

ACM Curricula
Recommendations
for
Computer Science

Volume I

Association for Computing Machinery

Association for Computing Machinery
11 West 42nd Street
New York, NY 10036

Compiled by the ACM Education Board

Price: ACM Members $15.00
Non-members $19.00

Copies may be ordered, prepaid, from:
ACM Order Department
P.O. Box 64145
Baltimore, MD 21264

ACM order #201831

Copyright © 1983 by the Association for Computing Machinery

ISBN: 0-89791-117-2

CONTENTS

Page

Curriculum '68: Recommendations for Academic Programs

in Computer Science 1 -48

Computer Science Course Programs for Small Colleges 49 -5 8

Curriculum '78: Recommendations for the Undergraduate Program in Computer Science 59-78

Recommendations for Master's Level Programs
in Computer Science 79-88

Reports, Letters to the Editor, ACM Forum 89-110

C U R R I C U L U M 68
Recommendations for Academic Programs in Computer Science

A REPORT OF THE A C M CURRICULUM COMMITTEE ON COMPUTER SCIENCE

Dedicated to the Memory of Siluio 0. Navarro

This report contains recommendations on academic programs in computer science
which were developed by the ACM Curriculum Committee on Computer Science. A
classification of the subject areas contained in computer science is presented and
twenty-two courses in these areas are described. Prerequisites, catolog descriptions,
detailed outlines, and annotated bibliographies for these courses are included. Spe-
cific recommendations which have evolved from the Committee's 1965 Preliminary
Recommendations are given for undergraduate programs. Graduate programs in
computer science are discussed, and some recommendations are presented for the
development of master's degree programs. Ways of developing guidelines for doctoral
programs are discussed, but no specific recommendations are made. The importance
of service courses, minors, and continuing education in computer science is empha-
sized. Attention is given to the organization, staff requirements, computer resources,
and other facilities needed to implement computer science educational programs.
KEY W O R D S AND PHRASES: computer science courses, computer science curriculum, computer science

education, computer science academic programs, computer science graduate programs, computer science

undergraduate programs, computer science course bibliographies

CR CATEGORIES: 1.52

1

Preface

The Curriculum Committee on Computer Science (C;!S) was initially
formed in 1962 as a subcommittee of the Education Committee of the As-
sociation for Computing Machinery. In the first few years of its existence
this subcommittee functioned rather informally by sponsoring a number of
panel discussions and other sessions a t various national computer meetings.
The Curriculum Committee became an independent committee of the ACM
in 1964 and began an active effort to formulate detailed recommendations
for curricula in computer science. Its first report, "An Undergraduate Pro-
gram in Computer Science—Preliminary Recommendations" [1], was pub-
lished in the September 1965 issue of Communications of the ACM.

The work of the Committee during the last two years has been devoted
to revising these recommendations on undergraduate programs and develop-
ing recommendations for graduate programs as contained in this report. The
primary support for this work has been from the National Science Founda-
tion under Grant Number GY-305, received in July 1965.

The Committee membership during the preparation of this report was:

William F. Atchison, University of Maryland (Chairman)
Samuel D. Conte, Purdue University
John W. Hamblen, SREB and Georgia Institute of Technology
Thomas E. Hull, University of Toronto
Thomas A. Keenan, EDUCOM and the University of Rochester
William B. Kehl, University of California at Los Angeles
Edward J. McCluskey, Stanford University
Silvio 0 . Navarro,* University of Kentucky
Werner C. Rheinboldt, University of Maryland
Earl J. Schweppe, University of Maryland (Secretary)
William Viavant, University of Utah
David M. Young, Jr., University of Texas
* Dr. Navarro was killed in an airplane crash on April 3, 1967.

In addition to these members many others have made valuable contribu-
tions to the work of the Committee. Their names and affiliations are listed
at the end of this report. Robert Ashenhurst and Peter Wegner have given
especial assistance in the preparation of this report.

CONTENTS

1. Introduction
2. Subject Classification
3. Description of Courses
4. Undergraduate Programs
5. Master's Degree Programs
6. Doctoral Programs
7. Service Courses, Minors, and Continuing

Education
8. Implementation
References
Acknowledgments
Appendix. Course Outlines and Bibliographies

2

1. Introduction
Following the appearance of its Preliminary Recom-

mendations [1], the Curriculum Committee on Com-
puter Science received many valuable comments,
criticisms, and suggestions on computer science edu-
cation. From these, the advice of numerous consul-
tants, and the ideas of many other people, the Com-
mittee has prepared this report, "Curriculum 68,"
which is a substantial refinement and extension of the
earlier recommendations. The Committee hopes that
these new recommendations will stimulate further dis-
cussion in this area and evoke additional contributions
to its future work from those in the computing pro-
fession. The Committee believes strongly that a con-
tinuing dialogue on the process and goals of education
in computer science will be vital in the years to come.

In its Preliminary Recommendations the Committee
devoted considerable attention to the justification and
description of "computer science" as a discipline. Al-
though debate on the existence of such a discipline
still continues, there seems to be more discussion to-
day on what this discipline should be called and what
it should include. In a recent letter [2], Newell, Perlis,
and Simon defend the name "computer science."
Others, wishing perhaps to take in a broader scope
and to emphasize the information being processed, ad-
vocate calling this discipline "information science"
[:S] or, as a compromise, "the computer and informa-
tion sciences" [4]. The Committee has decided to use
the term "computer science" throughout this report,
although it fully realizes that other names may be
used for essentially the same discipline.

In attempting to define the scope of this discipline,
the Committee split computer science into three
major subject divisions to which two groups of related
areas were then added. Using this as a framework, the
Committee developed a classification of the subject
areas of computer science and some of its related
fields, and this classification is presented in Section 2.

As was the case for its Preliminary Recommenda-
tions, the Committee has devoted considerable effort
to the development of descriptions, detailed outlines,
and bibliographies for courses in computer science.
Of the sixteen courses proposed in the earlier recom-
mendations, eleven have survived in spirit if not in
detail. Two of the other five courses have been split
into two courses each, and the remaining three have
been omitted since they belong more properly to other
disciplines closely related to computer science. In ad-
dition seven new courses have been proposed, of
which Course B3 on "discrete structures" and Course
13 on "computer organization" are particularly nota-
ble. Thus this report contains detailed information—
in the form of catalog descriptions and prerequisites
in Section 3 and detailed outlines and annotated bib-

liographies in the Appendix—on a total of twenty-two
courses.

Another important issue which concerned the Cur-
riculum Committee is the extent to which undergrad-
uate programs as opposed to graduate programs in
computer science ought to be advocated. Certainly,
both undergraduate and graduate programs in "com-
puter science" do now exist, and more such programs
operate under other names such as "information
science" or "data processing" or as options in such
fields as mathematics or electrical engineering. A re-
cent survey [5], supported by the National Science
Foundation and carried out by the Computer Sciences
Project of the Southern Regional Education Board,
contains estimates of the number of such degree pro-
grams operating in 1964-1965 and projections of the
number planned to be operating by 1968-1969. These
estimates and projections can be summarized as fol-
lows:

Program llil III c
Bachelor's

Program level
Master's Doctorai

Program llil III c
19<>4
1965

1968
1969

1964
1965

1968
1969

1964 1908
1965 1969

Computer .Science 11 02 17 7(i 12 38
D a t a Processing (i 15 :i 4 1 2
Informat ion Science 2 4 12 17 4 i:i
.Similar Programs 25 -10 29 40 21 28

The information contained in these figures is interest-
ing for two reasons. First, it shows that the number of
computer science degree programs will continue to
grow rapidly even if some of the programs now being
planned do not come into being. Second, it shows a
strong tendency to use the name "computer science,"
although the availability of academic work in comput-
ing is not limited to institutions having a department
or a program operating under that title.

A major purpose of the Committee's recommenda-
tions on undergraduate programs and master's degree
programs given in Sections 4 and 5 is to provide a
sense of direction and a realizable set of goals for
those colleges and universities which plan to provide
computer science education for undergraduate and /or
graduate students. The discussion in Section 6 of how
guidelines for doctoral programs may be developed is
very general, mainly because this is a difficult area in
which to make detailed recommendations.

The importance of service courses, minors, and con-
tinued education in computer science has also been
of concern to the Committee. Although detailed work
still needs to be done, some preliminary discussion of
the needs in these areas is given in Section 7. In Sec-
tion 8 some of the problems of implementing an edu-
cational program in computer science are discussed.

3

In general the difficulties in establishing such pro-
grams are formidable; the practical problems of find-
ing qualified faculty, of providing adequate laboratory
facilities, and of beginning a program in a new area
where there are few textbooks are severe. These prob-
lems are magnified for baccalaureate programs in com-
parison with graduate programs, where the admission
can be more closely controlled.

The demand for substantially increased numbers of
persons to work in all areas of computing has been
noted in a report of the National Academy of Sciences-
National Research Council [6] (commonly known as
the "Rosser Report") and in a report of the President's
Science Advisory Committee [7] (often called the
"Pierce Report"). Although programs based on the
recommendations of the Curriculum Committee can
contribute substantially to satisfying this demand,
such programs will not cover the full breadth of the
need for personnel. For example, these recommenda-
tions are not directed to the training of computer op-
erators, coders, and other service personnel. Training
for such positions, as well as for many programming
positions, can probably be supplied best by applied
technology programs, vocational institutes, or junior
colleges. It is also likely that the majority of applica-
tions programmers in such areas as business data
processing, scientific research, and engineering analy-
sis will continue to be specialists educated in the re-
lated subject matter areas, although such students
can undoubtedly profit by taking a number of com-
puter science courses.

In addition to this Committee, several other organi-
zations have set forth guidelines to aid educational
institutions in the establishment of programs perti-
nent to the needs of today's computer-oriented tech-
nology. Prominent among these are the reports of the
Committee on the Undergraduate Program in Mathe-
matics (CUPM) of the Mathematical Association of
America [8], the COSINE Committee of the Commis-
sion on Engineering Education [9], and the Education
Committee of the British Computer Society [10]. Also,
the ACM Curriculum Committee on Computer Educa-
tion for Management, chaired by Daniel Teichroew. is
now beginning to consider educational matters related
to the application of computers to "management infor-
mation systems." The Curriculum Committee has
benefited greatly from interchanging ideas with these
other groups. In addition, the entire Committee was
privileged to take part in "The Graduate Academic-
Conference in Computing Science" [11] held at Stony
Brook in June 1967.

Computer science programs, in common with those
of all disciplines, must attempt to provide a basis of
knowledge and a mode of thinking which permit con-
tinuing growth on the part of their graduates. Thus,
in addition to exposing the student to a depth of
knowledge in computer science sufficient to lay the
basis for professional competence, such programs
must also provide the student with the intellectual
maturity which will allow him to stay abreast of his
own discipline and to interact with other disciplines.

2. Subject Classification

The scope of academic programs and curricula in
computer science will necessarily vary from institu-
tion to institution as dictated by local needs, resources,
and objectives. To provide a basis for discussion, how-
ever, it seems desirable to have a reasonably compre-
hensive system for classifying the subject areas within
computer science and related fields. Although any such
system is somewhat arbitrary, it is hoped that any
substantial aspect of the computer field, unless spe-
cifically excluded for stated reasons, may be found
within the system presented here. The subject areas
within computer science will be classified first; those
shared with or wholly within related fields will be
discussed later in this section.

Computer Science. The subject areas of computer
science are grouped into three major divisions: "infor-
mation structures and processes," "information proc-
essing systems," and "methodologies." The subject
areas contained in each of these divisions are given
below together with lists of the topics within each
subject area.

I . I N F O R M A T I O N S T R U C T U R E S A N D P R O C E S S E S

This subject division is concerned with representations and
transformations of information structures and with theoreti-
cal models for such representations and transformations.

1. DATA STRUCTURES: includes the description, representation, and
manipulation of numbers, arrays, lists, trees, files, etc.; storage or-
ganization, allocation, and access; enumeration, searching and sort-
ing; generation, modification, transformation, and deletion tech-
niques; the static and dynamic properties of structures; algorithms
for the manipulation of sets, graphs, and other combinatoric struc-
tures.
2. PROGRAMMING LANGUAGES: includes the representation of algo-
rithms; the syntactic and semantic specification of languages; the
analysis of expressions, statements, declarations, control structures,
and other features of programming languages; dynamic structures
which arise during execution; the design, development and evalu-
ation of languages; program efficiency and the simplification of
programs; sequential transformations of program structures; special
purpose languages; the relation between programming languages,
formal languages, and linguistics.
3. MODELS OF COMPUTATION: includes the behavioral and structural
analysis of switching circuits and sequential machines; the proper-
ties and classification of automata; algebraic automata theory and
model theory; formal languages and formal grammars; the classifi-
cation of languages by recognition devices; syntactic analysis; formal

specification of semantics; syntax directed processing; decidability
problems for grammars; the treatment of programming languages as
automata; other formal theories of programming languages and com-
putation.

II. INFORMATION PROCESSING SYSTEMS

This subject division is concerned with systems having the
ability to transform information. Such systems usually in-
volve the interaction of hardware and software.

1. COMPUTER DESIGN AND ORGANIZATION: i n c l u d e s t y p e s of c o m -
puter structure—von Neumann computers, array computers, and
look-ahead computers; hierarchies of memory—flip-flop registers,
cores, disks, drums, tapes—and their accessing techniques; micro-
programming and implementation of control functions; arithmetic
circuitry; instruction codes; input-output techniques; multiproc-
essing and multiprogramming structures.

2. TRANSLATORS AND INTERPRETERS: includes the theory and tech-
niques involved in building assemblers, compilers, interpreters,
loaders, and editing or conversion routines (media, format, etc.).
3. COMPUTER AND OPERATING SYSTEMS: includes program monitoring
and data management; accounting and utility routines; data and
program libraries; modular organization of systems programs; inter-
faces and communication between modules; requirements of multi-
access. multiprogram and multiprocess environments; large scale
systems description and documentation; diagnostic and debugging
techniques; measurement of performance.
4. SPECIAL PURPOSE SYSTEMS: includes analog and hybrid com-
puters; special terminals for data transmission and display; periph-
eral and interface units for particular applications; special software
to support these.

III. METHODOLOGIES

Methodologies are derived from broad areas of applications
of computing which have common structures, processes, and
techniques.

1. NUMERICAL MATHEMATICS: includes numerical algorithms and their
theoretical and computational properties; computational error analy-
sis (for rounding and truncation errors); automatic error estimates
and convergence properties.
2. DATA PROCESSING AND FILE MANAGEMENT: i n c l u d e s t e c h n i q u e s
applicable to library, biomedical, and management information
systems; file processing languages.
3. SYMBOL MANIPULATION: includes formula operations such as sim-
plification and formal differentiation; symbol manipulation lan-
guages.
4. TEXT PROCESSING: includes text editing, correcting, and jus-
tification; the design of concordances; applied linguistic analysis;
text processing languages.

5. COMPUTER GRAPHICS: includes digitizing and digital storage;
display equipment and generation; picture compression and image
enhancement; picture geometry and topology; perspective and rota-
tion: picture analysis; graphics languages.
6. SIMULATION: includes natural and operational models; dis-
crete simulation models; continuous change models; simulation lan-
guages.
7. INFORMATION RETRIEVAL: includes indexing and classification;
statistical techniques; automatic classification; matching and search
strategies: secondary outputs such as abstracts and indexes; selec-
tive dissemination systems; automatic question answering systems.
8. ARTIFICIAL INTELLIGENCE: includes heuristics; brain models; pat-
tern recognition; theorem proving; problem solving; game playing;
adaptive and cognitive systems; man-machine systems.
9. PROCESS CONTROL; includes machine tool control; experiment
control; command and control systems.
10. INSTRUCTIONAL SYSTEMS: includes computer aidfed instruction.

Related Areas. In addition to the areas of computer
science listed under the three divisions above, there
are many related areas of mathematics, statistics,
electrical engineering, philosophy, linguistics, and in-
dustrial engineering or management which are es-
sential to balanced computer science programs. Suit-
able courses in these areas should be developed
cooperatively with the appropriate departments, al-
though it may occasionally be desirable to develop
some of these courses within the computer science
program.

Since it is not feasible in this report to list all of the
areas which might be related to a computer science
program, let alone indicate where courses in these
areas should be taught, the following listing is some-
what restricted. It is grouped into two major divisions:
"mathematical sciences" and "physical and engineer-
ing sciences."

I V . M A T H E M A T I C A L S C I E N C E S

1. ELEMENTARY ANALYSIS

2. LINEAR ALGEBRA

3. DIFFERENTIAL EQUATIONS

4. ALGEBRAIC STRUCTURES

5. THEORETICAL NUMERICAL ANALYSIS

6. METHODS OF APPLIED MATHEMATICS

7. OPTIMIZATION THEORY

8. COMBINATORIAL MATHEMATICS

9 . MATHEMATICAL LOGIC

10. NUMBER THEORY

11. PROBABILITY AND STATISTICS

12. OPERATIONS ANALYSIS

V . P H Y S I C A L A N D E N G I N E E R I N G S C I E N C E S

1. GENERAL PHYSICS

2. BASIC ELECTRONICS

3. CIRCUIT ANALYSIS AND DESIGN

4 . THERMODYNAMICS AND STATISTICAL MECHANICS

5. FIELD THEORY

6. DIGITAL AND PULSE CIRCUITS

7. CODING AND INFORMATION THEORY

8. COMMUNICATION AND CONTROL THEORY

9 . QUANTUM MECHANICS

No at tempt has been made to include within this*
classification system all the subject areas which make
use of computer techniques, such as chemistry and
economics; indeed, to list these would require inclu-
sion of a major portion of the typical university cata-
log. Furthermore, the sociological, economic, and edu-
cational implications of developments in computer
science are not discussed in this report. These issues
are undoubtedly important, but they are not the ex-
clusive nor even the major responsibility of computer
science. Indeed, other departments such as philosophy
and sociology should be urged to cooperate with com-
puter scientists in the development of courses or
seminars covering these topics, and computer science
students should be encouraged to take these courses.

5

3. Descript
The computer science courses specified in this re-

port are divided into three categories: "basic," "inter-
mediate ," and "advanced." The basic courses are
intended to be taught primarily at the freshman-soph-
omore level, whereas both the intermediate and the
advanced courses may be taught at the junior-senior
or the graduate level. In general, the intermediate
courses are strongly recommended as par t of under-
graduate programs. The advanced courses are classi-
fied as such either because of their higher level of
prerequisites and required maturi ty or because of
their concern with special applications of computer
science.
• In addition to more elementary computer science

courses, certain courses in mathematics are necessary,
or at least highly desirable, as prerequisites for some
of the proposed courses. More advanced mathematics
courses may be included as supporting work in the
programs of some students. Because of the considera-
ble variation in the level and content of mathematics
courses among (and even within) schools, the courses
described by the Committee on the Undergraduate
Program in Mathemat ics (CUPM) in the report, "A
General Curriculum in Mathemat ics for Colleges"
[12] have been used to specify the prerequisites for the
proposed courses in computer science and require-
ments for degrees. Other pertinent mathematics
courses are described in the CUPM reports, "Recom-
mendations on the Undergraduate Mathemat ics Pro-

1 of Courses
gram for Engineers and Physicists" [13] and "A Cur-
riculum in Applied Mathemat ics" [14].

The titles and numbers of all the courses proposed
in this report and the pertinent courses recommended
by CUPM are shown in Figure 1 along with the pre-
requisite structure linking these courses. The courses
described below, which make up the core of the under-
graduate program, are also singled out in Figure 1.
The relatively strong prerequisite structure proposed
for these core courses allows their content to be
greatly expanded from what a weaker structure would
permit. The Committee recognizes that other—per-
haps weaker—prerequisite structures might also be ef-
fective and tha t the structure shown will change along
with the course content as computer science education
develops. Prerequisites proposed for the advanced
courses are subject to modification based on many
orientations which these courses may be given at in-
dividual institutions.

Most of the courses have been designed on the ba-
sis of three semester hours of credit. Laboratory ses-
sions, in which the more practical aspects of the ma-
terial can be presented more effectively than in formal
lectures, have been included where appropriate. The
proposed number of hours of lecture and laboratory
each week and the number of semester hours of credit
for the course are shown in parentheses in the catalog
descriptions below. For example, (2-2-3) indicates two
hours of lecture and two hours of laboratory per week
for a total of three semester hours of credit.

Course Catalog Descriptions and Prerequisites

For each of the courses listed below, a brief state-
ment on the approach which might be taken in teach-
ing it is given in the Appendix along with the detailed
outlines of its proposed contents and annotated bib-
liographies of pertinent source materials and textbooks.

• T h e first course is designed to provide the student
with the basic knowledge and experience necessary to
use computers effectively in the solution of problems.
It can be a service course for s tudents in a number of
other fields as well as an introductory course for majors
in computer science. Although no prerequisites are
listed, it is assumed tha t the s tudent will have had a
minimum of three years of high school mathematics.
All of the computer science courses which follow will
depend upon this introduction.

Course B1. Introduction to Computing (2-2-3) .

Algorithms, programs, and computers. Basic programming and pro-
gram structure. Programming and computing systems. Debugging

and verification of programs. Data representation. Organization and
characteristics of computers. Survey of computers, languages, sys-
tems, and applications. Computer solution of several numerical and
nonnumerical problems using one or more programming languages.

• The second course is intended to lay a foundation
for more advanced study in computer science. By
familiarizing the student with the basic structure and
language of machines, the content of this course will
give him a better understanding of the internal behav-
ior of computers, some facility in the use of assembly
languages, and an ability to use computers more ef-
fectively—even with procedure-oriented languages.

Course B2. Computers and Programming (2-2-3)

Prerequisite: Course Bl .
i

Computer structure, machine language, instruction execution, ad-
dressing techniques, and digital representation of data. Computer

6

THE CORE COURSES OF THE PROPOSED UNDERGRADUATE PROGRAM •

ind icates
Definite
P r e r e q u i s i t e

B indicates a Basic Computer Science Course
I indicates an Intermediate Computer Science Course
A indicates an Advanced Computer Science Course
M indicates a CUPM Mathematics Course

indicates
Desirable
Prerequisite

FIG. 1. Prerequisite structure of courses

systems organization, logic design, micro-programming, and inter-
preters. Symbolic coding and assembly systems, macro definition
and generation, and program segmentation and linkage. Systems and
utility programs, programming techniques, and recent develop-
ments in computing. Several computer projects to illustrate basic
machine structure and programming techniques.

• T h i s course introduces the -student to those funda-
mental algebraic, logical, and combinatoric concepts
from mathemat ics needed in the subsequent computer
science courses and shows the applications of these
concepts to various areas of computer science.

Course B3. Introduction to Discrete Structures (3-0-3)

Prerequisite: Course Bl .

