconomics 
and theory of the firm, and price theory, 

(v) elementary psychology, including fundamentals of 
personality formation, attitudes, and motivation. 

These prerequisites can be satisfied in commonly avail-
able undergraduate courses. In particular, (iii) corre-
sponds to the course B1 of Curriculum 68 [3], which is 
now available in most universities. A desirable additional 
prerequisite is some knowledge of elementary operations 
research (simple linear programming, optimization, 
queueing models), such as is often treated in finite math-
ematics courses. 

These are the only prerequisites, other than a Bach-
elor's degree, assumed for the two-year graduate pro-
gram presented in Section 5.1. A sufficiently motivated 
student could probably fit in much more on the under-
graduate level and still not violate the aims of general 
education. Section 5.2 considers the possibility of a one-
year program, assuming most of the first-year material 
of the full program is obtained by the student as an un-
dergraduate. 

A student aiming at a graduate program in busi-
ness administration, computer science, or some other 
area, with one of the information systems options dis-
cussed in Sections 5.3, 5.4 and 5.5, would of course have 
to satisfy the normal undergraduate prerequisites for 
these programs. The list given above is generally suit-
able for an entering MBA candidate but less mathe-
matical than required for the normal MS program in 
computer science. Such a program does not ordinarily 
require the economics and psychology prerequisites, so 
these would have to be looked upon as special prepara-
tion appropriate to the information systems orientation. 

4. Courses 

A set of 13 courses is presented as the basis for a pro-
gram in information systems development. These are 
grouped into four categories: Analysis of Organizational 
Systems; Background for Systems Development; Com-
puter and Information Technology; and Development 
of Information Systems. The course numbers and titles 
are given in Figure 2. 

The method of grouping emphasizes the relation-
ship of the course material to the description of the in-
formation systems development process given in Sec-
tion 2 and to the curriculum requirements identified in 
Section 3. The course structure also lends itself to selec-
tive use in defining related programs other than the in-
dependent graduate program in information systems de-
velopment recommended here. Few of the courses pre-
sented exist in universities, either in schools of business 
administration, departments of computer science, or 
elsewhere. 

58 



Fig. 2. The 13 courses. 

C O U R S E G R O U P A: A N A L Y S I S O F O R G A N I Z A T I O N A L S Y S T E M S 
AL. I N T R O D U C T I O N T O S Y S T E M S C O N C E P T S 
A2. O R G A N I Z A T I O N A L F U N C T I O N S 
A3. I N F O R M A T I O N S Y S T E M S FOR O P E R A T I O N S A N D M A N A G E M E N T 
A4. S O C I A L I M P L I C A T I O N S O F I N F O R M A T I O N S Y S T E M S 

C O U R S E G R O U P B: B A C K G R O U N D FOR S Y S T E M S D E V E L O P M E N T 
BL O P E R A T I O N S A N A L Y S I S A N D M O D E L I N G 
B2. H U M A N A N D O R G A N I Z A T I O N A L BEHAVIOR 

C O U R S E G R O U P C: C O M P U T E R A N D I N F O R M A T I O N T E C H N O L O G Y 
CI I N F O R M A T I O N S T R U C T U R E S 
C2. C O M P U T E R S Y S T E M S 
C3. FILE A N D C O M M U N I C A T I O N S Y S T E M S 
C4. S O F T W A R E D E S I G N 

C O U R S E G R O U P D: D E V E L O P M E N T O F I N F O R M A T I O N S Y S T E M S 
DL. I N F O R M A T I O N A N A L Y S I S 
D2. S Y S T E M DESIGN 
D3. S Y S T E M S D E V E L O P M E N T P R O J E C T S 

Figure 3 shows schematically the relationship of the 
courses and course groupings to each other. The arrows 
connecting the boxes containing the course names indi-
cate the prerequisite structure. The labels outside the 
boxes indicate general areas of knowledge and abilities 
to which the proximate courses are relevant. 

The material on behavior and formal modeling tech-
niques given in courses Bl and B2 stands along with the 
introduction to systems concepts in course Al as the 
basic conceptual framework for material on organiza-
tions (in the A courses) and computer technology (in the 
C courses). Part of the purpose of this structure is to 
give a balanced presentation of these two aspects of the 
information systems environment—distinguishing 
them but at the same time emphasizing their similari-
ties. The unifying viewpoint is furnished by the systems 
concept, which underlies the whole approach on which 
the curriculum is based. 

Thus the organizational situation modeled, the 
information system modeling it, and the computer sys-
tem which implements the .latter are all viewed as sys-

Fig. 3. Course relationships. 

59 



tems in a general sense. The systems concept is defined 
in terms of states, inputs and outputs, and a hierarchy 
of subsystem components interacting with each other 
over time. Although much remains to be accomplished 
for both the theoretical understanding of such general 
systems and the pragmatic means of dealing with their 
complexity, the unifying character of this underlying 
viewpoint is sufficiently powerful to give a good start-
ing point for information systems development methods. 

A second viewpoint which underlies the structuring 
of this curriculum is that it is desirable to emphasize 
the systematic features of systems development and to 
place the pragmatic aspects in a conceptual frame-
work which will stand the student in good stead as new 
techniques replace current ones. Thus the material on 
information analysis and system design in courses D1 
and D2 is closely related to the material on the organ-
izational and technological environments in which the 
information system is embedded. 

One pitfall in attempting to present such a balanced 
program is that the "hard" technological material 
tends to get attention at the expense of the "sof t" or-
ganizational material, even though knowledge and 
abilities in the latter area are what information sys-
tems practitioners most often lack. To overcome this 
it is desirable to give an experiential flavor wherever 
possible in order to instill in the student a real feeling 
of the systems development situation. This is particu-
larly the function of the projects course D3, but it 
runs as a theme throughout the A and C courses also. 

Finally, it is assumed desirable to create a total 
environment for the student, to reinforce the integra-
tion of the material studied in separate courses. The 
techniques for doing this are further considered in 
Section 6. 

There follows a discussion of overall aspects of 
each course group, along with brief course descriptions 
and prerequisites. The courses are all designed to 
carry three semester-hours of credit. Only immediate 
prerequisites and corequisites are cited, other prereq-
uisites being implied in these. Undergraduate prereq-
uisites, where given, are stated in terms of the general 
list included in Section 3.3. 

The key (x-y-z) following each course title gives the 
recommended number of (x) lecture hours, (y) other 
hours (recitation, discussion section, computer 
laboratory etc.), and (z) credit hours, respectively. 

Detailed course descriptions, including expanded 
topic outlines, references, and bibliographies, are given 
in Appendices A, B, C, and D following the body of 
this report. 

4.1 Course Group A: Analysis of Organizational 
Systems 

The four A courses lay the groundwork for the sys-
tems approach, develop this approach for organizations 
and their functions, demonstrate how information sys-
tems grow and serve to support organizational manage-

ment, and provide a perspective on how modern in-
formation systems technology influences and interacts 
with society. 

As mentioned earlier, course Al , Introduction to 
Systems Concepts, has implications for more than or-
ganizational systems, but its inclusion among the A 
courses indicates its major emphasis. This course em-
ploys the example of basic financial and cost account-
ing systems as a concrete case. Since such systems ap-
pear in virtually every organizational enterprise, their 
use in this general context seems appropriate. Course 
A2, Organizational Functions, covers other compo-
nents of organizational systems. Course A3, Informa-
tion Systems for Operations and Management, deals 
with the information systems superimposed on these 
organizational components to support them. Course A4, 
Social Implications of Information Systems, treats the 
broader aspects of information systems technology, 
its effect on the work force and organizations generally, 
and impact on the individual. This course is intended 
to give the student some ability to make judgments in 
the larger context in which information systems exist. 

The material and examples of the A courses relate 
specifically to commercial organizations. Emphasis 
could be shifted to governmental and/or other noncom-
ercial organizations by substituting appropriately in 
course A2, and to a lesser extent in courses A3 and A4. 

Course A1. Introduction to Systems 
Concepts (3-0-3) 

Objectives. To introduce the student to the infor-
mation analysis and system design curriculum. To 
identify the basic concepts that subsequent courses will 
draw upon: the systems point of view, the organization 
as a system, its information flows, and the nature of 
management information systems. To teach the rudi-
ments of accounting as a system. 

Description. The systems concept. Defining a sys-
tem. Systems analysis. Management systems. Manage-
ment information systems. Financial and cost account-
ing systems. Prerequisite: elementary economics. 

Course A2. Organizational Functions (3-0-3) 
Objectives. To introduce the process of managing 

an enterprise as an operational system. To provide the 
student with an understanding of the operations of 
production, finance, and marketing in an industrial 
firm. To identify the comprehensive information aspects 
of a production system, the institutional character of 
the information systems of finance, and the open-ended 
character of marketing information. To demonstrate 
the integrating role information systems have in the 
operation, control, and planning of an enterprise. 

Description. Introduction to business systems. Ele-
ments of a production system. Controlling a production 
system. Financial systems. Identifying internal needs 
and external sources of funds. The marketing function. 
Managing a market. Integration of functions through 
information systems. Prerequisite: A l . Corequisite: B2. 

60 



Course A3. Information Systems for Operations 
and Management (3-1-3) 

Objectives. To identify the decision requirements 
for the management of an organization, considering 
both traditional and novel organizational structure. To 
analyze the design of an information gathering and 
processing system intended to facilitate decision making 
and long-range planning. To show the time relationships 
of planning and control. To integrate Al and A2 ma-
terials, emphasizing that one of the major systems of 
any organization is its information system. 

Description. Information requirements for an or-
ganization. Operational level systems. Tactical level 
systems. Strategic level systems. Styles of interaction. 
Planning for a comprehensive information system. 
Measuring the effectiveness of an information system. 
Prerequisites: A2, C2. 

Course A4. Social Implications of Information 
Systems (3-0-3) 

Objectives. To present the perspective of possible 
social effects of the information systems environment. 
To explore the current and projected social and eco-
nomic effects of information systems in organizations. 
To indicate the problems which come from too narrowly 
defining the boundaries of a system. To understand 
issues, implications, and possible remedies. 

Description. Historical perspective. The computer 
industry. Implications for the work force. Effects on 
organizational practice. Privacy and the quality of life. 
The individual and the social system. Prerequisite: A3. 

4.2 Course Group B: Background for Systems 
Development 

The two B courses provide basic tools and concepts 
relevant to the remainder of the curriculum. They 
are a continuation of the mathematical, statistical, 
economic, and psychological studies embodied in the 
undergraduate prerequisites. Course Bl, Operations 
Analysis and Modeling, covers techniques of mathe-
matical and statistical modeling. Course B2, Human 
and Organizational Behavior, deals with the human en-
vironment in which systems function. 

Courses on operational models and organizational 
behavior are ordinarily not easily available within 
undergraduate programs. The presence of the ma-
terial here in the curriculum affords the additional op-
portunity of keying it specifically to the information 
systems context. 

Operational models are applicable both to organ-
izational systems, as dealt with in the A courses, and 
to computer systems, as dealt with in the C courses. 
Similarly, the principles of organizational behavior 
govern both the population which information sys-
tems serve, for which the A courses are relevant, and 
the population of their operating environment, for 
which the C courses are relevant. 

Course Bl. Operations Analysis and 
Modeling (3-1-3) 

Objectives. To introduce and exercise a range of 
analytical and simulation modeling techniques useful 
in decision making in the system design environment. 
To consider the function of such models as guides for 
data collection, structures for data manipulation, and 
as systems for testing assumptions and generating a 
variety of alternatives. To identify the problems of data 
collection, maintenance, and accuracy when using 
models to assist decision making activities. 

Description. Characterization of scheduling situa-
tions. Analysis of allocation problems with mathe-
matical programming. Queueing models. Inventory 
models. Use of simulation models. Prerequisites: finite 
mathematics, elementary statistics, elementary com-
puter programming. 

Course B2. Human and Organizational 
Behavior (3-1-3) 

Objectives. To introduce the student to the princi-
ples governing human behavior, particularly as they 
relate to organizations and to the introduction and con-
tinued operation in organizations of computer-based 
information systems. 

Description. Individual behavior. Interpersonal 
and group behavior. Organizational structure and be-
havior. The process of organizational change. The im-
plementation and introduction of information systems. 
Prerequisite: elementary psychology. 

4.3 Course Group C: Computer and Information 
Technology 

The four C courses develop aspects of information 
processing hardware/software configurations, with 
special account taken of the technological and organ-
izational factors which affect information systems de-
velopment. Therefore in these courses hardware and 
software are not of interest for their own sake, as would 
be the case in a computer science curriculum, but for 
their application to information system building. For 
this reason human factors are stressed, relating to those 
who use, operate, and maintain computer systems. 

Course CI , Information Structures, presents basic 
material on the systematic constructs used to represent 
information, and their organization into larger units f<5r 
manipulation. Course C2, Computer Systems, covers 
the structure of hardware/software complexes in an 
integrated manner. Course C3, File and Communica-
tion Systems, follows with a unified treatment of two 
important aspects of large-scale computer systems 
technology. The approach is not for the developer of 
file and communication systems but rather empha-
sizes the manner in which they are incorporated as 
components in information systems. The other major 
components of information systems are collections of 
programs, and methods for efficiently organizing and 
operating such collections are treated in course C4, 
Software Design. Here again, however, the emphasis 

61 



is on understanding and incrementally improving soft-
ware systems, not developing them from the ground 
up. Aspects of planning, testing, and project control are 
emphasized in both courses C3 and C4. Although 
it is thus basically practice-oriented, the presentation 
is general enough to equip the student to absorb future 
technological developments. 

Course CI. Information Structures (2-2-3) 
Objectives. To introduce the student to structures 

for representing logical relationships among elements 
of information, whether program or data, and to tech-
niques for operating upon information structures. To 
examine the methods by which higher-level program-
ming languages implement such structures and facili-
tate such techniques. 

Description. Basic concepts of information. Model-
ing structures—linear lists. Modeling structures— 
multilinked structures. Machine-level implementation 
structures. Storage management. Programming langu-
age implementation structures. Sorting and searching. 
Examples of the use of information structures. Pre-
requisite: elementary computer programming. 

Course C2. Computer Systems (2-2-3) 
Objectives. To provide a working view of hard-

ware/software configurations as integrated systems, 
with (possibly) concurrently functioning components. 

Description. Hardware modules. Execution soft-
ware. Operation software. Data and program handling 
software. Multiprogramming and multiprocessing en-
vironments. Prerequisites: B1, C1. 

Course C3. File and Communication 
Systems (2-2-3) 

Objectives. To introduce the basic functions of file 
and communication systems and current realizations 
of these systems. To analyze such realizations in terms 
of the tradeoffs between cost, capacity, responsiveness. 
To examine some systems integrating file and commu-
nication functions, such as the organizational data 
base system or the computer utility. 

Description. Functions of file and communication 
systems. File system hardware. File system organization 
and structure. Analysis of file systems. Data manage-
ment systems. Communication system hardware. Com-
munication system organization and structure. Analysis 
,of communication systems. Examples of integrated sys-
tems. Prerequisite: C2. 

Course C4. Software Design (2-2-3) 
Objectives. To examine how a complex computer 

programming task can be subdivided for maximum 
clarity, efficiency, and ease of maintenance and modifi-
cation, giving special attention to available program-
ming and linking structures for some frequently used 
interface programs such as file and communication 
modules. To introduce a sense of programming style 
into the program design process. 

Description. Run-time structures in programming 
languages. Communication, linking, and sharing of 
programs and data. Interface design. Program docu-

mentation. Program debugging and testing. Program-
ming style and aesthetics. Selected examples. Pre-
requisite: C2. 

4.4 Course Group D: Development of Information 
Systems 

The three D courses tie together the major objectives 
of the proposed curriculum. They use the material from 
the other areas in a systematic study of the process of 
information systems development. They emphasize how 
to determine what is technically possible, what is eco-
nomical and practical, and what is operationally fea-
sible in a real organizational environment. Course Dl , 
Information Analysis, reviews methods for analyzing 
information needs and specifying system requirements. 
The life cycle concept is considered from economic, 
technological, and organizational perspectives. Course 
D2, System Design, develops a sense of the design proc-
ess, incorporating the proper balance of the organiza-
tional and technological considerations. Particular at-
tention is given to a realistic evaluation of available 
analytical techniques and to the importance of long-
range planning. Course D3, Systems Development 
Projects, is a project course designed to give prototype 
experience in the development of moderately complex 
information systems. 

Despite the titles of the courses, the division of ma-
terial between Dl and D2 is not exactly the same as the 
division between the phases of information analysis 
and system design discussed in Section 2.3. This is 
because information analysis is not as formalized as 
system design, and consequently there is more ma-
terial to be covered specifically related to the latter. 
Part of the information analysis process is covered in 
course A3, which then allows space in Dl for coverage 
of logical system design—the interface between in-
formation analysis and system design. 

Course Dl . Information Analysis (3-1-3) 
Objectives. To analyze the concept of an informa-

tion system. To review the approaches and techniques 
available to evaluate existing systems. To examine the 
concept of common data base for all functional mod-
ules, the factors necessary to determine the feasibility of 
computerization, and the organizational behavior effects 
of implementing a comprehensive system. 

Description. Introduction to the system life cycle. 
System life cycle management. Basic analysis tools. 
Determining system alternatives. Determining system 
economics. Defining logical system requirements. Sum-
mary and introduction to physical system design. Co-
requisite: A3. 

Course D2. System Design (3-1-3) 
Objectives. To provide the knowledge and tools 

necessary to develop a physical design and an opera-
tional system from the logical design. To estimate and 
evaluate the performance of such a system, emphasizing 
the value of computer and mathematical modeling 
techniques. Both technological and managerial aspects 

62 



of system design and implementation are considered. 
Description. Basic design tools and objectives. Hard-

ware/software selection and evaluation. Design and 
engineering of software. Data base development. Pro-
gram development. System implementation. Post 
implementation analyses. Long-range planning. Pre-
requisites: C3, Dl . Corequisite: C4. 

Course D3. Systems Development Projects (1-4-3) 
Objectives. To provide students with supervised and 

structured practical experience in the development of 
computer-based systems. 

Description, (alternatives) Development of a sys-
tem for a local firm. Development of a system for a 
university/college. Development of a system for a hy-
pothetical application. Corequisite: D2. 

5. Programs 

The material in the courses described in the previous 
section embodies knowledge and develops abilities ap-
propriate to entry-level positions in the information 
systems field. This section recommends ways in which 
the courses and variations on them can be incorporated 
into graduate degree programs in universities. 

The major alternatives considered are those dis-
cussed briefly in Section 2.4: (1) a Master's degree pro-
gram in information systems development, offered 
either as a two-year program (Section 5.1) or a one-year 
program (Section 5.2), depending upon the prerequisites 
assumed; (2) options in existing M BA programs (Section 
5.3), computer science Master's degree programs (Sec-
tion 5.4), and other graduate programs (Section 5.5). 

It should be emphasized again that the Master's de-
gree program in information systems development rec-
ommended here is something which does not now exist 
in universities. The justification for a new program is 
the need for putting the student into a total environment 
of information systems in order to achieve professional 
competence. This objective can be achieved only par-
tially in existing graduate degree programs, due to the 
effort necessarily devoted to satisfying general require-
ments. 

5.1 Schedule for a Two-year Program 
A four-semester schedule containing the 13 courses 

of Section 4 is shown in Figure 4. The schedule accom-
modates the courses in a way consistent with their listed 
prerequisite structure. 

If a two-year degree program is offered under the 
semester system, with a normal course load of four 
courses per semester, this leaves room for three addi-
tional courses, one in each of the first, second, and third 
semesters. The openings in the first and second could be 
used by the student for meeting program requirements 
not previously satisfied, or for electives. The opening in 
the third semester could be filled by making D3 a two-
semester course, perhaps for double credit. 

If a normal load is five courses per semester there 
is room for one additional elective course per semester. 
This presents a significant opportunity for the program 
to be oriented toward specific information system envi-
ronments of interest to the student, such as hospital, 
library, or university. Alternatively, additional technical 
electives could be chosen, such as courses in system 
simulation, information retrieval or graphics (see Cur-
riculum 68 courses A4, A5, and A6, respectively [3]). 
The character of the options which thus emerge are very 
dependent on the circumstances at the particular in-
stitution offering the program, so the specific possibili-
ties are not discussed here. Another alternative is to offer 
the same courses in a three-semester, five-course format. 
This, however, would require modification of the course 
content and prerequisite structure. 

5.2 Schedule for a One-year Program 
In some institutions it may be possible to require 

that the more fundamental material covered in courses 
A1, A2, B1, B2, C1, and C2 be taken by the student as 
an undergraduate, and to offer the remaining material 
as a one-year graduate program, as shown in Figure 5. 

Ordinarily the prior material would not be available 
in six existing course offerings, which would mean the 
student would have to take more than six courses in 
preparation. This might be remedied if most or all of 
A l , A2, Bl, and B2 could be offered, perhaps by a 
faculty of business administration, as essentially self-

Two-year program schedule. Fig. 4. 
SEMESTER 

1ST 

.2ND 

3RD 

63 



Fig. 5. One-year program schedule. 

INFORMATION SYSTI.MS 
IOR OPHRATIONS \ N D 
MANMIT.ML-.NT 

INFORMATION 
ANAI.YSIS 

I L[ I AND 

COMMUNICATION 
SYSTEMS 

SOCIAL IMPLICATIONS 
OL 1NKOR M ATION 
SYST I M S 

SOITWARL D I S K I N SYSTKMS DLVI-I.OPMHNT 
PROJLCTS 

-SLMLSTKR 

1ST 

: N D 

contained undergraduate courses, since courses equiva-
lent to CI and C2 are often available to undergraduates 
among existing computer sqience offerings. Each of 
these would be useful courses for students other than 
information systems specialists. 

This method of scheduling the program obviously 
does not relieve the institution of the necessity of coor-
dinating all the 13 courses as a group. A possible plan 
might be to offer the one-year program as a fifth year of 
a combined Bachelor's-Master's professional program. 
In any case, it should not be assumed that students 
would achieve the necessary undergraduate preparation 
on their own. Counseling of undergraduates, particularly 
at the beginning of their third year, would be necessary 
to enable them to tailor their programs accordingly. 

5.3 Options in MBA Degree Programs 
Most programs leading to the Master of Business 

Administration degree do not have sufficient time avail-
able for electives to permit incorporation of the full 
curriculum of 13 courses and still satisfy mandatory 
general requirements. A maximum of five or six course 
openings is all that is traditionally available for an elec-
tive concentration, although this situation is changing 
as some schools are redesigning their curriculum for 
more flexibility. To make available a six-course con-
centration, the recommendation is as follows: offer four 
of the six courses, specifically A3, Dl, D2, and D3, just 
as defined in the proposed curriculum and offer two 
additional courses covering the material from the C 
group in condensed form. Brief descriptions are given 
for two such courses at the end of the section. Course 
CIO, Introduction to Computer Systems and Program-
ming, draws material from C2 and C4, while course 
CI 1, Information Structures and Files, draws material 
from CI and C3. No separate detailed descriptions of 
these courses are given in Appendix C since the brief 
descriptions relate to material in the C course group in 
an obvious way. 

A prerequisite of elementary computer program-
ming and introduction to algorithms is assumed. The 
MBA student normally has this preparation as part of 
regular program requirements. 

Although the business student usually gets much of 
the substance of Al , A2, Bl, and B2 as part of the 

regular MBA program, the approach is typically not 
systems-oriented. Thus for those wishing to enter infor-
mation systems development groups, as opposed to 
functioning in more management-oriented positions, 
this option is less preferable than the full two-year pro-
gram or its one-year variant. 

If there is room for only five elective courses for con-
centration, it is recommended that D3 be omitted, so 
that only A3, CIO, CI 1, Dl , and D2 are taken. In this 
case significant project work should be included in Dl 
and D2 since the project experience is essential to the 
understanding of the systems development process and 
should not be eliminated entirely. 

Often an MBA candidate is riot aiming to interact di-
rectly with information systems professionals but wants 
exposure to aspects of information systems technology 
as they affect general management functions. For this 
purpose it would be appropriate to elect courses A3, 
CIO, and CI 1 as a minor concentration sequence. 

Course CIO. Introduction to Computer Systems 
and Programming (3-1-3) 

Objectives. To provide experience in programming. 
To give the student a working view of hardware/soft-
ware configurations and operating systems. To examine 
the process of synthesizing complex programs. 

Description. Hardware modules. Operating system 
software. Multiprogramming and multiprocessing sys-
tems. Communication, linking and sharing of programs 
and data. Program modularity. [Material for this course 
is selected from courses C2 and C4.] Prerequisite: ele-
mentary computer programming. 

Course C l l . Information Structures and 
Files (3-1-3) 

Objectives. To introduce the student to structures 
for representing logical relationships among elements of 
information, and to techniques for operating upon in-
formation structures. To describe and analyze the basic 
functions of file systems and current realizations of such 
systems. 

Description. Basic concepts of information. Model-
ing structures—linear lists and multilinked structures. 
Sorting and searching. File system functions, organiza-
tion and structure. Analysis of file systems. Data man-
agement systems. [Material for this course is selected 
from courses CI and C3.] Prerequisite: CIO. 



5.4 Options in Computer Science Master's Degree 
Programs 

The student whose primary area of interest is com-
puter science but who wishes to specialize in system 
design should be able to obtain an MS degree in com-
puter science with a concentration in information sys-
tems. In the ACM Curriculum 68 [3, Sec. 5] a Master's 
degree program consists of distribution courses from 
three areas: Information Structures and Processes, 
Information Processing Systems, and Methodologies. 
Besides these, it is stated, "Sufficient other courses in 
computer science or related areas should be taken to 
bring the student to the forefront of some area of com-
puter science." A recommended adaptation of the in-
formation systems curriculum to these requirements is 
as follows: for Information Structures, the student takes 
CI and some other "theory" course; for Information 
Processing Systems, the student takes courses C2, C3, 
and C4; the methodologies requirement is fulfilled by 
courses Bl, D1 and D2, the latter offered in a format 
which includes significant project experience; and fin-
ally, course B2 and a special course representing a re-
organization and combination of Al and A3 round out 
the program. A brief description of such a special course 
is given at the end of the section. Course A10. Organi-
zational Systems and Their Information Requirements, 
draws material from Al and A3. Again no detailed de-
scription is given in Appendix A, but reference can be 
made to relevant parts of the detailed descriptions of 
courses Al and A3. 

The student graduating from such a program would 
be highly skilled technically but would have a considera-
bly broader perspective on the problems of information 
systems development than is gained from a typical 
Master's degree program in computer science. This 
training would be useful for functioning in a systems 
programming group within an information processing 
department or perhaps as a specialist dealing with con-
version problems. 

Course A10. Organizational Systems and Their 
Information Requirements (3-0-3) 

Objectives. To set forth the basic concepts: the 
systems point of view, the organization as a system, and 
the nature of management information systems. To 
identify the decision requirements for the management 
of an organization. To analyze the design of an informa-
tion gathering and processing system intended to facili-
tate decision making and long-range planning. 

Description. The systems concept. Defining a system. 
Management systems. Information requirements for an 
organization. Operational, tactical, and strategic level 
systems. Measuring the effectiveness of an information 
system. [The material in this course is drawn from 
courses Al and A3. Since most computer science stu-
dents are familiar with the computing center as an or-
ganization, it might prove advantageous to draw exam-
ples from that environment.] Prerequisites: elementary 
economics, elementary statistics. 

5.5 Options in Other Graduate Programs 
Industrial engineering programs are concerned 

with the design and analysis of industrial systems. Many 
are sufficiently flexible to accommodate the one-year 
program of Section 5.2 as an MIE program. Also, the 
undergraduate in industrial engineering is often well 
enough prepared to enter the one-year program without 
further prerequisites. Thus options within industrial 
engineering curricula may be formed using Section 5.2 
as a guide. 

Industrial engineering programs are also an appro-
priate place to consider process control and other online 
interactive applications. An information systems op-
tion in an industrial engineering program might be en-
visioned which emphasizes the role of the minicomputer 
in such applications, both as a stand-alone processor 
and as part of a hierarchical system. 

Students in related areas, such as operations re-
search, may find courses such as A3, B2, Dl , and D2 
of particular value in increasing their understanding 
and awareness of the information systems environment 
and the problems of systems development, and of the 
ways in which they can contribute their skills to the de-
velopment process. 

6. Implementation 

The implementation of a professional degree pro-
gram in information systems development represents a 
significant task for an institution, even one with strong 
existing programs in both management and information 
sciences. If only one of the options described in Section 
5 is implemented, there are still many aspects which re-
quire close attention. Section 6.1 takes up some of these 
from the point of view of the institutions offering the 
program or programs. It emphasizes that strong co-
ordination of the entire program is a requirement for 
success. Given such coordination, many possibilities 
arise for the development of unifying themes across 
several courses, and these are discussed in Section 6.2. 
Section 6.3 addresses itself to the question of appro-
priate instructional materials for supporting a program 
effectively. 

6.1 Institutional Considerations 
The previous discussion of courses and programs 

has stressed the need for a balanced point of view in-
tegrating the organizational and technological factors 
and bringing these to bear on the systems development 
process. It cannot be assumed that students will some-
how achieve this point of view on their own, and a con-
scious effort must be made to set it forth in the program. 
This will be easier to accomplish if students enter and 
stay together as a class, rather than existing as one 
group of management-oriented students taking some 
computer science courses, and another group of com-
puter-oriented students taking management courses. 

65 



If students enter and progress through the program in 
this way, there will be much more opportunity to inter-
relate the course material in meaningful ways. This is a 
strong reason in support of the two-year program rather 
than one of the variants. If an option is chosen for im-
plementation in the absence of the two-year program, 
even more effort is required to achieve unification of 
diverse subjects. A capability must be acquired for 
teaching material which is not customary for the de-
partment or school offering the program (e.g. the tech-
nological material for the business school, the organ-
izational material for the computer science department). 

For these reasons it is recommended that substantial 
effort be allocated to coordination, in addition to teach-
ing and organizing individual courses. This coordination 
should make use of the listing of knowledge, abilities, 
and experience in Section 3.1 to insure that the objec-
tives of the program are being fulfilled. Through coor-
dination, the possibilities for course interactions dis-
cussed in the next section can be more successfully ex-
ploited. It is of course desirable to achieve consistency 
in successive offerings of the same course, as well as 
among different courses, and an explicit coordination 
effort can also help in this regard. 

Coordination cannot succeed, however, without a 
measure of agreement among the faculty teaching in the 
program. The development of an information system 
looks deceptively easy to one whose expertise has been 
gained from existing management and/or computer 
science curricula. The importance of countering this no-
tion, both by word and by example, cannot be over-
emphasized. The complex nature of information systems, 
and the difficulties this poses for their development, 
must be continually addressed throughout the course 
program. Communication among faculty is necessary to 
insure that the various perspectives on information 
systems they represent are appropriately consistent. 

This strongly suggests that the faculty be attached 
in some way to a single academic unit. While the pro-
gram is clearly interdisciplinary, and the faculty may 
have to be drawn from different academic units, they 
should be able to identify themselves as a group insofar 
as they are concerned with the program. An important 
consideration is of course the availability of faculty. A 
clearly delineated academic structure surrounding a pro-
gram is important for obtaining faculty from both inside 
and outside the institution. 

If the two-year program (or its one-year variant) is 
offered, it is to some extent immaterial in what school or 
department it is housed, as long as the foregoing con-
siderations are taken into account. Whether it is more 
appropriately offered in a business school, a computer 
science department, or jointly, depends on institutional 
circumstances. The option programs are naturally of-
fered within existing academic units, but the need for 
group identification within these units may still be an 
important factor. 

The project course D3 is intended to embody the 

application of the material developed in the other 
courses. Careful planning and preparation is extremely 
important if the project experience is to be profitable. 
Some institutions are able to make arrangements with 
local firms to take on students and let them work on real 
projects. Successful field programs can establish continu-
ing relationships over a three- or four-years period with 
firms, thereby providing an organizational association 
for students. Report requirements can be specified by 
the firm, and formal presentations can be made to man-
agement at the conclusion of each year's study. These 
projects may be initiated at the beginning of the aca-
demic year, with preliminary contacts being made and 
plans outlined prior to the second semester in order to 
utilize expeditiously the available time. Periodic re-
views during the semester help to maintain project 
standards. Monitoring such arrangements puts a heavy 
load on those in charge of administering them, but 
there is general agreement as to the great value of such 
exposure to the real world. 

Obviously a strong institutional commitment of any 
of the programs described is needed to achieve these uni-
fying aims. Obtaining such a commitment, in organiza-
tional and budgetary terms, should be the first order of 
business for those organizing programs in information 
systems within universities. 

6.2 Course Interactions 
The coordination activity discussed in the last sec-

tion can help to exploit some common themes which 
pervade the course structure. Three of these themes 
are: (a) the use of computer techniques; (b) the use of 
formal models; and (c) a pragmatic approach to human 
behavior. 

(a) The use of computer techniques. The experience 
of using a computer as a simple problem-solving tool, 
with own-designed or packaged programs, can be in-
corporated into nearly all the courses. In course CI the 
computer is the vehicle for the fundamental manipula-
tion of formal data structures. In courses Al , A2, and 
Bl the problems are most naturally those of the or-
ganizational world. In C2, C3, C4, and D2 they are 
those involved with the operation of computer systems. 
Finally, in A3, Dl , and D3 they are' those concerned 
with information systems proper, combining aspects of 
both the foregoing. 

The computer system as a component of a larger 
system has aspects over and above its use as a problem-
solving tool, and no opportunity should be lost to em-
phasize this. Courses C2, C3, and C4, as well as the de-
sign courses D2 and D3, are the natural places to study 
the computer system from this point of view. 

It is also important to consider the question of modes 
of computer system use. The student should be given 
access to both batch (centralized or remote) and inter-
active systems. The relative advantages and disad-
vantages of these two modes of use are subject to a good 
deal of controversy in the computer profession, and it 

66 



is important to put forth the notion that one should 
match the mode of use to the need rather than being 
" fo r" one type of system or the other. 

The reliance upon the computer as a pervasive edu-
cational aid assumes proficiency in a range of program-
ming languages and acquaintance with a range of spe-
cial-purpose packages. Because of the variety of cir-
cumstances obtaining at different institutions, no explicit 
prescription for achieving this has been made in the 
course descriptions. 

It is recommended that a set of programming lan-
guage modules be available for those students with little 
prior computer experience. The programming skill re-
quired for most courses can be met by an individual 
taking three modules covering: (1) an algebraic pro-
cedure-oriented language; (2) a data processing proced-
ure-oriented language; and (3) a symbolic assembly 
machine-oriented language. Proficiency in (1) is nomi-
nally taken care of in the preparation of entering stu-
dents, but it is well to have the module available for re-
medial purposes. FORTRAN and COBOL, the most com-
mon in applications today, are suggested as the two 
languages for (1) and (2). A number of good elementary 
texts also exist for these languages. If appropriate soft-
ware and texts- are available, PL/I can substitute for 
either or both of these. 

The programming proficiency desired can be at-
tained by the coding and debugging of a few representa-
tive programs. The number as well as the complexity of 
the programs depends on the level of sophistication of 
the courses using the computer as a tool. Courses B2, 
CI , and C2 could serve as the testing ground for pro-
ficiency in algebraic, data processing, and symbolic 
assembly languages, respectively. 

Such modules are presently offered in some institu-
tions as one-week courses prior to registration or as 
intensive laboratory sessions early in the term. In any 
case they can generally be developed as units, with a 
standard set of programming projects included, so 
that they can be offered on a relatively routine basis 
by teaching assistants. It is of course important that 
the programming proficiency attained in this way be 
used in courses in a systematic fashion. Other types 
of programming languages can be introduced with 
relative ease in courses where they are appropriate. In 
particular, a simulation language could be introduced 
to support any or all of courses A2, A3, C2, C3, Dl , 
and D2. 

Standard packages for data and file management 
and the like are being increasingly employed as infor-
mation system components. Furthermore, simulation, 
configuration, and performance monitoring packages 
are becoming available to aid in the design process. 
It is important that the student be exposed to the use 
of packages in both these ways. 

(b) The use of formal models. The use of formal 
models is also a pervasive notion running throughout 
the courses. The introduction of the concepts of opera-

tions research in course Bl should be designed to pre-
pare the students for using these techniques elsewhere 
in the program. This implies more than an "appre-
ciation" approach and puts what is perhaps the most 
significant requirement on the preparation of entering 
students, the ability to employ the requisite mathe-
matics. Once acquainted with these techniques, the 
student can be asked to use them to analyze organiza-
tional situations in courses Al , A2, and perhaps A4, 
the operation of computer systems in courses C2, C3, 
C4, and D2, and the functioning of information sys-
tems in courses A3, Dl, and D3. 

Course Bl therefore serves a dual purpose. On the 
one hand, the student is expected to gain from it some 
general modeling proficiency. On the other, it is de-
sirable that the emphasis be on specific applications 
to information systems, not general organizational 
situations. The dual objectives can be best achieved 
if the information systems applications are framed 
in terms of the information processing department as 
a production and distribution operation. The exten-
sion to other applications then follows naturally and 
can be taken care of in the courses where these applica-
tions are introduced. 

A less mathematical but perhaps equally important 
aspect of modeling is embodied in the general notion 
of information structure, introduced in the first part 
of course CI . Students should become accustomed in 
later courses to an information structure formulation 
of system problems. This serves both to help clarify 
the problem and to reflect the techniques actually 
used in implementing system design. 

(c) A pragmatic approach to human behavior. Per-
haps the most difficult task in program coordination 
is that of integrating the material on human behavior 
given in course B2 with the rest of the curriculum ma-
terial. This is because B2 can give only a very general 
feeling for the application of behavioral techniques, 
and therefore it cannot be expected that students will 
learn to use them in any formal sense. Nevertheless,, 
it is of crucial importance that this material be intro-
duced informally in other courses, particularly in A3, 
Dl , D2, and D3. It is also appropriate to emphasize 
the human interaction aspects of computer systems in 
courses C2, C3, and C4. If the program turns out 
practitioners who ignore or only pay lip service to the 
"people problems," which most experts agree pervade 
the information systems milieu of today, it will not 
have realized its aims. 

6.3 Instructional Materials 
Successful implementation of an information sys-

tems program requires careful attention to the question 
of instructional materials. Unfortunately no single text-
book is currently available for most of the courses. It 
is often the case, however, that books plus readings will 
suffice, and the bibliographies in the appendices are 
referenced so as to help in this selection. The lack of 

67 



unified texts, however, makes it even more important 
to have other supporting materials available. 

The rest'of this section deals with three categories of 
such materials in more detail: (a) computer packages; 
(b) case studies; and (c) projects and games. 

(a) Computer packages. The function of computer 
packages as information system components and as 
system design tools has already been mentioned. Com-
puter packages have obvious pedagogical uses also, 
which increases their utility for a curriculum such as 
this. Introduction of packaged programs is desirable 
for many of the advanced courses where aspects of 
computer systems are studied since the questions here 
are usually too involved to attack by simple program-
ming. Although advanced computer science courses 
may teach the pragmatics of computer systems with-
out requiring hands-on involvement, it is to be remem-
bered that they are designed for a student whose ob-
jectives are focused more on computer techniques and 
programming than on the general problems of infor-
mation systems. 

The references for topic sections 3, 4, and 5 of course 
C3 in Appendix C indicate some of the possibilities for 
packages and generalized file and data management 
concepts which could be introduced in class. 

(b) Case studies. Case studies are a standard part 
of business education but have not yet been developed 
extensively for the information systems areas. Where 
available, cases can function to draw together the or-
ganizational and technological factors, the apposition 
of which is so characteristic of information systems 
problems. Techniques for using case studies have been 
developed for business administration curricula over 
the past years. These techniques would be appropriate 
here not only in connection with the management-
oriented courses Al , A2, and A3 but also with the 
analysis and design courses Dl and D2. 

The A courses, particularly A2, are framed in terms 
of a management system in an industrial context. The 
approach proposed seems generally applicable to the 
design of information systems in most operating enter-
prises. Other organizational systems, however, could 
be utilized as the basis for study. The possible use of 
alternative versions of course A2 based on government 
or institutional systems, such as those for managing 
hospitals, libraries, or other nonprofit enterprises, has 
already been mentioned. Case studies relevant to such 
alternatives, however, seem to be much less readily 
available than those for industrial management sys-
tems. Therefore an intensive development activity is 
necessary in order to implement the alternative points 
of view effectively. 

In a coordinated program there is also the oppor-
tunity to develop cross-course cases, for emphasizing 
relationships between the material in different courses. 
This could be particularly effective in showing the rele-
vance of the behavioral material of course B2 to the 
other courses. 

(c) Projects and games. The recommended curricu-
lum calls for an experiential as well as a lecture-discus-
sion involvement in the course subject matter. One way 
of achieving this is through supervised projects, in 
which the student learns to participate in group efforts. 

The possibility of organizing the major project 
course D3 with the cooperation of local firms has al-
ready been mentioned. No opportunity should be lost, 
however, to incorporate minor projects in other courses 
as appropriate. 

Such projects can be participation in the imple-
mentation of a simple administrative control system 
in course A3, or of a simple computer operating sys-
tem in course C2. Important aspects of file and com-
munication systems and program libraries can be 
brought out by requiring projects in connection with 
courses C3 and C4. It is important that such projects 
include a requirement for testing in a prototype con-
text, with users other than the developers, to give the 
appropriate emphasis to implementation difficulties. 

Games are also useful for giving valuable experience 
in a class situation. These seem particularly appropri-
ate to support the behavioral material of course B2 
and its extension to other courses. Although computer-
ized games can be used to advantage, the possibilities 
inherent in setting up role-playing situations indepen-
dent of computer interaction should not be overlooked. 

7.Summary 

Information systems in an organization tend to be 
large and complex and interact with people in the or-
ganization in diverse ways. Although standard defini-
tions for positions in the field of information systems 
development and other related areas are not yet fully 
agreed upon, it is clear that they require entry-level 
knowledge and abilities which combine organizational 
and technological factors, and they also require exper-
ience in both information analysis and system design 
as the basis for successfully combining the two. 

For the preparation of individuals to fill such posi-
tions a graduate professional program is required, one 
which is coordinated and integrated in all its aspects. 
Common themes must be introduced and expanded 
throughout a series of courses, and experiences must be 
provided to relate the educational process to reality. 

The courses presented here are intended to satisfy 
these criteria and hence form a basis for the imple-
mentation of programs in information systems develop-
ment in universities. 

Coordination of effort and development of instruc-
tional materials presents a challenge for institutions 
interested in such programs. Programs in information 
systems should not be created by merely identifying or 
renaming existing courses, thereby missing opportuni-
ties for curriculum enhancement. It is hoped that a 
number of innovative programs will be developed, 

68 



improving on the prototype given here. The members 
of the Committee presenting this report (listed in the 
Preface) would welcome opportunities to comment on 
proposed programs, as well as specific queries about, 
and continuing feedback from, these recommendations. 

Acknowledgments. The following people assisted 
the Committee in one or another of the draft stages 
which preceded the final preparation of the report. 
The list which follows includes: those who supplied 
written reviews at the Committee's invitation; those 
who attended the meeting at Arden House mentioned 
in the Preface; and some of those who supplied useful 
commentary through other channels. The help of all 
is most gratefully acknowledged. 

Appendices 

John J. Alexander Jr. 
Julius Aronofsky 
Robert Beard 
Selwyn W. Becker 
W. Lyle Brewer 
Richard W. Conway 
Robert B. Curry 
Bruce G. Curry 
Justin Davidson 
Dennis Delavara 
William R. Dill 
A.S. Douglas 
James C. Emery 
Gary D. Eppen 
James Fischer 
Harvey Golub 
C.C. Gotlieb 
C. Jackson Grayson Jr. 
Charles B. Greene 
Richard W. Hamming 
A.D. Hestenes 
Richard Hughs 
Kenneth Hunter 
M.M. Irvine 
Felix Kaufmann 
W.P. Keating 
Kenneth King 
Charles H. Kriebel 

References 

Frank Land 
Louise S. Lanzetta 
Arie Y. Lewin 
N.L. Lindabury 
Peter Lykos 
A.L. Mathies 
Thomas W. McKeown 
Alan G. Merten 
Charles Meadow 
Richard G. Mills 
Sjir Nijssen 
Jay F. Nunamaker Jr. 
T. William Olle 
David L. Parnas 
Emmett K. Piatt 
William Pounds 
Roy Saltman 
Gerard Salton 
Michael Samek 
Edward Schefer 
William F. Sharpe 
Rowena W. Swanson 
Peter Tus 

Carl Vorder Bruegge 
William J. Wenker 
Warren Welsh 
Kenneth Whipple 
Kenneth Zearfoss 

1. Teichroew, D. (Ed.) Education related to the use of computers in 
organizations (Position Paper—ACM Curriculum Committee on 
Computer Education for Management). Comm. ACM 14, 9 (Sept. 
1971), 573-588. Reprinted in IA G J. 4 (1971). 220-252. 
2. McKenney, J.L., and Tonge, F.M. The state of computer oriented 
curricula in business schools 1970. Comm. ACM 14, 1 (July 1971), 
443-448. 
3. ACM Curriculum Committee on Computer Science. Curriculum 
68: recommendations for academic programs in computer science. 
Comm. ACM II. 3 (Mar. 1968), 151 197. 
4. Benjamin, R.I. Control of the Information System Development 
Cycle. Wiley Communigraph Series on Business Data Processing, 
Wiley-lnterscience, New York, 1971. 

Appendices A, B, C, and D give detailed descriptions and refer-
ences for the courses in the corresponding course groups, whose brief 
descriptions appear in Section 4 of the main body of the report. For 
each course the title, hours (x-y-z) and prerequisites are given, fol-
lowed by a short statement of pedagogic approach and a listing of 
content. The content outline is organized by topic headings, each of 
which corresponds to an item in the earlier brief description ol Section 
4. A percentage figure is given with each topic heading, indicating a 
suggested proportion of the "lecture hours" (*) of the entire course 
to be devoted to that topic. The "other hours" (y) are intended to 
cover recitation, which can be discussion or problem sessions, and/or 
laboratory, which can be computer labs with an instructor or self-
help sessions at terminals. The "credit hours" (z) are uniformly 3 for 
all courses. 

Following the content section for each course there is a reference 
section containing a set of explicit citations of bibliographic entries, 
organized by topic heading. Citations are in the form "author (year)," 
which indexes the corresponding item in the accompanying bibliog-
raphy. 

The bibliographies are by courses for groups A and B, and fol-
low the corresponding reference sections. For groups C and D a com-
bined bibliography for all the courses in the group is given, following 
the last course description. 

Bibliographic entries are selectively annotated and in many cases 
accompanied by a citation to the review of the book or article in Com-
puting Reviews. This is of the form "CR volume, number (year) 
review number." 

Appendix A. Detailed Descriptions and 
References for Course Group A 

Al. Introduction to Systems Concepts (3-0-3) 

Prerequisite: elementary economics. 
Approach: This course lays the groundwork for the curriculum 

by presenting the systems approach to understanding of both organiza-
tional and technological functions. 

The method is a combination of a series of lectures, a few cases on 
particular systems, and an accounting simulation project. Out-of-
classroom study can be spent in analyzing the behavior of simulated 
systems to obtain an acquaintance with a variety of structures. A pro-
ject for the accounting portion might be the development of a cash flow 
simulation model by the student. This model could rely upon a case 
study as the foundation for understanding what is being modeled and 
to provide a basis for discussion. 

Content: 
I. The systems concept (20%) 

States, transformations, inputs, outputs, hierarchical structure. 
System objectives. Systems with complex/conflicting/multiple ob-
jectives: methods of resolution. System boundaries. Open and closed 
systems. Open systems: properties, negative entropy, adaption. Ele-
ments (subsystems) (subunits) (components). Interfaces. Subsystems: 
independence/dependence, methods of decoupling. Suboptimization, 
side-effects. Deterministic systems; probabilistic systems. The feed-
back concept: maximizing, "satisficing," "adaptivizing," adjusting to 
change. Control in a system: standards as predicted output, feedback 
(open-loop, closed-loop), cost of control. General Systems Theory. 

Examples of systems: ecological, medical service, transportation, 
manufacturing, logistics, etc. 

'2. Defining a system {10%) 
Models as representations of systems. Complex versus simple 

models. Formal and informal systems: interaction between them. Sys-
tem structure: alternative structures. The identification problem. 
Tools: block diagrams, flow graphs, decision tables. Degrees of ag-
gregation for systems. 
3. Systems analysis (10%) 

Selection of a "best" course of action from many possible alter-
natives: advantage versus disadvantage, benefit versus.cost. Determi-
nation of appropriate elements, connections, and processes to achieve 
objectives. Objectives, alternatives, cost-benefits, criteria. Modeling. 
System design: improving an existing system, developing a new sys-

69 



tem. The process of system design: problem identification and defini-
tion, alternative solutions, selection of a "solution," synthesis of the 
proposed system, testing of the system, refining the system. System 
optimization. 
4. Management systems (15%) 

Hierarchical structure. Interaction among subunits and within 
subunits. Human beings as elements in a system. "The Management 
System": the operations system, the decision system, the control 
system, time relationships and information flows. Information sys-
tems for the management system (as subsystems of the management 
system). Information system elements: managers, computer hardware 
and software, communication network, data bases, etc. Functional 
systems: accounting, procurement, inventory, etc. 
5. Management information systems (15%) 

Role of information systems in an organization. Delineating in-
formational needs from traditional organizational structure; from non-
traditional structure. Interface between man and system: man-machine 
systems. Information systems as operational (or production) processes. 
Distinction between logical and physical systems. Planning informa-
tion systems. Approaches to the development of information systems. 
6. Financial and cost accounting systems (30%) 

Basic accounting concepts. Coding structures: the chart of ac-
counts, reporting hierarchies. Statements. Transactions. Financial 
flow. Capital budgeting; inventories; depreciation; working capital; 
cash management. Short and long term sources of funds. Financial 
planning and control. Cost accounting concepts. Classification of 
costs. Volume relationships. The cost accounting cycle. Cost centers. 
Responsibility accounting. Absorption costing. Standards and stan-
dard costs. Inventory costing. Variance analysis. Cost control. Con-
trol of nonmanufacturing costs. Marginal income analysis. Interface 
with financial accounting. 

References: No single text is available for this course, but there 
are extensive references from varied sources. 
1. The systems concept 

Ackoff (1970); Ackoff (1971); Anthony (1965); Anthony (1970); 
von Bertalanffy (1950); Boulding (1956); Buckley (1968); Cleland and 
King (1968); Ellis and Ludwig (1962); F.E. Emery (1969); J.C. 
Emery (1969); Forrester (1961); Goode and Machol (1957); Hitch 
(1953); Katz and Kahn (1966); Sthoderbek (1967); Simon (1969). 
2. Defining a system 

von Bertalanffy (1968); Blumenthal (1969); Churchman et al. 
(1957); Cleland and King (1968); Goode and Machol (1957); Hitch 
(1953); Hitch (1961); Katz and Kahn (1966). 
3. Systems analysis 

von Bertalanffy (1968); Boulding (1956); Churchman et al. 
(1957); Churchman (1968); DeGreene (1970); J.C. Emery (1969); For-
rester (1961); Hitch (1953); Hitch (1961); Katz and Kahn (1966); Mc-
Kean (1958). 
4. Management systems 

Ackoff (1967); Ackoff (1970); Anthony (1965); Blumenthal (1969); 
Boulding (1956b); Buckley (1968); Churchman et al. (1957); Good and 
Machol (1957); Hitch (1953); Schoderbek (1967); Starr (1971). 
5. Management information systems 

Ackoff (1967); Benjamin (1971); Blumenthal (1969); Dearden 
(1972); J.C. Emery (1969); Krauss (1970); O'Brien (1970); Simon 
(1965). 
6. Financial and cost accounting systems 

Anthony (1970); Cleland and King (1968); Fremgen (1966); Horn-
gren (1970); Ijiri (1968); Lindsay and Sametz (1967); Meigs (1970); 
Seiler (1971); Thomas (1968). 

Bibliography: 
Ackoff, R.L. (1967) Management misinformation systems. Manage-

ment Science 14, 4, B- 147 56. 
A paper outlining the systems concept and the problems resulting 
when the systems approach is ignored in the development of in-
formation systems. 

Ackoff, R.L. (1970) A Concept of Corporate Planning. Wiley, New 
York. 
Note especially Ch. 6, "Control," in which Ackoff argues that 
the Management Information System is but a subsystem of the 
Management System. 

Ackoff. R.L. (1971) Towards a ,->>stcni of systems concepts. Man-
agement Science 17. 1 1, 661 71. 
An exposition of the concepts and terms "used to talk about sys-
tems," with particular attention given to organizations. 

Anthony, R.N. (1965) Planning and Control Systems: A Framework 
for Analysis. Graduate School of Business Administration, Har-
vard U., Boston. 
Provides a framework structured on the notions of strategic 
planning, management controls and operational control. 

Anthony, R.N. (1970) Management Accounting Text and Cases. 
Irwin, Homewood, III. 
An introduction to financial and cost accounting systems. 

Benjamin, R.I. (1971) Control of the Information System Develop-
ment Cycle. Wiley, New York. 
An introduction to the system life cycle and its possible evolutions. 
See also annotation in bibliography for Course Group D. 

von Bertalanffy, L. (1950) The theory of open systems in physics and 
biology. Science 111, 23-29. 
Generally accepted as the key paper drawing attention to the 
importance of the "open-system" concept, 

von Bertalanffy, L. (1968) General System Theory: Foundations, De-
velopment, Applications. George Braziller, New York. 
See especially Ch. 1 "Introduction" and Ch. 2 "The Meaning 
of General System Theory." 

Blumenthal, S.C. (1969) Management Information Systems: A Frame-
work for Planning and Development. Prentice-Hall, Englewood 
Cliffs, N.J., CR10, 10 (69) 17,647. 
A highly individual and idiosyncratic attempt to apply "the sys-
tems planning" approach to the development of management in-
formation systems. Note especially Ch. 3 "The Systems Taxon-
omy of an Industrial Corporation." Also see annotation in bibliog-
raphy for Course Group D. 

Boulding, K.E. (1956) The Image. U. of Michigan Press, Ann Arbor, 
Mich. 
Note especially Boulding's discussion of the levels in the hier-
archy of organizations in Ch. 2 "The Image in the Theory of Or-
ganization." 

Buckley, W. (1968) Modern Systems Research for the Behavioral 
Scientist: A Sourcebook. Aldine, Chicago. 
The use of systems ideas in the behavioral sciences; good intro-
duction to definitions, especially of "open systems." 

Churchman, C.W., Ackoff, R.L., and Arnoff, E.L. (1957) Introduc-
tion to Operations Research. Wiley, New York. 
Note especially Ch. 2 "An Operations Research Study of a Sys-
tem as a Whole" and Ch. 7 "Construction and Solution of the 
Models." 

Churchman, C.W. (1968) The Systems Approach. Dell Books, New 
York. 
Note especially "Supplement II" in which Churchman suggests 
additional readings and comments on the history of the systems 
approach, beginning with the statement that "Plato's Republic 
is a famous systems-science book." 

Cleland, D.I., and King, W.R. (1968) Systems Analysis and Project 
Management. McGraw-Hill, New York. CR 10, 4(69) 16. 532. 
Note especially Ch. 6 "Planning-Programming-Budgeting and 
Systems Analysis." 

Dearden, J. (1972) MIS is a mirage. Harvard Bus. Rev. (Jan.-Feb.), 
90-99. 
An attack on the concept of "The Management Information 
System," arguing that a single, integrated information system 
cannot be devised. 

DeGreene, K.B. (Ed.) (1970) Systems Psychology. McGraw-Hill, 
New York. 
"This book is written for the new interdisciplinary breed of stu-
dent and professional who works with complex technological 
problems involving people . . . the book is a psychology book, a 
human factors book, and a management book, but above all it is 
a systems book." 

Eckman, D.P. (Ed.) (1961). Systems: Research and Design. Wiley, 
New York. 

Ellis, D O., and Ludwig, F.J. (1962) Systems Philosophy. Prentice-
Hall, Englewood Cliffs, N.J. 
The systems concept from the engineering point of view. 

Emery, F.E. (Ed.) (1969) Systems Thinking: Selected Readings. 
Penguin Books, New York. 
Emphasizes systems thinking as developed from theorizing about 
biological systems to social systems rather than that which came 
from the design of complex engineering systems. Concentrates 
on "open systems" (open to exchange with an environment) and 
adaptive behavior. 

70 



Emery, J.C. (1969) Organizational Planning and Control Systems: 
Theory and Technology. Crowell Collier and Macmillan, New 
York. 
An analysis of multilevel planning and control and the develop-
ment of a supporting information system. Note especially Ch. 1 
"The Systems Concept," Ch. 2 "The Organization as a System," 
and Ch. 3 "The Technology of Information Systems." Also see 
annotation in bibliography for Course Group D. 

Forrester, J.W. (1961) Industrial Dynamics. MIT Press, Cambridge, 
Mass. 

Fremgen, J.M. (1966) Managerial Cost Analysis. Irwin, Homewood, 
111. 
A reference text for the topics on financial and cost accounting 
systems. 

Goode, H.H., and Machol, R.E. (1957) System Engineering: An In-
troduction to the Design of Large-Scale Systems. McGraw-Hill, 
New York. 

Hitch, C. (1953) Sub-optimization in operations problems. J. Oper. 
Res. Soc. Amer. (now Operations Research) 1, 3, 87-99. 
A landmark paper on the concept and problems of suboptimiza-
tion. 

Hitch, C. (1961) On the choice of objectives in systems studies. 
In Eckman (1961). 

Horngren, C.T. (1970) Accounting for Management Control. Prentice-
Hall, Englewood Cliffs, N. J. 
A possible text for the topics on financial and cost accounting sys-
tems. 

Ijiri, Y. (1968) An application of input-output analysis to some prob-
lems in cost accounting. Management Accounting 4. 8. 49 61. 

Intercollegiate Bibliography (1970) Selected Cases, Business Admini-
stration, Vol. II 13, Intercollegiate Case Clearing House. Har-
vard U„ Soliders Field. Boston. MA 02163 

Intercollegiate Bibliography (1971) Collected Bibliography of Cases, 
Vol. 14, Intercollegiate Case Clearing House, Harvard U, Sol-
diers Field, Boston, MA 02163 

Katz. D., and Kahn, R.L. (1966) The Social Psychology of Organiza-
tions. Wiley, New York. 
Ch. 2 "Common Characteristics of Open Systems" is an elemen-
tary exposition of the "open system" concept and its implications 
for thinking about social systems. Contrasts this approach with 
older approaches of viewing organizations as closed systems. 

Krauss, L.I. (1970) Computer-Based Management Information Sys-
stems. American Management Assoc., New York. 
An exposition of the basic ideas of "MIS." 

Lindsay, R., and Sametz, A.W. (1967) Financial Management: An 
Analytical Approach (rev. ed.). Irwin, Homewood, 111. 
An introductory text in financial management. 

McKean, R.N. (1958) Efficiency in Government Through Systems 
Analysis. Wiley, New York. 
See especially the discussion of suboptimization and conflict 
among system objectives in Pt. 2 "Some General Problems of 
Analysis." 

Meigs, W.B. (1970) Financial Accounting. McGraw-Hill, New York. 
A reference text for the topic on financial accounting. 

O'Brien, J.J. (1970) Management Information Systems: Concepts, 
Techniques and Applications. Van Nostrand Reinhold, New 
York. 
An example of an elementary textbook presenting the essentials 
of the so-called "Management Information Systems" concept. 

Schoderbek, P.P. (1967) Management Systems. Wiley, New York. 
A book of readings intended to be used as a textbook in manage-
ment courses to help in the "understanding of the total systems 
concept as well as developing insight into some of the problems 
besetting management." Note especially the criticism of the to-
tal system concept by W.M.A. Brooker, "The Total System 
Myth." 

Seiler, R. (1971) Financial Model of the Firm (FtMOF). Dept. of 
Accounting, College of Business Administration, U. of Houston. 
Houston, Texas. 
A computer-based financial model for use in introductory ac-
counting courses. 

Simon. H.A. (1965) The Shape of Automation for Men and Manage-
ment. Harper & Row. New York. CR 7, 1(66)8773. 

Simon. H.A. (1969) The Sciences of the Artificial. MIT Press, Cam-
bridge, Mass. CR 11, 1(70) 18,222 
The entire work is recommended but note especially Ch. 4 "The 
Architecture of Complexity." 

Starr, M.K. (1971) Management: A Modern Approach. Harcourt 
Brace and Jovanovich, New York. 
Uses systems thinking in a novel management textbook. Note 
especially Ch. 2 "Building Management Models," Ch. 3 "Using 
Models," Ch. 7 "Managing Systems with Complex Objectives," 
Ch. 12, "Communication and Information Control," and Ch. 1.3 
"The Organization of Simple Systems and Aggregations. 

Thomas, W.E. (1968) Readings in Cost Accounting, Budgeting and 
Control. Southwestern U. Press, Georgetown, Texas. 

A2. Organizational Functions (3-0-3) 

Prerequisite: AI. 
Corequisite: B2. 
Approach: This course is structured on a balance of lecture and 

case material to describe and discuss organizational functions. (The 
business firm is emphasized in this outline^but alternatively the con-
text could be other types of enterprise.) 

Case discussions are used to develop understanding of the infor-
mation needs necessary to manage particular functions. Simulation 
exercises are suggested for the logistics, inventory and cash flow sec-
tions. The financial systems and marketing management sections 
could use a variety of analytical models. A computerized simulation 
game might be used throughout the course to provide illustration of 
concepts, or at the end of the course to give students an understanding 
of the process of integration of management functions in the operation 
of the total enterprise. 

Content: 
1. Introduction to business systems (10%) 

The flow of product and its transformation from raw material to 
purchased goods. Identification of necessary personnel, capital, 
cash, equipment, facilities and structure. Consideration of the budget 
as the usual planning and control device. The process of management. 
2. Elements of a production system (20%) 

Objectives of production. Design of a production system. Stan-
dards. Product design and process planning, layout maintenance, in-
ventory (logistics) systems, and work flow. 
3. Controlling a production system (10%) 

Forecasting, production planning and control, capacity planning, 
scheduling, dispatching, control of logistics. Production information 
systems. 
4. Financial systems (10%) 

Internal system capital structure. Cyclical nature of business. 
Sources of cash demands and flows: external systems banking; equity 
money markets; cash flow analysis; sources of funds. Information sys-
tems for financial management. 
5. Identifying internal needs and external sources of funds (15%) 

Capital needs. Change and growth. Uncertainty. Cyclical influ-
ences. Analysis of external sources of funds—capital structure, ac-
quiring new capital. Information llow in financial institutions. 
6. The marketing function (10%) 

Overview of the marketing process: consumer analysis, market 
dynamics, competitive analysis. Nature of pricing decisions: demand 
and cost structures. Channels of distribution. Marketing information 
systems. 
7. Managing a market (10%) 

Product policy decisions—the product line. Maintaining a mar-
ket. Advertising, selling, distribution. Product life cycle development 
and introduction of new products. 
8. Integration offunctions through information systems (15%) 

Information interface between production-finance-marketing de-
cision systems. Planning interaction and common files: the data base 
as an integrating system. The budgeting process: planning, control. 

References: 
1. Introduction to business systems 

Britt and Boyd (1963) Ch. 1. 5. 8; Buffa (1969) Ch. 2; Dearden 
et al. (1971) Ch. I; Drucker (1954) Ch. I 10; Haynes and Massie 
(1969) Ch. I, 2; Prince (1970); Starr (1971a) Pt. I; Starr (1971b) Ch. 
1. 3; Van Home (1968) Ch. 1. 2. 
2. Elements o f a production system 

Buffa (1969) Ch. I, 3. 9 i.5; Bowman and Fetter (1961): Eilon 
(1962); Prince (1970), Pt. 3; Starr (1971b) Ch. 2, 8 II. 
3. Controlling a production system 

Buffa (1969) Ch. 16; Starr (1971b) Ch. 4 7. 

71 



4. Financial systems 
Anthony (1970); Horngren (1970); Meigs (1970); Van Home 

(1968) Ch. 2, 7, 8, 25. 
5. Identifying internal needs and external sources of funds 

Van Home (1968) Ch. 15-20. 
6. The marketing function 

Amstutz (1967) Ch. 7; Britt and Boyd (1963) Ch. 3, 4, 7, 9, 10, 
38, 43, 49; Kotler (1967) Ch. 7, 9; Prince (1970) Pt. 3. 
7. Managing a market 

Britt and Boyd (1963) Ch. 17, 25, 28, 34, 35, 39; Kotler (1967) 
Ch. 14, 15, 16; Sheth (1967). 
8. Integration of functions through information systems. 

Blumenthal (1969); Dearden et al. (1971) Ch. 5; Emery (1969) 
Ch. 1-3; McFarlanetal. (1970); Morton (1971). 

Bibliography: 
Amstutz, A.E. (1967) Computer Simulation of Competitive Market 

Response. M 1 T Press, Cambridge, Mass. 
A well-described model of a market. I 

Anthony, R.N. (1970) Management Accounting: Text and Cases. 
Irwin, Homewood, 111. 

Blumenthal. S.C. (1969) Management Information Systems: A Frame-
work for Planning and Development. Prentice-Hall, Englewood 
Cliffs, N. J. CR 10, 10(69) 17,647. 
See annotation in bibliography for Course Al, also in bibliog-
raphy for Course Group D. 

Bowman, E.H., and Fetter, K.Q. (\9(i\) Analysis for Production Man-
agement. Irwin, Homewood, 111. 

Britt, S.H., and Boyd, H.W. (1963) Marketing Management and Ad-
ministrative Action. McGraw-Hill, New York. 

Buffa, E.S. (1969) Modern Production Management. Wiley, New 
York. 
A comprehensive introductory text. 

Dearden, J., McFarlan, F.W., and Zani, W.M. (1971) Managing 
Computer-Based Information Systems. Irwin, Homewood, 111. 

Drucker, P.F. (1954) The Practice of Management. Harper & Row, 
New York. 

Eilon, S. (1962) Elements of Production Planning and Control. Crowell 
Collier and Macmillan, New York. 

Emery, J.C. (1969) Organizational Planning and Control Systems. 
Crowell Collier and Macmillan, New York. 
See annotation in bibliography for Course A I, also in bibliography 
for Course Group D. 

Haynes, W.W., and Massie, J.L. (1969) Management: Analysis, Con-
cepts and Cases. Prentice-Hall, Englewood Cliffs, N. J. 

Horngren, C.T. (1970) Accounting for Management Control. Pren-
tice-Hall, Englewood Cliffs, N.J. 

Kotler, P. (1967) Marketing Management: Analysis, Planning, and 
Control. Prentice-Hall, Englewood Cliffs, N.J. 
A well-articulated conceptually-oriented text. 

McFarlan, F.W., McKenney, J.L., and Seiler, J.A. (1970) The Man-
agement Game. Crowell Collier and Macmillan, New York. 
A general business game programmed in FORTRAN IV. 

Meigs, W.B. (1970) Financial Accounting. McGraw-Hill, New York. 
Morton, M.S.S. (1971) Management Decision Systems. Graduate 

School of Business Administration, Harvard U., Boston. CR 12, 
6(71)20,367. 
Presents results of academic experimentation in manager/com-
puter interactive terminal systems. 

Prince, T.R. (1970) Information Systems for Management Planning 
and Control. Irwin, Homewood, 111. 
Note especially Pt. 2 "Traditional Information Systems," Pt. 3 
"Production and Operation Information Systems" and Pt. 4 
"Marketing Information Systems." 

Sheth, J.N. (1967) A review of buyer behavior. Management Science 
13, 12, B718-56. 

Starr, M.K. (1971a) Management: A Modern Approach. Harcourt 
Brace and Jovanovich, New York. 

Starr, M.K. (1971b) Systems Management of Operations. Prentice-
Hall, Englewood Cliffs, N.J. 

Van Home, J.C. (1968) Financial Management and Policy. Prentice-
Hall, Englewood Cliffs, N.J. 
A comprehensive, lucid discussion of financial management. 

A3. Information Systems for Operations and 
Management (3-1-3) 

Prerequisites: A2, C2. 
Approach: This course deals with ways information systems are 

superimposed on organizational functions and may be thought of as 
an introduction to information analysis continued in course DI. 

The method is primarily lecture and class discussion. Cases re-
inforce the planning and control concepts and emphasize the critical 
behavior aspects of decision systems. Of particular relevance are 
cases relying upon the analysis of the material, with interactive time 
shared models to improve the student's understanding of the man-
ager/computer interaction. Research papers might require students 
to survey the literature on decision making in planning and control 
systems. A project to develop a system on a complex case study would 
be useful for integrating the course and preparing the student for the 
D courses. 

Content: 
1. Information reqiurements for an organization (30%) 

Informal and formal channels of communication. Defining de-
cisions. Decision criteria. Traditional decision making. Programmed 
decision making. Management-by-exception. Strategic, tactical and 
operational levels of decisions. External versus internal information 
sources and constraints. Integrating information systems. Cost and 
value of information. Management intelligence systems. 
2. Operational level systems (10%) 

Providing for information needs of operating level supervisors 
and their employees. Building on existing systems. 
3. Tactical level systems (10%) 

Providing for information needs of middle management. Plan-
ning and control systems. Varying needs of organizations: service-
oriented versus product-oriented organizations. 
4. Strategic level systems (20%) 

Providing for information needs of executive level management. 
Effect of centralized versus decentralized organization structure. 
Strategic planning models. Analytical and simulation models in de-
cision making. 
5. Styles of interaction (15%) 

Manager/computer interactive systems: technical and behav-
ioral considerations. System outputs: printed, audio, graphic. Data 
base design considerations for fast response systems. Management 
control rooms. 
6. Planning for a comprehensive information system (10%) 

Project control for system development. Managing the informa-
tion function. Top-down versus bottom-up approach to the overall 
management information system. Integrating systems. 
7. Measuring the effectiveness of an information system (5%) 

Setting up measures of effectiveness. Evaluating effectiveness: 
measuring system performance, calculating costs and performance, 
cost/performance trade-offs. Measuring user satisfaction. 

References: 
1. Information requirements for an organization 

Ackoff (1970); Beckett (1971); Blumenthal (1969); Canning 
(1970a); Canning (1970b); Canning (1970c); Hodge and Johnson 
(1970); Kelly (1970); Krauss (1970); LeBreton (1969); Myers (1967); 
Morton (1971), Murdick and Ross (1971). 
2. Operational level systems 

Blumenthal (1969). 
3. Tactical level systems 

Anthony (1965); Canning (1968a); Emery (1969); Henderson 
and Dearden (1966); Lowry (1969). 
4. Strategic level systems 

Ackoff (1970); Anthony (1965); Canning (1968b); Emery (1969); 
Schrieber (1970); Zannetos (1964). 
5. Styles of interaction 

Canning (1970d); DeGreene (1970); Forrester (1961); Miller and 
Starr (1967); Morton (1971). 
6. Planning for a comprehensive information system 

Canning (1968c); Krauss (1970); McKinsey (1968); Rauseo 
(1970); Shaw and Atkins (1970). 
7. Measuring the effectiveness of an information system 

Brandon (1963); Canning (1971); Dearden et al. (1971); Emery 
(1971); Orlicky (1969). 

72 



Bibliography: 
Ackoff, R.L. (1970) A Concept of Corporate Planning. Wiley, New 

York. See annotation in bibliography for Course Al. 
Anthony, R.N. (1965) Planning and Control Systems: A Framework 

for Analysis. Graduate School of Business Administration, Har-
vard U., Boston. 
See annotation in bibliography for Course A1. 

Beckett, J. (1971) Management Dynamics: The New Synthesis. Mc-
Graw-Hill, New York. 

Blumenthal, S.C. (1969) Management Information Systems: A 
Framework for Planning and Development. Prentice-Hall, Engle-
wood Cliffs, N.J. CR 10, 10(69)17,647. 
See annotation in bibliography for Course Group Al, also in 
bibliography for Course Group D. 

Brandon, R. (1963) Management Standards for Data Processing. Van 
Nostrand Reinhold, New York. CR 5, 5(64)6162. 

Canning, R.G. (1968a) New dimensions in management control. EDP 
Analyzer 6. 2. 

Canning, R.G. (1968b) Systematic methods for business planning. 
EDP Analyzer 6, 3. 

Canning, R.G. (1968c) Overall guidance of data processing. EDP 
Analyzer 6,8. 