Review of set algebra including mappings and relations. Algebraic
structures including semigroups and groups. Elements of the theory
of directed and undirected graphs. Boolean algebra and proposi-
tional logic. Applications of these structures to various areas of
computer science.

• This course provides the student with an intro-
duction to the basic numerical algorithms used in sci-
entific computer work—thereby complementing his
studies in beginning analysis—and affords him an op-
portunity to apply the programming techniques he
has learned in Course B l . Because of these aims, many
of the s tandard elementary numerical analysis courses
now offered in mathematics depar tments cannot be
considered as substi tutes for this course.

Course B4. Numerical Calculus (2-2-3)

Prerequisites: Courses Bl , M2, and M3.

An introduction to the numerical algorithms fundamental to scienti-
fic computer work. Includes elementary discussion of error, polyno-
mial interpolation, quadrature, linear systems of equations, solution
of nonlinear equations, and numerical solution of ordinary differen-
tial equations. The algorithmic approach and the efficient use of
the computer are emphasized.

• This course is concerned with one of the most fun-
damental—but often inadequately recognized—areas of
computer science. Its purpose is to introduce the stu-
dent to the relations which hold among the elements
of da ta involved in problems, the structures of storage
media and machines, the methods which are useful in
representing structured data in storage, and the tech-
niques for operating upon data structures.

Course 11. Data Structures (3-0-3)

Prerequisites: Courses B2 and B3.

Basic concepts of data. Linear lists, strings, arrays, and orthogonal
lists. Representation of trees and graphs. Storage systems and struc-
tures, and storage allocation and collection. Multilinked structures.
Symbol tables and searching techniques. Sorting (ordering) tech-
niques. Formal specification of data structures, data structures in
programming languages, and generalized data management systems.

• The following intermediate course is designed to
present a systematic approach to the study of program-
ming languages and thus provide the student with the
knowledge necessary to learn and evaluate such lan-
guages.

Course 12. Programming Languages (3-0-3)

Prerequisites: Courses B2 and B3.

Formal definition of programming languages including specification
of syntax and semantics. Simple statements including precedence,
infix, prefix, and postfix notation. Global properties of algorithmic
languages including scope of declarations, storage allocation, group-
ing of statements, binding time of constituents, subroutines, corou-
tines, and tasks. List processing, string manipulation, data descrip-
tion, and simulation languages. Run-time representation of program
and data structures.

• The following course discusses the organization,
logic design, and components of digital computing sys-
tems. It can be thought of as a continuation of the
hardware concepts introduced in Course B2.

Course 13. Computer Organization (3-0-3) or (3-2-4)

Prerequisites: Courses B2 and B3.

Basic digital circuits, Boolean algebra and combinational logic, data
representation and transfer, and digital arithmetic. Digital storage
and accessing, control functions, input-output facilities, system or-
ganization, and reliability. Description and simulation techniques.
Features needed for multiprogramming, multiprocessing, and real-
time systems. Other advanced topics and alternate organizations.

• T h e following course is concerned primarily with
the software organization—and to a lesser extent the
hardware—of computer systems which support a wide
variety of users. It is intended to bring together the
concepts and techniques developed in the previous
courses on data structures, programming languages,
and computer organization by considering their role
in the design of general computer systems. The prob-
lems which arise in multiaccessing, multiprogram-
ming, and multiprocessing are emphasized.

Course 14. Systems Programming (3-0-3)

Prerequisites: Courses II, 12, and 13.

Review of batch process systems programs, their components, op-
erating characteristics, user services and their limitations. Im-
plementation techniques for parallel processing of input-output and
interrupt handling. Overall structure of multiprogramming systems
on multiprocessor hardware configurations. Details on addressing
techniques, core management, file system design and management,
system accounting, and other user-related services. Traffic control,
interprocess communication, design of system modules, and inter-
faces. System updating, documentation, and operation.

• T h e following course is intended to provide a de-
tailed understanding of the techniques used in the de-
sign and implementation of compilers.

Course 15. Compiler Construction (3-0-3)

Prerequisites: Courses II and 12.

Review of program language structures, t ranslat ion, loading, execu-
tion. and storage allocation. Compilation of simple expressions and
s ta tements . Organization of a compiler including compile-time and
run-t ime symbol tables, lexical scan, syntax scan, object code gen-
eration, error diagnostics, object code optimization techniques, and
overall design. Use of compiler writing languages and bootstrapping.

• This course introduces the theoretical principles
and mathematical techniques involved in the design
of digital system logic. A course compatible with the
content and approach of this course is frequently
taught in departments of electrical engineering.

Course 16. Switching Theory . (3-0-3) or (2-2-3)

Prerequisites: Courses B3 (desirable) and 13 (desirable, as it would
allow more meaningful examples to be used).

Switching algebra, gate network analysis and synthesis, Boolean
algebra, combinational circuit minimization, sequential circuit
analysis and synthesis, sequential circuit s ta te minimization, haz-
ards and races, and elementary number systems and codes.

• This theoretical course is especially recommended
for undergraduate students planning to do graduate
work in computer science. It is also an appropriate
course for electrical engineers and may sometimes be
available from or jointly developed with an electrical
engineering depar tment .

Course 17. Sequential Machines (3-0-3)

Prerequisites: Courses B3 or M6, and 16 (desirable).

Definition and representation of finite s ta te au toma ta and sequen-
tial machines. Equivalence of s ta tes and machines, congruence, re-
duced machines, and analysis and synthesis of machines. Decision
problems of finite au tomata , part i t ions with the subst i tut ion prop-
erty, generalized and incomplete machines, semigroups and ma-
chines, probabilistic au tomata , and other topics.

• T h e following two courses in numerical analysis are
intended to be mathematical ly rigorous and a t the
same time computer-oriented.

Course 18. Numerical Analysis I (3-0-3)

Prerequisites: Courses B l , B4 (desirable), and M4.

A thorough t rea tment of solutions of equations, interpolation and
approximations, numerical differentiation and integration, and nu-
merical solution of initial value problems in ordinary differential
equations. Selected algori thms will be programmed for solution on
computers.

Course 19. Numerical Analysis II (3-0-3)

Prerequisites: Courses B l , B4 (desirable), M4, and M5 (desirable).

The solution of linear systems by direct and iterative methods, ma-
trix inversion, the evaluation of determinants , and the calculation
of eigenvalues and eigenvectors of matrices. Application to bound-

ary value problems in ordinary differential equations. Introduction
to the numerical solution of part ial differential equations. Selected
algorithms will be programmed for solution on computers.

• The following course serves as an introduction both
to the theory of context-free grammars and formal lan-
guages, and to syntactic recognition techniques for
recognizing languages specified by context-free gram-
mars.

Course A1. Formal Languages and Syntactic
Analysis (3-0-3)

Prerequisites: Courses II and 12.

Definition of formal grammars: ar i thmetic expressions and prece-
dence grammars, context-free and finite-state grammars . Algorithms
for syntactic analysis: recognizers, backtracking, operator prece-
dence techniques. Semant ics of grammat ica l constructs: reductive
grammars , Floyd productions, simple syntact ical compilation. Re-
lationship between formal languages and au toma ta .

• The following advanced course in computer organi-
zation is centered around the comparison of solutions
to basic design problems which have been incorpo-
rated in a number of quite different computers.

Course A2. Advanced Computer Organization (3-0-3)

Prerequisites: Courses 13, 14 (desirable), and 16 (desirable).

Computer system design problems such as ar i thmet ic and nonarith-
metic processing, memory utilization, storage management , address-
ing, control, and input-output . Comparison of specific examples of
various solutions to computer system design problems. Selected
topics on novel computer organizations such as those of array or
cellular computers and variable s tructure computers.

• T h i s course is designed to give the computer science
s tudent some experience with analog, hybrid, and re-
lated techniques. It could also be very valuable as a
service course.

Course A3. Analog and Hybrid Computing (2-2-3)

Prerequisites: Courses Bl and M4. (The CUPM mathemat ica l anal-
ysis courses include some differential equations; more may be
needed.)

Analog, hybrid and related digital techniques for the solution of
differential equations. Analog simulation languages. Scaling meth-
ods. Operational characterist ics of analog components. Digital dif-
ferential analyzers. Analog-to-digital and digital-to-analog conver-
sion. Stabil i ty problems. Modeling methods. Use of analog and
hybrid equipment and of digital simulation of continuous systems.

• The following course is concerned with the simula-
tion and modeling of discrete systems on a computer.
Since simulation is one of the most common applica-
tions of computers and is used to a great extent in the
design of computing machines and systems, s tudents
of computer science should become acquainted with
simulation techniques and their use.

Course A4. System Simulation (3-0-3)

Prerequisites: Courses 14 and M7.

Introduction to simulation and comparison with other techniques.
Discrete simulation models, and introduction to, or review of, queue-
ing theory and stochastic processes. Comparison of discrete change
simulation languages. Simulation methodology including generation
of random numbers and variates, design of simulation experiments
for optimization, analysis of data generated by simulation experi-
ments, and validation of simulation models and results. Selected
applications of simulation.

• T h e purpose of the following course is to provide an
introduction to natural language processing, particu-
larly as it relates to the design and operation of auto-
matic information systems. Included are techniques
for organizing, storing, matching, and retrieving struc-
tured information on digital computers, as well as pro-
cedures useful for the optimization of search effective-
ness.

Course A5. Information Organization and
Retrieval (3-0-3)

Prerequisite: Course II.

Structure of semiformal languages and models for the representa-
tion of structured information. Aspects of natural language process-
ing on digital computers. The analysis of information content by
statistical, syntactic, and logical methods. Search and matching
techniques. Automatic retrieval systems, question-answering sys-
tems. Production of secondary outputs. Evaluation of retrieval ef-
fectiveness.

• T h e objective of the following course is to study the
problems of handling graphic information, such as line
drawings, block diagrams, handwriting, and three-di-
mensional surfaces, in computers. Input-output and
representation-storage of pictures will be introduced
from the hardware and software points of view. The
course is intended to serve both the s tudent interested
in specializing in computer graphics per se and the
s tudent who seeks to apply graphic techniques to his
particular computing work.

Course A6. Computer Graphics (2-2-3)

Prerequisites: Courses II, 13 (desirable), and 14 (desirable).

Display memory, generation of points, vectors, etc. Interactive ver-
sus passive graphics. Analog storage of images on microfilm, etc.
Digitizing and digital storage. Pattern recognition by features, syn-
tax tables, random nets, etc. Data structures and graphics software.
The mathematics of three-dimensions, projections, and the hidden-'
line problem. "Graphical programs," computer-aided design and in-
struction, and animated movies.

• The following course uses abstract machines as
models in the study of computability and computa-
tional complexity. Emphasis is placed on the multi-
tape Turing machine as a suitable model, but other
models are also considered.

Course A7. Theory of Computability (3-0-3)

Prerequisites: Courses B3 or M6, and 17 (desirable).

Introduction to Turing machines, Wang machines, Shepherdson-
Sturgis, and other machines. Gtidel numbering and unsolvability re-
sults, the halting problem, Post's correspondence problem, and
relative uncomputability. Machines with restricted memory access,
limited memory, and limited computing time. Recursive function
theory and complexity classification. Models of computation includ-
ing relationships to algorithms and programming.

• T h e following course is intended for students who are
interested in the application of information technology
in large-scale information processing systems. The term
"information processing system" is used here to include
the hardware, software, procedures, and techniques
tha t are assembled and organized to achieve some de-
sired objectives. Examples of such large-scale informa-
tion processing systems are business data processing
systems, information storage and retrieval systems,
command and control systems, and computer centers.

Course A8. Large-scale Information Processing
Systems (3-0-3)

Prerequisites: Course A4, and a course in operations research or op-
timization theory.

Organization of major types of information processing systems. Data
organization and storage structure techniques. Designing "best" sys-
tems by organizing files and segmenting problems into cornputer
programs to make efficient use of hardware devices. Documentation
methods and techniques for modifying systems. Use of optimization
and simulation as design techniques. Communication problems
among individuals involved in system development.

• The following course introduces the student to those
nonarithmetical applications of computing machines
tha t : (1) a t tempt to achieve goals considered to require
human mental capabilities (artificial intelligence); (2)
model highly organized intellectual activity (simula-
tion of cognitive behavior); and (3) describe purposeful
behavior of living organisms or artifacts (self-organizing
systems). Courses in this area are often taught with few
prerequisites, but by requiring some or all of the pre-
requisites listed here this course could be taught at a
more advanced level.

Course A9. Artificial Intelligence and Heuristic
Programming (3-0-3)

Prerequisites: Courses II, A4 (desirable), and M7 (desirable); and
some knowledge of experimental and theoretical psychology would
also be useful.

Definition of heuristic versus algorithmic methods, rationale of heu-
ristic approach, description of cognitive processes, and approaches to
mathematical invention. Objectives of work in artificial intelligence,
simulation of cognitive behavior, and self-organizing systems. Heu-
ristic programming techniques including the use of list processing
languages. Survey of examples from representative application areas.
The mind-brain problem and the nature of intelligence. Class and
individual projects to illustrate basic concepts.

4. Undergraduate Programs
As indicated in the Introduction, there has been con-

siderable discussion on the desirability of undergradu-
ate degree programs in computer science. Many who
favor these programs believe that an undergraduate
computer science "major" is as natural today as a major
in established fields such as mathematics, physics, or
electrical engineering. Many who oppose these pro-
grams feel that, although undergraduate courses in
computer science should be available for support of
work in other areas, to offer an undergraduate degree
in computer science may encourage too narrow a spe-
cialization at the expense of breadth. They point out
that the lack of such breadth may be a serious handi-
cap to a student desiring to do graduate work in com-
puter science, and they contend that it would be better
for the student to major in some established discipline
while taking a number of computer science courses as
supporting work. To meet these objections the Com-
mittee has made every effort to present a curriculum
which includes a broad representation of basic concepts
and an adequate coverage of professional techniques.

The number of undergraduate degree programs now
in existence or in the planning stages—approximately
one third of all Ph.D. granting institutions in the United
States either have such computer science programs now
or expect to have them by 1970 [5]—indicates that a
discussion of the desirability of such programs is much
less relevant than the early development of guidelines
and standards for them. The Committee feels strongly,
however, that schools should exercise caution against
the premature establishment of undergraduate degree
programs. The pressures created by large numbers of
students needing to take courses required for the degree
could easily result in a general lowering of standards
exactly when it is vital that such programs be estab-
lished and maintained only with high standards.

The variation of undergraduate program require-
ments among and within schools dictates that this
Committee's recommendations must be very general.
It is fully expected that each individual school will
modify these recommendations to meet its specific
circumstances, but it is hoped that these modifications
will be expansions of or changes in the emphasis of
the basic program proposed, rather than reductions in
quantity or quality. The requirements recommended
herein have been kept to a minimum in order to allow
the student to obtain a "liberal education" and to en-
able individual programs to add additional detailed
requirements. Since the liberal education requirements
of each school are already well established, the Com-
mittee has not considered making recommendations on
such requirements.

The Committee's recommendations for an under-

graduate computer science curriculum are stated in
terms of computer science course work, programming
experience, mathematics course work, technical elec-
tives, and possible areas of specialization. Some sug-
gestions are also given as to how the courses might fit
chronologically into a semester-by-semester schedule.

Computer Science Courses. The basic and interme-
diate course requirements listed below emphasize the
first two "major subject divisions"—namely, "informa-
tion structures and processes" and "information proc-
essing systems"—described in Section 2 of this report.
These courses should give the student a firm grounding
in the fundamentals of computer science."

The major in computer science should consist of at least 30
semester hours including the courses:

B l . Introduction to Computing

B2. Computers and Programming

B3. Introduction to Discrete Structures

B4. Numerical Calculus

11. Data Structures

12. Programming Languages

13. Computer Organization

14. Systems Programming

and at least two of the courses:

15. Compiler Construction

16. Switching Theory

17. Sequential Machines

18. Numerical Analysis I

19. Numerical Analysis II

Programming Experience. Developing programming
skill is by no means the main purpose of an under-
graduate program in computer science; nevertheless,
such skill is an important by-product. Therefore such a
program should insure that the student attains a rea-
sonable level of programming competence. This can be
done in part by including computer work of progressive
complexity and diversity in the required courses, but it
is also desirable that each student participate in a
"true-to-life" programming project. This might be ar-
ranged through summer employment, a cooperative
work-study program, part-time employment in com-
puter centers, special project courses, or some other
appropriate means.

Mathematics Courses. The Committee feels that an
academic program in computer science must be well
based in mathematics since computer science draws so
heavily upon mathematical ideas and methods. The
recommendations for required mathematics courses
given below should be regarded as minimal; obviously
additional course work in mathematics would be essen-
tial for students specializing in numerical applications.

The supporting work in mathematics should consist of at least
18 hours including the courses:

Ml. Introductory Calculus

M2. Mathematical Analysis I

M2P. Probability

M3. Linear Algebra

and at least two of the courses:
M4. Mathematical Analysis II

M5. Advanced Multivariate Calculus

M6. Algebraic Structures

M7. Probability and Statistics

Technical Electives. Assuming that a typical four-
year curriculum consists of 124 semester hours, a num-
ber of technical electives beyond the requirements
listed above should be available to a student in a com-
puter science program. Some of these electives might
be specified by the program to develop a particular
orientation or minor. Because of the temptation for the
student to overspecialize, it is suggested that a limit be
placed on the number of computer science electives a
student is allowed to take—for example, three such
courses might be permitted. For many students it will
be desirable to use the remaining technical electives
to acquire a deeper knowledge of mathematics, physical
science, electrical engineering, or some other com-
puter-related field.

Students should be carefully advised in the choice of
their electives. In particular, those preparing for gradu-
ate school must insure that they will be qualified for
admission into the program of their choice. Those seek-
ing a more "professional" education can specialize to
some extent through the proper choice of electives.

Areas of Specialization. Although undue specializa-
tion is not appropriate at the undergraduate level, the
technical electives may be used to orient undergradu-
ate programs in a number of different directions. Some
of the possible orientations, along with appropriate
courses (of Section 3) and subject areas (of Section 2)
from which the optional and elective courses might be
taken, are given below.

APPLIED S Y S T E M S P R O G R A M M I N G

Optional courses
15. Compiler Construction
16. Switching Theory

Electives from courses
A2. Advanced Computer Organization
A5. Information Organization and Retrieval
A6. Computer Graphics

Electives from areas
IV 8 Combinatorial Mathematics
IV 9 Mathematical Logic
IV. 11 Probability and Statistics
IV. 12 Operations Analysis

C O M P U T E R ORGANIZATION AND DESIGN
Optional courses

16. Switching Theory
17. Sequential Machines

Electives from courses
A2. Advanced Computer Organization
A4. System Simulation
A8. Large-scale Information Processing Systems

Electives from areas
IV.3 Differential Equations
V.2 Basic Electronics
V.6 Digital and Pulse Circuits
V.7 Coding and Information Theory

SCIENTIFIC APPLICATIONS PROGRAMMING

Optional courses
18. Numerical Analysis I
19. Numerical Analysis II

Electives from courses
A3. Analog and Hybrid Computing
A4 System Simulation
A5. Information Organization and Retrieval
A6 Computer Graphics

Electives from areas
IV 3 Differential Equations
IV.7 Optimization Theory
V.4 Thermodynamics and Statistical Mechanics
V 5 Field Theory

DATA PROCESSING APPLICATIONS PROGRAMMING

Optional courses
15. Compiler Construction
16. Switching Theory

Electives from courses
A4. System Simulation
A5. Information Organization and Retrieval
A8 Large-scale Information Processing Systems

Electives from areas
IV.7 Optimization Theory
IV. 11 Probability and Statistics
IV. 12 Operation Analysis
V.7 Coding and Information Theory

Semester Chronology. Any institution planning an
undergraduate program based on the recommendations
of this report should work out several complete four-
year curricula to insure that the required courses mesh
in an orderly manner with electives and with the "gen-
eral education" requirements of the institution. This
will help the school to take into account local circum-
stances such as having very few entering freshmen who
can begin college mathematics with the calculus.

Table I gives some examples of how a student in com-
puter science might be scheduled for the minimum set
of courses recommended for all majors.

T A B L E I

Year Semester First example Second example Third example

F r e s h m a n First M l , B l Basic M a t h . Basic M a t h .
Second M2, B2 M l , B l Basic M a t h .

Sophomore F i r s t M3, B3 M2, B2 M l , B l
Second M4, B4 M3, B3 M2, B2

J u n i o r F i r s t M2P , 11 M4, B4 M2P , B3, B4
Second M5, 12 M2P , 11 M3, 11, 12

Senior Fi rs t 13, 18 M7, 12, 13 MO, 13, Ki
Second 14, 19 14, 15, 16 M7, 14, 17

5. Master's
The recommendations given in this section concern

undergraduate preparation for graduate study in com-
puter science, requirements for a Master of Science de-
gree in computer science, and some possible areas of
concentration for students who are at the master's de-
gree level.

Undergraduate Preparation. The recommended
preparation for graduate study in computer science
consists of three parts as listed below. The course
work which would provide this background is indi-
cated in parentheses.

a. Knowledge of computer science including algorith-
mic processes, programming, computer organization,
discrete structures, and numerical mathematics.
(Courses Bl, B2, B3, and B4 or 18 of Section 3.)

b. Knowledge of mathematics, including the calculus
and linear algebra, and knowledge of probability and
statistics. (Courses Ml , M2, M3, M4, M2P, M7 of
CUPM.)

c. Additional knowledge of some field such as com-
puter science, mathematics, electrical engineering,
physical science, biological science, linguistics, library
science, or management science which will contribute
to the student's graduate study in computer science.
(Four appropriate courses on an intermediate level.)

A student with a bachelor's degree in computer sci-
ence, such as recommended in Section 4, can have
taken all these prerequisites as basic and supporting
courses and can also have taken further work which
overlaps with some of the subject matter to be treated
at the master's level. Although such a student will be
able to take more advanced graduate work in computer
science to satisfy his master's requirements, he may
need to take more supporting work than a student
whose undergraduate degree was in some other field.
A student with an undergraduate degree in mathe-
matics, physical science, or electrical engineering can
easily qualify for such a program if he has taken ade-
quate supporting courses in computer science. Other
applicants should have no more than a few deficiencies
in order to qualify.

In the near future many of the potential students, be-
cause of having completed their undergraduate work
some time ago, will not have had the opportunity to
meet these requirements. Liberal policies should there-
fore be established so that promising students can make
up deficiencies.

Degree Requirements. Each student's program of
study for the master's degree should have both breadth
and depth. In order to obtain breadth, the student
should take course work from each of the three subject
divisions of computer science described in Section 2.
To obtain depth, he should develop an area of concen-

Degree Programs
tration in which he would write a master's thesis or
complete a master's project (if required).