Canning, R.G. (1970a) Creating the corporate data base. EDP An-
alyzer 8, 2. 

Canning, R.G. (1970b) Organizing the corporate data base. EDP An-
alyzer 8, 3. 

Canning, R.G. (1970c) Processing the corporate data base. EDP An-
alyzer 8, 4. 

Canning, R.G. (1970d) Progressive fast response systems. EDP An-
alyzer 8, 8. 

Canning, R.G. (1971) Get more computer efficiency. EDP Analyzer 
9, 3. 

Dearden, J., McFarlan, F.W., and Zani, W.M. (1971) Managing 
Computer-Based Information Systems. Irwin, Homewood, III. 

DeGreene, K.B. (Ed.) (1970) Systems Psychology. McGraw-Hill, 
New York. 
See annotation in bibliography for Course AI. 

Emery, J.C. (1969). Organizational Planning and Control Systems: 
Theory and Technology. Crowell Collier and Macmillan, New 
York. 
See annotation in bibliography for Course Al , also in bibliog-
raphy for Course Group D. 

Emery, J.C. (1971) Cost/Benefit Analysis of Information Systems. 
The Society for Management Information Systems, Chicago. 
See annotation in bibliography for Course Group D. 

Forrester, J.W. (1961) Industrial Dynamics. MIT Press, Cambridge, 
Mass. 

Henderson, B.D., Dearden, J. (1966) New systems for divisional con-
trol. Harvard Bus. Rev. (Sept.- Oct.), 144 60. 

Hodge, B.J., Johnson, H.T. (1970) Management and Organizational 
Behavior. Wiley, New York. 

Intercollegiate Bibliography. (1971) Collected Bibliography of Cases, 
Vol. 14, Intercollegiate Case Clearing House, Harvard U., Sol-
diers Field. Boston. MA 02163. 

Kelly, J.F. (1970) Computerized Management Information Systems. 
Crowell Collier and Macmillan, New York, CR 11, 10(70)19, 895. 

Krauss, L.I. (1970) Computer-Based Management Information Sys-
tems. American Management Assoc., New York. 

LeBreton, P.P. (1969) Administrative Intelligence-Information Sys-
tems. Houghton-Mifflin, Boston. 

Lowry, D.E. (1969) Computers in operational planning analysis and 
control. In Computers and Management, The 1967 Leatherbee 
Lectures, Graduate School of Business Administration, Har-
vard U.. Boston. 

Malcolm, D.G., and Rowe, A. J. (Eds.) (1960) Management Control 
Systems. Wiley, New York. 

McKinsey & Co. (1968) Unlocking the Computer s Profit Potential. 
McKinsey & Co. New York. Reprinted in Computers and Auto-
mation (Apr. 1969), 24-33. CR 10, 11(69)17, 795. 

Miller, P.W., and Starr, M.K. (1967) The Structure of Human De-
cisions. Prentice-Hall, Englewood, Cliffs, N.J. 

Morton, M.S.S. (1971) Management Decision Systems. Graduate 
School of Business Administration, Harvard U., Boston, CR 12, 
6(71)20, 367. 
See annotation in bibliography for Course Group A2. 

Murdick, R.G., and Ross. J.E. 11971) Information Systems for Mod-

ern Management. Prentice-Hall, Englewood Cliffs, N.J. CR 12, 
7(7)21, 519. 

Myers, C.A. (Ed) (1967) The Impact of Computers on Management. 
MIT Press, Cambridge, Mass. CR 8, 4(67)12, 265. 

Nolan, R.L. (1971) Systems analysis for computer based information 
systems design. Data Base 3, 4, 1-10. 
Distinguishes organizational objectives analysis, decision analysis, 
and data-processing analysis as phases of information systems de-
velopment. Includes over 100 references. 

Orlicky, J. (1969) The Successful Computer System: Its Planning, 
Development and Management in a Business Enterprise. Mc-
Graw-Hill, New York. CR 10, 11(69)17, 820. 
Introduction to planning for the MIS. 

Rauseo, M.J. (1970) Management Controls for Computer Processing. 
American Management Assoc., New York. CR 12, 3(71)20.777. 

Schrieber, A. (1970) Corporate Simulation Models. U. of Washing-
ton, Pullman, Wash. 

Shaw, J.C., and Atkins, W. (1970) Managing Computer Systems 
Projects. McGraw-Hill, New York. CR 12, 9(71)21, 832. 

Zannetos, Z. (1964) On the theory of divisional structures: some 
aspects of decentralization of control and decision-making. Man-
agement Science 12, 49-69. 

A4. Social Implications of Information Systems (3-0-3) 

Prerequisite: A3. 
Approach: This course uses a variety of instructional methods 

(outside speakers would be particularly useful) and draws from a 
number of academic disciplines. Historical analogy is used to place 
the computer in historical perspective. Economic analysis is used in 
identifying the economic characteristics of the computer industry and 
in measuring the social costs of computer technology. Legal, philo-
sophical, and moral concepts are applied to the questions of privacy 
and quality of life. Case studies are used to explore the impact of 
various applications. Emphasis is on discussion of issues, implications, 
and possible information system and societal remedies. Student par-
ticipation in the selection of specific issues or facets to study seems 
appropriate. 

Content: 
1. Historical perspective (10%) 

Technological change in the 19th and 20th centuries. Economic 
and social problems of technology. Historical analogies. Method of 
assessing social costs of technological change. 
2. The computer industry (15%) 

Sales and employment in the computer industry. Growth pattern. 
Competition in the computer industry. Standardization. Government 
regulation. Employment in information processing jobs. Problem of 
providing training. 
3. Implications for the work force (15%) 

Impact on industrial occupations. Impact on clerical occupations. 
Impact on managerial occupations. 
4. Effects on organizational practice (20%) 

Centralization versus decentralization. Patterns of obtaining and 
providing services. Legal requirements. Possibilities for individuali-
zation. Effect on capacity to and rate of change. 
5. Privacy and the quality of life (20%) 

Public and private data banks. Rights of privacy. Relation of the 
individual to organizational data systems. Consumer protection. 
6. The individual and the social system (20%) 

Influence on the educational process. Influence on the political 
process. Systems for administering justice, welfare, health care. 

References: Some discussion of overall approaches may be found 
in Horowitz et al. (1972). 
1. Historical perspective 

Kelson et al. (1967): Rosenberg (1971); Taviss (1970); Viavant 
(1971); Westin (1971). 
2. The computer industrv 

Desmonde (1971); Martin and Norman (1970); Sharpe (1969); 
Taviss (1970). 
3. Implications for the work force 

Gossman (1969); Myers (1967); Rosenberg (1971); Simon (1965); 
Taviss (1970). 
4. Effects on organizational practice 

Leavitt and Whistler (1958); Martin and Norman (1970); Myers 
(1967); Pylyshyn (1970); Simon (1965); Withington (1970). 

73 



5. Privacy and the quality of life 
Greenberger (1971); Harrison (1967); Hoffman (1969); Martin 

and Norman (1970); Miller (1971); Pylyshyn (1970); Taviss (1970); ' 
Westin (1967). 
6. The individual and the social system 

Desmonde (1971); Martin and Norman (1970); Pylyshyn (1970); 
Taviss (1970). 

Bibliography: 
Desmonde, W.H. (1971) Computers and Their Uses. Prentice-Hall, 

Englewood Cliffs, N.J. 
A layman's view of how computers are used. 

Grossman, F.W. (1969) The Impact of Technological Change on 
Man-Power and Skill Demand. Department of Industrial Engi-
neering, U. of California, Berkeley, Calif. 

Greenberger, M. (Ed.) (1971) Computers, Communications and the 
Public Interest. Johns Hopkins Press, Baltimore, Md. CR 12, 
11(71)22, 096. 
A series of lectures by knowledgeable and thoughtful people on 
the relations between computers and society. 

Harrison, A. (1967) The Problems of Privacy in the Computer Age: 
An Annotated Bibliography. Document RM-5495-PR, The 
RAND Corp., Santa Monica, Calif. 

Hoffman, L. (1969) Computers and privacy: a survey. Computing 
Surveys I, 2, 85 103. 
A survey of technical literature and a discussion of what the tech-
nology can do to assist in maintaining privacy of information. 

Horowitz, E., Megan , H., and Shaw, A. (1972) Computers and so-
ciety: a proposed course for computer scientists. Comm. ACM 
15, 4, 257 261. 

Kelson, R.R., Peck, J., and Kalacheck, E. (1967) Technology, Eco-
nomic Growth, and Public Policy. Brookings Institute, Washing-
ton, D.C. 

Leavitt, H.J., and Whisler, T.L. (1958) Management in the 1980's. 
Harvard Bus. Rev. (Nov.-Dec.), 41 -48. CR 9, 4(68)13,985. 

Martin, J., and Norman, A. (1970) The Computerized Society. Pren-
tice-Hall, Englewood Cliffs, N.J. 
The first part of the book titled "Euphoria" is very interesting. 
Later sections deal more with the technology. 

Miller, A. (1971) The Assault on Privacy: Computers, Data Banks, 
and Dossiers. U. of Michigan Press, Ann Arbor, Mich. CR 12, 
8(71)21, 631. 
A valuable compendium of the legal and ethical problems atten-
dant to the growing use and sharing of data banks. 

Myers, C.A. (Ed.) (1967) The Impact of Computers on Management. 
MIT Press, Cambridge, Mass. CR 8 4(67)12, 265. 

Pylyshyn, Z.W. (Ed.) (1970) Perspectives on the Computer Revolu-
tion. Prentice-Hall, Englewood Cliffs, N.J. CR 12, 6(71)21,297. 
Especially good on the educational and intellectual uses of com-
puters, and the effects of such uses. 

Rosenberg, N. (Ed.) (1971) The Economics of Technological Change. 
Penguin Books, New York. 

Sharpe, W.F. (1969). The Economics of Computers. Columbia U. 
Press, New York. 
Especially interesting are the sections on vendor behavior and se-
lection of equipment. See also annotation in bibliography for 
Course Group D. 

Simon, H.A. (1965) The Shape of Automation for Men and Manage-
ment. Harper & Row, New York. CR 7, 1(66)8773. 
Three separate lectures and papers, all worth reading. 

Taviss, I. (Ed.) (1970) The Computer Impact. Prentice-Hall, Engle-
wood Cliffs, N.J. The readings provide good, broad coverage 
of the entire area. 

Viavant, W. (Ed.) (1971) Readings in Computers and Society, Sci-
ence Research Assoc., Palo Alto, Calif. 

Westin, A.F. (1967) Privacy and Freedom. Atheneum Press, New 
York. 
A legal and philosophical look at the problem of privacy. 

Westin, A.F. (Ed.) (1971) Information Technology in a Democracy. 
Harvard U. Press, Cambridge, Mass. 

Withington, F. (1970) The Real Computer: Its Influences, Uses and 
Effects. Addison-Wesley, Reading, Mass. 

Appendix B. Detailed Descriptions and References for 
Course Group B. 

Bl.OperationsAnalysis and Modeling (3-1-3) 

Prerequisites: finite mathematics, elementary statistics, ele-
mentary computer programming. 

Approach: This course is based on the use of analytical models 
as aids in the formulation afid resolution of system alternatives. 
Emphasis is on problem formulation and resolution relying upon 
available analysis packages. The discussion of projects should focus 
on the decision itself and on the use of models to consider alternatives 
and test assumptions. Problems of data acquisition, preparation, and 
maintenance should be stressed. 

Projects should be drawn from the information system design 
area. The course might conclude with each student participating in 
the formulation of a simulation project that includes several of the 
analytical models introduced early in the course. 

Content: 
1. Characterization of scheduling situations (20%) 

Characterization of a set of interlocking activities as a network. 
Popular algorithms for formulating and solving critical path models. 
Problems of manipulating estimates and range of accuracy measure-
ments. Job scheduling and dispatching rules. Use of network models 
for control of projects. Scheduling in operating systems. 
2. Analysis of allocation problems with mathematical programming 

(20%) 
Methods of formulating and solving linear programming prob-

lems using packaged computer programs. Linear programming as an 
aid to planning the allocation of interdependent resources. Value of 
models in the sensitivity testing of formulations. Evolutionary nature 
of large models as a decision making aid. Applications to scheduling 
and computer network design. Optimization of computer networks. 
Note: particular attention should be paid to the data management re-
quirements of LP models allowing examination of the general notions 
of constraints, objective functions, and optimization in modeling. 
3. Queueing models (20%) 

Concept of queueing models and their general applicability to a 
broad range of situations. Considerations of the many queueing proc-
cesses within computer systems. 
4. Inventory models (10%) 

Inventory models ranging from simple, single product to multiple 
product under uncertainty. The data base as an inventory. Possible 
application of LP or dynamic programming analyses to inventory. 
5. Use of simulation models (30%) 

Examples and class projects to explore the need for problem 
definition and reliance upon tailoring standard concepts to new situa-
tions, especially through dynamic models. Note: the analysis of the 
user and operating system parts of a time-sharing system might serve 
as class projects to integrate this topic with prior ones. 

References: Several good textbooks (see Bibliography) contain 
teaching materials on the range of decision models covered in this 
course. The Journal of the ACM has published many specific papers 
on the use of operations analysis techniques in the design of computer 
systems. 
1. Characterization of scheduling situations 

Conway et al. (1967); Denning (1967). 
2. Analysis of allocation problems with mathematical programming 

Aho et al. (1971); Day (1965); Ramamoorthy and Chandy (1970); 
Theiss (1965). 
3. Queueing models 

Abate et al. (1968); Coffman (1969); Frank (1969); Gaver (1966). 
4. Inventory models 

Gaver and Lewis (1971); Martin (1967); Sharpe (1969); Wood-
rum (1970). 
5. Use of simulation models 

Lum et al. (1970); Senko et al. (1969); Sutherland (1971). 

Bibliography: 
Abate, J., Dubner, H., and Weinberg, S.B. (1968). Queueing analysis 

of the IBM 2314 disk storage facility. J. ACM 15, 4, 577-89. CR 
10, 9(69)17,499. 

Ackoff, R., and Sasieni, M. (1968) Fundamentals of Operations Re-
search. Wiley, New York. 
A good basic text for the not too mathematically inclined. Easy to 
read. 

74 



Aho, A., Denning, P.J., and Ullman, J.D. (1971) Principles of optimal 
page replacement./. A CM 18, I, 80-93. CR 12, 7(71)21, 554. 
A dynamic programming model for optimizing paging. 

Coffman, E.G.Jr. (1969) Analysis of a drum input/output queue 
under scheduled operation in a paged computer svstem. J. 
ACM 16, 1, 73 90. 

Conway. R., Maxwell, W„ and Miller, L. (1967) Theory of Schedul-
ing. Addison-Wesley, Reading, Mass. 
Comprehensive treatment of scheduling problems and the tech-
niques for solving them, including simulation. 

Day, R.H. (1965) On optimal extracting from a multiple file data 
storage system: an application of integer programming. Opera-
tions Research 13. 3, 482-94. 

Denning, P.J. (1967) Effects of scheduling on file memory operations. 
Proc. AFIPS SJCC, Vol. 30, AFIPS Press, Montvale, N.J. 
9-21. CR8, 6(67)13, 301. 

Frank, H. (1969) Analysis and optimization of disk storage devices 
for time-sharing systems. J. ACM 16, 4. 602 -20. CR II, 2(70)18, 
503. 

Gaver, D. (1966) Probability Models for Multiprogramming Compu-
ter Systems. Doc. AD 640-706, Carnegie-Mellon U., Pittsburgh, 
Pa. CR 9, 1(68)13,459. 

Gaver, D.P.. and Lewis. P.A.W. (1971) Probability models for buffer 
storage allocation problems. J. ACM IS, 4, 186 98. CR 12. 9(71) 
21. 870. 

Hillier, F., and Lieberman, G. (1967) Introduction to Operations Re-
search. Holden-Day, San Francisco. 
An excellent textbook, with good coverage of probabilistic models. 

Lum, V., Ling, H., and Senko, M. (1970) Analysis of a complex data 
management access method by simulation modeling. Proc. 
AFIPS FJCC Vol. 37, AFIPS Press, Montvale. N.J. 211 22. 

Martin. J. (1967) Design of ReaLTime Computer Systems. Prentice-
Hall. Englewood Cliffs, N.J. CR 9. 2(68)13,607. 
This well-written volume stresses the use of quantitative analyses 
at all stages in the design of information systems and gives ex-
amples of the techniques. 

Ramamoorthy, C.V., and Chandy, K.M. (1970) Optimization of 
memory hierarchies in multiprogrammed systems. J. ACM 17. 
3,426-45. 
Shows the use of both linear and integer programming models. 

Senko. M., Lum, V., and Owens, P. (1969) A file organization and 
evaluation model (FOREM). Proc. IFIP Congress 68. CR 11, 
4(70)18.813. 
A description of a generalized simulation model for file systems. 

Sharpe. W.F. (1969) The Economics of Computers. Columbia U. 
Press, New York. 
Quantitative analyses from an economist's perspective. 

Sutherland, J.W. (1971) The configurator: today and tomorrow (Pt. 1) 
and Tackle systems selection systematically (Pt. 2). Computer 
Decisions (Feb., Apr.), 38 43:14 19, CR 12, 7(71)21,521. 
A two-part article on the use of simulation and analytical methods 
in the selection of a computer configuration. 

Teichroew, D. (1964) An Introduction to Management Science. Wiley. 
New York. 
Broad coverage of operations research/management science 
techniques. 

Theiss, H.E. (1965) Mathematical programming techniques for opti-
mal computer use. Proc. 1965 ACM National Conference, 
501 12. CR 7, 1(66)8864. 

Veinott, A. (1965) Mathematical Studies in Management Science. 
Crowell Collier and Macmillan, New York. 
Deals mainly with the probabilistic techniques—especially inven-
tory theory. 

Wagner, H. (1970) Principles of Management Science. Prentice-Hall, 
Englewood Cliffs, N.J. CR 12, 2(71)20, 616. 
Truly comprehensive, well written, and usable. Emphasizes 
deterministic models, but provides good coverage of the other 
areas. 

Woodrum, L.J. (1970) A model of floating buffering. IBM Systems J. 
9,2, 118-44. CR 11, 11(70)20, 149. 
Uses ideas of Markov and semi-Markov processes. 

B2. Human and Organizational Behavior (3-1-3) 

Prerequisite: elementary psychology. 
Approach: Th is course examines the principles of human be-

havior in individuals, groups, and organizations in the contexts rele-
vant to information systems. 

Beha viorally-onented reference material relating specifically to 
information systems is sparse, and particularly so for the final section 
on implementation. The cited references frequently have a manage-
ment or engineering orientation, leaving the behavioral implications to 
be supplied by the instructor or by the class. 

An appropriate computer game or interactive laboratory experi-
ment could be used as an effective tool to demonstrate aspects of 
individual, interpersonal, and group behavior, with the student popu-
lation itself as subject.^ 

Content: 
1. Individual behavior (20%) 

Human sensing and processing functions. Visual, auditory, motor, 
and linguistic mechanisms. Perception, cognition, and learning. 
Human factors engineering in information systems. 
2. Interpersonal and group behavior (20%) 

Personality and role. Motivation, participation, and communica-
tion. Influence and effectiveness. Authority and leadership. Mecha-
nisms for group action. The impact of information systems on inter-
personal and group behavior. 
3. Organizational structure and behavior (25%) 

Organization theory. Impact of information systems on organiza-
tional structures and behavior. Implications for management. 
4. The process of organizational change (25%) 

Resistance to and acceptance of change. The management of 
change. Problems of adjustment to the information systems environ-
ment. 
5. The implementation and introduction of information systems 

(10%) 
Interaction between information analysis and system design 

groups and the remainder of the organization. Information system 
project teams and their management. Preparation for installation and 
operation. Note: this section is background for material covered more 
extensively in courses Dl and D2. 

References: No one book covers the full scope of the course. 
Fogel (1967), Katz and Kahn (1966). and Likert (1967) are books on 
individual and organizational behavior written from the systems point 
of view. Wadia (1968) is a book of readings which cover the behavioral 
sciences aspects of the course fairly well. Bennis (1968) is an excellent 
treatment of organizational change, of which Tol'fler (1970) is.a popular 
treatment. Tomeski (1970) and Withington (1969) give insight into the 
impact of the computer on organizations and people. 
1. Individual behavior 

Berelson and Steiner (1964) Ch. 5: Chapanis (1965); David (1967); 
Davies and Tune (1969); DeGreene (1970); Fogel (1967); Gregory 
(1966); Meister and Rabideau (1965); Miller (1967). 
2. Interpersonal and group behavior 

Argyris (1957); Argyris (1971); Berelson and Steiner (1964) Ch. 6, 
8; Cartwright and Lippit (1957): DeGreene (1970); Haines et al. (1961); 
Likert (1953); MacKinnon (1962); Schein (1971); Shostrum (1967); 
Zalkind and Costello (1962). 
3. Organizational structure and behavior 

Argyris (1957); Bavelas (1960); Beckett (1967); Berelson and 
Steiner (1964) Ch. 9; Cyert and March (1963); DeCarlo (1967); Hage 
(1965): Katz and Kahn (1966); Klahrand Leavitt (1967); Likert (1967): 
March and Simon (1958): McGregor (1960): Simon (1964); Steiner 
(1964): Whisler (1967); Woodward (1965). 
4. The process of organizational change 

Bennis (1966); Burns and Stalker (1961); DeCarlo (1967); Ginz-
burg and Reilley (1957); Fuller (1969): Lippitt (1969); Lippitt et al. 
(1958); Morison (1966); Tannenbaum (1968); Toffler (1970); Whisler 
(1970). 
5. The implementation and introduction of information systems 

Canning (1957) Ch. 6 9; Canning and Sisson (1967) Ch. 3, 4; 
Head (1964); Johnson et al. (1967) Ch. 10, 14; Meadow (1970) Ch. 12; 
Orden (I960); Orlicky (1969) Ch. 5 8; Postley (I960): Sackman 
(1967); Simon and Newell (I960): Sisson and Canning (1967): Tomeski 
(1970) Ch. 13, 14; Withington (1966) Ch. 8.9. 

Bibliography: 
Argyris, C. (1971) Management information systems: the challenge to 

rationality and emotionality. Management Science 17,6, B275 92. 

75 



Argyris. C. (1957) The individual and organization: some problems of 
mutual adjustment. Administrative Science Quarterly 2, 1 24. 

Bavelas. A. Communication and organization, [n Shultz and Whisler 
(1960). 

Beckett, J. A. The total-systems concept: its implications for manage-
ment. In Myers (1967). 

Bennis, W.G. (1968) Changing Organizations. McGraw-Hill, New 
York. 

Berelson. B„ and Steiner, G.A. (1964) Human Behavior: An Inventory 
of Scientific Findings. Harcourt Brace and Jovanovich, New 
York. 
A compendium of behavioral sciences accomplishments. Ch. 5 on 
learning and thinking. Ch. 6 on motivation, Ch. 8 on small group 
relationships, and Ch. 9 on organizations are relevant to the 
course. 

Burns. T„ and Stalker, G.M. (1961) The Management of Innovation. 
Tavistock Publications, London. 
A treatment of the external and internal constraints affecting 
organizational change. 

Canning. R.G. (1957) Installing Electronic Data Processing Systems. 
Wiley, New York. 
Ch. 6-10 cover the programming, installation, and operation 
phases of information systems development. Appendices discuss 
human factors. 

Canning, R.G., and Sisson, R.L. (1967) The Management of Data 
Processing. Wiley, New York. CR 9,4(68)13,939. 
Ch. 3, 5, and 6 treat the organization and staffing of a data proc-
essing operation. 

Cartwright, D., and Lippit, R. (1957) Group dynamics and the indi-
vidual. Internal. J. of Group Psychotherapy 7, 86- 102. In Wadia 
(1968). 

Chapanis, A. (1965) Man-Machine Engineering. Wadsworth, Belmont, 
Calir. 

Cyert, R.. and March, J.G. (1963) Behavioral Theory of the Firm. 
Prentice-Hall, Englewood Cliffs, N.J. 
A behavioral view of the functioning of organizations. 

David, F..E. Jr. Physiological and psychological considerations. In 
Karplus (1967). 

Davies, D.R., and Tune, G.S. (1969) Human Vigilance Performance. 
American Elsevier, New York. 
A study of human factors in operations with high attention re-
quirements. 

DeCarlo, C.R. (1967) Changes in management environment and their 
effect upon values. In Myers (1967). 

DeGreene, K.B. (Ed.). (1970) Systems Psychology. McGraw-Hill, 
New York. 

Fogel, L.J. (1967) Human Information Processing. Prentice-Hall, 
Englewood Cliffs, N.J. 
Looks at the human as an input, decision-making, output 
processor. 

Fuller, R.B. (1969) Operating Manual for Spaceship Earth. Southern 
Illinois U. Press, Carbondale, III. 
A treatise on the need for human adaptation to changed environ-
mental circumstances, by one of the more innovative thinkers of 
our time. 

Ginzberg, E.. and Reilley, E.W. (1957) Effecting Change in Large Or-
ganizations. Columbia U. Press, New York. 
A step-by-step analysis for managing organizational change. 

Gregory, R.L. (1966) Eye and Brain: The Psychology of Seeing. 
McGraw-Hill, New York. 

Huge, J. (1965) An axiomatic theory of organizations. Administrative 
Science Quarterly 10, 289 -320. 

Haines, G., Heider, F., and Remington, D. (1961) The computer as a 
small group member. Administrative Science Quarterly 6, 3, 
360 74. 

Head, R.V. (1964) Real-Time Business Systems. Holt, Rinehart and 
Winston, New York. 

Karplus, W.J. (Ed.) (1967) On-Line Computing: Time-Shared Man-
Computer Systems. McGraw-Hill, New York. CR 8 3(67)11,952. 

Katz, D„ and Kahn, R.L. (1966) The Social Psychology of Organiza-
tions. Wiley, New York. 
A particular point of view on organizational behavior. See also 
annotation in bibliography for Course A1. 

Klahr, D., and Leavitt, H.J. (1967) Tasks, organization structures, and 
computer programs. In Myers(l967). 

Likert, R. (1953) Motivation: the core of management. Personnel 
Series No. 155, American Management Assoc., 3-21. In Wadia 
(1968). 

Likert, R. (1967) The Human Organization: Its Management and 
Value. McGraw-Hill, New York. 
A systems approach to organizational behavior. 

Lippitt, G.L. (1969) Organization Renewal: Achieving Viability in a 
Changing World. Appleton-Century-Crofts, New York. 
An analysis of the dynamics of organizational change. 

Lippitt, R„ Watson, J., and Westley, B. (1958) The Dynamics of 
Planned Change. Harcourt Brace and Jovanovich, New York. 

MacKinnon, D.W. (1962) What makes a person creative? The Satur-
day Review (Feb. 10), 15 69. In Wadia (1968). 

March, J.G., and Simon, H.A. (1958) Organizations. Wiley, New 
York. 

McGregor, D. (I960) The role of staff in modern industry. In Shultz 
and Whisler (1960). 

Meadow, C.T. (1970) Man-Machine Communication. Wiley, New 
York. CR 12,4(71)20, 918. 

Meister, D., and Rabideau, G.F. (1965) Human Factors Evaluation 
in System Development. Wiley, New York. 
An analysis of human interaction with dynamic systems. 

Miller, G.A. (1967) The Psychology of Communication. Basic Books, 
New York. 
A collection of perceptive articles on human communication, in-
cluding the author's well-known "The magical number seven, 
plus or minus two" paper. 

Morison, E.E. (1966) Men, Machines, and Modern Times. MIT 
Press, Cambridge, Mass. CR 8, 2(67)11, 356. 
A set of anecdotal case studies, bearing on the position of man 
pitted against technology. 

Myers, C.A. (Ed.) (1967) The Impact of Computers on Management. 
M IT Press, Cambridge, Mass. CR 8, 4(67) 12, 265. 

Orden, A. (1960) Man-machine computer systems. In Shultz and 
Whisler (1960). 

Orlicky, J. (1969) The Successful Computer System: Its Planning, 
Development and Management in a Business Enterprise. 
McGraw-Hill, New York. CR 10, 11(69)17, 820. 
Introduction to planning for the MIS. 

Postley, J. A. (I960) Computers and People. McGraw-Hill, New York. 
CR I, 5(60)300. 

Sackman, H. (1967) Computers, System Science and Evolving So-
ciety: The Challenge of Man-Machine Digital Systems. Wiley, 
New York. CR 9, 5(68)14, 154. 
Ch. 9, 11, and 12 are relevant to behavioral considerations. 

Schein, E.H. (1961) Management development as a process of influ-
ence. Industrial Management Review (May), 59-77. In Wadia 
(1968). 

ShostrUm, E.L. (1967) Man, the Manipulator: The Inner Journey 
from Manipulation to Actualization. Abingdon Press, Nashville, 
Tenn. 

Shultz, G.P., and Whisler. T.L. (Eds.) (I960) Management Organiza-
tion and the Computer. The Free Press, Glencoe, 111. 

Simon, H. A., and Newell, A. (I960) What have computers to do 
with management? 
In Shultz and Whisler (1960). 

Simon, H.A. (1964) On the concept of organizational goal. Adminis-
trative Science Quarterly 9, 1 22. In Wadia (1968). 

Sisson, R.L., and Canning, R.G. (1967) A Manager s Guide to Com-
puter Processing. Wiley, New York. 

Steiner, G.A. (1964) The creative organization. Stanford U. Graduate 
School of Business Bulletin 33, 12-16. In Wadia (1968). 

Toffler, A. (1970) Future Shock. Random House, New York. 
A much talked-about analysis of the impact of rapid external 
change on human behavior. 

Tomeski, E.A. (1970) The Computer Revolution: The Executive and 
the New Information Technology. Crowell Collier and Macmillan, 
New York. 
Covers both new patterns of administration brought about by 
information technology and the administration of that new tech-
nology itself. 

Wadia, M.S. (Ed.) (1968) Management and the Behavioral Sciences. 
Allyn and Bacon, Boston. 

Whisler, T.L. (1967) The impact of information technology on organi-
zational control. In Myers (1967). 

Whisler, T.L. (1970) Information Technology and Operational 
Change. Wadsworth, Belmont, Calif. 

76 



Withington, F.C. (1969) The Real Computer: Its Influences, Uses and 
Effects. Addison-Wesley, Reading, Mass. 
Insightful discussion of the myth and the reality of the impact of 
the computer on people. 

Woodward, J. (1965) Industrial Organization, Theory and Practice. 
Oxford U. Press, Oxford, England. 

Zalkind, S.S., and Costello, T.W. (1962) Perception: implications for 
administration. Administrative Science Quarterly 7, 218-35. 
In Wadia (1968). 

Appendix C. Detailed Descriptions and References for 
Course Group C 

CI. Information Structures (2-2-3) 

Prerequisite: elementary computer programming. 
Approach: The structures which may be used to represent the 

information involved in solving problems are presented. Both model-
ing structures and implementation (storage) structures are covered. 
Emphasis is placed on treating these structures independently of 
particular applications. Examples, however, particularly from inlor-
mation system design, should be used wherever possible. The inter-
relationship between problem solving procedure, modeling structure, 
and implementation structure is stressed. Alternative implementa-
tions of u particular model are explored. Implementations in higher-
level languages of several modeling structures are presented. 

Students should apply the techniques presented to a number of 
problems. Care should be taken to separate development of modeling 
structures from implementation; and in many instances the student's 
analysis of a problem can stop at the modeling structure level. For at 
least some of the problems, however, students should implement and 
test their proposed representations. 

Content: 
1. Basic concepts of information (10%) 

Representation of information outside and inside the computer. 
Bits, bytes, fields, items, records, files. Numbers and characters. 
Characteristics of computer arithmetics—conversion, truncation and 
roundoff, overflow and underflow. Names, values, environments, and 
binding of data. Use of pointers or linkage variables to represent struc-
ture. Identifying entities about which data is to be maintained, and 
selecting data nodes and structures which are to be used in problem 
solution. 
2. Modeling structures—linear lists (10%) 

Linear lists, stacks, queues, deques. Single, double, circular 
linkage. Strings, insertion, deletion, and accessing of list elements. 
3. Modeling structures—multilinked structures (20%) 

Trees and forests. Free, oriented, and ordered trees. Binary tree 
representation of general trees. Traversal methods—preorder, post-
order, endorder. Threading trees. Examples of tree structures as 
algebraic formulas, dictionaries, and other hierarchical information 
structures. Arrays and tables. Storage mapping functions. Linked 
representation of sparse arrays. Multilinked structures with heteroge-
neous fields and/or nodes (plexes). 
4. Machine-level implementation structures (15%) 

Word packing arftf-part-word addressing. Sequential allocation. 
Linked allocation and pointer manipulation. Scatter storage; hash 
table formats, hashing functions, methods of resolving collisions. 
Direct and indirect address calculation. Implementation of linked 
structures in hardware. 
5. Storage management (5%) 

Static versus dynamic allocation. Stacks and available space lists. 
Explicit release of available space, reference counts, and garbage col-
lection. Coalescing adjacent free space. Variable block size—stratified 
available space lists, the buddy system. 
6. Programming language implementation structures (15%) 

Examples of the implementation of modeling structures in 
higher-level languages. FORTRAN, PL/I and ALGOL arrays. 
SNOBOL and PL/I strings. Lists in PL/I, GPSS, SIMSCRIPT, 
IDS. Tables and records in PL/I, COBOL. 
7. Sorting and searching (10%) 

Radix sort, merge sort, bubble sort, address table sort, tree sort, 
and other sorting methods. Comparative efficiency of sorting methods. 
Use of sort packages. Linear search, binary search, indexed search, 
and other searching methods. Tradeoffs between sorting effort and 

searching effort. Effect of information structures on sorting and search-
ing techniques. 
8. Examples of the use of information structures (15%) 

Representation of information by translators. Representation of 
information during execution; activation records. Implementation of 
higher-level language data structures. Organization of an inverted file 
for document retrieval. Examples in graphic manipulation systems, 
simulation packages, data management systems. 

References: Berztiss (1971) or Knuth (1968) are most suitable 
candidates for use as texts in this course, supplemented by additional 
readings in a few topics. 
1. Basic concepts of information 

Berztiss (1971); Codd (1970); Iverson (1962); Johnson (1970); 
Knuth (1968); Mealy (1967); Wegner (1968). 
2. Modeling structures—linear lists 

Berztiss (1971); Dodd (1969); Flores (1970); Hopgood (1969); 
Iverson (1962); Johnson (1970); Knuth (1968); Mealy (1967); Williams 
(1971). 
3. Modeling structures—multilinked structures 

Berztiss (1971); Dodd (1969); Flores (1970); Hopgood (1969): 
Iverson (1962); Johnson (1970) Ch. 1 -3; Knuth (1968); Mealy (1967); 
Ross (1967); Williams (1971). 
4. Machine-level implementation structures 

Berztiss (1971); Dodd (1969); Flores (1970); Gauthier and Ponto 
(1970); Hopgood (1969); lliffe (1968); Johnson (1970); Knuth (1968); 
Madnick (1969); Morris (1968); Ross (1967); Wegner (1968); Wil-
liams (1971). 
5. Storage management 

Berztiss (1971); Fibres (1970); lliffe (1968); Johnson (1970); Knuth 
(1968); Madnick (1969); Ross (1967); Shorr and Waite (1967). 
6. Programming language implementation structures 

Berztiss (1971); CODASYL (1971); Gordon (1969); Griswold et 
al. (1968); Iverson (1962); Lawson (1967); Rosen (1967) Pt. 3; Sammet 
(1968); Wegner (1968); Williams (1971). 
7. Sorting and searching 

Berztiss (1971); Flores (1969a); Gauthier and Ponto (1970); Hop-
good (1969); Iverson (1962); Johnson (1970) Ch. 4, 5; Wegner (1968). 
8. Examples of use of information structures 

Berztiss (1971); Codd (1970); Dodd (1969); Knuth (1968); Wegner 
(1968); Williams(l971). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix C. 

C2. Computer Systems (2-2-3) 

Prerequisites: B1, C1 
Approach: Computer systems, their hardware and basic operating 

software, are studied, with attention to the human factors involved in 
computer system operation and maintenance. Types of modules and 
types of system function mode (batch, interactive, online, etc.) should 
be carefully distinguished. 

Block diagrams, flowcharts, and some kind of formal descriptive 
language should be used to set forth the systems aspects discussed. A 
suitable choice for the latter would be an assembly language with 
macro capability. Problem assignments should involve proposing sys-
tem or subsystem attributes and parameters for given performance 
specifications and testing the proposals by simulation. Simulation 
packages for evaluating subsystem configurations should be available. 

Content: 
1. Hardware modules (20%) 

Processor, memory, input/output, mass storage, remote trans-
mission modules; function and possible realization of each. Micropro-
gramming. Styles of buffering, interfacing, communication and inter-
rupt handling. Memory management, virtual memory. Channel man-
agement, virtual configurations. Network and multiprocessor configu-
rations. Note: the approach of this section is conceptual, to point up 
the need for a comprehensive hardware/software viewpoint—the con-
cepts are then elaborated in programming and operational terms in 
subsequent sections. 
2. Execution software (20%) 

General interpretive modules for execution support, e.g. list 
processors. Modules for memory management in real and virtual 
memory systems. Processor and channel modules for support of in-
put/output, mass storage and remote transmission units in real and 
virtual configurations. Concepts of multiply-reentrant programs and 
cooperating processes. 

77 



3. Operation software (20%) 
Loading, interrupt monitoring, diagnostic modules. Scheduling, 

resource allocation, performance monitoring packages. Concepts of 
state resurrection and interprocess protection. 
4. Data and program handling software (20%) 

Media and format conversion modules. File handling facilities. 
Control specifications for datasets. Translating, compiling, generating 
modules. Macro facilities. Editing and debugging facilities. Linkage 
and job control specifications for subroutines, coroutines and standard 
packages. Problems of identification and security. Note: this topic is 
background for courses C3 and C4. 
5. Multiprogramming and multiprocessing environments (20%) 

Levels of multiaccessing and multiplexing. Batch and interac-
tive modes. Requirements for effective usability, operability, main-
tainability of operating systems. Performance monitoring and man-
agement of complex hardware/software configurations. 

References: There is no single introductory text for a combined 
hardware/software course at this level. An advanced text which em-
bodies this kind of approach is Beizer (1971). The references given 
for Curriculum 68 courses 13 and 14 are in general relevant. Text 
materials may also be drawn from the operating manuals of what-
ever large-scale computer system is available for use in the course. 
1. Hardware modules 

Beizer (1971) Vol. I; Bell and Newell (1971); Buchholz (1962); 
Flores (1969b); Gear (1969); Hellerman (1967); Husson (1970); lliffe 
(1968); Martin (1967); Tucker and Flynn (1971). 
2. Execution software 

Beizer (1971) Vol. 1; Daley and Dennis (1968); Denning (1970); 
Dijkstra (1968c). 
3. Operation software 

Barron (1969); Beizer (1971) Vol. I; Rosin (1969). 
4. Data and program handling software 

Barron (1969); Rosen (1967). 
5. Multiprogramming and multiprocessing environments 

Beizer (1971) Vol. 2; Coffman and Kleinrock (1968); Conway 
(1963); Daley and Dennis (1968); Hellerman (1969); Lampson (1968); 
Rosen (1967) Pt. 5; Stimler (1969); Watson (1970); Wilkes (1967); 
Wilkes and Needham (1968); Wirth (1969). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix C. 

C3. File and Communicat ion Systems (2-2-3) 

Prerequisite: C2. 
Approach: The basic components of file and communication 

systems are presented and analyzed. The functioning of these sys-
tems as integral components of an information system is stressed. 

The instructional approach is primarily lecture and problem dis-
cussion. This is neither a project nor a programming course as such; 
most student assignments concern design or analysis of carefully spe-
cified and limited subprograms or subsystems. When possible, if a 
file management language is available, a small file system design and 
implementation project would be desirable. 

Content: 
1. Functions of file and communication systems (5%) 

Role of information acquisition, storage and transmission in an 
organization. Typical operations in file systems: file creation, main-
tenance, interrogation. Typical operations using communication sys-
tems. Issues of information availability, privacy, security. 
2. File system hardware (5%) 

Characteristics of auxiliary storage devices. Capacity, access, 
cost. Device types: tape, disk, mass storage. 
3. File system organization and structure (25%) 

Data fields, records, files, hierarchies of files. Directories and 
indices, inverted files. Structure and access: sequential, direct in-
dexed sequential, randomized, randomized with buckets. Storage 
allocation and control techniques. 
4. Analysis of file systems (10%) 

Estimating capacity and timing requirements. Tradeoffs be-
tween access time, capacity and density of use, cost. Tradeoffs be-
tween file creation/maintenance activity and access activity. Relevant 
formulas and tables. 
5. Data management systems (10%) 

Generalized data management systenjs. Directory maintenance, 
query languages, data description, job management. Characteristics 
of available systems. 

6. Communication system hardware (15%) 
Theoretical concepts; channels and channel capacity, noise, error 

detection and correction. Existing communication facilities; line 
types, exchanges: utilities, regulatory agencies, and tariffs. Pulse 
techniques. Transmission codes. Transmission modes. Line termina-
tion and terminal devices. 
7. Communication system organization and structure (10%) 

Single line: point-to-point, multidrop. Networks: centralized, de-
centralized, distributed. Control and protocol; acknowledgment, wait-
requests, contention, polling. Switched, store-and-forward. Data con-
centrators and distributors. 
8. Analysis of communication systems (5%) 

Estimating line and terminal requirements: volume and message 
length, speed and timing, cost implications. Bottlenecks and queues, 
queueing analysis, simulation. 
9. Examples of integrated systems (15%) 

The data base concept: integrated data approach, coordination, 
control, multiple use of data. The data administrator; the computer 
utility. System resiliency and integrity, privacy, and security con-
siderations. 

References: While no textbook available at present is organized 
to match the scope of this course, Martin (1967) covers much of the 
material here. 
1. Function of file and communications systems 

Gruenberger (1968a); Gruenberger (1969); Martin (1967); Mar-
tin and Norman (1970); Meadow (1967); Minker and Sable (1967); 
Salton (1968); Senko (1969). 
2. File system hardware 

Lefkovitz (1967); Martin (1967). 
3. File system organization and structure 

CODASYL (1969); CODASYL (1971); Dodd (1969); IBM 
(1969); IFIP (1969); Lefkovitz (1967); Lowe (1968); McGee (1968); 
Martin (1967); Meadow (1967); Minker and Sable (1967); Salton 
(1968); Senko (1969); Watson (1970). 
4. Ana/vsis of file systems 

CODASYL (1971); IBM (1969): IFIP (1969); Lefkovitz (1967); 
Lowe (1968); Martin (1967); Salton (1968). 
5. Data management systems 

CODASYL (1969); CODASYL (1971); Gruenberger (1969); 
IFIP (1969); Lefkovitz (1967); McGee (1968): Martin (1967); Minker 
and Sable (1967); Senko (1969). 
6. Communication system hardware 

Davenport (1971); Gentle (1965); Martin (1967); Martin (1969a); 
Martin (1969b). 
7. Communication system organization and structure 

Davenport (1971); Gentle (1965); Martin (1967); Martin (1969a); 
Martin (1969b). 
8. Analysis of communication systems 

Martin (1967); Martin (1969a); Martin (1969b). 
9. Examples of integrated systems 

Gruenberger (1968a); Martin (1967); Martin, Greenberger, and 
Norman (1970): Parkhill (1966); Watson (1970). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix C. 

C4. Sof tware Design (2-2-3) 

Prerequisite: C2 
Approach: This course brings the student to grips with the actual 

problems encountered in designing, implementing and modifying sys-
tems of computer programs. The concept of programming style should 
permeate most of the material presented, although it appears as a 
specific lecture topic toward the end of the course. Careful verifica-
tion of program operation and documentation of programs should be 
emphasized. Much of the course, particularly in the laboratory ses-
sions, may be devoted to the actual implementation of the programs. 
It would be useful to have an exercise in which each student must 
modify a program written by someone else. 

Content: 
1. Run-time structures in programming languages (10%) 

Textual versus execution semantics in languages. Binding of 
names. Examples from FORTRAN, ALGOL. PL/I. and some data 
management system. Run-time stacks. 
2. Communication, linking, and sharing of programs and data (30%) 

Separation of program and data segments. Common (global) 

78 



versus local data. Block structures—static and dynamic nesting, internal 
and external procedures. Subroutines and coroutines as linkage struc-
tures. Sharing of code—reentrancy, recursion, pure procedures. Static 
and dynamic linking and loading, relocatability, self-relocating pro-
grams. Table driven programs. Asynchronous versus synchronous 
control, cooperating processes, multitasking. 
3. Interface design (10%) 

Parameters, work space, automating, and documenting inter-
faces. Control blocks. 
4. Program documentation (10%) 

Self-documenting programs. Levels of detail in documentation. 
Automatic flowcharting methods. Motivation for documentation— 
maintenance and modification of programs. 
5. Program debugging and testing (15%) 

Automating the debugging process. Symbolic debugging aids. 
Automatic generation of test data and expected results. Analysis of 
testing procedures. Hierarchical testing. Exhaustive testing versus 
random sampling. Testing of communications programs. Simulation 
as a tool. Abnormal condition handling. 
6. Programming style and aesthetics (10%) 

Modular programming—functional modules, breaking up of 
large functional modules. Central versus distributed control struc-
tures. Macro and micro modularity. Interlanguage and intralanguage 
communication. Clarity and documentation—block diagramming. 
7. Selected examples (15%) 

File handling modules. Error retry, request queueing. Communi-
cation interface modules. Polling versus contention, interrupt han-
dling. Selected materials such as graphics programming, program-
ming for realtime sensing devices, process control systems. Man-ma-
chine interactions. 

References: 
1. Run-time structures in programming languages 

Galler (1970); Randell and Russell (1964); Rosen (1967) Pt. 2. 3; 
Wegner (1968). 
2. Communication, linking, and sharing of programs and data 

Daley and Dennis (1968): Dijkstra (1960); Gear (1969); Knuth 
(1968): Martin (1967): Morgan (1970): Wegner (1968). 
3. Interface design 

ben-Aaron (1969); Dijkstra (1968a): Martin (1967). 
4. Program documentation 

Applied Data Research (1970); Billups (1969): Walsh (1969). 
5. Program debugging and testing 

Billups (1969); Dijkstra (1968a); Gruenberger (1968b), Hassitt 
(1967); Martin (1967): Van Horn (1968). 
6. Programming style and aesthetics 

Dijkstra (I960): Dijkstra (1968a); Dijkstra (1968b): Knuth 
(1968); Knuth and Floyd (1971): Morgan (1970); Wirth and Hoare 
(1966); Wirth (1971). 
7. Selected examples 

Head (1971); Martin (1967). 

Bibliography: The references are to the combined bibliography-
given at the end of Appendix C. 

Combined B i b l i o g r a p h y — C o u r s e Group C 

Applied Data Research. (1970) Autoflow Reference Manual. Applied 
Data Research Corp., Princeton, N. J. 

Barron, D.W. (1969) Assemblers and Loaders. American Elsevier, 
New York. CR 11, 5(70)19,077. 

Beizer, B. (1971) The Architecture and Engineering of Digital Com-
puter Complexes, Vols. 1 and 2. Plenum Press, New York. 
A comprehensive text on hardware/software architecture and 
design methods. Volume 1 covers basic hardware units (proces-
sors, memories, controllers, peripherals) and software units 
(loaders, assemblers, compilers, interpreters), and introduces 
some optimization and evaluation techniques. Volume 2 deals 
with aspects of complex computer configurations. 

Bell, C.G., and Newell, A. (1971) Computer Structures: Readings and 
Examples. McGraw-Hill, New York. CR 12. 5(71)21,279: also 
CR 12, 7(71)21,618. 
A systematic treatment of computer architecture, with examples 
drawn from existing computer families. A definitive work, con-
taining notational and pedagogical innovations which should set 
the style for future works in this area. 

ben-Aaron, M. (1969) Programming systems standardisation. Proc. 
Fourth Australian Computer Conference. Vol. I., 309-12. CR 
12, 10(71)22,030. 

Berztiss, A.T. (1971) Data Structures: Theory and Practice. Academic 
Press. New York CR 12. 11(71)22.086. 
Combines an introduction to discrete structures with a treatment 
of modeling and storage structures. Example program segments 
use FORTRAN: last chapter describes several other program-
ming languages for information structures. Contains an extensive 
bibliography. 

Billups, R., and Louis. G. (1969) X-raying a programming system. 
Software Age (May), 8 17. 
A discussion of documentation relating to diagnostics and pro-
gram design. 

Buchholz. W. (Ed.). (1962) Planning a Computer System. McGraw-
Hill, New York. CR 4. 6(63)4786. 
An earlier but still useful discussion of how a computer hardware 
system is designed. Based on the development of the IBM 
Stretch computer. 

CODASYL Data Base Task Group. (1969) October 69 Report. Re-
port to the CODASYL Programming Language Committee, 
available through ACM. CR II. 5(70)19.080. 
Contains a proposal for a Data Description Language for de-
scribing a data base and a Data Manipulation Language which, 
when associated with the facilities of a host language, allows 
manipulation of data bases described in the Data Description 
Language. 

CODASYL Systems Committee (1971) Feature Analysis of General-
ized Data Base Management Systems. Technical report, available 
from ACM, New York. 
Gives the reader a good feel for the state of the art in some widely-
used generalized data base management systems. The introduc-
tion to this report also appears in Comm. ACM 14, 5, 308 318. 

Codd, E.F. (1970) A relational model of data for large shared data 
banks. Comm. ACM 13,6, 377-87. CR 12, 3(71)20,780. 
Presents a model for data base relations based on n-ary relations, 
and a normal form for such relations. 

Coffman, E.G. Jr.. and Kleinrock. L. (1968) Computer scheduling 
methods and their countermeasures. Proc. AFIPS 1968 SJCC, 
Vol. 32, AFIPS Press, Montvale, N.J., 11-21. CR 10, 2(69) 
16 .222 . 

Conway. M. (1963) A multiprocessor svstem design. Proc. AFIPS 
1963 FJCC, Vol. 24, Spartan Books', New York, 139 46. CR 5, 
3(64)5700. 

Cuadra. C.A. (Ed.) (1966 1971) Annual Review of Information Sci-
ence and Technology. Vols. I 6. CR 8. 1(67)11.128 (Vol. I): 
CR /0, 4(69)16, 550 (Vol. 3); CR 11. 7(70)19, 391 (Vol.4). 
An excellent survey and review publication, covering mainly in-
formation storage and retrieval systems. 

Daley, R.C., and Dennis. J.B. (1968) Virtual memory, processes, and 
sharing in MULTICS. Comm. ACM II, 5. '306 12. CR 9, 
8(68)14.978. 
Discusses the concepts of dynamic linking and loading, and the 
sharing of procedures and data in virtual memory. 

Davenport. W.P. (1971) Modern Data Communications. Hayden, 
New York. 
An introductory textbook covering many topics in data commu-
nications in an elementary way. 

Denning, P.J. (1970) Virtual memory. Computing Surveys 2, 3. 153 
89. CR 12, 4(71)21.031 
A thorough treatment of this fundamental concept for design of 
multiprogramming systems. 

Dijkstra, E.W. (I960) Recursive programming. Numerische Mathe-
matik 2, 312- 18. In Rosen (1967)?CR 10. 8(69)17, 275. 

Dijkstra. E.W. (1968a) The structure of "THE"-multiprogramming 
system. Comm. ACM II, 5, 341 46. 
The techniques described here for program design, implementa-
tion. and verification are quite useful in illustrating program 
aesthetics. 

Dijkstra. E.W. (1968b) Go to statement considered harmful. Comm. 
ACM 11. 3, 147 48. 

Dijkstra, E.W. (1968c) Co-operating sequential processes. In Genuys 
(1968). 
A definitive article which sets forth the basic aspects of concur-
rently running processes in computer systems. 

Dodd, G.G. (1969) Elements of data management systems. Comput-
ing Surveys 1.2, 117 33. CR 10. I 1(69)17.780. 
Title is misleading. Actually a presentation of information struc-
tures in the context of data management systems. 

Flores, I. (1969a) Computer Sorting. Prentice-Hall. Englewood 
Cliffs. N.J. CR 10. 1(69)16,053. 
Presents various sorting techniques, with assembly language 
level procedures. 

Flores, I. (1969b) Computer Organization. Prentice-Hall, Englewood 
Cliffs. N.J. CR 10, 11(69)17, 921. 

79 



Flores, 1. (1970) Data Structure and Management. Prentice-Hall, 
Englewood Cliffs, N.J. CR 12, 4(71)20,916. 
An elementary treatment of data structure and management, 
using IBM software and hardware for examples. 

Caller. B., and Perlis, A. (1970) A View of Programming Languages. 
Addison-Wesley, Reading, Mass. 

Gauthier. R., and Ponto, S. (1970) Designing Systems Programs. 
Prentice-Hall, Englewood Cliffs. N.J. CR 12, 3(71)20,829. 
See particularly Ch. 7 (Data Representation) and Ch. 8 (Search 
Structures). 

Gear. C.W. (1969) Computer Organization and Programming. Mc-
Graw-Hill, New York. CR 10, 9(69)17,372. 
A good text in assembly-level programming, which treats both 
hardware and basic software in this context. 

Gentle. E.C. Jr. (Ed.) (1965) Data Communications in Business: An 
Introduction. Publishers Service Co. New York. CR 7, 6(66) 
IO.S37. 
An introduction to the role and uses of data communications in 
business. 

Genuys, F. (Ed.) (1968) Programming Languages. Academic Press, 
New York. 

Gordon, G. (1969) System Simulation. Prentice-Hall, Englewood 
Cliffs, N.J. CR //,'3(70)18,682. 

Griswold, R.E., Poage, J.F., and Polonsky, I.P. (1968) TheSNOBOL 
4 Programming Language. Prentice-Hall, Englewood Cliffs. 
N.J. CR 10, 11(69)17,858. 

Gruenberger, F. (Ed.) (1968a) Computers and Communications— 
Toward a Computer Utility. Prentice-Hall, Englewood Cliffs, 
N.J. CR 9, 6(68)14,439. 
A collection of symposium papers. 

Gruenberger, F. (1968b) Program testing and validating. Datamation 
(July) 39 47. 

Gruenberger, F. (Ed.) (1969) Critical Factors in Data Management. 
Prentice-Hall, Englewood Cliffs, N.J. CR11, 2(70)18,384. 
A collection of symposium papers. 

Hassitt, A. (1967) Computer Programming and Computer Systems. 
Academic Press. New York. CR 8, 4(67)12.355. 
Ch. 8 on debugging philosphy and Ch. 9 on the dynamic use 
of storage are most useful. 

Head, R.V. (1971) A Guide to Packaged Systems. Wiley, New York. 
Hellerman, H. (1967) Digital Computer System Principles. McGraw-

Hill, New York. CR 9, 1(68)13,313. 
Principles of digital computer systems, presented in such a way 
as to show common aspects of programming, machine design, 
and problem description. 

Hellerman, H. (1969) Some principles of time-sharing scheduler 
strategies. IBM Systems J. 8. 2, 94 117. CR 10. 9(69)17,501. 

Hopgood, F.R.A. (1969) Compiling Techniques. American Elsevier, 
New York. CR 10, 11(69)17,773. 
Distinguishes between abstract data structures and internal 
storage structures. Ch. 2 (Data Structures), Ch. 3 (Data! Struc-
ture Mappings), and Ch. 4 (Tables) are particularly relevant 
here. 

Husson, S. (1970) Microprogramming: Principles and Practices. 
Prentice-Hall, Englewood Cliffs, N.J. 
Contemporary treatment of the implementation of computer 
control, using several existing processor designs as extended ex-
amples. 

IBM Corporation. (1969) File Design Handbook. Information Sci-
ences Depart., IBM Research, San Jose, Calif. 
A prototype file design handbook with special emphasis on pro-
viding equations, guidelines, and simulation data for use by the 
file designed in meeting user constraints.on cost, storage capacity, 
response time, etc. 

IFIP. (1969) File Organization. Selected papers from File 68—an 
I.A.G. Conference. Swets and Zeitlinger N.V., Amsterdam, The 
Netherlands. 
Papers ranging from the nature of management and information 
systems, and details of file structure design and programming 
support systems, through specific case studies. 

Iliffe, J.K. (1968) Basic Machine Principles. American Elsevier, 
New York. 
Presents a computer system design in which many data handling 
and storage management functions typically "software" are 
defined in the hardware. 

Iverson, K.E. (1962) A Programming Language. Wiley, New York. 
Contains considerable material on data structures, graphs, trees, 
and sorting, as well as descriptions of these in APL. 

Johnson, L.R. (1970) System Structure in Data, Programs and Com-
puters. Prentice-Hall, Englewood Cliffs, N.J. CRI2, 1(71)20,504. 
Systematic treatment of much of computer science, taking the 
tree as a basic structural element. 

Knuth, D.E. (1968) The Art of Computer Programming, Vol. I: Fun-
damental Algorithms. Addison-Wesley, Reading, Mass. CR 9, 
6(68)14,505. 
An extensive compendium (Ch. 2, Information Structures) of 
information and techniques on data structures and storage man-
agement. Does not distinguish between modeling and implemen-
tation structures. Section 1.4 on subroutines, coroutines, and 
linking is must reading. Other related topics are thoroughly 
covered. Many good examples and exercises. 

Knuth, D.E., and Floyd, R.F. (1971) Notes on avoiding "go to" 
statements. Information Processing Letters 1, I. 23 31. 

Lampson, B.W. (1968) A scheduling philosophy for multiprocessing 
systems. Comm. ACM 11, 5, 347 60. CR 9, 8(68)14, 980. 

Lawson, H.W. Jr. (1967) PL/I list processing. Comm. ACM 10, 
6, 358 67. 

Lefkovitz, D. (1967) File Structures for On-Line Systems. Spartan 
Books, New York. CR 10, 7(69)17,049. 
Presents alternative methods for file structure design and access, 
primarily in the context of information storage and retrieval 
systems. 

Lowe, T.C. (1968) The influence of data base characteristics and usage 
on direct access file organization./. ACM 15, 4, 535 -48. 
A model for describing memory utilization and retrieval time for 
direct access inverted files as a function of characteristics of the 
data base and the usage pattern. 

McGee, W.C. (1968) File structures for generalized data management. 
Proc. IFIP Congress 68. CR 10, 4(69)16, 557. 
Presents techniques for representing complex data structures as 
directed graphs and for making explicit declarations of graph-
structured files. 

Madnick, S.E. (1967) String processing techniques. Comm. ACM 10, 
1, 420-24. 
Presents and evaluates six techniques for implementing strings 
in storage. 

Martin, J. (1967) Design of Real-Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N.J. CR 9, 2(68)13, 607. 
A thorough treatment of analysis and design methodology for 
implementing real-time computer systems. Contains much ma-
terial on both file and communications subsystems. Ch. 2, 3. and 
10 on basic techniques and building blocks for these programs 
are quite good. Ch. 9 on the dynamic use of memory is also 
relevant. 

Martin, J. (1969a) Telecommunications and the Computer. Prentice-
Hall, Englewood Cliffs, N.J. CR 11, 8(70)19,602 19,603. 
See annotation in bibliography for Course Group D. 

Martin, J. (1969b) Teleprocessing Network Organization. Prentice-
Hall, Englewood Cliffs, N.J. CR 11, 11(70)20, 210. 

Martin, J., and Norman, A.R.D. (1970) The Computerized Society. 
Prentice-Hall, Englewood Cliffs, N.J. 
An imaginative presentation of present and prospective impacts 
of computer technology on many aspects of society. 

Meadow, C.T. (1967) The Analysis of Information Systems. Wiley, 
New York. CR 9, 8(68)14, 939. 
Subtitled "A Programmer's Introduction to Information Re-
trieval." A thoughtful presentation from the standpoints of both 
library science and computer science. 

Mealy, G.H. (1967) Another look at data. Proc. AFIPS 1967 FJCC, 
Vol. 31, AFIPS Press, Montvale, N.J., 525-34. 
Sketches a theory of data based on relations. 

Minker, J., and Sable, J. (1967) File organization and data manage-
ment. In Cuadra (1967), Vol.2, 123-60. 
A report of then-recent developments in file organization and 
data management, organized in a tutorial and expository frame-
work, with an extensive bibliography. 

Morgan. H.L. (1970) An interrupt based organization for manage-
ment information systems. Comm. ACM 13, 12, 734-38. CR 12, 
6(71)21, 403. 
Describes a means of linking subprograms together by means 
of interrupts. 

80 



Morris, R. (1968) Scatter storage techniques. Comm. ACM 11, 1, 
38 -44. 
Surveys hashing schemes for symbol table algorithms. Presents 
analytic formulations of processing requirements. 

Parkhill, D. (1966) The Challenge of the Computer Utility. Addison-
Wesley, Reading, Mass. CR 8 1(67)11, 053. 
Discusses the history, technology, economic, and legal aspects 
of computer utilities. 

Randell, B., and Russell, L. (1964) ALGOL 60 Implementation. 
Academic Press, New York. CR 6, 5(65)8246. 

Rosen, S. (Ed.) (1967) Programming Systems and Languages. Mc-
Graw-Hill, New York. CR 10, 1(69)15,975. 
Pt. 2 of this collection contains reprint articles on the major pro-
gramming languages, and Pt. 3 articles on compiling and assem-
bling. Pt. 4 contains papers of historical interest on various string 
and list processing languages. Pt. 5 is devoted to operating sys-
tems. 

Rosin, R.F. (1969) Supervisory and monitor systems. Computing 
Surveys I, I, 37 54. CR 10, 8(69)17, 284. 
A survey of operating system development, tracing the evolution 
from the earliest crude monitor systems to the present. 

Ross, D.T. (1967) The AED free storage package. Comm. ACM 10, 
8.481-91. CR 9, 1(68)13,437. 
Describes a storage allocation and management system for mul-
tilinked structures with heterogeneous fields and/or nodes 
(plexes). 

Salton. G.J. (1968) Automatic Information Organization and Re-
trieval. McGraw-Hill. New York. CR 10, 6(69)16,841. 

Concentrates on automatic computer-based information retrieval 
systems. Includes a selective bibliography in information storage 
and retrieval and related topics. 

Sammet. J.E. (1969) Programming Languages: History and Funda-
mentals. Prentice-Hall, Englewood Cliffs. N.J. CR 10, 11(69)17, 
854. 
Ch. 4 9 describe a number of different programming languages 
and their data structures. In particular. Ch. 6 concerns string 
and list processing languages. 

Schorr. H., and Waite, W.M. (1967) An efficient machine-indepen-
dent procedure for garbage collection in various list structures. 
Comm. ACM 10. 8, 501 06. CR 8, 6(67)13,179. 
Reviews and compares past garbage collection algorithms and 
presents a new algorithm. 

Senko. M.E. (1969) File organization and management information 
systems. In Cuadra (1969), Vol. 4, I 11 43. 
A review of management information systems applications and 
structure, viewed from the standpoints of both the information 
scientist and the systems programmer. Includes an extensive 
bibliography. 

Stimler, S. (1969) Real-Time Data-Processing Systems. McGraw-
Hill, New York. CR 10, 9(69)17,391. 
A text on hardware configuration design, emphasizing file and 
communications subsystems. Develops and illustrates many eval-
uation and optimization techniques. 

Tucker, A.B., and Flynn, M.J. (1971) Dynamic microprogramming: 
processor organization and programming. Comm. ACM 14, 4, 
240 50. CR 12. 8(71)21.784. 

Van Horn, E.C. (1968) Three criteria for designing computer systems 
to facilitate debugging. Comm. ACM 11, 5. 360 64. CR 9, 
11(68)15.580. 

Walsh, D. (1969) A Guide for Software Documentation. Inter-ACT, 
McGraw-Hill, New York. CR II, 7(70)19. 392. 
Contains a number of models for the design of documentation 
procedures. 

Watson, R.W. (1970) Time Sharing System Design Concepts. Mc-
Graw-Hill, New York. CR 12, 12(71)22, 310. 
A detailed exposition of the functional units of timesharing sys-
tems, with alternative design approaches. 

Wegner, P. (1968) Programming Languages, Information Struc-
tures, and Machine Organization. McGraw-Hill, New York. CR 
10, 2(69)6,228. 
There is a good section on coroutines, tasks, and asynchronous 
processing (4.10). Includes an extensive bibliography. 

Wilkes, M. V. (1967) The design of multiple-access computer systems. 
Computer J. 10, 1, I 9. CR 9, 10(68)15,414. 

Wilkes, M.V., and Needham, R.M. (1968) The design of multiple-
access computer systems: Pt. 2. Computer J. 10, 4, 315 320. 
CR 9, 10(68)15,415. 

Williams, R. (1971) A survey of data structures for computer graphics 
systems. Computing Surveys S.I, I 21. CR 12, 7(71 )21.621. 
Includes an extensite bibliography. 

Wirth, N. and Hoare, C.A.R. (1966) A contribution to the develop-
ment of ALGOL. Comm. ACM 9, 6, 413 -32. CR 10, 1(69)15, 
980. 
Section 3.2.1 on the case construction provides some interesting 
thoughts on program design. 

Wirth, N. (1969) On multiprogramming, machine coding, and com-
puter organization. Comm. ACM 12, 9, 489 -98. 

Wirth, N. (1971) Program development by stepwise refinement. 
Comm. A CM 14, 4, 321 27. CR 12, 8(71)21. 630. 
An interesting exposition of the program design process. 

Appendix D. Detai led Descript ions and References for 

Course Group D 

D l . In fo rmat ion Analysis (3-1-3) 

Corequisite: A3. 
Approach: This is the first course in the sequence of two that 

covers the system life cycle. This course emphasizes the information 
analysis and the logical design of the system, while course D2 covers 
the physical design. Emphasis should be placed on the iterative na-
ture of the analysis and design process. 

Exercises and case studies are used to give students proficiency 
in information analysis techniques: however, the projects course D3 
which parallels this course is the vehicle for providing practical appli-
cation in systems development and implementation. Field trips to 
organizations with sophisticated information systems are useful in 
reinforcing concepts. 

Content: 
1. Introduction to the system life cycle (5%) 

Overview of the phases of system development and their interre-
lationships. Conception, information analysis, system design, pro-
gramming, documentation, installation, reevaluation. 
2. System life cycle management (15%) 

Project control for system development. Levels of sophistication 
in system design. Responsibilities of system analysts, system designers, 
programmers, operators, and data processing management. Orga-
nizational behavior effects of system design and implementation ap-
proaches. 
3. Basic analysis tools (20%) 

Steps in analysis: preliminary investigation, general feasibility 
study, general system proposal, detailed analysis. Techniques for 
analysis, such as ARDI (Philips), BISAD (Honeywell), SOP (IBM). 
Event-oriented organizational flowcharts, decision tables, precedence 
network analysis. 
4. Determining system alternatives (15%) 

Manual systems. Manual versus automated parts of systems. 
Manager computer interaction requirements; response, performance, 
language—including "natural" language requirements. Generalized 
versus tailored output; graphic versus textual, and audio; inquiry ver-
sus automatic exception reporting; information retrieval versus speci-
fied analytical treatment of data. Disaggregation versus aggregation 
of data and hardware. Determining elements for common data bases. 
Data management alternatives. Response needs versus economic 
hardware/software and organizational constraints. Programmed de-
cision making. 
5. Determining system economics (20%) 

Cost and value of information. Establishing measures of system 
performance: cost, response, accuracy, reliability, flexibility, security, 
capacity, quality, efficiency. Identifying and quantifying costs of 
system: personnel costs, equipment costs, conversion costs, installa-
tion costs. Identifying, quantifying, and measuring system advantages: 
direct and indirect benefits. Analyzing the improved quality of'infor-
mation. Allocation of costs and pricing of computer services. 
6. Defining logical system requirements (20%) 

Format of the system requirements statement. Distinction of 
logical design (of system) from physical design (of files, programs, 
and procedures). System output requirements: operating level, Hrst 
level supervision, middle management, executive management. In-
formation for strategic versus tactical planning and decision making. 
Specification of output methods and formats. System documenta-
tion requirements. System specification techniques: manual tech-



niques; semiautomated techniques: ADS (NCR), 1SDOS (U. of 
Michigan), TAG (IBM), Young-Kent approach. 
7. Summary and introduction to physical sy&em design (5%) 

References: 
1. Introduction to the system life cycle 

Benjamin (1971); Glans et al. (1968); Hartman et al. (1968); 
Nolan (1971); Rubin (1970a): 
2. System life cycle management 

Rubin (1970b); Shaw and Atkins (1970). 
3. Basic analysis tools 

Chapin (1971): Couger (1972); Farina (1970): Gatto (1964); Gil-
dersleeve (1970); Gleim (1970); Hare (1967); Hartman et al. (1968); 
Honeywell (1968); McDaniel (1970a); Pollack et al. (1.971). 
4. Determining system alternatives 

Amstutz (1967); Gildersleeve (1970); Martin (1965); Martin 
(1969); Olle (1970); Optner (1968); Rubin (1970c); Rubin (I970d). 
5. Determining system economics 

Emery (1971); Fisher (1971); Gregory (1963); Hurst (1969): 
Joslin (1971): Langefors (1970): Marschak (1971); Seiler (1969): 
Sharpe (1969). 
6. Defining logical system requirements 

Clifton (1970); Gray (1969); Hartman et al. (1968); IBM (1963); 
Laden and Gildersleeve (1963); Lyon (1971); National Cash Regis-
ter (1967); Teichroew and Sayani (1971); Young and Kent (1958). 
7. Summary and introduction to physical system design 

Benjamin (1971); Blumenthal (1969): Hartman et al. (1968); 
Rubin (1970b). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix D. 

D2. System Design (3-1-3) 

Prerequisites: C3, Dl. 
Corequisite: C4. 
Approach: This course is the second covering the system life 

cycle, thus continuing the thrust of course Dl. The lectures focus on 
underlying principles of system design as well as techniques. The tech-
niques are utilized in the projects course D3. A theme to be carried 
throughout the course is the iterative nature of the analysis and design 
process. Implementation and conversion problems are also considered. 

Case studies should be used as appropriate. Laboratory exercises 
should include the use of computer-assisted methods for system de-
sign. The human engineering aspects of system design should be em-
phasized. 

Content: 
1. Basic design tools and objectives (10%) 

Review of the system life cycle. Documentation of various levels 
of design. Objectives of system design—system integrity. Types of 
system design: batch, interactive. Budgeting and project management. 
2. Hardware/software selection and evaluation (15%) 

Equipment selection—evaluation of hardware and software re-
quirements. Automated evaluation techniques—simulation, analyti-
cal models. Detailed cost analyses: personnel, hardware, software. 
Competitive bidding. 
3. Design and engineering of software (20%) 

Design modularity. Design of user interfaces with automated pro-
cedures. Standardization of subsystem designs—data collection edit-
ing, processing, and retrieval. Design of subsystem interfaces. Data 
and production controls. Internal and external accounting within the 
system. Conversion subsystems. Human engineering. 
4. Data base development (15%) 

Data base construction—creation, structure, maintenance, and 
interrogation of data bases. Integrity of the data base. Review and 
use of C3 course material on data base management systems. 
5. Program development (10%) 

Selection of languages. Use of standard building blocks and com-
mon programs. Error recovery; robustness of programs. Program-
ming standards and documentation. Review and use of C4 course ma-
terial. 
6. System implementation (10%) 

Levels of testing and debugging: planning and executing conver-
sion: management of programming, testing, and installation. Coordi-
nation of manual and automated procedures. Techniques for cutover 
(parallel operation, etc.); implementation schedules. 
7. Post implementation analyses (10%) 

Auditing system performance; costing of system development 

effort and system performance. Evaluating hardware/software per-
formance; "tuning" systems. Redesign cycle; modifying the system. 
Integrating changes into a running system. 
8. Long-range planning (10%) 

Trends in information system design. Integrating several systems 
into a corporate MIS. Planning for commonality and transferability 
of programs and data. Long-range forecasting of information require-
ments. 

References: In addition to the references in the bibliography for 
the D courses, the references listed for courses C3 and C4 are particu-
larly relevant for topics 4 and 5, respectively, of this course. 
1. Basic design tools and objectives 

Benjamin (1971) Sec. 4; Glans et al. (1968); Hartman et al. 
(1968); IBM (1966); Matthews (1971) Ch. 2, 3; Myers (1963); Shaw 
and Atkins (1970). 
2. Hardware/software selection and evaluation 

Couger (1972); Emery (1971); Fisher (1971); Gregory and Van 
Horn (1963); Head (1971); Joslin (1971); Martin (1965); Martin 
(1967); Martin (1969); Seiler (1969); Sharpe (1969) Sec. 4. 
3. Design and engineering of software 

Benjamin (1971); Martin (1965); Martin (1967) Sec. 6; Matthews 
(1971) Ch. 5 7; McDaniel (1970b); Rubin (1970a); Rubin (1970b); 
Teichroew and Sayani (1971). 
4. Data base development 

CODASYL (1971); Flores (1970); GUIDE/SHARE (1970); 
Gildersleeve (1971): Lyon (1971); Martin (1967) Ch. 22; Rubin 
(1970b). 
5. Program development 

Chapin (1971): Gray (1969); Martin (1965); Matthews (1971); 
Rosen (1967); Rubin (1970a); Rubin (1970b): Walsh (1969). 
6. System implementation 

Benjamin (1971) Sec. 9; Hartman et al. (1968); Martin (1965); 
Matthews (1971) Ch. 13; Shaw (1970). 
7. Post implementation analyses 

Benjamin (1971); Hartman et al. (1968): Martin (1965): Martin 
(1967), Matthews (1971) Ch. 11: Sutherland (1971). 
8. Long-range planning 

Emery (1969); Miller (1971); Morton (1971); Orlicky (1969). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix D. 

D3. Systems Development Projects (1-4-3) 

Corequisite: D2 
Approach: Students are assigned one or more system development 

projects. The projects involve the complete system development cycle: 
analysis, design, programming, and implementation. Students work in 
teams to acquire practical experience in such projects, especially re-
garding the behavioral considerations in systems development. They 
work with users to define system requirements and to prepare imple-
mentation plans and procedures. 

The work parallels other courses in the final year of the degree 
program. If possible, it should be extended over two semesters, per-
haps for additional credit. The information analysis portion of the 
project should begin in the first semester, as soon as the students are 
armed with sufficient capability to begin applying information analy-
sis techniques. Projects should be completed and documented in the 
final month of the second semester. Thus, even if three hours of credit 
are granted only for the second semester, some of the work is done 
during the first. 

Once a class has completed its project, the next class can expand 
on it, obtaining experience in the revision and sophistication of exist-
ing computer-based systems. The following are suggested alternatives 
for projects, the exact description of which will be dictated by circum-
stances. 

Content: 
1. Development of a system for a local firm 

Under supervision of the systems analysis staff, students could de-
velop a subsystem for one of the major modules of a computer-based 
management information system of a local firm. Students might also 
work as members of established client companies' teams. 
2. Development of a system for a university /college 

Under the supervision of the university administrative data proc-
essing unit, students could develop a system which would provide 

82 



them experience and at the same time benefit the university. Ex-
amples are: alumni record and follow-up system, bookstore ordering/ 
accounting, classroom scheduling system. 
3. Development of a system for a hypothetical application. 

As an example, a case (SRA) currently available provides stu-
ents with experience in each phase of system development for a hypo-
thetical electronics firm. The material is organized into 13 assignments: 
orientation, documentation, written procedure, system flowcharts, 
gathering information, classification and coding, printed output source 
documents and punched cards, records design, data controls, run con-
trols, audit trails, and file organization. 

References: The entire set of references for the D courses are 
appropriate for this course. While many excellent cases exist for anal-
ysis of subtopics in information systems, there is a lack of in-depth 
cases. At. considerable effort, an instructor can build a case by assem-
bling a number of cases from the Intercollegiate Case Clearing House. 
The Intercollegiate Bibliography may be obtained for S 10.00 from 
I.C.C.H., Soldiers Field, Boston, MA 02163. 
1. Development of a system for a local firm 

Blumenthal (1969) Ch. 3-4. 
2. Development of a system for a university/college 

Johnson and Katzenmeyer (1969), Pt. 3. 
3. Development of a system for a hypothetical application 

Science Research Associates (1970). 

Bibliography: The references are to the combined bibliography 
given at the end of Appendix D. 

Combined B i b l i o g r a p h y — C o u r s e Group D 

Ackoff, R.L. (1970) A Concept of Corporate Planning. Wiley, New 
York. 

Amstutz, A. (1967) Computer Simulation of Competitive Market 
Response. MIT Press, Cambridge, Mass. CR 9, 5(68)14,248. 
Proposes an approach to policy management-based on the use of 
microanalytic computer simulation. Describes how simulation-
based computer systems can provide realistic artificial environ-
ments in which managers evaluate strategies. 

Ansoff, H.I. (1965) Corporate Strategy. McGraw-Hill, New York. 
Benjamin, R.I. (1971) Control of the Information System Develop-

ment Cycle. Wiley, New York. 
Develops a conceptual methodology for controlling the develop-
ment of information systems. See also annotation in bibliography 
for Course AI. 

Benton, W.K. (1971) The Use of the Computer in Planning. Addison-
Wesley, Reading, Mass. 

Blumenthal, S.C. (1969) Management Information Systems: A Frame-
work for Planning and Development. Prentice-Hall, Englewood 
Cliffs, N.J. CR 10. 10(69)17, 647. 
Bridges the gap between theory and practice by detailing the spe-
cific technical and organizational steps necessary to synthesize a 
comprehensive, integrated system plan for the enterprise. See 
also annotation in bibliography for Course A1. 

Chapin, N. (1971) Flowcharts. Auerbach, Princeton, N.J. CR 12. 
12(71)22. 295. 
Covers program flowcharts, system flowcharts, computer-pro-
duced flowcharts, ANSI Standard flowcharts. 

Clifton. D.H. (1970) Systems Analysis for Business Data Processing. 
Auerbach, Princeton, N.J. CR 12, 4(71) 20, 952. 
An introductory book on system analysis and design. 

Couger, J.D. (1972) Systems Analysis Techniques. Wiley, New York. 
A collection of articles on system analysis techniques, describing 
approaches which concentrate on concepts and principles of 
system analysis. 

CODASYL Systems Committee (1971) Feature Analysis of General-
ized Data Base Management Systems. Technical report, availa-
ble from ACM, New York. 
See annotation in bibliography for Course Group C. 

Emery, J.C. (1969) Organizational Planning and Control Systems: 
Theory and Technology. Crowell Collier and Macmillan, New 
York. 
A technical approach, covering the system concept, the organiza-
tion as a system, the technology of information systems, the eco-
nomics of information, and planning and control. 

Emery, J.C. (1971) Cost/Benefit Analysis of Information Systems. 
The Society for Management Information Systems, Chicago. 
Provides foundation covering determination of value of informa-
tion, cost of information, characteristics that govern value and 
cost, and techniques for making cost/benefit analyses. 

Farina, M.V. (1970) Flowcharting. Prentice-Hall, Englewood Cliffs, 
N.J. CR 11, 7(70)19,469. 
Introduces flowcharting by relating it to application in program-
ming the BASIC language. 

Fisher. G.H. (1971) Cost Considerations in Systems Analysis. Ameri-
can Elsevier, New York. 
One of the first books to concentrate on the cost analysis aspects 
of system analysis. Uses examples in the Department of Defense. 
Written, however, so the reader can see the transferability to 
problems in transportation, health, public housing, and environ-
mental resource planning. 

Flores, I. (1970) Data Structure and Management. Prentice-Hall, 
Englewood Cliffs, N.J. CR 12,4(71)20,916. 
See annotation in bibliography for Course Group C. 

Gatto, O.T. (1964) Autosate. Comm. ACM 7, 7, 425-32. 
Describes an automated method for performing data gathering 
and the first stages of information analysis. 

Gildersleeve, T.R. (1970) Decision Tables and Their Practical Appli-
cation. Prentice-Hall, Englewood Cliffs, N.J. CR 12, 2(71)20, 655. 
A programmed instruction introduction to decision tables. 

Gildersleeve, T.R. (1971) Design of Sequential File Systems. Wiley, 
New York. 
Covers the design of files and strategies for sequential storage 
media. 

Glans, T.B., Grad, B., Holstein, D., Meyers, W.E., and Schmidt, 
R.N. (1968) Management Systems. Holt, Rinehart and Winston, 
New York. 
A detailed treatment of the initial stages of the system life cycle— 
analysis and design of the system. Includes concepts first pub-
lished by IBM under the name "Study Organization Plan." 

GUIDE/SHARE. (1970) Guide/Share Data Base Management 
System Requirements. Technical report. 
A well-written statement of requirements, emphasizing the im-
portance and functions of the people in the system. 

Gleim, G. (1970) Program Flowcharting. Holt, Rinehart and Winston, 
New York. 
Covers USASI symbols and two levels of flowcharting: systems 
flowcharts, program flowcharts. 

Gray, M., and London, K.R. (1969) Documentation Standards, Bran-
don/Systems Press, Princeton, N.J. CR 10, 9(68)17,373. 
The first book developed exclusively for this subject; covers all 
the salient facts concerning documentation. 

Gregory, R.H., and Van Horn, R.L. (1963) Automatic Data Process-
ing Systems. Wadsworth, Belmont, Calif. 
An introduction to data processing which includes chapters on 
system analysis, system design, and the value and cost of infor-
mation. 

Hare, V. (1967) Systems Analysis: A Diagnostic Approach. Harcourt 
Brace and Jovanovich, New York. CR 8, 5(67)12, 554. 
A technical treatment of system analysis, useful for graduate 
level courses. 

Hartman, W., Matthes, H., and Proeme, A. (1968) Management In-
formation Systems Handbook. McGraw-Hill, New York. 
A comprehensive coverage of the steps in system development, 
developed by the Netherlands-based Philips Corporation. 

Head, R.V. (1971) A Guide to Packaged Systems. Wiley, New York. 
Honeywell Corporation (1968) Business Information System Analysis 

and Design. Technical Report No. 144.0000.0000.0-954. 
The system analysis and design approach advocated by Honey-
well. 

Hurst, E.G. Jr. (1969) Analysis for management decisions. Wharton 
Quarterly (winter). 

IBM Corporation. (1963) Study Organization Plan Documentation 
Techniques. Technical Report No. C20-8075-0. 
The system analysis and design approach advocated by IBM. 

IBM Corporation (1966) The Time Automated Grid System. Tech-
nical Report No. Y20-0358-0. 

Johnson, CB. and Katzenmeyer, W.G. (Eds.) (1969) Management In-
formation Systems in Higher Education: The State of the Art. 
Duke U- Press, Durham, N.C. 

Joslin, E. (Ed.) (1971) Analysis, Design and Selection of Computer 
Systems. College Reading Inc., Arlington, Va. 
A book of readings, from earlier published articles. 

83 



Laden, H.N., and Gildersleeve, T.R. (1963) Systems Design for Com-
puter Applications. Wiley, New York. 
Covers techniques for design of sequential file systems. 

Langefors, B. (1970) Theoretical Analysis of Information Systems, 
Vol. I, 2. Studentlitteratur Lund. Available from Barnes & No-
ble, New York, CR 11, 4(70)18, 831 (Vol. 1); 18, 832 (Vol. 2). 
A technical treatment of systems analysis, useful for graduate 
level courses. 

Lyon, J.K. (1971) An Introduction to Data Base Design. Wiley, New 
York. 
Concentrates on techniques in the design of online files. 

Martin, J. (1965) Programming Real-Time Computer Systems. Pren-
tice-Hall, Englewood Cliffs, N.J. 
Concentrates more on system design than programming aspects 
of online systems. 

Martin, J. (1967) Design of Real-Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N.J. CR 9, 2(68)13,607. 
Continuation of his prior book, listed above. See also annotation 
in bibliography for Course Group C. 

Martin, J. (1969) Telecommunications and the Computer. Prentice-
Hall, Englewood Cliffs, N.J. CR 11, 8(70)19,602, 19,603. 
Technical aspects of the design of communication networks. 

Marschak, J. (1971) Economics of information systems. J. American 
Statistical Association 66, 192-219. 
An important contribution towards formalizing, in a precise sta-
tistical manner, the concepts of cost and benefit of information. 

Matthews, D.Q. (1971) The Design of the Management Information 
System. Auerbach, Princeton, N.J. CR 12, 8(71)21, 668. 
An introductory book on the MIS approach. 

McDaniel, H. (1970a) Applications of Decision Tables—A Reader. 
Brandon/Systems Press, Princeton, N.J. CR 12, 2(71)20, 613. 
Examples of the use of decision tables, at the introductory level. 

McDaniel, H. (1970b) Decision Table Software—A Handbook. 
Brandon/Systems Press, Princeton, N.J., CR 12, 2(71)20, 613. 
Examples of the use of decision tables at the introductory level. 

Miller, E.C. (1971) Advanced Techniques for Strategic Planning. 
AMA Research Study 104, American Management Assoc., New 
York. 

Morton, M.S.S. (1971) Management Decision Systems. Graduate 
School of Business Administration, Harvard U., Boston. CR 12, 
6(71)21,367. 
Presents results of academic experimentation in manager/com-
puter interactive terminal systems. 

Myers, D.H. (1963) A Time-Grid Techniques for the Design of Infor-
mation Systems. IBM Systems Research Institute, New York. 
A description of this technique is also given in Kelly (1970), pp. 
367-403, listed in the bibliography for Course Al . 

National Cash Register Company. (1967) Accurately Defined Sys-
tems. Dayton, Ohio. 
The system analysis and design approach advocated by NCR. 

Nolan, R. L. (1971) Systems analysis for computer based information 
systems design. Data Base 5, 4, 1-10. 
See annotation in bibliography for Course A3. 

Olle, T.W. (1970) MIS: data bases. Datamation (Nov.). 
An excellent classification and characterization of file manage-
ment systems, and how they fit into the world of management 
information systems. 

Optner, S. (1968) Systems Analysis for Business Management. Pren-
tice-Hall, Englewood Cliffs, N.J. 
Should be titled "Analysis of Systems for Management of Busi-
ness." Includes cases. 

Orlicky, J. (1969) The Successful Computer System: Its Plan-
ning, Development and Management in a Business Enterprise. 
McGraw-Hill, New York. CR 10, 11(69)17,820. 
Introduction to planning for the MIS. 

Pollack, S.L., Hicks, H.T. Jr., and Harrison, W.J. (1971) Decision 
Tables: Theory and Practice. Wiley, New York. 
The theory and theorems of the decision table technique. Includes 
examples. 

Rosen, S. (Ed.) (1967) Programming Languages and Systems. 
McGraw-Hill, New York. CR 10, 1(69)15,975. 
Readings which provide valuable historical perspective in the 
area of systems programming and the design of large scale oper-
ating systems. 

Rubin, M. (1970a) Introduction to the System Life Cycle, (Vol. 1). 
Auerbach, Princeton, N.J. 
Provides introductory level description of eight steps in the sys-
tem life cycle. 

Rubin, M. (1970b) System Life Cycle Standards, (Vol. 2). Auerbach, 
Princeton, N.J. 
Provides standards, procedures and forms for system develop-
ment. 

Rubin, M. (1970c) Advanced Technology: Input and Output. Auer-
bach, Princeton, N.J. 
A reference for I /O approaches and design considerations. 

Rubin, M. (1970d) Advanced Technology: Systems Concepts. Auer-
bach, Princeton, N.J. 
Introduction to systems analysis concepts. 

Science Research Associates (1970) Case Study on Business Systems 
Design. College Division, Palo Alto, Calif. 
A laboratory manual providing thirteen assignments in develop-
ing an EDP system for a hypothetical electronics firm. 

Seiler, K. (1969) Introduction to Systems Cost-Effectiveness. Wiley, 
New York. 
Provides general concepts; not directed specifically toward com-
puterized systems. 

Shaw, J.C., and Atkins, W. (1970) Managing Computer Systems 
Projects. McGraw-Hill, New York, CR 12, 9(71)21,832. 
Suggests approaches for managing the systems development ef-
fort. 

Sharpe, W.F. (1969) The Economics of Computers. Columbia U. 
Press, New York. 
A theoretical treatment for decisions on selection, financing 
and/or use of computers. See also annotation in bibliography 
for Course A4. 

Sutherland, J.W. (1971) The configurator: today and tomorrow (Pt. 
I); Tackle systems selection systematically (Pt. 2). Computer 
Decisions, (Feb., Apr.), 38-43, 14-19. CR 12, 7(71)21,521. 
A two-part article on the use of simulation and analytical meth-
thods in the selection of a computer configuration. 

Teichroew, D., and Sayani, H. (1971) Automation of system building. 
Datamation (Aug. 15), 25-30. CR 12, 12(71)22,264. 

Young, J.W., and Kent, H. (1958) Abstract formulation of data proc-
essing problems. J. Industrial Engineering (Nov.-Dec.). 

Walsh, D. (1969) A Guide for Software Documentation. McGraw-
Hill, New York. CR 11, 7(70)19,392. 
Provides forms and procedures to follow when documenting the 
design and coding of a software system. 

84 



Education 
E.l. Organfck 
Editor 

A Computer 
Science 
Course Program 
for Small Colleges 

Richard H. Austing 
University of Maryland 
and 
Gerald L. Engel 
The Pennsylvania State University 

The ACM Subcommittee on Small College 
Programs of the Committee on Curriculum in 
Computer Science (C3S) was appointed in 1969 to 
consider the unique problems of small colleges and 
universities, and to make recommendations regarding 
computer science programs at such schools. This report, 
authorized by both the subcommittee and C3S, supplies a 
set of recommendations for courses and necessary 
resources. 

Implementation problems are discussed, specifically 
within the constraints of limited faculty and for the 
purposes of satisfying a wide variety of objectives. 
Detailed descriptions of four courses are given; 
suggestions are made for more advanced work; and an 
extensive library list is included. 

Key Words and Phrases: computer science education, 
course proposals, small colleges, programming course, 
social implications course, computer organization course, 
file organization course, bibliographies 

CR Categories: 1.52 

This report gives recommendations for the content, 
implementation, and operation of a program of com-
puter science courses specifically directed to small col-
leges. In no way does this material represent a major 
program in computer science. It does describe a program 
for those schools with limited resources, but with an 
interest, enthusiasm, and desire for some course offer-
ings in computer science. Those institutions interested 
in computer science and with the resources necessary 
for a major program in this field should refer to the 
existing reports of ACM'S Committee on Curriculum in 
Computer Science (C3S) [87a] and other curriculum 
studies. Institutions which desire to complement com-
puter science course offerings with a set of courses in 
computational mathematics should consider the report 
of the Committee on the Undergraduate Program in 
Mathematics [86d]. 

The Program 

Copyright © 1973, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 

of this material is granted, provided that reference is made to this 
publication, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for Com-
puting Machinery. 

The work reported here was supported in part by National 
Science Foundation grant GJ-U77 to the Association for Comput-
ing Machinery. A preliminary version was presented for discussion 
at the second annual SIGCSE Symposium, St. Louis, Missouri in 

Four courses are described and suggestions are made 
for additional study and courses for students interested 
in further work. N o names have been given to the four 
courses, but they correspond roughly to the areas of al-
gorithms and programming (Course 1), application of 
computers and their impact on society (Course 2), 
machine and systems organization (Course 3), and 
file and data organization (Course 4) . Though these 
March 1972 and subsequently appeared in the IAG Journal under 
the title Computer Science Education in Small Colleges—A Report 
with Recommendations. Authors' addresses: Richard H. Austing, 
Computer Science Center, University of Maryland, College Park, 
MD. 20742; Gerald L. Engel, Computer Science Department, The 
Pennsylvania State University, University Park, PA. 16802; on 
leave from Hampden-Sydney College, Hampden-Sydney, VA 23368. 

85 



courses in a real sense represent a coherent program, 
they are structured so as to allow a student with limited 
objectives and limited time to pick and choose those 
parts most relevant to his needs. 

Course 1 is the introduction, which in most cases 
gives a student his first experience in computer science. 
This is accomplished primarily by the presentation of a 
higher level programming language. Course 2 expands 
on Course 1 by giving the student further programming 
experience. In addition the student is introduced to a 
variety of applications of computers and the effects 
that these applications will have on the individual and 
on society. In Course 3, the student gains familiarity 
with various aspects of computer systems and how the 
parts of such systems interact. Finally, in Course 4 
the concepts and applications of data representation 
and organization are considered. 

Three of the courses (Courses 1, 3, and 4) correspond 
in basic content to courses in "Curriculum 68" [87aj. 
However, there is a good deal of difference in structure 
and emphasis in these courses from the way in which 
they are commonly taught. In order to allow as many 
students as possible to take the courses, the prerequisite 
structure is held to a minimum. Also, in order to provide 
a more general background, the courses (especially 
Courses 3 and 4) are more concerned with concepts 
of a particular system than with details or extensive 
programming exercises. For example, in Course 3 no 
particular assembler would be studied, but rather the 
general concept and vocabulary of computer systems 
would be presented. In this way a student, anticipating a 
career in business management, could equip himself 
with the tools to select a computer system without having 
to bury himself in the details of a particular system. 

Course 2 does not have an equivalent in "Curricu-
lum 68." This course in applications would, in most 
cases, be the natural sequel to the introductory program-
ming course. It combines further experience in program-
ming with a limited survey of application areas. Though 
programming would be an integral part of the course, 
something of the overall descriptive nature of the pro-
gram would be involved. Where possible and appro-
priate, the students would be expected to use programs 
and data bases that are available. For example, if the 
class was studying simulation, it would be appropriate 
for the student to gain experience by using a computer-
based traffic flow simulation to study the i / o prob-
lems involved, and possibly by studying some of the 
techniques involved in writing appropriate programs, 
but not necessarily by writing the program itself. 

Implementation of this .program would make in-
struction available to all students on campus at least 
at the level of being able to communicate intelligently 
with a computer. In addition advanced instruction would 
be readily accessible. For the student anticipating a 
career in computing or considering application for grad-
uate work in computer science, several approaches are 
possible. Independent study courses can provide intro-

ductions to certain topics (courses in assembly language 
programming, programming languages, or even some 
large scale programming project would be appropriate) . 
Also, since we are dealing with small schools, coopera-
tion with other departments can be anticipated. Through 
this interdepartmental cooperation, certain courses can 
be modified to serve the student anticipating graduate 
work in computer science. Such a student should be ad-
vised to follow a mathematics curriculum, and could 
anticipate taking at least a computer oriented course 
offered by the mathematics department in probability 
and statistics, or a numerical analysis course, or a 
course in abstract algebra that would emphasize com-
puter applications, or any of the computational mathe-
matics courses recommended in the CUPM report [87bJ. 
Finally, with the general introduction of computers in 
the undergraduate curricula as documented in the pro-
ceedings of the Conferences on Computers in the Under-
graduate Curricula [86eJ, it seems reasonable to antici-
pate that an interested student can select several courses 
from various disciplines that make significant use of 
computers. 

Implementation 

One of the purposes of this program is to ensure its 
implementation with a minimal staff. Obviously, com-
puting equipment must also be considered, and since 
most small schools are working under a small budget 
for computer services, the course structure reflects the 
fact that extensive computer power will probably not be 
available on campus. The courses recommended require 
that the students have access to a computer which has a 
higher level programming language for student use. 
Only one higher level language is required inasmuch as 
every computer installation satisfies that requirement. 
If additional languages are available, their use might be 
appropriate in one or more courses. Whether the com-
puter is a small stand-alone or has one or more terminals 
makes little difference. The important requirement is 
that the students have easy access to the equipment and 
to student oriented software. 

As important as the computer science course struc-
ture is, the most important area of computing at a small 
school is the service area. The cost of computing on 
campus, in terms of both equipment and personnel, can 
only be justified if computing services are used on a 
campus-wide basis. To achieve this, the development of a 
community of computer users on campus, as well as the 
excellent development of Course I, is necessary and for 
schools that are not already involved in such programs, 
the first effort of the faculty member in charge of the 
development of computing must be made in these direc-
tions. The introduction of the additional course work 
should take place after these aspects of the program are 
completed. 

The program requires one full-time instructor. In 

86 



most eases, Course 1 and Course 2 would be offered 
each semester, while Course 3 and Course 4 would be 
offered once each year. It is common practice in small 
schools to have the computer science faculty and com-
puter center staff one and the same. It is clear that the 
demands of this program (at least nine hours per 
semester) plus the desirability of offering additional 
special courses at the more advanced level make this 
situation impossible. Thus the instructional staff and 
computer center staff should be separate. There should 
be, of course, a close relationship between the instructor 
and the center staff, but the instructor should have no 
administrative responsibilities in the center. 

Another common practice in small schools is to take 
a faculty member from a department that is a computer 
user, and assign him the responsibility for computer 
science instruction. Such a practice often leads to the 
courses being not in computer science but rather in 
applications of computers. Whenever possible this should 
be avoided, but if it is necessary, the instructional ma-
terial should be clearly separated from any other de-
partment of the school. 

it is well to note that the present market situation 
places a small school in an excellent position to hire a 
computer scientist. Where possible this should be done, 
at least to the extent of bringing in the individual re-
sponsible for the implementation of the program. Where 
this cannot be done, a commitment should be made to 
allow an existing faculty member to develop himself in 
computer science education. Summer programs for this 
purpose are not plentiful, and doing such work in the 
normal environment of teaching and other responsibil-
ities at the small school is close to impossible. Thus, 
where an existing faculty member is asked to be respon-
sible for the program, it is strongly recommended that 
this faculty member be granted a year's leave of ab-
sence to work and gain experience in a computer science 
department. It is also recommended that universities 
with the facilities to do so develop programs that will 
help these faculty members to achieve their objective. 

As with any program, the usual supporting facilities 
of the college are necessary. Though no great amount 
of specialized material is expected, it should be recog-
nized that there will be a need for a rather large initial 
expenditure in the area of library materials, both books 
and periodicals. To provide a starting point for the 
development of a collection, a library list has been in-
cluded. 

Courses 

There is much evidence that some exposure to com-
puters should be an essential part of every college 
student's education. Many students will become users in 
their chosen occupations. Included in this group would 
be teachers, managers, researchers, and programmers 
who will need the computer as a tool. Other students 
will become directly involved in computer education 
and the computer industry. All students will be affected 
by the use of computers in our society. 

Asa minimum, students should acquirc some under-
standing of the implications of the computer impact on 
individuals, Organizations, and society. One way in 
which an academic institution can do this is to offer a 
survey type course in computers and society. However, 
there are some inherent difficulties with such an ap-
proach, particularly in schools which have no more 
than one or two faculty members in the computer 
science area. The breadth and amount of knowledge 
needed to give a worthwhile course of this type almost 
precludes its being offered by any one person. Devel-
opments and applications span such a wide range of 
areas that faculty from a variety of fields would need to 
be used. The course then might take on the flavor of a 
lecture series in which students would be presented a 
great deal of information but almost no feeling about 
what a computer is or how it should be used. 

A better approach, as well as a more practical one 
in terms of faculty utilization, would consist of teach-
ing fundamentals of computer science in a first course 
and allowing students the option of acquiring addi-
tional knowledge through their own reading, on-the-job 
training, or further course work in computer science or 
other disciplines. The first course described below fol-
lows this approach. It plays the role of a beginning 
course and the prerequisite course to each of the other 
three courses described. The latter three courses are 
designed not to be sequential. However, the most desir-
able path through them for students taking all of them 
would be in the order presented. 

There is an intended overlap in the material of the 
four courses. Some ideas are worth repeating at differ-
ent levels. Also, the same problem or concept can be 
enhanced by looking at it from different points of view 
or by bringing different material to bear on it. 

Very few matters related to courses or curriculum 
are generally agreed upon among computer scientists. 
The question of what language to teach in a first course 
is no exception. Although there appears to be general 
agreement that a higher level language should be pre-
sented before an assembly language, there is a substan-
tial difference of opinion regarding the specific language 
to use. APL, BASIC, FORTRAN, and P L / I , to name a few, 
each has a band of advocates. FORTRAN is still the most 
widely used general purpose language and is the most 
easily transferable from computer to computer. Despite 
its shortcomings, FORTRAN would seem to be the most 

87 



useful for the greatest number of students and is the 
language recommended for the first course, PL/I, if it 
is available, could be chosen in place of FORTRAN, par-
ticularly because its capabilities for nonriumeric appli-
cations make it useful in Courses 2 and 4. If strong 
reasons compel a different choice of language, some 
modifications might be necessary in course topics or 
approach. The introduction of and programming in a 
second language (e.g. ALGOL, APL, SNOBOL) is not rec-
ommended; it greatly decreases the programming ex-
perience and competence the student acquires in the 
first course. However, if time permits, a short discussion 
of a different kind of language and a demonstration 
program could be added at the end of the course. 

Course 1 (3 Credits) 
Introduction. This is a first course which emphasizes 

good programming techniques in a higher level lan-
guage. No programming background is assumed. Upon 
completion of this course, the student: (a) should have 
practical experience in programming, including seg-
mentation of both a problem and a program for its 
solution, debugging, implementation of basic data 
structures such as lists, and use of "canned" programs; 
(b) should know basic characterization of computer 
organization; (c) should be able to distinguish among 
program assembly, loading, compilation and execution, 
including some of the kinds of programming errors that 
can occur at each stage; and (d) should know the 
details of the language and have a basic idea of the 
relation of its statements to machine code. 

The topics listed for this course do not differ sub-
stantially from the topics included in the outline of 
course Bl in "Curriculum 68"; however, a shift in em-
phasis is recommended. Course Bl stressed the notion 
of algorithm, problem analysis, and the formulation of 
algorithms for problem solution. Learning a language, 
practice in its use, and concepts of computer organiza-
tion were also emphasized, but mainly as the means to 
obtain the actual solution of the problem. Unfor-
tunately, no texts have appeared which have achieved 
the goal of presenting the subject of problem solving in 
an effective way (several books by Polya might be con-
sidered exceptions to this statement but they are not of 
the algorithmic orientation specified in course B l ) . 
Judging from the great variety found in introductory 
computing courses, it would seem that few, if any, 
teachers have been able to achieve the goal. It is not an 
easy problem to solve, but it is worth working toward 
a solution. 

On the other hand, it is possible to teach program-
ming techniques with the aid of a language manual and, 
possibly, one of the existing texts. The textbook could 
be used as a source of problems, at least, and in some 
cases, to supplement discussions of appropriate pro-
gramming techniques applied to specific classes of 
problems. By concentrating on programming, the in-
structor is better able to teach a language, put it in 

proper perspective with computer organizations and 
systems, develop good programming practices (in-
cluding coding, debugging, and documentation), and 
motivate the need for algorithms in the solution process. 
Students should be required to use subprograms exten-
sively (both their own and ones that are provided); 
this, in turn, would encourage at least one good prob-
lem solving technique—breaking up a problem into 
solvable parts. 

An important benefit to the general approach sug-
gested here is that the course is more easily defensible 
as a service course. Students could be urged to find 
problems in their own field of interest which they would 
program as course projects. Duplication of first courses 
for different groups of students could be minimized 
and, possibly, avoided entirely. For the first few semes-
ters it might be difficult to obtain reasonable problems 
from a variety of areas, but as more faculty members 
become users, their fields of interest will become a 
source of good problems. In addition, a collection of 
(possibly large) data bases and subprograms can be 
accumulated and used as files to be referenced by stu-
dent programs. The degree of success achieved by the 
computer center in developing a community of compu-
ter users has a significant influence here. As a result, 
some very interesting and nontrivial problems can be 
considered both in this course and in Course 2. 

Though laboratory-like sessions for small groups of 
students may be desirable, they are not essential. If 
these sessions are used, an instructor may want to 
scatter them throughout the semester or bunch them at 
the beginning of the course and let the students program 
on a more individual basis toward the end of the course. 
Whether or not the laboratory sessions should be sched-
uled is a matter that is best decided by the instructor 
and/or the department. 

Catalog Description. A first course in programming, 
using the FORTRAN language. Introductory concepts of 
computer organization and systems. Programming 
projects, including at least one from the student's field 
of interest. 

Outline. Even though topics are listed sequentially, 
some topics (e.g. computer organization) should be 
distributed throughout the course with increasing de-
grees of detail. Problem analysis should be emphasized. 
1. Overview of a computer. Basic computer modules, 
organization, and program execution. (5%) 
2. Overview of problem solving process, beginning 
with the problem statement and ending with verifica-
tion of the correct computer solution. (5%) 
3. Introduction to the specific computer environment 
in which the student will work. Information needed by 
the student to interact with the computer in this course. 
(5%) 
4. Language details. Components and types of assign-
ment, control, and specification statements; data repre-

88 



sentation and structures; storage allocation; i /o ; sub-
programs; local and global variables; common and 
equivalence statements. (30%) 
5. Programming techniques. Segmentation of prob-
lems and programs; comments and other documenta-
tion; debugging; library subroutines. (15%) 
6. Simple data structures and list processing. Pointers; 
structures such as strings, stacks, linear and circular 
lists. (10%) 
7. Limitations of FORTRAN. Nonnumeric programming; 
recursion. (5%) 
8. Computer organization and systems. More detailed 
presentation of hardware and systems software, in-
cluding registers, instruction codes, addressing, assem-
bler, loader, compiler, and characteristics of compo-
nents; peripheral units; past, present, and future devel-
opments. (20%) 
9. Examinations. (5%) 

Texts. A language manual, either the manufacturer's 
or one of the numerous manuals and primers that are 
available, should be used. Also, any local documenta-
tion concerning the installation's computer and/or 
systems should be readily available. No current book 
covers the material as presented in the outline, but 
parts of many books could be used as source material 
or student reference. For example, the following refer-
ences are pertinent: 1, 3, 4, 11, 12, 15, 17, 22, 24, 28, 
32, 34, 42, 59, 65, 66, 73, 77-80, 86a, 86d, and 88a-d. 

Course 2 
Introduction. This course emphasizes the use of 

computers in a variety of problem areas. It is an appli-
cations oriented course which should give the student 
concrete experience in solving representative problems 
of a practical nature. As in Course 1, large data bases 
can be established as experience in teaching the course 
is gained. Discussion of problems and problem areas 
should include algorithms, application techniques from 
Course 1, and social implications. New concepts and 
tools (e.g. complex data structures, tree search tech-
niques, sorting methods) can be introduced as required 
in the context of specific problems, and the need for 
additional tools, including different kinds of languages, 
can be motivated. Occasionally, it might be feasible to 
invite a faculty member from another department or 
university or a local businessman to supplement ma-
terial on a topic. Student assignments should vary, both 
in depth and in subject areas. In particular, a student 
who has completed Course 3 or 4 should be expected 
to use different techniques and solve larger or more 
difficult problems than a student who has completed 
only Course 1. Students should be encouraged to dis-
cover and solve problems in their own areas of interest. 

Because students in this course have completed a 
programming course, no discussion should be necessary 
on such topics as what a computer is and how it works, 
number representation, flowcharts, and other elemen-

tary matters included in a computer appreciation-type 
course. However, a discussion of various systems (time-
sharing, batch, etc.) should be included so that students 
are aware of the kinds of computer environments in 
which problems are solved. 

The instructor should pose a suitably difficult prob-
lem in a real context, indicate possible approaches to 
its solution, break it up into smaller problems, discuss 
appropriate algorithms, introduce whatever new topics 
pertain to the problem, and let the student write a pro-
gram to obtain the solution. If an entire problem is too 
difficult to solve in this way, one or more subproblems 
can be identified and handled as described. More ad-
vanced methods can be indicated when appropriate, 
and the student can be directed to appropriate refer-
ences. Social and historical implications can be dis-
cussed at various stages of the solution process. As the 
course progresses, students should be expected to do 
more analysis .and algorithm writing than specified 
above. The desired effects are that the student becomes 
acquainted with the computer's impact in a number of 
areas, is exposed to concepts and methods applicable 
to different kinds of problems, and gains practical ex-
perience in solving problems. 

Catalog Description. Prerequisite, Course 1. Survey 
of computer applications in areas such as file manage-
ment, gaming, CAI, process control, simulation, and 
modeling. Impact of computers on individuals and 
society. Problem solving using computers with emphasis 
on analysis. Formulation of algorithms, and program-
ming. Projects chosen from various application areas 
including student's area of interest. 

Outline. The selection and ordering of topics are 
highly dependent on the local situation. The topics are 
listed separately but should be combined as much as 
possible during discussion of problems. Problems and 
projects should have a practical flavor and should use a 
variety of computer oriented techniques and concepts. 
Attention should be given to the kind of technique that 
applies to a particular class of problems but not to 
other classes of problems. Each problem should be dis-
cussed in such a way that the student is aware of its 
relation to a real world context and sees the computer as 
a natural tool in the solution process. 
1. Computer systems. Batch and interactive; real-time; 
information management; networks. Description of 
each system, how it differs from the others, and kinds 
of applications for which each system is best suited. 
(15%) 
2. Large data bases. Establishment and use; data defi-
nition and structures. (10%) 
3. Errors. Types; effects; handling. (5%) 
4. Social implications. Human-machine interface, pri-
vacy; moral and legal issues. (15%) 
5. Future social impact. Checkless society; CAI; na-
tional data bank. (10%) 

89 



6. Languages. Business oriented; list processing ;simu-
lation; string and symbol manipulation. Brief exposi-
tion of characteristics which make these languages 
appropriate for particular classes of problems. (10%) 
7. Concepts and techniques used in solving problems 
from applications areas such as CAI, data management, 
gaming, information retrieval, and simulation. (25%) 
8. Discussion of completed projects and /o r examina-
tions. (10%) 

Texts. The italicized references cited below could 
serve as basic texts for this course. Many books and 
magazine articles could provide useful supplementary 
material either for class use or for student or teacher 
reference. Only a sampling of the available material is 
included in the Library List: 2, 3, 8, 9, 14, 15, 16, 19, 
34, 36, 44, 56-59, 61, 63, 64, 68, 70, 72, 74, 76, 77, 85a, 
85b, and 86a-e. 

Course 3 
Introduction. This course emphasizes the relation-

ships between computer organization (hardware) and 
sof tware. Each module's organization should be dis-
cussed, and its features should be related to the im-
plementation of programming language features and 
assembly language instructions. Whenever possible, ex-
planations should be included about why specific hard-
ware features are better suited than others to certain 
types of problems or environments (e.g. real-time com-
puting, interactive systems, data processing, scientific 
applications), and how this could affect selection of 
components. The effects of adding or changing modules 
should be viewed with respect to costs, capabilities, 
and software. Minicomputers should be discussed both 
as stand-alone computers and as components of larger 
systems. 

Programming in assembly language should not be 
taught as such. However, students should be exposed 
to the use of macros and microprogramming. They 
should acquire a basic understanding of monitors, in-
terrupts, addressing, program control, as well as im-
plementation of arrays, stacks, and hash tables. In short, 
they should become familiar with assembly language 
concepts but in relation to their use in the total com-
puter environment rather than through extensive pro-
gramming. The need for assembly language program-
ming experience is no longer great enough to argue that 
most students should have it. For those students who 
become interested in it, a special study course can be 
provided. With the background acquired in Course 3, a 
student should be able to gain programming experience 
without much additional guidance. 

Catalog Description. Prerequisite, Course 1. Rela-
tionships among computer components, structures, and 
systems. Hardware features, costs, capabilities, and selec-
tion. Assembly language concepts and implementation. 

Outline. Because this course is, at least to some 
extent, dependent on the specific computer available, 
the selection, ordering, and depth of coverage of topics 
will vary from institution to institution. 
1. Processor. Arithmetic and control functions; rela-
tionships of features to language features; data handling; 
addressing. (20%) 
2. Memory. Various types; cost, capabilities, and func-
tions of each type; direct, random and sequential access; 
implementation of arrays, stacks, and hash tables. (20 %) 
3. i /o . Types, costs, and capabilities of units and media; 
control; channels; interrupts. (20%) 
4. Communication among components. Effects of 
changing configurations; interactive and real-time sys-
tems. (5%) 
5. Minicomputers. Capabilities as stand-alone com-
puters; components of larger systems; costs. (10%) 
6. Assembly language concepts. Instructions and their 
relations to components included above; macros, micro-
programming. (20%) 
7. Examinations. (5%) 

Texts. No available text is suitable for this course. 
Material can be drawn from the following references 
and from manufacturers ' manuals: 5, 6, 7, 13, 16, 26, 
27, 29, 30, 31, 33, 35, 38-41, 43, 45-48, 53, 56, 60, 67, 
69, 71, 74, 75, 81, 84, 86a, and 87b. 

Course 4 
Introduction. This is a course in file organization 

and manipulation. It stresses concepts, data structures, 
and algorithms used in the solution of non-numerical 
problems. Proper motivation for each should be given; 
an encyclopedia approach is not intended. Whenever 
several methods for achieving the same result are dis-
cussed (e.g. sorting or searching algorithms) compara-
tive evaluations should be included. Differences between 
using core only and core plus auxiliary memory for 
various applications should be pointed out. If appro-
priate hardware is available, students should be assigned 
programming projects that require performing opera-
tions on large data bases and that require manipulating 
records on auxiliary memory devices. Immediate sources 
of problems are in the areas of mailing lists, registration, 
scheduling, student records, and library automation. If 
a suitable language for list processing applications is 
available, it could be taught and used in part of the 
course. Otherwise, characteristics of languages for this 
purpose should be given. 

Catalog Description. Prerequisite, Course 1. Data 
structures, concepts and algorithms used in the solu-
tion of non-numerical problems. Applications to data 
management systems, file organization, information re-
trieval, list processing, and programming languages. 

90 



Outline. Neither mathematical applications nor 
mathematical properties of structures is included in this 
outline. They could become part of the course if stu-
dents have sufficient background. Although some of the 
topics are discussed in Courses 1, 2 and 3, only the ma-
terial in Course 1 is assumed. 
1. Stacks, queues, arrays, lists. Structures; algorithms 
for manipulating, storage allocation and maintenance; 
applications. (25%) 
2. Languages for list processing. Features of one or 
more languages (e.g. LISP, LFI, PL/I ) . (5%) 
3. Trees. Binary; threaded; traversal schemes: storage 
representation; applications. (15% ) 
4. Hash coding. Addressing; collisions; applications of 
symbol tables; storage allocation. (15%) 
5. Searching and sorting. Comparison and evaluation 
of methods; techniques for use with auxiliary memory 
devices; applications. (15%) 
6. Complex structures. Hierarchical; indexed sequen-
tial; inverted list; multilinked; applications to large 
information systems including case studies with illus-
trations of why they might not work. (20%) 
7. Examinations. (5%) 

Texts. A text for this course could be chosen from 
the italicized items included in the following list. How-
ever, the text would have to be supplemented with ma-
terial f rom other references. 10, 20, 21, 24, 26, 28, 31, 
37,41, 44, 47, 49, 51, 54, 75, and 81a. 

Additional Recommended Courses 

The four courses described above are designed to 
service a broad segment of the undergraduate student 
body with an extremely limited number of faculty mem-
bers, possibly one. Students should also have the oppor-
tunity to take computer-oriented courses in their own 
departments. The number of possible courses in this 
category is too great to try to list. Instead, we will recom-
mend additional courses for the student who is seriously 
interested in computer science whether or not that 
student intends to pursue a graduate degree program in 
the field. 

Each of the following specific courses could be given 
for special study to one or a few students or as a regular 
course if the demand is great enough and an instructor 
is available. Other topics could be included but might 
not be possible to implement in a practical way unless 
access to a large computer were available. 

Assembly Language Programming. This course would 
enable a student interested in software to apply the 
concepts learned in Course 3; it provides a means to 
become experienced in assembly language program-
ming and an introduction to systems programming. 
Desirable goals for this course include proficiency in 
assembly language programming, particularly using the 
system on hand; knowledge of basic principles of sys-

tems programming; and implementation of specific seg-
ments of systems programs (e.g. i /o routines). Manu-
facturer's manuals would initially serve as texts. The 
COSINE Committee's report, "An Undergraduate Course 
on Operating Systems Principles" (June 1971) provides 
a number of ideas for possible topics and references after 
the student acquires some programming experience. 

Structure of Programming Languages. This course 
would include an introduction to grammars, lan-
guages they generate, scanners, recognizers, and other 
topics as time allows. Reference material for this course 
might include portions of Compiler Construction for 
Digital Computers by David Gries, Ten Mini-Languages 
by H.F. Ledgard or A Comparative Study of Program-
ming Languages by E. Higman. Also the features of 
languages such as ALGOL and SNOBOL4 could be studied. 

Programming Languages. If any language other than 
those included in courses is available, a special-study 
programming course may be appropriate. As part of 
this course, a student might be required to design and 
implement a major software project of some benefit 
either to the center or to the user community. Such a 
course might carry only one credit and it might be best 
given as a month-long course in schools on 4-1 -4 system. 

Library List 

The following list is not exhaustive. No attempt was made 
to compile a list of all books on any specific topic. Certain areas 
are omitted entirely; namely, programming language manuals, 
books directed toward specific computers, and books primarily 
oriented toward use in other disciplines (such as numerical methods, 
computers and music, and programming for the behavioral 
sciences). 
1. Arden, B.W. An Introduction to Digital Computing. 
Addison-Wesley, Reading, Mass., 1963. 
2. Baer, R.M. The Digital Villain. Addison-Wesley, Reading, 
Mass., 1972. 
3. Barrodale, I., Roberts, F., and Ehle, B. Elementary Computer 
Applications. Wiley„New York, 1971. 
4. Barron, D.W. Recursive Techniques in Programming. American 
Elsevier, New York, 1968. 
5. Barron, D.W., Assemblers and Loaders. American Elsevier, 
New York, 1969. 
6. Beizer, B. The Architecture and Engineering of Digital Computer 
Complexes. Plenum Press, New York, 1971. 
7. Bell, C.G., and Newell, A. Computer Structures: Readings and 
Examples. McGraw-Hill, New York, 1971. 
8. Bemer, R.M. (Ed.) Computers and Crisis. ACM, New York, 
1971. 
9. Benice, D.D. (Ed.) Computer Selections. McGraw-Hill, 
New York, 1971. 
10. Berztiss, A.T. Data Structures: Theory and Practice. Academic 
Press, New York, 1971. 
11. Brooks, F., and Iverson, K. Automatic Data Processing. Wiley, 
New York, 1969. 
12. Cole, R.W. Introduction to Computing. McGraw-Hill, 
New York, 1969. 
13. Cuttle, G., and Robinson, P.B. (Eds.) Executive Programs and 
Operating Systems. American Elsevier, New York, 1970. 
14. Davenport, W.P. Modern Data Communications. Hayden, 
New York, 1971. 
15. Desmonde, W.H. Computers and Their Uses. Prentice-Hall, 
Englewood Cliffs, N.J., 1971. 
16. Dippel, G., and House, W.C. Information Systems. Scott, 
Foresman, Chicago, 1969. 

91 



17. Dorf, R.C. Introduction to Computers and Computer Science. 
Boyd and Fraser, San Francisco, 1972. 
18. E l s o n , M . Concepts of Programming Languages. Science 
Research Associates, New York. In press. 
19. Feigenbaum, E.A., and Feldman, J. (Eds.) Computers and 
Thought. McGraw-Hill, New York, 1963. 
20. Flores, I. Sorting. Prentice-Hall, Englewood Cliffs, N.J. 1969. 
21. Flores , I. Data Structures and Management. Prentice-Hall , 
Englewood Cliffs, N.J., 1970. 
22. Forsythe, A.I., Keenan, T.A., Organick, E.I., and Stenburg, 
W. Computer Science: A First Course. Wiley , N e w Y o r k , 1969. 
23. Foster, J.M. List Processing. American Elsevier, New York, 
1967. 
24. Galler, B.A. The Language of Computers. McGraw-Hill, New 
York, 1962. 
25. Galler, B.A., and Perlis, A.J. A View of Programming 
Languages. Addison-Wesley, Reading, Mass. 1970. 
26. Gauth ier , R.; a n d P o n t o , S. Designing Systems Programs. 
Prentice-Hall, Englewood-Cliffs, N.J., 1970. 
27. G e a r , C . W . Computer Organization and Programming. 
McGraw-Hill, New York, 1969. 
28. Gear, C.W. Introduction to Computer Science. Science Research 
Associates, New York, In press. 
29. Genuys, F. (Ed.) Programming Languages. Academic Press, 
New York, 1968. 
30. Gordon, G. System Simulation. Prentice-Hall, 
Englewood-Cliffs, N.J. 1969. 
31. Gries , D . Compiler Construction for Digital Computers. Wiley , 
New York, 1971. 
32. Gruenberger, F. Computing: An Introduction. Harcourt Brace 
and Jovanovich, New York, 1969. 
33. Gruenberger, F. Computing: A Second Course. Canfield Press, 
Cleveland, Ohio, 1971. 
34. Gruenberger, F., and Jaffray, G. Problems for Computer 
Solution. Wiley, New York, 1965. 
35. G s c h w i n d , H . W . Design of Digital Computers, An Introduction. 
Springer-Verlag, New York, 1970. 
36. Hamming, R. W. Computers and Society. McGraw-Hill, New 
York, 1972. 
37. Harrison, M . C . Data Structures and Programming. Courant 
Institute of Mathematical Sciences, New York U., New York, 1970. 
38. Hass i t t , A . Computer Programming and Computer Systems. 
Academic Press, New York, 1967. 
39. He l l erman, H . Digital Computer System Principles. 
McGraw-Hill, New York, 1967. 
40. H i g m a n , B. A Comparative Study of Programming Languages. 
American Elsevier, New York, 1967. 
41. Hopgood, F.R.A. Compiling Techniques. American Elsevier, 
New York, 1969. 
42. H u l l , T . E . , a n d D a y , D . D . F . Computers and Problem Solving. 
Addison-Wesley, Don Mills, Ontario, Canada, 1970. 
43 . H u s s o n , S. Microprogramming: Principles and Practice. 
Prentice-Hall, Englewood Cliffs, N.J., 1970. 
44. IFIP. File Organization, selected papers from File 68—an 
I.A.G. Conference. Swets and Zeitinger N.V., Amsterdam, 1969. 
45. Iliffe, J. K. Basic Machine Principles. American Elsevier, 
New York, 1968. 
46. Iverson, K. A Programming Language. Wiley, New York, 1962. 
47. J o h n s o n , L . R . System Structure in Data, Programs and 
Computers. Prentice-Hall, Englewood Cliffs, N.J., 1970. 
48. K a t z a n Jr., H . Computer Organization and the System/370. 
Van Nostrand Rheinhold, New York, 1971. 
49. K n u t h , D . The Art of Computer Programming, Vol. 1, 
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1969. 
50. K n u t h , D . The Art of Computer Programming, Vol. 2, 
Seminumerical Algorithms. Addison-Wesley, Reading, Mass. 1969. 
51. K n u t h , D . The Art of Computer Programming, Vol. 3, Sorting 
and Searching. Addison-Wesley, Reading, Mass., In press. 
52. K o r f h a g e , R . Logic and Algorithms with Applications to the 
Computer and Information Sciences. Wiley , N e w Y o r k , 1966. 
53. Laurie , E . J. Modern Computing Concepts—The IBM 360 
Series. Southwestern, Cincinnati, Ohio, 1970. 
54. L e f k o v i t z , D . File Structures for On-Line Systems. Wiley , 
New York, 1967. 
55. Mart in , J. Design of Real-Time Computer Systems. 
Prentice-Hall, Englewood Cliffs, N.J., 1967. 

56. Martin, J. Telecommunications and the Computer. Prentice-Hall, 
Englewood Cliffs, N.J., 1969. 
57. Martin, J. Introduction to Teleprocessing. Prentice-Hall, 
Englewood Cliffs, N.J., 1972. 
58. Martin, J., and Norman, A.R.D. The Computerized Society. 
Prentice-Hall, Englewood Cliffs, N.J., 1970. 
59. Maurer, H.A., and Williams, M.R. A Collection of 
Programming Problems and Techniques. Prentice-Hall , E n g l e w o o d 
Cliffs, N.J., 1972. 
60. Maurer, W . D . Programming: An Introduction to Computer 
Languages and Techniques. Holden-Day, San Francisco, 1972. 
61. M e a d o w , C. The Analysis of Information Systems. Wiley, 
New York, 1967. 
62. Minsky, M. Computation: Finite and Infinite Machines. 
Prentice-Hall, Englewood Cliffs, N.J., 1967. 
63. Oettinger, A.G., and Marks, S. Run Computer Run. Harvard 
U. Press, Boston, 1969. 
64. Parkhili, D . The Challenge of the Computer Utility. 
Addison-Wesley, Reading, Mass., 1966. 
65. Rals ton , A . Introduction to Programming and Computer 
Science. McGraw-Hill, New York, 1971. 
66. Rice , J. K. , and Rice , J. R . Introduction to Computer Science: 
Problems, Algorithms, Languages, Information and Computers. 
Holt, Rinehart and Winston, New York, 1969. 
67. R o s e n , S. (Ed.) Programming Languages and Systems. 
McGraw-Hill, New York, 1967. 
68. Rothman, S., and Mosmann, C. Computers and Society. 
Science Research Associates, New York, 1972. 
69. S a m m e t , J. E. Programming Languages: History and 
Fundamentals. Prentice-Hall, Englewood Cliffs, N.J., 1969. 
70. Sanders, D . Computers in Society: An Introduction to 
Information Processing. McGraw-Hill, New York, In press. 
71. Sayers, A.P. (Ed.) Operating Systems Survey. Auerbach Corp., 
Princeton, N.J., 1971. 
72. Sprague, R.E. Information Utilities. Prentice-Hall, Englewood 
Cliffs, N.J., 1970. 
73. Sterling, T.D., and Pollack, S.V. Computing and Computer 
Science. Macmillan, New York, 1970. 
74. Stimler, S. Real-Time Data-Processing Systems. M c G r a w - H i l l , 
New York, 1969. 
75. Stone , H .S . Introduction to Computer Organization and 
Data Structures. McGraw-Hill, New York, 1972. 
76. Taviss, I. The Computer Impact. Prentice-Hall, Englewood 
Cliffs, N.J., 1970. 
77. Teague , R . Computing Problems for FORTRAN Solution. 
Canfield Press, Cleveland, Ohio, 1972. 
78. Trakhtenbrot , B. A . Algorithms and Automatic Computing 
Machines. D.C. Heath, Boston, 1963. 
79. Walker, T. Introduction to Computer Science: An 
Interdisciplinary Approach. Allyn and Bacon, Boston, 1972. 
80. Walker, T., and Cotterman, W.W. An Introduction to Computer 
Science and Algorithmic Processes. Allyn and Bacon, Boston, 1970. 
81. Watson , R . W . Timesharing System Design Concepts. 
McGraw-Hill, New York, 1970. 
82. Wegner, P. Programming Languages, Information Structures 
and Machine Organization. McGraw-Hill, New York, 1968. 
83. Weingarten, F. Translation of Computer Languages. 
Holden-Day, San Francisco. In press. 
84. Wilkes , M . V . Time-Sharing Computer Systems. A m e r i c a n 
Elsevier, New York, 1968. 
85. In addition to the above list, several collections of articles 
originally appearing in Scientific American have been published 
in book form by W.H. Freeman, San Francisco. Specifically, 
they are 

a. Information, 1966. " 
b. Computers and Computation, 1971. 

86. Various conference proceedings, journals, bulletins, and the 
like, should also be maintained in a library collection. The 
following are of special interest: 

a. Communications of the ACM (month ly ) ; Computing 
Reviews (month ly ) ; Computing Surveys (quarterly); 
Proceedings, ACM National Conference (yearly); SIGCSE 
Bulletin (ACM's Special Interest Group-Computer Science 
Education); SIGCUEBulletin (ACM's Special Interest Group-
Computer Uses in Education); SIGUCCBulletin (ACM's 
Special Interest Group-University Computing Centers). 
(Information on these publications may be obtained from 

92 



ACM Headquarters Office, 1133 Avenue of the Americas, 
New York, NY 10036.) 
b.) Proceedings, AFIPS Fall Joint Computer Conference 
(yearly); Proceedings, AFIPS Spring Joint Computer Confer-
ence (yearly). (Available from AFIPS Press, 210 Summit 
Avenue, Montvale, NJ 07645.) 
c. Proceedings, IFIP Congress (every three years). (Available 
through North-Holland, P.O. Box 3489, Amsterdam.) 
d. Proceedings, IFIP World Conference on Computer Educa-
tion. (Distributed by Science Associates/International, New 
York.) 
e. Proceedings, Conference on Computers in the Undergrad-
uate Curriculum, 1970-1-2. (Available through Southern 
Regional Education Board, Atlanta, GA 30313.) 

87. The following curriculum reports are relevant to computer 
science education: 

a. Curriculum 68—Recommendations for academic programs 
in computer science. Comm. ACM 11 (Mar. 1968), 151-197. 
b. An undergraduate course on operating systems principles. 
COSINE Committee Report, June 1971. (Available from 
Commission on Education, National Academy of Engineering, 
2101 Constitution Avenue, N.W., Washington, DC 20418.) 
c. Curriculum recommendations for graduate programs in 
information systems. Report of the ACM Curriculum Com-
mittee on Computer Education for Management, Comm. 
ACM IS (May 1972), 363-398. 
d. Recommendations for an undergraduate program in com-
putational mathematics. Committee on the Undergraduate 
Program in Mathematics May 1971. (Available from CUPM, 
P.O. Box 1024, Berkeley, CA 94701.) 

88. The following statistical reports provide information on the 
status of computing as obtained from recent surveys: 

a. H a m b l e n , J .W. Computers in Higher Education: Expendi-
tures, Sources of Funds and Utilization for Research and In-
struction: 1964-65 with Projections for 1968-69. (1967) 325 
pp. (Available through Southern Regional Education Board, 
Atlanta, GA 30313.) 
b. H a m b l e n , J .W. Inventory of Computers in U.S. Higher 
Education 1966-67: Utilization and Related Degree Programs. 
(1970) 400 pp. (Available through Superintendent of Docu-
ments, U.S. Government Printing Office, Washington, D.C.) 
c. H a m b l e n , J .W. Inventory of Computers in U.S. Higher 
Education 1969-70: Utilization and Related Degree Programs. 
(1972) 400 pp. (Available through Superintendent of Docu-
ments, U.S. Government Printing Office, Washington, D.C.) 
d. Engel, G.L. Computer science instruction in small colleges 
—An initial report. SIGCSEBull. 3, 2 (June 1971), 8-18. 



A Report of the ACM 
Curriculum Committee on 
Computer Education for 
Management 

Curriculum 
Recommendations 
for Undergraduate 
Programs in 
Information 
Systems 
J. Daniel Couger 
Editor 

The need for education related to information 
systems in organizations is discussed, and a curriculum 
is proposed for an undergraduate program. Material 
necessary for such programs is identified, and courses 
incorporating it are specified. Detailed course descrip-
tions are presented. Program organization and problems 
of implementation are discussed. 

Key Words and Phrases: education, undergraduate 
curricula, management systems, information systems, 
information analysis, system design, systems analysis 

CR Categories: 1.52, 3.51 

Preface 

This report contains recommendations for under-
graduate curriculum in information systems, prepared 
by the ACM Curriculum Committee on Computer Educa-
tion for Management (C3EM). 

The need for degree programs in information sys-
tems was documented in the Committee's position 
paper [1]. Comprehensive curriculum recommenda-
tions for a graduate-level program in information sys-
tems development were presented in a further report 
[2]. The present report gives recommendations for 
undergraduate-level programs, based on the same 

Copyright © 1973, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part of 
this material is granted, provided that A C M ' s copyright notice is 
given and that reference is made to the publication, to its date of 
issue, and to the fact that reprinting privileges were granted by 
permission of the Association for Comput ing Machinery. 

The work of the Committee was supported in part by Nat ional 
Science Foundat ion Gran t GJ-356. 

general concept of the information systems speciality 
in organizations. Two subspecialities for undergraduate 
concentration are presented, the emphasis being charac-
terized either as organizational or as technological. 

A draft version of this report was circulated for re-
view to members of the academic and professional com-
munity. Representatives of government, industry, and 
educational institutions participated in a two-day review 
of the curriculum at the University of Colorado, Colo-
rado Springs, November 16-17, 1972. 

Many suggestions and constructive criticisms from 
both the review process and the meeting have been 
incorporated in the report. The Committee is ex-
tremely grateful to the reviewers and the meeting 
participants, and to others whose assistance was helpful. 
Their names are listed at the end of the main body of 
the report. The Committee, of course, undertakes full 
responsibility for the substance of the report and the 
conclusions and recommendations contained in it. 

Chairman of the Subcommittee on Undergraduate 
Curricula was J. Daniel Couger (University of Colo-
rado). Other members of the C3EM Committee who 
participated in the preparation of this report are: 
Daniel Teichroew (University of Michigan), Chair-
man, Russell M. Armstrong (HBR-Singer Co.), 
Robert L. Ashenhurst (University of Chicago), Rober t 
I. Benjamin (Xerox Corporation), Gordon B. Davis 
(University of Minnesota), John F. Lubin (University 
of Pennsylvania), James L. McKenney (Harvard Uni-
versity), Howard L. Morgan (University of Penn-
sylvania), and Frederic M. Tonge Jr. (University of 
California, Irvine). 

95 



1. Introduction 

The basic recommendations for a master's level 
program in information systems development were 
formulated in terms of a single program comprehending 
both information analysis and system design [2, Sec. 
2.4]. The recommendations for undergraduate pro-
grams for information systems specialists, however, are 
presented in terms of two concentration options. 

1.1. Organizational Concentration 
This option is designed to prepare a person to be an 

effective computer user. The undergraduate student, 
therefore, combines information systems course work 
with the academic area of emphasis in a field of applica-
tion, such as business or government. With the five-
course option in information systems, the student essen-
tially has a double major with, for example, marketing 
or political science or hospital administration. Upon 
entering a career field, the graduate will be able to 
participate effectively on a systems development team 
of users and practitioners. Until recently, an additional 
option would have extended a student's program be-
yond the normal four-year requirement. Today most 
programs allow enough electives to accommodate easily 
a second area of emphasis. 

1.2. Technological Concentration 
This option is designed to prepare a person for an 

entry-level job in an information processing depart-
ment. The graduate would typically begin as a pro-
grammer and, through practical experience and ad-
vanced education, qualify to move into the area of 
logical and physical system design. 

1.3. Structure of Presentation 
Section 2 of this report provides a brief description 

of the information systems field. Section 3 lists the 
output characteristics of graduates of the program and 
also prerequisites incorporated into the program. Sec-
tion 4 provides course descriptions which are integrated 
into the specific program concentrations in Section 5. 
Section 6 discusses implementation of the program, in 
either or both of the concentration options. The Ap-
pendix provides detailed course descriptions and sup-
porting bibliographies. 

2. Background on the Information Systems Specialty 

The previously cited reports of the Committee 
provide the background for degree programs in in-
formation systems. The position paper [1] gives the 
justification for the degree programs, citing surveys on 
demand for such persons and the kinds of capabilities 
required of practitioners in the field. The curriculum 
report [2] provides detailed course descriptions for 

graduate-level professional programs. The reader is 
encouraged to obtain copies of those papers as a 
background for the undergraduate curriculum recom-. 
mendations. 

2.1. The Information Systems Field 
For purposes of this report, as in [2], the information-

systems development process is viewed as consisting 
of analysis, design, and implementation phases, prior 
to the operation phase. These phases do not ordinarily 
take place strictly in the order given but rather exist 
together in a continuing pattern of interaction. 

Analysis and design proceed in steps together, each 
affecting the other. An operation phase follows suc-
cessful implementation, but analysis, design, and im-
plementation activities generally continue as the system 
is modified and eventually supplanted. 

Implementation involves writing and debugging 
programs, gathering information for data bases, train-
ing personnel who will use, operate, and maintain the 
system, and finally installation and checkout. 

Operation involves the routine running of the sys-
tem and is thereby appropriately the function of an 
information processing department. 

The analysis and design functions, however, are 
pure developmental activities, and it is here that system 
inadequacies often have their roots. Such inadequacies 
may stem from failure to achieve a proper balance be-
tween organizational and technological factors, each 
of which is subject to continuing change. 

To highlight the need for balance between these two 
sets of factors, the analysis and design phase of systems 
development is explicitly recognized as consisting of 
two activities: information analysis and system design. 

The main emphasis in information analysis is the 
determination of information needs and patterns of 
information flow which will satisfy these needs. This 
requires interaction with organizational personnel and a 
good understanding of how the organization functions. 

The main emphasis in system design is the transla-
tion of specified information requirements into a de-
tailed implementation plan which can be realized in 
hardware/software. This requires interaction with the 
information processing department and a good under-
standing of computer technology. 

The terms logical system design and physical sys-
tem design are sometimes used to differentiate between 
the specification of the information system itself and 
its implementation in hardware/software. 

Both of these phases concentrate on the system, 
whereas information analysis concentrates on the or-
ganization. Two phases of information analysis may 
also be distinguished—analysis of information needs 
and analysis of how they may be satisfied in terms of 
requirements on an information system. The two phases 
of information analysis are sometimes called "feasibil-
ity study" and "system specification." 

The development of information systems then con-

96 



sists of an iterated process of information analysis, 
system design, and implementation. This "system life 
cycle," it has been pointed out, applies to other kinds 
of development effort as well. 

2.2. Growth of the Information Systems Field 
In its position paper [1] the Committee summarized 

information on education, employment, and future 
needs of personnel in information systems. Since then a 
number of papers and studies have been published, and 
it is worthwhile at this point to summarize recent results, 
particularly their effect on the question of whether un-
dergraduate programs are needed, and if so, what their 
content should be. 

Considerable attention has been paid recently to 
job classifications and career paths. Part of the concern 
arises from the status of programmers and systems 
analysts under the Fair Labor Standards Act. Amend-
ments to the Act were published in the Federal Register, 
Vol. 36, No. 232, Thursday, December 2, 1971, follow-
ing an open hearing held February 2-11, 1971. A new 
society, The Association of Computer Programmers and 
Analysts, has been formed and is involved in and con-
cerned with standardizing position qualifications. An 
attempt to relate data processing training to job re-
quirements is given by Hammond [3]. 

A university degree may not have been necessary 
for a position in information systems in the past, but 
informal surveys show that a college degree is an im-
plicit if not explicit requirement for information sys-
tems positions in medium to large size companies using 
third generation equipment. 

A few years ago the shortage of qualified applicants 
for data processing positions was commonly accepted. 
Manpower estimates by the Bureau of Labor Statistics 
[4, 5] show annual average openings for system analysts 
at 27,000 and programmers at 23,000 for the period 
1968-80. In the last few years the shortage of personnel 
is much less in evidence, and some of the urgency seems 
to have gone out of the need for academic programs. 
Hamblen [6], for example, concludes: "When the figures 
of supply are compared with estimates of demand we 
see that there is no longer a need to encourage a crash 
effort to start new degree programs at any level. How-
ever, if we examine the course offerings of the asso-
ciate and bachelor's degree programs, in particular, as 
I have had occasion to do in the two NSF Inventories, 
there is definitely a need to strengthen these programs 
both in facilities available and course offerings." 

Estimates of the number of openings in various 
pccupations based on the Bureau of Labor reports are 
summarized in Table I. These figures show that the 
number of programmers and systems analysts needed 
annually is approximately the same as that for phy-
sicians, engineers, and accountants— for which estab-
lished college programs have existed for some time. 

From the above survey results it is evident that the 
requirement for analysts and programmers is far from 

Table I. G r o w t h in Selected Occupat ions 1968-1980* 

Average 
annual 

Percent openings 
Growth not 

1968 Forecast Net increase including 
Occupational group Employment 1970-1980 in occupation transfers 

All occupa t iona l 75,920,000 25.3 19,100,000 
groups 

All profess ional 10,325,000 50.1 5,175,000 
and technical 

P rogrammers 175,000 129 200,000 23,000 
Engineers 1,100,000 40.2 400,000 73,400 
Accountan t s 500,000 43.4 220,000 33,200 
Systems Analysis 150,000 183 275,000 27,000 
Physicians 295,000 53.1 155,000 20,000 

• Source: Bureau of Labor Statistics Reports [4, 51 

being satisfied by graduates of available academic pro-
grams. It is unnecessary, perhaps, to start a number of 
new programs. However, the committee fully agrees with 
Hamblen that many of the existing ones warrant im-
provement. This report is an attempt to provide a frame-
work for improving programs and courses. The analysis 
supports the conclusion that different-level education 
will be required for the various occupations. In particu-
lar, many more graduates with BS degrees will be needed 
than graduates with MS degrees. 

2,3. Need for Differing Educational Levels 
Basically, two levels of education concerning the 

computer are required. 
1. A minimal level is required for persons who are 
users of the results of computer processing. This level 
could be provided through one to four courses, depend-
ing upon the using activity. For example, an introduc-
tion to information systems might be sufficient for a 
manager who is communicating with the computer via 
a terminal. More depth of understanding is required of 
the user representative on the team which designs the 
reservations system. 
2. At the other end of the educational spectrum is the 
person who is preparing for a career as an information 
systems specialist. Again, the education required for the 
professional depends upon the position. The educational 
level required of a person preparing computer programs 
is less than that of the system designer. 

1. Education for Users. Earlier work of the Com-
mittee reported the status of education for users of the 
results of computer processing. The report "The State 
of Computer Oriented Curricula in Business Schools in 
the 70's" [8] indicated a disparity in curriculum content: 
"Various positions were expressed ranging from a pass-
ing acquaintance with computer information systems, 
in order to avoid being taken in by experts and en-
thusiasts, to the view that future managers would be 
their own specialists and therefore need much of the 
training appropriate for specialists." 

A four-phase curriculum is in existence in the ma-
jority of member schools of the American Association 

97 



of Collegiate Schools of Business, according to a 
survey by the Computing Newsletter for Schools of 
Business [9], 

1. Coverage of computer fundamentals, systems 
analysis, and design and programming through a course 
required of all students in their academic program. 

2. Coverage of the applications of computers 
through incorporation of this material into the func-
tional area courses, e.g. computer applications in finance 
in the finance courses, and computer applications in 
marketing in the marketing courses. 

3. Coverage of computer capabilities for abetting 
decision making in a dynamic business environment 
through computer-oriented business games. 

4. Coverage of integration and optimization of 
computer applications through a course on design and 
implementation of a sophisticated, computer-based 
management information system. 

Such an approach should adequately prepare com-
puter users who received their education through 
schools of business. A similar approach is needed in 
other user areas, such as political science and hospital 
administration. 

2. Education for Information System Specialists. 
Formal education for computer operators and applica-
tions programmers is provided through a two-year 
program, such as those offered by the community 
colleges. Other positions such as the information 
analyst and the system designer required advanced 
education. This view is consistent with those expressed 
in the recommendations of the National Advisory Com-
mittee for Computer Curriculum of the American 
Association of Junior Colleges in its report "The Com-
puter and the Junior College: Curriculum" [10]. 

The master's level curriculum [2] provides the depth 
of education necessary for the systems development 
function. This report recommends curricula to provide 
entry-level qualifications. 

From a practical standpoint, the ratio of bachelor's 
to master's candidates dictates the need for under-
graduate-level education in information systems. With 
experience and advanced education, the BS graduate 
may qualify for the system designer position. 

2.4. Approach to the Specifications for Undergraduate 
Curricula 

The basic framework of the recommendations for 
graduate professional programs is used as a context for 
specifying undergraduate programs. There are, however, 
differences not only in level but in program objectives 
and in envisioned program implementation environ-
ments. The approach to the graduate curriculum was to 
present a single "standalone" program based on 13 
specified courses. Using this course material as a base, 
modified programs were presented for adoption by 
business schools, computer science, or other depart-
ments which have a less comprehensive emphasis in the 
development area. The modified programs involved the 

definition of three additional courses, containing cer-
tain pairs of the 13. 

Entry-level positions for people with undergraduate 
degrees are expected to be less demanding, in terms of 
the knowledge and abilities required. On the other 
hand, the fact that an undergraduate program is neces-
sarily less concentrated on the "major" subject makes it 
more difficult to be comprehensive in the coverage of 
the information systems field, even in more condensed 
form. Accordingly, instead of a single program of in-
formation systems courses, two concentration options 
are distinguished, labeled "organizational" and "tech-
nological." These two terms correspond to the terms 
"information analysis" and "system design." Each con-
centration option is specified in terms of a set of core 
courses (seven in the case of organizational, eight in 
the case of technological). The two sets of core require-
ments share four courses in common, so both concen-
trations can be offered by implementing a total of 11 
courses. These courses are described in detail in Section 
4 and in the Appendix. 