The master's degree program in computer science should con-
sist of at least nine courses. Normally at least two courses—
each in a different subject area—should be taken from each of
the following subject divisions of computer science:

I. Information Structures and Processes
II. Information Processing Systems
III. Methodologies

Sufficient other courses in computer science or related areas
should be taken to bring the student to the forefront of some
area of computer science.

In order that the student may perform in his required
course work at the graduate level he must acquire a
knowledge of related areas, such as mathematics and
the physical sciences, either as part of his undergradu-
ate preparation or as part of his graduate program.
Computer science as a discipline requires an under-
standing of mathematical methods and an ability to
use mathematical techniques beyond the specific un-
dergraduate preparation in mathematics recommended
above. Hence, a student who does not have a "strong"
mathematics background should take either further
courses in mathematics, or he should take computer
science courses which contain a high mathematical
content.

If Courses II, 12, 13, and 14 of Section 3 are taught
at a sufficiently high level, they can be used to satisfy
the "breadth" requirements for the first two subject
divisions listed above. In any case, the student who has
taken such courses as part of his undergraduate pro-
gram could take more advanced courses in these areas
so that the requirement for two courses in each subject
division might be relaxed somewhat. This might permit
such a student to take more supporting work outside
computer science.

Areas of Concentration. The "depth" requirement
will often involve courses from fields other than com-
puter science, so that a student may have to take addi-
tional courses in these fields just to meet prerequisites
unless he has anticipated this need in his undergradu-
ate preparation. In any event, the particular courses
a student selects from each of the three subject divi-
sions of computer science should be coordinated with
his area of concentration. To illustrate how this might
be done, six possible concentrations are shown below
together with lists of the subject areas (of Section 2)
from which appropriate courses might be selected for
each of the concentrations. The characterization of
courses in terms of subject areas instead of explicit con-
tent effectively gives a list of suggested topics which
can be drawn upon in designing master 's level courses
suited to the needs of individual institutions.

T H E O R E T I C A L C O M P U T E R SCIENCE

1.1 Data Structures

1.2 Programming Languages

1.3 Models of Computation

II 1.3 Symbol Manipulation

III.8 Artificial Intelligence

IV.8 Combinatorial Analysis

IV.9 Mathematical Logic

V.7 Coding and Information Theory

APPLIED SOFTWARE

1.1 Data Structures

1.2 Programming Languages

11.1 Computer Design and Organization

11.2 Translators and Interpreters

11.3 Computer and Operating Systems

III.3 Symbol Manipulation

III.6 Simulation

IV.7 Optimization Theory

IV.9 Mathematical Logic

APPLIED HARDWARE

I.I Data Structures

1.3 Models of Computation

11.1 Computer Design and Organization

II.3 Computer and Operating Systems

III.5 Computer Graphics

IV. 7 Optimization Theory

IV. 9 Mathematical Logic

V.6 Digital and Pulse Circuits

V.7 Coding and Information Theory

NUMERICAL M A T H E M A T I C S

1.1 Data Structures

1.2 Programming Languages

11.1 Computer Design and Organization

II.3 Computer and Operating Systems

III.1 Numerical Mathematics

III.6 Simulation

IV.5 Theoretical Numerical Analysis

IV.6 Methods of Applied Mathematics

IV.7 Optimization Theory

I N S T R U M E N T A T I O N

1.1 Data Structures

1.2 Programming Languages

11.1 Computer Design and Organization

II.4 Special Purpose Systems

III.6 Simulation

III.9 Process Control

IV.6 Methods of Applied Mathematics

IV.7 Optimization Theory

V.8 Communication and Control Theory

INFORMATION S Y S T E M S

1.1 Data Structures

1.2 Programming Languages

11.1 Computer Design and Organization

II.3 Computer and Operating Systems

III.2 Data Processing and File Management

III.4 Text Processing

III 7 Information Retrieval

IV.7 Optimization Theory

IV.9 Mathematical Logic

The requirement of a master's thesis or other project
has been left unspecified since general institutional re-
quirements will usually determine this. It is strongly-
recommended, however, that a master's program in
computer science contain some formal provision for in-
suring that the student gains or has gained project ex-
perience in computer applications. This could be ef-
fected by requiring that students carry out either
individually or cooperatively a substantial assigned task
involving analysis and programming, or better, that
students be involved in an actual project on campus
or in conjunction with other employment.

This proposed program embodies sufficient flexibility
to fulfill the requirements of either an "academic"
degree obtained in preparation for further graduate
study or a terminal "professional" degree. Until clearer
standards both for computer science research and the
computing profession have emerged, it seems unwise to
at tempt to distinguish more definitely between these
two aspects of master's degree programs.

6. Doctoral Programs

Academic programs at the doctoral level reflect the
specific interests of the faculty and, hence, vary from
university to university. Therefore, the Committee
cannot expect to give recommendations for such doc-
toral programs in as great a detail as has been done for
the undergraduate and master's degree programs. The
large number of institutions planning such programs
and the variety of auspices under which they are being
sponsored, however, suggest that a need exists for
guidelines as to what constitutes a "good" doctoral
program. While recommendations on doctoral programs

will not be given at this time, the problem of how to
obtain such guidelines has been of considerable inter-
est to the Committee.

One possible source of such guidelines is the existing
doctoral programs. A description of the program at
Stanford University [15] has already been published
in Communications of the ACM and descriptions of
many other programs are available from the universi-
ties concerned. Information based on a number of such
programs is contained in the report of the June 1967,
Stony Brook Conference [11]. This report also contains

a list of thesis topics currently being pursued or re-
cently completed. In the future the Curriculum Com-
mittee hopes to encourage wide dissemination of the
descriptions of existing programs and research topics.
Perhaps it can take an active role in coordinating the
interchange of such information.

In 1966 Professor Thomas Hull was asked by ACM
to examine the question of doctoral programs in com-
puter science. After discussion with the members of
this Committee and with many other interested per-
sons, Professor Hull decided to solicit a series of articles
on the research and teaching areas which might be in-
volved in doctoral programs. Each article is to be
written by an expert in the particular subject area,
such as programming languages, systems programming,
computer organization, numerical mathematics, auto-
mata theory, large systems, and artificial intelligence.
Each article is to at tempt to consider all aspects of the
subject area which might be helpful to those develop-

ing a graduate program, including as many of the fol-
lowing topics as possible:

a. Definition of the subject area, possibly in terms of
an annotated bibliography.

b. Prerequisites for work in the area at the doctoral
level.

c. Outlines of appropriate graduate courses in the
area.

d. Examples of questions for qualifying examinations
in the area.

e. Indication of suitable thesis topics and promising
directions for research in the area.

f. The extent to which the subject area ought to be
required of all doctoral students in computer
science.

These articles are scheduled for publication in Com-
munications of the ACM and it is hoped that they will
stimulate further articles on doctoral programs.

7. Service Courses, Mine

Though it is now generally recognized that a signifi-
cant portion of our undergraduate students needs some
knowledge of computing, the amount and type of com-
puting knowledge necessary for particular areas of
study are still subject to considerable discussion. The
Pierce Report [7] estimates that about 75 percent of
all college undergraduates are enrolled in curricula
where some computer training would be useful. This
estimate, based on figures compiled by the US Office
of Education, involves dividing the undergraduate stu-
dent population into three groups. The first group,
about 35 percent of all undergraduates, consists of
those in scientific or professional programs having a
substantial quantitative content (e.g. mathematics,
physics, and engineering). At least some introductory
knowledge of computing is already considered highly
desirable for almost all of these students. The second
group, some 40 percent, is made up of those majoring
in fields where an understanding of the fundamentals
of computing is steadily becoming more valuable (e.g.
business, behavioral sciences, education, medicine,
and library science). Many programs in these areas are
already requiring courses in computing, and most are
expected to add such requirements in the future. The
third group, roughly 25 percent, comprises those un-
dergraduates who are majoring in areas which do not
necessarily depend on the use of computers (e.g. music,
drama, literature, foreign languages, liberal arts, and
fine arts). There are many persons who maintain that
even these students could benefit from a course which
would give them an appreciation of this modern tech-
nology and its influence on the structure of our society.

The extent and nature of the courses on computing

, and Continuing Education

needed for these three groups of students should be
given further careful study, but the existence of a sub-
stantial need for service courses in computer science
seems undeniable. Students in the more quantitative
fields are usually well-equipped to take the basic
courses designed for the computer science major. In
particular, Course Bl should serve as an excellent in-
troductory course for these students and, depending
upon their interests, Course B2 or B4 might serve as a
second course. When these students develop a greater
interest in computing, they should normally be able to
select an appropriate "minor" program of study from
the courses described in Section 3. In developing a
minor program careful consideration should be given
to the comparative values of each course in the de-
velopment of the individual student.

Some special provisions appear to be necessary for
students in the second and third groups described
above. A special version of Course Bl which would
place more emphasis on text processing and other
nonnumeric applications might be more appropriate
for students in the second group. However, it is im-
portant that this course provides adequate prepara-
tion for such courses as B2 and B3, since many of these
students might be expected to take further courses in
computer science. It may also be desirable to develop
courses giving primary emphasis to the economic, polit-
ical, sociological, and other implications of the growing
use of computer technology. Such courses would not be
considered substitutes for basic technical courses such
as Bl , but they could serve the needs of the third
group of students.

Professional programs at all levels offer limited op-

portunity for courses outside their highly structured
curricula, and they also present special problems. In
some cases it may be necessary to develop special
courses for students in such programs or to integrate
work on computing into existing courses. Those prepar-
ing for graduate professional programs will often find it
desirable to include some of the basic computer science
courses in their undergraduate work.

The responsibility for developing and conducting the
basic service courses in computer science should be con-
centrated within the academic structure and combined
with the operation of educational programs in computer
science. By properly aggregating students from similar
fields, those responsible for planning academic courses
can make them more generally applicable and broadly
directed. Under this arrangement teachers-can be used
more effectively and course content can more easily be
kept current with the rapidly moving developments in
the field. Also, students who find a need or a desire to
delve further into computer science are more likely to
have the necessary background to take advanced

courses. On the other hand, it must be recognized that
some departments will have many situations where
special applications of the computer can best be intro-
duced in their own courses. Certainly those responsible
for the basic computer science service courses must be
sensitive to the needs of the students for whom these
courses are intended.

Finally, the need for continuing education in com-
puter science must be recognized. Much of the course
material discussed in this report did not exist ten or
fifteen years ago, and practically none of this material
was available to students until the last few years. Any-
one who graduated from college in the early 1960's and
whose "major" field of study is related to computing is
already out-of-date unless he has made a determined
effort to continue his education. Those responsible for
academic programs in computer science and those
agencies which help to direct and support continuing
education should be especially alert to these needs in
this unusually dynamic and important field.

8. Implt
In educational institutions careful consideration

should be given to the problems of implementing a
computer-related course of study—be it a few introduc-
tory or service courses, an undergraduate degree pro-
gram, or a graduate degree program. Some of these
problems involve organization, staff requirements, and
physical facilities (including computing services). Al-
though individual ways of providing a favorable en-
vironment for computer science will be found in each
school, the following discussion is intended to call at-
tention to the extent of some of these problems.

Organization for Academic Programs. It should be
realized that the demands for education in computer
science are strong. If some suitable place in the institu-
tional structure is not provided for courses and pro-
grams in computer science to be developed, they will
spring up within a number of existing departments and
a possible diffusion of effort will result as has been ex-
perienced with statistics in many universities.

If degree programs in computer science are to be of-
fered, it is desirable to establish an independent aca-
demic unit to administer them. Such a unit is needed
to provide the appropriate mechanisms for faculty ap-
pointments and promotions, for attention to continuing
curriculum development, and for the allocation of re-
sources such as personnel, budget, space, and equip-
ment. This academic unit should also be prepared to
provide general service courses and to cooperate in
developing computer-oriented course work in other
departments and professional schools.

Many universities have established departments of
computer science as part of their colleges of arts and

sciences, and some have established divisions of mathe-
matical sciences, which include such departments as
mathematics, applied mathematics, statistics, and com
puter science. Other institutions have located computer
science departments in colleges of engineering and ap-
plied science. Academic units in computer science have
also been affiliated with a graduate school, associated
with more than one college, or even established inde-
pendent of any college in a university.

The organizational problems for this new field are
serious, and their solution will inevitably require new
budget commitments from a university. However, fail-
ure to come to grips with the problem will probably
prove more costly in the long run; duplicated courses
and programs of diluted quality may result, and a ma-
jor upheaval may eventually be required for reorgani-
zation.

Staff Requirements. Degree programs in computer
science require a faculty dedicated to this discipline—
that is, individuals who consider themselves computer
scientists regardless of their previous academic training.
Although graduate programs in computer science are
now producing a limited number of potential faculty
members, the demand for such people in industry and
government and the competition for faculty among uni-
versities are quite intense. Hence educational institu-
tions will have to obtain most of their computer science
faculty from other sources—at least for the immediate
future. Many faculty members in other departments
of our universities have become involved with comput-
ing and have contributed to its development to the
point that they are anxious to become part of a com-

puter science program. Within industry and govern-
ment there are also people with the necessary academic
credentials who are willing to teach the technology
they have helped develop. Thus, extensive experience
and academic work in computer science, accompanied
by academic credentials in a related area such as
mathematics, electrical engineering, or other appro-
priate disciplines, can serve as suitable qualifications
for staff appointments in a computer science program.
Joint appointments with other academic departments
or with the computing center can help fill some of the
need, but it is desirable that a substantial portion of
the faculty be fully committed to computer science.
Moreover, there is some critical size of faculty—perhaps
the equivalent of five full-time positions—which is
needed to provide a reasonable coverage of the areas
of computer science discussed in Section 2.

Since relatively few good textbooks are available in
the computer sciences, the computer science faculty
will need to devote an unusually large part of its time
to searching the literature and developing instructional
materials. This fact should be taken into consideration
in determining teaching loads and staff assignments.

Physical Facilities. Insofar as physical facilities are
concerned, computer science should generally be in-
cluded among the laboratory sciences. Individual fac-
ulty members may need extra space to set up and use
equipment, to file cards and voluminous computer
listings, and otherwise to carry out their teaching and
research. In addition to normal library facilities, special
collections of material, such as research reports, com-
puter manuals, and computer programs, must be ob-
tained and facilities made available for their proper
storage and effective use. Space must also be provided
for keypunches, remote consoles to computers, and any
other special equipment needed for education and/or
research. Laboratory-type classrooms must be avail-
able to allow students, either as individuals or as
groups, to spread out and study computer listings.

It is no more conceivable that computer science
courses—let alone degree programs—can exist without
a computer available to students than that chemistry
and physics offerings can exist without the associated
laboratory equipment. Degree programs require regular
access to at least a medium-sized computer system of
sufficient complexity in configuration to require the
use of an operating system. The total operating costs
of such systems are at least $20,000 per month. In terms
of hours per month, the machine requirements of com-
puter science degree programs will vary according to
the number of students enrolled, the speed of the
computer and the efficiency of its software, and the
philosophy of the instructors. It is entirely possible
that an undergraduate degree program might require
as much as four hours of computing on a medium-sized
computer per class day.

17

Space for data and program preparation and program
checking must be provided, and the logistics of han-
dling hundreds and possibly thousands of student pro-
grams per day must be worked out so that each student
has frequent access to the computer with a minimum
of waiting and confusion. Although many of these same
facilities must be provided for students and faculty
other than those in computer science, the computer
science program is particularly dependent on these
services. It is simply false economy to hamper the use
of expensive computing equipment by crowding it into
unsuitable space or in some other way making it inac-
cessible.

The study and development of systems programs
will require special forms of access to at least medium-
scale computing systems. This will place an additional
burden on the computer center and may possibly re-
quire the acquisition of completely separate equip-
ment for educational and research purposes. In ad-
vanced programs it is likely that other specialized
equipment will be necessary to handle such areas as
computer graphics, numeric control of machines, proc-
ess control, simulation, information retrieval systems,
and computer-assisted instruction.

Although assistance in financing computer services
and equipment can be obtained from industry and from
federal and state governments, the Committee feels
that universities should provide for the costs of equip-
ment and services for computer science programs just
as they provide for costs of other laboratory sciences.
Based on its knowledge of costs at a number of schools
the Committee estimates that computer batch proc-
essing of student jobs for elementary courses presently
costs an average of about $30 per semester hour per
student, whereas the Pierce Report [7] estimates that
it costs colleges about $95 per chemistry student per
year for a single chemistry laboratory course. Although
computer costs are decreasing relative to capacity, it is
expected that students will be able to use more com-
puter time effectively in the future as computers be-
come more accessible through the use of such tech-
niques as time-sharing. On the basis of these estimates
and expectations, future computer costs for academic
programs may well approach faculty salary costs.

Relation of the Academic Program to the Computing
Center. As indicated above, the demands which an
academic program in computer science places on a uni-
versity computing center are more than routine. Com-
puter and programming systems must be expanded and
modified to meet the growing and varied needs of these
programs as well as the needs of the other users. The
service function of a computer center must therefore
be enhanced by an activity which might be described
as "applied computer science." In a complementary
way, it is appropriate for a computer science faculty to
be deeply involved in the application of computers,

particularly in the development of programming sys-
tems. For these reasons, the activities of a computer
center and a computer science department should be
closely coordinated. The sharing of staff through joint
appointments helps facilitate such cooperation, and it
is almost necessary to provide such academic appoint-
ments in order to attract and retain certain essential
computer center personnel.

It should be realized, however, that the basic phi-
losophies of providing services and of pursuing aca-
demic ends differ to such an extent that conflicts for

attention may occur. At one extreme, the research of a
computer science faculty may so dominate the activities
of a computer center that its service to the academic
community deteriorates. At the other extreme, the
routine service demands of a computer center may in-
hibit the faculty's ability to do their own research, or
the service orientation of a center may cause the edu-
cational program to consist of mere training in tech-
niques having only transient value. Considerable and
constant care must be taken to maintain a balance
between these extremes.

R E F E R E N C E S

1. Association for Computing Machinery, Curriculum Committee on
Computer Science. An undergraduate program in computer
science—preliminary recommendations. Comm. ACM 8, 9
(Sept. 1965), 543-552.

2 . NEWELL, A . , PERLIS, A . J . , AND SIMON, H . A . C o m p u t e r s c i e n c e .
(Letter to the Editor). Science 157, 3795 (22 Sept. 1967), 1373-
1374.

3. University of Chicago. Graduate programs in the divisions, an-
nouncements 1967-1968. U. of Chicago, Chicago, pp. 167-169.

4. GORN, S. The computer and information sciences: a new basic
discipline. SI AM Review 5, 2 (Apr. 1963), 150-155.

5. HAMBLEN, J . W. Computers in higher education: expenditures,
sources of funds, and utilization for research and instruction
1964-65, with projections for 1968-69. (A report on a survey
supported by NSF). Southern Regional Education Board, At-
lanta, Ga., 1967.

6. ROSSER, J . B., ET AL. Digital computer needs in universities and
colleges. Publ. 1233, National Academy of Sciences-National
Research Council, Washington, D. C., 1966.

7. President's Science Advisory Committee. Computers in higher
education. The White House, Washington, D. C., Feb. 1967.

8. Mathematical Association of America, Committee on the Under-
graduate Program in Computer Science (CUPM). Recom-
mendations on the undergraduate mathematics program for
work in computing. CUPM, Berkeley, Calif., May 1964.

9. Commission on Engineering Education, COSINE Committee.
Computer sciences in electrical engineering. Commission in
Engineering Education, Washington, D. C., Sept. 1967.

10. British Computer Society, Education Committee. Annual edu-
cation review. Comput. Bull. 11, 1 (June 1967), 3-73.

11. FINERMAN, A. (Ed.) University Education in Computing Science.
(Proceedings of the Graduate Academic Conference in Com-
puting Science, Stony Brook, New York, June 5-8, 1967) ACM
Monograph, Academic Press, New York, 1968.

12. Mathematical Association of America, Committee on the Under-
graduate Progra m in Mathematics (CUPM). A general cur-
riculum in mathematics for colleges. CUPM, Berkeley, Calif.,
1965.

13. . Recommendations in the undergraduate mathematics pro-
gram for engineers and physicists. CUPM, Berkeley, Calif.,
1967.

14. . A curriculum in applied mathematics. CUPM, Berkeley,
Calif., 1966.

15. FORSYTHE, G. E. A university's education program in computer
science. Comm. ACM 10, 1 (Jan. 1967), 3-11.

18

Acknowledgments

The following people have served as consultants
to the Committee on one or more occasions or have
given considerable other assistance to our work.

Richard V. Andree, University of Oklahoma
Robert L. Ashenhurst, University of Chicago
Bruce H. Barnes, Pennsylvania State University
Robert S. Barton, University of Utah
J. Richard Buchi, Purdue University
Harry Cantrell, General Electric Company
Mary D'Imperio, Department of Defense
Arthur Evans, Massachusetts Institute of Technology
David C. Evans, University of Utah
Nicholas V. Findler, State University of New York at Buffalo
Patrick C. Fischer, University of British Columbia
George E. Forsythe, Stanford University
Bernard A. Galler, University of Michigan
Saul Gorn, University of Pennsylvania
Preston C. Hammer, Pennsylvania State University
Richard W. Hamming, Bell Telephone Laboratories
Harry D. Huskey, University of California a t Berkeley
Peter Z. Ingerman, Radio Corporation of America
Donald E. Knuth, California Institute of Technology
Robert R. Korfhage, Purdue University
Donald J . Laird, Pennsylvania State University
George E. Lindamood, University of Maryland
William C. Lynch, Case Institute of Technology
M. Douglas Mcllroy, Bell Telephone Laboratories
Robert McNaughton, Rensselaer Polytechnic Institute
Michel Melkanoff, University of California a t Los Angeles
William F. Miller, Stanford University
Anthony G. Oettinger, Harvard University
Elliott I. Organick, University of Houston
Robert H. Owens, University of Virginia
Charles P. Reed, Jr. , Georgia Institute of Technology
Saul Rosen, Purdue University
Daniel Teichroew, Case Institute of Technology
Andries van Dam, Brown University
Robert J . Walker, Cornell University
Peter Wegner, Cornell University

Written comments on the Committee's work,
contributions to course outlines, and other as-
sistance have been rendered by the following:

Bruce W. Arden, University of Michigan
John E. Bakken, Midwest Oil Corporation
Larry L. Bell, Auburn University
Robert D. Brennan, International Business Machines Corp.
Yaohan Chu, University of Maryland
Charles H. Davidson, University of Wisconsin
Harold P. Edmundson, University of Maryland
Charles W. Gear, University of Illinois
Robert T. Gregory, University of Texas
Keith Hastings, University of Toronto
Carl tv Kossack, University of Georgia
Ralph E. Lee, University of Missouri a t Rolla
George Mealy, Massachusetts Institute of Technology
Harlan D. Mills, International Business Machines Corp.
Jack Minker, University of Maryland and Auerbach Corp.
Jack Noland, General Electric Company
James C. Owings, Jr., University of Maryland
David L. Parnas, Carnegie-Mellon University
Charles R. Pearson, J . P. Stevens and Co.
Tad Pinkerton, University of Michigan
Roland L. Porter, Los Angeles, California
Anthony Ralston, State University of New York a t Buffalo
Roy F. Reeves, Ohio State University
John R. Rice, Purdue University
Gerard Salton, Cornell University
Gordon Sherman, University of Tennessee
Vladimir Slamecka, Georgia Institute of Technology
Joseph F. Traub, Bell Telephone Laboratories

Numerous other people have contributed to
the work of the Committee through informal dis-
cussions and other means. The Committee is
grateful for all of the assistance it has received
and especially for the cooperative spirit in which
it has been given.