The contents of the two sets of core courses seem to 
fit most naturally into two different undergraduate 
schools—organizational into business and technological 
into engineering. Each concentration is regarded as 
essentially based on the idea of a double major covering 
a field of application. Thus, "typical" programs for each 
of the concentration options are presented in Section 
5. A university desiring to have both concentration 
options available for undergraduates could achieve this 
by having the programs separately available in the 
undergraduate business and engineering schools, but 
this would require duplication of the common core 
courses. A collaborative effort would obviously be 
more satisfactory. It might be further argued that a 
most desirable solution would be to make the combined 
program, with both concentration options available, 
in a school of arts and science or equivalent, thus re-
moving the more narrow emphasis in "business" or 
"engineering." Although this would undeniably make a 
broader set of combined application fields possible, 
the fact that an information systems speciality has an ul-
timate aim which is practical rather than intellectual 
should not be disregarded; and for a particular univer-
sity, the compatibility of this with the rest of the arts 
and science curricula should be carefully considered. 
These matters are considered further in Section 6 on 
implementation. 

The question also arises how the undergraduate 
program will relate to the master's level program. 
After the undergraduate program has been completed, 
only one year is required to complete the master's pro-
gram. This is discussed explicitly in Section 5. 

The content of the 11 undergraduate courses is 
drawn from that of the 13 graduate courses proposed 
earlier. Although the present report can be read inde-
pendently, it is desirable to allow readers familiar with 
the earlier report [2] to make comparisons; and the 

98 



nomenclature for the 11 courses has been selected 
accordingly. A key to the correspondence is given at 
the beginning of Section 4. 

The program objectives and prerequisites can also 
be compared to the earlier ones, and this is elaborated 
in Section 3. 

3. Requirements 

The graduate curriculum recommendations provided 
a list of output qualifications: knowledge, abilities, and 
experience [2, Sec. 3.1]. This list serves as a set of pro-
gram requirements against which specific implementa-
tions can be checked. 

A similar list is provided for the undergraduate 
curriculum. It takes into account the difference between 
the two concentration options (organizational and 
technological) and recognizes the less comprehensive 
coverage of the undergraduate curriculum. 

3.1. Output Qualifications 
The following list is based on the earlier one in which 

knowledge and abilities are grouped in six categories: 
(a) people, (b) models, (c) systems, (d) computers, (e) 
organizations, and (f) society. In addition to modifying 
or omitting certain of the '^knowledge" and "abili ty" 
entries of the earlier list, some characterizations in 
terms of "understanding of the process" and "general 
knowledge" have been included to reflect the necessarily 
more modest objectives of an undergraduate program. 
For example, acquiring the ability to develop specifica-
tions requires considerably more course time than 
merely understanding of the process of developing 
specifications. The capabilities listed are testable in the 
academic environment—by written or oral examina-
tions, successfully operating computer programs, and 
other commonly accepted means. 

A suggested list of objectives common to the or-
ganizational and technological concentrations is: 

(a) people 
ability to interact verbally with others, to listen and under-

stand the views of others, to articulate and explain com-
plex ideas. 

(b) models 
ability to formulate and solve simple models of the operations 

research type, and to recognize the kind of situations in 
which they apply. 

(c) systems 
ability to view, describe, define any situation as a system— 

specifying components, boundaries, and so forth; 
ability to present in writing a summary of a project for manage-

ment action (suitable to serve as a basis for decision); 
ability to present in writing a detailed description of part of a 

project, for use in completing or maintaining same. 
(d) computers 

general knowledge of basic hardware/software components of 
computer systems, and their patterns of configuration; 

ability to program in a higher-level language; 
ability to program a defined problem involving data files and 

communications structures; 
general knowledge of sources for updating knowledge of 

technology; 

ability to discuss the major alternatives (assuming current 
technology) in specifying an information processing system, 
including data files and communications structures, to the 
level of major system components; 

ability to sketch "rough-cut" feasibility evaluations (in terms 
of economic and behavioral variables) of proposed new 
techniques or applications of current technology, identifying 
critical variables and making estimates and extrapolations; 

ability to sketch an economic analysis for selecting among 
alternatives above, including identification of necessary 
information for making that analysis, and also to identify 
noneconomic factors; 

understanding of the process of developing specifications for 
the computer-based part of a major information system, 
with details of task management and data base manage-
ment components. 

(e) organizations 
general knowledge of the function of purposeful organizational 

structure, and of the major alternative for that structure; 
knowledge of how information systems are superimposed on 

organizational patterns, on the operational, control, and 
planning levels; 

general knowledge of techniques for gathering information; 
ability to gather information systematically within an organiza-

tion, given specified information needs and/or specified 
information flows; 

ability to outline, given information needs and sources, several 
alternative sets of information transfers and processing to 
meet needs; 

ability to sketch "rough-cut" feasibility evaluations of such 
alternatives; 

understanding of the process of developing specifications for a 
major information system, addressing a given organiza-
tional need, and determining the breakdown into manual 
and computer-based parts. 

(f) society 
ability to articulate and defend a personal position on some 

important issue of the impact of information technology 
and systems on society (important, as defined by Congres-
sional interest, public press, semitechnical press, etc.). 

The above should be achieved, in more or less 
similar degree, by information systems undergraduates 
in either the organizational or technological concentra-
tion. The former group should have in addition the 
following, originally listed under the "organizations" 
heading: 

knowledge of the functional areas of an organization—opera-
tions, finance, marketing, product specification and de-
velopment; 

knowledge of typical roles and role behavior in each func-
tional area; 

ability to suggest possible short-term and long-term effects 
of a specified action on organizational goals; 

ability to discuss information needs appropriate to issues and 
roles above; 

understanding of the process of developing positive and 
negative impacts of a specified information system on spec-
ified parts of an organization. 

The undergraduate in the technological concentra-
tion, however, is not expected to be supplied the back-
ground in either organizational functions or organiza-
tional behavior except to attain a very general notion of 
the foregoing. The same can be said of the following 
entry originally listed under the "people" heading: 

ability to describe individual and group behavior and to 
predict likely alternative and future behavior in terms of 
commonly used variables of psychology and economics. 

On the other hand, the technological option gives 
the student considerably more in-depth exposure to 

99 



computer and programming techniques. Therefore, the 
following three abilities, originally listed under the 
"computers" heading, are appropriate for the tech-
nological option graduate: 

ability to develop several logical structures for a specified 
problem; 

ability to develop several different implementations of a 
specified logical structure; 

ability to develop specifications for a major programming 
project, in terms of functions, modules, and interfaces. 

The student in the organizational concentration is 
only expected to have some general acquaintance with 
the process of performing these tasks. 

Fig. 1. The 11 courses required for both undergraduate programs. 

UBl. OPERATIONS ANALYSIS AND MODELING 
UB2 H U M A N AND ORGANIZATIONAL BEHAVIOR 

U t ' l . INFORMATION STRUCTURES 
UC2. COMPUTER SYSTEMS 
UC.V FILE AND COMMUNICATION SYSTLMS 
UC4 SOFTWARE DESIGN 

UCX. PROGRAMMING STRUCTURES AND TECHNIQUES 
UC'y. COMPUTERWARE 

UAH.. SYSTLMS CONCEPTS AND IMPLICATIONS 

UDS. INFORMATION SYSTtMS ANALYSIS 
UD9. SYSTEM DESIGN AND IMPI.EMENTATION 

Fig. 2. Core course sequences for information systems programs. 

One of the primary limitations an undergraduate 
program has that a concentrated graduate program 
does-not have is in the amount of exposure to prototype 
"real world" situations that can be included. Neverthe-
less, it is desirable that the undergraduate have at least 
some of the experience listed as desirable for the gradu-
ate, in particular: 

having gathered information in "real" or hypothetical or-
ganization; 

having served as a member of a project team outlining an 
information system, then programming a module of that 
system; 

having participated in planning and conducting an oral presen-
tation of the results of a team project. ' 

An individual meeting these output qualifications 
should be well prepared for an entry-level position. The 
two concentrations are designed to meet the above list 
of objectives. 

3.2. Prerequisite Qualifications 
The areas of prerequisite qualifications for the 

graduate program are listed in terms of five under-
graduate course subjects [1, Sec. 3.3]: 
(i) finite mathematics, including the fundamentals of 

formal logic, sets and relations, and linear algebra; 

\ P R O G R A M 

T H R M 

I N F O R M A T I O N S Y S T E M S \ P R O G R A M 

T H R M 

< Technological Concentration > 

< Organizational Concentration » 

T
H

IR
D

 
Y

E
A

R
 

1st 
Semester 

T
H

IR
D

 
Y

E
A

R
 

1st 
Semester 

UB2 
Human and 
Organizational 
Behavior 

UBl 
Operations 
Analysis and 
Modeling 

UC1 
Information 
Structures 

T
H

IR
D

 
Y

E
A

R
 

1st 
Semester 

\ 

T
H

IR
D

 
Y

E
A

R
 

2nd 
Semester 

\ 

T
H

IR
D

 
Y

E
A

R
 

2nd 
Semester 

UC8 
Programming 
Structures and 
Techniques 

\ 
UA8 
Systems 
Concepts and 
Implications 

UC2 
Computer 
Systems 

T
H

IR
D

 
Y

E
A

R
 

2nd 
Semester 

\ / 
/ 

F
O

U
R

T
H

 
Y

E
A

R
 

1st 
Semester 

k . / 

F
O

U
R

T
H

 
Y

E
A

R
 

1st 
Semester 

UC9 
Computerware 

UD8 
Information 
Systems 
Analysis 

UC3 
File and 
Communication 
Systems 

F
O

U
R

T
H

 
Y

E
A

R
 

1st 
Semester 

\ / 

F
O

U
R

T
H

 
Y

E
A

R
 

2nd 
Semester 

\ - / F
O

U
R

T
H

 
Y

E
A

R
 

2nd 
Semester 

UD9 
System 
Design and 
Implementation 

UC4 
Software 
Design 

F
O

U
R

T
H

 
Y

E
A

R
 

2nd 
Semester 

100 



(ii) elementary statistics, including the fundamentals 
of probability, expected value, and construction of 
sample estimates; 

(iii) elementary computer programming, including prob-
lem analysis and algorithm synthesis, and com-
petence in a higher-level language; 

(iv) elementary economics, including microeconomics 
and theory of the firm, and price theory; 

(v) elementary psychology, including fundamentals of 
personality formation, attitudes, and motivation. 

Essentially the same prerequisites, in terms of sub-
ject matter, are assumed for the undergraduate informa-
tion systems program, in either concentration. Since the 
prerequisite courses in this case would necessarily have 
to be taken in the first and second undergraduate years, 
a somewhat less comprehensive coverage of the sub-
jects may have to be assumed. Typical schedules in-
corporating these prerequisite courses for both the 
organizational and technological options are given in 
Section 5. 

4. Course Descriptions 

The 11 courses prepared for the two undergraduate 
concentration options are listed in Figure 1. Of these, 
six are undergraduate versions of courses specified for 
the graduate program: UB1, UB2, UC1, UC2, UC3, 
UC4. In each case the number is like that used for the 
original, prefixed by a " U . ' n The course titles are iden-
tical. Comparison with the descriptions of these with 
the earlier courses Bl , B2 shows that the material is 
comparable but the coverage is less comprehensive, 
appropriate for undergraduate offerings. 

The remaining five courses are combinations of pairs 
of earlier courses. In particular, UA8 combines material 
from earlier courses Al and A4, with major emphasis 
on A l . Courses UD8 and UD9 combine material from 
A3 and D l , D2 and D3. Specifically, UD8 combines 
A3 and Dl material, with major emphasis on D l ; and 
UD9 combines D2 and D3 material, with major empha-
sis on D2. 

Finally, UC8 and UC9 are combinations of C 
courses, specifically CI and C4 for UC8; and C2 and 
C3 for UC9. These two combined courses substitute in 
the organizational concentration for the more expanded 
offerings of UC1, UC2, UC3 and UC4 in the tech-
nological option. In contrast, the other combined 

' T h e 13 courses specified for the graduate program are: 
(Course Group A, Analysis of Organizational Systems) Al In-
troduction to systems concepts, A2 Organizational functions, A3 
Information systems for operations and management, A4 Social 
implications of information systems; (Course Group B, Back-
ground for Systems Development) B l Operations analysis and 
modeling, B2 Human and Organizational behavior; (Course Group 
C, Computer and Information Technology) CI Information struc-
tures, C2 Computer systems, C3 File and communication systems, 
C4 Software design; (Course Group D, Development of Informa-
tion Systems) D l Information analysis, D2 System design, D3 Sys-
tems development projects. 

courses, UA8, UD8 and UD9 are common to both 
concentration options. The roles and prerequisite struc-
tures of these courses are shown schematically in Figure 
2, which also gives the sequencing of the course through 
the last two undergraduate years. Integration of these 
options into four-year undergraduate programs is dis-
cussed further in Section 5. 

The remainder of this section gives brief descrip-
tions for each of the 11 courses, which can be com-
pared with the earlier descriptions of 13 courses [2, Sec. 
4], Detailed outlines and references arc presented in 
the Appendix. 

Course Group UB 
Course UB1. Operations Analysis and Modeling 
Objectives. To introduce and exercise a range of 

analytical and simulation modeling techniques useful 
in decision making in the system design environment. 
To consider the function of such models as guides for 
data collection, structures for data manipulation, and 
as systems for testing assumptions and generating a 
variety of alternatives. To identify the problems of 
data collection, maintenance, and accuracy when using 
models to assist decision-making activities. 

Description. Characterization of scheduling situa-
tions. Analysis of allocation problems with mathe-
matical programming. Queuing models. Inventory 
models. Use of simulation models. Prerequisites: finite 
mathematics, elementary statistics, elementary compu-
ter programming. 

Course UB2. Human and Organizational Behavior 
Objectives. To introduce the student to the prin-

ciples governing human behavior, particularly as they 
relate to organizations and to the introduction and 
continued operation in organizations of computer-based 
information systems. 

Description. Individual behavior. Interpersonal and 
group behavior. Organizational structure and behavior. 
The process of organizational change. The implemen-
tation and introduction of information systems. Pre-
requisite-. elementary psychology. 

Course Group UC 
Approach to the UC Courses. In the undergraduate 

program more emphasis is placed on programming 
skills than in the graduate-level program. In particular, 
since it is likely that graduates will take entry-level 
programming positions, the student should have written 
programs to: 

perform data entry, editing, and validation 
update master files (sequential and random) 
generate reports 
perform error checking and handling 
search and sort 

As part of course UC4, the student should partici-
pate in a team programming project, with emphasis on 
how to decide on the subdivision of the programming 
task. 

101 



Course UC1. Information Structures 
Objectives. To introduce the student to structures 

for representing the logical relationship between ele-
ments of information, whether program or data, and 
to techniques for operating upon information struc-
tures. To examine the methods by which higher-level 
programming languages implement such structures and 
facilitate such techniques. 

Description. Basic concepts of information. Model-
ing structures—linear lists. Modeling structures—multi-
linked structures. Machine-level implementation struc-
tures. Storage management. Programming language 
implementation structures. Sorting and searching. Ex-

• amples of the use of information structures. Prerequi-
site: elementary computer programming. 

Course UC2. Computer Systems 
Objectives. To provide a working view of hardware/ 

software configurations as integrated systems, with 
(possibly) concurrently functioning components. 

Description. Hardware modules. Execution soft-
ware. Operation software. Data and program handling 
software. Multiprogramming and multiprocessing en-
vironments. Prerequisite: UC1. 

Course UC3. File and Communication Systems 
Objectives. To introduce the basic functions of file 

and communication systems, and to current realiza-
tions of those systems. To analyze such realizations in 
terms of the tradeoffs among cost, capacity, responsive-
ness. To examine some systems integrating file and 
communication functions, such as the organizational 
data base system or the computer utility. 

Description. Functions of file and communication 
systems. File system hardware. File system organiza-
tion and structure. Analysis of file systems. Data man-
agement systems. Communication system hardware. 
Communication system organization and structure. 
Analysis of communication systems. Examples of inte-
grated systems. Prerequisite: UC2. 

Course UC4. Software Design 
Objectives. To examine how a complex computer 

programming task can be subdivided for maximum 
clarity, efficiency, and ease of maintenance and modifi-
cation, giving special attention to available program-
ming and linking structures for some frequently used 
interface programs, such as file and communication 
modules. To introduce a sense of programming style 
into the program design process. 

Description. Run-time structures in programming 
languages. Communication, linking, and sharing of 
programs and data. Interface design. Program docu-
mentation. Program debugging and testing. Program-
ming style and aesthetics. Selected examples. Prerequi-
site: UC3. 

Course UC8. Programming Structures 
and Techniques 
Objectives. To introduce the student to structures 

for representing the logical relationship between ele-
ments of information, whether program or data, and to 

techniques for operating upon information structures. 
To examine how a complex computer programming 
task can be subdivided for maximum clarity, efficiency, 
and ease of maintenance and modification. 

Description. Basic concepts of information. Storage 
management. Programming language implementation 
structures. Examples of the use of information struc-
tures. Searching and sorting. Communication linking, 
and sharing of programs and data. Interface design. 
Program documentation, debugging and testing. Pre-
requisite: computer programming. 

Course UC9. Computerware 
Objectives. To provide a working view of hardware/ 

software configurations as integrated systems. To intro-
duce the basic functions of file and communication 
systems, in terms of the tradeoffs among cost, capacity, 
responsiveness. To examine some systems integrating 
file and communications functions, such as the organi-
zational data base system or the computer utility. 

Description. Hardware modules. Execution soft-
ware, multiprogramming and multiprocessing. Opera-
tion software. Data and program handling software. 
Functions of file and communication systems. File 
systems. Review of data management systems and 
analysis. Review of communication systems. Examples. 
Prerequisite: UC8. 

Course Group UA 
Course UA8. Systems Concepts and Implications 
Objectives. To introduce the student to the informa-

tion analysis and system design curriculum. To identify 
the basic concepts that subsequent courses will draw 
upon: the systems point of view, the organization as a 
system, its information flows, and the nature of manage-
ment information systems. To explore the current and 
projected social and economic effects of information 
systems in organizations. 

Description. The systems concept. Defining a sys-
tem. Systems analysis. Management systems. Manage-
ment information systems. Historical perspective of 
the computer industry. Effects on organizational prac-
tice. Privacy and the quality of life. Prerequisite: UBl . 

Course Group UD 
Course UD8. Information Systems Analysis 
Objectives. To identify the decision requirements 

for the management of an organization. To analyze 
the design of an information gathering and processing 
system intended to facilitate decision making and plan-
ning and control. To analyze the concept of an infor-
mation system. To review the approaches and tech-
niques available to evaluate existing systems. To 
examine the concept of common data base for all func-
tional modules. 

Description. Nature of the decision-making process. 
Operational, tactical, and strategic-level systems. Sys-
tem life cycle management. Basic analysis tools. De-
fining logical system requirements. Determining eco-

102 



nomics of alternative systems. Prerequisites: UA8, and 
UC2 or UC8. 

Course UD9. System Design and Implementation 
Objectives. To provide the knowledge and tools 

necessary to develop a physical design and an opera-
tional system from the logical design. To provide 
students with supervised and structured practical ex-
perience in the development of computer-based systems. 

Description. Basic design tools and objectives. 
Hardware/software selection and evaluation. Design 
and engineering of software. Data base development. 
System implementation. Post implementation analyses. 
Long-range system planning. System development proj-
ects. Prerequisites: UD8, and UC3 or UC9. 

5. Programs and Scheduling 

The courses described in Section 4 are the basis for 
undergraduate programs following the two concentra-
tion options: organizational and technological. This 
section discusses how these options fit into four-year 
undergraduate programs and how they may feed into 
graduate programs. 

5.1 Undergraduate Program Scheduling 
The sequence of core courses shown in Figure 2, 

for both organizational and technological options, 
implies that the core concentration for the information 
systems speciality is fitted into the third and fourth 
undergraduate years. The typical undergraduate pro-
gram must include general education components and 
general field requirements imposed by the department 
or school under whose auspices the program is taken, 
referred to as "university requirements" or "school 
requirements." The latter reflects the fact that these 
programs will most likely be incorporated in an under-
graduate professional school, such as business or en-
gineering. 

There are requirements to be satisfied for the stu-
dents major, including an application field in addition 
to the information systems core courses appropriate to 
each of the concentration options. These are referred 
to as "program requirements" for the core, and "paral-
lel program requirements" for the other component of 
the "double major ." 

Figure 3 gives a typical four-year program (as-
suming five courses per semester, two semesters per 
year) for the organizational concentration in a business 
school, with accounting as the parallel program field. 
Figure 4 gives a corresponding typical program for the 
technological option in an engineering school. To fit 
these requirements into arts and sciences programs is 
more complicated, in general, since there is much more 
variation in the "typical." Nevertheless, the programs 
given should be adaptable to such requirements in most 
university settings. 

A further question which naturally arises is how the 

undergraduate work prepares the student for a pro-
fessional master's level program. The undergraduate 
preparation would be adequate to cover some but not 
all of the corresponding graduate components. In par-
ticular, the D group courses should be taken in their 
entirety at the graduate level, despite the condensed 
coverage already afforded by UD8 and UD9. 

Figure 5 shows two one-year graduate programs, 
one for each of the undergraduate concentration 
options. The organizational concentration, Figure 5(a), 
enables the graduate program to be completed in one 
year and is consistent with the second year of the 
graduate program specified in the earlier report [2, 
Sec. 5.2.]. 

The technological concentration, Figure 5(b), in-
volves five of the same courses, but also two additional 
graduate courses B2 and A2, reflecting the behavioral 
and organizational material not included in the under-
graduate technological option. 

Note that in the format specified, B2 and A2 are 
assumed to be offered in the first semester, which is at 
variance with their scheduling for the full two-year 
graduate program in the second semester [2, Sec. 5.1]. 

Also C3 and C4 are omitted for the student with an 
undergraduate technological concentration. Thus, in 
this case only is it assumed that the corresponding 
undergraduate courses, UC3 and UC4, are sufficient 
substitutes for second-year master's level work. 

6. Implementation 

The graduate report [2, Sec. 6] also covers imple-
mentation, and discusses institutional considerations, 
course interactions, and instructional materials related 
to a graduate professional two-year program, or the 
one-year program, or options in other programs. Many 
of the remarks made and conclusions reached there are 
also relevant to initiation of undergraduate programs. 
There are, however, some differences that warrant dis-
cussion and recommendation when undergraduate pro-
grams are being considered. These are made here in 
the same three categories: institutional considerations, 
course interactions, and instructional materials. 

6.1. Institutional Considerations 
In Section 5, a number of alternative programs have 

been presented. In this section, the questions how such 
programs are to be started, where the program is to be 
placed in the institution, what resources will be required 
and how they are to be acquired will be discussed. 

According to the estimates made by Hamblen, 
1,700 institutions of higher education had a computing 
center, and more than 500 had degree programs of 
some kind in 1970. Most institutions are therefore 
starting from some base. For those that have no degree 
program and offer only a few courses under the auspices 
of a computing center, the easiest approach is to grad-

103 



Fig. 3. Typical course schedule for undergraduate program—organizational concentration (illustrated with accounting as parallel program). 

\ T E R M 

Y E A R \ 

1st Semester 

First 
Year 

Elective First 
Year 

Finite 
Math* 

Econ* English Science Elective 

Sec-
ond 
Year 

1 S C H O O 

Computer 
Program-
ming* 

L R Q M T S . 1 

Intro. 
Acct. 

U N I V 

Social 
Science 

. R Q M T S . 1 

Humanities Elective 

Third 
Year 

UBl 
Human & 
Organiza-
tional 
Behavior 

S C H O O L R Q M T S . -

UB2 
Operations 
Analysis & 

Modeling 

Market-
ing 

Elective Elective 

Fourth 
Year 

UD8 
System & 
Informa-
tion 
Analysis 

UC9 
Computer-
ware 

P/> 

1 P R O G I 

(e.g.) 
Cost 
Acct. 

R A L L E L 

( A M R Q M T S . 1 

(e.g.) 
Intermed 
Acct. 

Elective 

2nd Semester 

Elective Psych* English Science Humanities Elective 

L - S C H O O L 

Statistics* 
R Q M T S . 1 

Intro. 
Acct. 

| U N I V 

Social 
Science 

R Q M T S . 1 

Humanities Elective. 

I.JA8 
Systems 
Concepts 
& Impli-
cations 

UC8 
Program-
ming 
Structures 
& Techn. 

1 S C H O < 

Money & 

Banking 

) L R Q M T S . 1 

Finance Elective 

UD9 
System 
Design & 
Implemen-
tation 

P A R A L L E L P R O G R A M 

Elective 
UD9 
System 
Design & 
Implemen-
tation 

(e.g.) 
Auditing 
Theory 

(e.g.) 
Acct. 
Theory 

(e.g.) 
Acct. 
Prob. & 
Cases 

Elective 

* Information systems prerequisite 

Fig. 4. Typical course schedule for undergraduate progam—technological concentration (assuming program is in an Engineering College 
and industrial engineering courses are used as electives). 

T E R M 

Y E A R 

First 
Year 

Second 
Year 

Third 
Year 

Fourth 
Year 

1st Semester 

Finite* 
Math 

• U N I V . R Q M T S -

Econ* 

- E N G . R Q M T S . 

English Science 

- U N I V . R Q M T S . -

Social 
Science 

UBl 
Operations 
Analysis & 
Modeling 

UD8 
Info 
Systems 
Analysis 

1. E . R Q M T S -

UC1 
Info 
Structures 

UC3 
File & 
Communi-
cations 
Systems 

Probabil-
ity 

Humanities 

Elective 

- E E. R Q M T S . -

Elem* 
Com-
puter 
Progr. 

Elective 

Elective 

Elective 

2nd Semester 

U N I V . R Q M T S . -

Psych* English Science 

- E N G . R Q M T S -

UA8 
Systems 
Concepts 
& Impli-
cations 

UD9 
System 
Design 
& Imple-
mentation 

UC2 
Computer 
Systems 

Humanities 

- L N I V . R Q M T S -

Social 
Science 

Humanities 

- I . E. R Q M T S — 

Statistics Stochastic 
Processes 

- I . E . R Q M T S . -

* Information systems prerequisites 

104 



Fig. 5. One-year graduate programs for students who completed undergraduate options, 

(a) Undergraduate program had organizational concentration. 

1st Semester 2nd Semester 

A3 Dl C3 A4 D2 D3 C4 
Information Information File and Elective Social System Systems Software 
Systems for Analysis Communi- Implications Design Development Design 
Operations cation of Information Projects 
and Systems Systems 

Projects 

Management 

(b) Undergraduate program had technological concentration. 

1st Semester 2nd Semester 

A3 Dl B2 A2 A4 D2 D3 
Information Information Human and Organiza- Social System Systems Elective 
Systems for Analysis Organiza- tional Implications Design Development 
Operations tional Functions of Information Projects 
and Behavior Systems 
Management 

ually expand this set of courses in line with the recom-
mendation given in this report. 

Other universities may be in a position to offer 
undergraduate or graduate programs or both in other 
academic areas: computer science, business, electrical 
or industrial engineering. For these institutions the 
problem is to move to a new program. 

Usually the stimulus for the creation of an informa-
tion systems program will come from one of the exist-
ing schools, and in the natural course of events, the 
program will be established there. Sometimes the initial 
interest will arise at the university level and some deci-
sion about where to house the program will have to be 
made. Occasionally there may be more than one school 
or college that claims jurisdiction over the program. 

Universities differ widely in organization and objec-
tives and in the number and strengths of faculty in 
various disciplines. Also, because the field of informa-
tion systems is still relatively new and because the 
information systems program interacts with most of 
the disciplines and programs at a university, it is not 
possible to give a generally applicable recommendation 
about the organizational location of the information 
systems program. The curriculum may be housed in 
the school of business, computer science department, 
or industrial engineering department—depending on 
the particular academic structure and interests of 
faculty. 

However, unless an institution is particularly rich 
in computer faculty, it is important to pull together all 
faculty talent through joint appointments with the 
department where the systems development program is 
to be housed. This approach enables implementation 
in the shortest time span. Later, when the program 

grows to the point of multiple sections of courses, it 
may be advisable to begin hiring specialist faculty and 
to establish a separate department for the program. 

It is possible, however, to list some considerations 
that should be included in the decision. Foremost, 
wherever the program is housed, its courses should be 
easily available to majors in other programs. 

Implementation of a program requires resources in 
terms of faculty time and computer capabilities. Adop-
tion of both options may be beyond the budget capa-
bility of some schools. The Committee assumes that 
most schools will decide to adopt one of the two op-
tions rather than both. The special circumstances and 
emphases of various schools will dictate a preference 
for one of the options. 

Also, some schools will prefer to offer either the 
graduate or the undergraduate program, but not both 
programs. However, for a school where both programs 
are being considered, the approach shown in Figure 5 
permits a student to obtain both a baccalaureate and 
a master's degree in five years. 

Resources required for the programs include faculty 
to teach the courses, computer facilities, and facilities 
for students to obtain experience. The need for faculty 
to teach courses is covered in Section 6.2.. Computer 
resources required depend on the particular alternatives 
chosen, but the amount and kind are not materially 
different f rom that required for other computer related 
courses. One way to provide opportunity for experience 
is through a cooperative program. 

Other institutional considerations include gaining 
acceptance of a program. Students can be easily per-
suaded concerning the value of the program by show-
ing its relevance to the needs of the society and to the 

105 



positions available to graduates. Faculty acceptance 
can be gained through the opportunity for association 
with a rapidly growing field. One area of concern is the 
question of accreditation by professional bodies. In 
most cases the implementation of the recommenda-
tions made here should not lead to conflict with these 
bodies. 

6.2. Courses and Course Interactions 
Implementation of the program will require devel-

opment and offering of a number of courses which are 
not now generally available to undergraduates. Of these, 
three could be taught in schools of business: 

UB2. Human and Organizational Behavior 
UBl . Operations Analysis and Modeling 
UA8. Systems Concepts and Implications 

Six of these could be taught in the computer science 
department or in Engineering: 

UC1. Information Structures 
UC2. Computer Systems 
UC3. File and Communications Systems 
UC4. Software Design 
UC8. Programming Structures and Techniques 
UC9. Computerware 

and the remaining two could be taught in either: 

UD8. Information Systems Analysis 
UD9. System Design and Implementation 

A major feature of the graduate program is the 
concept of the program as an integrated whole. Students 
would enter the program as a class and proceed through 
the same set of courses and the same experiences. The 
faculty would view the program with common objec-
tives and consequently plan the material to be consist-
ent, integrated, and supportive through the program. 

Although this approach is possible, desirable, and 
efficient in a professional program—certainly as an 
ideal—such an approach is usually not practical in 
undergraduate programs. The information systems 
courses are only a small part of the student's learning 
experience. This person is concerned with obtaining a 
general education at least as much as with getting 
enough practical training to obtain a first position. 
Students may take a given course at different stages in 
their undergraduate life—even prerequisites cannot 
always be enforced consistently. Any given class will 
usually contain a mixture of students—some who 
regard the course as central to their interests; others 
who treat it as an elective for broadening their general 
education. 

For all of these reasons it is not practical to expect 
much integration of the course material to be accom-
plished by the program. Flexibility is much more 
important at the undergraduate level. The person gradu-
ating from that program will therefore not be well pre-
pared to assume immediate responsibility for informa-
tion system development, but rather, he will be ready 
to enter an apprenticeship position. This is taken into 

account in the list of qualifications for those who com-
plete the undergraduate program (Section 3). 

All of this is not to say that the interaction of 
courses or the integration of course material is not 
desirable when it can be accomplished. 

6.3. Instructional Materials 
The graduate curriculum report [2] contains exten-

sive bibliographies for the topics covered in the recom-
mended courses. It was assumed that instructors would 
be qualified to evaluate the various sources and make 
selections appropriate to their own situation. This 
assumption is less likely to hold for undergraduate 
courses where teaching loads tend to be greater and 
where the instructors do not have time to devote to 
research and to keeping up with the rapidly growing 
field. 

An attempt has been made to recommend textbooks 
for courses. Unfortunately, few texts are available for 
the recommended undergraduate courses. The particu-
lar ones listed should be regarded as candidates, but 
instructors are encouraged to examine new books ap-
pearing on the market. 

The number of films and computer-aided instruc-
tional material is increasing. While these generally are 
not substitutes for formal courses, lectures, and texts, 
they can be very useful as supplementary material. A 
survey and review of such material is published annually 
in the May issue of the Computing Newsletter [11], 

7. Summary 

The growth in size and complexity of computer-
based systems necessitates more depth of knowledge 
on the part of the system design team if improved per-
formance of the system is to be achieved. Users and 
practitioners alike need a broader understanding of both 
the managerial process and the technology in computer-
izing managerial systems. 

Entry-level personnel for the information systems 
field may be properly prepared through an under-
graduate education. With experience and advanced 
education, the individual can make a significant con-
tribution to the system design processes. 

The courses recommended for the undergraduate 
program may be housed in several academic units, 
permitting the degree program to be implemented with 
a minimum of additional resources. Many schools al-
ready have courses in a variety of academic units; analy-
sis of these courses with the perspective of the recom-
mended curriculum may permit an undergraduate 
program to be implemented merely by redesigning exist-
ing courses. 

The committee welcomes feedback on its prototype 
proposal and is willing to comment on proposed im-
plementations. 

Acknowledgments. The following persons assisted 

106 



the Committee in one or another of the draft stages 
which preceded the final preparation of the report. The 
list includes those who supplied written reviews and 
those who participated in the meeting at Colorado 
Springs, mentioned in the Preface. The help of all is 
most gratefully appreciated. 

Bibliographic entries are selectively annotated and in many cases 
accompanied by a citation to the review of the book or article in 
Computing Reviews. This is of the form "CR volume, number 
(year) review number." 

UA8. Systems Concepts and Implications (3-0-3) 

Gerald St. Amand 
Lloyd J. Buckwell 
William K. Daugherty 
Harold J: Highland 
Hugh R. Howson 
P. Jin 
Boulton B. Miller 
Andy S. Phillippakis 
Ralph Sprague 

William M. Taggart Jr. 
Norman Taylor 
Gerald Wagner 
Lawrence Wergin 
Theodore C. Willoughby 
Howard Wilson 
William Windham 
Philip Wolitzer 
Leon Youssef 

References 
1. Teichroew, D. (Ed.) Education related to the use of computers 
in organizations (Position Paper—ACM Curriculum Committee 
on Computer Education for Management). Comm. ACM 14, 9 
(Sept. 1971), 573-588. Reprinted in 1AGJ. 4 (1971), 220-252. 
2. Ashenhurst, R.L. (Ed.) Curriculum recommendations for 
graduate professional programs in information systems. Comm. 
ACM 15, 5 (May 1972), 365-398. 
3. Hammond, J.O. Planning data processing education to meet 
job requirements. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, 
Montvale, N.J., pp. 59-67. CR 23, 10(71)874. 
4. Tomorrow's manpower needs. Bureau of Labor Statistics, Bull. 
1606, U.S. Dep. of Labor, Feb.1969, Vol. 1, App. A. 
5. Occupational manpower and training needs. Bureau of Labor 
Statistics, Bull. 1701, U.S. Dep. of Labor, 1971. 
6. Hamblen, J .W. Production and utilization of computer 
manpower in U.S. higher education. Proc. AFIPS 1972 SJCC, Vol. 
40, AFIPS Press, Montvale, N.J., pp. 637-632. 
7. Gilchrist, B., and Weber, R.W. Sources of trained computer 
personnel—A quantitative survey. Proc. AFIPS 1972 SJCC, Vol. 
40, AFIPS Press, Montvale, N.J., pp. 633-647. 
8. McKenney, J.L., and Tonge, F.M. The state of computer 
oriented curricula in business schools 1970. Comm. ACM 14, 7 
(July 1971), 443-448. 
9. Couger, J.D. Updating the survey on computer uses and 
computer curriculum. Computing Newsletter for Schools of 
Business, Colorado Springs, Colo., Oct. 1970, p. 1. 
10. Brightman, R.W. (Ed.) The Computer and the Junior College: 
Curriculum, American Association of Junior Colleges. One Dupont 
Circle, N.W., Washington, DC 20036, 1970. 
11. Couger, J.D. Guide to audio/visual instruction in data 
processing. Computing Newsletter for Schools of Business, Colorado 
Springs, Colo. (May issues, 1971, 1972, 1973). 

Appendix 

The Appendix gives detailed descriptions of and references for 
the courses whose brief descriptions appear in Section 4 of the 
main body of the report. For each course, the title, hours (x-y-z), 
and prerequisites are given, followed by a short statement of 
pedagogic approach and a listing of content. The content outline 
is organized by topic headings, each of which corresponds to an 
item in the earlier brief description of Section 4. A percentage 
figure is given with each topic heading, indicating a suggested pro-
portion of the "lecture hours" (jr) of the entire course to be de-
voted to that topic. The "other hours" (y) are intended to cover 
recitation, which can be discussion or problem sessions, and/or 
laboratory, which can be computer labs with an instructor or 
self-help sessions at terminals. The "credit hours" (z) are uniformly 
3 for all courses. 

Following the content section for each course there is a refer-
ence section containing a set of explicit citations of bibliographic 
entries, organized by topic heading. Citations are in the form 
"author (year)," which indexes the corresponding item in the 
accompanying bibliography. 

Prerequisite: UB1. 
Approach: This course lays the groundwork for the curriculum 

by presenting the systems approach to understanding of both or-
ganizational and technological functions. 

The method proposed is a combination of a series of lectures, 
a few cases on particular systems, and an accounting simulation 
•project. Out-of-classroom study can be spent in analyzing the 
behavior of simulated systems to obtain an acquaintance with a 
variety of structures. Emphasis is on discussion of issues, impli-
cations, and possible information system and societal remedies. 
Student participation in the selection of specific issues is appropri-
ate. 

Content: 
1. The systems concept (20%) 

States, transformations, inputs, outputs, hierarchical struc-
ture. System objectives. Systems with complex/conflicting/multiple 
objectives: methods of resolution. System boundaries. Open and 
closed systems. Open systems: properties, adaption. Elements 
(subsystems) (subunits) (components). Interfaces. Subsystems: 
independence/dependence, methods of decoupling. Suboptimiza-
tion, side effects. Deterministic systems: probabilistic systems. The 
feedback concept: maximizing, "satisficing," "adaptivizing," ad-
justing to change. Control in a system: standards as predicted 
output, feedback (open-loop, closed-loop), cost of control. General 
Systems Theory. Examples of systems: ecological, medical service, 
transportation, manufacturing, logistics, etc. 
2. Defining a system (10%) 

Models as representations of systems. Complex versus simple 
models. Formal and informal systems: interaction between them. 
System structure: alternative structures. The identification problem. 
Tools: block diagrams, flow graphs, decision tables. Degrees of 
aggregation for systems. Modularity. 
3. System analysis (10%) 

Selection of a "best" course of action from many possible al-
ternatives: advantage versus disadvantage, benefit versus cost. 
Determination of appropriate elements, connections, and processes 
to achieve objectives. Objectives, alternatives, cost-benefits, cri-
teria. Modeling. System design: improving an existing system, 
developing a new system. The process of system design: problem 
identification and definition, alternative solutions, selection of a 
"solution," synthesis of the proposed system, testing of the system, 
refining the system. System optimization. 
4. Management systems (20%) 

Hierarchical structure. Interaction among subunits and within 
subunits. Human beings as elements in a system. "The Manage-
ment System": the operations system, the decision system, the 
control system, time relationships and information flows. Infor-
mation systems for the management system (as subsystems of the 
management system). Information system elements: managers, 
computer hardware and software, communication network, data 
bases, etc. Functional systems: accounting, procurement, in-
ventory, etc. 
5. Management information systems (15%) 

Role of information systems in an organization. Delineating 
informational needs from traditional organizational structure; 
from nontraditional structure. Interface between man and system: 
man-machine systems. Information systems as operational (or 
production) processes. Distinction between logical and physical 
systems. Planning information systems. Approaches to the de-
velopment of information systems. Examples of management in-
formation systems. 
6. Historical perspective of the computer industry (5%) 

Technological change in the 19th and 20th centuries. Economic 
and social problems of technology. Historical analogies. Method 
of assessing social costs of technological change. Sales and em-
ployment in the computer industry. Growth pattern. Competition, 
in the computer industry. Standardization. Government regulation. 
Employment in information processing jobs. Problem of providing 

107 



training. Impact on industrial occupations, clerical occupations 
and on managerial occupations. 
7. Effects on organizational practice (5%) 

Centralization versus decentralization. Patterns of obtaining 
and providing services. Legal requirements. Possibilities for in-
dividualization. Effect on capacity to and rate of change. 
8. Privacy and the quality of life (15%) 

Public and private data banks, Rights of privacy. Relation of 
the individual to organizational data systems. Consumer protection. 
Influence on the educational process. Influence on the political 
process. Systems for administering justice, welfare, health care. 

References: No single text is available for this course, but 
there are extensive references from varied sources. 
1. The systems concept: Ackoff (1970); AckofT (1971); Cleland 
and King (1968); F.E. Emery (1969); J.C. Emery (1969); For-
rester (1961); Schoderbek (1967); Simon (1969). 
2. Defining a system: Blumenthal (1969); Churchman et al. 
(1957); Cleland and King (1968). 
3. System analysis: Churchman et al. (1957); Churchman (1968); 
J.C. Emery (1969); Forrester (1961). 
4. Management systems: Ackoff (1967); AckofiF (1970); Blu-
menthal (1969); Churchman et al. (1957); Schoderbek (1967); 
Starr (1971). 
5. Management information systems: Ackoff (1967); Benjamin 
(1971); Blumenthal (1969); Dearden (1972); J.C. Emery (1969); 
Krauss (1970). 
6. Historical perspective of the computer industry: K e l s o n et al . 
(1967); Martin and Norman (1970); Rosenberg (1971); Sharpe 
(1969); Taviss (1970); Viavant (1971); Westin (1971). 
7. Effects on organizational practice: Leavitt and Whistler (1958); 
Martin and Norman (1970); Pylyshyn (1970); Withington (1970). 
8. Privacy and the quality of life: Greenberger (1971); Hoffman 
(1969); Martin and Norman (1970); Miller (1971); Pylyshyn 
(1970); Taviss (1970). 

Bibliography: The references are to the combined bibliography 
given at the end of Course Groups UA and UD. 

UD8. Information Systems Analysis (3-1-3) 

Prerequisites: UA8, UC2 or UC8. 
Approach: This is the first course in the sequence of two that 

covers systems development. The course begins with a study of 
the decision-making process and levels of decision making to 
provide a framework for the information system. This course 
emphasizes the information analysis and the logical design of 
the system, while course UD9 covers the physical design. Emphasis 
should be placed on the iterative nature of the analysis and design 
process. 

Exercises and case studies (from the Intercollegiate Case 
Clearing House) are used to give students proficiency in informa-
tion analysis techniques; however, the next course, UD9, provides 
practical application in system development and implementation. 
Of particular relevance are cases relying upon the analysis of the 
material, with interactive time-shared models to improve the 
student's understanding of the manager/computer interaction. 
Field trips to organizations with sophisticated information systems 
are useful in reinforcing concepts. 

Content: 
1. Nature of the decision-making process ( 2 5 % ) 

Informal and formal channels of communication. Defining 
decisions. Decision criteria. Traditional decision making. Pro-
grammed decision making. Management-by-exception. External 
versus internal information sources and constraints. Manager/ 
computer interactive systems: technical and behavioral considera-
tions. System outputs: printed, audio, graphic. 
2. Operational, tactical and strategic level systems ( 1 0 % ) 

Providing for information needs of operating level super-
visors and their employees; middle management; of executive 
level management. Effect of centralized versus decentralized or-
ganization structure. Planning and control models. Management 
information systems. Integrating systems. 
3. System life cycle management ( 1 0 % ) 

Overview of the phases of system development and their in-
terrelationships. Conception, information analysis, system design, 
programming, documentation, installation, reevaluation. 

Project control for system development. Levels of sophistica-
tion in system design. Responsibilities of system analysts, system 

108 

designers, programmers, operators, and data processing manage-
ment. 
4. Basic analysis tools ( 2 5 % ) 

Steps in analysis: preliminary investigation, general feasibility 
study, general system proposal, detailed analysis. Techniques for 
analysis, such as: event-oriented organizational flowcharts, de-
cision tables, precedence network analysis. 
5. Defining logical system requirements ( 1 5 % ) 

Format of the system requirements statement. Distinction of 
logical design (of system) from physical design (of files, programs, 
and procedures). System output requirements: specification of 
output methods and formats. System documentation require-
ments. System specification techniques: manual techniques; semi-
automated techniques. 
6. Determining economics of alternative systems (15%) 

Manual versus automated parts of systems. Determining ele-
ments for common data bases. Data management alternatives. 
Response needs versus economic hardware/software and organi-
zational constraints. Cost and value of information. Identifying 
and quantifying costs of system: personnel costs, equipment costs, 
conversion costs, installation costs. Identifying, quantifying, and 
measuring system advantages: direct and indirect benefits. Ana-
lyzing the improved quality of information. Allocation of costs 
and pricing of computer services. 

References: 
1. Nature of the decision making process: A c k o f f (1970) ; B l u m e n -
thal (1969); Canning (1970d); Forrester (1961); LeBreton (1969); 
Miller and Starr (1967); Morton (1971). 
2. Operational, tactical and strategic level systems: A c k o f f ( 1 9 7 0 ) ; 
Blumenthal (1969); Canning (1968b); Schrieber (1970). 
3. System life cycle management: B e n j a m i n (1971) ; G l a n s et a l . 
(1968); Hartman et al. (1968). 
4. Basic analysis tools: Chapin (1971); Couger (1973); Hartman 
et al. (1968); Pollack et al. (1971). 
5. Defining logical system requirements: C l i f t o n (1970) ; C o u g e r 
(1973); Gray (1969); Glans et al. (1968); Hartman et al. (1968); 
Teichroew (1971). 
6. Determining economics of alternative systems: C o u g e r ( 1 9 7 3 ) ; 
Emery (1971); Joslin (1971); Martin (1965); Martin (1969); Olle 
(1970); Rubin (1970c); Sharpe (1969). 

UD9. System Design and Implementation (3-1-3) 

Prerequisites: UD8 and UC9 or UC3. 
Approach: This course is the second covering the system life 

cycle, thus continuing the thrust of course UD8. The lectures focus 
on underlying principles of system design as well as on techniques. 
The techniques are utilized in the project. A theme to be carried 
throughout the course is the iterative nature of the analysis and 
design process. Implementation and conversion problems are also 
considered. 

Case studies should be used as appropriate. Laboratory exer-
cises should include the use of computer-assisted methods for 
system design. 

Students are assigned a small project on a module of a large 
system development project. The projects involve the complete 
system development cycle: analysis, design, programming, and 
implementation. Students work in teams to acquire practical ex-
perience in such projects, especially regarding the behavioral 
considerations in systems development. They work with users to 
define system requirements and to prepare implementation plans 
and procedures. 

Content: 
1. Basic design tools and objectives ( 1 0 % ) 

Review of the system life cycle. Documentation of various 
levels of design. Objectives: performance, internal control. Types 
of system design: batch, interactive. Budgeting and project man-
agement. 
2. Hardware/software selection and evaluation ( 5 % ) 

Equipment selection —evaluation of hardware and software 
requirements. Automated evaluation techniques -simulation, 
analytical models/Cost analyses. Competitive bidding. 
3. Design and engineering of software ( 2 0 % ) 

Design modularity. Design of user interfaces with automated 
procedures. Standardization of subsystem designs—data collection 

/ 



editing, processing, and retrieval. Data and production controls. 
Audit trails. Internal and external accounting within the system. 
Conversion subsystems. Human engineering. 
4. Data base development {15%) 

Data base construction—creation, structure, maintenance, and_ 
interrogation of data bases. Integrity of the data base. Review 
and use of C3 course material on data base management systems. 
5. System implementation (10%) 

Levels of testing and debugging: planning and executing con-
version; management of programming, testing, and installation. 
Coordination of manual and automated procedures. Techniques 
for cutover (parallel operation, etc.); implementation schedules. 
6. Post implementation analyses (5%) 

Auditing system performance: costing of system development 
effort and system performance. 
7. Long-range system planning (5%) 

Trends in information system design. Integrating several sys-
tems into a corporate MIS. Long-range forecasting of information 
requirements. 
8. System development projects (30%) 

Under supervision of the systems analysis staff, students could 
develop a subsystem for one of the major modules of a computer-
based management information system of a local firm. Students 
might also work as members of established client companies' 
teams, or under the supervision of the university administrative 
data processing unit, students could develop a system which would 
provide them experience and at the same time benefit the university. 
Examples are: alumni record and follow-up system, bookstore 
ordering/accounting, classroom scheduling system. Or students 
could develop a system for a hypothetical application. 

As an example, a case (SRA) currently available provides 
students with experience in each phase of system development for 
a hypothetical electronics firm. The material is organized into 13 
assignments: orientation, documentation, written procedure, 
system flowcharts, gathering information, classification and coding, 
printed output source documents and punched cards, records 
design, data controls, run controls, audit trails, and file organiza-
tion. 

References: In addition to the references below, the references 
listed for courses UC3 and UC4 are particularly relevant for topics 
2, 3, and 4. 
1. Basic design tools and objectives: Benjamin (1971) Sec. 4; 
Hartman et al. (1968). 
2. Hardware/software selection and evaluation: Couger (1973); 
Gregory and Van Horn (1963); Head (1971); Joslin (1971); Martin 
(1965); Martin (1967); Martin (1969); Sharpe (1969) Sec. 4; 
Sutherland (1971). 
3. Designing and engineering software: Martin (1965); Martin 
(1967) Sec. 6; Matthews (1971) Ch. 5-7; Pollack et al. (1971); 
Rosen (1967); Rubin (1970c); Teichroew and-Sayani (1971). 
4. Data base development: CODASYL (1971); Flores (1970); 
G U I D E / S H A R E (1970); Gildersleeve (1971); Lyon (1971); 
Martin (1967) Ch. 22. 
5. System implementation: Benjamin (1971); Hartman et al. 
(1968); Martin (1965); Matthews (1971) Ch. 13. 
6. Post implementation analyses: Benjamin (1971); Har tman et al. 
(1968); Matthews (1971) Ch. 11. 
7. Long-range system planning: Blumenthal (1969). 
8. Development of a system for a local firm: Blumenthal (1969) 
Ch. 3, 4; Development of a system for a university/college: Johnson 
and Katzenmeyer (1969) Pt. 3. Development of a system for a hy-
pothetical application: Science Research Associates (1970). 

Combined Bibliography—Courses UA-UD 

Ackoff, R.L. (1967) Management misinformation systems. Manage-
ment Science 14, 4, B- 147-56. 
A paper outlining the systems concept and the problems result-
ing when the systems approach is ignored in the development 
of information systems. 

Ackoff, R.L. (1970) A Concept of Corporate Planning. Wiley, 
New York. 
Note especially Ch. 6, "Control ," in which Ackoff argues that 
the Management Information System is but a subsystem of the 
Management System. 

Ackoff, R. L. (1971) Towards a system of systems concepts. Man-
agement Science 17, 11, 661-71. 
An exposition of the concepts and terms "used to talk about 
systems," with particular attention given to organizations. 

Ansoff, H.I. (1965) Corporate Strategy. McGraw-Hill, New York. 
Benjamin, R.I. (1971). Control of the Information System Develop-

ment Cycle. Wiley, New York. 
Introduction to the system life cycle and its possible evolutions. 

Blumenthal, S.C. (1969) Management Information Systems: A 
Framework for Planning and Development. Prentice-Hall. 
Englewood ClifTs, N.J., CR10, 10(69) 17,647. 
A highly individual and idiosyncratic attempt to apply "the 
systems planning" approach to the development of manage-
ment information systems. Note especially Ch. 3 "The Systems 
Taxonomy of an Industrial Corporat ion." 

Brandon, R. (1963) Management Standards for Data Processing. 
Van Nostrand Reinhold, New York. CR 5, 5(64)6162. 

Canning, R.G. (1968b) Systematic methods for business planning. 
EDP Analyzer 6, 3. 

Canning, R.G. (1970d) Progressive fast response systems. EDP 
Analyzer 8, 8. 

Chapin, N. (1971) Flowcharts. Auerbach, Princeton, N.J. CR 12, 
12(71)22, 295. 
Covers program flowcharts, system flowcharts, computer-
produced flowcharts, ANSI Standard flowcharts. 

Churchman, C.W., Ackoff, R.L., and Arnoff, E.L. (1957) Introduc-
tion to Operations Research. Wiley, New York. 
Note especially Ch. 2 "An Operations Research Study of a 
System as a Whole" and Ch. 7 "Construction and Solution of 
the Models." 

Churchman, C.W. (1968) The Systems Approach. Dell Books, 
New York. 
Note especially. "Supplement I I " in which Churchman sug-
gests additional readings and comments on the history of the 
systems approach, beginning with the statement that "Plato 's 
Republic is a famous systems-science book." 

Cleland, D.I., and King, W.R. (1968) Systems Analysis and Project 
Management. McGraw-Hill, New York. CR 10, 4 (69)16, 532. 
Note especially Ch. 6 "Planning-Programming-Budgeting and 
Systems Analysis." 

Clifton, D.H. (1970) Systems Analysis for Business Data Processing. 
Auerbach, Princeton, N.J. CR 12, 4(71) 20, 952. 
An introductory book on system analysis and design. 

CODASYL Systems Committee (1971) Feature Analysis of General-
ized Data Base Management Systems. Technical report, avail-
able from ACM, New York. 
See annotation in bibliography for Course Group C. 

Couger, J.D. (1973) System Analysis Techniques. Wiley, New York. 
A collection of articles on system analysis techniques, describing 
approaches which concentrate on concepts and principles of 
system analysis and cost/effectiveness analysis. 

Davis, G. (1968) Auditing and E.D.P. Wiley, New York. 
Dearden, J. (1972) MIS is a mirage. Harvard Bus. Rev. (Jan.-Feb.) , 

90-99. 
An attack on the concept of "The Management Information 
System," arguing that a single, integrated information system 
cannot be devised. 

Emery, F. E. (Ed.) (1969) Systems Thinking: Selected Readings. 
Penguin Books, New York. 
Emphasizes systems thinking as developed f rom theorizing 
about biological systems to social systems rather than that 
which came from the design of complex engineering systems. 
Concentrates on "open systems" (open to exchange with an 
environment) and adaptive behavior. 

Emery, J.C. (1969) Organizational Planning and Control Systems: 
Theory and Technology. Crowell Collier and Macmillan, New 
York. 
An analysis of multilevel planning and control and the develop-
ment of a supporting information system. Note especially Ch. 1 
"The Systems Concept," Ch. 2 "The Organization as a Sys-
tem," and Ch. 3 "The Technology of Information Systems." 

Emery, J.C. (1971) Cost/Benefit Analysis of Information Systems-
The Society for Management Information Systems, Chicago-

Flores, I. (1970) Data Structure and Management. Prentice-Hall. 
Englewood Cliffs, N.J . CR 12, 4(71)20,916. 

Forrester, J. W. (1961) Industrial Dynamics. MIT Press, Cam-
bridge, Mass. 

109 



Gildersleeve, T .R. (1971) Design of Sequential File Systems 
Wiley, New York. 
Covers the design of files and strategies for sequential storage 
media. 

Glans, T.B., Grad, B., Holstein, D., Meyers, W.E., and Schmidt, 
F.N. (1968) Management Systems. Holt, Rinehart and Win-
ston. New York. 
A detailed treatment of the initial stages of the system life 
cycle—analysis and design of the system. Includes concepts 
first published by IBM entitled "Study Organization Plan." 

Gray, M., and London, K.R. (1969) Documentation Standards. 
Brandon/Systems Press, Princeton, N.J. CR 10, 9(68)17,373. 
The first book developed exclusively for this subject: covers all 
the salient facts concerning documentation. 

Greenberger, M. (Ed.) (1971) Computers. Communications and the 
Public Interest. Johns Hopkins Press, Baltimore, Md. CR 12, 
11(71)22, 096. 
A series of lectures by knowledgeable and thoughtful people on 
the relations between computers and society. 

Gregory, R.H., and Van Horn, R.L. Automatic Data Processing 
Systems. Wadsworth Pub. Co., San Francisco, 1963. 

G U I D E / S H A R E . (1970) Guide/Share Data Base Management 
System Requirements. Technical report. 
A well-written statement of requirements, emphasizing the 
importance and functions of the people in the system. 

Hartman, W., Matthes, H., and Proeme, A. (1968) Management 
Information Systems Handbook. McGraw-Hill, New York. 
A comprehensive coverage of the steps in system development, 
developed by the Netherlands-based Philips Corporation. 

Head, R. V. (1971) A Guide to Packaged Systems. Wiley, New York. 
Hoffman, L. (1969) Computers and privacy: a survey. Computing 

Surveys 1, 2, 85-103. 
A survey of technical literature and a discussion of what the 
technology can do to assist in maintaining privacy of infor-
mation. 

Intercollegiate Bibliography (1972) Collected Bibliography of 
Cases, Vol. 14, Intercollegiate Case Clearing House, Harvard 
U, Soldiers Field, Boston, MA 02163. 

Johnson, C.B. and Katzenmeyer, W.G. (Eds.) (1969) Management 
Information Systems in Higher Education: The State of the Art. 
Duke U. Press, Durham, N.C. 

Joslin, E. (Ed.) (1971) Analysis, Design and Selection of Computer 
Systems. College Reading Inc., Arlington, Va. 
A book of readings, from earlier published articles. 

Kelson, R.R., Peck, J., and Kalacheck, E. (1967) Technology, 
Economic Growth, and Public Policy. Brookings Institute, 
Washington, D.C. 

Krauss, L.I. (1970) Computer-Based Management Information Sys-
tems. American Management Assoc., New York. 
An exposition of the basic ideas of "MIS . " 

Leavitt, H.J., and Whisler, T.L. (1958) Management in the 1980 s. 
Harvard Bus. Rev. (Nov.-Dec.), 41-48. CR 9, 4(68)13,985. 

LeBreton, P.P. (1969) Administrative Intelligence-Information Sys-
tems. Houghton-Mifflin, Boston. 

Lyon, J.K. (1971) An Introduction to Data Base Design. Wiley, 
New York. 
Concentrates on techniques in the design of online files. 

Martin, J. (1965) Programming Real-Time Computer Systems. 
Prentice-Hall, Englewood Cliffs, N.J. 
Concentrates more on system design than programming 
aspects of online systems. 

Martin, J. (1967) Design of Real-Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N.J. CR 9, 2(68)13,607. 
Continuation of his prior book, listed above. See also annota-
tion in bibliography for Course Group C. 

Martin, J. (1969) Telecommunications and the Computer. Prentice-
Hall, Englewood Cliffs, N.J. CR 11, 8(70) 19,602, 19,603. 
Technical aspects of the design of communication networks. 

Martin, J., and Norman, A. (1970) The Computerized Society. 
Prentice-Hall, Englewood Cliffs, N.J. 
The first part of the book titled "Euphor ia" is very interesting. 
Later sections deal more with the technology. 

Matthews, D.Q. (1971) The Design of the Management Information 
System. Auerbach, Princeton, N.J. CR 12, 8(71)21,668. 
An introductory book on the MIS approach. 

McDaniel, H. (1970b) Decision Table Software—A Handbook. 
Brandon/Systems Press, Princeton, N.J. CR 12, 2(71)20,613. 
Examples of the use of decision tables at the introductory level. 

Miller, A. (1971) The Assault on Privacy: Computers, Data Banks, 
and Dossiers. U. of Michigan Press, Ann Arbor, Mich. CR 12, 
8(71)21,631. 
A valuable compendium of the legal and ethical problems at-
tendant to the growing use and sharing of data banks. 

Miller, P.W., and Starr, M.K. (1967) The Structure of Human De-
cisions. Prentice-Hall, Englewood, Cliffs, N.J. 

Morton, M.S.S. (1971) Management Decision Systems. Graduate 
School of Business Administration, Harvard U., Boston. CR 
12, 6(71)20,367. 
See annotation in bibliography for Course Group A2. 

National Cash Register Company. (1967) Accurately Defined 
Systems. Dayton, Ohio. 
The system analysis and design approach advocated by N C R . 

Olle, T.W. (1970) MIS: data bases. Datamation (Nov.). 
An excellent classification and characterization of file manage-
ment systems, and how they fit into the world of management 
information systems. 

Orlicky, J. (1969) The Successful Computer System: Its Planning, 
Development and Management in a Business Enterprise. Mc-
Graw-Hill, New York. CR 10, 11(69)17,820. 
Introduction to planning for the MIS. 

Pollack, S.L., Hicks, H.T. Jr., and Harrison, W.J. (1971) Decision 
Tables: Theory and Practice. Wiley, New York. 
The theory and theorems of the decision table technique. In-
cludes examples. 

Pylyshyn, Z.W. (Ed.) (1970) Perspectives on the Computer Revolu-
tion. Prentice-Hall, Englewood Cliffs, N.J. CR 12, 6(71)21,297. 
Especially good on the educational and intellectual uses of 
computers, and the effects of such uses. 

Rosen, S. (Ed.) (1967) Programming Languages and Systems. 
McGraw-Hill, New York. CJ? 10, 1(69)15,975. 
Readings which provide valuable historical perspective in the 
area of systems programming and the design of large scale 
operating systems. 

Rosenberg, N. (Ed.) (1971) The Economics of Technological Change. 
Penguin Books, New York. 

Rubin, M. (1970a) Introduction to the System Life Cycle, (Vol. 1). 
Auerbach, Princeton, N.J. 
Provides introductory level description of eight steps in the 
system life cycle. 

Rubin, M. (1970b) System Life Cycle Standards, (Vol. 2). Auer-
bach, Princeton, N.J. 
Provides standards, procedures and forms for system develop-
ment. 

Rubin, M. (1970c) Advanced Technology: Input and Output. 
Auerbach, Princeton, N.J. 
A reference for I /O approaches and design considerations. 

Rubin, M. (1970d) Advanced Technology: Systems Concepts. 
Auerbach, Princeton, N.J. 
Introduction to systems analysis concepts. 

Schoderbek, P.P. (1967) Management Systems. Wiley, New York. 
A book of readings intended to be used as a textbook in 
management courses to help in the "understanding of the 
total systems concept as well as developing insight into some 
of the problems besetting management." Note especially the 
criticism of the total system concept by W.M.A. Brooker, 
"The Total System Myth." 

Schrieber, A. (1970) Corporate Simulation Models. U. of Washing-
ton, Pullman, Wash. 

Science Research Associates (1970) Case Study on Business Systems 
Design. College Division, Palo Alto, Calif. 
A laboratory manual providing thirteen assignments in de-
veloping an E D P system for a hypothetical electronics firm. 

Sharpe, W.F. (1969). The Economics of Computers. Columbia U . 
Press, New York. 

Especially interesting are the sections on vendor behavior and 
selection of equipment. 

Shaw, J.C., and Atkins, W. (1970) Managing Computer Systems 
Projects McGraw-Hill. New York. CR 12, 9(71)21,832. 

Simon, H.A. (1965) The Shape of Automation for Men and Manage-
ment. Harper & Row, New York. CR 7, 1(66)8773. 

Simon, H.A. (1969) The Sciences of the Artificial. MIT Press, 
Cambridge, Mass. CR 11, 1(70)18,222. 
The entire work is recommended but note especially Ch. 4 
"The Architecture of Complexity." 

110 



Starr, M.K. (1971) Management: A Modern Approach. Harcourt 
Brace and Jovanovich, New York. 
Uses systems thinking in a novel management textbook. Note 
especially Ch. 2 "Building Management Models," Ch. 3 
"Using Models." Ch. 7 "Managing Systems with Complex 
Objectives," Ch. 12, "Communication and Information Con-
trol," and Ch. 13 "The Organization of Simple Systems and 
Aggregations". 

Sutherland, J.W. (1971) The configurator: today and tomorrow 
(Pt. 1); Tackle systems selection systematically (Pt. 2). Com-
puter Decisions. (Feb., Apr.), 38-43, 14-19. CR 12, 7(71)21,521. 
A two-part article on the use of simulation and analytical 
methods in the selection of a computer configuration. 

Taviss, I. (Ed.) (1970) The Computer Impact. Prentice-Hall, Engle-
wood Cliffs, N.J. The readings provide good, broad coverage 
of the entire area. 

Teichroew, D., and Sayani, H. (1971) Automation of system 
building. Datamation (Aug. 15), 25-30. CR 12, 12(71)22,264. 

Viavant, W. <Ed.) (1971) Readings in Computers and Society. 
Science Research Assoc., Palo Alto, Calif. 

Walsh, D. (1969) A Guide for Software Documentation. McGraw-
Hill, New York. CR 11, 7(70)19,392. 
Provides forms and procedures to follow when documenting 
the design and coding of a software system. 

Westin, A.F. (Ed.) (1971) Information Technology in a Democracy. 
Harvard U. Press, Cambridge, Mass. 

Withington, F. (1970) The Real Computer: Its Influences, Uses and 
Effects. Addison-Wesley, Reading, Mass. 

UB1. Operations Analysis and Modeling (3-1-3) 

Prerequisites: finite mathematics, elementary statistics, ele-
mentary computer programming. 

Approach: This course is based on the use of analytical models 
as aids in the formulation and resolution of system alternatives. 
Emphasis is on problem formulation and resolution relying upon 
available analysis packages. The discussion of projects should focus 
on the decision itself and on the use of models to consider alterna-
tives and test assumptions. Problems of data acquisition, prepara-
tion, and maintenance should be stressed. 

Projects should be drawn from the information system design 
area. The course might conclude with each student participating in 
the formulation of a simulation project that includes several of the 
analytical models introduced early in the course. 

Content: 
1. Characterization of scheduling situations (20%) 

Characterization of a set of interlocking activities as a network. 
Popular algorithms for formulating and solving critical path 
models. Problems of manipulating estimates and range of accuracy 
measurements. Job scheduling and dispatching rules. Use of net-
work models for control of projects. Scheduling in operating 
systems. 
2. Analysis of allocation problems with mathematical programming 

(20%) 
Methods of formulating and solving linear programming 

problems using packaged computer programs. Linear programming 
as an aid to planning the allocation of interdependent resources. 
Value of models in the sensitivity testing of formulations. Evolu-
tionary nature of large models as a decision making aid. Applica-
tions to scheduling and computer network design. Optimization of 
computer networks. Note: particular attention should be paid to 
the data management requirements of LP models allowing exami-
nation of the general notions of constraints, objective functions, 
and optimization in modeling. 
3. Queueing models (20%) 

Concept of queueing models and their general applicability 
to a broad range of situations. Considerations of the many queueing 
processes within computer systems. 
4. Inventory models (10%) 

Inventory models ranging from simple, single product to 
multiple product under uncertainty. The data base as an inven-
tory. Possible application of LP or dynamic programming analyses 
to inventory. 
5. Use of simulation models (30%) 

Examples and class projects to explore the need for problem 

definition and reliance upon tailoring standard concepts to new 
situations, especially through dynamic models. Note: the analysis 
of the user and operating system parts of a time-sharing system 
might serve as class projects to integrate this topic with prior ones. 

References: Several good textbooks (Ackoff and Sasieni, 
Hiller and Lieberman, Teichroew, and Wagner) contain teaching 
materials on the range of decision models covered in this course 
The Journal of the ACM has published many specific papers on 
the use of operations analysis techniques in the design of computer 
systems. 
1. Characterization of scheduling situations: Conway et al. (1967); 
Denning (1967). 
2. Analysis of allocation problems with mathematical programming: 
Aho et al. (1971); Day (1965); Ramamoorthy and Chandy (1970); 
Theiss (1965). 
3. Queueing models: Abate et al. (1968); Coffman (1969); Frank 
(1969); Gaver (1966). 
4. Inventory models: Gaver and Lewis (1971); Martin (1967); 
Sharpe (1969) ; Woodrum (1970). 
5. Use of simulation models: Lum et al. (1970); Senko et al. 
(1969); Sutherland (1971). 

Bibliography for Course UB1: 
Abate, J., Dubner, H., and Weinberg, S.B. (1968). Queueing analysis 

of the IBM 2314 disk storage facility. J. ACM 15, 4, 577-89. 
CR 10, 9(69)17,499. 

Ackoff, R., and Sasieni, M. (1968) Fundamentals of Operations 
Research. Wiley, New York. 
A good basic text for the not too mathematically inclined. 
Easy to read. 

Aho, A., Denning, P.J., and Ullman, J.D. (1971) Principles of opti-
mal page replacement. J. ACM 18, 1, 80-93. CR 12, 
7(71)21,554. 
A dynamic programming model for optimizing paging. 

Coffman, E.G.Jr. (1969) Analysis of a drum input/output queue 
under scheduled operation in a paged computer system. J. 
ACM 16, 1, 73-90. 

Conway, R., Maxwell, W., and Miller, L. (1967) Theory of Schedul-
ing. Addison-Wesley, Reading, Mass. 
Comprehensive treatment of scheduling problems and the 
techniques for solving them, including simulation. 

Day, R.H. (1965) On optimal extracting from a multiple file data 
storage system: an application of integer programming. 
Operations Research 13, 3, 482-94. 

Denning, P.J. (1967) Effects of scheduling on file memory opera-
tions. Proc. AFIPS SJCC, Vol. 30, AFIPS Press, Montvale, 
N.J. 9-21. CR 8, 6(67)13,301. 

Frank, H. (1969) Analysis and optimization of disk storage devices 
for time-sharing systems. J. ACM 16, 4, 602-20. CR 11, 
2(70)18,503. 

Gaver, D. (1966) Probability Models for Multiprogramming Com-
puter Systems. Doc. AD 640-706, Carnegie-Mellon U., Pitts-
burgh, Pa. CR 9, 1(68)13,459. 

Gaver, D.P., and Lewis, P.A.W. (1971) Probability models for 
buffer storage allocation problems. J. ACM 18, 4, 186-98. 
CR 12, 9(71)21,870. 

Hillier, F., and Lieberman, G. (1967) Introduction to Operations 
Research. Holden-Day, San Francisco. 
An excellent textbook, with good coverage of probabilistic 
models. 

Lum, V., Ling, H., and Senko, M. (1970) Analysis of a complex 
data management access method by simulation modeling. 
Proc. AFIPS FJCC Vol. 37, AFIPS Press, Montvale, N.J., 
211-22. 

Martin, J. (1967) Design of Real Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N.J. CR 9, 2(68)13,607. 
This well-written volume stresses the use of quantitative analyses 
at all stages in the design of information systems and gives 
examples of the techniques. 

Ramamoorthy, C.V., and Chandy, K M. (1970) Optimization of 
memory hierarchies in multiprogrammed systems. J. ACM 
17, 3, 426-45. 
Shows the use of both linear and integer programming models. 

Senko, M., Lum, V., and Owens, P. (1969) A file organization and 
evaluation model (FOREM). Proc. IFIP Congress 68. CR 11, 
4(70)18,813. 
A description of a generalized simulation model for file systems. 

I l l 



Sharpe, W.F. (1969) The Economics of Computers. Columbia U. 
Press, New York. 
Quantitative analyses from an economist's perspective. 

Sutherland, J.W. (1971) The configurator: today and tomorrow 
(Pt. 1) and Tackle systems selection systematically (Pt. 2). 
Computer Decisions (Feb., Apr.), 38-43: 14-19. CR 12, 7(71) 
21,521. 
A two-part article on the use of simulation and analytical 
methods in the selection of a computer configuration. 

Teichroew, D. (1964) An Introduction to Management Science. 
Wiley, New York. 
Broad coverage of operations research/management science 
techniques. 

Theiss, H.E. (1965) Mathematical programming techniques for 
optimal computer use. Proc. 1965 ACM National Conference, 
501-12. CR 7, 1(66)8864. 

Veinott, A. (1965) Mathematical Studies in Management Science. 
Crowell Collier and Macmillan, New York. 
Deals mainly with the probabilistic techniques —especially 
inventory theory. 

Wagner, H. (1970) Principles of Management Science. Prentice-
Hall, Englewood Cliffs, N.J. CR 12, 2(71)20, 616. 
Truly comprehensive, well written, and usable. Emphasizes 
deterministic models, but provides good coverage of the other 
areas. 

Woodrum, L.J. (1970) A model of floating buffering. IBM Systems 
J. 9, 2, 118-44. CR 11, 11(70)20, 149. 
Uses ideas of Markov and semi-Markov processes. 

UB2. Human and Organizational Behavior (3-1-3) 

Prerequisite: elementary psychology. 
Approach: This course examines the principles of human be-

havior in individuals, groups, and organizations in the contexts 
relevant to information systems. 

Behaviorally-oriented reference material relating specifically 
to information systems is sparse, and .particularly so for the final 
section on implementation. The cited references frequently have a 
management or engineering orientation, leaving the behavioral 
implications to be supplied by the instructor or by the class. 

An appropriate computer game or interactive laboratory ex-
periment could be used as an effective tool to demonstrate aspects 
of individual, interpersonal, and group behavior, with the student 
population itself as subject. 

Content: 
1.. Individual behavior (20%) 

Human sensing and processing functions. Visual, auditory, 
motor, and linguistic mechanisms. Perception, cognition, and 
learning. Human factors engineering in information systems. 
2. Interpersonal and group behavior (20%) 

Personality and role. Motivation, participation, and communi-
cation. Influence and effectiveness. Authority and leadership. 
Mechanisms for group action. The impact of information systems 
on interpersonal and group behavior. 
3. Organizational structure and behavior (25%) 

Organization theory. Impact of information systems on or-
ganizational structures and behavior. Implications for management. 
4. The process of organizational change (25%) 

Resistance to and acceptance of change. The management of 
change. Problems of adjustment to the information systems en-
vironment. 0 
5. The implementation and introduction of information systems 

(10%) 
Interaction between information analysis and system design 

groups and the remainder of the organization. Information system 
project teams and their management. Preparation for installation 
and operation. Note: this section is background for material 
covered more extensively in courses Dl and D2. 

References: No one book covers the full scope of the course. 
Fogel (1967), Katz and Kahn (1966), and Likert (1967) are books 
on individual and organizational behavior written from the systems 
point of view. Wadia (1968) is a book of readings which cover the 
behavioral sciences .aspects of the course fairly well. Bennis (1968) 
is an excellent treatment of organizational change, of which Toffler 
(1970) is a popular treatment. Tomeski (1970) and Withington 

(1969) give insight into the impact of the computer on organiza-
tions and people. 
1. Individual behavior: Berelson and Steiner (1964) Ch. 5; Fogel 
(1967); Miller (1967). 
2. Interpersonal and group behavior: Berelson and Steiner (1964) 
Ch. 6, 8; Cartwright and Lippit (1957); Likert (1953); MacKinnon 
(1962); Schein (1971); Zalkind and Costello (1962). 
3. Organizational structure and behavior: Bavelas (1960); Beckett 
(1967); Berelson and Steiner (1964) Ch. 9; DeCarlo (1967); Katz 
and Kahn (1966); Klahr and Leavitt (1967); Likert (1967); Mc-
Gregor (1960); Simon (1964); Steiner (1964); Whisler (1967). 
4. The process of organizational change: Bennis (1966); DeCarlo 
(1967); Gijizburg and Reilley (1957); Fuller (1969); Morison 
(1966); Toffler (1970). 
5. The implementation and introduction of information systems: 
Orden (I960); Orlicky (1969) Ch. 5-8; Sackman (1967);'Simon 
and Newell (1960); Tomeski (1970) Ch. 13, 14; Withington (1966) 
Ch. 8, 9. 

Bibliography for Course UB2 
Bavelas, A. Communication and organization. In Shultz and Whis-

ler (I960). . 
Beckett, J.A. The total-systems concept: its implications for man-

agement. In Myers (1967). 
Bennis, W.G. (1968) Changing Organizations. McGraw-Hill, 

New York. 
Berelson, B., and Steiner, G.A. (1964) Human Behavior: An Inven-

tory of Scientific Findings. Harcourt Brace and Jovanovich, 
New York. 
A compendium of behavioral sciences accomplishments. Ch. 5 
on learning and thinking. Ch. 6 on motivation, Ch. 8 on small 
group relationships, and Ch. 9 on organizations are relevant 
to the course. 

Cartwright, D., and Lippit, R. (1957) Group dynamics and the 
individual. Internal. J. of Group Psychotherapy 7, 86-102. In 
Wadia (1968). 

DeCarlo, C.R. (1967) Changes in management environment and 
their effect upon values. In Myers (1967). 

DeGreene, K B. (Ed.) (1970) Systems Psychology. McGraw-Hill. 
New York. 

Fogel, L.J. (1967) Human Information Processing. Prentice-Hall, 
Englewood Cliffs, N.J. 
Looks at the human as an input, decision-making, output proc-
essor. 

Fuller, R.B. (1969) Operating Manual for Spaceship Earth. South-
ern Illinois U. Press. Carbondale, 111. 
A treatise on the need for human adaptation to changed en-
vironmental circumstances, by one of the more innovative 
thinkers of our time. 

Ginzberg, E., and Reilley, E.W. (1957) Effecting Change in Large 
Organizations. Columbia U. Press, New York. 
A step-by-step analysis for managing organizational change. 

Karplus, W.J. (Ed.) (1967) On-Line Computing. Time-Shared 
Man-Computer Systems. McGraw-Hill, New York, CR 8 
3(67)11, 952. 

Katz, D., and Kahn, R.L. (1966) The Social Psychology of Organ-
izations. Wiley, New York. 
A particular point of view on organizational behavior. 

Klahr, D., and Leavitt, H.J. (1967) Tasks, organization structures, 
and computer programs. In Myers (1967). 

Likert, R. (1953) Motivation: the core of management. Personnel 
Series No. 155. American Management Assoc., 3-21. In 
Wadia (1968). 

Likert, R. (1967) The Human Organization: Its Management and 
Value. McGraw-Hill, New York. 
A systems approach to organizational behavior. 

MacKinnon, D.W. (1962) What makes a person creative? The 
Saturday Review (Feb. 10), 15-69. In Wadia (1968). 

McGregor, D. (I960) The role of staff in modern industry. In 
Shutz and Whistler (1960). 

Miller, G.A. (1967) The Psychology of Communication. Basic 
Books, New York. 
A collection of perceptive articles on human communication, 
including the author's well-known "The magical number seven, 
plus or minus two" paper. 

Morison, E.E. (1966) Men, Machines, and Modern Times. MIT 
Press, Cambridge, Mass. CR 8, 2(67)11, 356. 

112 



A set of anecdotal case studies, bearing on the position of man 
pitted against technology. 

Myers, C.A. (Ed.) (1967) The Impact of Computers on Manage-
ment. MIT Press, Cambridge, Mass. CR 8, 4(67)12, 265. 

Orden, A. (I960) Man-machine computer systems. In Shultz and 
Whisler (I960). 

Orlicky, J. (1969) The Successful Computer System: Its Planning, 
Development anil Management in a Business Enterprise. 
McGraw-Hill. New York. CR 10, 11(69)17, 820. 
Introduction to planning for the MIS. 

Sackman, H. (1967) Computers, System Science and Evolving So-
ciety: The Challenge of Man-Machine Digital Systems. Wiley, 
New York. CR 9, 5(68)14, 154. 
Ch. 9, II, and 12 are relevant to behavioral considerations. 

Schein, E.H. (1961) Management development as a process of in-
fluence. Industrial Management Review (May), 59-77. In 
Wadia (1968). 

Shultz, G.P., and Whisler, Y.L. (Eds.) (I960) Management Organ-
ization and the Computer. The Free Press, Glencoe, III. 

Simon, H.A., and Newell, A. (I960) What have computers to do 
with management? In Shultz and Whisler (1960). 

Simon, H.A. (1964) On the concept of organizational goal. Ad-
ministrative Science Quarterly 9. 1-22. In Wadia (1968). 

Sisson, R.L., and Canning, R.G. (1967) A Manager's Guide to 
Computer Processing. Wiley, New York. 

Steiner, G.A. (1964) The creative organization. Stanford U. Gradu-
ate School of Business Bulletin 33, 12-16. In Wadia (1968). 

Toffler, A. (1970) Future Shock. Random House, New York. 
A much talked-about analysis of the impact of rapid external 
change on human behavior. 

Tomeski, E.A. (1970) The Computer Revolution: The Executive 
and the New Information Technology. Crowell Collier and 
Macmillan, New York. 
Covers both new patterns of administration brought about by 
information technology and the administration of that new 
technology itself. 

Withington, F.C. (1969) The Real Computer: Its Influences, Uses 
and Effects. Addison-Wesley, Reading, Mass. 
Insightful discussion of the myth and the reality of the impact 
of the computer on people. 

Woodward, J. (1965) Industrial Organization, Theory and Practice. 
Oxford U. Press, Oxford, England. 

Zalkind, S.S., and Costello, T.W. (1962) Perception: implications 
for administration. Administrative Science Quarterly 7, 218-35. 
In Wadia (1968). 

UC1. Information Structures (2-2-3) 

Prerequisite: elementary computer programming. 
Approach: The structures which may be used to represent the 

information involved in solving problems are presented. Both 
modeling structures and implementation (storage) structures are 
covered. Emphasis is placed on treating these structures inde-
pendently of particular applications. Examples, however, par-
ticularly from information system design, should be used wherever 
possible. The interrelationship between problem solving proce-
dure, modeling structure, and implementation structure is stressed. 
Alternative implementations of a particular model are explored. 
Implementations in higher-level languages of several modeling 
structures are presented. 

Students should apply the techniques presented to a number 
of problems. Care should be taken to separate development of 
modeling structures from implementation; and in many instances 
the student's analysis of a problem can stop at the modeling struc-
ture level. For at least some of the problems, however, students 
should implement and test their proposed representations. 

Content: 
1. Basic concepts of information (10%) 

Representation of information outside and inside the com-
puter. Bits, bytes, fields, items, records, files. Numbers and charac-
ters. Characteristics of computer arithmetics—conversion, trunca-
tion and roundoff, overflow and underflow. Names, values, 
environments, and binding of data. Use of pointers or linkage 
variables to represent structure. Identifying entities about which 
data is to be maintained, and selecting data nodes and structures 
which are to be used in problem solution. 

2. Modeling structures—linear lists (10%) 
Linear lists, stacks, queues, deques. Single, double, circular 

linkage. Strings, insertion, deletion, and accessing of list elements. 
3. Modeling structures—multilinked structures (10%) 

Trees and forests. Free, oriented, and ordered trees. Binary tree 
representation of general trees. Traversal methods—preorder, 
postorder, endorder. Threading trees. Examples of tree structures as 
algebraic formulas, dictionaries, and other hierarchical information 
structures. Arrays and tables. Storage mapping functions. Linked 
representation of sparse arrays. Multilinked structures with hetero-
geneous fields and/or nodes (plexes). 
4. Machine-level implementation structures (10%) 

Word packing and part-word addressing. Sequential allocation. 
Linked allocation and pointer manipulation. Scatter storage; hash 
table formats, hashing functions, methods of resolving collisions. 
Direct and indirect address calculation. Implementation of linked 
structures in hardware. 
5. Storage management (5%) 

Static versus dynamic allocation. Slacks and available space 
lists. Explicit release of available space, reference counts, and 
garbage collection. Coalescing adjacent free space. Variable 
block size—stratified available space lists, the buddy system. 
6. Programming language implementation structures (30%) 

Examples of the implementation of modeling structures in 
higher-level languages. FORTRAN, PL/1 and ALGOL arrays. 
SNOBOL and PL/I strings. Lists in PL/I , GPSS, SIMSCRIPT. 
IDS. Tables and records in PL/I, COBOL. 
7. Sorting and searching (10%) 

Radix sort, merge sort, bubble sort, address table sort, tree 
sort, and other sorting methods. Comparative efficiency of sorting 
methods. Use of sort packages. Linear search, binary search, in-
dexed search, and other searching methods. Tradeoffs between 
sorting effort and searching effort. Effect of information structure on 
sorting and searching techniques. 
8. Examples of the use of in formation structures (15%) 

Representation of information by translators. Representation 
of information during execution; activation records. Implementa-
tion of higher-level language data structures. Organization of an 
inverted file for document retrieval. Examples in graphic manipu-
lation systems, simulation packages, data management systems. 

References: Berztiss (1971) or Knuth (1968) are most suitable 
candidates for use as texts in this course, supplemented by addi-
tional readings in a few topics. 
1. Basic concepts of information:'Berzliss (1971); Iverson (1962); 
Johnson (1970); Knuth (1968); Mealy (1967); Wegner (1968). 
2. Modeling structures—linear lists: Berztiss (1971); Dodd 
(1969); Hopgood (1969); Iverson (1962); Johnson (1970); Knuth 
(1968); Mealy (1967); Williams (1971). 
3. Modeling structures—multilinked structures: Berztiss (1971); 
Dodd (1969); Hopgood (1969); Iverson (1962); Johnson (1970) 
Ch. 1-3; Knuth (1968); Mealy (1967); Williams (1971). 
4. Machine-level implementation structures: Berztiss (1971); 
Dodd (1969); Gauthier and Ponto (1970); Hopgood (1969); 
Johnson (1970); Knuth (1968); Morris (1968); Wegner (1968), 
Williams (1971). 
5. Storage management: Berztiss (1971); Johnson (1970); Knuth 
(1968). 
6. Programming language implementation structures: Berztiss 
(1971); CODASYL (1971); Gordon (1969); Griswold et al. 
(1968); Iverson (1962); Rosen (1967) Pt. 3; Wegner (1968); Wil-
liams (1971). 
7. Sorting and searching: Berztiss (1971); Flores (1969); Gauthier 
and Ponto (1970); Hopgood (1969); Iverson (1962); Johnson 
(1970) Ch. 4, 5; Wegner (1968). 
8. Examples of use of information structures: Berztiss (1971); 
Dodd (1969); Knuth (1968); Wegner (1968); Williams (1971). 

Bibliography: The references are to the combined bibliog-
raphy given at the end of Course Group UC. 

UC2. Computer Systems (2-2-3) 

Prerequisites: UB1, UC1. 
Approach: Computer systems, their hardware and basic oper-

ating software, are studied, with attention to the human factors 
involved in computer system operation and maintenance. Types 

113 



of modules and types of system function mode (batch, interactive, 
online, etc.) should be carefully distinguished. 

Block diagrams, flowcharts, and some kind of formal de-
scriptive language should be used to set forth the systems aspects 
discussed. A suitable choice for the latter would be an assembly 
language with macro capability. Problem assignments should in-
volve proposing system or subsystem attributes and parameters 
for given performance specifications and testing the proposals 
by simulation. Simulation packages for evaluating subsystem con-
figurations should be available. 

Content: 
1. Hardware modules (20%) 

Processor, memory, input/output, mass storage, remote trans-
mission modules; function and possible realization of each. Micro-
programming. Styles of buffering, interfacing, communication and 
interrupt handling. Memory management, virtual memory. Chan-
nel management, virtual configurations. Network and multi-
processor configurations. Note: the approach of this section is con-
ceptual, to point up the need for a comprehensive hardware/ 
software viewpoint—the concepts are then elaborated in program-
ming and operational terms in subsequent sections. 
2. Execution software (15%) 

General interpretive modules for execution support, e.g. list 
processors. Modules for memory management in real and virtual 
memory systems. Processor and channel modules for support of 
input/output, mass storage and remote transmission units in real 
and virtual configurations. Concepts of multiply-reentrant programs 
and cooperating processes. 
3. Operation software (25%) 

Loading, interrupt monitoring, diagnostic modules. Schedul-
ing, resource allocation, performance monitoring packages. Con-
cepts of state resurrection and interprocess protection. 
4. Data and program handling software (30%) 

Media and format conversion modules. File handling facilities. 
Control specifications for datasets. Translating, compiling, generat-
ing modules. Macro facilities. Editing and debugging facilities. 
Linkage and job control specifications for subroutines, coroutines 
and standard packages. Problems of identification and security. 
Note: this topic is background for courses C3 and C4. 
5. Multiprogramming and multiprocessing environments (10%) 

Levels of multiaccessing and multiplexing. Batch and interac-
tive modes. Requirements for effective usability, operability, main-
tainability of operating systems. Performance monitoring and man-
agement of complex hardware/software configurations. 

References: There is no single introductory text for a com-
bined hardware/software course at this level. An advanced text 
which embodies this kind of approach is Beizer (1971). The refer-
ences given for Curriculum 68 courses 13 and 14 are in general 
relevant. Text materials may also be drawn from the operating 
manuals of whatever large-scale computer system is available for 
use in the course. 
1. Hardware modules: Bell and Newell (1971); Buchholz (1962); 
Gear (1969); Husson (1970); Martin (1967). 
2. Execution• software: Daley and Dennis (1968); Denning 
(1970); Dijkstra (1968b). 
3. Operation software: Rosin (1969). 
4. Data and program handling software: Rosen (1967). 
5. Multiprogramming and multiprocessing environments: Daley 
and Dennis (1968); Rosen (1967) Pt. 5; Stimler (1969); Watson 
(1970); Wilkes (1967). 

Bibliography: The references are to the combined bibli-
ography given at the end of Course Group UC. 

UC3. File and Communication Systems (2-2-3) 

Prerequisite: UC2. 
Approach: The basic components of file and communication 

systems are presented and analyzed. The functioning of these sys-
tems-as integral components of an information system is stressed. 

The instructional approach is primarily lecture and problem 
discussion. This is neither a project nor a programming course as 
such; most student assignments concern design or analysis of 
carefully specified and limited subprograms or subsystems. When 
possible, if a file management language is available, a small file 
system design and implementation project would be desirable. 

Content: 
1. Functions of file and communication systems (5%) 

Role of information acquisition, storage and transmission in 
an organization. Typical operations in file systems: file creation, 
maintenance, interrogation. Typical operations using communica-
tion systems. Issues of information availability, privacy, security. 
2. File system hardware (5%) 

Characteristics of auxiliary storage devices. Capacity, access, 
cost. Device types: tape, disk, mass storage. 
3. File system organization and structure (25%) 

Data fields, records, files, hierarchies of files. Directories and 
indices, inverted files. Structure and access: sequential, direct in-
dexed sequential, randomized, randomized with buckets. Storage 
allocation and control techniques. 
4. Analysis of file systems (10%) 

Estimating capacity and timing requirements. Tradeoffs be-
tween access time, capacity and density of use, cost. Tradeoffs be-
tween file creation/maintenance activity and access activity. 
Relevant formulas and tables. 
5. Data management systems (10%) 

Generalized data management systems. Directory maintenance, 
query languages, data description, job management. Characteristics 
of available systems. 
6. Communication system hardware (15%) 

Theoretical concepts, channels and channel capacity noise, 
error detection and correction. Existing communication facilities; 
line types, exchanges: utilities, regulatory agencies, and tariffs. 
Pulse techniques. Transmission codes. Transmission modes. Line 
termination and terminal devices. 
7. Communication system organization and structure (10%) 

Single line: point-to-point, multidrop. Networks: centralized, 
decentralized, distributed. Control and protocol: acknowledgment, 
wait-requests, contention, polling. Switched, store-and-forward. 
Data concentrators and distributors. 
8. Analysis of communication systems (5%) 

Estimating line and terminal requirements: volume and mes-
sage length, speed and timing, cost implications. Bottlenecks and 
queues, queueing analysis, simulation. 
9. Examples of integrated systems (15%) 

The data base concept: integrated data approach, coordination, 
control, multiple use of data. The data administrator; the com-
puter utility. System resiliency and integrity, privacy, and security 
considerations. 

References: While no textbook available at present is organized 
to match the scope of this course, Martin (1967) covers much of the 
material here. 
1. Function of file and communications systems: Gruenberger 
(1969); Martin (1967); Meadow (1967) ; Minker and Sable (1967); 
Salton (1968); Senko (1969). 
2. File system hardware: Martin (1967). 
3. File system organization and structure: CODASYL (1969); 
CODASYL (1971); Dodd (1969); IBM (1969) IFIP (1969); 
Martin (1967); Meadow (1967); Salton (1968); Senko (1969). 
4. Analysis of file systems: CODASYL (1971); IBM (1969); 
Martin (1967); Salton (1968). 
5. Data management systems: CODASYL (1969); CODASYL 
(1971); Gruenberger (1969); IFIP (1969); Martin (1967); Senko 
(1969). 
6. Communication system hardware: Davenport (1971); Gentle 
(1965); Martin (1967); Martin (1969). 
7. Communication system organization and structure: Davenport 
(1971); Martin (1967); Martin (1969). 
8. Analysis of communication systems: Martin (1967); Martin 
(1969). 
9. Examples of integrated systems: Martin (1967); Parkhill 
(1966). 

Bibliography: The references are to the combined bibliog-
raphy given at the end of Course Group UC. 

UC4. Software Design (2-2-3) 

Prerequisite: UC2. 
Approach: This course brings the student to grips with the 

actual problems encountered in designing, implementing and 
modifying systems of computer programs. The concept of pro-

114 



_ gramming style should permeate most of the material presented, 
although it appears as a specific lecture topic toward the end of the 
course. Careful verification of program operation and documen-
tation of programs should be emphasized. Much of the course, 
particularly in the laboratory sessions, may be devoted to the 
actual implementation of the programs. A useful exercise would be 
to have each student modify a program written by someone else. 

Content: 
1. Run-lime structures in programming languages (10%) 

Textual versus execution semantics in languages. Binding of 
names. Examples from FORTRAN, ALGOL, PL / I , and some data 
management system. Run-time stacks. 
2. Communication, linking, and sharing of programs and data 
(30%) 

Separation of program and data segments. Common (global) 
versus local data. Block structures—static and dynamic nesting, 
internal and external procedures. Subroutines and coroutines as 
linkage structures. Sharing of code—reentrancy, recursion, pure 
procedures. Static and dynamic linking and loading, repeatabil-
ity, self-relocating programs. Table driven programs. Asynchronous 
versus synchronous control, cooperating processes, multitasking. 
3. Interface design (10%) 

Parameters, work space, automating, and documenting inter-
faces. Control blocks. 
4. Program documentation (10%) 

Self-documenting programs. Levels of detail in documentation. 
Automatic flowcharting methods. Motivation for documentation— 
maintenance and modification of programs. 
5. Program debugging and testing (15%) 

Automating the debugging process. Symbolic debugging aids. 
Automatic generation of test data and expected results. Analysis 
of testing procedures. Hierarchical testing. Exhaustive testing 
versus random sampling. Testing of communications programs. 
Simulation as a tool. Abnormal condition handling. 
6. Programming style and aesthetics (10%) 

Modular programming—functional modules, breaking up of 
large functional modules. Central versus distributed control struc-
tures. Macro and micro modularity. Inter- and intra-language 
communication. Clarity and documentation—block diagramming. 
7. Selected examples (15%,) 

File handling modules. Error retry, request queueing. Com-
munication interface modules. Polling versus concention, interrupt 
handling. Selected materials such as graphics programming, 
programming for realtime sensing devices, process control systems. 
Man-machine interactions. • 

References: 
1. Run-time structures in programming languages: Galler (1970); 
Rosen (1967) Pt. 2, 3; Wegner (1968). 
2. Communication, linking, and sharing of programs and data: 
Daley and Dennis (1968); Gear (1969); Knuth (1968); Martin 
(1967); Wegner (1968). 
3. Interface design: Dijkstra (1968a); Martin (1967). 
4. Program documentation: Walsh (1969). 
5. Program debugging and testing: Dijkstra (1968a); Hassitt 
(1967); Martin (1967); Van Horn (1968). 
6. Programming style and aesthetics: Dijkstra (1968a); Knuth 
(1968); Wirth (1971). 
7. Selected examples: Head (1971); Martin (1967). 

Bibliography: The references are to the combined bibliography 
given at the end of Course Group UC. 

UC8. Programming Structures and Techniques (2-2-3) 

Prerequisite: elementary computer programming. 
Approach: The structures which may be used to represent 

the information involved in solving problems are presented. 
This course brings the student to grips with the actual problems 

encountered in designing, implementing, and modifying systems 
of computer programs. The concept of programming style should 
permeate most of the material presented. Careful verification of 
program operation and documentation of programs should be 
emphasized. Much of the course, particularly in the laboratory 
sessions, may be devoted to the actual implementation of the pro-
grams. It would be useful to have an exercise in which each student 
must modify a program written by someone else. 

Content: 
1. Basic concepts o f information (20%) 

Representation of information outside and inside the com-
puter. Bits, bytes, fields, items, records, files. Numbers and charac-
ters. Use of pointers or linkage variables to represent structure. 
Arrays and tables. Scatter storage: hash table formats, hashing 
functions. 
2. Storage management (5%) 

Static versus dynamic allocation. Stacks and available space 
lists. Explicit release of available space, reference counts, and 
garbage collection. Coalescing adjacent free space. Variable block 
size—stratified available space lists, the buddy system. 
3. Programming language implementation structures (10%) 

Examples of the implementation of modeling structures in 
higher-level languages. FORTRAN, P L / I arrays. SNOBOL and 
PL/ I strings. Lists. Tables and records in PL/I , COBOL. 
4. Sorting and searching (5%) 

Sorting methods. Comparative efficiency of sorting methods. 
Use of sort packages. Linear search, binary search, indexed search, 
and other searching methods. Tradeoffs between sorting effort 
and searching effort. Effect of information structures on sorting 
and searching techniques. 
5. Examples of the use of information structures (20%) 

Representation of information during execution; implemen-
tation of higher-level language data structures. Organization of an 
inverted file for document retrieval. Examples in graphic manipula-
tion systems, data management systems. 
6. Communication, linking, and sharing of programs and data 

(5%) 
Separation of program and data segments. Common (global) 

versus local data. Block structures—internal and external proce-
dures. Subroutines as linkage structures. Sharing of code - r e -
entrancy, recursion, pure procedures. Table driven programs. 
Asynchronous versus synchronous control. Cooperating processes. 
7. Interface design (10%) 

Parameters, work space, automating, and documenting inter-
faces. Control blocks. 
8. Program documentation, debugging, and testing (25%) 

Self-documenting programs. Levels of detail in documenta-
tion. Motivation for documentation—maintenance and modifica-
tion of programs. Automating the debugging process. Symbolic 
debugging aids. Automatic generation of test data and expected 
results. Analysis of testing procedures. Hierarchical testing. Ex-
haustive testing vs. random sampling. Testing of communications 
programs. Simulation as a tool. Abnormal condition handling. 

References: Berztiss (1971) or Knuth (1968) are most suitable 
candidates for use as texts in this course, supplemented by addi-
tional readings in a few topics. 
1. Basic concepts of information: Berztiss (1971); Iverson (1962); 
Johnson (1970); Knuth (1968); Mealy (1967); Wegner (1968). 
2. Storage management: Berztiss (1971); Johnson (1970); Knuth 
(1968). 
3. Programming language implementation structures: Berztiss 
(1971); CODASYL (1971); Gordon (1969); Griswold et al. 
(1968); Iverson (1962); Rosen (1967) Pt. 3; Wegner (1968); 
Williams (1971). 
4. Sorting and searching: Berztiss (1971); Flores (1969); Gauthier 
and Ponto (1970); Hopgood (1969); Iverson (1962); Johnson 
(1970) Ch. 4, 5; Wegner (1968). 
5. Examples of use of information structures: Berztiss (1971); 
Dodd (1969); Knuth (1968); Wegner (1968); Williams (1971). 
6. Communication, linking, and sharing of programs and data: 
Daley and Dennis (1968); Gear (1969); Knuth (1968); Martin 
(1967); Wegner (1968). 
7. Interface design: Dijkstra (1968a); Martin (1967). 
8. Program documentation, debugging and testing: Dijkstra 
(1968a); Gruenberger (1968b), Hassitt (1967); Martin (1967); 
Van Horn (1968); Walsh (1969). 

UC9. Computerware 

Prerequisite: UC8. 
Approach: Computer systems, their hardware and basic 

operating software, are studied, with attention to the human 

115 



factors involved in computer system operation and maintenance. 
Types of modules and types of system function mode (batch, inter-
active, online, etc.) should be carefully distinguished. The basic 
components of file and communication systems are presented and 
analyzed. The functioning of these systems as integral components 
of an information system is stressed. When possible, if a file man-
agement language is available, a small file system design and im-
plementation project would be desirable. 

Content: 
1. Hardware modules (15%) 

Processor, memory, input/output, mass storage, remote trans-
mission modules; function and possible realization of each. Micro-
programming. Styles of buffering, interfacing, communication and 
interrupt handling. Channel management, virtual configurations. 
Network and multiprocessor configurations. 
2. Execution software, multiprogramming, and multiprocessing 
(10%) 

General interpretive modules for execution support, e.g. list 
processors. Modules for memory management in real and virtual 
memory systems. Processor and channel modules for support of 
input/output, mass storage and remote transmission units in 
real and virtual configurations. Concepts of multiply-reentrant 
programs and cooperating processes. Levels of multiaccessing and 
multiplexing. Batch and interactive modes. 
3. Operation software (10%) 

Loading, interrupt monitoring, diagnostic modules. Scheduling, 
resource allocation, performance monitoring packages. Concepts 
of state resurrection and interprocess protection. 
4. Data and program handling software ( 15%) 

Media and format conversion modules. File handling facilities. 
Control specifications for datasets. Translating, compiling, generat-
ing modules. Editing and debugging facilities. Linkage and job 
control specifications for subroutines, and standard packages. 
Problems of identification and security. 
5. Functions of file and communication systems (10%) 

Role of information acquisition, storage and transmission in 
an organization. Typical operations in file systems: file creation, 
maintenance, interrogation. Typical operations using communica-
tion systems. Issues of information availability, privacy, security. 
6. File systems {10%) 

Characteristics of auxiliary storage devices. Capacity, access, 
cost. Device types: tape, disk, mass storage. Data fields, records, 
files, hierarchies of files. Directories and indices, inverted files. 
Structure and access: sequential, direct indexed sequential, ran-
domized, randomized with buckets. Storage allocation and control 
techniques. Estimating capacity and timing requirements. 
7. Review of data management systems and analysis ( 15%) 

Generalized data management systems. Directory maintenance, 
query languages, data description, job management. Characteristics 
of available systems. 
8. Review of communication systems (5%) 

Theoretical concepts: channels and channel capacity, noise, 
error detection and correction. Existing communication facilities; 
ine types, exchanges; utilities and tariffs. Transmission modes. 
Line termination and terminal devices. Single line: point-to-point, 
multidrop. Networks: centralized, decentralized, distributed. Con-
trol and protocol; acknowledgment, wait-requests, contention, 
polling. Switched, store-and-forward. Data concentrators and dis-
tributors. Estimating line and terminal requirements. 
9. Examples (10%) 

The data base concept: integrated data approach, coordination, 
control, multiple use of data. The data administrator; the computer 
utility. System resiliency and integrity, privacy, and security con-
siderations. 

References: There is no single introductory text for a combined 
hardware/software course at this level. The references given for 
Curriculum 68 courses 13 and 14 are in general relevant. Text 
materials may also be drawn from the operating manuals of what-
ever large-scale computer system is available for use in the course. 
1. Hardware modules: Bell and Newell (1971); Buchholz (1962); 
Gear (1969); Husson (1970); Martin (1967). 
2. Execution software, multiprogramming and multiprocessing: 
Daley and Dennis (1968); Denning (1970); Dijkstra (1968b); 
Rosen (1967) Pt. 5; Stimler (1969); Watson (1970); Wilkes (1967). 
3. Operation software: Rosin (1969). 
4. Data and program handling software: R o s e n (1967) . 
5. Function of file and communications systems: Gruenberger 

(1969); Martin (1967); Meadow (1967); Minker and Sable (1967); -
Salton (1968); Senko (1969). 
6. File systems: CODASYL (1969); CODASYL (1971); Dodd 
(1969); IBM (1969); IFIP (1969); Martin (1967); Meadow (1967); 
Salton (1968); Senko (1969). 
7. Review of data management systems and analysis: C O D A S Y L 
(1969); CODASYL (1971); Gruenberger (1969); IFIP (1969); 
McGee (1968); Martin (1967); Senko (1969). 
8. Review of communication systems: Davenport (1971); Gentle 
(1965); Martin (1967); Martin (1969). 
9. Examples: Martin (1967); Parkhill (1966). 

Bibliography: The references are to the combined bibliography 
given below. 

Combined Bibliography—Course Group UC 

Bell, C.G., and Newell, A. (1971) Computer Structures: Readings 
and Examples. McGraw-Hill, New York. CR 12, 5(71)21, 279; 
also CR 12, 7(71)21, 618. 
A systematic treatment of computer architecture, with ex-
amples drawn from existing computer families. A definitive 
work, containing notational and pedagogical innovations 
which should set the style for future works in this area. 

Berztiss, A . T . (1971) Data Structures: Theory and Practice. A c a -
demic Press, New York CR 12, 11(71)22,086. 
Combines an introduction to discrete structures with a treat-
ment of modeling and storage structures. Example program 
segments use FORTRAN; last chapter describes several other 
programming languages for information structures. Contains 
an extensive bibliography. 

Buchholz, W. (Ed.) (1962) Planning a Computer System. McGraw-
Hill, New York, CR 4, 6(63)4786. 
An earlier but still useful discussion of how a computer hard-
ware system is designed. Based on the development of the 
IBM Stretch computer. 

CODASYL Data Base Task Group (1969) October 69 Report. 
Report to the CODASYL Programming Language Committee, 
available through ACM. CR 11, 5(70)19,080. 
Contains a proposal for a Data Description Language for 
describing a data base and a Data Manipulation Language 
which when associated with the facilities of a host language, 
allows manipulation of data bases described in the Data De-
scription Language. 

CODASYL Systems Committee (1971) Feature Analysis of General-
ized Data Base Management Systems. Technica l report, avai l-
able from ACM, New York. 
Gives the reader a good feel for the state of the art in some 
widely-used generalized data base management systems. The 
introduction to this report also appears in Comm. ACM 14, 5, 
308-318. 

Cuadra, C . A . (Ed.) ( 1966-1971) Annual Review of Information 
Science and Technology. Vols. 1-6, CR 8, 1(67)11,128 (Vol. 1); 
CR 10, 4(69)16,550 (Vol. 3); CR 11, 7(70)19,391 (Vol. 4). 
An excellent survey and review publication, covering mainly 
information storage and retrieval systems. 

Daley, R.C., and Dennis, J.B. (1968) Virtual memory, processes, 
and sharing in MULTICS. Comm. ACM 11, 5, 306-12. CR 9, 
8(68)14,978. 
Discusses the concepts of dynamic linking and loading, and the 
sharing of procedures and data in virtual memory. 

Davenport, W.P. (1971) Modern Data Communications. Hayden, 
New York. 
An introductory textbook covering many topics in data com-
munications in an elementary way. 

Denning, P.J. (1970) Virtual memory. Computing Surveys 2, 3, 
153-89. CR 12, 4(71)21,031. 
A thorough treatment of this fundamental concept for design 
of multiprogramming systems. 

Dijkstra, E.W. (1968a) The structure of "THE"-multiprogramming 
system. Comm. ACM 11, 5, 341-46. 
The techniques described here for program design, implementa-
tion, and verification are quite useful in illustrating program 
aesthetics. 

116 



Dijkstra, E.W. (1968b) Co-operating sequential processes. In 
Genuys (1968). 
A definitive article which sets forth the basic aspects of concur-
rently running processes in computer systems. 

Dodd, G.G. (1969) Elements of data management systems. Com-
puting Surveys 1, 2, 117-33. CR 10, 11(69)17,780. 
Title is misleading. Actually a presentation of information 
structures in the context of data management systems. 

Flores, 1. (1969a) Computer Sorting. Prentice-Hall, Englewood 
Cliffs, N.J. CR JO, 1(69)16,053. 
Presents various sorting techniques, with assembly language 
level procedures. 

Galler, B., and Perlis, A. (1970) A View of Programming Languages. 
Addison-Wesley, Reading, Mass. 

Gauthier, R., and Ponto, S. (1970) Designing Systems Programs. 
Prentice-Hall, Englewood Cliffs, N.J. CR 12, 3(71)20,829. 
See particularly Ch. 7 (Data Representation) and Ch. 8 
(Search Structures). 

Gear, C.W. (1969) Computer Organization and Programming. 
McGraw-Hill, New York. CR JO, 9(69)17,372. 
A good text in assembly-level programming, which treats 
both hardware and basic software in this context. 

Genuys, F. (Ed.) (1968) Programming Languages. Academic Press, 
New York. 

Gordon, G. (1969) System Simulation. Prentice-Hall, Englewood 
Cliffs, N.J. CR 11, 3(70)18,682. 

Griswold, R.E., Poage, J.F., and Polonsky, J.P. (1968) The SNO-
BOL 4 Programming Language. Prentice-Hall, Englewood 
Cliffs, N.J. CR 10, 11 (69) 17,858. 

Gruenberger, F. (Ed.) (1969) Critical Factors in Data Management. 
Prentice-Hall, Englewood Cliffs, N.J. CR 11, 2(70)18,384. 
A collection of symposium papers. 

Hassitt, A. (1967) Computer Programming and Computer Systems. 
Academic Press, New York. CR 8, 4(67) 12,355. 
Ch. 8 on debugging philosophy and Ch.9 on the dynamic use 
of storage are most useful. 

Head, R.V. (1971) A Guide to Packaged Systems. Wiley, New York. 
Hopgood, F.R.A. (1969) Compiling Techniques. American Elsevier, 

New York. CR 10, 11(69)17,773. 
Distinguishes between abstract data structures and internal 
storage structures. Ch. 2 (Data Structures), Ch. 3 (Data Struc-
ture Mappings), and Ch. 4 (Tables) are particularly relevant 
here. 

Husson, S. (1970) Microprogramming: Principles and Practices. 
Prentice-Hall, Englewood Cliffs, N.J. 
Contemporary treatment of the implementation of computer 
control, using several existing processor designs as extended 
examples. 

IBM Corporation. (1969) File Design Handbook. Information 
Sciences Depart. , IBM Research, San Jose, Calif. 
A prototype file design handbook with special emphasis on 
providing equations, guidelines, and simulation data for use 
by the file designed in meeting user constraints on cost, storage 
capacity, response time, etc. 

IFIP. (1969) File Organization. Selected papers from File 68—an 
I.A.G. Conference. Swets and Zeitlinger N.V., Amsterdam, 
The Netherlands. 
Papers ranging from the nature of management and informa-
tion systems, and details of file structure design and program-
ming support systems, through specific case studies. 

Iverson, K.E. (1962) A Programming Language. Wiley, New York. 
Contains considerable material on data structures, graphs, 
trees, and sorting, as well as descriptions of these in APL. 

Johnson, L.R. (1970) System Structure in Data, Programs and 
Computers. Prentice-Hall, Englewood Cliffs, N.J. CR 12, 
1(71)20,504. Systematic treatment of much of computer 
science, taking the tree as a basic structural element. 

Knuth, D.E. (1968) The Art of Computer Programming, Vol. 1: 
Fundamental Algorithms. Addison-Wesley, Reading, Mass. 
CR 9, 6(68)14,505. 
An extensive compendium (Ch. 2. Information Structures) of 
information and techniques on data structures and storage 
management. Does not distinguish between modeling and 
implementation structures. Section 1.4 on subroutines, co-
routines, and linking is must reading. Other related topics 
are thoroughly covered. Many good examples and exercises. 

M a r t i n , J . (1967) Design of Real-Time Computer Systems. P r e n -
tice-Hall, Englewood Cliffs, N.J . CR 9, 2(68)13,607. 

A thorough treatment of analysis and design methodology for 
implementing real-time computer systems. Contains much 
material on both file and communications subsystems. Ch. 2, 3, 
and 10 on basic techniques and building blocks for these pro-
grams are quite good. Ch. 9 on the dynamic use of memory 
is also relevant. 

Martin, J. (1969) Telecommunications and the Computer. Prentice-
Hall, Englewood Cliffs, N.J. CR 11, 8(70)19,602-19,603. 
See annotation in bibliography for Course Group D. 

Meadow, C.T. (1967) The Analysis of Information Systems. Wiley, 
New York. CR 9, 8(68) 14,939. 
Subtitled "A Programmer's Introduction to Information Re-
trieval." A thoughtful presentation from the standpoints of 
both library science and computer science. 

Mealy, G.H. (1967) Another look at data. Proc. AFIPS 1967 
FJCC, Vol. 31, AFIPS Press, Montvale, N.J., 525-34. 
Sketches a theory of data based on relations. 

Minker, J., and Sable, J. (1967) File organization and data manage-
ment. In Cuadra (1967), Vol. 2, 123-60. 
A report of then-recent developments in file organization and 
data management, organized in a tutorial and expository 
framework, with an extensive bibliography. 

Morris, R. (1968) Scatter storage techniques. Comm. ACM 11, 1, 
38-44. 
Surveys hashing schemes for symbol table algorithms. Presents 
analytic formulations of processing requirements. 

Parkhill, D. (1966) The Challenge of the Computer Utility. Addison-
Wesley, Reading, Mass. CR 8 1 (67) 11,053. 
Discusses the history, technology, economic, and legal aspects 
of computer utilities. 

Rosen, S. (Ed.) (1967) Programming Systems and Languages. Mc-
Graw-Hill, New York. CR 10, 1(69)15,975. 
Pt. 2 of this collection contains reprint articles on the major 
programming languages, and Pt. 3 articles on compiling and 
assembling. Pt. 4 contains papers of historical interest on 
various string and list processing languages. Pt. 5 is devoted 
to operating systems. 

Rosin, R.F. (1969) Supervisory and monitor systems. Computing 
Surveys 1, 1, 37-54. CR 10, 8(69)17, 284. 
A survey of operating system development, tracing the evolu-
tion from the earliest crude monitor systems to the present. 

Salton, G.J. (1968) Automatic Information Organization and Re-
trieval. McGraw-Hill, New York, CR 10, 6(69)16,841. 
Concentrates on automatic computer-based information re-
trieval systems. Includes a selective bibliography in informa-
tion storage and retrieval and related topics. 

Senko, M.E. (1969) File organization and management information 
systems. In Cuadra (1969), Vol. 4, 111-43. 
A review of management information systems applications 
and structure, viewed from the standpoints of both the in-
formation scientist and the systems programmer. Includes an 
extensive bibliography. 

Stimler, S. (1969) Real-Time Data-Processing Systems. McGraw-
Hill, New York. CR 10, 9(69)17,391. 

A text on hardware configuration design, emphasizing file and 
communications subsystems. Develops and illustrates many 
evaluation and optimization techniques. 

Van Horn, E.C. (1968) Three criteria for designing computer sys-
tems to facilitate debugging. Comm. ACM 11, 5, 360-64. 
C/? 9, 11(68)5,580. 

Walsh, D. (1969) A Guide for Software Documentation. Inter-ACT, 
McGraw-Hill, New York. CR 11, 7(70)19,392. 
Contains a number of models for the design of documenta-
tion procedures. 

Wegner, P. (1968) Programming Languages, Information Struc-
tures, and Machine Organization. McGraw-Hill, New York. 
CR 10, 2(69)6,228. 
There is a good section on coroutines, tasks, and asynchronous 
processing (4.10). Includes an extensive bibliography. 

Williams, R. (1971) A survey of data structures for computer 
graphics systems. Computing Surveys 3, 1, 1-21. CR 12, 
7(71)21,621. 
Includes an extensive bibliography. 

Wirth, N. (1971) Program development by stepwise refinement. 
Comm. ACM 14, 4, 321-27. CR 12, 8(71)21,630. 
An interesting exposition of the program design process. 

117 



Reports and Articles 

~~ CURRICULUM '78 
Recommendations for the Undergraduate Program 
in Computer Science 
A Report of the ACM Curriculum Committee on Computer Science 

Editors: Richard H. Austing, University of Maryland 
Bruce H. Barnes, National Science Foundation 
Delia T. Bonnette, University of Southwestern Louisiana 
Gerald L. Engel, Old Dominion University 
Gordon Stokes, Brigham Young University 

Contained in this report are the recommendations for 
the undergraduate degree program in Computer Science 
of the Curriculum Committee on Computer Science (C3S) 
of the Association for Computing Machinery (ACM). 

The core curriculum common to all computer sciencc 
undergraduate programs is presented in terms of elemen-
tary level topics and courses, and intermediate level 
courses. Elective courses, used to round out an under-
graduate program, are then discussed, and the entire 
program including the computer science component and 
other material is presented. Issues related to undergrad-
uate computer science education, such as service courses, 
supporting areas, continuing education, facilities, staff, 
and articulation are presented. 

Key Words and Phrases: computer sciences courses, 
computer science curriculum, computer science educa-
tion, computer science undergraduate degree programs, 
service courses, continuing education 

CR Categories: 1.52 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the A C M copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association fo r Comput ing 
Machinery. T o copy otherwise, or to republish, requires a fee 
a n d / o r specific permission. 

Contents 
1. Introduction 
2. Core Curriculum 

2.1 Introduction 
2.2 Objectives 
2.3 Elementary Material 
2.4 Implementation Considerations 
2.5 Sample Elementary Level Courses 
2.6 Sample Intermediate Level Courses 

3. Computer Science Electives 
3.1 Introduction 
3.2 Elementary Level 
3.3 Advanced Level 

4. The Undergraduate Program 
4.1 Introduction 
4.2 Computer Science Requirements and Electives 
4.3 Mathematics Requirements 
4.4 Other Requirements and Electives 

5. Service Courses 
5.1 Introduction 
5.2 General Service Courses 
5.3 Supporting Areas 
5.4 Continuing Education 

6. Other Considerations 
6.1 Introduction 
6.2 Facilities 
6.3 Staff 
6.4 Articulation 
References 
Appendix 

119 



1. Introduction 

Curriculum development work in computer science 
has been a continuing effort of the Curriculum Commit-
tee on Computer Science (C : iS) of the Association for 
Computing Machinery (ACM). The work leading to the 
material presented in this report was started under the 
chairmanship of C:,S of Preston Hammer, and continued 
when John Hamblen was appointed chairman in 1976. 

In the time since the publication of "Curriculum '68" 
[1] by C*S, many significant developments have occurred 
within computer science education, and many educa-
tional efforts have been undertaken by C !S, other groups 
within ACM, and other professional organizations. As 
part of the background work in preparation of this re-
port, an extensive survey of the literature of computer 
science education since "Curriculum '68" was prepared 
and published [2], The efforts of C S since 1968 are 
summarized in this document. 

The writing group, in its preparation of this set of 
recommendations, paid considerable attention to the de-
velopments as reported in the literature, and to informal 
comments received regarding "Curriculum '68." In addi-
tion to this, a variety of individuals, representing many 
different types of institutions, and many different inter-
ests within computer science, were brought into C'S 
meetings and working sessions to present their ideas. A 
working draft of the report was prepared and published 
in the June 1977 SIGCSE Bulletin in order that the ma-
terial receive as wide a distribution as possible, and to 
provide an opportunity for input from interested individ-
uals. Prior to the publication of the working paper, draft 
reports on specific areas were widely circulated and nu-
merous panel and discussion sessions were held both to 
inform interested parties of the thinking of the Commit-
tee and to allow for comments and suggestions on the 
work done to that point. 

The wide circulation of the various drafts and work-
ing papers resulted in numerous suggestions and con-
structive criticisms, many of which have been incorpo-
rated into this final document. In addition to this input, 
a relationship of mutual benefit has developed by inter-
action with the parallel, but independent, development 
of the Model Curricula Subcommittee of the IEEE Com-
puter Society leading to the publication of their curricu-
lum guidelines in Computer Science and Engineering [3]. 

The writing group is most grateful to all those indi-
viduals who contributed to the effort. The Appendix con-
tains the names and affiliations of those people who 
contributed by serving on C3S, by supplying course out-
lines, by supplying comments on the draft report, and in 
other ways contributing to the final version presented 
here. The Committee, of course, assumes full responsi-
bility for the substance of this material and the recom-
mendations contained herein. 

The report first presents the core curriculum com-
mon to all computer science undergraduate programs. 
This is presented in Section 2 in terms of elementary level 

material and courses, and intermediate level courses. 
Section 3 presents computer science electives that may 
be used to round out an undergraduate program. In Sec-
tion 4, the full course of study is presented which includes 
the computer science component, and other material 
necessary in a program at the bachelor degree level. The 
important areas of service courses, including general 
service courses, supporting areas, and continuing educa-
tion are discussed in Section 5. The report concludes by 
addressing the areas of facilities, staff, and articulation 
in Section 6. 

In studying this report, it should be recognized that 
it is a set of guidelines, prepared by a group of individuals 
working in a committee mode. As such, the recommen-
dations will not satisfy everyone, nor is it intended that 
they be appropriate to all institutions. It is the hope of the 
Committee that this report will further stimulate com-
puter science educators to think about their programs 
and, as appropriate, to share their thinking with others. 
If this is done, the primary objective of the preparation 
of these guidelines will have been met. 

2. Core Curriculum 

2.1 Introduction 
Within the present work, C !S has considered the clas-

sification scheme of computer science as defined in "Cur-
riculum '68" with a view to isolating those areas which 
should be common to all computer science undergradu-
ate degree programs. 

The core curriculum, described in this section, repre-
sents this refinement. The material is divided into a sec-
tion on elementary material, including the specifications 
of topics at this level and the description of five sample 
courses, and the intermediate levels, including the de-
scription of three sample courses. This collection of eight 
courses represents one way to include the required core 
material in the computer science undergraduate major. 

While the course material is detailed later on in the 
section, to gain perspective the eight courses (three se-
mester hours each) are listed here: 
CS 1. Computer Programming I 
CS 2. Computer Programming II 
CS 3. Introduction to Computer Systems 
CS 4. Introduction to Computer Organization 
CS 5. Introduction to File Processing 
CS 6. Operating Systems and Computer Architecture 1 
CS 7. Data Structures and Algorithm Analysis 
CS 8. Organization of Programming Languages 

The structuring of the courses as to prerequisites is 
shown in Figure 1. The solid lines represent required pre-
requisites, while the dashed lines represent highly recom-
mended prerequisites. This diagram includes courses 
representing only the computer science material consid-
ered to be essential to the program. The entire program, 
including relevant mathematics requirements, is illus-
trated in Figure 2 on page 160. 

120 



Fig. 1. Computer science core curriculum. 

The discussion of the core course material in this 
section concentrates on the computer science compo-
nents which are necessary for the undergraduate pro-
gram. The relationship of this material to two-year pro-
grams (especially transfer programs) and the developing 
high school programs will be considered in Section 6.4. 

The elementary core material represents subject mat-
ter necessary for all students in computer science in order 
to be able to achieve the objectives of the undergraduate 
major. The intermediate level core material follows nat-
urally by providing the students who have been equipped 
with the basics of the field with the tools to be operational 
computer scientists. 

2.2 Objectives 
The core material is required as a prerequisite for ad-

vanced courses in the field and thus it is essential that the 
material be presented early in the program. In learning 
this material, the computer science student should be 
provided with the foundation for achieving at least the 
objectives of an undergraduate degree program that are 
listed below. 

Computer science majors should: 
1. be able to write programs in a reasonable amount of 

time that work correctly, are well documented, and 
are readable; 

2. be able to determine whether or not they have written 
a reasonably efficient and well organized program; 

3. know what general types of problems are amenable 
to computer solution, and the various tools necessary 
for solving such problems; 

4. be able to assess the implications of work performed 
either as an individual or as a member of a team; 

5. understand basic computer architectures; 
6. be prepared to pursue in-depth training in one or 

more application areas or further education in com-
puter science. 

It should be recognized that these alone do not rep-
resent the total objectives of an undergraduate program, 
but ohly those directly related to the computer science 
component. Material addressing other requirements and 
electives is covered in Section 4.4. 

2.3 Elementary Material 
In order to facilitate the attainment of the objectives 

above, computer science majors must be given a thor-
ough grounding in the study of the implementation of 
algorithms in programming languages which operate on 
data structures in the environment of hardware. Empha-
sis at the elementary level then should be placed on algo-
rithms, programming, and data structures, but with a 
good understanding of the hardware capabilities involved 
in their implementation. 

Specifically, the following topics are considered ele-
mentary. They should be common to all undergraduate 
programs in computer science. 

Programming Topics 
PI . Algorithms: includes the concept and properties of 

algorithms; the role of algorithms in the problem 
solving process; constructs and languages to facili-
tate the expression of algorithms. 

P2. Programming Languages: includes basic syntax and 
semantics of a higher level (problem oriented) lan-
guage; subprograms; I / O ; recursion. 

P3. Programming Style: includes the preparation of 
readable, understandable, modifiable, and more 
easily verifiable programs through the application 
of concepts and techniques of structured program-
ming; program documentation; some practical as-
pects of proving programs correct. (Note: Program-
ming style should pervade the entire curriculum 
rather than be considered as a separate topic.) 

P4. Debugging and Verification: includes the use of de-
bugging software, selection of test data; techniques 
for error detection; relation of good programming 
style to the use of error detection; and program ver-
ification. 

P5. Applications: includes an introduction to uses of 
selected topics in areas such as information retrieval, 
file management, lexical analysis, string processing 
and numeric computation; need for and examples of 
different types of programming languages; social, 
philosophical, and ethical considerations. 

Software Organization 
51. Computer Structure and Machine Language: in-

cludes organization of computers in terms of I /O , 
storage, control and processing units; register and 
storage structures, instruction format and execution; 
principal instruction types; machine arithmetic; pro-
gram control; I / O operations; interrupts. 

52. Data Representation: includes bits, bytes, words and 
other information structures; number representa-
tion; representation of elementary data structures; 
data transmission, error detection and correction; 
fixed versus variable word lengths. 

53. Symbolic Coding and Assembly Systems: includes 
mnemonic operation codes; labels; symbolic ad-
dresses and address expressions; literals; extended 
machine operations and pseudo operations; error 
flags and messages; scanning of symbolic instruc-

121 



tions and symbol table construction; overall design 
and operation of assemblers, compilers, and inter-
preters. 

54. Addressing Techniques: includes absolute, relative, 
base associative, indirect, and immediate address-
ing; indexing; memory mapping functions; storage 
allocation, paging and machine organization to facil-
itate modes of addressing. 

55. Macros: includes definition, call, expansion of 
macros; parameter handling; conditional assembly 
and assembly time computation. 

56. Program Segmentation and Linkage: includes sub-
routines, coroutines and functions; subprogram 
loading and linkage; common data linkage transfer 
vectors; parameter passing and binding; overlays; 
re-entrant subprograms; stacking techniques; link-
age using page and segment tables. 

57. Linkers and Loaders: separate compilation of sub-
routines; incoming and outgoing symbols; reloca-
tion; resolving intersegment references by direct and 
indirect linking. 

58. Systems and Utility Programs: includes basic con-
cepts of loaders, I / O systems, human interface with 
operating systems; program libraries. 

Hardware Organization 
H I . Computer Systems Organization: includes charac-

teristics of, and relationships between I / O devices, 
processors, control units, main and auxiliary storage 
devices; organization of modules into a system; mul-
tiple processor configurations and computer net-
works; relationship between computer organization 
and software. 

H2. Logic Design: includes basic digital circuits; AND, 
OR, and NOT elements; half-adder, adder, storage 
and delay elements; encoding-decoding logic; basic 
concepts of microprogramming; logical equivalence 
between hardware and software; elements of switch-
ing algebra; combinatorial and sequential networks. 

H3. Data Representation and Transfer: includes codes, 
number representation; flipflops, registers, gates. 

H4. Digital Arithmetic: includes serial versus parallel ad-
ders; subtraction and signed magnitude versus com-
plemented arithmetic; multiply/divide algorithms; 
elementary speed-up techniques for arithmetic. 

H5. Digital Storage and Accessing: includes memory 
control; data and address buses; addressing and 
accessing methods; memory segmentation; data flow 
in multimemory and hierarchical systems. 

H6. Control and I / O : includes synchronous and asyn-
chronous control; interrupts; modes of communi-
cation with processors. 

H7. Reliability: includes error detection and correction, 
diagnostics. 

Data Structures and File Processing 
D l . Data-Structures: includes arrays, strings, stacks, 

queues, linked lists; representation in memory; algo-
rithms for manipulating data within these structures. 

D2. Sorting and searching: includes algorithms for in-
core sorting and searching methods; comparative 
efficiency of methods; table lookup techniques; hash 
coding. 

D3. Trees: includes basic terminology and types; repre-
sentation as binary trees; traversal schemes; repre-
sentation in memory; breadth-first and depth-first 
search techniques; threading. 

D4. File Terminology: includes record, file, blocking, 
database; overall idea of database management sys-
tems. 

D5. Sequential Access: includes physical characteristics 
of appropriate storage media; sort/merge algo-
rithms; file manipulation techniques for updating, 
deleting, and inserting records. 

D6. Random Access: includes physical characteristics of 
appropriate storage media; physical representation 
of data structures on storage devices; algorithms and 
techniques for implementing inverted lists, multi-
lists, indexed sequential, hierarchical structures. 

D7. File I / O : includes file control systems (directory, 
allocation, file control table, file security); I / O spec-
ification statements for allocating space and catalog-
ing files; file utility routines; data handling (format 
definition, block buffering, buffer pools, compac-
tion). 

2.4 Implementation Considerations 
Throughout the presentation of the elementary level 

material, programming projects should be assigned; these 
projects should be designed to aid in the comprehension 
and use of language details, to exemplify the problem 
solving process, and/or to introduce more advanced 
areas of computer science. 

Good programming style should be stressed in the 
teaching of all of this material. The discipline required 
to achieve style will promote the development of effec-
tive algorithms and should result in students writing cor-
rect, understandable programs. Thus emphasis in the 
programming exercises should be placed on efficient 
algorithms, structured programming techniques, and 
good documentation. 

A specific course on structured programming, or on 
programming style, is not intended at the elementary 
level. The topics are of such importance that they should 
be considered a common thread throughout the entire 
curriculum and, as such, should be totally integrated into 
the curriculum. They provide a philosophy of discipline 
which pervades all of the course work. 

Throughout the presentation of this elementary ma-
terial, meaningful actual computer applications should 
be cited and reviewed. In the process of so doing, refer-
ence must be made to the social, philosophical, and ethi-
cal considerations involved in the applications. Like 
structured programming, these issues are of such import-
ance to the development of the computer scientist that 
they must permeate the instruction at this level. 

It would be desirable, though not necessary, for the 

122 



computer science major to be familiar with all of the ele-
mentary level topics before taking intermediate level 
courses. This, however, may not always be possible. Fac-
tors influencing how and when courses are offered which 
include the material are: the purpose and circumstances 
of a particular department within the context of its edu-
cational institution, the availability of computer re-
sources, and whether an institution is on the quarter or 
semester system. 

Most courses at this level should include laboratory 
sessions. These laboratories provide the student with the 
opportunity to gain practical experience by actually solv-
ing problems on the computer. Laboratory sessions 
should be implemented in such a way that the student 
can develop good programming techniques under close 
supervision. The instructor may or may not be the same 
as for the lecture portion of the course. The absence of 
a specific laboratory in a course description does not im-
ply that programming should not be required. 

2.5 Sample Elementary Level Courses 
The following set of courses is provided merely as a 

sample to illustrate one of the ways in which core mate-
rial at the elementary level might be presented. Other 
implementations are possible. No matter what implemen-
tation is attempted, however, all of the elementary mate-
rial specified in Section 2.3 should be included so that 
students are equipped with adequate background for in-
termediate and advanced level material. 

Each course described in the sample set is assumed 
to be offered on a semester basis. Suggested numbers of 
hours of credit are given in parentheses immediately after 
the course titles. For example, (2-2-3) indicates two 
hours of lectures and two hours of laboratory per week 
for a total of three semester hours of credit. 

CS 1. Computer Programming I (2-2-3) 
The objectives of this course are: 

(a) to introduce problem solving methods and algorithm 
development; 
(b) to teach a high level programming language that is 
widely used; and 
(c) to teach how to design, code, debug, and document 
programs using techniques of good programming style. 
COURSE O U T L I N E 

The material on a high level programming language 
and on algorithm development can be taught best as an 
integrated whole. Thus the topics should not be covered 
sequentially. The emphasis of the course is on the tech-
niques of algorithm development and programming with 
style. "Neither esoteric features of a programming lan-
guage nor other aspects of computers should be allowed 
to interfere with that purpose. 
TOPICS 

A. Computer Organization. An overview identifying 
components and their functions, machine and assem-
bly languages. ( 5 % ) 

B. Programming Language and Programming. Repre-
sentation of integers, reals, characters, instructions. 
Data types, constants, variables. Arithmetic expres-
sion. Assignment statement. Logical expression. Se-
quencing, alternation, and iteration. Arrays. Subpro-
grams and parameters. Simple I /O . Programming 
projects utilizing concepts and emphasizing good 
programming style . ( 4 5 % ) 

C. Algorithm Development. Techniques of problem 
solving. Flowcharting. Stepwise refinement. Simple 
numerical examples. Algorithms for searching (e.g. 
linear, binary), sorting (e.g. exchange, insertion), 
merging of ordered lists. Examples taken from such 
areas as business applications involving data manip-
ulation, and simulations involving games. (45% ) 

D. Examinations. ( 5 % ) 

CS 2. Computer Programming II (2-2-3) 
Prerequisite: CS 1 

The objectives of this course are: 
(a) to continue the development of discipline in program 
design, in style and expression, in debugging and testing, 
especially for larger programs; 
(b) to introduce algorithmic analysis; and 
(c) to introduce basic aspects of string processing, recur-
sion, internal search/sort methods and simple data struc-
tures. 
COURSE O U T L I N E 

The topics in this outline should be introduced as 
needed in the context of one or more projects involving 
larger programs. The instructor may choose to begin with 
the statement of a sizeable project, then utilize structured 
programming techniques to develop a number of small 
projects each of which involves string processing, recur-
sion, searching and sorting, or data structures. The em-
phasis on good programming style, expression, and doc-
umentation, begun in CS 1, should be continued. In order 
to do this effectively, it may be necessary to introduce a 
second language (especially if a language like Fortran is 
used in CS 1). In that case, details of the language should 
be included in the outline. Analysis of algorithms should 
be introduced, but at this level such analysis should be 
given by the instructor to the student. 

Consideration should be given to the implementation 
of programming projects by organizing students into 
programming teams. This technique is essential in ad-
vanced level courses and should be attempted as early as 
possible in the curriculum. If large class size makes such 
an approach impractical, every effort should be made to 
have each student's programs read and critiqued by an-
other student. 
TOPICS 

A. Review. Principles of good programming style, ex-
pression, and documentation. Details of a second lan-
guage if appropriate. ( 1 5 % ) 

B. Structured Programming Concepts. Control flow. In-
variant relation of a loop. Stepwise refinement of 

123 



both statements and data structures, or top-down 
programming. ( 4 0 % ) 

C. Debugging and Testing. ( 1 0 % ) 
D. String Processing. Concatenation. Substrings. Match-

ing. ( 5 % ) 
E. Internal Searching and Sorting. Methods such as bi-

nary, radix, Shell, quicksort, merge sort. Hash cod-
ing. ( 1 0 % ) 

F. Data Structures. Linear allocation (e.g. stacks, 
queues, deques) and linked allocation (e.g. simple 
linked lists). ( 1 0 % ) 

G. Recursion. ( 5 % ) 
H. Examinations. ( 5 % ) 

CS 3. Introduction to Computer Systems (2-2-3) 
Prerequisite: CS 2 

The objectives of this course are: 
(a) to provide basic concepts of computer systems; 
(b) to introduce computer architecture; and 
(c) to teach an assembly language. 
COURSE O U T L I N E 

The extent to which each topic is discussed and the 
ordering of topics depends on the facilities available and 
the nature and orientation of CS 4 described below. 
Enough assembly language details should be covered 
and projects assigned so that the student gains experience 
in programming a specific computer. However, concepts 
and techniques that apply to a broad range of computers 
should be emphasized. Programming methods that are 
developed in CS 1 and CS 2 should also be utilized in 
this course. 
TOPICS 

A. Computer Structure and Machine Language. Mem-
ory, control, processing and I / O units. Registers, 
principal machine instruction types and their formats. 
Character representation. Program control. Fetch-
execute cycle. Timing. I / O operations. (15% ) 

B. Assembly Language. Mnemonic operations. Sym-
bolic addresses. Assembler concepts and instruction 
format. Data-word definition. Literals. Location 
counter. Error flags and messages. Implementation 
of high level language constructs. (30% ) 

C. Addressing Techniques. Indexing. Indirect Address-
ing. Absolute and relative addressing. ( 5 % ) 

D. Macros. Definition. Call. Parameters. Expansion. 
Nesting. Conditional assembly. (10% ) 

E. File I/O. Basic physical characteristics of I / O and 
auxiliary storage devices. File control system. I / O 
specification statements and device handlers. Data 
handling, including buffering and blocking. (5% ) 

F. Program Segmentation and Linkage. Subroutines. 
Coroutines. Recursive and re-entrant routines. 
(20%) 

G. Assembler Construction. One-pass and two-pass as-
semblers. Relocation. Relocatable loaders. (5% ) 

H. Interpretive Routines. Simulators. Trace. (5% ) 
I. Examinations. ( 5 % ) 

CS 4. Introduction to Computer Organization 
(3-0-3) or (2-2-3) 
Prerequisite: CS 2 

The objectives of this course are: 
(a) to introduce the organization and structuring of the 
major hardware components of computers; 
(b) to understand the mechanics of information transfer 
and control within a digital computer system; and 
(c) to provide the fundamentals of logic design. 
COURSE O U T I . I N E 

The three main categories in the outline, namely 
computer architecture, arithmetic, and basic logic de-
sign, should be interwoven throughout the course rather 
than taught sequentially. The first two of these areas, may 
be covered, at least in part, in CS 3 and the amount of 
material included in this course will depend on how the 
topics are divided between the two courses. The logic 
design part of the outline is specific and essential to this 
course. The functional, logic design level is emphasized 
rather than circuit details which are more appropriate in 
engineering curricula. The functional level provides the 
student with an understanding of the mechanics of in-
formation transfer and control within the computer sys-
tem. Although much of the course material can and 
should be presented in a form that is independent of any 
particular technology, it is recommended that an actual, 
simple minicomputer or microcomputer system be stud-
ied. A supplemental laboratory is appropriate for that 
purpose. 
TOPICS 

A. Basic Logic Design. Representation of both data and 
control information by digital (binary) signals. Logic 
properties of elemental devices for processing (gates) 
and storing (flipflops) information. Description by 
truth tables, Boolean functions and timing diagrams. 
Analysis and synthesis of combinatorial networks of 
commonly used gate types. Parallel and serial regis-
ters. Analysis and synthesis of simple synchronous 
control mechanisms; data and address buses; ad-
dressing and accessing methods; memory segmenta-
tion. Practical methods of timing pulse generation. 
( 2 5 % ) 

B. Coding. Commonly used codes (e.g. BCD, ASCII) . 
Parity generation and detection. Encoders, decoders, 
code converters. ( 5 % ) 

C. Number Representation and Arithmetic. Binary 
number representation, unsigned addition and sub-
traction. One's and two's complement, signed mag-
nitude and excess radix number representations and 
their pros and cons for implementing elementary 
arithmetic for BCD and excess-3 representations. 
(10%) 

D. Computer Architecture. Functions of, and communi-
cation between, large-scale components of a com-
puter system. Hardware implementation and se-
quencing of instruction fetch, address construction, 
and instruction execution. Data flow and control 

124 



block diagrams of a simple processor. Concept of 
microprogram and analogy with software. Properties 
of simple I / O devices and their controllers, synchro-
nous control, interrupts. Modes of communications 
with processors. ( 3 5 % ) 

E. Example. Study of an actual, simple minicomputer 
or microcomputer system. ( 2 0 % ) 

F. Examinations. (5% ) 

CS 5. Introduction to File Processing (3-0-3) 
Prerequisite: CS 2 

The objectives of this course are: 
(a) to introduce concepts and techniques of structuring 
data on bulk storage devices; 
(b) to provide experience in the use of bulk storage de-
vices; and 
(c) to provide the foundation for applications of data 
structures and file processing techniques. 
COURSE O U T L I N E 

The emphasis given to topics in this outline will vary 
depending on the computer facilities available to stu-
dents. Programming projects should be assigned to give 
students experience in file processing. Characteristics 
and utilization of a variety of storage devices should be 
covered even though some of the devices are not part of 
the computer system that is used. Algorithmic analysis 
and programming techniques developed in CS 2 should 
be utilized. 
TOPICS 

A. File Processing Environment. Definitions of record, 
file, blocking, compaction, database. Overview of 
database management system. (5% ) 

B. Sequential Access. Physical characteristics of sequen-
tial media (tape, cards, etc.). External sort/merge 
algorithms. File manipulation techniques for updat-
ing, deleting and inserting records in sequential files. 
( 3 0 % ) 

C. Data Structures. Algorithms for manipulating linked 
lists. Binary, B-trees, B*-trees, and AVL trees. Algo-
rithms for traversing and balancing trees. Basic con-
cepts of networks (plex structures). (20% ) 

D. Random Access. Physical characteristics of disk/ 
drum and other bulk storage devices. Physical repre-
sentation of data structure on storage devices. Algo-
rithms and techniques for implementing inverted 
lists, multilist, indexed sequential, and hierarchical 
structures. ( 3 5 % ) 

E. File I/O. File control systems and utility routines, 
I /O specification statements for allocating space and 
cataloging files. ( 5 % ) 

F. Examinations. (5%) 

2.6 Sample Intermediate Level Courses 
Sample versions of three courses at the intermediate 

level are given to illustrate topics and material which 
should be required of all computer science majors. This 
material and the elementary level topics in Section 2.3 

constitute the minimum requirements which should be 
common to all computer science undergraduate pro-
grams to achieve the basic objectives of those programs. 

Courses which cover the intermediate level material 
contain a strong emphasis on fundamental concepts ex-
emplified by various types of programming languages, 
architecture and operating systems, and data structures. 
Neither theoretical treatments nor case study approaches 
in and of themselves are adequate or appropriate at this 
level. Advanced level (elective) courses may be used for 
predominantly theoretical treatment of topics or for com-
prehensive case studies. 

CS 6. Operating Systems and Computer 
Architecture I (2-2-3) 
Prerequisite: CS 3 and CS 4 

(CS 5 recommended) 
The objectives of this course are: 

(a) to develop an understanding of the organization and 
architecture of computer systems at the register-transfer 
and programming levels of system description; 
(b) to introduce the major concept areas of operating sys-
tems principles; 
(c) to teach the inter-relationships between the operating 
system and the architecture of computer systems. 
COURSE O U T L I N E 

This course should emphasize concepts rather than 
case studies. Subtleties do exist, however, in operating 
systems that do not readily follow from concepts alone. 
It is recommended that a laboratory requiring hands on 
experience be included with this course. 

The laboratory for the course would ideally use a 
small computer where students could actually implement 
sections of operating systems and have them fail without 
serious consequences to other users. This system should 
have, at a minimum, a CPU, memory, disk or tape, and 
some terminal device such as a teletype or CRT. The 
second best choice for the laboratory experience would 
be a simulated system running on a larger machine. 

The course material should be liberally sprinkled 
with examples of operating system segments imple-
mented on particular computer system architectures. The 
interdependence of operating systems and architecture 
should be clearly delineated. Integrating these subjects 
at an early stage in the curriculum is particularly impor-
tant because the effects of computer architecture on sys-
tems software has long been recognized. Also, modern 
systems combine the design of operating systems and the 
architecture. 
TOPICS 

A. Review. Instruction sets. I / O and interrupt structure. 
Addressing schemes. Microprogramming. (10% ) 

B. Dynamic Procedure Activation. Procedure activation 
and deactivation on a stack, including dynamic stor-
age allocation, passing value and reference parame-
ters, establishing new local environments, addressing 
mechanisms for accessing parameters (e.g. displays, 

125 



relative addressing in the stack). Implementing non-
local references. Re-entrant programs. Implementa-
tion on register machines. ( 1 5 % ) 

C. System Structure. Design methodologies such as 
level, abstract data types, monitors, kernels, nuclei, 
networks of operating system modules. Proving cor-
rectness. ( 1 0 % ) 

D. Evaluation. Elementary queueing, network models 
of systems, bottlenecks, program behavior, and sta-
tistical analysis. ( 1 5 % ) 

E. Memory Management. Characteristics of the hier-
archy of storage media, virtual memory, paging, seg-
mentation. Policies and mechanisms for efficiency of 
mapping operations and storage utilization. Memory 
protection. Multiprogramming. Problems of auxil-
iary memory. ( 2 0 % ) 

F. Process Management. Asynchronous processes. Us-
ing interrupt hardware to trigger software procedure 
calls. Process stateword and automatic SWITCH in-
structions. Semaphores. Ready lists. Implementing 
a simple scheduler. Examples of process control 
problems such as deadlock, producer/consumers, 
readers/writers. ( 2 0 % ) 

G. Recovery Procedures. Techniques of automatic and 
manual recovery in the event of system failures. (5 %) 

H. Examinations. (5%) 

CS 7. Data Structures and Algorithm Analysis 
(3-0-3) 
Prerequisite: CS 5 

The objectives of this course are: 
(a) to apply analysis and design techniques to nonnu-
meric algorithms which act on data structures; 
(b) to utilize algorithmic analysis and design criteria in 
the selection of methods for data manipulation in the 
environment of a database management system. 
COURSE O U . L I N E 

The material in this outline could be covered sequen-
tially in a course. It is designed to build on the founda-
tion established in the elementary material, particularly 
on that material which involves algorithm development 
(PI, P3) and data structures and file processing ( D l , 
D7) . The practical approach in the earlier material 
should be made more rigorous in this course through the 
use of techniques for the analysis and design of efficient 
algorithms. The results of this more formal study should 
then be incorporated into data management system de-
sign decisions. This involves differentiating between theo-
retical or experimental results for individual methods 
and the results which might actually be achieved in sys-
tems which integrate a variety of methods and data struc-
tures. Thus, database management systems provide the 
applications environment for topics discussed in the 
course. 