19

Appendix. Course Outlines and Bibliographies

For each of the twenty-two courses described in Section 3, this Appendix contains a brief discus-
sion of the approach to teaching the course, a detailed outline of the content of the course, and a
bibliography listing material which should be useful to the teacher and/or the student in the
course. The amount of attention which might be devoted to the various topics in the content of
some of the courses is indicated by percentage or by number of lectures. Whenever possible, each
bibliographic entry is followed by a reference to its review in Computing Reviews. The format used
for these references is CR-xyvi-n, where xy indicates the year of the review, v the volume number,
i the issue number, and n the number of the review itself. Most of the bibliographic entries are
followed by a brief annotation which is intended to indicate the way in which the item would be
useful and perhaps to clarify the subject of the item-. In some cases the title is sufficient for this
purpose, and no annotation is given. In other cases the items are simply keyed in various ways to
the sections of the content to which they apply. Although an effort has been made to cite a wide
variety of texts and reference materials for each course, space and other considerations have pre-
vented the listing of all books and papers which might bear on the topics treated.

Course B1. Introduction to Computing (2-2-3)

APPROACH

This first course in computing concentrates on the solution of
computational problems through the introduction and use of an
algorithmic language. A single such language should be used for
most of the course so that the students may master it well enough
to attack substantial problems. It may be desirable, however, to use
a simple second language of quite different character for a problem
or two in order to demonstrate the wide diversity of the computer
languages available. Because of its elegance and novelty, SNOBOL
can be used quite effectively for this purpose. In any case, it is essen-
tial tha t the student be aware tha t the computers and languages he
is learning about are only particular instances of a widespread
species.

The notion of an algorithm should be stressed throughout the
course and clearly distinguished from that of a program. The lan-
guage structures should be carefully motivated and precisely de-
fined using one or more of the formal techniques available. Every
effort should be made to develop the student 's ability to analyze
complex problems and formulate algorithms for their solution. Nu-
merous problems should be assigned for computer solution, begin-
ning early in the course with several small projects to aid the student
in learning to program, and should include at least one major project,
possibly of the student 's own choosing. Careful verification of pro-
gram operation and clear program documentation should be em-
phasized.

CONTENT

This outline reflects an order in which the material might be pre-
sented; however, the order of presentation will be governed by the
choice of languages and texts as well as individual preferences. In
particular, the treatment of some of the topics listed below might
be distributed throughout the course. Although not specifically
listed in the following outline, programming and computer projects
should constitute an important part of the content of this course.

1. Algorithms, Programs, and Computers. The concept and prop-
erties of algorithms. Flowcharts of algorithms and the need for pre-
cise languages to express algorithms. The concept of a program, ex-
amples of simple programs, and description of how computers
execute programs. Programming languages including the description
of their syntax and semantics. (10%)

2. Basic Programming. Constants, identifiers, variables, sub-
scripts, operations, functions, and expressions. Declarations, substi-

tution statements, input-output statements, conditional statements,
iteration statements, and complete programs. (10%)

3. Program Structure. Procedures, functions, subroutine calling,
and formal-actual parameter association. Statement grouping, nested
structure of expressions and statements, local versus global variables,
run-time representation, and storage allocation. Common data, seg-
menting, and other structural features. (10%)

4. Programming and Computing Systems. Compilers, libraries,
loaders, system programs, operating systems, and other information
necessary for the student to interact with the computer being used.
(5%)

5. Debugging and Verification of Programs. Error conditions and
messages, techniques of debugging, selection of test data, checking of
computer output, and programming to guard against errors in data.
(5%)

6. Data Representation. Systems of enumeration and binary
codes. Representation of characters, fixed and floating-point num-
bers, vectors, strings, tables, matrices, arrays, and other data struc-
tures. (10%)

7. Other Programming Topics. Formatted input and output. Ac-
curacy, truncation, and round-off errors. Considerations of efficiency.
Other features of language(s) being considered. (10%)

8. Organization and Characteristics of Computers. Internal or-
ganization including input-output, memory-storage, processing and
control. Registers, arithmetic, instruction codes, execution of instruc-
tion, addressing, and flow of control. Speed, cost and characteristics
of various operations and components. (10%)

9. Analysis of Numerical and Nonnumerical Problems. Appli-
cations of algorithm development and programming to the solution
of a variety of problems (distributed throughout the course). (15%)

10. Survey of Computers, Languages, Systems, and Applications.
The historical development of computers, languages, and systems
including recent novel applications of computers, and new develop-
ments in the computing field. (10%)

11. Examinations. (5%)
ANNOTATED BIBLIOGRAPHY

In addition to the materials listed here, there are numerous books
and manuals on specific computer languages which would be appro-
priate as part of the textual material for this course. Very few books,
however, place sufficient emphasis on algorithms and provide the
general introductory material proposed for this course.

1. ARDEN, B. W. An Introduction to Digital Computing. Addison-
Wesley, Reading, Mass., 1963, 389 pp. CR-6345-4551.

This text uses MAD and emphasizes the solution of numerical
problems, although other types of problems are discussed. Nu-
merous examples and exercises.

2. FORTE, A. SNOBOL3 Primer. M.I.T. Press, Cambridge, Mass.,
1967, 107 pp.
An elementary exposition of SNOBOL3 which might well be used
to introduce a "second" language. Many exercises and examples.
(SNOBOL4 is now becoming available.)

3. GALLER, B. A. The Language of Computers. McGraw-Hill,
New York, 1962, 244 pp. CR-6341-3574.
Emphasizes "discovering" the structure of algorithms needed
for the solution of a varied set of problems. The computer lan-
guage features necessary to express these algorithms are care-
fully motivated. The language introduced is primarily based on

MAD, b u t FORTRAN a n d ALGOL a r e a l s o d i s c u s s e d .

4. GRUENBERGER, F. The teaching of computing (Guest editorial).
Comm. ACM 8, 6 (June 1965), 348 and 410. CR-6565-8074.
Conveys eloquently the philosophy which should be used in
developing and teaching an introductory computing course.

5. GRUENBERGER, F . AND JAFFRAY, G . Problems for Computer
Solution. Wiley, New York, 1965, 401 pp. CR-6671-8757.
Contains a collection of problems appropriate for computer so-
lution by students. Student is guided into the analysis of the
problems and the development of good computational solutions,
but actual computer programs for the solutions are not given.

6. HULL, T. E. Introduction to Computing. Prentice-Hall, Engle-
wood Cliffs, N. J. , 1966, 212 pp.
Text on fundamentals of algorithms, basic features of stored-
program computers, and techniques involved in implementing
algorithms on computers. Presents a complete description of
FORTRAN IV with examples of numerical methods, nonnumerical
applications, and simulations. Numerous exercises.

7. MARCOVITZ, A . B . AND SCHWEPPE, E . J . An Introduction to
Algorithmic Methods Using the MAD Language. Macmillan,
New York, 1966, 433 pp. CR-6781-11,199.
Emphasizes algorithms and their expression as programs, char-
acteristics of computers and computer systems, formal definition
of computer languages, and accuracy and efficiency of programs.
Numerous examples and exercises.

8. PERLIS, A. J . Programming for digital computers. Comm. ACM
7, 4 (Apr. 1964), 210-211.
Description of course developed by Perlis a t Carnegie Institute
of Technology which has strongly influenced the course proposed
here.

9. RICE, J . K. AND RICE, J . R. Introduction to Computer Science:
Problems, Algorithms, Languages and Information, Preliminary
edition. Holt, Rinehart and Winston, New York, 1967, 452 pp.
Presentation revolves around the theme of "problem solving,"
emphasizing algorithms, languages, information representations,
and machines necessary to solve problems. Problem solution
methods classified, and many sample problems included. The
nature of errors and uncertainty is considered. Detailed ap-
pendix on FORTRAN IV by E. Desautels.

10. School Mathematics Stucjy Group. Algorithms, Computation
and Mathematics, rev. ed. Stanford University, Stanford, Calif.,
1966. Student Text, 453 pp., Teacher's Commentary, 301 pp.;
Algol Supplement: Student Text, 133 pp., Teacher's Commen-
tary, 109 pp.; Fortran Supplement: Student Text, 132 pp.,
Teacher's Commentary, 102 pp. Available from A. C. Vroman,
Inc., 367 South Pasadena, Pasadena, Calif. A MAD Language
Supplement by E. I. Organick is available from Ulrich's Book
Store, 549 E. University Avenue, Ann Arbor, Mich.
Although developed for high school students and teachers, this
work contains much material appropriate for this course. De-
velops an understanding of the relationship between mathe-
matics, computing, and problem solving. Basic text uses English
and flow charts to describe algorithms; supplements introduce
the computer language and give these algorithms in ALGOL,
FORTRAN, a n d MAD.

Course B2. Computers and Programming (2-2-3)

APPROACH

This course is designed to introduce the student to basic computer
organization, machine language programming, and the use of as-
sembly language programming systems. A particular computer, ma-
chine language and programming system should be used extensively
to illustrate the concepts being taught and to give the student actual
experience in programming. However, it is important tha t the course
not degenerate into mere training in how to program one machine.
Alternative machine languages, machine organization, and program-
ming systems should be discussed and compared. Emphasis should
be placed on the overall structure of the machines and programming
techniques considered. A "descriptive" presentation of various com-
puter features and organizations may be very effective; nevertheless,
it is recommended that a precise language be introduced and used to
describe computer organizations and instruction execution (as the
Iverson notation has been used to describe the IBM System/360).

CONTENT

The following outline indicates a possible order in which the ma-
terial for this course might be taught, but other arrangements might
be equally suitable depending upon the choice of text, availability
of computing facilities, and preferences of the instructor. Computer
projects—although not specifically listed below—should be an essen-
tial part of the course content.

1. Computer Structure and Machine Language. Organization of
computers in terms of input-output, storage, control, and processing
units. Register and storage structures, instruction format and execu-
tion, principal instruction types, and machine language program-
ming. Machine arithmetic, program control, input-output operations,
and interrupts. Characteristics of input-output and storage devices.
(10%)

2. Addressing Techniques. Absolute addressing, indexing, indi-
rect addressing, relative addressing, and base addressing. Memory
mapping functions, storage allocation, associative addressing, paging,
and machine organization to facilitate modes of addressing. (5%)

3. Digital Representation of Data. Bits, fields, words, and other
information structures. Radices and radix conversion, representation
of integer, floating-point, and multiple-precision numbers in binary
and decimal form, and round-off errors. Representation of strings,
lists, symbol tables, arrays and other data structures. Data trans-
mission, error detection and correction: Fixed versus variable word
lengths. (10%)

4. Symbolic Coding and Assembly Systems. Mnemonic opera-
tion codes, labels, symbolic addresses and address expressions.
Literals, extended machine operations, and pseudo operations. Error
flags and messages, updating, and program documentation. Scanning
of symbolic instructions and symbol table construction. Overall de-
sign and operation of assemblers. (10%)

5. Selected Programming Techniques (chosen from among the
following). Techniques for sorting, searching, scanning, and con-
verting data . String manipulation, text editing, and list processing.
Stack management, arithmetic expression recognition, syntactic
recognition, and other compilation techniques. (10%)

6. Logic Design, Micro-programming, and Interpreters. AND,
OR, and NOT elements, design of a half-adder and an adder, storage
iand delay elements, and design of an arithmetic unit . Parallel versus
serial arithmetic, encoding and decoding logic, and micro-program-
ming. Interpreters, simulation, and emulation. Logical equivalence
between hardware and software. (5%)

7. Macros. Definition, call, and expansion of macros. Nested and
recursive macro calls and definitions. Parameter handling, condi-
tional assembly, and assembly time computations. (10%)

8. Program Segmentation and Linkage. Subroutines, coroutines,
and functions. Subprogram loading and linkage, common data link-
age, transfer vectors, and parameters. Dynamic storage allocation,

21

overlays, re-entrant subprograms, and stacking techniques. Linkage
using page and segment tables. (10%)

9. Computer Systems Organization. Characteristics and use of
tapes, disks, drums, cores, data-cells, and other large-volume de-
vices in storage hierarchies. Processing unit organization, input-
output channels and devices, peripheral and satellite processors,
multiple processor configurations, computer networks, and remote
access terminals. (10%)

10. Systems and Utility Programs. Loaders, input-output sys-
tems, monitors, and accounting programs. Program libraries. Or-
ganization, documentation, dissemination, and maintenance of sys-
tem programs. (10%)

11. Recent Developments. Selected topics in computer organiza-
tion, technology, and programming systems. (5%)

12. Examinations. (5%)
ANNOTATED BIBLIOGRAPHY

Whereas many of the books on "computer programming" might
seem to be appropriate texts or references for this course, only
a few even begin to approach the subject as proposed for this course.
Most books deal with specific machines, actual or hypothetical,
but very few discuss computer organization from any general point
of view or consider the techniques of symbolic programming by any.
method other than examples. A few of the many books which deal
with specific machines have been included in this list, but no manu-
facturers' manuals have been listed even though they may be used
effectively as supplemental material.

1. BROOKS, F . P . , J R . , AND IVERSON, K . E . Automatic Data
Processing. Wiley, New York, 1963, 494 pp. CR-6673-9523.
On computing fundamentals, machine language organization
and programming using IBM 650 as the principal example.

2. DAVIS, G. B. An Introduction to Electronic Computers. Mc-
Graw-Hill, New York, 1965, 541 pp.
Informally written text containing a general introduction to com-
puting, rather complete coverage of FORTRAN and COBOL, and
considerable material on machines and machine language pro-
gramming.

3 . FISCHER, F . P . , AND SWINDLE, G . F . Computer Programming
Systems. Holt, Rinehart and Winston, New York, 1964, 643 pp.
CR-6455-6299.
Par t I is concerned with machine oriented programming and pro-
gramming systems using IBM 1401 as the illustrative computer.

4. FLORES, I. Computer Programming. Prentice-Hall, Englewood
Cliffs, N. J . , 1966, 386 pp. CR-6674-10,060.
Covers machine language and software techniques using the
Flores Assembly Program (FLAP) for illustrative purposes.

5. HASSITT, A. Computer Programming and Computer Systems.
Academic Press, New York, 1967, 374 pp. CR-6784-12,355.
Discusses various features of computer organization and pro-
gramming languages using examples from a number of machines
including IBM 1401, 1620, 7090 and System/360, and CDC 1604
and 3600.

6. IVERSON, K. E. A Programming Language. Wiley, New York,
1962, 286 pp. CR-6671-9004.
Introduces a language used extensively for description of com-
puters as well as for description of computer programs. Contains
material on machine organization, sorting and data structures.

7. STARK, P. A. Digital Computer Programming. Macmillan, New
York, 1967, 525 pp.
Presents machine language and symbolic programming for a
24-bit computer.

8 . STEIN, M . L . , AND MUNRO, W . D . Computer Programming: A
Mixed Language Approach. Academic Press, New York, 1964,
459 pp. CR-6455-6140.
A text on computer organization and assembly language pro-
gramming using CDC 1604 as the basic computer.

9. WEGNER, P. Programming Languages, Information Structures

and Machine Organization. McGraw-Hill, New York, 1968,
about 410 pp.
Covers machine languages, multiprogramming, assembler con-
struction and procedure-oriented languages. Programming lan-
guages are treated as information structures.

Course B3. Introduction to Discrete Structures (3-0-3)

APPROACH

The theoretical material should be introduced in a mathematically
precise manner with all concepts and results being amply motivated
and being illustrated with examples from computer science. The
student should be given extensive homework assignments of both a
theoretical and a programming nature which further the under-
standing of the applications of the concepts in computer science.

CONTENT

Since the material listed below is more than can normally be of-
fered in a one-semester three-credit course on this level, care must
be taken to select those topics which will support the more ad-
vanced courses as they are developed at each particular school. The
description in each of the four sections is divided into two parts la-
beled (a) Theory and (b) Applications, but in practice the material
in both parts would be intermixed.

1. Basic Set Algebra.
a. Theory: Sets and basic set algebra. Direct products. Map-

pings, their domains and ranges, and inverse mappings. Finite and
denumerable sets. Relations including order relations. Set inclusion
as partial ordering. Equivalence relations, equivalence classes,
partition of sets, congruences. The preservation of relations under
mappings. Finite sets and their subsets. Permutations, combina-
tions, and related combinatorial concepts.

b. Applications: Examples of sets. The Peano axioms for the set
of integers. Congruences and ordering relations over the integers.
Relations over the integers defined by arithmetic operations. The
set of all subsets of an n-element set and the set of all n-digit
binary numbers. The set of all strings over a finite alphabet. Lan-
guages over an alphabet as subsets of the set of all strings over
the alphabet. Algorithms for listing combinations, compositions,
or partitions. Algorithms for ranking combinations.

2. Basic Algebraic Structures.
a. Theory: Operations on a set. Algebraic structures as sets with

particular functions and relations defined on it. Groups, subgroups,
cyclic groups, and other examples of groups. The concepts of
homomorphism and isomorphism on a set with operations. Semi-
groups and semigroups of transformations. Definition and general
discussion of examples of structures with several operations, e.g.
fields and possibly lattices.

b. Applications: Computer use for working group theoretic
problems, e.g. with permutation groups as they occur as input
transformation in switching networks. The semigroup of all words
over a fixed finite alphabet under the operation of concatenation.
The letters of the alphabet as generators. Pair algebra.

3. Boolean Algebra and Propositional Logic.
a. Theory: The axioms of set algebra. Axiomatic definition of

Boolean algebras as algebraic structures with two operations.
Duality. Basic facts about Boolean functions. Propositions and

.propositional functions. Logical connectives. Truth values and
truth tables. The algebra of propositional functions. The Boolean
algebra of truth values. Conjunctive and disjunctive normal forms.

b. Applications: Boolean algebra and switching circuits. Basic
computer components. Decision tables.
4. Graph Theory.

a. Theory: Directed and undirected graphs. Subgraphs, chains,
circuits, paths, cycles, connectivity, trees. Graphs and their rela-

22

tion to partial orderings. Graph isomorphisms. Cyclomatic and
chromatic numbers. The adjacency aiid the incidence matrices.
Minimal paths. Matchings of bipartite graphs. Elements of trans-
port networks.

b. Applications: Flow charts and state transition graphs. Con-
nectivity in flow charts. Syntactic structure of arithmetic expres-
sions as trees. Graph theoretic examples in coding theory. Algo-
rithms for determining cycles and minimal paths. Basic elements
of list structures. Accessing problems. Graphs of a game. Matching
algorithms and some related applications.

ANNOTATED BIBLIOGRAPHY

1. BECKENBACH, E. F. (Ed.) Applied Combinatorial Mathematics.
Wiley, New York, 1964, 608 pp.
A collection of articles on a broad spectrum of topics. Not di-
rectly suitable as a text, but an excellent source of ideas and
an important reference.

2. BEROE, C. Theory of Graphs and Its Applications. Wiley,
New York, 1962, 244 pp.
A good presentation of directed and undirected graph theory,
with some attention to algorithms. The work suffers from many
misprints and errors which have been carried over into the
English translation. A general reference text for this course.

3 . BIRKHOFF, G . , AND BARTEE, T . Modern Applied Algebra, P r e -
liminary edition. Parts I and II. McGraw-Hill, New York, 1967.
Preliminary edition available only in limited quantities, but
the full text expected by the fall of 1968. Appears to be very
close in spirit to the material proposed for this course, but the
content is more algebraically oriented and includes little on
graphs.

4 . BUSACKER, R . , AND SAATY, T . Finite Graphs and Networks:
An Introduction with Applications. McGraw-Hill, New York,
1965, 294 pp.
A good work on graph theory with a very nice collection of appli-
cations. Useful as source and reference for the graph theory part
of this course.

5. GROSSMAN, 1.. AND MAGNUS, W . Groups and Their Graphs.
Random House, New York, 1965, 195 pp. CR-6564-8003.
An elementary but very well written discourse on basic connec-
tions between group and graph theory.

6 . HAHARY, F . , NORMAN, R . Z . , AND CARTWRIGHT, D . Structural
Models: An Introduction to the Theory of Directed Graphs.
Wiley, New York, 1965, 415 pp. CR-6566-8421.
Excellent on directed graphs and probably the best source book
on that field. Should be an important reference for the corre-
sponding portion of this course.

7. HOHN, F. Applied Boolean Algebra, 2nd ed. Macmillan, New
York. 1966, 273 pp.
Very good introduction to basic facts of Boolean algebra and
especially its applications in electrical engineering. Important
reference for the corresponding portion of this course.

8. KEMENY , J . , MIKKIL, H . , SNELL , J . , AND THOMPSON, G . Finite
Mathematical Structures. Prentice-Hall, Englewood Cliffs,
N. J., 1959, 487 pp.
A text for physical science and engineering students who have
completed the calculus. First two chapters on compound state-
ments, sets, and functions should be particularly useful.

9 . KEMENY, J . , SNELL, J . , AND THOMPSON, G . Introduction to
Finite Mathematics, 2nd ed. Prentice-Hall, Englewood Cliffs,
N. J., 1966, 352 pp.
Freshman-sophomore level text designed primarily for students
in biological and social sciences. Follows CUPM recommenda-
tions for the mathematical education of such students. First
three chapters on compound statements, sets and subsets, par-
titions, and counting cover similar material as proposed for this
course.

10. KORFHAGE. R. Logic and Algorithms: With Applications to
the Computer and Information Sciences. Wiley, New York,
1966, 194 pp. CR-6782-11,339.

A fine new text introducing those basic topics from mathematical
logic important in computer science—for instance Boolean alge-
bra, Turing machines, and Markov algorithms. Written in the
spirit which should pervade this course.

11. LEDERMAN, W. Introduction to the Theory of Finite Groups.
Interscience, New York, 1953, 160 pp.
A very readable introduction to finite groups. Particularly inter-
esting to this course is the chapter on permutation groups.

12 . MACLANE, S . , AND BIRKHOFF, G . Algebra. M a c m i l l a n , N e w
York, 1967, 598 pp.
A substantially revised and updated version of A Survey of Mod-
ern Algebra, which has been a classic text on modern algebra.
Should be one of the main references for the algebraic parts of
this course.

13. ORE, O. Graphs and Their Uses. Random House, New York,
1 9 6 3 , 131 pp.
An introduction to the elementary concepts of graph theory.
Very pleasant to read.

14. RIORDAN, J . An Introduction to Combinatorial Analysis. Wiley,
New York, 1958, 244 pp.
One of the best source books on enumerative combinatorial
analysis. However, it is too advanced for use as a text in a course
of this type.

15. RYSER, H. Combinatorial Mathematics. Wiley, New York,
1 9 6 3 , 154 p p . C R - 6 5 6 2 - 7 3 7 1 .

An excellent introduction to such topics as (0,1) matrices,
Latin-squares, and block-design, but containing almost no graph
theory.

16. WHITESITT, J . E. Boolean Algebra arid Its Applications. Addi-
son-Wesley, Reading, Mass., 1961, 182 pp.
An introductory text designed for readers with a limited mathe-
matical background.

Course B4. Numerical Calculus (2-2-3)

APPROACH

In this course the emphasis is placed upon building algorithms for
the solution of numerical problems, the sensitivity of these algo-
r i thms to numerical errors, and the efficiency of these algorithms.
In the laboratory portion of the course the student is to complete
a substantial number of computational projects using a suitable
procedure-oriented language.

CONTENT

1. Basic Concepts of Numerical Error. Significant digit arith-
metic rounding procedures. Classification of error, evaluation of ex-
pressions and functions.

2. Interpolation and Quadrature. Polynomial interpolation, ele-
ments of difference calculus, Newton and Lagrange formulas, Ait-
ken's interpolation method, quadrature formulas, Romberg inte-
gration, numerical differentiation, and the inherent error problems.

3. Solution of Nonlinear Equations. Bisection method, successive
approximations including simple convergence proofs, linearization
and Newton's method, method of false-position. Applications to
polynomial equations. Generalization to iterative methods for sys-
tems of equations.

4. Linear Systems of Equations. Solution of linear systems and
determinant evaluation by elimination procedures. Roundoff errors
and ill-conditioning. Iterative methods.

5. Numerical Solution of Ordinary Differential Equations.
Euler's method, modified Euler's method, simplified Runge-Kutta.

ANNOTATED BIBLIOGRAPHY

Listed below are some of the books which might be used as texts
and/or references for this course. Most of the books cover the follow-
ing topics: solution of polynomial and other nonlinear equations;

23

interpolation, numerical quadrature, and numerical differentiation;
ordinary differential equations; and linear algebra. Significant devia-
tions from these topics are indicated by the annotation.

1. CONTE, S. D. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw-Hill, New York, 1965, 278 pp.
Designed as a text lor a one-semester, three-hour course for
engineering and science undergraduate students. Machine-
oriented treatment with many illustrative examples including
flow charts and FORTRAN programs. Except lor the chapter on
differential equations, a knowledge of basic calculus and of
programming in a procedure-oriented language is sufficient back-
ground. Numerous exercises.

2. .JENNINGS, W. First Course in Numerical Methods. Macmillan,
New York, 1964, 23.'? pp. CR-6671-9036.
Designed as a text for a one-semester course for advanced under-
graduate students in science and engineering. Brief treatment of
the standard topics. Presupposes calculus, differential equations,
some experience with the computer, and, for later chapters,
matrices. Some exercises.

3. MACON. N. Numerical Analysis. Wiley, New York, 1963, 161
PP-
Designed as a text for a one-semester first course in numerical
analysis. Emphasis is more on the mathematical aspects rather
than the computational aspects although there is an introduc-
tory chapter on the elements of computing, flow charting, and
FORTRAN programming. For the early chapters calculus provides
sufficient background. For later chapters an elementary knowl-
edge of matrix theory, differential equations, and advanced cal-
culus is recommended. Examples and exercises.

4. MCCORMICK, -J. M. , AND SAI.VADORI, M . G. Numerical Meth-
ods in FORTRAN. Prentice-Hall, Englewood Cliffs, N.J., 1964,
324 pp. CR-6676-10,883.
Designed as a text either for an elementary course in numerical
analysis at the junior-senior level or for a course in programming.
First part presents the methods without reference to program-
ming techniques. There are 320 examples and problems. The
last part contains 53 completely worked illustrative FORTRAN
programs. Presupposes beginning analysis.

5. MCCRACKEN, D., AND DORN, W. S. Numerical Methods and
FORTRAN Programming. Wiley, New York, 1964, 457 pp.
C R - 6 5 6 2 - 7 1 0 7 .

Designed as a text for a four semester-hour course in science or
engineering at the sophomore-senior level. Emphasis on practi-
cal methods—for example, the treatment of simultaneous linear
algebraic equations does not make use of matrices. Chapters on
various aspects of FORTRAN are interspersed with chapters on
numerical methods. Includes a brief chapter on partial differen-
tial equations. Presupposes beginning analysis. Examples and
exercises.

6. MILNE, W. E. Numerical Calculus. Princeton University Press,
Princeton, N. J., 1949, 393 pp.
Written in 1949 in the early days of computing, this is a very
useful reference even though the treatment is oriented toward
manual computation and though some of the methods have been
superseded. Presupposes a knowledge of calculus and differential
equations. Examples and exercises.

7. NIELSEN, K. L. Methods in Numerical Analysis, 2nd ed. Mac-
millan, New York, 1956 and 1964, 382 pp. CR-6455-6333.
Designed as a textbook for a practical course for engineers. Pri-
mary emphasis on the use of desk calculators and tables. Pre-
supposes calculus. Examples and exercises.

8. PENNINGTON, R. H. Introductory Computer Methods and Nu-
merical Analysis. Macmillan, New York, 1965, 452 pp. CR-6565-
8060.
Designed as a text for a one-year elementary course for scientists
and engineers to be taken immediately after integral calculus.
The first part treats digital computers and programming. Nu-
merical methods are then discussed from a computer viewpoint
with the aid of flow diagrams. Little knowledge of computing is
assumed. For some of the topics a knowledge of matrices and

ordinary differential equations would be helpful. Many examples
and exercises.

9. SINKER, J. Elements of Numerical Analysis. Academic Press.
New York, 1964, 395 pp. CR-6561-6959.
Designed as a text for junior undergraduate students in mathe-
matics. Treatment geared more to manual computation than to
the use of computers. Presupposes beginning analysis and. for
some parts, differential equations and advanced calculus. Ex-
amples and exercises.

10. STIKKEI., E. L. An Introduction to Numerical Mathematics.
transl. by W. C. and C. -I. Rheinboldt. Academic Press. New
York, 1963, 286 pp. CR-6455-6335.
Appropriate for a junior-senior level course in mathematics,
science, and engineering. Emphasis is on the algorithmic ap-
proach, although there are only a few flow charts and specific
references to programs. A wide variety of topics and methods
is treated. Basic calculus is required for the early chapters, but
for later chapters familiarity with ordinary differential equations
is desirable. Examples are given. There is a separate problem
supplement with 36 exercises.

Course 11. Data Structures (3-0-3)

This course is intended to present the data structures which may
be used in computer storage to represent the information involved
in solving problems. However, emphasis should be placed on treat-
ing these data structures independently of the applications in which
they are embedded. Each data structure should be motivated care-
fully in terms of the operations which may conveniently be per-
formed, and illustrated with examples in which the structure is use-
ful. The identification of the natural relations between entities
involved in problems and alternate representations of information
should be stressed. Computer storage structures should also be de-
scribed and classified according to their characteristics, and the
interaction between data structures and storage structures should be
studied.

The student should be required to apply the techniques pre-
sented to problems which illustrate a wide variety of data structures.
Solutions to a number of these problems should be programmed
and run on a computer.

CONTENT

More material is listed here than can normally be covered in a
one-semester course. The instructor should carefully select material
which gives the student a broad introduction to this subject, but
which fits together pedagogically. It may be desirable to develop an
advanced course to cover some of these topics more completely.

1. Basic Concepts of Data. Representation of information as
data inside and outside the computer. Bits, bytes, fields and data
items. Records, nodes and data elements. Data files and tables.
Names, values, environments, and binding times of data. Use of
pointer or linkage variables to represent data structure. Identifying
entities about which data is to be maintained, and selecting data
nodes and structures which are to be used in problem solution. Stor-
age media, storage structures, encoding of data and transformations
from one medium and/or code to another. Alternative representa-
tions of information and data. Packing, unpacking, and compression
of data. Data formats, data description languages, and specification
of data transformations.

2. Linear Lists and Strings. Stacks, last-in-first-out, first-in-first-
out, double-ended, and other linear lists. Sequential versus linked
storage allocation. Single versus double linkage. Circular lists. Char-
acter strings of variable length. Word packing, part-word addressing,
and pointer manipulation. Insertion, deletion and accessing of list
elements.

3. Arrays and Orthogonal Lists. Storage of rectangular arrays in
one-dimensional media. Storage mapping functions, direct and in

24

direct address computation, space requirements, set-up time, ac-
cessing time, and dynamic relocation time. Storage and accessing
triangular arrays, tetrahedral arrays, and sparse matrices.

4. Tree Structures. Trees, subtrees, ordered trees, free trees,
oriented trees and binary trees. Representation of trees using binary
trees, sequential techniques, or threaded lists. Insertion, deletion,
and accessing elements of trees. Relative referencing, finding suc-
cessors and predecessors, and walking through trees. Examples of
tree structures such as algebraic formulas, arrays, and other hier-
archic data structures (PL/I and COBOL).

5. Storage Systems and Structures. Behavioral properties of
unit record (card), random access (core), linear (tape), and inter-
mediate (disk, drum, etc.) storage media and devices including cost,
size, speed, reusability, inherent record and file structure, and
deficiencies and interrelation of these properties. Influence of ma-
chine structure—in particular addressing—on data structuring.
Hierarchies of storage, virtual memory, segmentation, paging, and
bucketing. Influence of data structures and data manipulation on
storage systems. Associative structures, both hardware and software.

6. Storage Allocation and Collection. Static versus dynamic al-
location. Sequential versus linked allocation. Last-in-first-out data
versus data of unrelated life times. Uniform block size and available
space lists. Variable block size and stratified available space lists.
Explicit release of available storage. Coalescing adjacent free space
and compacting occupied space or data. Accessing disciplines for
movable data, unmovable anchors, and updating of pointers. Refer-
ence counts and list borrowing. Garbage collection by surveying
active data.

7. Multilinked Structures. Use of different types of data nodes
or elements. Use of different types of linkage to sequence, adjoin, or
associate data elements and to build hierarchies of data structures.
Sublists. list names, list heads, and at tr ibute lists. Multidimensional
linked lists and mixed list structures. Accessing, insertion, deletion
and updating. Relative referencing, finding successors and predeces-
sors, and walking through structures. Representation of graphs and
networks. Structures used for string manipulation and list processing
languages.

8. Sorting (Ordering) Techniques. Radix sorting, radix ex-
change sorting, merge sorting, bubble sorting, address table sorting,
topological sorting and other sorting methods. Comparative efficiency
of sorting techniques. Effect of data structures and storage structures
on sorting techniques.

9. Symbol Tables and Searching. Linear, stack, tree and scatter
structured tables, and table lookup techniques. Hash code algo-
rithms. Use of index lists and associative techniques. Comparison
of search strategies in terms of speed and cost. Batching and order-
ing of requests to remote storage to minimize number of accesses.
TRIE memory as an example of structure organized for searching.

10. Data Structures in Programming Languages. Compile-time
and run-time data structures needed to implement source language
data structures of programming'languages. Linkage between par-
tially executed procedures, data structures for coroutines, scheduled
procedures, and other control structures, and storage management of
data structures in procedure-oriented languages. Examples of higher
level languages which include list processing and other data struc-
turing features.

11. Formal Specification of Data Structures. Specification of
syntax for classes of data structures. Predicate selectors and con-
structors for data manipulation, data definition facilities, programs
as data structures, computers as data structures and transformations,
formal specification of semantics, and formal systems viewed as data
structures.

12. Generalized Data Management Systems. Structures of gen-
eralized data management systems: directory maintenance, user
languages (query), data description maintenance, and job manage-
ment. Embedding data structures in generalized data management
systems. Examples of generalized data management systems and
comparison of system features.

ANNOTATED BIBLIOGRAPHY

Although a great deal of material is available in this area, very-
little of it is appropriate for classroom use.

1. Association for Computing Machinery. ACM sort symposium.
Nov. 29-30, 1962. Princeton. N, J. Comm. ACM 6. 5 (Mav
1963), 194-272.
Seventeen papers on various aspects of sorting.

2. Association for Computing Machinery. Papers presented at the
ACM Storage Allocation Symposium, June 23-24, 1961, Prince-
ton, N. J . Comm. ACM 4, 10 (Oct. 1961), 416-464.
Eleven papers on various techniques of storage allocation.

3. Association for Computing Machinery. Proceedings of the
ACM Symposium on Symbolic and Algebraic Manipulation,
Washington, D. C., Mar. 29-31, 1966. Comm. ACM 9, 8 (Aug.
1966), 547-643.
Eleven papers some of which discuss applications of data struc-
turing techniques. One paper by Knowlton describes the list
language L".

4. CLIMENSON, W. D. File organization and search techniques. In
C. A. Cuadra (Ed.), Annual Review of Information Science and
Technology, Vol. 1. (Amer. Doc. Inst., Ann. Rev. ser.), Inter-
science, New York, 1966, pp. 107-135. CR-6783-11,900.
Surveys file organizations and data structures with particular
emphasis on developments during 1965. Provides framework for
some of the material covered by this course. An extensive bib-
liography.

5. COHEN, J. A use of fast and slow memories in list-processing
languages. Comm. ACM 10, 2 (Feb. 1967), 82-86.
Describes a paging scheme which keeps the "most often called
pages in the fast memory" and involves a slow down of 3 to 10
as compared with in-core operations.

6. Control Data Corporation. 3600/3800 INFOL Reference Manual.
Publication No. 60170300, CDC, Palo Alto, Calif., July 1966.
Describes the /A/Formation Oriented language which is designed
for information storage and retrieval applications.

7 . DAHL, O . J . , AND NYGAARD, K . S I M U L A — a n A L G O L - b a s e d
simulation language. Comm. ACM 9. 9 (Sept. 1966), 671- 678.
Contains interesting data and control structures.

8. D'IMPERIO, M. Data structures and their representation in
storage. In M. Halpern (Ed.), Annual Review in Automatic
Programming, Vol. 5, Pergamon Press, New York, spring 1968.
Defines certain basic concepts involved in the representation of
data and processes to be performed on data. Analyzes a problem
and describes nine different solutions involving different data
structures. Discusses ten list processing languages and gives
examples of their data and storage structures.

9. FITZWATER, D. R. A storage allocation and reference structure.
Comm. ACM 7, 9 (Sept. 1964), 542-545. CR-6561-6933.
Describes a method of structuring and referencing dynamic
structures in AUTOCODER for the IBM 7070/72/74.

10. General Electric Company. Integrated Data Store—A New
Concept in Data Management. Application Manual AS-CPB-
483A, Revision of 7-67, GE Computer Division, Phoenix, Ariz.,
1967.
Describes a sophisticated data management system which uses
paging and chaining to develop complex data structures.

11. GRAY, J . C. Compound data structures for computer-aided de-
sign: a survey. Proc. ACM 22nd Nat. Conf.. 1967, Thompson
Book Co., Washington, D. C„ pp. 355-365.
Considers requirements of a data structure software package and
surveys a number of such packages.

12. HEIAERMAN, H. Addressing multidimensional arrays. Comm.
ACM 5. 4 (Apr. 1962), 205-207. CR-6235-2619.
Surveys direct and indirect methods for accessing arrays.

13. IVERSON, K. E. A Programming Language. Wiley, New York,
1962, 286 pp. CR-6671-9004.

Contains considerable material on data structures, graphs, trees,
and sorting, as well as a language for describing these.

14. KLEIN, M. M. Scheduling project networks. Comm. ACM 10,
4 (A p r . 1967) , 2 2 5 - 2 3 4 . C R - 6 7 8 4 - 1 2 , 2 7 5 .

Discusses project networking and describes the C-E-I-R critical
path algorithm.

15. KNUTH, D. E. The Art of Computer Programming, Vol. 1, Fun-
damental Algorithms. Addison-Wesley, Reading, Mass., 1968,
634 pp.
Chap. 2 on "Information Structures" contains the first compre-
hensive classification of data structures to be published. Each
structure considered is carefully motivated and generously
illustrated. Includes a brief history of data structuring and an
annotated bibliography,

16. LANDIN, P. J . The mechanical evaluation of expressions. Com-
put.J. 6, 4 (J a n . 1964) , 3 0 8 - 3 2 0 . C R - 6 4 5 6 - 6 6 7 7 .

Presents a mathematical language based on Church's A-notation
and uses it to describe computational structures such as expres-
sions and lists.-

17. LAWSON, H. W., JR. PL/I list processing. Comm. ACM 10, 6
(J u n e 1967), 3 5 8 - 3 6 7 .

Discusses the list processing facilities in PL/I.

18. MADNICK, S. E. String processing techniques. Comm. ACM 10,
7 (J u l y 1967) , 4 2 0 - 4 2 4 .

Presents and evaluates six techniques for string data storage
structures. One of these techniques is used for an implementa-
tion of SNOBOL on an IBM System/360.

19. MARRON, B. A., AND DE MAINE, P. A. D. Automatic data com-
pression. Comm. ACM 10, I I (Nov. 1967), 711-715.
Describes a three-part compressor which can be used on "any"
body of information to reduce slow external storage require-
ments and to increase the rate of information transmission
through a computer.

20. MEALY, G. H. Another look at data. Proc. AFIPS 1967 Fall
Joint Comput. Conf., Vol. 31, Thompson Book Co., Washington,
D . C. , p p . 5 2 5 - 5 3 4 .

Sketches a theory of data based on relations. Includes some
rather precise definitions of concepts such as data structure,
list processing, and representation.

21. MINKER, J., AND SABLE, J . File organization and data manage-
ment. In C. A. Cuadra (Ed.), Annual Review of Information
Science and Technology, Vol. 2, (Amer. Doc. Inst., Ann. Rev.
ser.). Interscience, New York, 1967, pp. 123-160.
Surveys file organizations and generalized data management
systems developed during 1966. Describes linkage types, data
structures, storage structures, and how data structures have
been mapped into storage structures. Extensive bibliography.

22. MORRIS, R. Scatter storage techniques. Comm. ACM 11, 1 (Jan.
1968), 3 8 - 4 4 .

Surveys hashing schemes for symbol table algorithms.
23. ROSEN, S. (Ed.) Programming Languages and Systems. Mc-

Graw-Hill, New York, 1967, 734 pp.
Part 4 of this collection contains papers on IPL-V, COMIT, SLIP,
SNOBOL, LISP and a comparison of list-processing computer lan-
guages.

24. Ross, D. T. The AED free storage package. Comm. ACM 10, 8
(Aug. 1967), 481-492.
Describes a storage allocation and management system for the
mixed n-component elements ("beads") needed for "plex pro-
gramming."

25. SALTON, G. Data manipulation and programming problems in
automatic information retrieval. Comm. ACM 9, 3 (Mar. 1966),
2 0 4 - 2 1 0 . C R - 6 6 7 4 - 1 0 , 0 7 8 .

Describes a variety of representations for tree structured data
and examines their usefulness in retrieval applications.

26 . SAVITT, D . A . , LOVE, H . H „ J R . , AND TROOP, R . E . A S P : a n e w
concept in language and machine organization. Proc. 1967

Spring Joint Comput. Conf., Vol. 30, Thompson Book Co..
Washington, D. C., pp. 87-102.
Describes the data bases used in the "Association-Storing
Processor." These structures are complex in organization and
may vary dynamically in both organization and content.

27. SCHORR, H . , AND WAITE, W . M . A n e f f i c i e n t m a c h i n e - i n d e p e n d -
ent procedure for garbage collection in various list structures.
Comm. ACM 10, 8 (Aug. 1967), 501-506.
Reviews and compares past garbage collection methods and
presents a new algorithm.

28. STANDISH, T. A. A data definition facility for programming
languages. Ph.D. Thesis, Carnegie Institute of Technology.
Pittsburgh, Pa., 1967.
Presents a descriptive notation for data structures which is em-
bedded in a programming language.

29. WEGNER, P. (Ed.) Introduction to Systems Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300.
Contains a collection of papers of which the following are of
special interest for this course: Iliffe, pp. 256-275; Jenkins, pp.
283-293; and Burge, pp. 294-312.

30. WEGNER, P. Programming Languages, Information Structures,
and Machine Organization. McGraw-Hill, New York, 1968,
about 410 pp.
Introduces information structures and uses them in describing
computer organization and programming languages.

Course 12. Programming Languages (3-0-3)
APPROACH

This course is intended to survey the significant features of exist-
ing programming languages with particular emphasis on the under-
lying concepts abstracted from these languages. The relationship
between source programs and their run-time representation during
evaluation will be considered, but the actual writing of compilers
is to be taught in Course 15.

CONTENT

There are four basic parts of this course: the structure of simple
statements; the structure of algorithmic languages; list processing
and string manipulation languages; and topics in programming lan-
guages.