Projects and assignments should involve implemen-
tation of theoretical results. This suggests an alternative 
way of covering the material in the course, namely to 

treat concepts, algorithms, and analysis in class and deal 
with their impact on system design in assignments. Of 
course, some in-class discussions of this impact would 
occur, but at various times throughout the course rather 
than concentrated at the end. 
TOPICS 

A. Review. Basic data structures such as stacks, queues, 
lists, trees. Algorithms for their implementation. 
(10%) 

B. Graphs. Definition, terminology, and property (e.g. 
connectivity). Algorithms for finding paths and span-
ning trees. ( 1 5 % ) 

C. Algorithms Design and Analysis. Basic techniques of 
design and analysis of efficient algorithms for internal 
and external sorting/merging/searching. Intuitive 
notions of complexity (e.g. NP-hard problems). 
( 3 0 % ) 

D. Memory Management. Hashing. Algorithms for dy-
namic storage allocation (e.g. buddy system, bound-
ary-tag ), garbage collection and compaction. ( 1 5 % ) 

E. System Design. Integration of data structures, sort / 
merge/search methods (internal and external) and 
memory media into a simple database management 
system. Accessing methods. Effects on run time, 
costs, efficiency. ( 2 5 % ) 

F. Examinations. (5% ) 

CS 8. Organization of Programming Languages 
(3-0-3) 
Prerequisite: CS 2 (CS 3 and CS 5 highly 

recommended) 
The objectives of this course are: 

(a) to develop an understanding of the organization of 
programming languages, especially the run-time behav-
ior of programs; 
(b) to introduce the formal study of programming lan-
guage specification and analysis; 
(c) to continue the development of problem solution and 
programming skills introduced in the elementary level 
material. 
COURSE O U T L I N E 

This is an applied course in programming language 
constructs emphasizing the run-time behavior of pro-
grams. It should provide appropriate background for 
advanced level courses involving formal and theoretical 
aspects of programming languages and/or the compila-
tion process. 

The material in this outline is not intended to be cov-
ered sequentially. Instead, programming languages could 
be specified and analyzed one at a time in terms of their 
features and limitations based on their run-time environ-
ments. Alternatively, desirable specification of program-
ming languages could be discussed and then exemplified 
by citing their implementations in various languages. In 
either case, programming exercises in each language 
should be assigned to emphasize the implementations of 
language features. 

126 



TOPICS 

A. Language Definition Structure. Formal language con-
cepts including syntax and basic characteristics of 
grammars, especially finite state, context-free, and 
ambiguous. Backus-Naur Form. A language such as 
Algol as an example. ( 1 5 % ) 

B. Data Types and Structures. Review of basic data 
types, including lists and trees. Constructs for speci-
fying and manipulating data types. Language fea-
tures affecting static and dynamic data storage man-
agement. ( 1 0 % ) 

C. Control Structures and Data Flow. Programming 
language constructs for specifying program control 
and data transfer, including DO . . . FOR, DO . . . 
WHILE, R E P E A T . . . UNTIL, BREAK, subrou-
tines, procedures, block structures, and interrupts. 
Decision tables, recursion. Relationship with good 
programming style should be emphasized. ( 1 5 % ) 

D. Run-time Consideration. The effects of the run-time 
environment and binding time on various features of 
programming languages. ( 2 5 % ) 

E. Interpretative Languages. Compilation vs. interpre-
tation. String processing with language features such 
as those available in SNOBOL 4. Vector processing 
with language features such as those available in 
APL. ( 2 0 % ) 

F. Lexical Analysis and Parsing. An introduction to 
lexical analysis including scanning, finite state ac-
ceptors and symbol tables. An introduction to pars-
ing and compilers including push-down acceptors, 
top-down and bottom-up parsing. (10%) 

G. Examinations. ( 5 % ) 

3. Computer Science Electives 

3.1 Introduction 
In this section a variety of computer science electives 

will be considered which are appropriate at the elemen-
tary and advanced levels. Elective courses at the elemen-
tary level, while enhancing the program of a student, 
normally should not be used to meet the requirements of 
the major program. Elective courses at the advanced 
level should be selected to meet major requirements as 
well as to allow the student to explore particular areas of 
computer science in more detail. 

3.2 Elementary Level 
At the elementary level it would be highly desirable to 

provide a mechanism for offering courses in specific pro-
gramming languages such as APL, Cobol, LISP, or P L / I 
which could be taken as electives by computer science 
majors or majors in other disciplines. The extent of the 
course, the number of credits offered and the prerequi-
sites would depend on the language offered and the pur-
pose for offering it. One convenient way to achieve this 
goal would be to include in the curriculum a Program-
ming Language Laboratory for variable credit (i.e. one 

to three semester hours). The prerequisite could be des-
ignated in general as "consent of instructor" or more 
specifically as CS 1 or CS 2 and the laboratory could be 
taken for repeated credit provided that different lan-
guages were taught. In addition to its function as an elec-
tive, the laboratory could be offered in conjunction with 
an intermediate or advanced course, thus enabling an 
instructor to require students to learn a specific language 
at the same time they take a course (e.g. LISP in the 
laboratory along with CS 7—Data Structures and Algo-
rithm Analysis). 

3.3 Advanced Level 
Ten advanced level elective courses are specified. 

Computer Science departments should offer as many as 
possible of these courses on a regular basis, but few de-
partments are expected to have sufficient resources to 
offer all, or even a large majority, of them. Possible addi-
tional courses which could be offered as special topics 
are listed in Section 3.4. 

CS 9. Computers and Society (3-0-3) 
Prerequisite: elementary core material 

The objectives of this course are: 
(a) to present concepts of social value and valuations; 
(b) to introduce models which describe the impact of 
computers on society; 
(c) to provide a framework for professional activity that 
involves explicit consideration of and decisions concern-
ing social impact; 
(d) to present tools and techniques which are applicable 
to problems posed by the social impact of computers. 

Much debate surrounds the role of this course in the 
curriculum. While few will disagree that professional 
computer scientists should be instructed to evaluate 
social issues regarding that which they do, it has been 
argued that such a course is not a computer science 
course, but rather should be in the area of the social sci-
ences. Another argument is presented which states that 
this material is so important that it should not merely be 
covered in a single course, but instead should be inte-
grated throughout the curriculum. Although this latter 
argument has validity, it is difficult to insure sufficient 
coverage of topics when they are scattered throughout 
a number of courses. As a result it is recommended that 
this course be considered at least as a strongly recom-
mended elective. If, in fact, the material to meet the 
above objectives is not covered in the other intermediate 
and advanced level courses in this program, then this 
course should be required. 

A computer science major taking an advanced level 
computers and society course would be expected to be 
familiar with the elementary material described in the 
previous section. All of that material, however, is not 
necessarily prerequisite for such a course. The prerequi-
site should, in fact, be chosen in such a manner that non-
majors would also be able to take the course. A mixture 
of majors in such a course would provide broadening 

127 



interchange and would benefit both the computer science 
students and the other majors. The course should be 
taught by the computer science faculty, but team-teach-
ing with faculty from other disciplines should be encour-
aged. The course could be general and treat a number of 
computer impact topics, or specific, and treat in depth 
one of the topics (such as legal issues in computing). This 
recommendation is conditioned on the assumption that 
instructors who present material on societal impact, 
whether as an entire course or as part of other courses, 
will try to include both sides of or approaches to issues 
without instilling their own philosophical leanings on 
complex societal issues. For example, certain topics con-
tain political overtones which should be discussed, but 
which, if not done carefully, can give the material a polit-
ical science flavor it does not deserve. 

A strict outline is not given. The number of topics 
and extent of coverage as well as the instructional tech-
niques used can vary considerably and still meet the ob-
jectives of the course. A term project involving computer 
applications that are manifested in the local community 
is strongly recommended. Possible topics, but certainly 
not an exhaustive list, that could be included in such a 
course are as follows: 
A. History of computing and technology 
B. The place of the computer in modern society 
C. The computer and the individual 
D. Survey of computer applications 
E. Legal issues 
F. Computers in decision-making processes 
G. The computer scientist as a professional 
H. Futurists'views of computing 
I. Public perception of computers and computer 

scientists 

CS 10. Operating Systems and Computer 
Architecture II (2-2-3) 
Prerequisite: CS 6; Corequisite: a course in 

statistics 
COURSE O U T L I N E 

This course continues the development of the mate-
rial in CS 6. Emphasis should be on intrasystem com-
munication. 
TOPICS 

A. Review. I / O and interrupt structure. Addressing 
schemes. Memory management. (10% ) 

B. Concurrent Processes. Concepts of processes in par-
allel. Problems associated with determinancy, free-
dom from deadlock, mutual exclusion, and synchro-
nization. ( 1 5 % ) 

C. Name Management. Limitations of linear address 
space. Implementation of tree-structured space of 
objects for the support of modular programming. 
( 1 5 % ) 

D. Resource Allocation. Queueing and network control 
policies. Concepts of system balancing and thrashing. 

Job activation/deactivation. Process scheduling. 
Multiprogramming systems. ( 2 5 % ) 

E. Protection. Contraints for accessing objects. Mech-
anism to specify and enforce access rules. Imple-
mentation in existing systems. ( 1 5 % ) 

F. Advanced Architecture and Operating Systems Im-
plementations. Pipelining and parallelism. User in-
terface considerations. Introduction to telecommuni-
cations, networks (including minicomputers) and 
distributed systems. ( 1 5 % ) 

G. Examinations. {5%) 

CS 11. Database Management Systems Design 
(3-0-3) 
Prerequisites: CS 6 and CS 7 

COURSE O U T L I N E 

This course should emphasize the concepts and struc-
tures necessary to design and implement a database man-
agement system. The student should become acquainted 
with current literature on the subject and should be given 
an opportunity to use a database management system if 
possible. 

During the course the student should gain an under-
standing of various physical file organization and data 
organization techniques. The concept of data models 
should be covered and the network, relational, and hier-
archical data models should be explored. Examples of 
specific database management systems should be ex-
amined and related to the data models discussed. The 
student should become familiar with normalized forms 
of data relations including canonical schema representa-
tions. Techniques of systems design and implementation 
should be discussed and practiced. Data integrity and file 
security techniques should be explored. The major ex-
perience of the course should be the design and imple-
mentation of a simple database management system that 
would include file security and some form of query into 
the system. 
TOPICS 

A . Introduction to Database Concepts. Goals of D B M S 

including data independence, relationships, logical 
and physical organizations, schema and subschema. 
( 5 % ) 

B. Data Models. Hierarchical, network, and relational 
models with a description of the logical and data 
structure representation of the database system. Ex-
amples of implementations of the various models. 
( 1 5 % ) 

C. Data Normalization. First, second, and third normal 
forms of data relations. Canonical schema. Data in-
dependence. ( 5 % ) 

D. Data Description Languages. Forms, applications, 
examples, design strategies. (10% ) 

E. Query Facilities. Relational algebra, relational cal-
culus, data structures for establishing relations. 
Query functions. Design and translation strategies. 
( 1 5 % ) 

128 



F. File Organization. Storage hierarchies, data struc-
tures, multiple key systems, indexed files, hashing. 
Physical characteristics. ( 2 5 % ) 

G. Index Organization. Relation to files. Inverted file 
systems. Design strategies. ( 5 % ) 

H. File Security. Authentication, authorization, trans- • 
formation, encryptions. Hardware and software tech-
niques. Design strategies. ( 1 0 % ) 

I. Data Integrity and Reliability. Redundancy, recov-
ery, locking, and monitoring. (5% ) 

J. Examinations. ( 5 % ) 

CS 12. Artificial Intelligence (3-0-3) 
Prerequisite: CS 7 

COURSE O U T L I N E 

This course introduces students to basic concepts 
and techniques of artificial intelligence, or intelligent sys-
tems, and gives insights into active research areas and 
applications. Emphasis is placed on representation as a 
central and necessary concept for work in intelligent sys-
tems. Strategies for choosing representations as well as 
notational systems and structures should be discussed. 
Students should understand, for example, that the selec-
tion of a programming language is really a basic repre-
sentational choice and that an important component of 
that choice is whether the programming language is 
really the basic representational mode or whether it is a 
translator/interpreter of an intermediate representa-
tional mode such as the predicate calculus or other nota-
tional system (e.g. modal or fuzzy logics). 

Other issues of importance in this course are natural 
language, vision systems, search strategies, and control. 
The extent and type of coverage will vary. The use of 
natural language and vision systems in applications of 
intelligent systems research to other disciplines should 
be emphasized. Search strategies should be seen as be-
ing implicit in representation and control. General issues 
related to control should be discussed and illustrated by 
examples of existing systems. A variety of applications 
could be mentioned at the beginning of the course as 
motivation for studying intelligent systems. These appli-
cations could then be elaborated on at appropriate times 
throughout the course or at the end. 

Students could profit from a background in LISP be-
cause of its widespread use in artificial intelligence work. 
A Programming Language Laboratory as described in 
Section 3.2 could be used to provide this background 
either concurrently or with CS 7. If neither alternative is 
possible, then an introduction to LISP could be included 
in the course during the discussion of representation, but 
there would not be enough time for an in-depth treatment 
of the language. 
TOPICS 

A. Representation. Constraints and capabilities of nota-
tional systems such as logics and programming lan-
guages. Notational structures such as trees, networks, 
statistical representations, and frames. Strategies for 

choosing representations (e.g. exploiting natural con-
straints in data, representation of similar patterns as 
in analogies). Introduction to LISP. ( 4 0 % ) 

B. Search Strategies. Tree and graph searches (e.g. depth 
and breadth first, minimax, alpha-beta). Heuristics. 
( 1 5 % ) 

C. Control. General characteristics of production and 
procedurally oriented systems. Parallel vs. serial 
processing. Existing systems to illustrate issues (e.g. 
HEARSAY II, DENDRAL, MYCIN) . (20% ) 

D. Communication and Perception. Introduction to 
concepts related to current research in natural lan-
guage and in vision systems. Use of tactility in intel-
ligent systems. ( 1 0 % ) 

E. Applications. Sampling of current work in such areas 
as psychology, medicine, science, architecture, and 
such machines as industrial robots. (10% ) 

F. Examinations. ( 5 % ) 

CS 13. Algorithms (3-0-3) 
Prerequisites: CS 7 and CS 8 

COURSE O U T L I N E 

This course should develop students' abilities as 
writers and critics of programs by exposing students to 
problems and their algorithmic solution. As program-
ming is both art and science, student programmers can 
benefit considerably from analysis of case studies in a 
wide variety of areas. All options for presenting algo-
rithms in a very high level language should be considered, 
without regard for whether a processor exists for that 
language. Translation of each algorithm to a more ma-
chine-readable form can be given separately, if necessary. 
Careful choice of the level of abstraction appropriate to 
a given problem should be made as a means of adjust-
ing students' load in the course. 

Domain independent techniques should emerge dur-
ing the course as algorithm-rich topics are presented 
from various areas. One convenient classification of top-
ics into areas to ensure breadth of coverage is: combina-
torics, numerical analysis, systems programming, and 
artificial intelligence. Algorithms from a majority of these 
areas should be analyzed, although not necessarily in the 
order indicated in the outline. The percentage ranges 
are intended to give instructors flexibility in choosing 
areas and topics. 
TOPICS 

A. Combinatorics. Algorithms for unordered and or-
dered sets, graphs, matrices (within the semi-ring 
paradigm), bit vectors. (10-25 % ) 

B. Numerical Analysis. Algorithms for integer arithme-
tic (fast multiplication, prime testing, sieves, factor-
ing, greatest common denominator, linear Diophan-
tine equations), real arithmetic (Taylor series, how 
various calculators work), polynomial arithmetic, 
random numbers, matrix operations (inversion, de-
terminants). (10 -25%) 

129 



C. Systems Programming. Algorithms in text processors 
(pattern matching)^ language processors (parsing, 
storage management), operating systems (schedul-
ing, syncivro'nization), database management (sort-
ing, searching). ( 10 -25%) 

D. Artificial Intelligence. Algorithms in natural language 
processing (concordances, context-free parsers), ro-
botics (vision, manipulator operation), theorem prov-
ing and problem solving (decision methods, search 
heuristics). ( 10 -25%) 

E. Domain Independent Techniques. Divide-and-con-
quer. Solution of recurrence equations. Dynamic 
programming. ( 1 5 % ) 

F. Examinations. (5 % ) 

CS 14. Software Design and Development 
(3-0-3) or (2-2-3) 
Prerequisites: CS 7 and CS 8 

COURSE O U T L I N E 

This course presents a formal approach to state-of-
the-art techniques in software design and development 
and provides a means for students to apply the tech-
niques. An integral part of the course is the involvement 
of students working in teams in the organization, man-
agement, and development of a large software project. 
The team project aspect can be facilitated either by 
scheduling separate laboratories or by using some of the 
lecture periods to discuss practical aspects of the team 
projects. 
TOPICS 

A. Design Techniques. Formal models of structured 
programming. Demonstrations of code reading and 
correctness. Stepwise refinement and reorganization. 
Segmentation. Top-down design and development. 
Information hiding. Iterative enhancement. Struc-
tured design. Strength and coupling measures. (50%) 

B. Organization and Management. Milestones and esti-
mating. Chief programmer teams. Program libraries. 
Walk-throughs. Documentation. ( 1 5 % ) 

C. Team Project. Organization, management, and de-
velopment of a large scale software project by stu-
dents working in teams. (30% ) 

D. Examinations. {5%) 

CS 15. Theory of Programming Languages (3-0-3) 
Prerequisite: CS 8 

COURSE O U T L I N E 

This is a course in the formal treatment of program-
ming language translation and compiler design concepts. 
Course material builds on the background established 
in CS 8, specifically on the introduction to lexical anal-
ysis, parsing, and compilers. Emphasis should be on the 
theoretical aspects of parsing context-free languages, 
translation specifications, and machine-independent code 
improvement. Programming projects to demonstrate var-
ious concepts are desirable, but extensive projects to 
write compilers, or major components of compilers, 

should be deferred to a special topics course on compiler 
writing. 
TOPICS 

A. Review. Grammars, languages, and their syntax and 
semantics. Concepts of parsing and ambiguity. BNF 
description of Algol. (15% ) 

B. Scanners. Finite state grammars and recognizers. 
Lexical scanners. Implementation of symbol tables. 
(20%) 

C. Parsers. Theory and examples of context-free lan-
guages and push-down automata (PDA) . Context-
free parsing techniques such as recursive descent, 
L L ( k ) , precedence, L R ( k ) , SLR (k ) . ( 4 0 % ) 

D. Translation. Techniques of machine-independent 
code generation and improvement. Inherited and 
synthesized attributes. Syntax directed translation 
schema. ( 2 0 % ) 

E. Examinations. ( 5 % ) • 

CS 16. Automata, Computability, and Formal 
Languages (3-0-3) 
Prerequisites: CS 8 and MA 4 (see Sect. 4.1) 

COURSE O U T L I N E 

This course offers a diverse sampling of the areas of 
theoretical computer science and their hierarchical inter-
connections. Basic results relating to formal models of 
computation should be introduced. Stress should be 
given to developing students' skills in understanding 
rigorous definitions in computing environments and in 
determining their logical consequences. In this regard 
strong emphasis should be placed on problem assign-
ments and their evaluations. 

Material need not be presented in the order specified, 
but it is important to give nearly equal emphasis among 
the major areas. Topics within each area can be covered 
in greater depth in appropriate special topics courses. 
TOPICS 

A. Finite State Concepts. Acceptors (including non-
determinism). Regular expressions. Closure proper-
ties. Sequential machines and finite state transducers. 
State minimization. ( 3 0 % ) 

B. Formal Grammars. Chomsky hierarchy grammars, 
pushdown acceptors and linear bounded automata. 
Closure properties and algorithms on grammars. 
( 3 5 % ) 

C. Computability and Turing Machines. Turing machine 
as acceptor and transducer. Universal machine. 
Computable and noncomputable functions. Halting 
problem. ( 3 0 % ) 

D. Examinations. ( 5 % ) 

CS 17. Numerical Mathematics: Analysis (3-0-3) 
Prerequisites: CS 1 and MA 5 

COURSE O U T L I N E 

This course with CS 18 forms a one-year introduc-
tion to numerical analysis. The courses are intended to 

130 



be independent of each other. Students should be ex-
pected not only to learn the basic algorithms of numeri-
cal computation, but also to understand the theoretical 
foundations of the algorithms and various problems re-
lated to the practical implementations of the algorithms. 
Thus each topic implies a discussion of the algorithm, 
the related theory, and the benefits, disadvantages, and 
pitfalls associated with the method. Programming assign-
ments should be given to illustrate solutions of realistic 
problems rather than just the coding of various algo-
rithms. Topics such as convergence and error analysis 
for specific algorithms should be treated in a theoretical 
manner. Floating point arithmetic and use of mathe-
matical subroutine packages are included in both courses 
because they should be discussed throughout the courses 
as they relate to specific problems. All other topics in 
each course should be covered sequentially. The depth 
to which topics are treated may vary, but most, if not all, 
topics should be discussed. 
TOPICS 

A. Floating Point Arithmetic. Basic concepts of floating 
point number systems. Implications of finite preci-
sion. Illustrations of errors due to roundoff. ( 1 5 % ) 

B. Use of Mathematical Subroutine Packages. (5% ) 
C. Interpolation. Finite difference calculus. Polynomial 

interpolation. Inverse interpolation. Spline interpola-
tion. ( 1 5 % ) 

D. Approximation. Uniform approximation. Discrete 
least-squares. Polynomial approximation. Fourier 
approximation. Chebyshev economization. ( 1 0 % ) 

E. Numerical Integration and Differentiation. Interpola-
tory numerical integration. Euler-McLauren sum 
formula. Gaussian quadrature. Adaptive integration. 
Fast Fourier transform. Richardson extrapolation 
and numerical differentiation. ( 1 5 % ) 

F. Solution of Nonlinear Equations. Bisection. Fixed 
point iteration. Newton's method. Secant method. 
Muller's method. Aitken's process. Rates of conver-
gence. Efficient evaluation of polynomials. Bair-
stow's method. ( 1 5 % ) 

G. Solution of Ordinary Differential Equations. Taylor 
series methods. Euler's method, with local and global 
error analysis. Runge-Kutta methods. Predictor-cor-
rector methods. Automatic error monitoring—change 
of step size and order. Stability. ( 2 0 % ) 

H. Examinations. (5%) 

CS 18. Numerical Mathematics: Linear Algebra 
(3-0-3) 
Prerequisites: CS 1 and MA 5 

COURSE O U T L I N E 

The same remarks apply to this course as to CS 17. 
TOPICS 

A. Floating Point Arithmetic. Basic concepts of float-
ing point number systems. Implications of finite pre-
cision. Illustrations of errors due to roundoff. (15%) 

B. Use of Mathematical Subroutine Packages. (5 % ) 
C. Direct Methods for Linear Systems of Equations. 

Gaussian elimination. Operational counts. Imple-
mentation, including pivoting and scaling. Direct fac-
torization methods. (20% ) 

D. Error Analysis and Norms. Vector norms and mat-
rix norms. Condition numbers and error estimates. 
Iterative improvement. ( 1 5 % ) 

E. Iterative Methods. Jacobi's method. Gauss-Seidel 
method. Acceleration of iterative methods. Overre-
laxation. ( 1 5 % ) 

F. Computation of Eigenvalues and Eigenvectors. Basic 
theorems. Error estimates. The power method. Ja-
cobi's method. Householder's method. ( 1 5 % ) 

G. Related Topics. Numerical solution of boundary 
value problems for ordinary differential equations. 
Solution of nonlinear systems of algebraic equations. 
Least-squares solution of overdetermined systems. 
(10%) 

H. Examinations. (5%) 

3.4 Special Topics 
The special topics courses should be offered when-

ever departmental resources are sufficient to do so. Thus 
content and prerequisites may vary each time they are 
offered because the available material is changing rapidly 
and different faculty members may have widely differing 
opinions of what should be included in a course. Most 
importantly, the material should be current and topical. 
In time, some of the material should be integrated into 
courses previously specified or may replace entire courses 
in the curriculum. Monitoring of this phase of the pro-
gram should be a continuing activity of individual de-
partments and C S . 

Examples of special topics courses include: 
A. Microcomputer Laboratory 
B. Minicomputer Laboratory 
C. Performance Evaluation 
D. Telecommunications/Networks/Distributed 

Systems 
E. Systems Simulation 
F. Advanced Systems Programming 
G. Graphics 
H. Compiler Writing Laboratory 
I. Structured Programming 
J. Topics in Automata Theory 
K. Topics in Computability 
L. Topics in Formal Language Theory 
M. Simulation and Modeling 

4. The Undergraduate Program 

4.1 Introduction 
Outlines of eighteen computer science courses are 

included in previous sections. Eight of the courses indi-
cate one of the ways in which the core material might be 
presented. Ten courses along with thirteen topics courses 

131 



Fig. 2. Recommended computer science and mathematics courses. 

illustrate the kind of elective material to be offered at an 
advanced level. 

The eighteen computer science courses are as fol-
lows : 
CS 1. Computer Programming I 
CS 2. Computer Programming II 
CS 3. Introduction to Computer Systems 
CS 4. Introduction to Computer Organization 
CS 5. Introduction to File Processing 
CS 6. Operating Systems and Computer 

Architecture I 
CS 7. Data Structures and Algorithm Analysis 
CS 8. Organization of Programming Languages 
CS 9. Computers and Society 
CS 10. Operating Systems and Computer 

Architecture II 
CS 11. Database Management Systems Design 
CS 12. Artificial Intelligence 
CS 13. Algorithms 
CS 14. Software Design and Development 
CS 15. Theory of Programming Languages 
CS 16. Automata, Computability, and Formal 

Languages 
CS 17. Numerical Mathematics: Analysis 
CS 18. Numerical Mathematics: Linear Algebra 

The structure of these courses is given in Figure 2. 
The following set of mathematics courses is included in 
the structure for completeness and because of its rele-
vance to an undergraduate program in computer science: 
MA 1. Introductory Calculus 
MA 2. Mathematical Analysis I 
MA 2A. Probability 
M A 3. Linear Algebra 
MA 4. Discrete Structures 
M A 5. Mathematical Analysis II 
MA 6. Probability and Statistics 

Their role and the extent to which they conform to 
the needs of a computer science major are discussed in 
Section 4.3. 

Solid and dashed lines represent, respectively, abso-
lute and recommended prerequisites. The shaded area 
depicts the core curriculum in computer science and re-
quired mathematics courses. . ' 

4.2 Computer Science Requirements and Electives 
The computer science major will consist of the eight 

courses of the core material plus four additional courses 
selected from the recommended computer science ad-
vanced electives with no more than two in any one spe-
cific subfield of the disciplines. Within the requirements 
for the four elective courses, the special topics courses 
specified in Section 3.4 should also be considered as pos-
sible electives for the major. 

It should be noted that as students proceed through 
the computer science portion of the program, they begin 
at a very practical level and as they progress the work 
becomes more conceptual and theoretical. At the junior 
level the program is strongly conceptual while in the 
senior year the program may be fully theoretical, or in-
volve a significant amount of theory supplemented with 
laboratory activities. 

4.3 Mathematics Requirements 
An understanding of and the capability to use a num-

ber of mathematical concepts and techniques are vitally 
important for a computer scientist. Analytical and alge-
braic techniques, logic, finite mathematics, aspects of 
linear algebra, combinatorics, graph theory, optimization 
methods, probability, and statistics are, in various ways, 
intimately associated with the development of computer 
science concepts and techniques. For example, probabil-
ity and statistics develop the required tools for measure-

132 



ment and evaluation of programs and systems, two 
important aspects of computer science. Analysis, as 
commonly contained in calculus courses, gives the math-
ematical bases for important concepts such as sets, rela-
tions, functions, limits, and convergence. Discrete struc-
tures provides the bases for semigroups, groups, trees, 
graphs, and combinatorics, all of which have applica-
tions in algorithms analysis and testing, as well as in data 
structure design. Thus mathematics requirements are in-
tegral to a computer science curriculum even though 
specific courses are not cited as prerequisites for most 
computer science courses. Unfortunately, the kind and 
amount of material needed from these areas for com-
puter science usually can only be obtained, if at all, from 
the regular courses offered by departments of mathe-
matics for their own majors. 

Ideally, computer science and mathematics depart-
ments should cooperate in developing courses concen-
trating on discrete mathematics which are appropriate to 
the needs of computer scientists. Such courses, however, 
if offered by mathematics departments, would substan-
tially increase their service course load and would con-
stitute a heavy additional commitment of their resources. 
On the other hand, these course offerings could consti-
tute an applied mathematics component which, in turn, 
might provide attractive alternatives for some mathe-
matics departments. Suitable computer oriented math-
ematics course offerings constitute an important topic 
which should be explored more thoroughly both on local 
(i.e. individual institutions) and national levels. Specific 
course recommendations, however, are outside the do-
main of this report. 

Until such time as suitable courses become readily 
available, it will be necessary to rely on the most com-
monly offered mathematics courses for the mathematical 
background needed by computer science majors. One 
set of such courses was recommended in 1965 by the 
Committee on Undergraduate Programs in Mathematics 
(CUPM) of the Mathematical Association of America. 
Courses MA. 1, 2, 2A, 3, 5, and 6 in the structure in-
cluded in Section 4.1 are intended to be CUPM recom-
mended courses. Details on course contents can be found 
in the CUPM report [5], 

MA 4 represents a more advanced course in discrete 
structures than that given in "Curriculum '68". The 
course will build on concepts developed by the study of 
calculus and linear algebra and will emphasize applica-
tions of discrete mathematics to computer science. In 
particular, if techniques in probability are not included 
in an earlier course, some emphasis should be given to 
them in this course. A number of examples of suitable 
outlines for this course have appeared in the literature, 
primarily in the SIGCSE Bulletin [6, 7, 8, 9, 10], 

If courses of the type cited above are the only kind 
of mathematics courses available, then MA 1, MA 2, 
MA 2A, MA 3, and MA 4 should be required of all 
computer science majors. In addition, MA 5 or MA 6 
may be required depending on which advanced level 

computer science electives are selected. If more appro-
priate courses are provided as a result of interaction be-
tween computer science and mathematics departments, 
then the specification of required mathematics courses 
and the prerequisite structure should be reconsidered. 

4.4 Other Requirements and Electives 
As specified in this report, the minimum require-

ments are 36 semester hours in computer science and 15 
semester hours in mathematics. This is certainly less than 
half of the required hours of a typical undergraduate de-
gree program. 

Additional requirements and electives will vary with 
the requirements of the individual institutions and hence 
only the most general of recommendations can be given. 

It is certainly recognized that writing and communi-
cation skills must be emphasized throughout the pro-
gram. This must be accomplished by requiring appropri-
ate courses in the humanities, and also by emphasis on 
these skills in the courses within the computer science 
program itself. Surveys of employers stress the need for 
these skills as a requirement for employment. 

Science and engineering departments represent fruit-
ful areas for support of a computer science program. For 
those institutions with access to an engineering program, 
courses such as switching circuits and digital logic should 
be utilized. Within the science departments, a number of 
options are available to meet general university require-
ments. In addition to courses in fields such as physics, it 
should be noted that the increasing emphasis on comput-
ing in the biological and environmental sciences offers 
additional options for students. 

A large portion of the job market involves work in 
business oriented computer fields. As a result, in those 
cases where there is a business school or related depart-
ment, it would be most appropriate to take courses in 
which one could learn the technology and techniques 
appropriate to this field. For those students choosing this 
path, business courses develop the background necessary 
to function in the business environment. 

The general university requirements in the social 
sciences, with careful advising, will generally be ade-
quate, although it should be recognized that increasing 
use of computers in these fields may make it appropriate 
for some students to devise a minor in such an area if 
that is within their interests. 

In consideration of this entire area of general re-
quirements and electives, it must be recognized that a 
person who is going into the computer job market at the 
bachelor's level will, in all likelihood, initially be a sys-
tems, scientific, engineering, or business programmer. As 
a result, the student is well advised to work out a pro-
gram with an advisor that will provide a meaningful and 
thorough background in the area of the student's inter-
est. The general liberal arts requirements of the institu-
tion will give the necessary breadth to the program. A 
well developed concentration in an area other than com-

133 



puter science will put the student in a position to develop 
and grow in that area as well as in computer science. 

5. Service Courses 

5.1 Introduction 
There is a great need and demand for computer sci-

ence material by students who do not intend to major in 
computer science. Faculty of computer science depart-
ments must be willing to offer different courses for those 
students than for majors when that is appropriate. Service 
courses should be offered by computer science faculty 
rather than by faculty in other departments. This, of 
course, implies that the courses must be made appealing 
by providing appropriate computer science content in a 
manner that is attuned to the needs, levels, and back-
grounds of the students taking such courses. 

There is some possibility that certain courses can be 
team-taught by faculty from computer science and from 
one or more other disciplines, but it must be recognized 
that this approach is difficult. Heads of departments must 
make difficult decisions regarding how much of the de-
partment's teaching resources is to be used for majors 
and how much is to be used for students in other dis-
ciplines. In making these decisions, it is essential that 
the department and institution properly acknowledge 
and reward faculty who are working in this area, if the 
courses are to maintain a high level of excellence. 

A variety of service courses must be considered to 
satisfy the diverse needs of groups of students. Among 
the categories of undergraduate level courses are the fol-
lowing: (a) liberal arts or general university require-
ments; (b) supporting work for majors in other dis-
ciplines; and (c) continuing education. 

5.2 General Service Courses 
Students taking a course to satisfy a requirement 

such as a general university requirement may come from 
any discipline other than computer science. Some of the 
science, engineering, or mathematics oriented students 
may profit most by taking the same first course recom-
mended for computer science students (CS 1). This has 
an immediate advantage for students who become inter-
ested enough in computing to want additional computer 
science courses. They will have the prerequisite for the 
second (and subsequent) courses for the computer sci-
ence major. Those students who stop after one or two of 
these courses at least have excellent basic programming 
techniques to apply to computer oriented work in their 
discipline. 

Other students will require more specialized study 
than that listed in CS 1. For many of these students the 
courses listed in the section on elementary computer sci-
ence electives may be more appropriate. 

It must still be recognized that a different course (or 
courses) must be provided for majors in the fields men-
tioned above as well as for majors in business oriented 

fields, social sciences, education, and humanities. Service 
courses for these students normally should include a 
combination of computer appreciation, programming, 
applications, and societal impact. Different mixes of 
these broad areas should be considered for different 
groups, and the amount of each is best determined by 
each institution. Topics within each area should be as 
pertinent to the group served as possible, especially in 
the language chosen to illustrate programming. To meet 
this goal, feedback from students is important and com-
munication between computer science and other depart-
ments, including periodic review of the courses, is essen-
tial. The course should have no prerequisites and it 
should be made clear to the students that the course is 
not intended for those who want additional work in 
computer science. If local conditions warrant, the ma-
terial could be presented in two semesters rather than 
one. 

Though as indicated, full specification of such courses 
is impossible, an example can be given to illustrate the 
kind of course under consideration: 

CSS 1. Computer Applications and Impact (3-0-3) 
COURSE O U T L I N E 

A survey of computer applications in areas such as 
file management, gaming, CAI, process control, simula-
tion, and modeling. Impact of computers on individuals 
and society. Problem solving using computers with em-
phasis on analysis, formulation of algorithms, and pro-
gramming. Projects chosen from various application 
areas of student interest. 
TOPICS (percentages dependent on local situations) 
A. Computer Systems: Batch and interactive, real time, 

information management, networks. Description of 
each system, how it differs from the others, and kinds 
of applications for which each system is best suited. 

B. Databases: Establishment and use. Data definition 
and structures. 

C. Errors: Types, effects, handling. 
D. Social Implications: Human-machine interface. Pri-

vacy. Moral and legal issues. 
E. Future Social Impact: Checkless society. CAI. Na-

tional data banks. 
F. Languages: As appropriate, introduction to a busi-

ness oriented language, a symbol manipulation lan-
guage, and /or a procedure oriented language. Brief 
exposition of characteristics which make these lan-
guages appropriate for particular classes of problems. 

G. Concepts and Techniques Used in Solving Problems: 
Selected from appropriate application areas such as 
CAI, data management, gaming, information re-
trieval, and simulation. 

H. Projects and Examinations. 

5.3 Supporting Areas 
A number of students will choose computer science 

as a supporting (or minor) area. Various possibilities 

134 



for sets of courses should be available. One of the ways 
to achieve this by using the same courses as taken by a 
computer science major is to require courses CS 1 and 
CS 2; at least two of the courses CS 3, CS 4, CS 5; and at 
least two of the courses CS 6, CS 7, CS 8. Additional 
courses could then be taken as student interest and pro-
gram requirements would allow. Computer science fac-
ulty should communicate with faculty from other depart-
ments to determine the needs of the other departments 
and to indicate how certain courses or course combina-
tions might satisfy the needs. 

In those cases where existing courses are not appro-
priate as supporting work for other majors, new courses 
should be created, probably to be offered as upper divi-
sion level courses. Two alternatives for establishing sets 
of courses for use as supporting work are as follows: (a ) 
CS 1 and CS 2, one course combining material from CS 5 
and CS 7, and one course combining material f rom CS 3, 
CS 4, and CS 6; and (b ) CS 1 and CS 2, one course 
combining material f rom CS 3 and CS 5, and one course 
combining material f rom CS 4, CS 6, and CS 7. Alterna-
tive (a ) attempts to combine similar topics f rom differ-
ent levels while alternative (b ) attempts to combine 
different topics f rom similar levels. It should be recog-
nized that students who complete either of the latter two 
alternatives may not be well enough prepared to take a 
more advanced computer science course for which any 
of the courses CS 6, CS 7, or CS 8 are prerequisite. 

5.4 Continuing Education 
Continuing education is an area which has grown so 

rapidly and includes such a large variety of interests that 
it is virtually impossible to specify course possibilities. 
Nevertheless, computer science departments must ad-
dress the needs appropriate to their local situations. 
Some of the possibilities which should be considered are: 
(a) adult education courses, probably versions of the 
courses suggested to meet general university require-
ments; (b) professional development seminars, usually 
consisting of one day to several weeks devoted to a spe-
cific topical area (e.g. minicomputers, database manage-
ment systems); and (c) courses offered in the evenings 
or on weekends (on or off campus) , possibly regular 
course offerings or modifications of them primarily for 
employed persons who need to acquire or enhance their 
computer science background. The latter possibility 
would include full-scale baccalaureate or master's degree 
programs. 

6. Other Considerations 

6.1 Introduction 
Implementation of the computer science curriculum 

recommendations given in this report implies more than 
the development of a coherent program of courses. Ar-
ticulation with other educational institutions and with 
employers of graduates of such programs must be given 

serious attention, and a commitment must be made to 
provide and maintain these resources. In most cases, 
such commitments go well beyond the boundaries of 
computer science departments. 

Specific requirements involving such areas as staff, 
equipment, and articulation will vary among institutions 
depending on such things as size, location, capability, 
and mission of the school and program. As a result, 
specific recommendation in these areas cannot be given. 
However, in this section, general guidelines for imple-
mentation in these areas are discussed. 

6.2 Facilities 
In order to implement the full set of recommenda-

tions contained in this report, a wide range of computing 
facilities will be required. Equipment such as data entry 
devices, microcomputers, minicomputers, and medium 
or large-scale computer systems all play separate and 
important roles in the development of the computer 
scientist. 

Data entry devices such as card punches, teletype-
writers, and display terminals should be provided for 
program preparation and communication between stu-
dent and computer. Such equipment should be con-
veniently located and in a large enough area for both 
easy and convenient student access and use. This equip-
ment may be provided and maintained by the central 
computing facility at the institution for general student 
and faculty use, or, if enrollments in the computer sci-
ence program and demands for service warrant, the 
equipment may be located and maintained by the de-
partment with some restriction on the use by other de-
partments. To implement successfully an adequate pro-
gram that insures easy and ready access to such facilities, 
close cooperation and planning is necessary that will 
involve the computer science department, the computer 
center, and, perhaps, other departments which use these 
computer facilities. 

Microcomputers are quite desirable in teaching de-
tails of computer architecture previously only attainable 
by extensive programming of "hypothetical computers," 
simulators, or textbook discussions. They have provided 
a relatively inexpensive and highly versatile resource 
which can be used in a variety of ways including com-
bining several such units into reasonably sophisticated 
and powerful computer systems. Their use is becoming 
so widespread that in addition to using microcomputers 
in a systems course, under some circumstances, con-
sideration may be given to offering a laboratory course 
in which each student, or a group of students in the 
course, would purchase a suitable kit and construct a 
computer. 

The availability of one or more minicomputers in a 
department allows the students to obtain "hands-on" ex-
perience as well as the opportunity to utilize interactive 
systems and programming languages which may not be 
available, or practical, on a*medium or large-scale com-
puter system. This kind of equipment also allows the 

135 



student to work on software development projects, and 
other projects that might not be possible due to restric-
tions on the use of the central facility. It is desirable that 
the department maintain and schedule such minicom-
puter facilities in such a way that student usage and 
software development can proceed in an orderly fashion 
through laboratory course work and individual projects. 

A medium or large-scale computer, normally op-
erated and maintained as a central facility at the institu-
tion for use by all departments, should provide appropri-
ate hardware and software support for the major pro-
gram. Auxiliary memory is required in order to store 
files so that access methods specified in the core courses 
can be implemented and tested. Suitable input/output 
devices and system facilities are needed so that rapid 
turnaround of student jobs is possible, interactive com-
puting is available, and programming languages used in 
the curriculum are supported. 

Regardless of what specific items of computer equip-
ment are available to support a curriculum in computer 
science, effective teaching and research in the field re-
quire laboratory facilities. Computer science is in part 
an empirical science which involves implementing pro-
cedures as well as studying theoretically based processes. 
Because systems, algorithms, languages, and data struc-
tures are created, studied, and measured via combina-
tions of hardware and software, it is essential that ap-
propriate laboratory facilities be made available that are 
comparable to those necessary in the physical and bio-
logical sciences and engineering disciplines. This implies 
that appropriate laboratory facilities are available for 
student and faculty use, and may imply that additional 
laboratory space is required by certain faculty and stu-
dents for special purposes. The initial budgetary support 
for establishing these laboratories may be substantial, 
and continuing regular budgetary support is essential for 
successful implementation of a program. 

While we have thus far stressed the hardware facili-
ties necessary for the recommended curriculum, equal 
attention must also be given to software. In order for 
the student to master the material in the core and elec-
tive courses, sufficient higher level languages must be 
available. Additionally, special purpose systems such as 
statistical systems, database management systems, infor-
mation storage and retrieval systems, and simulation sys-
tems should be available for student use. It must be 
recognized in planning that many of these systems re-
quire a significant initial and continuing investment on 
the part of the institution. Where possible, fast turn-
around or interactive systems should be considered in 
order to provide as much access as possible for the 
student. 

In addition to the computer related facilities required 
for the recommended curriculum, there is also a require- -
ment for those resources of a university that are normally 
associated with any discipline. Adequate library facili-
ties, including significant holdings of periodicals are ab-

solutely necessary, and the implementor of this report 
is referred to the basic library list [4] for a basis of 
establishing a library collection to support the instruc-
tional program. 

While traditional library support is essential to the 
computer science program, it must be recognized that 
the field requires some additional resources that may 
not be necessary in other disciplines. Specifically, the 
student of computer science must have available, in some 
form, language, programming, and systems manuals as 
well as documentation for programs and other materials 
directly related to the development and use of systems. 
This material must be easily and conveniently available 
to the student at all times. 

6.3 Staff 
Insofar as it is possible, the vast majority of faculty 

members in departments offering the curriculum that has 
been recommended in this report should have their pri-
mary academic training in computer science. At the 
same time, it remains the case that demand exceeds sup-
ply for these individuals and it is often necessary, and 
in some cases desirable, to acquire faculty with degrees 
in other disciplines, but who have experience in com-
puting through teaching or employment in government, 
business, or industry. 

The size of the department will depend on available 
resources, required teaching loads, commitments to of-
fering service courses, and commitments to continuing 
education programs. Approximately six full-time equiva-
lent faculty members are necessary to offer a minimal 
program that would include the core courses as well as 
a selection of elective and service courses. Most of these 
faculty members should be capable of offering all of the 
core courses in addition to elective courses in their areas 
of specialization. Additional continuing instructional 
support may be available from the computer center, and 
from other departments such as mathematics which may 
offer numerical analysis or other applied mathematics 
courses that could be cross-listed by both departments. 
In addition, adjunct faculty from local government, busi-
ness, or industry are valuable additions in many cases. 
Such individuals are often able to bring a different per-
spective to the program; however, care must be taken 
to insure that the program does not become overly de-
pendent on individuals who may be unable to perform 
continuing service. 

Because of the rapid growth of this field, considera-
tion must be given to providing ongoing opportunities 
for faculty development, such as a sabbatical leave pro-
gram, opportunities to attend professional development 
seminars, and interchange programs with industry. 

A department which operates its own laboratory fa-
cilities should consider obtaining a full-time staff mem-
ber to maintain such systems, be responsible for neces-
sary documentation and languages, and coordinate other 
activities connected with the laboratory. Such a staff 

136 



member would provide continuity in the development of 
the laboratory resource. 

The field is still developing rapidly, and as was indi-
cated earlier, is at least in part empirical in nature. As a 
result faculty will be required to devote a great deal of 
time to course development, software development, de-
velopment of laboratory resources, and development of 
service offerings. To provide for continuing excellence 
in these areas, it "must be recognized that they are essen-
tial contributions to the program and profession, and as 
such should be considered within the context of the re-
ward structure of the institution. 

6.4 Articulation 
It is imperative that departments offering computer 

science programs keep in close contact with secondary 
schools, community and junior colleges, graduate 
schools, and prospective employers of their graduates. 
This requires a continuing, time consuming effort. Pri-
mary responsibility for this effort could be placed with 
one faculty member, whose teaching load should then 
be reduced. Experience has shown that person-to-person 
contact on a continuing basis is necessary for successful 
articulation. 

Usually, a central office in a four-year institution 
has direct contact with secondary schools. With comput-
ing becoming more prevalent at that level, however, it 
is highly useful and appropriate for a departmental rep-
resentative to maintain contact with those local second-
ary schools which offer, or desire to offer, courses in 
computing. 

Articulation agreements exist in many areas between 
four-year institutions and community and junior col-
leges. These agreements need to be updated frequently 
as programs or courses change, and personal contact 
between departments is necessary to keep abreast of 
these changes. Transfer programs in community and 
junior colleges are often geared to programs at four-year 
institutions. As a result, proposed changes in the four-
year program which influence transfer programs should 
be promulgated as soon as possible so that the com-
munity and junior colleges can incorporate such changes, 
thereby reducing the lag between programs to the bene-
fit of transfer students. 

Some of the graduates of the recommended program 
will continue academic work in computer science in 
graduate school, but most will seek employment upon 
graduation. Departments must be aware of the graduate 
school requirements so that their programs prepare stu-
dents adequately for advanced work in the field, but 
they must also maintain communication with employers 
in order to know what job requirements exist so that 
the faculty can advise students more effectively. Feed-
back from recent graduates of the program is quite use-
ful in this regard and should be encouraged as much as 
possible. In order to most effectively implement this 
aspect of the program, faculty members should have 

available to them graduate school brochures, Civil Serv-
ice Commission documents, and whatever else can come 
from personal contacts with employees in government 
and industry, as well as from the professional societies. 

References 
1. Curriculum Committee on Computer Science ( C ' S ) . Curric-
ulum '68, recommendations fo r academic programs in computer 
science. Comm. ACM 11, 3 (March 1968), 151-197. 
2. Austing, R.H., Barnes, B.H., and Engel, G.L. A survey of the 
literature in computer science education since Curr iculum '68. 
Comm. ACM 20, 1 (Jan. 1977), 13-21. 
3. Education Commit tee (Model Curr iculum Subcommittee) 
of the IEEE Computer Society. A curriculum in computer sci-
ence and engineering. Commit tee Report , I E E E Pub. EH0119-8, 
January 1977. 
4. Joint Commit tee of the A C M and the I E E E Computer 
Society. A library list on undergraduate computer science—com-
puter engineering and information systems. Commit tee Report, 
IEEE Pub. EH0131-3, 1978. 
5. Commit tee on the Undergraduate Program in Mathematics. 
A general curriculum in mathematics fo r colleges. Rep. to Math. 
Assoc. of America, C U P M , Berkeley, Calif., 1965. 
6. Special Interest Group on Computer Science Education. 
SIGCSE Bulletin, ( A C M ) J , 1 (Feb. 1973). 
7. Special Interest Group on Computer Science Education. 
SIGCSE Bulletin, (ACM) 6, 1 (Feb. 1974). 
8. Special Interest Group on Computer Science Education. 
SIGCSE Bulletin, ( A C M ) 7, 1 (Feb. 1975). 
9. Special Interest Group on Computer Science Education. 
SIGCSE Bulletin, ( A C M ) 8, 1 (Feb. 1976). 
10. Special Interest Group on Computer Science Education. 
SIGCSE Bulletin, ( A C M ) 8, 3 (Aug. 1976). 

Appendix 
Contributors to the C3S Report * 

Robert M. Aiken, University of Tennessee 
Michael A. Arbib, University of Massachusetts 
Julius A. Archibald, S U N Y at Plattsburgh 
William Atchison, University of Maryland 
Richard Austing, University of Maryland 
Bruce Barnes, National Science Foundat ion 
Victor R. Basili, University of Maryland 
Barry Bateman, Southern Illinois University 
Delia T. Bonnette, University of Southwestern Louisiana 
W.P. Buckley, Aluminum Company of America 
Frank Cable, Pennsylvania State University 
Gary Carlson, Brigham Young University 
B.F. Caviness, Rensselaer Polytechnic Institute 
Donald Chand, Georgia State University 
Sam Conte, Purdue University 
William Cot terman, Georgia State University 
Daniel Couger, University of Colorado 
John F. Dalphin, Indiana University—Purdue University at 

For t Wayne 
Gene Davenport , John Wiley and Sons 
Charles Davidson, University of Wisconsin 
Peter Denning, Purdue University 
Ed Desautels, University of Wisconsin 
Benjamin Diamant , IBM 
Karen A. Duncan, M I T R E Corporat ion 
Gerald Engel, Old Dominion University 
Michael Faiman, University of Illinois 
Patrick Fischer, Pennsylvania State University 
Arthur Fleck, University of Iowa 
John Gannon , University of Maryland 
Norman Gibbs, College of William and Mary 
Malcolm Gotterer , Florida International University 
David Gries, Cornell University 

(Appendix continued on next page) 

137 



(Appendix continued from preceding page) 
H.C. Gyllstrom, Univac 
Douglas H. Haden. New Mexico State University 
John W. Hamblen, University of Missouri-Rolla 
Preston Hammer , Grand Valley State Colleges 
Richard Hamming, Naval Postgraduate School 
Thomas R. Harbron, Anderson College 
Stephen Hedetniemi, University of Oregon 
Alex Hoffman, Texas Christian University 
Charles Hughes, University of Tennessee 
Lawrence Jehn, University of Dayton 
Karl Karlstrom, Prentice-Hall 
Thomas Keenan, National Science Foundation 
Sister M.K. Keller, Clarke College 
Douglas S. Kerr, The Ohio State University 
Rob Kling, University of California, Irvine 
Joyce C. Little, Communi ty College of Baltimore 
Donald Loveland, Duke University 
Robert Mathis, Old Dominion University 
Daniel McCracken, President, ACM 
Robert McNaughton, Rensselaer Polytechnic Institute 
M.A. Melkanoff, University of California. Los Angeles 
John Metzner, University of Missouri-Rolla 
Jack Minker, University of Maryland 
Howard Morgan, University of Pennsylvania 
Abbe Mowshowitz, University of British Columbia 
Michael Mulder, Bonneville Power Administration 

Anne E. Nieberding, Michigan State University 
James Ortega, North Carolina State University 
F.G. Pagan. Memorial University of Newfoundland 
John L. Pfaltz, University of Virginia 
James Powell, Nor th Carolina State University 
Vaughn Pratt. Massachusetts Institute of Technology 
Anthony Ralston. SUNY at Buffalo 
Jon Rickman, Northwest Missouri State College 
David Rine, Western Illinois University 
Jean Sammet, IBM 
John F. Schrage, Indiana University—Purdue University at 

Fort Wayne 
Earl Schweppe, University of Kansas 
Sally Y. Sedelow, University of Kansas 
Gary B. Shelly, Anaheim Publishing 
James Snyder. University of Illinois 
Theodor Sterling, Simon Fraser University 
Gordon Stokes, Brigham Young University 
Alan Tucker. SUNY at Stony Brook 
Ronald C. Turner , American Sign and Indicator Corporat ion 
Brian W. Unger, The University of Calgary 
James Vandergraf t , University of Maryland 
Peter Wegner. Brown University 
Patrick Winston. Massachusetts Institute of Technology 
Peter Worland, Gustavus Adolphus College 
Marshall Yovits, The Ohio State University 
Marvin Zelkowitz, University of Maryland 



Report 

Recommendations for Master's Level Programs 
in Computer Science 
A Report of the ACM Curriculum Committee on Computer Science 

Editors: Kenneth I. Magel, University of Missouri-Rolla 
Richard H. Austing, University of Maryland 
Alfs Berztiss, University of Pittsburgh 
Gerald L. Engel, Christopher Newport College 
John W. Hamblen, University of Missouri-Rolla 
A.A.J. Hoffmann, Texas Christian University 
Robert Mathis, Old Dominion University 

The ACM Committee on Curriculum in Computer 
Science has spent two years investigating master's de-
gree programs in Computer Science. This report contains 
the conclusions of that effort. Recommendations are 
made concerning the form, entrance requirements, pos-
sible courses, staffing levels, intent, library resources, 
and computing resources required for an academic, 
professional, or specialized master's degree. These rec-
ommendations specify minimum requirements which 
should be met by any master's programs. The Committee 
believes that the details of a particular master's program 
should be determined and continually updated by the 
faculty involved. A single or a small number of model 
programs are not as appropriate at the graduate level as 
at the bachelor's level. 

Key Words and Phrases: computer science courses, 
computer science curriculum, computer science educa-
tion, computer science graduate programs, master's pro-
grams. 

CR Categories: 1.52 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Contents 
1. Introduction 
2. The Need for Masters Programs 
3. Goals of Program 

3.1 Basic Intent 
3.2 Communication Skills 
3.3 Current Literature Level 
3.4 Professionalism 

4. Entrance Requirements 
4.1 Admission Requirements 
4.2 Prerequisites 

5. Program Organization 
5.1 "Course Work 
5.2 Culminating/Unifying Activity 
5.3 Seminar 
5.4 Thesis or Project 
5.5 Comprehensive Examination 

6. Resource Requirements 
6.1 Faculty 
6.2 Computing Equipment 
6.3 Library 

7. Specializations 
8. Conclusions 

Appendices 
A. Contributors 
B. Course Descriptions 

References 

139 



1.0 Introduction 

The Committee on Curriculum in Computer Science 
(C3S)* of the Association for Computing Machinery has 
within its charter the obligation to address computer 
science education at the baccalaureate level and above. 
The Committee intends that this document establish a 
basis for master's degree programs of substance while at 
the same time permitting sufficient flexibility to allow 
for adaptation to the objectives and resources of individ-
ual colleges and universities. A second objective of the 
report is to provide guidance to those institutions which 
have begun or are about to begin a master's program 
without specifying a rigid blueprint for the establishment 
of such programs. Finally, and perhaps most impor-
tantly, the Committee hopes this report will foster mean-
ingful interchange among computer science educators 
regarding instructional programs at the master's level. 

Graduate programs in computer science preceded the 
introduction of undergraduate programs, the earliest pro-
grams appearing in the early 1960s. "Curriculum '68" 
[5] concentrated on the definition and specification of 
undergraduate programs but did consider master's pro-
grams also. Specifically the following recommendation 
was given: 

The master's degree program in computer science should consist 
of at least nine courses. Normally at least two courses—each in a 
different subject area—should be taken from each of the following 
subject divisions of computer science: 

I. Information Structures and Processes 
II. Information Processing Systems 
III. Methodologies 

Sufficient other courses in computer science or related areas should 
be taken to bring the student to the forefront of some area of 
computer science [5, p. 163], 

The section on the master's curriculum concludes 
with the statement: 

This proposed program embodies sufficient flexibility to fulfill 
the requirements of either an "academic" degree obtained in 
preparation for further graduate study or a terminal "professional" 
degree. Until clearer standards both for computer science research 
and the computing profession have emerged, it seems unwise to 
attempt to distinguish more definitely between these two aspects 
of master's degree programs [5, p. 164). 

The Committee believes that the discipline has ma-
tured enough that we can now see this distinction be-
tween academic and professional programs beginning to 
appear. We reject, however, the concept of an utterly 
terminal program. In our view all programs should pro-
vide the possibility of additional study in the field. This 
report tries to establish the common aspects of master's 
programs in computer science and indicates possible 
differences and distinctions. 

Some attention was given to master's level programs 
by C3S following the publication of "Curriculum '68." 

* The Curriculum Committee on Computer Science (C3S) became a 
subcommittee of the Curriculum Committee on Computer Education 
in 1978. 

The results of this work were presented by Melkanoff [8] 
in 1973. Further work in this area was deferred, however, 
while work progressed on the new C3S recommendations 
at the undergraduate level. The new undergraduate rec-
ommendations were published as "Curriculum '78" in 
the March 1979 Communications of the ACM [2], 

In an independent effort, the ACM Curriculum Com-
mittee on Computer Education for Management (C3EM) 
(now the Subcommittee on Curriculum in Information 
Systems) developed guidelines for a master's program in 
Information Systems [1,9]. They clearly define a related 
professional degree program. The scope and extent of 
existing graduate programs in computer science have 
been recently surveyed [4, 7], 

2.0 The Need for Master's Programs 

The classical objective of academic master's pro-
grams is the preparation for study at the doctoral level, 
and this remains an important aspect of such programs. 
Different goals exist for professional programs, but we 
believe that all programs should prepare the student for 
study beyond the master's level. 

Among the objectives for students in master's pro-
grams is entry into the computer field at a relatively high 
level of responsibility and expertise. Computer Science 
is such a new and rapidly expanding field that individ-
uals entering with a master's degree in this field will 
almost immediately move to positions with great respon-
sibility. This, in turn, implies the requirement for an 
advanced level of prior training in both technical and 
related areas (e.g., communication skills). 

Many people already in the field desire additional 
training in computer science. These individuals may 
have undergraduate degrees in computer science and 
desire to advance; or they may have had considerable 
experience in computing, but little formal education in 
the field. While this latter group should be declining in 
number as more undergraduate computer science majors 
enter the job market, the demand does exist and will 
continue to do so in the foreseeable future. In addition, 
there will be a continuing need for individuals with a 
bachelor's degree in computer science to update their 
training. 

In all of these cases, the master's degree provides 
both motivation for the student and a standard for 
reward by the employer. 

The two-year colleges are offering a large number of 
courses in data processing and related topics. For most 
faculty positions in such institutions, a master's degree is 
a minimum requirement and a master's in computer 
science is an appropriate preparation. 

Increasingly, precollege instruction in computer sci-
ence is being offered. Consequently, there is a need for 
a master's program to prepare individuals to teach com-
puter science at the precollege level. Further exploration 
of such a master's program should be done jointly by 

140 



this Committee and the ACM Subcommittee on Elemen-
tary and Secondary Education. 

Graduate enrollments in computer science, informa-
tion systems, and other related programs have grown 
steadily since their inception in the early 1960s. Even 
though growth rates are substantial, estimates of demand 
for personnel with graduate degrees in such programs 
far exceed the supply. During the 80s, the need for 
master's graduates is estimated to be approximately 
34,000 annually. During this same period, annual pro-
duction will only increase from about 3,000 to 4,000 [6], 

3.0 Goals 

3.1 Basic Intent 

The basic intention of a master's program in com-
puter science is to develop the student's critical profes-
sional thinking and intuition. The curriculum must be 
structured to provide a balanced mixture of learning 
experiences to make the graduate capable of sound 
professional decisions. As a result the graduate should 
be able to assume responsible positions in business, 
government, and education at the research, development, 
and planning levels. The program should also provide 
an excellent foundation for further formal training. 

The primary emphasis of the program should be on 
the concepts, theory, and practice of computer science. 
Students should have a broad understanding of the field. 
Techniques and methodologies of computer science 
should be discussed and used. Intensive education in 
specific areas of computer science and/or training in an 
application area is desirable. An academically oriented 
program will encourage students to develop and use 
abstract models. A professionally oriented program will 
encourage students to apply abstract models and com-
puter science concepts in practical situations. 

Academically oriented programs will tend to attract 
full-time students, and these students are generally ori-
ented toward further education and research. Students 
in professional programs are generally oriented toward 
careers in industry or government, and such programs 
are frequently designed to accommodate part-time stu-
dents. 

3.2 Communication Skills 
Computer scientists require special communication 

skills. They must be able to communicate with the rest 
of their organizations in understandable terms, both 
orally and in writing. They must be able to communicate 
with their co-workers, users of their computer systems, 
and other professionals who require computer expertise. 
They must be able to produce documentation for a 
complex computing system which is clear, concise, un-
ambiguous, and accurate. They must be able to produce 
well organized reports which clearly delineate objectives, 
method of solution, results, and conclusions for a com-
plex task. 

3.3 Current Literature-Level 
Graduates should be cognizant of the pertinent lit-

erature in their field of choice and be able to read, 
interpret, and use this material. They should find it a 
normal procedure to review current journals to keep 
abreast of new trends and ideas. They should be able to 
recognize and use techniques relevant to their present 
endeavors. 

3.4 Professionalism 
Since graduates could assume responsible positions 

in some organizations they should be able to function 
effectively as members of teams. They should possess 
qualities of leadership along with technical skills so as to 
effectively lead a group to the successful completion of 
a task. 

Master's students should take an active part in the 
activities of any local professional computer science or-
ganization which may exist. They should be aware of the 
societal impact of computing as incorporated in the 
ACM Code of Ethics [12], 

4.0 Entrance Requirements 

4.1 Admission Requirements 
The Graduate Record Examinations (GRE) Ad-

vanced Computer Science Test has been available since 
October 1976. Its purpose is to help graduate committees 
assess the qualifications of applicants with a bachelor's 
degree in Computer Science for advanced study in com-
puter science. The Advanced Test in Computer Science 
is one of a number of measures that might be used to 
evaluate a candidate for admission to the M.S. degree 
program. The verbal part of the G R E may help measure 
the communication skill level of applicants and the 
quantitative part is a good general indicator of numeric 
manipulation capabilities. 

A "B" average for the undergraduate degree is a 
common requirement for admission to graduate study. 
Some schools provide a "special" status for those who 
do not meet entrance requirements with subsequent re-
evaluation for admission to full status. 

4.2 Prerequisites 
The student entering a master's program ideally 

should have a B.S. in Computer Science or at least the 
material included in CS 1 through CS 8 of "Curriculum 
'78" [2] or SE-1 through SE-4 and CO-1 through CO-4 
of the IEEE Computer Society Model Curriculum [11], 
and mathematics through calculus, linear algebra, and 
one course in statistics. Course titles for CS 1 through 
CS 8 are given in Appendix B. Discrete structures, 
maturity in both abstract reasoning and the use of 
models, and one or more years of practical experience in 
computer science are desirable. Of course, the applicant 
must satisfy the general entrance requirements of the 
institution's graduate school or department. 

141 



Some schools may admit students who do not meet 
the entrance requirements listed above. These students 
will have to remove deficiencies early in their graduate 
studies. 

Removal of academic deficiencies might be through 
any or all of the following approaches: 

a. Require students to take specific existing under-
graduate courses for no credit toward the mas-
ter's degree; 

b. Establish special "immigration" courses that rap-
idly cover the material in the areas of deficiency; 
or 

c. Provide the students with self-study outlines in 
conjunction with appropriate proficiency exam-
inations. 

Any courses taken to remove deficiencies must be in 
addition to the program required for the master's degree. 

5.0 Program Organization 

5.1 Course Work 
Formal course work is provided to give the students 

a mixture of practical and theoretical work. Such courses 
will typically begin at a level in which the courses may 
be taken by advanced undergraduate students or grad-
uate students. 

The specific graduate courses which are offered re-
flect the expertise and judgment of the faculty involved. 
Graduate programs reflect their specific environments 
far more than do undergraduate programs. It is possible 
to envision several independent axes, e.g., software/hard-
ware, theory/practice, and numeric/nonnumeric com-
putation. Each department should determine where on 
each axis its program should be, consistent with available 
resources and expertise. These emphases should be re-
evaluated at least every three years. 

Nevertheless, the Committee believes all master's 
programs should have some aspects in common. Accord-
ingly, a list of possible courses is given below. Depart-
ments planning master's programs should start with this 
list. In preparing these course descriptions, the Commit-
tee drew on material from well-established master's de-
gree programs at 

Georgia Institute of Technology 
University of Illinois 
University of Maryland 
University of Missouri-Rolla 
Northwestern University 
University of North Carolina at Chapel Hill 
Ohio State University 
Purdue University 
Rutgers: The State University of New Jersey 
Stanford Unversity 
The University of Texas at Austin [13], 

Computer Science is a rapidly changing field. The 
courses listed here reflect the present state of the field 

and will require periodic updating. Descriptions of these 
courses are given in Appendix B. They provide a starting 
point for developing or updating a master's degree pro-
gram. 

Typical courses which should be offered, under the 
topical areas within which they fall, might be as follows. 
Courses CS 9 through CS 18 are described in [2], Courses 
CS 19 through CS 38 are described in Appendix B. 

A. Programming Languages 

CS 14 Software Design and Development 
CS 15 Theory of Programming Languages 
CS 19 Compiler Construction 
CS 20 Formal Methods in Programming 

Languages 
CS 21 Architecture of Assemblers 
CS 25 High Level Language Computer 

. Architecture 

B. Operating Systems and Computer Architecture 

CS 10 Operating Systems and Computer 
Architecture II 

CS 22 Performance Evaluation 
CS 23 Analytical Models for Operating Systems 
CS 24 Computer Communication Networks and 

Distributed Processing 
CS 26 Large Computer Architecture 
CS 27 Real-Time Systems 
CS 28 Microcomputer Systems and Local 

Networks 

C. Theoretical Computer Science 

CS 13 Algorithms 
CS 16 Automata, Computability, and Formal 

Languages 
CS 29 Applied Combinatorics and Graph Theory 
CS 30 Theory of Computation 

D. Data and File Structures 

CS 11 Database Management Systems Design 
CS 31 Information Systems Design 
CS 32 Information Storage and Access 
CS 33 Distributed Database Systems 

E. Other Topics 

CS 9 Computers and Society 
CS 12 Artificial Intelligence 
CS 34 Pattern Recognition 
CS 35 Computer Graphics 
CS 36 Modeling and Simulation 
CS 17 Numerical Mathematics: Analysis 
CS 18 Numerical Mathematics: Linear Algebra 
CS 37 Legal and Economic Issues in Computing 
CS 38 Introduction to Symbolic and Algebraic 

Manipulation 

These courses are representative of those being of-
fered today in established master's programs. Some over-

142 



lap considerably with others, e.g., CS 19 and CS 21 or 
CS 22 and CS 23. These pairs are included to provide 
alternative examples. The Committee does not propose 
that both members of a pair be offered. Further, the 
Committee expects the appropriate courses to change 
frequently as the field matures. Additional courses may 
be offered to reflect the interests of the faculty. 

In considering the courses that should be taken in the 
master's program it should be recognized that one of the 
purposes of such a program is to supply the opportunity 
for additional course work over that possible in an 
undergraduate program. Some of the courses, appropri-
ately, are available for the graduate student and ad-
vanced undergraduates, although the reasons for selec-
tion may be different. 

The master's program should provide both breadth 
in several areas, and depth in a few. In addition, it should 
allow a degree of flexibility to address individual needs. 
The typical program will consist of 30 to 36 semester 
hours. 

The program should include at least two courses from 
A, two courses from B, and one course from each of C, 
D, and E. The student who has not been exposed to 
numerical analysis as an undergraduate should take CS 
17. Students with strong undergraduate backgrounds in 
computer science may have already satisfied some of 
these requirements and may thus proceed to more ad-
vanced courses. Their degrees probably will be more 
specialized than those of students with weaker back-
grounds. 

The entire program should contain at least four 
computer science courses which are for graduate students 
only. 

5.2 Culminating/Unifying Activity 
Beyond the course work, each student should be 

required to participate in some summarizing activity. 
A thesis, project, seminar, or comprehensive exami-

nation exemplifies a kind of culminating activity for the 
program. They provide a format for a student to combine 
concepts and knowledge from a number of different 
courses. They also provide a method of judging a stu-
dent's performance outside the narrow confines of a 
single course. They may also be useful in insuring a 
uniform standard in a program that may cover many 
years and use many different instructors. 

These culminating activities can be very time-con-
suming for both students and faculty. Faculty loads must 
allow the necessary time for the preparation, supervision, 
and evaluation of these activities. 

5.3 Seminar 
A seminar in which the students make presentations 

can be useful for providing experience and improving 
the communication skills of students. The seminar pro-
vides an opportunity for the student to explore the 
literature and make formal presentations. The seminar 
is also useful in developing and encouraging the habit of 

reading and discussing the current literature in computer 
science. 

5.4 Thesis or Project 
A thesis or project usually taking more than one 

semester should be done by each student. This is sug-
gested to extend the student's experience in analysis and 
design and the evaluation and application of new re-
search findings or technological advances. Relating proj-
ects to work environments can strengthen a professional 
program. 

The thesis or project provides the primary means by 
which the student gains practical experience in applying 
computing techniques and methodologies. It also pro-
vides a basis for developing written and oral communi-
cation skills and documentation experience. Finally, it 
provides the opportunity for exploring recent concepts 
in the literature and demonstrating an understanding of 
those concepts. 

A project is much more difficult to evaluate than 
course work or a thesis. However, because of the impor-
tance of the project within the program its careful 
evaluation is vitally important. Successful completion 
means: 

a. The product produced performs as prescribed. 
b. The project has been properly documented both 

in terms of nontechnical descriptions and in 
terms of technical diagrams and formal docu-
mentation. 

c. A formal public oral presentation has been given. 
This is seen as a mechanism for encouraging 
both a high level of presentation and a high 
technical standard for the project. 

Through a seminar and a project the student can gain 
practical experience in the evaluation, selection, and 
decision making process. 

5.5 Comprehensive Examination 
An alternative to the thesis may be a comprehensive 

examination. This examination serves a purpose similar 
to the thesis or project discussed previously. It summa-
rizes the entire program. The examination should consist 
of: 

a. review and analysis of articles from current lit-
erature; and/or 

b. questions that integrate material from more than 
one course. 

The period of time over which degree requirements 
are satisfied will be considerably longer for part-time 
students than for full-time students. The former, there-
fore, should be supplied with reading guides prior to the 
comprehensive examination. Indeed, in order to encour-
age a reading habit in all students some examination 
questions should be related to required readings rather 
than to course work. 

143 



6.0 Resource Requirements 

6.1 Faculty 
Most faculty are qualified to teach in more than one 

area of specialization. Although in the past most com-
puter science faculty received degrees in other disciplines, 
it is recommended that master's programs not be imple-
mented without experienced computer science faculty or 
faculty formally trained in computer science. A mini-
mum of five computer science faculty members is re-
quired to provide adequate breadth for a stand-alone 
master's program. If the department offers a bachelor's 
program as well, then at least eight faculty members 
would be required for both programs. Limited use of 
qualified adjunct faculty is appropriate in some special 
circumstances, but at least three quarters of the courses 
must be offered by regular full-time faculty. 

6.2 Computing Equipment 
Every computer science master's program must have 

access to adequate computer systems. The amount of 
computing power which must be available depends on 
how many students will be in the program at one time 
and their specializations. 

An area of specialization such as computer graphics 
or design automation requires very special and possibly 
dedicated computing facilities, both hardware and soft-
ware. Programs specializing in information systems place 
heavy demands on a large computer system with appro-
priate software. 

For the study of computer systems and languages a 
variety of languages and operating systems must be 
available. A dedicated system under departmental con-
trol is optimal for hands-on experience. Programs and 
experiments dealing with the security of systems usually 
require a dedicated system. 

Proper arrangements must be made for maintenance 
of the computing facility and laboratory equipment. 
Plans and provisions also need to be made for growth 
and periodic modernization of equipment resources. 

6.3 Library 
The list of books and magazines for undergraduate 

programs prepared by a joint committee of ACM and 
IEEE is the only available list of reference material [10], 
It is a good starting point, but suffers from being for 
undergraduates rather than graduate students and being 
current only to 1977. Additional materials, particularly 
selected applied and theoretical journals, are required 
for a master's program. Besides faculty and computing 
equipment, substantial library resources are essential for 
an adequate master's program in computer science. Siz-
able current expenditure funds are needed to maintain 
collections, but at most universities such funds will be 
insufficient by themselves. An additional special alloca-
tion of tens of thousands of dollars will be needed to 
establish a basic holding in the first place. 

7.0 Specializations 

A specialization program in the context of "master's 
level programs in computer science" is defined as a 
professional program which, in general, would be ad-
ministered by a Computer Science department, but 
which differs from traditional and/or academic pro-
grams in several important aspects. Here the emphasis is 
on the "specialist." A number of schools have already 
developed such programs. Almost always the title of the 
program is the key to the area of specialization and alerts 
the potential student to the nontraditional (in the com-
puter science sense) nature of the offering. Examples of 
such programs include health computing (also called 
medical information science), library information sci-
ence, and software design and development. In each case 
the professional practitioner produced by these specialist 
programs is expected to draw upon a broadly based 
knowledge of the technical foundations of computer 
science and be able to apply these concepts in the context 
of a particular application area, e.g., medicine or software 
development. These specialists are expected to be the 
professional level link between computer science and 
another specific technical area. Justification for suggest-
ing that these programs be administered by computer 
science rests with the degree to which computer science 
dominates the course load imposed on the student. 

There are intrinsic benefits from Computer Science 
departments having specialist programs. Nevertheless, it 
is not feasible for a particular department to have a 
specialist program unless it has a nucleus of faculty with 
appropriate similar interests and expertise. Emphasis and 
content will vary widely. 

On the other hand, the Committee wants to discour-
age a somewhat frivolous proliferation of programs with 
specialist names. A specialist program should build on a 
more general Computer Science master's program rather 
than be a relatively inexpensive shortcut to a master's 
level program. Therefore, the following guidelines are 
presented: 

a. There must be a clear and continuing need for 
individuals with a particular training both locally 
and nationally. This need must be expected to 
last for several years. 

b. There must be a distinct body of knowledge 
which these individuals need and which is not 
provided by a generalist degree of the type pre-
sented earlier in this report. 

c. There must be at least three full-time faculty 
members available with expertise in this body of 
knowledge. 

d. Any needed resources (e.g., special hardware, 
databases) must be available in sufficient quan-
tity locally. Provision must be made for periodic 
updating and improvement of these resources to 
keep pace with the state of the art. 

144 



a A /VHdnfiions 

This report is the product of compromise. More than 
200 Computer Science educators were consulted in its 
preparation. The Committee started out to produce a 
model curriculum for Computer Science master's degree 
programs similar to the model curriculum for bachelor's 
degree programs described in [2]. We quickly determined 
that even a small group of computer scientists could not 
agree on a model curriculum. We tried to develop sepa-
rate model curricula for academic,, professional, and 
specialization programs, but could not reach a consensus 
on any of those. Next we tried to develop a list of core 
concepts which every master's graduate should know. 
Lists of anywhere from five to thirty concepts were 
generated and rejected. What one person felt should be 
in the core another felt was relatively unimportant. 

Computer Science is a volatile field. The Committee 
tried to determine in which directions the field was 
moving. We wanted to produce a f o r ^ w i ̂ sK&vfcfj, 
Again, we could not reach a consensus. Each expert 
disagreed with the others. 

This report makes some recommendations for what 
a master's degree in Computer Science should be and 
what it should not be. The report does not provide a 
blueprint for a master's program because the Committee 
believes the field is too new to have just one or even a 
small number of blueprints. The Computer Science fac-
ulty at an institution must be the ultimate determiners of 
what should and what should not be in the program. 
This report provides some recommendations for mini-
mums which should be in every program. Beyond that 
we must defer to the mature, reasoned judgments of the 
local faculty. 

Appendix A 

Contributors 

The following people have made substantial contri-
butions to this report: 

Robert M. Aiken, University of Tennessee 
* Richard H. Austing, University of Maryland 
* Bruce Barnes, National Science Foundation 
* Alfs T. Berztiss, University of Pittsburgh 
* Delia T. Bonnette, University of Southwestern 

Louisiana 
Stephen E. Cline, Prentice-Hall, Inc. 

* John F. Dalphin, Indiana-Purdue University 
at Fort Wayne 

* Gerald L. Engel, Christopher Newport College 
Richad E. Fairley, Colorado State University 

** John W. Hamblen, University of Missouri-Rolla 
* Alex A. J. Hoffman, Texas Christian University 

Lawrence A. Jehn, University of Dayton 
* William J. Kubitz, University of Illinois 

Joyce Currie Little, Community College of Baltimore 
* Kenneth I. Magel, University of Missouri-Rolla 
* Robert F. Mathis, Old Dominion University 
* John R. Metzner, University of Missouri-Rolla 

David Moursund, University of Oregon 
* James D. Powell, Burroughs-Wellcome Co. 

David Rine, Western Illinois University 
Kenneth Williams, Western Michigan University 
Anthony S. Wojcik, Illinois Institute of Technology 
Marshall C. Yovits, Indiana-Purdue University 

at Indianapolis 

* Committee members ** Committee chairman 

Appendix B 

Course Descriptions 

The descriptions are very brief to allow faculty to 
adjust these courses to their own environments. The 
Committee recognizes the need to develop an objective 
list of acceptable textbooks. For some of these courses, 
no textbook yet exists. Articles from the recent literature 
must be used. The Committee anticipates the availability 
of a textbook list in the SIGCSE Bulletin within the next 
two years. 

Courses CS 1 through CS 18 are described in [2). 
Courses CS 1, through CS 8 are prerequisite to a master's 
program. 

CS 1 Computer Programming I 
CS 2 Computer Programming II 
CS 3 Introduction to Computer Systems 
CS 4 Introduction to Computer Organization 
CS 5 Introduction to File Processing 
CS 6 Operating Systems and Computer Architecture I 
CS 7 Data Structures and Algorithm Analysis 
CS 8 Organization of Programming Languages 
CS 9 Computers and Society 
CS 10 Operating Systems and Computer Architecture II 
CS 11 Database Management Systems Design 
CS 12 Artificial Intelligence 
CS 13 Algorithms 
CS 14 Software Design and Development 
CS IS Theory of Programming Languages 
CS 16 Automata, Computability, and Formal Languages 
CS 17 Numerical Mathematics: Analysis 
CS 18 Numerical Mathematics: Linear Algebra 

145 



The three numbers in parentheses following the 
course names below are: classroom hours per week, 
laboratory hours, and total course credit. 

CS 19 Compiler Construction (3-0-3) 
Prerequisite: CS 8 

ATI introduction to the major methods used in compiler implementa-
tion. The parsing methods of LL(k) and LR(k) are covered as well as 
finite state methods for lexical analysis, symbol table construction, 
internal forms for a program, run time storage management for block 
structured languages, and an introduction to code optimization. 

CS 20 Formal Methods in Programming Languages (3-0-3) 
Prerequisite: CS 8 

Data and control abstractions are considered. Advanced control con-
structs including backtracking and nondeterminism are covered. The 
effects of formal methods for program description are explained. The 
major methods for proving programs correct are described. 

CS 21 Architecture of Assemblers (3-0-3) 
Prerequisite: CS 6 

Anatomy of an assembler: source program analysis, relocatable code 
generation, and related topics. Organization and machine language of 
two or three architecturally different machines; survey and comparison 
of these machines in various programming environments. 

CS 22 Performance Evaluation (3-0-3) 
Prerequisite: CS 6 

A survey of techniques of modeling concurrent processes and the 
resources they share. Includes levels and types of system simulation, 
performance prediction, benchmarking and synthetic loading, hard-
ware and software monitors. 

CS 23 Analytical Models for Operating Systems (3-0-3) 
Prerequisite: CS 6 

An examination of the major models that have been used to study 
operating sysems and the computer systems which they manage. Petri 
nets, dataflow diagrams, and other models of parallel behavior will be 
studied. An introduction to the fundamentals of queueing theory is 
included. 

CS 24 Computer Communication Networks and Distributed 
Processing (3-0-3) 

Prerequiste: CS 6 

A study of networks of interacting computers. The problems, rationales, 
and possible solutions for both distributed processing and distributed 
databases will be examined. Major national and international protocols 
including SNA, X.21, and X.25 will be presented. 

CS 25 High Level Language Computer Architecture (3-0-3) 
Prerequiste: CS 6 

An introduction of architectures of computer systems which have been 
developed to make processing of programs in high level languages 
easier. Example systems will include SYMBOL and the Burroughs 
B1700. 

CS 26 Large Computer Architecture (3-0-3) 
Prerequisite: CS 6 

A study of large computer systems which have been developed to make 
special types of processing more efficient or reliable. Examples include 
pipelined machines and array processing. Tightly coupled multipro-
cessors will be covered. 

CS 27 Real-Time Systems (3-0-3) 
Prerequisite: CS 6 

An introduction to the problems, C O M , i U • 

computer systems which must interface with 6 J n S ? m V O l V 6 d 

include process contrrA <., , V M U U i l <lfcvn<»*. t v . — 
aircraft or a u t l S Z ^ S ^ l V m j m A ^ , ^ 
on operating system software for these systems. 

CS 28 Microcomputer Systems and Local Networks (2-2-3) 
Prerequisite: CS 6 

A consideration of the uses and organization of microcomputers. 
Typical eight or sixteen bit microprocessors will be described. Micro-
computer software will be discussed and contrasted with that available 
for larger computers. Each student will gain hands-on experience with 
a microcomputer. 

CS 29 Applied Combinatorics and Graph Theory (3-0-3) 
Prerequisites: CS 7, 13 

A study of combinatorial and graphical techniques for complexity 
analysis including generating functions, recurrence relations, Polya's 
theory of» counting, planar directed and undirected graphs, and NP 
complete problems. Applications of the techniques to analysis of 
algorithms in graph theory and sorting and searching. 

CS 30 Theory of Computation (3-0-3) 
Prerequisites: CS 7, 16 

A survey of formal models for computation. Includes Turing Machines, 
partial recursive functions, recursive and recursively enumerable sets, 
the recursive theorem, abstract complexity theory, program schemes, 
and concrete complexity. 

CS 31 Information Systjem Design (3-0-3) 
Prerequisites: CS 6, 11 

A practical guide to Information System Programming and Design. 
Theories relating to module design, module coupling, and module 
strength are discussed. Techniques for reducing a system's complexity 
are emphasized. The topics are oriented toward the experienced pro-
grammer or systems analyst. 

CS 32 Information Storage and Access (3-0-3) 
Prerequisites: CS 6, 11 

Advanced data structures, file structures, databases, and processing 
systems for access and maintenance. For explicitly structured data, 
interactions among these structures, accessing patterns, and design of 
processing/access systems. Data administration, processing system life 
cycle, system security. 

CS 33 Distributed Database Systems (3-0-3) 
Prerequisites: CS 11, 24 

A consideration of the problems and opportunities inherent in distrib-
uted databases on a network computer system. Includes file allocation, 
directory systems, deadlock detection and prevention, synchronization, 
query optimization, and fault tolerance. 

CS 34 Pattern Recognition (3-0-3) 
Prerequisites: CS 6, 7 

An introduction to the problems, potential, and methods of pattern 
recognition through a comparative presentation of different methodol-
ogies and practical examples. Covers feature extraction methods, sim-
ilarity measures, statistical classification, minimax procedures, maxi-
mum likelihood decisions, and the structure of data to ease recognition. 
Applications are presented in image and character recognition, chem-
ical analysis, speech recognition, and automated medical diagnosis. 

146 



CS 35 Computer Graphics (3-0-3) 
Prerequisites: CS 6, 7 

An overview of the hardware, software, and techniques used in com-
puter graphics. The three types of graphics hardware: refresh, storage, 
and raster scan are covered as well as two-dimensional transformations, 
clipping, windowing, display files, and input devices. If a raster scan 
device is available, solid area display, painting and shading are also 
covered. If time allows, three-dimensional graphics can be included. 

CS 36 Modeling and Simulation (3-0-3) 
Prerequisites: CS 6, 7 

A study of the construction of models which simulate real systems. The 
methodology of solution should include probability and distribution 
theory, statistical estimation and inference, the use of random variates, 
and validation procedures. A simulation language should be used for 
the solution of typical problems. 

,CS 37 Legal and Economic Issues in Computing (3-0-3) 
Prerequisites: CS 9, 12 

A presentation of the interactions between users of computers and the 
law and a consideration of the economic impacts of computers. 
Includes discussion of whether or not software is patentable, as well as 
discussion of computer crime, privacy, electronic fund transfer, and 
automation. 

CS 38 Introduction to Symbolic and Algebraic Manipulation (3-0-3) 
Prerequisite: CS 7 

A survey of techniques for using the computer to do algebraic manip-
ulation. Includes techniques for symbolic differentiation and integra-
tion, extended precision arithmetic, polynomial manipulation, and an 
introduction to one or more symbolic manipulation systems. Automatic 
theorem provers are considered. 

References 

1. Ashenhurst, R. L. (Ed.) Curriculum recommendations for 
graduate professional programs in information systems, a report of 
the ACM Curriculum Committee on Computer Education for 
Management. Comm. ACM 15, 5 (May 1972), 363-398. 
2. Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, L., and 
Stokes, G. (Eds.) Curriculum '78: Recommendations for the 
undergraduate program in computer science, a report of the ACM 
Curriculum Committee on Computer Science. Comm. ACM 22, 3 
(March, 1979), 147-166. 
3. Austing, R.H., Barnes, B.H., and Engel, G.L. A survey of the 
literature in computer science education since curriculum '68. Comm. 
ACM 20, 1 (Jan. 1977), 13-21. 
4. Berztiss, A.T. The M.S. program in computer science. SIGCSE 
Bulletin (ACM) 11, 1 (Feb. 1979), 61-69. 
5. Curriculum Committee on Computer Science (C'S). Curriculum 
'68: Recommendations for academic programs in computer science, a 
report of the ACM Curriculum Committee on Computer Science. 
Comm. ACM 11, 3 (March 1968), 151-197. 
6. Hamblen, J.W. Computer Manpower—Supply and Demand—by 

States. Information Systems Consultants, R.R. 1, Box 256A, St. 
James, Mo., 1973, 1975, and 1979. 
7. Hamblen, J.W., and Baird, T.B. Fourth Inventory of Computers in 
U.S. Higher Education, 1976-77. EDUCOM, Princeton, N.J., 1979. 
8. Melkanoff, M.A. An M.S. program in computer science. SIGCSE 
Bulletin (ACM) 5, 1 (Feb. 1973), 77-82. 
9. Teichroew, D. (Ed). Education related to the use of computers in 
organizations, position paper by the ACM Curriculum Committee on 
Computer Education for Management. Comm. ACM 14, 9 (Sept. 
1971), 575-588. 
10. Joint Committee of ACM and IEEE-CS. A Library List on 
Undergraduate Computer Science, Computer Engineering, and 
Information Systems. ACM, New York, 1978. 
11. IEEE Computer Society. A curriculum in computer science and 
engineering. EH 0119-8, Los Alamitos, Calif., Nov. 1976. 
12. Association for Computing Machinery. Professional Code of 
Ethics. ACM, New York. 
13. Association for Computing Machinery. Administrative Directory. 
ACM, New York, 1980. 

147 



Report 

Educational Programs in Information Systems 
A Report of the ACM Curriculum Committee on Information Systems 

Editor: Jay F. Nunamaker, Jr., University of Arizona 

This report describes the status of educational pro-
grams in Information Systems at the B.S., M.S., and 
Ph.D. levels. A survey was conducted during the period 
June 1977-June 1979 of schools of Business Administra-
tion, Departments of Computer Science, Engineering 
Colleges, and academic units offering programs in Infor-
mation Systems. A one-page description of each program 
was then generated according to a standard format. This 
standardized description was used as a guide to summa-
rize information about each program. 

The report outlines career opportunities in Informa-
tion Systems and lists brief descriptions of positions 
available to graduates of Information Systems programs. 
The need for an Information Systems program and prob-
lem areas with respect to teaching information systems 
are discussed. The results of the survey include a listing 
of the most common names for the Information Systems 
program and an evaluation of the number of programs 
that met the guidelines established by the Curriculum 
Committee on Computer Education for Management in 
1972 and 1973. A list of institutions by degree level that 
met the proposed guidelines is presented. 

Key Words and Phrases: education, management 
systems, systems analysis, management information sys-
tems, information systems development, information 
analysis, systems design, curriculum, data processing. 

CR Categories: 1.52, 3.51. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its dale appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 
© 1981 ACM 0001-0782/81/0300-0124 $00.75. 

Preface 

The purpose of this report is to summarize the status 
of Information Systems (IS) programs in the United 
States, a project undertaken by the ACM Curriculum 
Committee on Information Systems (C2IS).* The need 
for degree programs in information systems summarized 
in this report was documented in an earlier committee 
position paper [1]. Comprehensive curriculum recom-
mendations for undergraduate and graduate programs 
in information systems were presented in later reports 
[2, 3], 

The tasks of the present project included: (a) the 
collection of college and university catalogs, brochures, 
general descriptions of information systems programs; 
and (b) the classification of information systems with 
respect to minimal criteria. 

Many people assisted the Committee in its work in 
preparing this report; a draft version was circulated to 
members of the academic and professional community. 
The Committee would like to thank Ron Harding for 
his work in collecting, analyzing, and summarizing the 
responses from the many universities. Without his de-
votion to the project, this report would not have been 
possible. The Committee would also like to thank Benn 
Konsynski for his assistance during the past two years. 
The Committee, of course, assumes full responsibility for 
the substance of the report and the conclusions and 
recommendations contained in it. 

The Curriculum Committee on IS membership dur-

* Formerly known as the Curriculum Committee on Computer Edu-
cation for Management (C;,EM). The Curriculum Committee on In-
formation Systems is a subcommittee of the Curriculum Committee 
on Computer Education. 

149 



ing the preparation of this report was: 
Jay F. Nunamaker, Jr., (Chairman), University 

of Arizona 
William Cotterman, Georgia State University 
J. Daniel Couger, University of Colorado 
Gordon B. Davis, University of Minnesota 
Benjamin Diamant, IBM Corporation 
Andrew B. Whinston, Purdue University 
Marshall Yovits, Indiana-Purdue University at 

Indianapolis 
The validity of the list of programs contained in this 

report is accurate as of October 1979. 

1. Introduction 

Since there is a wide spectrum of interests among 
students, faculty, and administrators, IS programs vary, 
but in general they fall into one of two groups: 

(1) Those designed for the person who wants to 
learn computers as a part of preparation for a general 
management career; and 

(2) Those designed for the person who wants a 
lifetime career in information systems. 

The universities and colleges listed in this report play 
many different roles in the educational process. The 
large teaching-oriented institutions do not pursue the 
same goals and offer the same kinds of courses as do 
strongly research-oriented universities. A wide variety of 
existing courses and programs reflect the orientation of 
the institution of which each is a part. A brief description 
of each program satisfying the minimum criteria estab-
lished by the Committee is presented in the full report 
[4]-

The term "information system" has come to refer to 
a computer-based system for providing information to 
members of an enterprise. The term "management in-
formation system" indicates a major emphasis in infor-
mation systems. The IS discipline provides the analytical 
framework and the methodology to analyze, design, 
implement, and manage complex information/decision 
systems. An IS is defined as "a set of personnel, computer 
hardware, software packages, computer programs, data 
files, communication systems, decision models, organi-
zational procedures and practices, so structured and 
assembled as to ensure data quality, transmission, pro-
cessing, and storage in accordance with a given perform-
ance criterion to assist decision-making." An IS inte-
grates systems analysis, statistics, management, manage-
ment science, accounting, economics, finance, marketing, 
production, and computer and communications technol-
ogy to accomplish these tasks. 

In this respect, IS is the embodiment of the so-called 
"systems approach," i.e., viewing organizations as a com-
plex whole cojnposed of interacting subparts. The single 
most distinguishing feature of an information system, 
however, is its emphasis upon the flow of information 

within the organization. Thus, it is "information" that is 
the common link binding the organizational subparts. 
As organizations grow in size and complexity, the need 
for better and more timely information and for improved 
decision-making techniques becomes critical. Recent ad-
vances in computer and communications technology are 
making it practical to integrate the planning and control 
of operations across functional areas and geographic 
distances. Concurrent with these developments is the 
recognition that information is a resource which should 
be subject to managerial planning and control in the 
same way as other resources such as land, labor, and 
capital. 

The information system usually includes the concept 
of a comprehensive database accessible by computer and 
available for analysis, processing, and decision-making 
purposes by the entire organization. To be integrated, an 
information system must provide support to the three 
areas of management: planning, control, and operations. 
Viewed from a systems perspective, the information 
system must provide transactional processing, decision-
making, and planning capabilities designed to support 
the management process by providing information, anal-
ysis, and programmed decision-making both routinely 
and on request. The system typically incorporates quan-
titative analytical tools (e.g., work order scheduling, eco-
nomic order quantity determination) and integrates plan-
ning (e.g., modeling, simulation) with current operations 
to provide a dynamic mechanism for the planning and 
control of the organization. 

2. Career Opportunities in Information Systems 

The purpose of IS curricula is to prepare systems 
analysts, systems designers, application programmers, 
database administrators, information retrieval specialists, 
and communication systems specialists. The emphasis is 
on the functional areas of management, including ac-
counting, production, marketing, finance, and the appli-
cations of computers in those functional areas. 

With more and more companies processing infor-
mation to aid management decision-making and with 
the dynamic increase of the use of computers, graduates 
with a background in IS are in great demand. Career 
opportunities in information systems exist at numerous 
levels wherever computers are applied to industry and 
government. The demand has been so great that the 
postgraduates with limited course work in IS have been 
actively recruited. Excellent opportunities continue to be 
available in the field because of the rapid expansion of 
data processing systems in business and government. 

Although some attempts have recently been made to 
standardize and describe job classifications in the com-
puter field, there is still much room for improvement. 
The IS curricula presented in this report were designed 
to prepare individuals for the following career paths: 

150 



Information Systems Manager 
The information systems manager must be able to 

assume responsibility for: 
• formulating and defining requirements for the orga-

nization. 
• interacting with other managers in order to provide 

solutions to management, scientific, and business 
problems. 

• evaluating proposed information systems and man-
aging a team of analysts/programmers and other 
specialists in implementing a system. 

Systems Analyst/Designer 
The systems analyst/designer is involved with the 

analysis, design, and implementation of the information 
system and is responsible for: 

• gathering facts about the existing system and analyz-
ing them to determine the effectiveness of the pro-
posed system. 

• assisting the user in determining information needs, 
preparing software and hardware specifications. 

• designing new systems, recommending system 
changes, and being involved in testing and imple-
menting these systems. 

Applications Programmer 
The applications programmer is primarily concerned 

with the actual construction of the system and is respon-
sible for: 

• designing detailed logic and diagrams for programs. 
• coding the programs. 
• verifying the accuracy and completeness of programs. 
• documenting the programs and operating instructions 

according to organizational standards. 

Database Administrator 
The database administrator's responsibilities include: 

• developing and maintaining a dictionary of standard 
data definitions. 

• assisting in the development and design of the data-
base, maintaining secrecy, completeness, and timeli-
ness of the database. 

• designing and operating the database security systems 
against unauthorized access and use of the files. 

• providing liaison between analysts and users of the 
database. 

• advising analysts/designers, programmers, and users 
of the most efficient ways to use the database. 

Communications Analyst 
The communications analyst is responsible for: 

• working with the systems analyst/designer on the 
design and implementation of distributed informa-
tion systems. 

• taking responsibility for the data processing/data 
communications interface. 

• being knowledgeable in data communications and 
computer hardware/software systems. 

Systems Librarian 
The systems librarian is responsible for: 

• the control and maintenance of the files and pro-
grams being developed and maintained in the sys-
tems. 

The position of Systems Librarian varies from orga-
nization to organization, with some organizations view-
ing the position as clerical and others seeing it as provid-
ing entry level experience for junior programmers. 

Some organizations separate the tasks of analysis and 
design into two jobs; others combine the jobs of analysis 
and programming. In either case, the tasks performed 
are properly identified above. Other jobs in a Manage-
ment Information Systems department, or an Informa-
tion Systems department, are typically handled by grad-
uates of computer science degree programs: computer 
hardware specialists, systems programmers, and scien-
tific/mathematical application programmers. 

3. Need for an Information Systems Degree Program 

Computer-related occupations range from those re-
quiring heavy technical skills in computer hardware and 
software and almost no organizational knowledge to 
those which demand extensive organizational skills and 
only modest computer hardware/software knowledge. 
As illustrated in Figure 1, in the area of programming, 
systems programming requires a heavy technical knowl-
edge while applications programming requires a mix of 
both technical and organizational skills. In the area of 
systems analysis and design, the physical system design 
task of configuring hardware and software requires ex-
tensive understanding of hardware and software infor-
mation analysis, a moderate level of technical expertise, 
and a thorough knowledge both of organizational func-
tions and processes and of human behavior in systems 
and organizations. 

It is generally agreed in the computer industry that 
there is a shortage of trained personnel across all occu-
pational categories. Many studies have assessed the 
shortage of trained personnel needed for effective use of 
computer technology. While the results are not always 
quantitatively consistent, all support the position that the 
shortage is acute. The experience of the Curriculum 
Committee on IS suggests that the shortage of trained 
personnel is not uniform across the technical/organiza-
tional spectrum. The observation of this Committee is 
that the demand for personnel having a combination of 
technical and organizational skills is relatively much 
greater than the demand for solely technical skills. (Fig-
ure 1 pictures the Committee experience.) 

A hidden but significant impact of the imbalance of 
supply and demand as observed by the Committee is the 
drawing of people trained toward the technical end of 
the spectrum into positions toward the organizational 

151 



Fig. 1. Comparison of Activities, Degree Programs, and Supply and De-
mand with Respect to Technical and Organizational Knowledge 
Dimensions 

Programming 

Analysis 
& 

Design 

College 
Degree 
Programs 

HIGH 

Relative 
Supply & 
Demand 

LOW 

Hardware/Software 
Technical Knowledge 

Organizational Functions 
Organizational Knowledge 

Systems Programming 

Applications Programming 

System Design 

Information Analysis • 

Computer Science 

Information Systems 

DEMAND 

S U P P L Y 

Program Strong in 
Hardware/Software 

Balance of 
Technical Knowledge 

Program strong in 
Organizational Functions 

Technical Knowledge and Organizational Knowledge Organizational Knowledge 

152 



Fig. 2. Core Courses and Sequence for Undergraduate IS Program 

'ROGRAM 

TERM 

INFORMATION SYSTEMS 

• Technological Concentration-

Organizational Concentration 

1st 
Semester 

2nd 
Semester 

1st 
Semester 

or 
D 
o ; IL 

2nd 
Semester 

UB2 
Human and 
Organizational 
Behavior 

UC8 
Programming 
Structures ond 
Techniques 

UC9 
Computerware 

UBI 
Operations 
Anolysis ond 
Modeling 

UA8 
Systems 
Concepts ond 
Implications 

UD8 
Information 
Systems 
Analysis 

UD9 
System 
Design and 
Implementation 

UCI 
Information 
Structures 

t 

UC2 
Computer 
Systems 

UC3 
File and 
Communication 
Systems 

f 
UC4 
Software 
Design 

end. In other words, positions needing heavy organiza-
tional skills are being filled with persons having heavy 
technical but very low organizational training. This mis-
match creates problems in the analysis and design of 
information systems. It also makes it appear that the 
shortage of trained personnel is uniform across the entire 
discipline when, in fact, it is not. 

Just as programs stressing strong technical-weak or-
ganizational skills provide inadequate background for 
analysis and design, programs that produce students with 
strong organizational-weak technical skills prepare them 
poorly for handling the complexities of systems analysis, 
design, and implementation. 

The need, then, is for a degree program which pro-
vides both technical and organizational knowledge. Op-
erationally, this means that the IS curriculum must in-
clude subject matter from both the traditional disciplines 
of computer science and those of administration and 
management. 

The use of computers in support of organizational 
processes such as data processing, decision support, and 

information storage and retrieval requires systems so 
designed and implemented that they: 

• identify information requirements (based on an un-
derstanding of organizational functions, organiza-
tional processes, and decision-making). 

• fit technical characteristics into the behavioral frame-
work of the organization. 

• match technical design with human characteristics. 

Computer science degree programs typically empha-
size hardware and software technical knowledge and 
exclude the organizational dimensions. Computer sci-
ence curricula, therefore, serve to meet the needs of those 
occupations needing a technical emphasis (Figure 1). 
There is need for another program (IS) to meet the other 
range of positions. The IS curriculum has some subject 
matter also contained in computer science but has nec-
essary organizational and behavioral coverage. 

Not only is the demand not uniform across the 
technical/organizational dimension, but academic pro-
grams supplying trained personnel are radically out of 

153 



balance with demand. For example John Hamblen, in 
the 1979 study of computer manpower supply and de-
mand, found a ratio of almost five computer science 
degree programs for every information systems/data 
processing degree program [5]. 

A CM Curriculum Recommendations for IS Programs 
The programs recommended by C3EM in 1972 [3] 

and 1973 [2] are summarized below, for comparison with 
the programs listed in the following section. The prereq-
uisites for both the undergraduate and graduate pro-
grams are: 

• finite mathematics, including the fundamentals of 
formal logic, sets and relations, and linear algebra. 

• elementary statistics, including the fundamentals of 
probability, expected value, and construction of sam-
ple estimates. 

• elementary computer programming, including prob-

lem analysis and algorithm synthesis, and compe-
tence in a higher language. 

• elementary economics, including microeconomics 
and theory of the firm, and price theory. 

• elementary psychology, including fundamentals of 
personality formation, attitudes, and motivation. 

The courses at both the undergraduate and graduate 
level were divided into four groups. The four groups are: 

A. Analysis of Organizational Systems 

B. Background for Systems Development 

C. Computer and Information Technology 

D. Development of Information Systems 

The 11 courses and course sequence required for the 
undergraduate program are described in Figure 2 (repro-
duced from [2]). The 13 courses and course sequence 

Fig. 3. Core Courses and Sequence for Graduate IS Program 

154 



Table 1. Bachelor's Degree Programs Meeting the Criteria 

School Department Degree 

Alabama-Birmingham, Univ. of Dept. of Computer & Information Sciences B.S. 
Arizona State Univ. Dept. of Quantitative Systems B.S.B.A. 
Arizona, Univ. of Dept. of Management Information Systems B.S.B.A. 
Appalachian State Univ. Dept. of Bus. Ed. & Office Admin. B.S.B.A. 
Bowling Green State Univ. Dept. of Acctg. & M.l.S. B.S.B.A. 
Boise State Univ. Dept. of Acctg. & Data Processing B.B.A. 
California State Univ. at Dominquez Hills Dept. of Business Administration B.S.B.A. 
California State Univ. at Fullerton Dept. of Quantitative Methods B.A.B.A. 
California State Univ. at Los Angeles Dept. of Acctg. & Business Info. Systems B.S.B.A. 
California State Univ. at Sacramento Dept. of Acctg. & Management Info. Systems B.S.B.A. 
California State Polytechnic Univ. Dept. of Information Systems B.S. 
Colorado State Univ. Dept. of Management Science & Info. Systems B.S.B.A. 
Colorado, Univ. of Dept. of Management Science B.S.B.A. 
Drexel Univ. Dept. of Accounting B.S.B.A. 
Eastern Michigan Univ. Dept. of Operations Research & Info. Systems B.B.A. 
Eastern New Mexico Univ. Dept. of Acctg. & Computer Info. Science B.S.B.A. 
Eastern Washington Univ. Dept. of Acctg. & Decision Science B.A.B.A. 
Florida Atlantic Univ. Dept. of Administration & Systems B.A.S. 
Georgia State Univ. Dept. of Information Systems B.B.A. 
Hawaii, Univ. of B.B.A. 
Houston, Univ. of Dept. of Management B.B.A. 
Idaho State Univ. Dept. of Information & Computer Science B.B.A. 
Indiana Univ. Dept. of Admin. Systems & Business Educ. B.S.B. 
Indiana Univ. of PA Business Management Department B.S. 
Long Island Univ. School of Business Administration B.S. 
Mankato State Univ. Dept. of Computer Science B.S 
Maryland, Univ. of Dept. of Information Systems Management B.S. 
Massachusetts, Univ. of Dept. of Accounting B.S.B.A. 
Miami, Univ. of School of Business Administration B.B.A 
Michigan, Univ. of School of Business Administration B.B.A. 
Minnesota, Univ. of Dept. of Management Sciences B.S.B.A. 
Murray State Univ. Dept. of Management B.S.B. 
Nebraska-Lincoln, Univ. of Dept. of Management B.S.B.A. 
Nevada-Reno, Univ. of Dept. of Acctg. & Information Systems B.S.B.A. 
New Mexico State Univ. Dept. of Accounting & Finance B.B.A. 
New York Univ. Dept. of Computer Applic. & Info. Systems B.S. 
Northern Arizona Univ. College of Business Administration B.S.B.A. 
North Florida, Univ. of Dept. of Accounting B.B.A. 
Ohio State Univ. Dept. of Computer & information Science B.S.B.A. 
Oklahoma State Univ. Dept. of Administrative Sciences B.S.B.A. 
Purdue Univ. Dept. of Computer Science; Dept. of Comp. Tech. B.S.C.S.; B.S. 
Rochester Institute of Technology School of Computer Science & Technology B.T. 
Saint Cloud State Univ. Dept. of Quant. Methods & Info. Systems B.S. 
San Diego State Univ. Dept. of Information Systems B.S.B.A. 
San Francisco State Univ. Dept. of Data Systems & Quant. Methods B.S. 
South Carolina, Univ. of Dept. of Management Science B.S.B.A. 
Southern Mississippi, Univ. of Dept. of Accounting B.S.B.A. 
Temple Univ. Dept. of Computer & Information Sciences B.B.A. 
Wisconsin-Whitewater, Univ. of Dept. of Management B.B.A. 
Virginia Commonwealth Univ. Dept. of Information Systems B.S.B. 
West Virginia Institute of Technology Division of Business Administration B.S. 
Xavier Univ. Dept. of Management & Information Systems B.S.B.A. 

required for the graduate program are described in Fig-
ure 3 (reproduced from [3]). 

4. A Survey of Existing Degree Programs in 
Information Systems 

The C2IS surveyed information systems programs to 
determine how well the curriculum guidelines described 
earlier have been implemented. 

Step one of this project collected college and univer-
sity catalogs, brochures, and general descriptions of in-

formation systems programs. Letters requesting under-
graduate and graduate catalogs, brochures, and other 
material identifying or describing current program re-
quirements and course offerings in the information sys-
tems area were sent to the following organizations: 

205 business schools meeting AACSB (American 
Assembly of Collegiate Schools of Business) accred-
itation standards; 
149 computer science department heads; and 
159 collegiate chapters of the ACM. 

There was a 53 percent response rate from the AACSB 

155 



Table 2. Master's Degree Programs Meeting the Criteria 

School Department Degree 

Alabama-Birmingham, Univ. of Dept. of Computer & Information Sciences M.S.C.I.S. 
Arizona, Univ. of Dept. of Management Information Systems M.S.M.I.S. 
Bentley College Computer Systems Department M.S. 
California State Univ. at Sacramento Dept. of Acctg. & Mgmt. Info. Science M.S.M.I.S. 
California-Los Angeles, Univ. of Dept. of Management M.S.M. 
Chicago, Univ. of Graduate School of Business M.B.A. 
Colorado State Univ. Dept. of Management Science & Info. Systems M.S. 
Colorado, Univ. of Dept. of Management Science M.S. 
Duquesne Univ. M.S.B.I.S. 
Eastern Michigan Univ. Dept. of Operations Research & Info. Systems M.S.I.S. 
Florida Atlantic Univ. Dept. of Administration & Systems M.A.S. 
Georgia Institute of Technology School of Information & Computer Science M.S.I.C.S. 
Georgia State Univ. Dept. of Information Systems M.B.I.S. 
Harvard Univ. Division of Applied Science M.E. 
Houston, Univ. of Dept. of Management M.B.A. 
Indiana University Dept. of Operations & Systems Management M.B.A. 
Massachusetts Institute of Technology Sloan School of Management M.S. 
Michigan, Univ. of Graduate School of Business Admin. M.B.A. 
Minnesota, Univ. of Dept. of Management Science M.B.A. 
Nebraska-Lincoln, Univ. of Dept. of Management M.A.B.A. 
New Mexico, Univ. of School of Business & Admin. Sciences M.B.A. 
New York Univ. Dept. of Computer Applic. & Info. Systems M.B.A. 
Northwestern Univ. Dept. of Acctg. & Information Systems M.M. 
Ohio State Univ. Dept. of Computer & Information Science M.S.C.I.S. 
Pennsylvania State Univ. Dept. of Acctg. & Management Info. Systems M.S.B.A. 
Purdue Univ. Graduate School of Industrial Admin. M.S.M. 
Saint John's Univ. Dept. of Quantitative Analysis M.B.A. 
San Diego State Univ. Dept. of Information Systems M.B.A. 
San Jose State Univ. M.S.C.I.S. 
Temple Univ. Dept. of Computer & Information Sciences M.B.A. 
Texas A&M Univ. Dept. of Business Analysis & Research M.S. 
Texas Technology Univ. Dept. of Information Systems & Quant. Sci. M.S.B.A. 
Wisconsin-Madison, Univ. of Dept. of Accounting & Quant. Analysis M.S.B.A. 
Wisconsin-Milwaukee, Univ. of Dept. of Business Administration M.S.M. 

Table 3. Doctoral Degree Programs 

School Department Degree 

Arizona, Univ. of Dept. of Management Information Systems Ph.D. 
California, Univ. of at Los Angeles Dept. of Management Ph.D. 
California, Univ. of at Irvine Dept. of Computer Science Ph.D. 
Carnegie-Mellon Univ. Graduate School of Industrial Administration Ph.D. 
Case Western Reserve Univ. Graduate School of Management Ph.D. 
Chicago, Univ. of Graduate School of Business Ph.D. 
Georgia, Univ. of Graduate School of Business Ph.D. 
Georgia State Univ. Dept. of Information Systems Ph.D. 
Harvard Univ. Control Department D.B.A 
Houston, Univ. of Dept. of Management . Ph.D. 
Indiana, Univ. of School of Business Ph.D. 
Iowa, Univ. of School of Business Ph.D. 
Massachusetts Institute of Technology Sloan School of Management Ph.D. 
Michigan, Univ. of Graduate School of Business Administration DBA 
Minnesota, Univ. of Management Science Dept. Ph.D. 
Nebraska-Lincoln, Univ. of School of Business Ph.D. 
New York Univ. Dept.'of Computer Applications and Information Systems Ph.D. 
North Texas State Univ. School of Business Ph.D. 
Ohio State Univ. Dept. of Computer and Information Science Ph.D. 
Pennsylvania, Univ. of Dept. of Decision Science Ph.D. 
Pittsburgh, Univ. of School of Business Ph.D. 
Purdue Univ. Krannert School of Industrial Administration Ph.D. 
Rochester, Univ. of Graduate School of Management Ph.D. 
Southern California, Univ. of School of Business Ph.D. 
Southwestern Louisiana, Univ. of Dept. of Computer Science Ph.D. 
Stanford Univ. Graduate School of Business Ph.D. 
Temple Univ. Dept. of Computer and Information Sciences Ph.D. 
Texas Technology Univ. Dept. of Information Systems and Quantitative Science D.B.A 

156 



schools; a 49 percent response rate from the computer 
science departments; and an 11 percent response rate 
from the ACM chapters. 

From a review of the materials, it was determined 
that 91 schools offered some form of IS course study. 
The 91 colleges and universities offered 70 programs at 
the bachelor's level and 54 programs at the master's, 
level. Many institutions offered both an undergraduate 
and a graduate program. 

Names of Programs 
From the original list of 124 reported IS programs, 

there were 37 different names associated with" the field. 
The two most common, by far, were "Management 
Information Systems" and "Information Systems." 

Most Common Names 
No. Name 
27 Management Information Systems 
18 Information Systems 
5 Business Information Systems 
4 Business Data Processing 
4 Computer Information Science 
4 Management Systems 
3 Computer Information Systems 
3 Information Processing 
3 Information Systems Analysis and Design 
3 Information Science 
9 Names Used Twice 

18 Names Used Once 

5. Criteria for Inclusion of Degree Programs 

It was agreed by committee members that the pro-
grams should prepare students in the knowledge areas 
listed below. 

Computer Systems 
Hardware Components 
Software Components 

Communication Systems 
Hardware Components 
Software Components 

Programming Systems 
Data Systems 

Data Structure/File Structures 
Database Management 

Systems Analysis and Design 
Modeling of Systems and/or Performance 

Evaluation 

Organizational and Administrative Functions 
Accounting 
Finance 
Marketing 
Production 
Organizational Behavior 
Organizations and Management 

Very few programs met these desired standards. One 
of the problems with the original curriculum recommen-
dations was that they call for the implementation of 
many courses; but most universities do not have the 
resources to add 10 to 15 new courses. The Committee, 
therefore, settled for minimum criteria consisting of five 
(semester) courses in technical areas (computer science, 
information systems) and four courses in organization 
and administrative functions. 

Minimum Criteria for Selection 
Five semester courses in the following areas: 

Programming 
Data/File Structures 
Systems. Analysis/Design 

Four semester courses in the following areas: 
Organization and Administrative Functions 
Organization and Management 
Accounting 
Finance , 
Marketing 
Organizational Behavior 

Evaluation Results 
The lists of 70 bachelor's and 54 master's programs 

were evaluated as meeting or not meeting minimum 
requirements for an "ACM Information Systems Pro-
gram." 

Did not 
No. of Satisfied Meet the 

Programs Criteria Criteria 
Bachelor's 70 53 17 
Master's 54 34 20 
Doctoral 28 not evaluated 

The doctoral programs were not evaluated with re-
spect to minimum criteria since most programs can be 
customized to the interests of the individual student. 

Location of Programs Meeting Criteria 
The results indicated that only 53 undergraduate and 

34 graduate programs satisfied the minimum criteria for 
classification as an information systems program based 
on the ACM curriculum. The colleges of Business or 
Management were found to be the home for a majority 
of Information Systems Programs. 

Bachelor's 
Master's 

Total 
53 
34 

Business or 
Management 

College 
42 
25 

CS Dept., 
Engineering 

College 
II 
9 

Problem Areas in IS Curriculum 
Another aspect of the project was to identify problem 

areas in the curriculum. The single most critical problem 
area appeared to be contents of the systems analysis and 
design courses. Many new techniques such as structured 
design and top-down approaches are available, but sys-
tems analysis and design instruction appears still to be 
on an ad hoc basis. Course descriptions and content 
revealed very little commonality in what is taught in 

157 



systems analysis and design courses. Content ranged 
from the very general overview (a sort of 
"gee whiz" course) to a "nitty-gritty, nuts and bolts" type 
of course. The latter was often essentially a programming 
course, largely ignoring the problems of analysis and 
design. 

The original curriculum recommendations provided 
a general model for all universities and colleges. The 
next project of this Committee will be to examine 
the original model to assess its current applicability 
and to determine whether additional models are 
required. 

6. Lists of Institutions Meeting the Criteria 

This section includes lists of bachelor's (Table 1) and 
master's (Table 2) programs, meeting the criteria estab-
lished by the Committee, which appear on the preceding 
pages. All of the Ph.D. (Table 3) programs that were 
submitted were included. The Ph.D. programs are very 
specialized and, therefore, it was not appropriate to 
evaluate them with respect to minimal criteria. 

The list of institutions contained in Tables 1, 2, 3, 
and Reference [4] can be considered valid as of October 
1979. Sometimes it was difficult to determine whether or 
not an institution met the guidelines. The complete 
descriptions of individual programs [4] can be obtained 
from ACM Headquarters. 

In many institutions where a program exists in one 
college or department, there is a good chance that a 
similar program also exists in a complementary depart-
ment. In some instances programs at the same institution 
that appeared to be very similar were not included; the 
IS program listing was included for the department that 
offered the primary courses. 

7. Summary 

The decision to specify whether or not a school met 
the criteria was often based on the course titles. In many 
instances, the Committee did not have course outlines so 
schools may have been classified as not meeting the 
criteria when in fact they do. The Committee recognizes 
that very often the course content is not reflected by the 
course title for one reason or another. 

In summary, the objective of the report is to illustrate 
that many IS programs exist and the programs vary 
tremendously from university to university. 

We know that the list of programs in this report is 
incomplete. We invite those schools not listed or listed 
incorrectly to write us and to send information about 
their programs, which we will include in the next revision 
of the report. Information on the programs should follow 
the format used in Reference [4], 

Having attempted to identify programs that satisfy a 
minimum common core in IS, the authors of this report 
hope it will provide information and guidelines to insti-
tutions planning to implement programs in IS. 

References 
1. Teichroew, D. (Ed.). Education related to the use of computers in 
organizations (Position Paper-ACM Curriculum Committee on 
Computer Education for Management). Comm. ACM 14, 9 (Sept. 
1971), 573-588. 
2. Couger, J. (Ed.). Curriculum recommendations for 
Undergraduate programs in information systems. Comm. ACM 16, 12 
(Dec. 1973), 727-749. 
3. Ashenhurst, R.L. (Ed.). Curriculum recommendations for 
graduate professional programs in information systems. Comm. A CM 
15, 5 (May 1972), 363-398. 
4. Nunamaker, J.F., Cotterman, W., Couger, J.D., Davis, G., 
Diamant, B., Whinston, A., and Yovits, M. Status and description of 
programs in information—ACM Special Report. To appear. 
5. H a m b l e n , J .W. Computer Manpower Supply and Demand—By 
States, 1979. Information Systems Consultants, St. James, Mo., 1979, 
pp. 2-3. 

•a 

158 



Recommendations and Guidelines for 
an Associate Level Degree Program 

In Computer Programming 

A Report of the ACM Committee on Curriculum 
for Community and Junior College Education 

Editors: Joyce Currie Little, Community College of Baltimore 
Marjorie Leeson, Delta College 
Harice Seeds, Los Angeles City College 
John Maniotes, Purdue University Calumet Campus 
Richard H. Austing, University of Maryland 
Gerald L. Engel, Christopher Newport College 



This report presents recommendations and guidelines 
for a two-year associate degree career program in com-
puter programming. It represents the result of five years of 
effort by the Association for Computing Machinery's 
Committee on Curriculum for Community and Junior 
College Education and is the consensus of a large number 
of computer educators and industry representatives. 

The program is designed to prepare computer personnel 
for entry-level jobs in applications computer program-
ming. Graduates should be qualified to work on project 
teams with a systems analyst on projects requiring 
medium-to-large-scale computer equipment. Specialized 
options within the program allow a variety of career paths 
in the computer field. 

The report gives the purpose and objectives of the cur-
riculum, a detailed topical outline of recommended sub-
ject matter content, and guidelines for local curriculum 
design. Recommendations are given regarding resources 
needed for the implementation of the program. 

These guidelines are appl icable to p rograms in 
vocational-technical institutes, community and junior col-
leges, and colleges and universities interested in the educa-
tion of computer personnel for computer programming. 
They may be of use in evaluating existing programs or in 
establishing new ones. 

Key Words and Phrases: associate level programs, 
career programs, community and junior colleges, com-
puter education, computer programming, computer 
science education, curriculum, data processing education, 
education, information systems education, two-year pro-
grams, vocational-technical institutes. 

CR Categories: 1.52, 2.42, 3.5. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage. The ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 
© 1981 ACM. 

The current address of Joyce Currie Little is Towson State University, 
Baltimore, MD 21204. 



Contents 

Preface 
1. Introduction 

1.1 Purpose 
1.2 Historical Perspective 

2. Computer Programming Jobs: Prospects, Skills, and Environments 
2.1 Duties of the Computer Programmer 
2.2 Job Descriptions 
2.3 Job Environment 
2.4 Career Paths and Advancement 
2.5 Employment Supply and Demand 
2.6 Qualities for Success 

3. Objectives of the Curriculum 
3.1 Purpose of the Curriculum 
3.2 Performance Objectives 

4. Content of the Curriculum 
4.1 Required Computer Content 

4.1.1 Principles and Techniques of Programming 
4.1.2 Programmer Environment 

4.2 Optional Computer Content 
4.3 Related Content 
4.4 Design Considerations 
4.5 Major Programming Language 
4.6 Access to Equipment 
4.7 Structured Programming 

5. Resources for Implementation 
5.1 Organizational Matters 
5.2 Faculty and Staff 
5.3 Equipment and Access 
5.4 Instructional Materials 
5.5 Adaptation for Continued Relevancy 

6. Articulation 
6.1 Industry 
6.2 Other Educational Institutions 
6.3 The Computer Profession 

7. Summary 
References 
Appendices 

A. Reference Materials 
1. Computer Programming as a Career 
2. Instructional Bibliographies 
3. Periodicals and Newsletters 

B. Curriculum Implementation Material 
C. Student Activities and Memberships 
D. Source of Job Descriptions 
E. Contributors and Workshop Participants 
F. ACM Committee on Curriculum for Community 

and Junior College Education, 1981 



Preface 

This publication of the Association for Computing Machinery (ACM) represents the 
first effort of a scientific and technical society to provide curriculum recommendations 
and guidelines for the education of computer programmers at the associate degree level. 
Prepared by the ACM Committee on Curriculum for Community and Junior College 
Education, under the auspices of the Education Board of the ACM, this work was coor-
dinated by the Chair, Joyce Currie Little, Community College of Baltimore, Maryland, 
with the assistance of Richard H. Austing, University of Maryland, College Park, and 
Gerald L. Engel, Christopher Newport College, Newport News, Virginia. 

The initial meeting of the Committee was held in 1975 with support from the ACM 
Special Interest Group on Computer Science Education (SIGCSE). Thirteen community 
and junior college educators established curriculum work as the highest priority with 
emphasis on the improvement of existing programs to educate computer programmers. 
Several workshops followed and a draft report resulted which appeared in the SIGCSE 
Bulletin in June 1977. Numerous presentations were given at conferences and revisions 
of the draft were sent to several hundred interested persons. Reactions were discussed by 
the Committee for incorporation into the report. 

The Committee would like to thank all those who made this report possible. We 
would especially like to thank Richard H. Austing and Gerald L. Engel for encourage-
ment and support given to the Committee and to this project. Professor Austing was the 
chairman of SIGCSE and the vice-chairman of the Education Board during most of this 
time, and Professor Engel was chairman of the Curriculum Committee on Computer 
Education. Without these two persons, the Committee might not have existed. We also 
thank William F. Atchison, University of Maryland, College Park, who was chairman 
of the Education Board during most of this work, and David Kniefel, New Jersey 
Educational Computer Network, who was chairman during its publication. The Com-
mittee would like to thank Maureen Shumate for her manuscript review. 

The Committee is grateful to all those persons who helped by contributing their com-
ments, reactions, and advice. Many people participated in workshops, reviewed drafts, 
published announcements, and gave presentations. All those who contributed toward 
the report are named in Appendix E. Special thanks go to the Virginia Institute for 
Marine Science, Gloucester Point, Virginia, for hosting several sessions and to the 
National Technical Institute for the Deaf at Rochester Institute of Technology for 
assistance with manuscript production. 

This work is intended for use by the computer industry, vocational-technical schools 
and institutes, community and junior colleges, and colleges and universities interested 
in the education of personnel for computer programming. ACM and the Committee 
would be pleased to hear your reactions. 



1. Introduction 

1.1 Purpose 
These recommendations are given for a two-year asso-

ciate degree career program in computer programming. 
The program is designed to prepare computer personnel 
for entry-level jobs in applications computer program-
ming. Graduates should be qualified to work on applica-
tions project teams with a systems analyst on projects 
which require medium-to-large-scale computer equipment. 
The recommendations given should ensure sufficient 
foundation so that graduates with experience and con-
tinued learning may advance in any of a wide variety of 
career paths appropriate to their own particular interests 
and abilities. 

The report gives the purpose and objectives of the cur-
riculum and provides a detailed topical outline of required 
core subject matter content. Recommendations are also 
given for content in other related subjects and in an applied 
area for specialized applications work. Suggestions for 
laboratory facilties and staff resources are made. Guide-
lines for implementation are given to assist an institution 
in its own curriculum design to meet the needs of local 
industry. Lists of resource materials are given in the 
Appendices. 

We hope that this report will encourage the revalua t ion 
of existing programs, serve as a guideline in the creation of 
new programs, stimulate interaction among educational 
levels and disciplines, and promote improvement of the 
education of computer programmers. 

1.2 Historical Perspective 
This is the first set of curriculum recommendations to 

be produced by a scientific and technical computer society 
for an associate degree career program in the computer 
field. It is gratifying to the Committee that ACM has sup-
ported this work. It is consistent with ACM's early leader-
ship in establishing curriculum reports at the bac-
calaureate and graduate levels in both computer science 
and information systems [6, 8]. These two earlier ACM 
Curriculum reports published in 1968 and 1973, respec-
tively, credited community and junior colleges with pro-
viding education for the applications programmer. 

Other curricula guidelines for two-year programs in the 
data processing area have been prepared at the state and 
national levels. Under the auspices of the U.S. Department 
of Health, Education, and Welfare, Office of Education, 
a business data processing curriculum covering a broad 
range of jobs was prepared and released in 1963 [28]. In 
1964 a companion publication gave suggested techniques 
for courses of study in vocational and technical programs 
for electronic data processing in engineering, science, and 
business [29]. In 1970 a curriculum in scientific data pro-
cessing technology was released [30], and in 1973 the 
earlier 1963 report was updated [27]. Work on informa-
tion processing in scientific work was also done in the early 
1960's by the National Science Teachers Association, and 

a regular newsletter was published [26]. One scientific type 
curriculum was published by a computer ^.manufacturing 
company [4], The national association of two-year col-
leges, now known as the American Association for Com-
munity and Junior Colleges, sponsored a curriculum 
report published in 1970 [2]. Several state reports have 
addressed curriculum in the business data processing area, 
often covering the entire gamut of career opportunities 
available to two-year graduates [18, 24], Recent increased 
emphasis on career education should encourage more 
awareness of the differing characteristics required for the 
different types of jobs in this field. 

Computer-oriented courses and curricula in community 
and junior colleges began in the 1950's with a few experi-
mental courses and programs in business and mathematics 
departments. Local business and industry often provided 
computer facilities, materials, and instructors for the early 
programs. Cooperation between schools and industries 
has existed from the beginning and has been a continuing 
characteristic of computer-oriented program development 
in community and junior colleges. 

During the early 1960's, the National Defense Education 
Act provided matching funds for the rental or purchase of 
computers and other data processing equipment. The col-
leges used the federal funds provided to acquire small 
computer systems (e.g., the IBM 1401 and 1620) and unit-
record equipment. Data processing curricula in these in-
stitutions reflected the type of equipment available. 

The 1963 curriculum guidelines in business data pro-
cessing featured five areas of study: (1) computer data pro-
cessing basics and equipment, (2) assembler and compiler 
languages, (3) organization of business, (4) business ap-
plications, and (5) supporting sciences and electives. The 
report's effect on curriculum was extensive and its in-
fluence is still apparent in many community and junior 
college programs. Although these areas are still important 
in the training of an applications programmer, the content 
in each area has changed substantially over the years. 

In the late 1960's and early 1970's many colleges gradu-
ally converted to third-generation computer systems which 
had auxiliary storage capabilities. The increased capability 
of the equipment and the increased awareness of its poten-
tial for college-wide use led to greater usage of the facility 
for administrative purposes. A large number of colleges 
acquired a computer services manager, or director, to 
serve the entire college community. Often the computer 
formerly used in a hands-on laboratory environment 
became physically inaccessible to students. Instead, a 
closed-shop, scheduled, batch-processing environment 
was provided. Many colleges acquired terminals to offer 
students immediate access by timesharing. Others in-
stalled remote job entry batch-processing stations serviced 
by the centralized computer center. A few colleges ac-
quired systems large enough to service their own as well as 
local high schools' computing needs. Many colleges ob-
taining a computer for the first time have acquired a 
minicomputer, often shared with administration. Depart-

163 



ments often acquire their own individual microcomputers. 
The equipment changes and new technology necessitated 

adaptation in courses and curricula to incorporate different 
programming techniques, new data manipulation methods, 
and a variety of laboratory access methods. New courses 
were developed and the course content of existing courses 
modified. Changes came about slowly and were not exten-
sive enough. As a result some curricula still emphasize out-
dated or inappropriate programming techniques and 
languages, and sometimes use obsolete equipment. 

Since the early 1960's, successive surveys of degree pro-
grams in the computer field have been carried out on an 
national scale by John Hamblen [17]. In the 10-year 
period between 1966 and 1976, the number of programs at 
the associate level doubled to reach almost 400, and the 
number of graduates more than quadrupled to reach 
slightly more than 6000. Most of the associate level pro-
grams in the survey were named data processing and were 
in a department with the same name. Other programs were 
in the departments of business or business administration. 
Associate level programs named computer science or com-
puter programming were few, but increasing in number. 
Some of the programs named computer science were 
primarily for transfer students and did not have the train-
ing of an applications programmer as a major objective. 

The relationship between career and transfer programs 
is very close and is very complicated. For many years there 
were few four-year programs available to which students 
could transfer. By 1976 the number of baccalaureate level 
programs had grown to almost equal the number at the 
associate level [17]. As more four-year programs become 
available, there will be more need for emphasis on transfer 
programs. 

Developments in computers in the 1980's are occurring 
at an even faster rate than changes occurred a decade ago. 
Advances in computer technology are having a profound 
effect on business and industry. Many programmers now 
have microcomputers available along with timesharing 
terminals and remote job entry stations. Changes in the 
way the programmer works will continue [5, 23, 34]. The 
increased maturity of the field has led to a more standarized 
vocabulary, better defined job tasks, and a generally 
accepted body of knowledge and skills required for com-
petence [1, 3, 33]. The disciplined approach to the job, 
brought about by recent trends in structured program-
ming, will perhaps help bring order to what has been a 
rather chaotic environment. Studies on productivity and 
programming practices [40], research on motivation [19], 
initiation of certification and self-assessment tests, and the 
development of software engineering [41] all promote a 
more professional role for the programmer. 

2. Computer Programming Jobs: Prospects, Skills, 
and Environment 

There are many kinds of computer programming jobs 
which require different levels of competency. This section 
describes the duties and requirements for the application 
computer programmer. Other more specialized titles are 

often used, such as business programmer or scientific pro-
grammer. Duties and requirements for computer pro-
grammers are not necessarily standarized. 

Some jobs in computer programming are more advanced 
and require more education and experience. These include 
the position of programmer/analyst, which combines the 
work of the programmer with the work of the systems 
analyst. Other programmers, called systems program-
mers, do not perform applications work for an end user 
but are instead responsible for the systems software, such 
as the operating system, the programming languages, and 
the utility packages. Opportunity will most likely exist for 
programmers to be promoted into these other related areas. 

2.1 Duties of the Computer Programmer 
A computer programmer assists in the development of 

automated systems and is responsible for the instructions 
to the computer. Job tasks include analysis of program 
specifications provided by an analyst, design of the pro-
gram logic, coding of the program in the chosen program-
ming language, preparing test data and verifying its 
accuracy, and providing documentation according to 
company standards. 

A computer programmer who works in the applications 
area must also understand the problem being solved. For 
example, programmers working in the business field must 
have knowledge of the language of business; programmers 
doing work in an engineering field need to be know-
ledgeable in the language of engineering. The preparation 
of a productive applicat ions p rogrammer requires 
knowledge and awareness of the applications area. 

Entry-level computer programmers are usually given an 
initial in-house training session. This allows the trainee to 
become familiar with the specific brand of equipment in 
use, the operating system and utilities, and the differences 
in the programming languages. It also gives the company a 
chance to establish its ground rules for computer usage 
and to ensure that new employees are aware of the data 
processing standards set by the company. After this ses-
sion, the trainee is usually assigned as a junior member of a 
programming team. 

Computer programmers at the entry level are often in-
itially assigned to teams for maintenance programming 
[31]. These programmers analyze existing production pro-
grams to isolate problems and to make requested changes. 
They must use existing documentation, modify the pro-
gram, expand the existing test data, and retest. In many 
cases, programmers are assigned to convert these existing 
programs to more up-to-date programming languages or 
to convert them to a new system. Programmers must know 
both the old and new programming languages and the old 
and new system. 

2.2 Job Descriptions 
Job descriptions for computer programming personnel 

are published periodically. Some sources are listed in 
Appendix D. Several levels of the job are usually specified, 
ranging from junior to senior. Task analyses of computer 
programming have led to differentiations among the ap-

164 



plications specalities. Most differentiation has been made 
between the business programmer and the scientific pro-
grammer [1], However, not all programmers fit these two 
categories. There are many other specialties, many of 
which do not have a formal job description. For example, 
a computer programmer might specialize in the develop-
ment of computer-assis ted-instruct ion sof tware , in 
computer-aided design, or in library information retrieval 
systems. 

2.3 Job Environment 
The environment in which a computer programmer 

works varies with the applied area, the type of company, 
the geographic area, and the size of the facility. Applica-
tions programmers assigned to teams for work in business 
are usually a part of a computer center staff , reporting to a 
team leader, a senior programmer, or a systems analyst. In 
other cases, a programmer might be a part of a team in the 
user area. A variety of different team structures could be 
used [23]. 

Offices for work are usually similar to most other of-
fices. Some programmers work at their desk with a ter-
minal or a microcomputer. Others submit programs for 
keypunching and do compilation and testing through a 
programming coordinator . Still others may use the 
machines in a hands -on envi ronment fo r test ing. 
Sometimes programmers take a portable terminal home at 
night to do extra work. The programmer's work area and 
the tools needed for use have been referred to as a work 
bench [7], 

Computer programmers must be able to work under 
pressure. Often they are required to work overtime hours 
to complete projects by deadline dates. The shortage of 
personnel has driven salaries to attractive levels [39]. 
However, turnover of programming personnel is high, 
presently averaging 25 percent per year [15, 25]. 

2.4 Career Paths and Advancement 
There is ample opportunity for advancement in the 

computer field. Usually gradual development and maturity 
proceeds along one of three parallel lines of movement: in-
creasing knowledge of business programming for the ap-
plications areas within the company; an increasing interest 
in the wider perspective of the entire application system; or 
increasing technical skills. The most typical promotion 
path for the computer programmer is to the more senior 
positions, or to programmer/analyst, then to systems 
analyst. The systems analyst often moves into computer 
center management. Persons with a more technical orien-
tation tend to go toward systems software programming. 
Advanced work within the systems programming group 
can be in areas such as telecommunications or database 
management systems. Most of these more advanced posi-
tions require additional education and experience. 

2.5 Employment Supply and Demand 
There are not nearly enough personnel trained to work 

in computer programming. In a survey by National Per-
sonnel Associates, out of more than 100 occupations, com-

puter programmers ranked first in demand [11]. The U.S. 
Department of Labor confirms the serious shortage of 
personnel, predicting that jobs for computer programmers 
should increase 102 percent by 1990 [9, 36]. One annual 
mid-year survey for 1980 shows that, in all data processing, 
applications programmers rank first in demand, having 
increased by 33.3 percent in one year [13]. Second in rank 
were systems software programmers, with 26.7 percent in-
crease. Programmer/analysts were ranked seventh, with 
14.1 percent increase. 

The personnel shortage is compounded by several fac-
tors. Colleges have not been able to graduate nearly 
enough computer programmers [16]. Although numbers 
of students increased sharply, associate degree programs 
graduated only an average of 15 to 18 per program each 
year over the last 10 years. Some of the graduates were in 
operations [21], Teachers have not increased in numbers 
proportional to the number of students, but have actually 
decreased [21], Sufficient new positions for faculty have 
not been created, due partially to the anticipation of the 
predicted decline in college age population. Even where 
positions exist, teachers are leaving them to go into higher 
paying jobs in industry. 

A comparison of national computer personnel produc-
tion in higher education to industry demand has been given 
by Hamblen [16]. Need is based on existing jobs as well as 
on estimates of the number of positions available due to 
replacement and growth. Production estimates came from 
data collected with funding from a National Science Foun-
dation grant and f rom data obtained by the U.S. Office of 
Education. The 1981 report stated that the two-year col-
leges are producing slightly more personnel than needed 
(assumed to be mostly in the operator category), and that 
four-year colleges are producing far too few. He suggested 
that the weaker two-year programs should be strength-
ened and that approximately half of the two-year graduates 
should plan to transfer to four-year programs. It appears 
that many two-year colleges have already begun to do 
that. 

In the period from 1971 to 1976, the number of 
associate degrees granted in computer programming 
technologies increased 29.6 percent while general data 
processing technologies decreased 15.1 percent [12]. 
Industry has accepted the philosophy that a college educa-
tion should be required for programmers [24], and the 
two-year colleges have accepted that challenge. 

In the midst of these predictions are others which fore-
bode drastic change in the opposite direction. Some say 
the need for applications programmers will sharply decline 
[14, 38]. The present applications programmer situation 
could become somewhat alleviated as more software tools 
are developed. Custom programming in today's program-
ming languages has become highly labor intensive, and 
work in the future may be done in other ways. As these 
changes occur, the demand for programmers will also 
change. So will their function. Some people feel that the 
programmer position as we now know it may eventually 
become obsolete. 

Whether or not these predictions come true in the long 

165 



term, the Committee concludes that the need for applica-
tions programmer will exist for some time to come. How-
ever, changes in their roles and responsibilities are likely. 
In particular, there will be an increased interest in produc-
tivity, more emphasis on disciplined and structured 
methods, more in-house training programs, more use of 
software packages, more use of programming product 
tools, and more use of contract programmers. 

Many associate level graduates continue their college 
education in related fields of business administration or 
mathematics and often on a part-time continuing educa-
tion basis [22]. Some employers, especially those in 
government service, show a preference for employees with 
the general cultural level usually associated with the bac-
calaureate degree, regardless of major field. One recent 
follow-up study of graduates f rom a two-year program 
and a nearby four-year program revealed that both groups 
had high placement and satisfaction with their education 
[20]. As more baccalaureate programs in computing are 
created, it is likely that industry will begin to utilize 
graduates with majors in computing. More of the associate 
level graduates will attempt to enter these transfer pro-
grams as they progress in their career path in the computer 
profession. 

2.6 Qualities for Success 
Community and junior colleges offer open admission 

education to all those who wish to learn. Some specific 
curricula, however, such as those with limited space for 
students, limit enrollments in order to provide adequate 
education to those who are admitted. In these situations, 
selection of students is made on this basis of various fac-
tors such as academic preparedness for the program, 
maturity, aptitude tests, or economic need. Admission to 
computer-related programs has typically been open. Satis-
factory completion of a first course serves as a prerequisite 
to further work. High drop-out rates have resulted due to 
a lack of awareness about the purpose of the program, 
insufficient readiness for college, inability in logical think-
ing, and shortage of patience and persistence in handling 
details. 

It is advisable to counsel entering students so that they 
are more aware of characteristics needed to be a successful 
programmer. A brochure on careers is available at a 
reasonable cost for distribution to prospective students 
(see Appendix A l ) . Aptitude tests are available and may 
be used for counseling. Several authors characterize those 
who succeed in and enjoy the work of a programmer as 
usually having good reasoning and logical problem-
solving ability and being observant and alert to detail. Pro-
grammers also usually enjoy continuing challenges, are 
able to work under pressure, and are persistent in pursuing 
a problem to its completion. Effor ts to spread career 
education information should be encouraged so that 
students may become more aware of job characteristics 
and requirements in the computer field. 

3. Objectives of the Curriculum 

3.1 Purpose of the Curriculum 

Community and junior colleges often serve as the starting 
point for the education of many persons who might not 
otherwise attend a four-year college. Some people use the 
community college to gain knowledge to change from one 
career type to another or as a place to update skills. Courses 
are available full-time or part-time, day or evening, on-
campus or off-campus. In most cases, classes are small, 
facilities excellent and available, and faculty accessible on 
a personal basis. Students are of all types. By offering 
courses and curricula in the computer field for all these 
different types of people, community colleges serve as a 
viable source of qualified personnel for entry-level com-
puter programming jobs. 

The purpose of the curriculum described is to offer 
students the opportunity to enter the computer program-
ming field as entry-level applications computer program-
mers. Graduates should be qualified to work on project 
teams with a systems analyst on applications which require 
medium-to-large-scale computer equipment. Graduates 
also should be prepared to work on applications which 
support the general, administrative, and organizational 
information processing functions of industry, business, 
commerce, and government service. Several options 
within the curriculum allow the selection of specialized 
areas for more in-depth study, leading to a wide range of 
potential career paths within the computer field. The cur-
riculum is designed as a two-year associate degree career 
program for the preparation of graduates for jobs, but it 
also provides a sufficient foundation as a basis for con-
tinued learning in the field. 

Computer programming work is found in many different 
applied areas. Almost every local community will have a 
need for a business-oriented program. Some communities 
may need other types as well, such as for scientific work, 
or in programming for service-oriented institutions, such 
as hospitals, schools, and churches. Persons already 
educated in an applied area may wish to do computer pro-
gramming in that field. Students entering college for the 
first time should establish an applied area. 

The Committee has attempted to work within the mis-
sion of the community and junior colleges: to serve com-
munity needs. Therefore, instead of prescribing a fixed set 
of courses, the Committee has specified subject matter 
topics. Instead of prescribing that all computer program-
mers be specialists in business work, the Committee has 
specified that any applied area for which there is a local or 
a personal need could be combined with core courses. The 
Committee hopes this approach will provide a flexible 
framework within which an institution can design and 
develop its own curriculum to meet the needs of the local 
community, the variety of aspirations of the students, and 
the rapidly changing technology with which we work. 

166 



3.2 Performance Objectives 
The main objective of the curriculum is to produce a 

graduate who will be able to write application programs. 
To accomplish the main objective, the graduate must be 
able to 

(1) analyze problem specifications prepared by an 
analyst with respect to the data format, the method 

- of processing, and the required user results; 
(2) plan detailed program logic; necessary program 

steps should be defined using a program logic plan 
or schemata such as flowcharts, decision tables, 
structured programming charts, or pseudocode; 

(3) use a problem-oriented procedural language to con-
vert a detailed program logic plan into an efficient 
and well-structured applications program; 

(4) modify an existing program or program module to 
accomplish requested changes in requirements; 

(5) verify and thoroughly test the accuracy and com-
pleteness of computer programs by preparing sam-
ple data and by using debugging techniques and 
software aids; 

(6) prepare appropriate documentation of computer 
programs for utilization by the user, production 
personnel, analysts, or maintenance programmers; 

(7) use preprogrammed subroutines and utilities, the 
computer system library, the job control language 
or system commands, and associated reference 
manuals and documentation; 

(8) interpret and use the program specifications and 
documentation provided by system analysts; 

(9) illustrate the basic functions of computer hardware 
at the assembler level by writing assembler language 
coded programs. 