Part A. Structure of Simple Statements. (10 lectures)
1. Informal syntax and semantics of arithmetic expressions and

statements, translation between infix, prefix, and postfix notation,
and the use of pushdown stores for translation and execution of
arithmetic expressions and statements. Precedence hierarchy of
arithmetic operations, relational operators, and Boolean operators.
Backus normal form representation of syntax of arithmetic state-
ments and the semantics of arithmetic statements. (6 lectures)

2. Precedence relations, precedence grammars, and syntactic
analysis of precedence grammars. Application to arithmetic ex-
pressions, code generation, error diagnostics and error correction for
syntactic arithmetic expression compilation. (4 lectures)

Part B. Structure of Algorithmic Languages. (20 lectures)
3. Review of program constituents, branching statements and

loops. (2 lectures)
4. Grouping of statements, declarations, "types " of program con-

stituents, nomenclature, scopes, local and nonlocal quantities, in-
dependent blocks (FORTRAN), and nested blocks (ALGOL). (2 lectures)

5. Function and statement type procedures, formal parameters
and actual parameters, and call by value, name and reference. Bind-
ing time of program constituents, recursive procedures, and side ef-
fects during execution of procedures. (3 lectures)

6. Storage allocation for independent blocks (FORTRAN) and stor-
age allocation for nested blocks and procedures using a run-time

26

pushdown store. Overall structure of an ALGOL-style compiler. (3
lectures)

7. Coroutines, tasks, interrupt specification, and classification of
control structures in procedure-oriented languages. (2 lectures)

8. Syntactic specification of procedures, blocks and statements.
Formal semantics corresponding to syntactic specification. Survey of
principal concepts of syntactic analysis. (5 lectures)

9. Generalized arrays. Data definition facilities, pointer-valued
variables, and list creation and manipulation using pointer-valued
variables. Templates and controlled storage allocation. Distinction
between data specification by a data template and the creation of
instances of a specified data structure. (3 lectures)

Part C. List Processing and String Manipulation Languages. (7
lectures)

10. List structures, basic operations on list structures, Lisp-like
languages, machine-oriented list processing languages (IPL-V), em-
bedding of list operations in algorithmic languages (SLIP), dynamic
storage allocation for list languages, and garbage collection. (5 lec-
tures)

11. String structures, operations on strings, and functions which
have strings as arguments and strings as their values (SNOBOL). (2
lectures)

Part D. Topics in Programming Languages. (8 lectures)
12. Additional features of programming languages, simulation

languages, algebraic manipulation languages, and languages with
parallel programming facilities. (2-6 lectures)

13. Formal description of languages and their processors. The
work of Floyd, Wirth, and others. (2-6 lectures)

14. Other topics selected by the instructor.

ANNOTATED BIBLIOGRAPHY

1. American Standards Association X3.4.1 Working Group. To-
ward better documentation of programming languages. Comm.
ACM 6, 3 (Mar. 1963), 76-92.
A series of papers describing the documentation of significant
current programming languages.

2. Association for Computing Machinery. Proceedings of the
ACM programming languages and pragmatics conference, San
Dimas, Calif., August 8-12, 1965. Comm. ACM 9, 3 (Mar. 1966),
137-232.
Includes a number of papers applicable to this course.

3. Association for Computing Machinery. Proceedings of the ACM
symposium on symbolic and algebraic manipulation, Washing-
ton, D. C., March 29-31, 1966. Comm. ACM 9, 8 (Aug. 1966),
547-643.
A number of languages for symbolic and algebraic manipulation
are described in this special issue.

4. DAHL, O . - J . , AND NYGAARD, K . S I M U L A — a n A L G O L -
based simulation language. Comm. ACM 9, 9 (Sept. 1966), 671-
678.
Describes a language encompassing ALGOL, but having many
additional features including those needed for simulation.

5. GALLER, B . A . , AND PERLIS, A . J . A p r o p o s a l f o r d e f i n i t i o n s
in ALGOL. Comm. ACM 10, 4 (Apr. 1967), 204-219.
Describes a generalization of ALGOL which allows new data
types and operators to be declared.

6. GOODMAN, R. (Ed.) Annual Review in Automatic Program-
ming. Vols. 1, 2, 3, 4. Pergamon Press, New York, 1960 to 1965.
C R - 6 1 2 3 - 0 8 1 1 , C R - 6 2 3 5 - 2 6 0 2 , a n d C R - 6 5 6 4 - 7 9 0 1 .
These volumes contain several papers which are applicable to
this course.

7. HALSTEAD, M. H. Machine-Independent Computer Program-
ming. Spartan Books, New York, 1962.
Contains both internal and external specifications of the
NELIAC programming language.

8. IEEE Computer Group. The special issue on computer lan-
guages. IEEE Trans. EC-13, 4 (Aug. 1964), 343-462.
C o n t a i n s a r t i c l e s o n ALGOL, FORTRAN, FORMAC, SOL a n d
other computer languages.

9. International Business Machines. PL/I Language Specification.
Form C28-6571-4, IBM System/360 Operating System, IBM
Corporation, White Plains, N. Y., 1967.
A specification of the PL/I language.

10. International Standards Organization Technical Committee 97,
Subcommittee 5. Survey of programming languages and proc-
essors. Comm. ACM 6, 3 (Mar. 1963), 93-99.
An international survey of current and imminent programming
languages.

11. KNUTH, D. E. The remaining trouble spots in ALGOL 60.
Comm. ACM 10, 10 (Oct. 1967), 611-618.
This paper lists the ambiguities which remain in ALGOL 60 and
which have been noticed since the publication of the Revised
ALGOL 6 0 R e p o r t i n 1963 .

12. MARKOWITZ, H . M . , KARR, H . W . , AND HAUSNER, B . SIM-
SCRIPT: A Simulation Programming Language. Prentice-Hall,
Englewood Cliffs, N. J., 1963, 138 pp.
A description of the SIMSCRIPT simulation language. There is a
new SIMSCRIPT 1.5 supplement now available which describes
a generalization of the original language.

13. MOOERS, C. N. TRAC, a procedure-describing language for the
reactive typewriter. Comm. ACM 9, 3 (Mar. 1966), 215-219.
CR-6674-10,079.
Describes a language for the manipulation of text from an on-
line typewriter.

14. NAUR, P. (Ed.) Revised report on the algorithmic language,
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17. CR-6016-0323.
The Backus normal form notation was developed to help de-
scribe the syntax of ALGOL in the original version of this report
(Comm. ACM3, 5 (May 1960), 299-314).

15. PERLIS, A. J . The synthesis of algorithmic systems—first annual
A. M. Turing lecture. J. ACM 14, 1 (Jan. 1967), 1-9. CR-6782-
11,512.
A stimulating talk on the nature of programming languages and
the considerations which should underlie their future develop-
ment.

16. ROSEN, S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp."
This collection of papers contains many of the important refer-
ences for this course. In particular, Parts 1 and 2 of the collec-
tion are useful for Parts A and B of the course and Part 4 of
the collection is useful for Part C of the course.

17. SHAW, C. J . A comparative evaluation of JOVIAL and FOR-
TRAN IV. Automatic Programming Inf., No. 22. Technical Col-
lege, Brighton, England, Aug. 1964, 15 pp. CR-6562-7265.
A descriptive point-by-point comparison of these two languages.
Concerned mainly with the features of the languages rather
than their processors.

18. SHAW, C. J . A programmer's look at JOVIAL, in an ALGOL
perspective. Datamation 7, 10 (Oct. 1961), 46-50. CR-6233-1933.
An interesting article showing how ALGOL and JOVIAL evolved
from ALGOL 58 and how they differ.

19. USA Standards Institute. Standards X3.9-1966, FORTRAN
and X3.10-1966, Basic FORTRAN. USASI, 10 East 40th Street,
New York, N. Y. 10016, 1966.
S t a n d a r d d e f i n i t i o n s of e s s e n t i a l l y FORTRAN II a n d FORTRAN IV.
These also appeared in almost final form in Comm. ACM 7,
10 (Oct. 1964), 591-625.

20. WECNER, P. Programming Languages, Information Structures,
and Machine Organization. McGraw-Hill, New York, 1968,
about 410 pp.
Develops a unified approach to the study of programming lan-
guages emphasizing the treatment of such languages as infor-

27

mation structures. First two chapters devoted to machine or-
ganization, machine language, and assembly language, but
much of Chap. 3 and essentially all of Chap. 4 devoted to the
topics of this course.

21. WIRTH, N. A generalization of ALGOL. Comm. ACM 6, 9
(Sept. 1963), 547-554. CR-6451-5030.
Proposes a generalization of ALGOL which involves the elimina-
tion of " type" declarations and the replacement of procedure
declarations by an assignment of a so-called "quotation."

2 2 . WIRTH, N . , AND WEBER, H . E U L E R — a g e n e r a l i z a t i o n of
ALGOL and its formal definition, Parts I and II. Comm. ACM
9, 1 (Jan. 1966), 13-23, and 2 (Feb. 1966), 89-99.
Develops a method for defining programming languages which
introduces a rigorous relationship between structure and mean-
ing. The structure of a language is defined by a phrase struc-
ture syntax and the meaning is defined in terms of the effects
which the execution of a sequence of interpretation rules has
upon a fixed set of variables called the "environment."

Course 13. Computer Organization (3-0-3) or (3-2-4)

APPROACH

This course is intended to introduce the student to the basic
ideas of computer elements and logic design techniques and to the
principles of computer systems organization. Emphasis should be
placed on the various alternative possibilities which must be con-
sidered in arriving a t a computer design; choices such as character
or word organized data, serial or parallel data transmission, syn-
chronous or asynchronous control should be compared and evaluated.

In addition to using block diagrams, it is recommended that a
formal descriptive language for computer specification be introduced
and used to provide a uniform method for the presentation of much
of the material. The student should carry out a detailed computer
design project and evaluate his design by simulation, if possible. A
laboratory in which simple logic elements may be combined to
perform digital functions is also desirable.

CONTENT

The following topics are to be covered, although not necessarily
in the order listed.

1. Basic Digital Circuits. Switches, relays, transistors, diodes,
magnetic cores, circuits of individual elements, and integrated cir-
cuits. (These topics may be spread throughout the course.) (5%)

2. Boolean Algebra and Combinational Logic. Boolean values,
variables, operations, expressions and equations. Logic elements
such as AND, OR, NOT, NAND and NOR. Correspondence between
Boolean functions and combinations of logic elements. (5%)

3. Data Representation and Transfer. Flip-flops, registers, core
storage, and other memory elements. Review of number representa-
tions, binary versus binary-coded decimal representation, and integer
versus floating-point representation. Weighted and nonweighted
codes, redundancy, and coding of character information. Coders and
decoders. Clearing, gating and other transfer considerations. (10%)

4. Digital Arithmetic. Counters, comparators, parity checkers,
and shift registers. Half and full adders. Serial versus parallel ad-
ders. Subtraction and signed magnitude versus complemented arith-
metic. Multiplication and division algorithms. Integer versus float-
ing-point arithmetic. Double precision arithmetic. Elementary
speed-up techniques for arithmetic. (10%)

5. Digital Storage and Accessing. Structure of core memory,
memory control, data buses, and address buses. Addressing and ac-
cessing methods including index registers, indirect addressing, base
registers, and other techniques. Overlapping, interleaving, protec-
tion, dynamic relocation, and memory segmentation methods. Char-
acteristics of drum, disk, tape, and other surface recording media
and devices. Data flow in multimemory systems and hierarchies of
storage. (10%)

6. Control Functions. Synchronous versus asynchronous control.
Time pulse distributors, controlled delay techniques, and Gray code
control sequencers. Instruction repertoire, decoding networks, and
sequencing methods. Centralized, decentralized, and micro-pro-
grammed control units. Internal, external and trapping interrupts.
Interrupt sensing, priority, selection, recognition, and processing.
Input-output control. (10%)

7. Input-Output Facilities. Characteristics of input-output de-
vices and their controllers. Relationship between input-output de-
vices, main storage, auxiliary storage, buffers, data channels, and
multiplexers. Serial versus parallel transmission. Low speed, high
speed, and burst mode data flow. (10%)

8. System Organization. Overall organization of modules into a
system. Interface between modules. Word-oriented versus character-
oriented machines. Simplex and multiprocessor machines. Special
purpose computers. Relationship between computer organization
and software. (15%)

9. Reliability. Error detection and correction. Diagnostics and
preventive maintenance. Start-up, power-down, and recovery pro-
cedures. (5%)

10. Description and Simulation Techniques. Definition of a
formal computer description language which would be used in dis-
cussing most of the other topics listed for the course. Use of a com-
puter simulator to design and test simple computers or computer
modules. (10%)

11. Selected Topics. Multiple arithmetic units, instruction
overlapping, and look-ahead techniques. Discussion of alternate
organizations including highly parallel machines. (5%)

12. Examinations. (5%)

ANNOTATED BIBLIOGRAPHY

As indicated, several of the books listed below might possibly
be used as texts for this course, but it probably would be good to
supplement any of them with additional material. Only a few of the
many references on computer description languages and programs
for simulating computer designs are listed; no annotations are given
for these.
General textbooks

1. BARTEE, T. C. Digital Computer Fundamentals. McGraw-Hill,
New York, 1960, 1966, 401 pp. CR-6676-10,647.
Not advanced enough but a very useful supplement for circuits
and equipment.

2 . BARTEE, T . C . , LEBOW, I. L . , AND REED, I . S . Theory and De-
sign of Digital Systems. McGraw-Hill, New York, 1962, 324 pp.
C R - 6 3 4 4 - 4 4 1 6 .

Very mathematical and somewhat out-of-date. An interesting
reference.

3. BRAUN, E. L. Digital Computer Design—Logic, Circuitry, and
Synthesis. Academic Press, New York, 1963, 606 pp. CR-6453-
5484.
Somewhat out-of-date for a text but useful as a reference.

4. BUCHHOLZ, W. Planning a Computer System. McGraw-Hill,
New York, 1962, 336 pp. CR-6346-4786.
Good reference on systems concepts but somewhat dated.

5. Burroughs Corporation. Digital Computer Principles. Mc-
Graw-Hill, New York, 1962, 507 pp.
Restricted scope (engineering oriented) and dated, but could be
used as a reference.

6. CHU, Y. Digital Computer Design Fundamentals. McGraw-
Hill, New York, 1962, 481 pp. CR-6343-4198.
Good reference which contains a wealth of material on logic de-
sign.

7. FLORES, I. Computer Logic. Prentice-Hall, Englewood Cliffs,
N. J. , 1960, 458 pp. CR-6122-0641 and CR-6124-0936.
Dated and unorthodox but possibly useful for supplementary
reading.

8. FLORES, I. The Logic of Computer Arithmetic. Prentice-Hall,

28

Englewood Cliffs, N. J. , 1963, 493 pp. CR-6452-5458.
Very detailed, unorthodox treatment of computer arithmetic.

9. GSCHWIND, H. W. Design of Digital Computers. Springer-
Verlag, New York, 1967.
A possible text.

10. HELLERMAN, H. Digital Computer System Principles. Mc-
Graw-Hill, New York, 1967, 424 pp.
A possible text. Uses Iverson notation throughout. Would have
to be supplemented on circuits and equipment as well as novel
organizations.

11. MALEY, G. A., AND SKIKO, E. J . Modern Digital Computers.
Prentice-Hall, Englewood Cliffs, N. J. , 1964, 216 pp. CR-6561-
7081.
A possible reference. Somewhat dated but contains a good de-
scription of the IBM 7090 and 7080 machines.

12. MURTHA, J. C. Highly parallel information processing systems.
In F. L. Alt (Ed.), Advances in Computers, Vol. 7. Academic
P r e s s , N e w Y o r k , 1966 , p p . 1 - 1 1 6 . C R - 6 7 8 2 - 1 1 , 6 7 8 .

A useful reference on highly parallel systems.

13. PHISTER, M., JR. Logical Design of Digital Computers. Wiley,
New York, 1958, 408 pp.
Somewhat dated. Relies heavily on sequential circuit theory
and concentrates on serial, clocked machines.

14. RICHARDS, R. K. Arithmetic Operations in Digital Computers.
D. Van Nostrand, Princeton, N. J . , 1955, 397 pp.
Somewhat dated but still a good reference for arithmetic.

15. RICHARDS, R. K. Electronic Digital Systems. Wiley, New
York, 1966, 637 pp. CR-6676-10,649.
An interesting reference for reliability and design automation.
Discusses telephone systems and data transmission.

References on computer description languages
16. CHU, Y. An ALGOL-like computer design language. Comm.

ACM 8, 10 (O c t . 1965) , 6 0 7 - 6 1 5 . C R - 6 6 7 2 - 9 3 1 5 .

17. FAI.KHOFF, A . D . , IVERSON, K . E . , AND SUSSENGUTH, E . H . A
formal description of System /360. IBM Syst. J. 3, 3 (1964), 198-
263.

18. GORMAN, D . F . , AND ANDERSON, J . P . A l o g i c d e s i g n t r a n s -
lator. Proc. AFIPS 1962 Fall Joint Comput. Conf., Vol. 22, Spar-
tan Books, New York, pp. 251-261.

19. IVERSON, K. E. A Programming iMnguage. Wiley, New York,
1962, 286 pp. CR-6671-9004.

20. MCCLURE, R. M. A programming language for simulating
d i g i t a l s y s t e m s . J . ACM 12, 1 (J a n . 1965) , 1 4 - 2 2 . C R - 6 5 6 3 - 7 6 3 4 .

21 . PARNAS, D . L . , AND DARRINGER, J . A . S O D A S a n d a m e t h -
odology for system design. Proc. AFIPS 1967 Fall Joint Comput.
Conf., Vol. 31, Thompson Book Co., Washington, D. C., pp.
449-474.

22. WII.BER, J . A. A language for describing digital computers.
M.S. Thesis, Report No. 197, Dept. of Comput. Sci., U. of Illi-
nois, Urbana, 111., Feb. 15, 1966.

Course 14. Systems Programming (3-0-3)

APPROACH

This course is intended to bring the student to grips with the
actual problems encountered in systems programming. To accom-
plish this it may be necessary to devote most of the course to the
study of a single system chosen on the basis of availability of com-
puters, systems programs, and documentation.

The course should begin with a thorough review of "ba t ch"
processing systems programming, emphasizing loading and subrou-
tine linkage. The limitations of these systems should be used to
motivate the more complex concepts and details of multiprogram-
ming and multiprocessor systems. The theoretical concepts and

practical techniques prescribed in Course 11 should be used to
focus on the data bases, their design for the support of the func-
tions of the key system components (hardware and software), and
the effective interrelation of these components. Problem assign-
ments should involve the design and implementation of systems
program modules; the design of files, tables or lists for use by such
modules; or the critical use and evaluation of existing system pro-
grams. Other problems might involve the at taching or accessing of
procedure or data segments of different "ownership" that are resi-
dent in a single file system or the development of restricted access-
ing methods (i.e. privacy schemes) and other such techniques.

CONTENT

This description has been written with MULTICS in mind as the
system chosen for central study, but the description can be modi-
fied to fit any reasonably comprehensive system. There is con-
siderably more material listed here than can normally be covered
in one semester, so tha t careful selection of topics should be made
or the course should be extended to two semesters.

1. Review of Batch Process Systems Programs. Translation,
loading, and execution. Loader languages. Communication between
independent program units. Limitations imposed by binding at pre-
execution times. Incremental linkage.

2. Multiprogramming and Multiprocessor Systems. General in-
troduction to the structure of these systems, the techniques in-
volved in their construction and some of the problems involved in
their implementation.

3. Addressing Techniques. Review of indexing and indirect ad-
dressing. Relocation and base registers. Two-dimensional address-
ing (segmentation). Segmented processes. Concepts of virtual mem-
ory. Effective address computation. Modes of access control.
Privileged forms of accessing. Paging. Physical register (address)
computation, including use of associative memories.

4. Process and Data Modules. Concept of a process as a col-
lection of procedure and data components (segments). Process data
bases. Controlled sharing of segments among two or more processes.
Intersegment linking and segment management. Interprocedure
communication. Process stacks. Levels of isolation within a process
(rings of protection).

5. File System Organization and Management. File data bases
and their storage structures. Accessing, protection and maintenance
of files. Storage and retrieval of segments and/or pages from files in
secondary storage (segment and page control, directory control, and
core management). Search strategies.

6. Traffic Control. State words. Running, ready, blocked, and in-
active processes. Process switching. Priority control of waiting
processes. Scheduling algorithms. Pseudo processes. System tables
for process management.

7. Explicit Input-Output References. Auxiliary (secondary)
memory references. Communication with peripheral devices. Man-
agement of input-output and other request queues. Effects of data
rates on queue management.

8. Public and Private Files. On line and off line memory. Au-
tomatic shifting of data among devices in the storage hierarchy and
"flushing" of online memory, i.e. multilevel storage management.
File backup schemes and recovery from system failures.

9. Other Topics. Some of the following topics may be studied
if time permits. They might also be covered in subsequent semi-
nars.

a. System accounting for facilities employed by the user. Spe-
cial hardware features for metering different uses. Accounting for
system overhead. Factors which determine system overhead.

b. Characteristics of large systems. Overall discussion of large
system management including effect of binding times for system
and user process variables. Other selected topics on large systems
such as the effect of new hardware components (e.g. mass mem-
ories) on the overall system design.

c. Foreground and background processes. Foreground-initiated

29

background processes. Remote job control. Hierarchical job con-
trol. Broadcasting.

d. Microprogramming as an equivalent of various hardware
and/or software component subprograms in a computing system.

e. Command languages. Commands of a mul t iprogramming sys-
tem. Command language interpreters.

f. Provisions for dynamic updat ing of the operating system
without shutdown.

g. Operat ing behavior, e.g. system s tar tup , (graceful) degrada-
tion, and shutdown.

ANNOTATED BIBLIOGRAPHY

In addit ion to the following sources of information, there are
many manuals available from manufac turers which describe spe-
cific systems programs for a wide range of computers .

1. CHOROFAS, D. N. Programming Systems for Electronic Com-
puters. Butterworths, London, 1962, 188 pp. CR-6566-8553.
Chapters 14, 15, and 16 contain a general discourse on the con-
trol and diagnostic funct ions of operating systems.

2 . CLARK, W . A . , MEALY, G . H . , AND WITT, B . I . T h e f u n c t i o n a l
s t ructure of OS/360. IBM Syst.J. 5, 1 (1966), 3-51.
A general description in three par t s of the operating system for
the IBM System/360. Par t I (Mealy), Introductory Survey;
Par t II (Witt), Job and Task Management ; and Par t III (Clark),
Data Management .

3. DESMONDE, W. H. Real-Time Data Processing Systems. Intro-
ductory Concepts. Prentice-Hall , Englewood Cliffs, N. J. , 1964,
192 pp. CR-6562-7236.
An elementary survey of the design and programming of real-
t ime da ta processing systems based on three IBM systems:
Sabre, Mercury, and Gemini.

4. ERDWINN, J . D. (Ch.) Executive control programs—Session 8.
Proc. AFIPS 1967 Fall Joint Comput . Conf., Vol. 31, Thompson
Book Co., Washington, D. C., pp. 201-254.
Five papers on control programs for a variety of circumstances.

5 . FISCHER, F . P . , AND SWINDLE, G . F . Computer Programming
Systems. Holt, Rinehar t and Winston, New York, 1964, 643 pp.
CR-6455-6299.
Sets out to "discuss the entire field of computer programming
systems," but in reality considers primarily the systems pro-
grams for the IBM 1401; "other computer systems are men-
tioned only where a part icular characterist ic of a programming
system, found on t ha t computer , warrants discussion." Only
IBM computer systems and (with a very few exceptions) only
IBM literature are referenced.

6. FLORES, I. Computer Software. Prentice-Hall , Englewood
Cliffs, N. J . , 1965, 464 pp. CR-6671-8995.
Elementary and conversational text primarily concerned with
assembly systems using FLAP (Flores Assembly Program) as
its example. Some material on service programs, supervisors
and loaders.