The corollary objective to the main objective, weighing 
equally with it, is to produce a graduate with the necessary 
communication skills and related talents who can work in 
an organization responsibly, effectively, and productively. 
Toward that end, the graduate must be able to 

(1) communicate effectively with other programmers 
and with clerical personnel, analysts, managers, and 
users using acceptable oral and written English; 

(2) utilize mathematical and statistical skills to better 
facilitate problem description, analysis, solution, 
and digital computation; 

(3) utilize the standard methods of an organization for 
information flow through its accounting and infor-
mation retrieval system; 

(4) adapt to the pace of constantly changing equipment, 
high-level programming languages, and program-
ming products; use reference manuals and updates; 

(5) work effectively as a member of a team in an open, 
objective manner; 

(6) be knowledgeable about where, how, and why com-
puters are used to increase awareness of ethical, 
social, and economic implications of computing. 

It is a temptation to do only specific training for 
industry in specific programming languages or tools. 
Two-year colleges must not, at the associate degree level, 
yield to the temptation to train a specialized technician 
who may be obsolete with the next configuration of com-
puters and unprepared to continue to learn. The associate 
degree program must provide a foundation of knowledge 
and skills sufficient to serve as a base for continued learn-
ing. The graduate should be able to do a competent job 
and have potential for growth. The ability to transfer 
knowledge about a computer system and programming 
language to a different mode or form will be necessary as 
technological changes continue over the next decade. 

4. Content of the Curriculum 

A topical approach was chosen for the definition of sub-
ject matter needed for the core requirements of the cur-
riculum. These topics are purposely not structured into 
one fixed set of courses. Each two-year college offering 
this program will wish to combine the material into courses 
specifically designed for its own needs. The structure 
chosen by the college for implementation will depend on a 
variety of factors, including type of industry need, type of 
student clientele and their previous background, degree of 
"expertise of the faculty, degree of cooperation between 
industry and the college, type of calendar and scheduling 
used by the college, degree of innovation desired by the 
faculty/staff implementers and feasible for the institu-
tion, and type of upper level programs nearby. Colleges 
with existing programs may wish to implement changes 
gradually or very rapidly, depending on resources 
available. Colleges starting new programs may wish to try 
totally new nontraditional course structures and sched-
uling. 

The subject matter has been categorized below into 
required or core computer content, optional computer 
content, and related content. 

4.1 Required Computer Content 
The required computer-related content has been iden-

tified and classified into two major areas: principles and 
techniques of programming, and programmer environ-
ment. The first stresses in-depth programming knowledge, 
techniques, and skills supported by training in problem-
solving and logical analysis which facilitate optimum 
organization of the data and program for computer solu-
tion. The second includes fundamental concepts of hard-
ware and software, and organizational, social, psycho-
logical, and economic matters which make up the environ-
ment of the programmer within the analysis, design, 
implementation, and operation phases of an applications 
project. 

These two areas should not be construed to be a course 
structure. Introductory and advanced material on a topic 

167 



Table I. Topics in Principles and Techniques of Programming 

1. Data Representation, Structure, Storage, and Processing 
a. Characters, fields, records, files 
b. Data representation, coding, and conversion 
c. Input —process —output cycle 
d. Summarizing, selecting, classifying, sequencing methods 
e. Sorting, searching, merging methods 
f. Records and block lengths: fixed and variable, blocked and 

unblocked 
g. Tables, arrays, stacks, queues, lists, trees 
h. Direct and inverted files; multi-record files 
i. Sequential, indexed-sequential, virtual, and direct access 

files 
j. Multivolume files and multifile volumes 
k. File activity, volatility, volume 
1. File updating 
m. File maintenance and security 
n. Reorganizing of Files: conversion, modification, restructuring 
o. Calculation concerns: truncation, rounding, accuracy, modes, 

precision 

2. Programming Languages and Logic 
a. Problem analysis 
b. Program logic plans: flowcharts, decision tables, structure 

and hierarchy charts, Nassi-Shneiderman charts, algorithm 
statements, data-flow diagrams, pseudocode 

c. Data input and output: types and format 
d. Use of structured programming constructs and extensions: 

linear sequence, IF-THEN-ELSE, DO-WHILE, DO-
UNTIL, and CASE 

e. Routines: housekeeping, initialization, end-of-file, end-of-
job 

f. Multiple-level control breaks 
g. Use of parameter data, sentinel fields, program indicators 
h. Use of validation and control features: check digits, hash 

totals, cross totals, batch totals 

i. Use of compound logical functions based on AND, OR, NOT 
j . Test data creation 
k. Debugging methods; traces, snapshots, dumps 
1. Program correctness: logical equivalence, accuracy 
m. Program efficiency, timing, and style 
n. Program documentation: internal and external 
0. Basic and advanced syntax and semantics of, and in-depth 

practical projects in, a problem-oriented procedural 
language: data formats, delimiters, statements, precedence 
rules, sequence of control, subroutines and linkage 

p. Basic syntax and semantics of an assembler level language: 
instruction format, operand structure, register and storage 
structure, storage allocation, mnemonic operation codes, 
labels, symbolic addresses, declaratives, macro instruc-
tions, subroutine linkages, address and operation modifica-
tion, interrupts 

q. Basic syntax and semantics of one additional specialized 
language 

r. Use of language reference manuals 
s. Anticipation of differences due to implementation 

3. Interface with Hardware and Software 
a. Basic computer architecture 
b. Overview of operating systems 
c. Job stream control language and usage 
d. Use of utility programs, text editors, macros, functions 
e. Use programming products which facilitate programming 
f. Program modules: storage and usage 
g. Input —output routines: buffering, paging, overlap, timing 
h. Compilation —linkage —execution considerations 
1. Resources accountability 
j. Use of assembler routines by non assembler languages and 

compatibility of data formats 
k. Operational implications of program style upon operator 
1. Operational implications of program style upon user 

is listed only once, although it may be introduced in one 
course, used in programming exercises, and then covered 
in more depth in an advanced course. This topical approach 
is not an ordered teaching outline, but is a list of topics 
recommended for coverage in a core curriculum. 

4.1.1 Principles and Techniques of Programming 
The content recommended for a core curriculum, given 

in Table I, should provide the student with programming 
techniques, knowledge, and skills for use of the computer 
as a tool in the performance of practical computer applica-
tions. The prospective programmer should be able to 
analyze programs to determine quality, correctness, 
appropriateness, and completeness of documentation. 
The major computer language should be selected on the 
basis of need in local industry served by the college, and it 
should be taught in depth. This language should be sup-
plemented by more limited experience with at least one 
other computer language to allow students to make com-
parisons between the languages and to give graduates 
more versatility. The core also includes a foundation in 
assembler concepts in order to provide a better understand-
ing of hardwar'e/software interaction and compiler-
generated code. 

Concepts and skills in programming in a procedural 

language, some foundation in assembler, and exposure to 
one other language must be combined with the ability to 
interface the hardware and software by means of an oper-
ating system. The ability to access the system library by the 
job control language or system commands is necessary for 
use of utility programs and for control of hardware com-
ponents. 

4.1.2 Programmer Environment 
The content recommended for knowledge of a program-

mer's environment is given in Table II. It includes those 
topics which prepare the programmer to function in the 
environment of hardware, software, and people. It includes 
fundamental concepts of computers and peripheral devices, 
computer languages, and the organizational, procedural, 
social, psychological, and economic concepts necessary 
for the day-to-day performance of the programmer. Em-
phasis should be placed on the role and responsbility of the 
programmer in the successful analysis, design, implemen-
tation, and maintenance of a computer-based information 
system. This content provides the programmer with an 
overview of the complete applications project, f rom source 
data to distribution of results, and of the role of all person-
nel involved in the project. It should also include aspects of 
societal impact, ethics, professionalism, and information 

168 



Table II. Programmer Environment Topics 

1. Computer Equipment and Function 
a. Internal functions of central processor unit 
b. Storage devices: primary and secondary 
c. Peripheral devices: data collection, reporting 
d. Computer configurations 
e. Comparisons of hardware components 

2. Programming Languages in Organizations 
a. Compilers, interpreters, assemblers 
b. Generators, file management languages 
c. Languages relative to equipment 
d. Languages appropriate to the application 
e. Mode of processing: demand versus batch 

3. Computers in Organizations 
a. Evaluation of computers and their usage 
b. Computer center in the overall organization structure 
c. Computer centers: structure, staff, job descriptions 
d. Relationship of programmer to the computer center 

organization 
e. Statistical data and trends 
f. Costs: hardware, software, other 

4. Overview of an Existing Applications System 
a. Necessary reports 
b. Source data 
c. Systems flowcharts 
d. Process flowcharts 
e. Necessary programs 
f. Equipment/configuration needed 
g. Proper documentation for usage of the system 

5. Overview of the Systems Cycle and the Programmer's Role in the 
Project 

a. Analysis phase 
b. Development phase 
c. Implementation phase 
d. Production phase 
e. Evaluation phase 
f. Program maintenance 

6. Documentation 
a. Using systems documentation 
b. Using systems flowcharts 
c. Using flow process charts 
d. Evaluation of program documentation 

7. Data Elements and Files 
a. Collection, forms, and coding 

b. Mode and format 
c. Data validation and control: mode checking, limit checking, 

consistency between elements, check digits 
d. File validation and control, internal labels, external labels, 

file backup, hash totals, batch totals 
e. File structures 
f. File security and techniques 
g. Concern for privacy 

8. Report Requirements and Forms Control 
a. Survey of business forms 
b. Input forms: types, evaluation, development, control 
c. Output forms layout 
d. Output forms: distribution and control 
e. Programming considerations dependent upon input and 

output forms 

9. Quality Programming with Structured Approach 
a. Fundamentals of structured analysis and design of programs 
b. Top-Down programming, debugging, testing, implementation 
c. Analysis of a program's structure for improvement: 

efficiency, style 
d. Review of control structures 
e. Determination of logical equivalence of two differently 

written programs 
f. Comparison of efficiency of two differently written 

programs: execution times, storage requirements, 
programming time, maintenance time 

g. Conversion of unstructured design to structured design 
h. Effect of program languages in structured programming 

10. Programming Projects Concepts 
a. Evaluation of programs for good structure 
b. Team approach: design and code walkthrough 
c. Program project coordinator (librarian): function and 

responsibility 
d. Standards: use of, examples, advantages 
e. Overview of project management methods: personnel assign-

ment activity sheets, Gantt charts, PERT charts 

11. The Programming Profession 
a. Career paths 
b. Professional ethics 
c. Licensing and certification considerations 
d. Professional societies 
e. Need for continuing education 

concerning potential career options. The student must be 
made aware of the role and responsibility of the program-
mer in the organization and in society as a whole. 

The content should be taught f rom the point of view of 
the programmer. Practical projects should provide the 
student with ah opportunity to analyze prewritten pro-
grams, to examine well-written documentation of pro-
grams, and to work with well-designed input and output 
forms. Students should be given poorly designed unstruc-
tured programs to convert to structured form. The student 
should be prepared to work with the tools of, and within 
the constraints of, the analyst's profession. Use of the 
traditional documentation forms should, therefore be 
extensive. 

Fundamentals of hardware should stress computer 
equipment and its function, individually and in a con-
figuration. Knowledge of various peripheral equipment— 

input, output, and storage—should encompass a broad 
range of systems, from programmable calculators to large-
scale configurations. Students should understand the 
equipment appropriate for a variety of typical applications. 
Software concepts should expose the student to the variety 
of software levels and languages and to the purposes of 
each. Concepts of metalanguages should offer some insight 
into the structure of languages. This should lead to an 
awareness of specialized concepts such as data definition 
languages, report generators, and database management 
and inquiry systems. 

4.2 Optional Computer Content 
Some colleges may wish to offer content in addition to 

the required computer content. Special interests of the stu-
dent often lead to the selection.of additional topics, which 
can lead to special types of employment or to transfer to 

169 



four-year programs. Some students may wish to elect a 
course in numerical methods, while others may wish to 
learn more about operating systems, data communica-
tions, or systems analysis. Optional additional topics 
recommended for coverage are given in Table III. 

Each two-year program should regularly perform an 
assessment of the needs of local industry. Based on the 
documentation of such a study, the institution may wish to 
include additional topics in the core requirements. Col-
leges serving communities with relatively advanced com-
puter work in high school may choose to design their pro-
gram to include more advanced courses. 

These topics are not intended to reflect courses even 
though some may warrant a full course. Several of these 
topics may be combined to form one course. Colleges 
should have the flexibility to offer topics or programs for 
the satisfaction of specialized community needs by pro-
viding short courses, modules, or community service 
seminars. 

4.3 Related Content 
In addition to being skilled technically as a computer 

programmer, a graduate must be able to use communica-
tions and other skills to work in an organization respon-
sibly, effectively, and productively. Subject matter con-
tent must therefore include materials to assure proper 
communication, fundamentals of mathematics and statis-
tics, and knowledge of organizational matters and infor-
mation flow within a company 

English Communications 
The importance of speaking, listening, and writing pro-

ficiently is increasingly recognized in both academic and 
professional spheres. Employers have declared that these 
abilities are as important as specific technical skills [35], 
Graduates must work closely with other computer and data 
processing personnel and must be able to communicate 
effectively. Written and oral instructions must be both 
received and given; technical reports and program 
documentation must be developed, written, and presented. 
Courses such as English grammer, English writing, tech-
nical writing, and speech should be a part of the curriculum. 

It is not enough, however, to specify that courses be 
taken. Computer-related courses should build upon, use, 
and thereby strengthen these skills. Opportunities to give 
presentations in class should be found. Verbal instructions 
must be given to strengthen listening skills. Writing and in-
terpreting narrative instructions should be part of student 
practice. Oral presentation must be required. Program 
documentation should be examined and evaluated for cor-
rect English as well as for correct form. Students should be 
expected to use these skills in all classes just as they will be 
expected to do on the job. 

Business Knowledge 
The computer programmer working in the computer 

applications area should be acquainted with certain fun-
damentals of the business and economic systems, at least 
as practiced in the local area being served by the college. 

Knowledge of the functions of a commercial organization 
and a comfortable use of its vocabulary are important. 
Skills needed in this area are often met through introduc-
tory business or economics courses. Further knowledge of 
information flow in an organization can be gained f rom a 
course in accounting. 

Class examples must include applications f rom the 
functions of business. Certain typical applications may be 
chosen for use in laboratory programming exercises. The 
presentat ion of each labora tory project should be 
thorough, so the student will understand both the applica-
tion and the processing needed. 

The programmer is most involved in the implementation 
phase of the systems cycle and must understand the appli-
cation being programmed. Information analysis must be 
performed by the analyst/designer to determine the best 
way to handle the application. Although the programmer 
needs an overall perspective of the entire system, more 
intensive emphasis must be given to the programmer's role 
in the implementation of the project. 

Mathematical Knowledge 
The computer programmer has many occasions to use 

communication skills. Mathematics also serves as a com-
munication language, for one's self and others. Logical 
thinking and reasoning skills can be improved and 
organization skills strengthened by using the structure of 
mathematics. It is therefore recommended that a minimal 
level of mathematical skills and vocabulary be attained by 
all those in the program. Students should complete at least 
one course in finite mathematics, including set theory and 
logic, probability, permutations and combinations, series 
and sequences, functions, linear equations, and matrix 
notation and manipulation. A course in elementary non-
calculus-based statistics should provide the necessary 
logical and vocabulary foundations of statistics. It should 
include the use of computerized statistical software pack-
ages. Students entering the program with a good mathe-
matics background may choose more advanced courses 
such as advanced algebra, differential and integral calculus, 
and linear algebra. 

Faculty in computer courses have the responsibility of 
seeing that students apply mathematical knowledge to 
their computer work. Mathematical vocabulary and usage 
should be brought into computer programming classes 
where they apply. The use of Venn diagrams, summation 
notation, logical tautologies, sums of sequences, and use 
of terms such as "frequency distribution" etc., should be 
part of the curriculum. Courses in mathematics, separate 
f rom other majors and especially designed to include 
applications from the computer field, would be helpful for 
computer programming majors. 

Perhaps more than any other area, the mathematics 
background and expertise of the graduate determines the 
number of future options available and the variety of 
directions open as career paths. For example, students 
expecting to transfer into programs in computer science, 
engineering, the sciences, or mathematics must necessarily 

170 



Table HI. Optional Additional Topics 

1. Additional Specialized Programming Skills 
a. COBOL, BASIC, FORTRAN, PL/ I , Pascal, APL, or other 

languages not already included in the chosen option 
b. Assembler languages (advanced) 
c. Microprocessor specialized statements 
d. Report program generators (e.g. RPG) 
e. DBMS query languages 
f. Other specialized languages 

2. Operating Systems and Job Control 
a. Monitors and executives 
b. Multiprogramming, multiprocessing, and multiaccessing 

considerations 
c. Virtual storage and paging 
d. New advances in operating systems concept 
e. New advances in data storage 

3 . Data Communications and Teleprocessing 
a. Overview of data transmission theories 
b. Coding systems and compatibility (ASCII, EBCDIC, etc.) 
c. Overview of error detection and correction 
d. Transmission methods 
e. Transmission equipment (data sets, acoustic couplers, etc.) 
f. Terminals 
g. Computer access and processing 

4. Database and Its Management 
a. Concepts 
b. File structures 
c. Data dictionaries 
d. Database management systems concepts 
e. Sources of software 
f. Costs and benefits of software 
g. Administration 
h. Standards for organization use 

be equipped with mathematical skills generally attained in 
the traditional course sequence leading up to and through 
calculus. Students choosing an emphasis in a scientific 
applied area would also choose the traditional calculus 
sequence of courses. Those expecting to transfer into 
business-related fields, however, will usually find that the 
courses recommended in this report are sufficient for con-
tinued study in quantitative methods. Students who plan 
to transfer should select mathematics courses suitable for 
their transfer program and institution. 

Applied Area of Specialty 
Each student anticipating a career in computer program-

ming should choose one applied area of specialty, rather 
than a series of elementary courses in several fields. Twelve 
semester credits or more should be taken in an applied area 
to give the graduate an area of expertise upon which to 
base computer programming skills. The selection of an ap-
plied area may be determined by the institution or may be 
chosen by the student. In most cases, the selection of the 
applied area should depend on criteria such as the ultimate 
goal of the student and job placement priorities. Mature 
returning students and students who already have a bac-
calaureate in another field often have an applied area 
established and need only to complete computer-related 
courses to obtain employment in the field. 

5. Computer Operations and Operations Management 
a. Operations of peripheral devices (tapes, disks, bursters, etc.) 
b. Console operation 
c. Use of job control language 
d. Job scheduling 
e. Control checks 
f. Dispatching and disbursing 
g. Routine production operations 
h. Record keeping and statistical data 
i. Billing 

6. Computer Hardware and Services 
a. Microprocessors and microcomputers 
b. Programmable calculators 
c. Standalone systems 
d. Terminals and leased computer services 
e. Remote job entry stations 
f. Timesharing systems 
g. Service bureaus 

7. Applications Software Packages 
a. Sources of packages 
b. Costs of implementation 
c. Evaluation of product 
d. Legal implications 
e. Contracts 

8. Systems Analysis for Information Systems 
a. Systems planning 
b. Feasibility studies 
c. Development of a system 
d. Evaluation of a system 

9. Systems Design for Information Systems 
a. Specification of logical systems 
b. Suggested implementation into a physical system 
c. Evaluation of design based on user needs 

The predominant applications area for computer pro-
grammers lies in the supportive functions of business and 
administration. For that reason, students in the curriculum 
choosing this area should learn as much as they can about 
specialized applications —payroll, inventory, financial 
management, banking, and similar courses. Courses chosen 
from advanced accounting, personnel management, bank-
ing, and marketing could be elected for an applied area 
specialty. 

Another applied area might be mathematics and statis-
tics to support the statistical data gathering, sampling, and 
the reporting functions of governmental agencies, as well 
as to support the programming needs of certain research 
and development agencies. Courses in this case include 
advanced algebra, differential and integral calculus, linear 
algebra, and calculus-based statistics. 

Many other applied areas could be chosen which lead to 
productive and interesting careers. The increasing use of 
computers in such diverse fields as biology, law, chemistry, 
psychology, the allied health fields, the humanities, and 
law enforcement offers a large spectrum of opportunities 
for a challenging profession. 

General Education 
Most states and institutions require 24 semester credits 

or the equivalent for general education in each associate 
level degree program. The requirements are usually chosen 

171 



by the student from categorical lists of accepted courses. 
Categories often included are English and the humanities, 
mathematics and science, and social and behavorial 
sciences. General education courses in psychology and 
speech are recommended. The others chosen should con-
tribute to the general cultural level of the student or reflect 
special areas of interest. Generally, courses in business and 
computer subjects are not considered general education 
subjects. 

4.4 Design Considerations 
Each institution must design its curriculum and the 

courses within it to fit its own mission and philosophy, the 
characteristics of its student clientele, the characteristics of 
its commercial environment, and the other educational 
opportunities available to students in this field in the com-
munity. 

Options within the curriculum are possible by means of 
choices: in the applied area; within the general education 
category ; in the major procedural programming language; 
and in mathematics. Some institutions may, after study of 
the community being served, wish to require that this ap-
plied area be in a business field. Others may wish to em-
phasize the scientific programmer option or the health ser-
vices programmer preparation. Some institutions may in-
stead prefer to advise students concerning job availability 
in the area and leave the choice of applied area to the 
student. 

The associate degree curriculum should be institutionally 
designed within the phi losophy of the guidelines 
presented. The program should be at least 60 semester 
credits, with at least 24 semester credits in computer-
related subjects. It should consist of 

(1) the required computer topics, 
(2) local-option computer topics and electives, 
(3) communica t ions , ma themat ics , and business 

requirements, 
(4) student-option electives for an emphasis in an 

applied field, 
(5) institutional and state general education require-

ments. 

The Committee has encouraged the publication of 
papers authored by interested community and junior col-
lege educators to provide several sample Curricula which 
meet the requirements of this report. Several of these are 
listed in Appendix B. By examining several different ways 
to accomplish the educational aims of this report, cur-
riculum planners may be better able to analyze their own 
situation and to establish a program especially suited to 
their needs. 

4.5 Major Programming Language 
Selection of the major programming language will de-

pend on the applied area and on local need. Recent na-
tional surveys indicate that the predominant problem-
oriented, procedural language for business work is 
COBOL. Some colleges may find, however, that another 

language, such as BASIC, FORTRAN, Pascal, or P L / I , is 
preferred for work in their local community. The major 
programming language chosen should be justified by 
documented results of recent surveys of the local area 
being served. 

With the tremendous growth of small computers, an in-
creased need exists for programming with report program 
generators such as RPG. Likewise, an increased growth in 
the number of large job shops using some form of database 
management system (DBMS) has led to an increased use of 
query languages by users as well as by applications pro-
grammers. The question about the appropriateness of a 
report program generator or a query language to serve as 
the major language in these recommendations has been a 
much debated and controversial one. The Committee ex-
amined the issue and concluded that although capability in 
the use of only nonprocedural programming tools might 
prepare the graduate for specialized technical employ-
ment, the graduate's potential career advancement might 
be limited. It is generally agreed that knowledge of only a 
nonprocedural language would be less transportable to 
procedural types of computer programming and that 
graduates would therefore be less capable of transferring 
the knowledge of that single programming medium to 
other languages, The Committee recommends that these 
specialized application-oriented package systems, such as 
the report generators and database query languages, be the 
second language in the program, a local-option require-
ment, or, in cases where the need is sufficient, the basis for 
a totally separate program. 

The initial exposure to programming need not be in the 
major programming language. There is much support for 
the benefit gained when a simple introductory language is 
used in a timesharing environment or on microcomputers. 
Many secondary schools now teach BASIC in this man-
ner. This approach has been found to be highly motiva-
tional and is relatively successful in exposing students to 
general programming concepts. With the advent of 
microcomputers, immediate response demand process-
ing is now feasible and is highly recommended as an initial 
introduction to programming. 

The quality of work of a computer programmer is greatly 
enhanced by a basic understanding of computer functions 
at the level of execution of instructions. For this reason, it 
is recommended that instruction in an. assembler language 
be part of the core. Assembler language could be taught as 
a separate hands-on programming course in a laboratory 
setting on whatever machine is available, as a course in 
elementary computer architecture with assembler pro-
gramming, or as part of the instruction in the major pro-
gramming language through the use of compiler-generated 
code. 

4.6 Access to Equipment 
Strong arguments have been given for hands-on exper-

ience [10]. With availability of computer system access 
ranging from desk-top computer to network, it is now 
possible and desirable for students to have experience with 

172 



different types of computer access. These should include 
(1) programming for a batch-oriented computer service 
facility, (2) programming for a timesharing system where 
each program is entered into the system once, accessed for 
a debugging session, and then replaced in updated form 
into the system, (3) programming in an interactive mode, 
where line-by-line diagnostics are provided and execution-
time input of data is in interactive mode, (4) hands-on 
access to online devices such as card readers and printers to 
see the relationship of program to job stream set up and to 
the use and control of forms, and (5) hands-on access to a 
central processing unit, which provides increased under-
standing of hardware/software interaction in program 
loading and execution. Experience with these different 
types of access need not be threaded throughout the entire 
curriculum; rather, each course may be designed to include 
one or more types of access. When not all of these types of 
access are available on site, special arrangements could be 
made with industry to provide limited experiences in other 
access methods. 

Instruction in the major programming language requires 
extensive laboratory practice. The major language pro-
gramming courses should include a scheduled laboratory 
period of at least two hours each week. This should be 
scheduled in one two- or three-hour block of time and 
should preferably be taught by the class instructor. 
Scheduled laboratory sessions should be provided with 
rapid, if not immediate, turnaround during the laboratory 
class. This is necessary to ensure that during the laboratory 
class each student be able to obtain experience with the 
compilation and execution cycle with classmates and 
instuctor present to discuss and explain situations as they 
arise. This could be provided by hands-on access to a 
remote job entry station, with students placing their pro-
gram decks into the computer input devices, initiating the 
run, and receiving their results within a very short time on 
the output printer. It could be attained on terminals by use 
of a text editor, by use of a computer system with an inter-
active procedural language, or by direct access to the con-
sole of a computer. Additional access should be available 
during certain other hours of the day so that students may 
return to work on their programming projects. Should 
that be impossible, computer service should be scheduled 
at least three times each day, or continuous service provided 
with no more than two hours turnaround. 

The controlled use of turnaround during the scheduled 
laboratory allows interaction between the instructor and 
the student, between the student and the computer, and 
among students. Such rapid turnaround has in some cases 
been abused when students eager to get a problem working 
tend to "change one thing and try it again" without really 
examining the logic of the program. When laboratories 
are used properly, groups of 15 to 20 students can have 
effective interaction with the computer, their instructor, 
and their classmates. 

The interface between the program and the computer 
system requires that the programmer be able to work with 
and control the operating system. It is recommended that 

both instruction in and use of an operating system be re-
quired. The student should have experience using program 
modules and utility program packages and should be able 
to catalog and recall programs f rom an on-line library. 
The student should be made aware of the job accounting 
systems used for recording time usage, storage usage, and 
supplies usage for the computer facility. 

4.7 Structured Programming 
Concepts of structured and disciplined programming 

should be threaded throughout all programming instruc-
tion. Students should be made aware of the basic control 
structures as they are first encountered and used. They 
should be taught to read and recognize well-structured 
programs. They should have experience with the use of 
structured walkthroughs and should be able to read and 
evaluate their own programs or programs written by 
others. Benefit can be gained from requiring written and 
oral explanation for the rationale behind the decisions 
made in coding a particular routine. Students should have 
practice in working alone and also in being a part of a pro-
gramming team. Class-monitored and instructor-monitored 
project management of the teams give the student an 
awareness of scheduling and timing considerations which 
are needed on the job. 

This curriculum content should give the student a good 
foundation with which to enter the job market. Materials 
from industry, such as standards manuals, project manage-
ment techniques, and program logic plan guidelines, would 
contribute toward making the student aware of the job 
requirement in that local area. Guest speakers f rom indus-
try and visits to local industry settings are recommended. 

5. Resources for Implementation 

Attention must be given to the many problems of imple-
menting and maintaining a computer-related curriculum. 
Colleges should not attempt to implement a program 
unless they are fully committed to the necessary investment 
in time and money to acquire and maintain a competent 
faculty and up-to-date computer resources. The acquisition 
of qualified staff and access to appropriate computer 
equipment and services is critical. The organization and 
placement of the academic department in relation to other 
college departments and to the computer facility affects 
the ease in maintaining the viability of the curriculum. The 
rapidly changing nature of the topical content, program-
ming languages, and equipment leads to a need for easy 
adaptability for change. Ways must be found to keep both 
faculty resources and computer resources up to date. 

5.1 Organizational Matters 
The need for talented graduates in computer-related 

occupations continues to increase as computers are more 
widely used. Courses may be initiated in a number of exist-
ing departments, with possible diffusion of effort and 
undesirable competition among departments. It is recom-

173 



mended that, where possible, one academic department or 
group be chosen as the host for computer course develop-
ment to house the faculty and the curricular planning 
efforts. Where that is not possible, strong emphasis should 
be given to liaison between departments to allow shared 
courses, faculty, and equipment. 

The relationship between the academic department and 
its computing facility must be a close one. Although no 
one organizational structure is being recommended, the 
structure must supply equipment requirements and access 
specified. Some colleges could choose to have a chair-
director, responsible for both the academic program and 
the computer services center. Another common structure 
has an administrative computer services manager at the 
same organizational level as the academic department 
chair. Separate facilities, one for the academic department 
and one for the computer services center, might be con-
sidered in some cases. Each community college should 
analyze its college-wide needs and weigh the several alter-
natives. No matter which alternative is employed, close 
communication and mutual respect for interests and needs 
must be maintained to ensure the cooperation necessary 
for the viability of the curriculum. 

5.2 Faculty and Staff 
A substantial portion of the faculty should be maintained 

in full-time positions to provide coverage of the topics 
required, especially since part-time day faculty are extremely 
difficult to find. Qualifications for faculty in the com-
munity colleges are generally based on the master's degree 
as a minimal academic requirement. Graduates from data 
processing, computer science, or information systems pro-
grams are preferred as instructors. Experience in industry 
as a programmer or analyst is recommended. Graduates 
from related areas such as business, accounting, economics, 
engineering, or mathematics are often qualified after 
several years of work experience in the computer field. 
People with a degree and recent experience in business 
data processing are also qualified. 

Graduate programs in data processing, computer science, 
and information systems are producing a very limited 
number of potential faculty. Community colleges have 
not been able to compete with what industry and the 
universities have to offer these graduates: an opportunity 
to work with up-to-date equipment on interesting new 
applications for a higher salary. Many faculty now teaching 
in the programs have degrees in noncomputer-related 
fields, with training and experience f rom industry. Many 
others have come from the ranks of faculty in other related 
departments, as enrollments in their field decreased, or as 
their interests in the computer field were aroused. Hence 
community colleges must currently work for professional 
development of existing faculty, while also attempting to 
recruit new teachers from industry and the graduate schools. 

Laboratory attendants are often needed, either full time 
or part time, to work in open laboratory settings to allow 
students continued access to equipment. With the help of 
these personnel, valuable equipment can be attended and 

maintained, supplies can be readily available, and special-
ized assistance to students can be given.,Desirable qualifi-
cations for laboratory attendants are an associate degree 
in the field, an interest in helping students, familiarity with 
equipment and programming languages, and responsibility 
toward established duties. 

At least one additional person must be responsible for 
the systems programming effort necessary to maintain the 
computer system, its operating system, library, program-
ming languages, and software. As updates to program-
ming language packages are received from the manufac-
turer, they must be inserted into the existing system. This 
person may be faculty or staff, depending on the organi-
zational structure of the academic department and the 
computer facility used in the institution. In cases where 
this person is a teaching faculty member, released time 
must be provided. 

5.3 Equipment and Access 
It is vital that a computer resources laboratory be avail-

able for class work to be done in this curriculum. There are 
several ways to supply this laboratory resource, including 
the use of one or more on-site computers, a computer shared 
with administration, leased services, or data communica-
tions access to a remote computer. Computer usage may 
also be obtained from local industry or from a neighboring 
college. Computer resources are available through manu-
facturers, leasing companies, and computer service centers. 
A great deal of effort may be needed to determine the most 
effective and efficient way to provide the computer 
resources needed for the curriculum and college. 

The computer resources laboratory should provide 
computer service and access and ample data entry key 
devices for program and data preparation. Space must 
also be provided for data and program preparation and 
for checkout. The preparation area should be located near 
the data entry area and should have work tables. Space 
must also be provided for computer reference manuals. 
This area could also serve as a central location for current 
computer-related periodicals and newspapers. 

It is impossible to specify one computer configuration 
that would be suitable for all two-year programs. A mini-
computer may be suitable for one and a medium-scale 
computer better for another program. A microcomputer 
laboratory could be used in a network configuration. 
Department needs are often tied through the equipment 
administration to those of other departments. When other 
departments have an extensive use of computer-assisted 
instruction, sharing resources can present a criticial prob-
lem. It is important that the entire college community be 
aware that, for the curriculum described in this report, the 
facility is a classroom laboratory. Stated needs and access 
must not be overrun by well-meant efforts to centralize 
and economize. 

It is difficult to specify needs solely on the basis of total 
enrollment in the department. A course requiring hands-
on access and immediate turnaround may meet within the 
computer room* itself, may use a microcomputer labor-

174 



atory, or may use a remote job entry station. A course 
requiring batch-processing will need data entry machines. 
The quantity depends on the number of students in the 
course and the programming language being taught. The 
number of timesharing terminals or microcomputers 
needed will depend on the number of students in courses 
requiring their use. The number of hours of computer time 
needed for runs outside those scheduled for class 
laboratories will depend on the number of projects assign-
ed in each course and the average number of runs required 
for each student. Data should be collected for an analysis 
of computer facility needs. 

5.4 Instructional Materials 
Many good textbooks are now available. A survey of 

current books is published annually by the Computing 
Newsletter. A library list of current books has been 
published jointly by ACM and IEEE (see Appendix A2). 
Exhibits of current books are held each year at annual con-
ferences of the various computer associations, as well as at 
the National Computer Conference, sponsored by AFIPS, 
the Computer Science Conference, sponsored by ACM, 
and the National Educational Computing Conference. 
Many sources of material and ideas are available through 
publications of the professional computer societies and 
proceedings of their conferences. Content articles in 
publicat ions of the Data Processing Management 
Association, the Association for Educational Data 
Systems, and newsletters of the ACM Special Interest 
Groups for Business Data Processing, Computer Science 
Educat ion, and Computer Personnel Research are 
especially helpful (see Appendix A3). 

Laboratory materials are less readily available and are 
often unsuited to particular equipment and/or courses. 
Development of laboratory exercises often must be done 
by the faculty. Development involves a major time commit-
ment on the part of the faculty; this commitment should 
be recognized by the institution and assigned as a part of 
the faculty load. 

The use of technology as an aid to instruction has been 
much debated and discussed. Computer-assisted instruc-
tion and computer-managed instruction have not been 
generally available for the teaching of computer-related 
subjects at the two-year college level. More programmed 
material is becoming available for use on microcomputers. 
Some equipment manufacturers provide tutorial packages 
for programming language instruction with lease or pur-
chase of equipment; these packages should be used where 
they suit the needs of the curriculum and the equipment 
being used. Information about progress in this area is 
available through the ACM Special Group for Computer 
Uses in Education (SIGCUE) (see Appendix A3). 

Many videotape and audio cassette tapes have been pro-
duced. Videotape and cassette player/recorders may be 
used in the classroom and laboratory. Students may replay 
lessons for individual learning and may watch themselves 
giving oral presentations. Faculty may use these media to 
bring in recorded material for in-class activities or may 

record assignments or solutions to assignments. Videodisk 
materials will be available soon. 

Commercially available film and film strips are becom-
ing more prevalent. Many good films are available, with-
out charge, from equipment manufacturers and university 
suppliers. A bibliography of films is available (see Appen-
dix A2). 

5.5 Adaptation for Continued Relevance 
The computing field is one of rapid change. Many of the 

changes occurring are transparent to the general computer 
user, but they are a part of the computer professional's 
livelihood. The half-life of a computer professional (the 
time it takes the knowledge to decay to a state in which it 
can provide only half of the facts or techniques to do the 
job) was estimated in the 1950's to be about ten years, and 
in the 1960's to be about five years. In 1970 it was estimated 
to be three years. It is perhaps now even less. Planning is 
therefore vital to ensure that continual adaptation is as 
easy to accomplish as possible. 

Faculty 
The most critical factor contributing to the success of 

this program is a well qualified and dedicated faculty. It is 
vital that faculty members participate in workshops with 
other computer professionals, attend educational con-
ferences, and continue to get experience in industry, either 
through consulting work, by supervision of field projects 
of students, through summer employment in industry, or 
by sabbatical leaves. Faculty should read computer jour-
nals and literature in order to keep up with new hardware 
and software developments. It is essential for faculty to 
understand the differences in implementations of pro-
gramming languages on more than one configuration. 
Their own experience on different equipment allows them 
to instruct students in such a way that the students are 
aware of the differences that exist. Faculty should be 
encouraged to participate in self-assessment procedures 
and take certification examinations. 

Equipment 
Community and junior colleges cannot always have the 

exact version of the hardware configuration that the stu-
dent is likely to encounter on the job. It is possible, 
however, to offer the student an acquaintance with each of 
the types of access to a computer likely to be encountered 
and to give an exposure to the prevalent configurations of 
equipment found in the area. College equipment need not 
be the only computer access nor the only configuration 
shown to the student. 

Field trips to other locations and usage of other compu-
ters make it possible for students to be aware of changes in 
computers and configurations. Colleges with a batch-
processing computer and no timesharing capability could 
consider using the services of a local university, either by 
telephone or by taking students to the university for their 
laboratory sessions. Colleges with their own timesharing, 
but no access to a large batch machine, could arrange for a 
local company to provide daily service for certain courses. 

175 



Microcomputers could be used to allow interactive pro-
gramming experience. Internships in local industry could 
provide practical experience with operating computers in a 
hands-on access manner when not available on-site. 

Curriculum 
Each college must choose a course structure for its topi-

cal content. Progress in educational research may well 
contribute toward ways to improve course structuring and 
methods of presentation and instruction. Advisory com-
mittees can provide valuable information about commun-
ity customs and needs. As students complete the program 
and become employed, they can give invaluable advice con-
cerning what changes in the program may be needed. Con-
tinual evaluation of the suitability of the graduates for 
employment, and examination of their professional success 
and career development within the industry, must be done. 

6. Articulation 

6.1 Industry 
An important measure of the success of this program is 

that obtained from job placement records of the graduates. 
Their ability to get, and to retain, pertinent employment in 
commerce, industry, and government is one criteria for 
evaluating the program. 

Throughout the history of two-year programs, place-
ment of graduates in computing occupations has been 
good. In many communities, the community or junior col-
lege has been the only source of new computer personnel. 
Many companies, however, have consistently hired non-
computer-educated baccalaureate and master level appli-
cants and provided them with in-house training. In some 
cases, experience on the specific computer configuration 
to be used has often been the most important measure for 
evaluation of applicants. Graduates have in many cases 
been offered positions a level below their preparation, 
often at the operator level. Community and junior colleges 
must recognize that although a strong need for computer 
programmers exists, and is increasing, the quality of the 
programs must be maintained and matched to the needs of 
industry. 

Good relations with local industry must be developed. 
Industry and the institution can both benefit. These rela-
tionships can lead to the continuing relevance of the cur-
riculum and to an increasing opportunity for industry — 
college interaction such as cooperative work —study, 
internships, or part-time employment for students. These 
are extremely valuable, but require administrative coor-
dination. Assignments of this nature should be a part of 
the faculty teaching load. On-the-job experiences are 
valuable in giving the student early exposure to the job 
environment and offer an opportunity to make more in-
formed career decisions. Often motivation is increased 
and a better job placement can be secured upon graduation. 

Surveys of the needs of industry in the community being 
served should be made and viewed in light of the offerings 
of other neighboring educational programs in an effort to 

match the educational program to the expected need two 
years hence. One study done in an effort to determine 
whether educational offerings were matched to correspond-
ing industry requirements revealed that they were not [32]. 
Increased interactions with industry are vital both to in-
dustry and to the educational institution. It is important 
for educators to have increased awareness of industry 
needs and practices and for industry to be aware of the 
educational offerings in their area. This mutual awareness 
can lead to more consistent and uniform hiring practices-in 
specific job categories, which should be beneficial to 
industry and education, employer and employee. . 

Formal ties between the institution and local industry 
representatives should be established through curriculum 
advisory committees. Advisors should meet on a regular 
basis with college faculty and staff. This regular contact 
between faculty and advisory committee can be used to en-
sure continuing appropriateness for local needs. Reports 
giving advice on how to initiate and use an advisory board 
are available (see Appendix B). 

Department members should maintain direct communi-
cation with employers. Too often formal contact with pros-
pective employers is maintained by other offices within the 
college. Curriculum managers and teachers benefit 
tangibly by involving themselves in sessions with company 
representatives. The exchange of information regarding 
current and future systems, methods, and languages con-
tributes toward interaction and increases the opportunity 
for placement of graduates. Opportunity for this inter-
action in a relaxed atmosphere is often possible through 
local chapters of professional societies such as ACM, 
ACPA, AEDS, ASM, or DPMA. 

Timely feedback f rom graduates of the program 
presently employed in industry is also important in keep-
ing the curriculum in line with local needs. Surveys con-
cerned with the preparedness of recent graduates for their 
employment situation should be done every two years. 
Follow-up studies on all alumni are useful for tracing the 
career paths of graduates. Workshops can be offered for 
alumni to update skills and provide feedback on the pro-
gram. 

Contact should be made with local, state, and federal 
governments so that faculty become acquainted with the 
requirements for government programmers. Some of these 
jobs require entrance tests, experience, and four-year 
degrees. The present United States government position of 
computer programmer, for example, ranges from GS-5 
through GS-15 and is not open to community college grad-
uates without experience. Faculty and students are advised 
to obtain the most recent job requirements and descriptions 
as they are subject to change [37], 

6.2 Other Educational Institutions 

Secondary Schools. 
The number of secondary schools which offer computing 

is increasing rapidly. A suggested curriculum for grades 
9—12 has been published (see Appendix Al ) . It is impor-
tant that high school students in computer-oriented pro-

176 



grams or courses be made aware of transfer possibilities to 
two-year colleges. College faculty should maintain close 
contact with the respective departments at the high school 
level in order to improve articulation. Secondary school 
students who complete courses equivalent to the material 
recommended in this report should be able to obtain ad-
vanced placement in the program, early admissions, or 
have a means of obtaining credit by examination. Courses 
and programs should be reviewed periodically, in order to 
keep the high school student informed about the equiva-
lence or nonequivalence of the course content. 

Four-Year Programs 
The curriculum outlined in this report is designed to be a 

two-year career program to prepare students for jobs. 
However, departments which offer this program must 
articulate with representatives in appropriate departments 
of nearby baccalaureate degree granting institutions in 
order to facilitate transfer. 

Articulation is complicated because of the varied types 
of course structures existing in the different educational 
levels and the variety of departments teaching computer-
related courses. A great deal of time can be consumed in 
this effort . However, the benefits to students and faculty 
are well worth the effort . Articulation guidelines should be 
prepared and made available to students entering computer-
oriented curricula. 

Students who make a decision to transfer should select 
courses suitable for transfer. Graduates of the program 
who work for a time and_then continue toward a bacca-
laureate degree may find that additional lower division 
courses are needed as prerequisites to certain upper divi-
sion level courses. Students who transfer into computer 
science programs will need to take the sequence of courses 
in calculus to prepare for later work. Students who transfer 
into data processing, information processing, or informa-
tion systems management may find that most courses taken 
as part of the recommended program will transfer for 
credit, but not necessarily as equivalent courses. Some 
courses may transfer only as lower division electives. 

One or more two-year college department members 
should be assigned to serve in continuing liasion to the 
transfer institution. They must keep in close contact with 
the four-year college representative from the appropriate 
department to facilitate the identification of course 
equivalences. College-wide liasion resulting in formal 
transfer agreements has been documented (see Appendix 
B). Articulation of this kind is an ongoing process and 
requires an ongoing effort . 

Other Two-Year Programs 
Although students do not often transfer between com-

munity and junior colleges, circumstances sometimes lead 
students to take one or more courses at a neighboring col-
lege. Colleges should cooperate in making this student 
movement as easy as possible. Regular meetings of faculty. 
from'area colleges could facilitate this cooperation and are 
encouraged. 

Accreditation Agencies 
Guidelines for use by accreditation agencies could help 

ensure that technically oriented career programs produce 
quality graduates. Their recommendations could influence 
course content and could encourage responsiveness to 
community needs. The ACM Accreditation Committee has 
initiated an effort to establish such recommendations for 
the two-year level. Contact ACM for the status of this work. 

6.3 The Computer Profession 
Certification examinations in computer programming 

are now available for the senior level programmer in three 
specialties: business applications, scientific applications, 
and systems programming. They are sponsored by eight 
professional societies through the Institute for Certification 
of Computer Professionals (ICCP). The senior level of this 
certification test is beyond the scope of an associate degree 
graduate without experience. An entry-level examination 
suitable for the graduates of a program such as that given in 
this report is in progress. Contact ICCP for more informa-
tion (see Appendix Al) . 

Activities to assist students to become familiar with the 
profession are encouraged. Professional societies can pro-
vide sponsorship for student clubs and guest speakers for 
special activities. Attendance at regional computer exhibits 
offers an opportunity for professional interactions for 
students and faculty. Many colleges sponsor computer fairs, 
often in conjunction with high schools. Local program-
ming competitions can be held each year for students, with 
winners encouraged to enter regional and national com-
petitions regularly sponsored by ACM (see Appendix C). 

7. Summary 

This report is the consensus of a large number of educa-
tors and industry practicioners. It gives guidelines and 
recommendations for the design of a curriculum to educate 
entry-level applications computer programmers. It pro-
vides a flexible framework within which a two-year asso-
ciate level degree career program can be constructed to 
prepare students for local jobs and at the same time give 
them a foundation for continued learning. 

Rapid changes which affect the work of computer pro-
grammers will no doubt continue to occur. It is important 
that curriculum developers plan for ways to allow for 
almost continued adaptation. It is also critical that career 
advisement for this field include information about its 
dynamic and volatile nature. Those entering this field 
must expect continual change, continual adaptation, and 
continual challenges. Those who have talent and enjoy this 
type of work can expect to find much opportunity for an 
exicting career. 

Many members of the Committee and participants of 
the workshops have indicated that they have benefited 
from their involvement with this effort . The Committee, 
listed in Appendix F, welcomes queries about, and con-
tinuing feedback from, these recommendations. 

177 



References 
1. Berger, R. Computer Programmer Job Analysis Reference Text. 
AFIPS Press, Arlington, Va., 1974. 
2. Brightman, R. W. (Ed.) The Computer and the Junior College 
Curriculum. American Association of Community and Junior Col-
leges, One DuPont Circle, N.W., Washington, D.C., 1970. 
3. The Center for Vocational and Technical Education. Business 
Data Processing Occupational Performance Survey. The Ohio State 
University, Columbus, Ohio, March 1973. 
4. Charp, S. Scientific Data Processing Courses in Vocational and 
Secondary Schools. IBM Data Processing Report E20-0092-0. 
5. Cottrell, S., IV, and Fertig, R. T. Applications software trends: 
evolution or revolution. Government Data Systems 7, 1 (Jan./Feb. 
1978), 12-13, 26. 
6. Couger, J. D. (Ed.) Curriculum recommendations for under-
graduate programs in information systems: a report of the ACM 
Curriculum Committee on Computer Education for Management. 
Communications of the ACM 16, 12 (Dec. 1973), 727-749. 
7. Couger, J. D. The programmer's work bench. Computing 
Newsletter (Feb. 1980), 2-3. 
8. Curriculum Committee on Computer Science. Curriculum 68: 
recommendations for academic programs in computer science; a report 
of the ACM Curriculum Commit tee on Computer Science. 
Communications of the ACM 11, 3 (March 1968), 151-197. 
9. DeCamp, D. Employment: the 1981 outlook. Computerworld 
XV, 1, (Dec. 29/Jan. 5, 1980), 44-48. 
10. Desautels, E. J. On computing facilities for computer science. 
Computer (Nov. 1974), 39-48. 
11. Dooley, A. Programmers number 1 in employer demand. 
Computerworld (Oct. 6, 1980), 1. 
12. Education Division, U.S. Department of Health, Education, and 
Welfare. Associate Degrees and other Formal A wards Below the Bac-
calaureate: Analysis of Six-Year Trends. U.S. Government Printing 
Office, Washington, D.C., 1978. 
13. Fox-Morris Recruitment Network. The Fox-Morris Report III, 3 
(1981), 1. 
14. Gordon, R. Applications programmers: an endangered species? 
Computer Careers News 2, 5 (April 6, 1981), 1. 
15. Half, R. Look (within) before you leap to new job. Data Manage-
ment 18, 5 (May, 1980), 21-23. 
16. Hamblen, J. W. Computer Manpower—Supply and Demand by 
States. Information Systems Consultants, R.R. 1, Box 256A, St. 
James, Mo., 1973, 1975 and 1981. 
17. Hamblen, J. W., and Baird,.T. B. Fourth Inventory of Computers 
in U.S. Higher Education, 1976-77. EDUCOM, Princeton, N.J., 1979. 
18. Korn, W. and Laub, J. A Suggested Curriculum for the Two-Year 
Associate Degree Business Data Processing Program. Wisconsin Board 
of Vocational Technical and Adult Education, 4802 Sheboygan 
Avenue, Madison, Wis., 1973. 
19. LeDuc, A. L., Jr. Motivation of programmers. Data Base, 
(A Quarterly Publication of SIGBDP), (Summer 1980), 4-12. 
20. Lee, A. L., III. A Followup Study of Computer Science Grad-
uates of East Texas State University and El Centro Community 
College. University Microfilms, International, 1977, 77-27, 555. 
21. Little, J. C. Computer science-related degree programs at the 
associate level. In J. Hamblen and C. P. Landis, The Fourth Inventory 
of Computers in Higher Education: A n Interpretive Report. EDUCOM 
and Westview Press, Boulder, Colo., 1980. 
22. Little, J. C. Where are our students going? Proceedings of the 

June 1973 SIGUCC Symposium. Association for Computing Machin-
ery, New York, N.Y., 1973. 
23. Mantei, M. The effect of programming team structures on pro-
gramming tasks. Communications of the ACM 24, 3 (March 1981), 
106-113. 
24. Maryland State Department of Education. Maryland Business 
Data Processing Advisory Committee Report, 1974. Maryland State 
Department of Education, Division of Vocational-Technical Educa-
tion, P.O. Box 8711, BWI Airport, Baltimore, Md., 1974. 
25. McLaughlin, R. A. That old bugaboo, turnover. Datamation 25, 
11 (Oct. 1979), 96-101. 
26. National Science Teacher Association. PIP Newsletter, Anlnfor-
mational Publication of the Project on Information Processing I, 
1 (Feb. 1963) 1. 
27. Office of Education. Data Processing Technology—A Suggested 
Two Year Post High School Curriculum. U.S. Department of Health, 
Education, and Welfare, Office of Education, Stock Number 
1780-01240, U.S. Government Printing Office, Washington, D.C., 
1973. 
28. Office of Education. Electronic Data Processing — 1, A Suggested 
Two Year Post High School Curriculum for Computer Programmers 
and Business Applications Analysts. U.S. Department of Health, 
Education, and Welfare, Office of Education, FS5. 280:80024, U.S. 
Government Printing Office, Washington, D.C., 1963. 
29. Office of Education. Electronic Data Processing in Engineering, 
Science and Business. U.S. Department ofHealth, Education and Wel-
fare, Office of Education, FS5. 280:80030, U.S. Government Printing 
Office, Washington, D.C., 1964. 
30. Office of Education. Scientific Data Processing Technology—A 
Suggested Two Year Post High School Curriculum. U.S. Department 
of Health, Education, and Welfare, Office of Education, FS5. 
280:80068, U.S. Government Printing Office, Washington, D.C., 1970. 
31. Philips, J. W. Entry-level position of computer programmer: a 
survey. SIGSCE Bulletin 12, 1 (Fall, 1980), 198-202. 
32. Pollack, M. An Abstract of Principal Employers' Personnel 
Requirements and Higher Education Course Offerings in Data Pro-
cessing. Bronx Community College, New York, N.Y., 1973. 
33. Rohrbach, J. J., Jr. (Ed.) A Catalog of Performance Objectives, 
Criterion-Referenced Measures, and Performance Guides for Pro-
gramming. Vocational-Technical Educational Consortium of States, 
Georgia Department of Education, Atlanta, Ga., 1976. 
34. Shelly, G. The future: a step forward or a step backward. 
Software 1, 1 (Jan. 1981), 34-38. 
35. Taylor C. A. Knowing business and how to communicate best 
learned skills, study reveals. Data Management 19, 6 (June 1981), 34-37. 
36. United States Bureau of Labor Statistics. Occupational Outlook 
Handbook, 1979-1980. 
37. United States Civil Service Commission. Standards for computer 
specialist series, GS-334. Standards Division, Washington, D.C., most 
recent edition. 
38. Winkler, C. Martin: applications development without program-
mers is here. Computer Career News 2, 1 (May 4, 1981), 1-4. 
39. Withington, F. G. 1980: separating fact from fantasy. Data-
mation 26, 1 (July 1980), 76-82. 
40. Yohe, J. M. An overview of programming practices. Computing 
Surveys 6, 4 (Dec. 1974), 221-245. 
41. Zelkowitz, M. V. Perspectives on software engineering. Com-
puting Surveys 10, 2 (June 1978), 197-216. 

178 



Appendices 

Appendix A. Reference Materials 

1. Computer Programming as a Career 

1. American Federation of Information Processing Societies, Inc. 
A Look into Computer Careers. 1815 North Lynn Street, 
Arlington, VA 22209, 1980. 

2. Association for Computing Machinery. Self-Assessment Pro-
cedures. 1133 Avenue of the Americas, New York, NY 10036. 

3. Babb, P. A computer career: how to get there from here. AEDS 
Monitor 19, 4-6 (Nov. 1980), 7-23. 

4. Computers and Careers, A Suggested Curriculum for Grade 9-12. 
Superintendent of Documents, U.S. Government Printing 
Office, Washington, DC, Stock Number 1780-1241. 

5. Data Processing Management Association. Your Career in Data 
Processing. 505 Busse Highway, Park Ridge, IL 60068. 

6. Griffin, J .P. The job outlook in brief. Occupational Outlook 
Quarterly, U.S. Government Printing Office, Washington, DC 
20402 (most recent issue). 

7. Hansen's Weber Salary Survey on Data Processing Positions, 
1080 Green Bay Road, Lake Bluff, IL 60044, latest edition. 

8. Institute for the Certification of Computer Professionals (ICCP). 
The Psychological Corporation. Report of the 1980 Certificate in 
Computer Programming Examinations. 757 Third Avenue, NY 
10017, Feb. 1981. 

9. Maniotes, J. and Quasney, J.S. Computer Careers. Hayden 
Publishing Company, 1974. 

10. McDaniel H. Careers in Computers and Data Processing. 
Petrocelli Books, 1978. 

11. Northwest Regional Educational Laboratory. Elements of Com-
puter Careers. Prentice-Hall, Inc., 1977. 

12. Occupational Outlook Handbook, U.S. Department of Labor, 
Bureau of Statistics, 1980-1981. 

13. Stibbens, S. The movement is up, up, and away. Infosystems 
(Dec. 1980), 75-76. 

14. Taylor , R . P . , and Fisher, J . The relative importance 
of sources of information for keeping programmers up-to-date. 
Proceedings of the Sixteenth Annual Computer Personnel 
Research Conference, ACMSIGCPR, Aug. 16-17, 1979, 34-43. 

15. Willoughby, T.C. Programmer exemption. Computer Personnel 
(A Quarterly Publication of the SIGCPR) 8, 2 (March 1980), 
10-15. 

16. Zalud, B. Ascent of EDP career cliff: dangers, set-backs and 
rewards. Data Management (Sept. 1977), 11-13. 

2. Instructional Bibliographies 

1. Annual bibliography of computer-oriented books. Computing 
Newsletter. Box 7345, Colorado Springs, CO 80933. 

2. Cougar, J.D. Ed. Interesting films to use in dp instruction. 
Computing Newsletter XIV, 9 (May 1981), 6. 

3. Lidtke, D. Computers and Computer Applications: A Film 
Bibliography. OCCE Special Report - A Publication of the Cur-
riculum Group of the Oregon Council for Computer Education, 
4015 S.W. Canyon Road, Portland, OR 97221, Feb. 1977. 

4. Joint Committee of the ACM and IEEE. A Library List on 
Undergraduate Computer Science, Computer Engineering, and 
Information Systems. IEEE Publication EH0131-3, 1978. 

3. Newsletters and Periodicals 

1. AEDS Journal, Association for Education Data Systems, 1201 
Sixteenth Street, N.W., Washington, DC 20036. 

2. Communications of the ACM, 1133 Avenue of the Americas, 
New York, NY 10036. 

3. Computer, I E E E C o m p u t e r S o c i e t y , 10662 Los 
Vaqueras Circle, Los Alamitos, CA 90720. 

4. Computer Decisions, Hayden Publishing Co., 50 Essex St., 
Rochelle Park, NJ 07662. 

5. Computer Personnel, A Quarterly Publication of the SIGCPR, 
ACM, 1133 Avenue of the Americas, New York, NY 10036. 

6. Computerworld, 797 Washington Street, Newton, MA 02160. 
7. Computing Reviews, ACM, 1133 Avenue of the Americas, New 

York, NY 10036. 
8. Computing Newsletter, J. Daniel Couger (Ed.), Box 7375, 

Colorado Springs, CO 80933. 
9. Computing Surveys, ACM, 1133 Avenue of the Americas, New 

York, NY 10036. 
10. Data Base. A Quarterly Newletter of SIGBDP, Special Interest 

Group for Business Data Processing, ACM, 1133 Avenue of the 
Americas, New York, NY 10036. 

11. Data Management. Data Processing Management Association, 
505 Busse Highway, Park Ridge, IL 60068. 

12. Datamation, P.O. Box 200, Greenwich, CT 06830. 
13. DP/ED, North American Publishing Co., 401 North Broad 

Street, Philadelphia, PA 19108. 
14. EDP Analyzer, 925 Anza Avenue, Vista, CA 92083. 
15. Government Data Systems, United Business Publications, Inc., 

750 Third Avenue, New York, NY 10017. 
16. Infosystems, Hitchcock Publishing Company, P.O. Box 3007, 

Wheaton, IL 60187. 
17. Interface, The Computer Education Quarterly, Mitchell 

Publishing Company, 116 Royal Oak, Santa Cruz, CA 95066. 
18. Mini-Micro Systems, Cahners Publishing Co., 211 Columbus 

Ave., Boston, MA 02116. 
19. MIS Quarterly, 269 19th Avenue South, University of Minnesota, 

Minneapolis, MN 55455. 
20. SIGCAS Bulletin, A Quarterly Publication of the Special Interest 

Group for Computers and Society, ACM, 1133 Avenue of the 
Americas, New York, NY 10036. 

21. SIGCSE Bulletin, A Quarterly Publication of the Special Interest 
Group on Computer Science Education, ACM, 1133 Avenue of 
the Americas, New York, NY 10036. 

22. SIGCUE Bulletin, A P u b l i c a t i o n of the Spec i a l 
Interest Group on Computer Uses in Education, ACM, 1133 
Avenue of the Americas, New York, NY 10036. 

23. The Computing Teacher, International Council for Computers in 
Education, Eugene, OR 97403. 

Appendix B. Curriculum Implementation Material 

1. Beil, D. H. The data processing curriculum of the National 
Technical Institute for the Deaf: a suggested implementation for 
an AAS degree program in computer programming. Proceedings 
of the ACM Annual Conference, 1978, 812-821. 

2. Dillman, R.W., Anderson, W.H, Choper, D.L., Lloyd, J.M., 
Simms, K.B., and Williams, J.F. Two-year curricula in computer 
studies —implementing the guidelines. SIGCSE Bulletin 10, 
3 (Aug. 1978), 140-150. 

3. Gorgone, J. T., and Schrage, J. F. A design for the education of 
computer programmers at the associate level within a bac-
calaureate level institution. Proceedings of the ACM Annual 
Conference, 1978, 807-811. 

4. Lee, I. H., and Plog, C. E. A design for a community/junior col-
lege curriculum with options for two neighboring institutions. 
Proceedings of the ACM Annual Conference, 1978, 798-806. 

5. Illinois Office of Education. A Guide for Planning, Organizing, 
and Utilizing Advisory Councils. Division of Vocational 
Technical Education, Illinois Office of Education, IOC) North 
First Street, Springfield, IL. 

179 



6. Little, J. C. An overview of ACM guidelines and recommenda-
tions for a community and junior college career program in com-
puter programming. Proceedings of the ACM Annual Con-
ference, 1978, 793-797. 

7. Little, J. C. The status of computer education in the community 
and junior colleges — needs and alternatives. Proceedings of the 
National Computer Conference, AFIPS Press, Arlington, VA, 
1978. 

8. University of Illinois. A Transfer Handbook for Junior College 
Students, Academic Advisors, and Counselors. University of 
Illinois at Urbana-Champaign, Urbana, IL. 

9. Maniotes, J. The state of undergraduates computer and data pro-
cessing programs at public universities in Indiana. SIGCSE 
Bulletin 6, 1 (Feb. 1974), 53-58. 

Appendix C. Student Activities and Memberships 

1. Association for Computing Machinery, 1133 Avenue of the 
Americas, New York, NY 10036. 

2. Assoc ia t ion for Systems M a n a g e m e n t , 24587 Bagley 
Road, Cleveland, OH 44138. 

3. Data Processing Management Association, 505 Busse Highway, 
Park Ridge, IL 60068. 

Appendix D. Sources of Job Descriptions 

1. Datamation magazine, Technical Publishing, 666 Fifth Ave., 
New York, NY 10103. 

2. Infosystems magazine, Hitchcock Publishing Co., Hitchcock 
Building, Wheaton, IL 60187. 

3. Philip H. Weber Services, A. S. Hansen, Inc., 1080 Green Bay 
Road, Lake Bluff, IL. 

4. Installation management: Organizing the DP Activity. IBM Cor-
poration, Dept. 824, Technical Publication/Systems Depart-
ment, 1133 Westchester Avenue, White Plains, NY 10604. 

5. Occupations in Electronic Computing Systems. U.S. Department 
of Labor, Superintendent of Documents, Washington, DC 
20402. 

Appendix E. Contributors and Workshop Participants 

Workshops Participants, August 11-13, 1975, Gloucester 
Point, Virginia 

Richard H. Austing, University of Maryland 
Bruce Barnes, National Science Foundation 
Frank Cable, Pennsylvania State University 
Richard Ciero, Thomas Nelson Community College, Virginia 
Richard Dempsey, Pennsylvania State University, Worthington Scranton 

Campus 
John Dineen, Middlesex County College, New Jersey 
Gerald L. Engel, Virginia Institute for Marine Science, Virginia 
B. Albert Friedman, Sinclair Community College, Ohio 
John Gorgone, Purdue University, Indiana University at Fort Wayne, 

Indiana 
Harold Highland, SUNY/Farmingdale, New York 
Ron Lenhart, Yavapai College, Arizona 
Joyce Currie Little, Community College of Baltimore, Maryland 
John Maniotes, Purdue University, Calumet Campus, Indiana 
Morris Pollack, Bronx Community College, New York 
Richard Reynolds, Orange Coast College, California 
Harice Seeds, Los Angeles City College, California ' 

Workshop Participants, May 27-28, 1976, Gloucester 
Point, Virginia 

Richard H. Austing, University of Maryland 
Frank Cable, Pennsylvania State University 
Richard Ciero, Thomas Nelson Community College, Virginia 

Benjamin Diamant, IBM Corporation, Woodbridge, Virginia 
Gerald L. Engel, Virginia Institute for Marine Science, Virginia 
Richard Gehrt, Employers Insurance of Wausau, Wisconsin 
Malcolm Gotterer, Florida International University 
Majorie Leeson, Delta College, Michigan 
Ronald Lenhart, Yavapai College, Arizona 
Doris KrLidtke, Towson State College, Maryland 
Joyce Currie Little, Community College of Baltimore, Maryland 
John Maniotes, Purdue University, Calumet Campus, Indiana 
Robert R. Pearson, North Carolina Educational Computer Services 
Harice Seeds, Los Angeles City College, California 
George Sotas, U.S. Government Accounting Office 
Robert Thorn, Computer Related Services, Norfolk, Virginia 
John W. Westley, Illinois Central College, East Peoria, Illinois 
James D. Wintress, Aetna Life and Casualty, Hartford, Connecticut 

Workshop Participants, February 1977, Atlanta, Georgia 

Richard H. Austing, Universiuty of Maryland, College Park, Maryland 
Donald Beil, Rochester Institute of Technology, Rochester, New York 
Priscilla Caira, Whittier Regional Voc-Tech High School, Haverhill, 

Massachusetts 
Tom Cashman, Long Beach Community College, Long Beach, 

California 
Richard Ciero, Thomas Nelson Community College, Hampton, Virginia 
Sylvia Charp, Philadelphia School District, Philadelphia, Pennsylvania 
Gerald L. Engel, Virginia Institute for Marine Sciences 
Gary Gleason, Pensacola Junior College, Pensacola, Florida 
Dan Kamerman, Robert J. Brady Co., Bowie, Maryland 
Iva Helen Lee, McLennan Community College, Waco, Texas 
Majorie Leeson, Delta College, University Center, Michigan 
John Lloyd, Montgomery College, Rockville, Maryland 
Joyce Currie Little, Community College of Baltimore, Maryland 
John Maniotes, Purdue University —Calumet Campus, Hammond, 

Indiana 
Robert Marcus, Ethnotech, Inc., Lincoln, Nebraska 
Michael Meehan, Winthrop Publishers, Inc., Cambridge, Massachusetts 
Harice Seeds, Los Angeles City College, Los Angeles, California 
Gary D. Shelly, Anaheim Publishing Co., Fullerton, California 
Richard Slocum, University of Maine at Augusta, Augusta, Maine 
Erwin Vernon, Sinclair Community College, Dayton, Ohio 
Gerald Weinberg, Ethnotech, Inc., Lincoln, Nebraska 

Workshop Participants, August 1977, Gloucester Point, 
Virginia 

Richard H. Austing, University of Maryland, College Park, Maryland 
Richard Ciero, Thomas Nelson Community College, Hampton, Virginia 
John Dineen, Middlesex County College, Edison, New Jersey 
Gerald L. Engel, Virginia Institute for Marine Sciences, Virginia 
Donna Hutcheson, East Texas State University, Commerce, Texas 
Iva Helen Lee, McLennan Community College, Waco, Texas 
Marjorie Leeson, Delta College, University Center, Michigan 
Joyce Currie Little, Community College of Baltimore, Maryland 
John Lloyd, Montgomery College, Rockville, Maryland 
Claudia E. Plog (Bette), El Centro College of the Dallas County 

Community College District, Dallas, Texas 
Joseph Ramach, State of Maryland, Baltimore, Maryland 
Harice Seeds, Los Angeles City College, Los Angeles, California 
John P. Stonebeck, Northhampton County College, Bethlehehi, 

Pennsylvania 
John Sweeney, National Technical Institute for the Deaf, Rochester 

Institute of Technology, Rochester, New York 
Erwin Vernon, Sinclair Community College, Dayton, Ohio 
John W. Westley, Illinois Central College, East Peoria, Illinois 
Jacqueline A. Wood, University of Alabama, Birmingham, Alabama 4 

Raymond W. Woodcock, Boulder Valley Vocational-Technical Center, 
Boulder, Colorado 

180 



Additional Contributors or Reviewers 

Walter Anderson, U.S. Government Accounting Office, 
Washington, D.C. 

Julius A. Archibald, Jr. , SUNY at Plattsburgh, New York 
Barry L. Bateman, Southern Illinois University at Carbondale 
Robert Bise, Orange Coast College, California 
Hoyle Blalock, Jr. , Central Piedmont Community College 
Joseph J. Cebula, Community College of Philadelphia, Pennsylvania 
Jane Chapman, Paducah Community College, Kentucky 
Frank Connolly, Montgomery Community College, Maryland 
William W. Cotterman, Georgia State University, Atlanta, Georgia 
J. Daniel Couger, University of Colorado, Colorado 
Joan Culverhouse, McLennan Community College, Texas 
John Dalphin, Indiana University, Purdue University, Fort Wayne, 

Indiana 

Richard W. Dillman, Western Maryland College, Westminster, 
Maryland 

Karen Eck, McDonnell-Douglas Automation Company, California 
Robert Fox, College of duPage, Illinois 
Michael Faiman, University of Illinois, Urbana, Illinois 
Dan Fullerton, Albuquerque Technical-Vocational Institute, 

Albuquerque, New Mexico 
David Gilmore, U.S. Office of Personnel Management, 

Washington, D.C. 
Gary Gleason, Pensacola Junior College, Florida 
Jim Gross, University of Wisconsin Center 
William Gruener, Addison-Wesley Publishing Co., Reading, 

Massachusetts 
John Hamblen, National Bureau of Standards 
Carl Hammer, UNIVAC, a Division of Sperry Rand 
Preston Hammer, Grand Valley State College, Michigan 
Patricia Hendershot, U.S. Department of Agriculture, 

Washington, D.C. 
Laureen M. Hendry, IBM Corporation, Atlanta, Georgia 
Larry Jehn, University of Dayton, Ohio 
Karl Karlstrom, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 
Ed Keith, Citrus College, California 
Alton Kindred, Manatee Junior College, Florida 
Ralph Lee, University of Missouri at Rolla 
Charles Leidlich, Miami-Dade Community College, Florida 
Theodore S. Lewis, Trident Technical College, Charleston, 

South Carolina 
Donald W. Loveland, Duke University, North Carolina 
Bernard Luskin, Coast College District, California 
Sister Patricia Marshall, Xavier University of Louisiana 
William McCartin, Noxell Corporation, Baltimore, Maryland 
Daniel D. McCracken, McCracken Associates 
Larry Newcomer, York Campus of Pennsylvania State University 

Tom Oatney, Clark Technical College, Springfield, Ohio 
Charles G. Peterson, Northwest State, Maryvale, Missouri 
Montgomery Phister, Jr. , Systems Consultant, Santa Monica, 

California 
Lawrence D. Pickens, Del Mar College, Texas 
Roger M. Polay, Washtenaw Community College, Ann Arbor, Michigan 
Doug Ruby, McDonnell-Douglas Automation Company, California 
Martin Sandman, National Cash Register, Inc. 
Gary Shelly, Anaheim Publishing Company, California 
Bobby Smith, City of Portsmouth, Virginia 
B. D. Sorell, Kilgore College, Texas 
Leslie S. Spencer, Indiana University of Pennsylvania . 
Nancy Stern, Hofstra University, Hempstead, New York 
Walter S. Szalajka, Lewis University, Lockport, Illinois 
Ralph A. Szweda, Monroe Community College, Rochester, New York 
James Tuedio, Pasadena City College, Pasadena, California 
Gerald M. Weinberg, Ethnotech, Inc., Lincoln Nebraska 
Eric Weiss, Sun Company, Radnor, Pennsylvania 
Frank M. White, Catonsville Community College, Maryland 
Eric Whiteside, Miami-Dade Community College, Florida 

Appendix F. 

ACM Committee on Curriculum for Community and 
Junior College Education, 1981 

Chair: Joyce Currie Little, Community College of Baltimore, 
Maryland* 

Members: John (Jack) Dineen, Middlesex County College, Edison, 
New Jersey 

Dennis Fletcher, Informatics, Inc., CanogaPark, California 
Iva Helen Lee, McLennon Community College, 

Waco, Texas 
Marjorie Leeson, Delta College, University Center, 

Michigan 
John F. Schrage, So. 111. Univ. at Edwardsville, Illinois 
Harice Seeds, Los Angeles City College, California 
John Sweeney, National Technical Institute for the Deaf, 

Rochester, New York 
Erwin Vernon, Sinclair Community College, Dayton, Ohio 
Ray Woodcock, Boulder Valley Voc-Tech Center, Boulder, 

Colorado 

•Joyce Currie Little's current address is Towson State University, 
Dept. of Mathematics and Computer Science, Stephens Hall, 
Room 111, Baltimore, MD 21204. 

181 