7. GLASER, E. (Ch.) A new remote accessed man-machine sys-
tem—Session 6. Proc. AFIPS 1965 Fall Joint Comput . Conf.,
Vol. 27, P t . 1, Spar tan Books, New York, pp. 185-241. (Re-
prints available from the General Electric Company.)
Six papers on the MULTICS system.

8. HEISTAND, R. E. An executive system implemented as a finite-
s tate au tomaton . Comm. ACM 7, 11 (Nov. 1964), 669-677. CR-
6562-7282.
Describes the executive system for the 473L command and
control system. The system was considered as a finite autom-
aton and the author claims this approach forced a modulari ty
on the resulting program.

9. LEONARD, G . F . , AND GOODROE, J . R . A n e n v i r o n m e n t f o r a n
operating system. Proc. ACM 19th Nat . Conf., 1964, Associa-
tion for Comput ing Machinery, New York, pp. E2.3-1 to E2.3-11.

• CR-6561-6546.
An approach to computer utilization involving the extension

of the operations of a computer with software so as to provide a
proper environment for an operating system.

10. MARTIN, J . Design of Real-Time Computer Systems. Prentice-
Hall, Englewood Cliffs, N. J . , 1967, 629 pp.
A general text covering many aspects of real-time da ta proc-
essing systems including design, applications, management ,
and operation.

11. MARTIN, J . Programming Real-Time Computer Systems. Pren-
tice-Hall, Englewood Cliffs, N. J. , 1965, 386 pp.
Based on some of the early systems such as Sage, Project Mer-
cury, Sabre, and Panamac . A general coverage designed for
managers, systems analysts, programmers, salesmen, s tudents .

12. MILLER, A. E. (Ch.) Analysis of t ime-shared computer system
performance—Session 5. Proc. ACM 22nd Nat . Conf., 1967,
Thompson Book Co., Washington, D. C., pp. 85-109.
Three papers on measurement of t ime-shared system perform-
ance.

13. M.I .T. Computat ion Center. Compatible Time-Sharing Sys-
tem: A Programmer's Guide, 2nd ed. M.I .T. Press, Cambridge.
Mass. , 1965.
A handbook on the use of C T S S which contains valuable in-
formation and guidelines on the implementat ion of such sys-
tems.

14. Project MAC. MULTICS S'ystem Programmer's Manual.
Project MAC, M.I.T., Cambridge, Mass., 1967, (limited distrib-
ution).
A description of ant j guide to systems programming for MUL-
TICS.

15. ROSEN, S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp.
Collection of impor tant papers in the area of which Part 5
(Operating Systems) is particularly relevant to this course.

16. ROSENBERG, A. M. (Ch.) Program structures for the multipro-
gramming environment—Session 6A. Proc. ACM 21st Nat .
Conf., 1966, Thompson Book Co., Washington, D. C., pp. 223-
239.
Two papers: one on program behavior under paging; the other
on analyt ic design of look-ahead and program segmenting sys-
tems.

17. ROSENBERG, A. M. (Ch.) Time-sharing and on-line systems—,
Session 7. Proc. ACM 22nd Nat . Conf., 1967, Thompson Book
Co., Washington, D. C., pp. 135-175.
Three papers on various topics related to the subject.

18. SALTZER, J . H. Traffic control in a multiplexed computer,
system. M.I.T. Ph.D. Thesis, June 1966. (Also available as
Project MAC publication MAC-TR-30.)
On traffic control in the MULTICS system.

19. SMITH, J . W. (Ch.) Time-shared scheduling—Session 5A. Proc.
ACM 21st Nat . Conf., 1966, Thompson Book Co., Washington,
D. C„ pp. 139-177.
Four papers on time-sharing which are more general than the
session title indicates.

20. THOMPSON, R. N., AND WILKINSON, J . A. The D825 automat ic
operating and scheduling program. Proc. AFIPS 1963 Spring
Joint Comput . Conf., Vol. 23, Spar tan Books, New York. pp.
41-49. CR-6453-5699.
A general description of an executive system program for han-
dling a mult iple computer system tied to an au tomat ic input-
output exchange containing a number of input-output control
modules. Discusses many of the problems encountered in such
systems and the general plan of a t tack in solving these prob-
lems.

21. WEGNER, P. (Ed.) Introduction to System Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300.
Contains a collection of papers of which the following are of
special interest for this course: Gill, pp. 214-226; Howarth,
pp. 227-238; and Nash, pp. 239-249.

30

Course IS. Compiler Construction (3-0-3)

APPROACH

This course is to emphasize the techniques involved in the
analysis of source language and the generation of efficient object
code. Although some theoretical topics must be covered, the course
should have the practical objective of teaching the s tudent how
compilers may be constructed. Programming assignments should
consist of implementat ions of components of a compiler and possi-
bly the design of a simple but complete compiler as a group project.

CONTENT

There is probably more material listed here than can reasonably
be covered, so some selection will be necessary.

1. Review of assembly techniques, symbol table techniques, and
macros. Review of syntactic analysis and other forms of program
recognition. Review of compilation, loading, and execution with
emphasis on the representation of programs in the loader language.

2. One-pass compilation techniques. Translation of ar i thmetic
expressions from postfix form to machine language. Efficient use of
registers and temporary storage.

3. Storage allocation for constants, simple variables, arrays, tem-
porary storage. Function and s ta tement procedures, independent
block structure, nested block structure, and dynamic storage allo-
cation.

4. Object code for subscripted variables, storage mapping func-
tions, and dope vectors. Compilation of sequencing s tatements .

5. Detailed organization of a simple complete compiler. Symbol
tables. Lexical scan on input (recognizer), syntax scan (analyzer),
object code generators, operator and operand stacks, output sub-
routines, and error diagnostics.

6. Data types, transfer functions, mixed mode expressions and
statements.

7. Subroutine and function compilation. Parameters called by
address, by name and by value. Subroutines with side effects. Re-
strictions required for one pass execution. Object code for trans-
mission of parameters. Object code for subroutine body.

8. Languages designed for writing compilers: T M G (McClure),
C O G E N T (Reynolds), GARGOYLE (Garwick), M E T A II (Schorre),
and TGS-II (Cheatham).

9. Bootstrapping techniques. Discussion of a meta-compiler in
its own language.

10. Optimization techniques. Frequency analysis of use of pro-
gram structures to determine most important features for optimiza-
tion.

11. Local optimization to take advantage of special instructions.
Loading registers with constants, storing zeros, changing sign,
adding to memory, multiplication or division by two, replacement
of division with multiplication by a constant, squaring, raising to
integer powers, and comparing to zero. Subscript optimization.

12. Expression optimization. Identities involving minus signs,
common subexpression evaluation and other techniques. Minimiza-
tion of temporary storage and the number of ar i thmetic registers
in multiple register machines.

13. Optimization of loops. Typical loops coded several ways. In-
dex register optimization in the innermost loop. Classification of
loops for optimization purposes.

14. Problems of global optimization. Determination of flowchart
graph of program. Analysis of program graphs. Rearrangement of
computation to do as little as possible in innermost loop. Factoring
of invariant subexpressions. Object code for interfaces between
flow blocks.

*
ANNOTATED BIBLIOGRAPHY

1. ACM Compiler Symposium. Papers presented a t the ACM
Compiler Symposium, November 17-18, 1960, Washington,
D. C., Comm. ACM 4, 1 (Jan. 1961), 3-84.

Contains a number of relevant papers including one by R. W.
Floyd entitled "An Algorithm for Coding Efficient Arithmetic
Operations" and one by P. Z. Ingerman on "Thunks . "

2. ARDEN, B . W . , GALLER, B . A . , AND GRAHAM, R . M . A n a l g o -
rithm for translating Boolean expressions. J. ACM 9, 2 (Apr.
1962), 222-239. CR-6341-3567.
Description of code generation in the MAD Compiler.

3. BRINCH-HANSEN, P . , AND HOUSE, R . T h e C O B O L c o m p i l e r f o r
the Siemens 3003. BIT6, 1 (1966), 1-23.
Describes the design of a ten-pass compiler with extensive
error detection.

4. CHEATHAM, T. E., JR. The TGS-II translator generator sys-
tem. Proc. IFIP Congress, New York, 1965, Vol. 2, Spartan
Books, New York, pp. 592-593.
A report on the "current position" of Computer Associates
"translator generator system."

5. CHEATHAM, T. E., JR. The Theory and Construction of Com-
pilers. Document CA-6606-0111, Compi ,er Associates, Inc.,
Wakefield, Mass., June 2, 1966, limited distribution.
Notes for course AM 295 at Harvard, fall 1967.

6 . CHEATHAM, T . E . , J R . , AND SATTLEY, K . S y n t a x - d i r e c t e d c o m -
piling. Proc. AFIPS 1964 Spring Joint Comput . Conf., Vol. 25,
Spartan Books, New York, pp. 31-57. CR-6455-6304.
An introduction to top-down syntax directed compilers.

7. CONWAY, M. E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963), 396-408. CR-6451-5024.
Describes the organization of a COBOL compiler. The methods
are largely applicable to construction of compilers for other
languages such as ALGOL.

8 . CONWAY, R . W . , AND MAXWELL, W . L . C O R C — t h e C o r n e l l
computing language. Comm. ACM 6, 6 (June 1963), 317-321.
Description of a language and compiler which are designed to
provide extensive error diagnostics and other aids to the pro-
grammer.

9. ERSHOV, A. P. ALPHA—an automat ic programming system of
high efficiency. J. ACM 13, 1 (Jan. 1966), 17-24. CR-6673-9720.
Describes a compiler for a language which includes most of
ALGOL as a subset. Several techniques for optimizing both
the compiler and the object code are presented.

10. ERSHOV, A. P. Programming Programme for the BESM com-
puter, transl. by M. Nadler. Pergamon Press, New York, 1959,
158 pp. CR-6235-2595.
One of the earliest works on compilers. Introduced the use of
stacks and the removal of common subexpressions.

11. ERSHOV, A. P. On programming of ar i thmetic operations.
Comm. ACM 1, 8 (Aug. 1958), 3-6 and 9 (Sept. 1958), 16.
Gives an algorithm for creating rough machine language in-
structions in pseudoform and then altering them into a more
efficient form.

12. FREEMAN, D. N. Error correction in CORC. Proc. AFIPS 1964
Fall Joint Computer Conf., Vol. 26, Part I, Spar tan Books, New
York, pp. 15-34.
Discusses techniques of correcting errors in programs written
in the Cornell computing language.

13. GARWICK, J . V . G A R G O Y L E , a l a n g u a g e f o r c o m p i l e r w r i t i n g .
Comm. ACM 7, 1 (Jan. 1964), 16-20. CR-6453-5675.
Describes an ALGOL-like, language which uses syntax-directed
methods.

14. GEAR, C. W. High speed compilation of efficient object code.
Comm. ACM8, 8 (Aug. 1965), 483-488. CR-6671-9000.
Describes a three-pass compiler which represents a compro-
mise between compilation speed and object code efficiency.
Primary at tention is given to the optimization performed by
the compiler.

15. GRIES, D . , PAUL, M . , AND WIEHLE, H . R . S o m e t e c h n i q u e s u s e d
in the ALCOR ILLINOIS 7090. Comm. ACM 8, 8 (Aug. 1965),
496-500. CR-6566-8556.
Describes portions of an ALGOL compiler for the IBM 7090.

16. HAWKINS, E . N . , AND HUXTABLE, D . H . R . A m u l t i p a s s t r a n s -
lation scheme for ALGOL 60. In R. Goodman (Ed.), Annual Re-
view in Automatic Programming, Vol. 3, Pergamon Press, New
York, 1963, pp. 163-206.
Discusses local and global optimization techniques.

17. HORWITZ, L . P . , KARP, R . M . , MILLER, R . E . , AND WINOCRAD, S .
Index register allocation. J. ACM 13, 1 (Jan. 1966), 43-61. CR-
6 6 7 4 - 1 0 , 0 6 8 .
A mathematical t reatment of the problem. Useful in compiler
writing.

18. International Computation Centre (Eds.) Symbolic Languages
in Data Processing, Proceedings of the Symposium in Rome,
March 26-31, 1962. Gordon and Breach, New York, 1962, 849 pp.
The twelve papers listed under "Construction of Processors
for Syntactically Highly Structured Languages" in this volume
are particularly of interest for this course.

19. KNUTH, D. E. A history of writing compilers. Comput. Autom.
11, 12 (Dec. 1962), 8-18.
Describes some of the early techniques used in writing Ameri-
can compilers.

20. MCCLURE, R. M. TMG—A syntax directed compiler. Proc.
ACM 20th Nat . Conf., 1965, Association for Computing Ma-
chinery, New York, pp. 262-274.
The compiler writing system described in this paper was de-
signed to facilitate the construction of simple one-pass trans-
lators for some specialized languages. It has features which
simplify the handling of declarative information and errors.

21. NAUR, P. The design of the GIER ALGOL compiler. In R.
Goodman (Ed.), Annual Review in Automatic Programming,
Vol. 4, Pergamon Press, New York, 1964, pp. 49-85. CR-6564-
7904.
Describes a mult ipass compiler written for a computer with a
small high-speed memory.

22 . RANDELL, B . , AND RUSSELL, L . J . ALGOL 60 Implementation.
Academic Press, New York, 1964, 418 pp. CR-6565-8246.
Contains a survey of ALGOL implementation techniques and a
description of an error-checking and debugging compiler for
the KDF9 computer.

23. REYNOLDS, J . C. An introduction to the C O G E N T program-
ming system. Proc. ACM 20th Nat . Conf., 1965, Association for
Computing Machinery, New York, pp. 422-436.
Describes the structure and major facilities of a compiler-
compiler system which couples the notion of syntax-directed
compiling with that of recursive list processing.

24. ROSEN, S. (Ed.) Programming Systems and Languages. Mc-
Graw-Hill, New York, 1967, 734 pp.
A collection of papers of which the following are of special in-
terest for this course: Backus, et al., pp. 29-47; Bauer and
Samelson, pp. 206-220; Di jks t ra , 'pp . 221-227; Kanner, Kosin-
ski, and Robinson, pp. 228-252; Rosen, Spurgeon, and Don-
nelly, pp. 264-297; and Rosen, pp. 306-331.

25. SCHORRE, D. V. META II, a syntax-oriented compiler writing
language. Proc. ACM 19th Nat . Conf., 1964, Association for
Computing Machinery, New York, pp. Dl.3-1 to Dl.3-11. CR-
6561-6943.
Describes a compiler writing language in which its own com-
piler can be written.

26. WEGNER, P. (Ed.) Introduction to System Programming. Aca-
demic Press, New York, 1965, 316 pp. CR-6455-6300.
Contains a collection of papers of which the following are of
special interest for this course: Pyle, pp. 86-100; Wegner, pp.
101-121; Randell, pp. 122-136; Huxtable, pp. 137-155; Hoare,
pp. 156-165; and d'Agapeyeff, pp. 199-214.

Course 16. Switching Theory (3-0-3) or (2 2-3)

APPROACH

This course should present the theoretical foundations and
mathematical techniques concerned with the design of logical cir-
cuits. Examples should be chosen to illustrate the applicability
to computers or other digital systems whenever possible. Facility
with Boolean algebra and appreciation for the effects of delays
should be developed. Some laboratory experiments are highly de-
sirable.

CONTENT

1. Review of nondecimal number systems. Introduction to unit-
distance, error-correcting, and other codes.

2. Development of switching algebra and its relation to Boolean
algebra and propositional logic. Brief discussion of switching ele-
ments and gates. Analysis of gate networks. Tru th tables and com-
pleteness of connectives.

3. Simplification of combinational networks. Use of map and
tabular techniques. The prime implicant theorem. Threshold logic.

4. Different modes of sequential circuit operation. Flow table,
state diagram, and regular expression representations. Clocked cir-
cuits. Flip-flop and feedback realizations.

5. Synthesis of sequential circuits. State minimization and in-
ternal variable assignments for pulse and fundamenta l mode cir-
cuits. Race considerations. Iterative and symmetric networks.

6. Effects of delays. Static, dynamic, and essential hazards.

ANNOTATED BIBLIOGRAPHY

As is indicated, several of the books listed below could be used
as texts for this course, bu t it probably would be desirable to sup-
plement any of them with additional material.

General textbooks
1. CALDWELL, S. H. Switching Circuits and Logical Design.

Wiley, New York, 1958, 686 pp.
The classic book on relay-oriented switching theory.

2. HARRISON, M. A. Introduction to Switching and Automata
Theory. McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109.
A mathematical and abstract reference for advanced topics.

3. HIGONNET, R. A., AND GREA, R. A. Logical Design of Electrical
Circuits. McGraw-Hill, New York, 1958, 220 pp.
Almost exclusively devoted to relay networks.

4. HUMPHREY, W. S., JR. Switching Circuits with Computer Ap-
plications. McGraw-Hill, New York, 1958, 264 pp.
A somewhat out-of-date undergraduate level text.

5. KRIECER, M. Basic Switching Circuit Theory. Macmillan,
N e w Y o r k , 1967 , 2 5 6 p p . C R - 6 7 8 4 - 1 2 , 5 1 0 .

Basic elementary t reatment which does not discuss hazards or
codes.

6. MCCLUSKEY, E. J . , JR. Introduction to the Theory of Switch-
ing Circuits. McGraw-Hill, New York, 1965, 318 pp. CR-6673-
9834 .

A possible text for this course.

7. MCCLUSKEY, E . J . , J R . , AND BARTEE, T . C . (E d s .) A Survey of
Switching Circuit Theory. McGraw-Hill, New York, 1962, 205
p p . C R - 6 3 4 2 - 3 9 5 8 .

A collection of papers. Weak as a text since there are no prob-
lems. Possibly of some value as reading to illustrate different
approaches.

8. MALEY, G. A., AND EARLE, J . The Logic Design of Transistor
Digital Computers. Prentice-Hall, Englewood Cliffs, N. J . ,
1963, 322 pp. CR-6345-4582.
Despite its title, this book covers a considerable amount of
switching theory. Emphasis is on NOR circuits and asynchron-
ous systems, and on techniques rather than theorems. Numer-
ous examples.

9. MARCUS, M. P. Switching Circuits for Engineers. Prentice-
Hall, Englewood Cliffs, N. J „ 1962, 296 pp. CR-6341-3681.
Broad but not too mathematical coverage of switching theory.

10. MILLER, R. E. Switching Theory, Vol. 1, Combinational Cir-
cuits. Wiley, New York, 1965, 351 pp. CR-6565-8369.
Highly mathematical and somewhat advanced for an under-
graduate course. Interesting discussion of the effects of delays.

11. PRATHER, R. E. Introduction to Switching Theory: A Mathe-
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp.
A highly mathematical and broad coverage of both combina-
torial switching theory and sequential machine theory.

12. TORNG, H. C. Introduction to the Logical Design of Switching
Systems. Addison-Wesley, Reading, Mass., 1965, 286 pp. CR-
6456-6806.
General elementary coverage including a discussion of switch-
ing elements and magnetic logic. Outmoded discussion of iter-
ative (cascaded) networks. Many computer-related examples.

13. WARFIELD, J . N. Principles of Logic Design. Ginn and Co.,
Boston, 1963, 291 pp. CR-6451-5136.
Covers some elementary switching theory in the context of
computer logic.

More specialized books
14. CURTIS, V. A. A New Approach to the Design of Switching

Circuits. D. Van Nostrand, Princeton, N. J „ 1962, 635 pp. CR-
6346-4818.
Devoted mainly to decomposition theory for combinational cir-
cuits. Useful as a reference in this area and as a source of ex-
amples since it contains many detailed sample problems.

15. DERTOUZOS, M. L. Threshold Logic: A Synthesis Approach.
M.I.T. Press, Cambridge, Mass., 1965, 256 pp. CR-6676-10,989.
Concentrates on the characterization and application of thres-
hold elements in terms of logical design.

16. Hu, S. T. Threshold Logic. University of California Press,
Berkeley, Calif., 1965, 338 pp.
A comprehensive reference which also contains some of the
author's original research.

17. LEWIS, P. M., AND COATES, C. L. Threshold Logic. Wiley,
New York, 1967, 483 pp.
Emphasizes single and multigate networks for controlled sen-
sitivity.

18. PHISTER, M., JR. Logical Design of Digital Computers. Wiley,
New York, 1958, -401 pp.
Covers the application of sequential circuit theory to design of
computer logic. Considers only clocked circuits and (for the
most part) serial operation.

Course 17. Sequential Machines (3-0-3)

APPROACH

This is to be a rigorous theoretical course. The material is about
evenly devoted to three major points of view: the structural aspects
of sequential machines, the behavioral aspects of sequential ma-
chines, and the variants of finite automata. Machines with un-
bounded storage such as Turing machines and pushdown-store au-
tomata are to be covered in course A7.

CONTENT

1. Definition of finite automata and sequential machines. Various
methods of representing automata including state tables, state dia-
grams, set theoretic methods, and sequential nets. (3 lectures)

2. Equivalent states and equivalent machines. Reduction of
states in sequential machines. (3 lectures)

3. Right-invariant and congruence relations. The equivalence of
nondeterministic and deterministic finite automata. Closure prop-

erties of languages definable by finite automata and the Kleene-
Myhill theorem on regular languages. (4 lectures)

4. Decision problems of finite automata. Testing equivalence,
acceptance of a nonempty set, acceptance of an infinite set. (3 lec-
tures)

5. Incomplete sequential machines. Compatible states and algo-
ri thms for constructing minimal state incomplete sequential ma-
chines. (3 lectures)

6. The state assignment problem. Series-parallel decomposi-
tions. Coordinate assignments. (2 lectures)

7. Algebraic definition of a sequential machine. Homomorphisms
of monoids. (2 lectures)

8. Partitions with the substitution property. Homomorphism de-
compositions into a series-composition. (2 lectures)

9. Decomposition of permutation automata. (1 lecture)
10. The decomposition of finite-state automata into a cascade of

permutation-reset automata using the method of set systems
(covers). (2 lectures)

11. Final series-parallel decomposition into .a cascade of two-
state automata and simple-group automata. (2 lectures)

12. Brief introduction to undecidability notions. The halting
problem. (2 lectures)

13. Multi tape nonwriting automata. (4 lectures)
14. Generalized sequential machines. (2 lectures)
15. Subsets of regular languages. Group-free automata. (3 lec-

tures)
16. Regular expressions. Algebra, derivatives and star height. (5

lectures)
17. Probabilistic automata. (3 lectures)

ANNOTATED BIBLIOGRAPHY

Except for two survey articles, only books are included in the
following list. Since this field has developed within the last fifteen
years, much of the material is still in the periodical literature.

1. CAIANIELLO, E. R. (Ed.) Automata Theory. Academic Press,
N e w Y o r k , 1966 , 3 4 3 p p . C R - 6 6 7 6 - 1 0 , 9 3 5 .

A collection of research and tutorial papers on automata, for-
mal languages, graph theory, logic, algorithms, recursive func-
tion theory, and neural nets, which, because of varying interest
and difficulty, might be useful for supplementary reading by
ambitious students.

2. FISCHER, P. C. Multitape and infinite-state automata—a sur-
vey. Comm. ACM8, 12 (Dec. 1965), 799-805. CR-6675-10,561.
A survey of machines which are more powerful than finite au-
tomata and less powerful than Turing machines. Also an ex-
tensive bibliography.

3. GILL, A. Introduction to the Theory of Finite-State Machines.
McGraw-Hill, New York, 1962, 207 pp. CR-6343-4207.
An automata theory approach to finite-state machines which
is somewhat engineering oriented and written at a fairly ele-
mentary level.

4. GINSBURG, S. An Introduction to Mathematical Machine
Theory. Addison-Wesley, Reading, Mass., 1962, 137 pp. CR-
6452-5431.
A text on the behavior of the sequential machines of Huff-
man-Moore-Mealy, abstract machines of Ginsburg, and tape
recognition devices of Rabin and Scott.

5. GLUSHKOV, V. M. Introduction to Cybernetics, transl. by
Scripta Technica, Inc. Academic Press, New York, 1966, 324 pp.
A translation of the Russian text which assumes only a limited
background. Approaches subject from somewhat different point
of view than most Western texts. Contains much relevant ma-
terial.

6. HARRISON, M. Introduction to Switching and Automata
Theory, McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109.
This text for engineers and mathematicians develops the
foundations of both switching and automata theory in abstract

mathematical terms. Emphasis is on switching theory. Coverage
includes sequential machines, regular events, definite events,
probabilistic machines, and context-free languages.

7. HARTMANIS, J . , AND STEARNS, R . E . Algebraic Structure
Theory of Sequential Machines. Prentice-Hall, Englewood
Cliffs, N. J. , 1966, 211 pp. CR-6782-11,635.
The first thorough treatment of the structure theory of se-
quential machines and its applications to machine synthesis
and machine decomposition. A research monograph selected
from a series of papers by the authors and not written as a text.
Practically no exercises.

8. HENNIE, F. C., III. Iterative Arrays of Logical Circuits. M.I.T.
Press, Cambridge, Mass., and Wiley, New York, 1961, 242 pp.
CR-6232-1733.
Currently the most complete treatise on iterative arrays.

9. KAUTZ, W. H. (Ed.) Linear Sequential Su/itching Circuits—
Selected Technical Papers. Holden-Day, San Francisco, 1965,
234 pp. CR-6674-10,205.
A collection of papers on linear sequential machines.

10. MCNAUGHTON, R. The theory of automata—a survey. In F. L.
Alt (Ed.), Advances in Computing, Vol. 2, Academic Press, New
York, 1961, pp. 379-421. CR-6342-3920.
Most of the areas of automata theory are included with the ex-
ception of switching theory and other engineering topics.

11. MILLER, R. E. Switching Theory, Vol. 2, Sequential Circuits
and Machines. Wiley, New York, 1965, 250 pp. CR-6783-12,120.
Highly mathematical and somewhat advanced as a text for an
undergraduate course.

12. MINSKY, M. Computation: Finite and Infinite Machines. Pren-
tice-Hall, Englewood Cliffs, N. J., 1967, 317 pp.
The concept of an "effective procedure" is developed in this
text. Also treats algorithms, Post productions, regular expres-
sions, computability, infinite and finite-state models of digital
computers, and computer languages.

13. MOORE, E. F. (Ed.) Sequential Machines: Selected Papers.
Addison-Wesley, Reading, Mass., 1964, 266 pp.
This collection of classical papers on sequential machines in-
cludes an extensive bibliography by the editor.

14. PRATHER, R. E. Introduction to Switching Theory: A Mathe-
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp.
A mathematical and broad treatment of both combinatorial
switching theory and sequential machines.

15. SHANNON, C. E., AND MCCARTHY, J . (Eds.) Automata Studies.
Princeton University Press, Princeton, N. J., 1956, 285 pp.
A collection of many of the early papers on finite automata,
Turing machines, and synthesis of automata which stimulated
the development of automata theory. Philosophical papers, in
addition to mathematical papers, are included, since the aim of
the collection is to help explain the workings of the human
mind.

Courses 18 and 19. Numerical Analysis I and II
(3-0-3) and (3-0-3)

APPROACH

The numerical methods presented in these courses are to be de-
veloped and evaluated from the standpoint of efficiency, accuracy,
and suitability for high-speed digital computing. While other ar-
rangements of the material in these courses are possible, the ones
suggested here do allow the two courses to be taught independently
of one another.

CONTENT OF COURSE 18

1. Solution of Equations. Newton's method and other iterative
methods for solving systems of equations. Aitken's 62 process.
Newton-Bairstow method. Muller's method and Bernoulli's method

for polynomial equations. Convergence conditions and rates of con-
vergence for each method.

2. Interpolation and Approximation. Polynomial interpolation.
Lagrange's method with error formula. Gregory-Newton and other
equal interval interpolation methods. Systems of orthogonal poly-
nomials. Least-squares approximation. Trigonometric approxima-
tion. Chebyshev approximation.

3. Numerical Differentiation and Quadrature. Formulas involv-
ing equal intervals. Romberg integration. Extrapolation to the limit.
Gaussian quadrature.

4. Solution of Ordinary Differential Equations. Runge-Kutta
methods. Multistep methods. Predictor-corrector methods. Stability.

CONTENT Of COURSE 19

5. Linear Algebra. Rigorous treatment of elimination methods
and their use to solve linear systems, invert matrices, and evaluate
determinants. Compact schemes. Methods for solving the eigen-
value-eigenvector problem including the power method, the in-
verse power method, Jacobi's method, Givens' method and House-
holder's method. Roundoff analysis and conditioning.

6. Numerical Solution of Boundary Value Problems in Ordinary
Differential Equations.

7. Introduction to the Numerical Solution of Partial Differential
Equations. Computational aspects of finite difference methods for
linear equations. Determination of grids. Derivation of difference
equations. Solution of large linear systems by iterative methods such
as simultaneous displacements, successive displacements, and suc-
cessive overrelaxation.

ANNOTATED BIBLIOGRAPHY

Listed below are some but by no means all of the books which
could be used as texts and/or references for these courses. The more
general texts normally include solution of polynomial and other
nonlinear equations; interpolation, numerical quadrature, and nu-
merical differentiation; ordinary differential equations; and linear
algebra. Significant deviations from these are indicated by the an-
notations.

Besides listing books which might be used as texts for part or all
of these courses, the following includes books for those desiring to
go deeper into the various areas. In particular, Refs. 1. 3, 10, 17. and
18 have been included for linear algebra; Refs. 2 and 16 for partial
differential equations; Ref. 15 for the solution of nonlinear equa-
tions; and Ref. 7 for ordinary differential equations.

1. FADDEEV, D . K . , AND FADDEEVA, V. N . Computational Meth-
ods of Linear Algebra, transl. by R. C. Williams. W. H. Free-
man, San Francisco, 1963, 621 pp. CR-6016-0374.
An excellent reference on the theory of computational methods
in linear algebra. Does not treat the theory of computational
errors. Introductory chapter could serve as a text for a course in
linear algebra. Beginning analysis and an elementary knowledge
of complex variables is assumed. Examples but no exercises.

2. FORSYTHE, G . E . , AND WASOW, W . R . Finite-Difference Meth-
ods for Partial Differential Equations. Wiley. New York. 1960.
444 pp.
A fundamental reference on the numerical solution of partial
differential equations by finite-difference methods. Provides a
thorough treatment of hyperbolic, parabolic, and elliptic equa-
tions. Orientation is toward the use of high-speed computers,
but it is not intended as a guide for programmers. For most of
the book, advanced calculus and linear algebra provide sufficient
background. Previous knowledge of partial differential equa-
tions not required. Some illustrative examples but no exercises.

3. Fox, L. An Introduction to Numerical Linear Algebra. Oxford
University Press, New York, 1964, 295 pp. CR-6456-6723.
A basic reference on computational methods in linear algebra.
Designed for engineers and scientists as well as mathematicians.
Emphasis on the principles involved rather than the details of
applications to computers. Intended to prepare the reader for a
more advanced book such as Wilkinson's The Algebraic Eigen-
value Problem. Introductory chapter on matrix algebra. Illus-
trative examples and exercises.

4. FROBERG, C. E. Introduction to Numerical Analysis. Addison-
Wesley, Reading, Mass., 1965, 340 pp. CR-6671-9037.
Designed as a text for an undergraduate numerical analysis
course. Includes, in addition to the standard topics, partial
differential equations (briefly), approximation by Chebyshev
polynomials and other functions, Monte Carlo methods, and
linear programming. Emphasis on modern methods well-adapted
for computers. Mathematically rigorous treatment with detailed
error analysis given in typical cases. Presupposes differential
and integral calculus and differential equations. Illustrative
examples and exercises.

5. HAMMING, R. W. Numerical Methods for Scientists and Engi-
neers. McGraw-Hill, New York, 1962, 411 pp. CR-6236-3367.
Excellent as a reference. Provides interesting and different point
of view. Treats interpolation and approximation; numerical
differentiation and integration; and ordinary differential equa-
tions by polynomial and other methods such as Fourier methods,
and exponentials. Brief treatments of nonlinear equations and
linear algebra, simulation, and Monte Carlo methods. Presup-
poses beginning analysis, Fourier series, mathematical statis-
tics, feed-back circuits, noise theory. Illustrative examples and
exercises.

6. HENRICI, P. Elements of Numerical Analysis. Wiley, New York,
1964, 328 pp.
Designed as a text for a one-semester course in numerical analy-
sis. Covers the standard topics except linear algebra. Emphasis
on numerical analysis as a mathematical discipline. A distinc-
tion is made between algorithms and theorems. Introductory
chapters on complex variables and difference equations. Be-
ginning analysis (12 semester hours) and ordinary differential
equations are assumed. Illustrative examples and exercises.

7. HENRICI, P. Discrete Variable Methods in Ordinary Differ-
ential Equations. Wiley, New York, 1962, 407 pp. CR-6341-
3733.
A basic reference on the numerical methods for solving ordinary
differential equations. Designed as a text for a senior-level
course on ordinary differential equations. Includes a mathemati-
cally rigorous treatment of various methods. Emphasis is on the
study of discretization errors and round-off errors. Presupposes
differential equations, advanced calculus, linear algebra, and
elementary complex variables (though large parts of the book
do not require all of these topics). Illustrative examples and
exercises.

8. HILDEBRAND, F. B. Introduction to Numerical Analysis. Mc-
Graw-Hill, New York, 1956, 511 pp.
A good book for supplementary reading though written in 1956.
Gives primary emphasis to methods adapted for desk calculators.
Includes standard topics except for linear algebra. Separate
chapters on least-squares, polynomial approximation, Gaussian
quadrature, and approximation of various types. Beginning
analysis sufficient background for most of the book. An exten-
sive set of exercises.

9. HOUSEHOLDER, A. S. Principles of Numerical Analysis. Mc-
Graw-Hill, New York, 1953, 274 pp.
Good for supplementary reading. Designed as mathematical
textbook rather than a compendium of computational rules.
Published in 1953, the book includes many methods applicable
only to hand computation though it was written with computers
in mind. Includes the standard topics except ordinary differen-
tial equations. Presupposes beginning analysis plus some knowl-
edge of probability and statistics. Some exercises.

10. HOUSEHOLDER, A. S. The Theory of Matrices in Numerical
Analysis. Blaisdell, New York, 1964, 257 pp.
Good for supplementary reading. Considers the development
and appraisal of computational methods in linear algebra from
the theoretical point of view. Does not develop specific com-
puter flowcharts or programs. Presupposes a knowledge of
matrix algebra. Illustrative examples and exercises.

11. ISAACSON, E., AND KELLER, H. B. Analysis of Numerical Meth-
ods. Wiley, New York, 1966, 541 pp. CR-6783-11,966.
A very well written and rather comprehensive text presenting a

careful analysis of numerous important numerical methods with
a view toward their applicability to computers. With an appro-
priate selection of material the book lends itself well to use as a
text; otherwise, it is an excellent reference.

12. MILNE, W. E. Numerical Solution of Differential Equations.
Wiley, New York, 1953, 275 pp.
Since it was written in 1953, much of this material has been
superseded by more recent work; yet it remains very suitable
for supplemental reading. Ordinary and partial differential
equations are treated as well as some problems in linear al-
gebra. Many of the methods are adapted for hand computation
rather than for computers. Beginning analysis should provide
sufficient background for most of the book. Illustrative examples
and some exercises.

13. RALSTON, A. A First Course in Numerical Analysis. McGraw-
Hill, New York, 1965, 578 pp. CR-6671-9035.
Designed as a text for a one-year course in numerical analysis
(though not all of the material could be covered) to be taken
by graduate students and advanced undergraduate students,
primarily in mathematics. Although numerical analysis is
treated as a full-fledged branch of applied mathematics, ori-
entation is toward the use of digital computers. Basic topics in
numerical analysis covered thoroughly. Separate chapters de-
voted to functional approximation by least-squares techniques
and by minimum-maximum error techniques. Presupposes
beginning analysis, advanced calculus, orthogonal polynomials,
and complex variables. A course in linear algebra is assumed
for the chapters in that area. An extensive set of illustrative
examples and exercises.

14. TODD, J . (Ed.) A Survey of Numerical Analysis. McGraw-
Hill, New York, 1962, 589 pp. CR-6236-3368.
Written by a number of authors. Some of the early chapters
have been used in connection with introductory courses. Be-
cause of its breadth of coverage it is especially suited as a
reference for these courses. Besides the usual topics, there are
separate chapters on orthogonalizing codes, partial differential
equations, integral equations, and problems in number theory.
The prerequisites vary with the chapters but for early chapters
beginning analysis and linear algebra would suffice. Exercises
given in some of the early chapters.

15. TRAUB, J . F. Iterative Methods for the Solution of Equations.
Prentice-Hall, Englewood Cliffs, N. J „ 1964, 310 pp. CR-6672-
9339.
A good reference on the numerical solution of equations and
(briefly) systems of equations by iteration algorithms. The
methods are treated with rigor, though rigor in itself is not the
main object. Contains a considerable amount of new material.
Many illustrative examples.

16. VARGA, RICHARD. Matrix Iterative Analysis. Prentice-Hall, <
Englewood Cliffs, N. J. , 1962, 322 pp. CR-6343-4236.
An excellent reference giving theoretical basis behind methods
for solving large systems of linear algebraic equations which
arise in the numerical solution of partial differential equations
by finite-difference methods. Designed as a text for a first-year
graduate course in mathematics.

17. WILKINSON, J . H. Rounding Errors in Algebraic Processes.
Prentice-Hall, Englewood Cliffs, N. J. , 1964, 161 pp. CR-6455-
6341.
Studies the cumulative effect of rounding errors in computations
involving large numbers of arithmetic operations performed by
digital computers. Special attention given to problems involv-
ing polynomials and matrices. A very important reference for a
computer-oriented course in numerical analysis.

18. WILKINSON, J . H. The Algebraic Eigenvalue Problem. Claren-
don Press, Oxford, England, 1965, 662 pp.
A basic reference on computational methods in linear algebra.
Provides a thorough treatment of those methods with which
the author has had direct numerical experience on the com-
puter. Treats the methods theoretically and also from the stand-
point of rounding errors. Presupposes beginning analysis,
linear algebra, and elementary complex variables. Illustrative
examples but no exercises.

35

Course A1. Formal Languages and Syntactic
Analysis (3-0-3)

APPROACH

This course combines the theoretical concepts which arise in for-
mal language theory with their practical application to the syntac-
tic analysis of programming languages. The objective is to build a
bridge between theory and practical applications, so that the mathe-
matical theory of context-free languages becomes meaningful to the
programmer and the theoretically oriented student develops an un-
derstanding of practical applications. Assignments in this course
should include both computer programming assignments and theo-
rem proving assignments.

CONTENT

The following topics should be covered, but the organization of
the material and relative emphasis on individual topics is subject
to individual preference.

1. Definition of a formal grammar as notation for specifying a
subset of the set of all strings over a finite alphabet, and of a formal
language as a set specified by a formal grammar. Production notation
for specifying grammars. Recursively enumerable, context-sensitive,
context-free, and finite-state grammars. Examples of languages
specified by grammars such as anb", anbnc".

2. Specification of arithmetic expressions and arithmetic state-
ments as context-free grammars. Use of context-free grammars as
recognizers. Use of recognizers as a component in compilation or
interpretive execution of arithmetic statements.

3. Syntactic analysis, recognizers, analyzers and generators. Top-
down and bottom-up algorithms. The backtracking problem and the
reduction of backtracking by bounded context techniques. Theory
of bounded context analysis and LR(k) grammars.

4. Precedence and operator precedence techniques. The algo-
rithms of Floyd, Wirth and Weber, etc. Semantics of precedence
grammars for arithmetic statements and simple block structure.

5. Top-down and bottom-up algorithms for context-free lan-
guages. The algorithms of Cheatham, Domolki, and others.

6. Languages for syntactic analysis and compilation such as
COGENT and TMG. A simple syntactic compiler written in one of
these languages.

7. Reductive grammars, Floyd productions, and semantics for
arithmetic expressions. The work of Evans, Feldman, and others.

8. Theory of context-free grammars, normal forms for context-free
grammars, elimination of productions of length zero and one. Chom-
sky and Greibach normal forms. Ambiguous and inherently am-
biguous grammars. The characteristic sequence of a grammar. Strong
equivalence, weak equivalence and equivalence with preservation
of ambiguity. Asymptotic time and space requirements for context-
free language recognition.

9. Combinatorial theorems for context-free grammars. Proof that
anbnc" cannot be represented by a context-free grammar. Linear and
semilinear sets. Parikh's theorem.

10. Grammars and mechanical devices. Turing machines, linear
bounded automata, pushdown automata, finite-state automata, and
the corresponding grammars.

11. Properties of pushdown automata. Deterministic and non-
deterministic automata and languages. Stack automata. Program-
ming languages and pushdown automata.

ANNOTATED BIBLIOGRAPHY

1. BAR-HILLEL, Y. , PERLES, M . , AND SHAMIR, E . O n f o r m a l p r o p -
erties of simple phrase structure grammars. Zeitschrift fur
Phonetik, Sprachwissenschaft und Kommunikationsforschung
14 (1961), 143-172. (Reprinted in Y. Bar-Hillel (Ed.), Languages
and Information, Selected Essays. Addison-Wesley, Reading,
Mass., 1964. CR-6562-7178.)
A well-written paper containing the first s tatement of many of
the principal results of context-free languages.

2. BAUER, F. L., AND SAMELSON, K. Sequential formula transla-
tion. Comm. ACM3, 2 (Feb. 1960), 76-83. CR-6015-0219.
The first systematic paper on the translation of programming
languages from left to right using precedence techniques.

3. BROOKER, R. A., AND MORRIS, D. A general translation program
for phrase structure grammars. J. ACM 9, 1 (Jan. 1962), 1-10.
Summarizes the design and machine-oriented characteristics of
a syntax-directed compiler and describes both its syntactic and
semantic features.

4 . CHEATHAM, T . E . , JR . , AND SATTLEY, K . S y n t a x d i r e c t e d c o m -
piling. Proc. AFIPS 1964 Spring Joint Comput. Conf.. Vol. 25,
Spartan Books, New York, pp. 31-57. CR-6455-6304.
A description of one of the earliest operational top-down syntax-
directed compilers.

5. CHOMSKY, N. Formal properties of grammars. In R. R. Bush.
E. H. Galanter, and R. D. Luce (Eds.), Handbook of Mathe-
matical Psychology, Vol. 2, Wiley, New York, 1962, pp. 323-
4 1 8 . C R - 6 6 7 6 - 1 0 , 7 3 1 .
An excellent review of the work of both Chomsky and others in
this field. Contains a good bibliography. See also the two com
panion chapters in this volume written by Chomsky and G. A.
Miller.

6. EVANS, A. An ALGOL 60 compiler. In R. Goodman (Ed.I.
Annual Review in Automatic Programming, Vol. 4, Pergamon
Press, New York, 1964, pp. 87-124. CR-6564-7905.
The first compiler design application of a reductive syntax with
labelled productions.

7. FELDMAN, J . A. A formal semantics for computer languages
and its application in a compiler-compiler. Comm. ACM 9. 1
(Jan. 1966), 3-9. CR-6674-10,080.
A description of a formal semantic language which can be used
in conjunction with a language for describing syntax to specify
a syntax-directed compiler.

8. FLOYD, R. W. A descriptive language for symbol manipulation.
J. ACM8, 4 (Oct. 1961), 579-584. CR-6234-2140.
The first discussion of reductive grammars, including a reduc-
tive grammar from which the first example in Ref. 9 was de-
rived. The association of semantics with syntactic recognition
is directly illustrated.

9. FLOYD, R. W. Syntactic analysis and operator precedence. J.
ACM 10, 3 (July 1963), 316-333.
Defines the notions of operator grammars, precedence grammars
(here called "operator precedence grammars"), precedence
functions, and a number of other concepts. Examples of prece-
dence grammars and nonprecedence grammars.

10. FLOYD, R. W. Bounded context syntactic analysis. Comm.
ACM 7, 2 (Feb. 1964), 62-67. CR-6454-6074.
Introduces the basic concepts of bounded context grammars
and gives a set of conditions for testing whether a given gram-
mar is of bounded context (m, n).

11. FLOYD, R. W. The syntax of programming languages—a sur-
vey. IEEE Trans. EC-13, 4 (Aug. 1964), 346-353.
An expository paper which defines and explains such concepts
as phrase-structure grammars, context-free languages, and syn-
tax-directed analysis. Extensive bibliography.

12. GINSBURG, S. The Mathematical Theory of Context-Free
Languages. McGraw-Hill, New York, 1966, 232 pp. CR-6783-
12,074.
Presents a rigorous discussion of the theory of context-free lan-
guages and pushdown automata.

13. GREIBACH, S. A. A new normal-form theorem for context-free
phrase structure grammars. J. ACM 12, 1 (Jan. 1965), 42-52.
CR-6564-7830.
Shows that every grammar is equivalent with preservation of
ambiguities to a grammar in the "Greibach Normal Form."

14. GRIFFITHS, T . V . , AND PETRICK, S . R . O n t h e r e l a t i v e e f f i c i e n -
cies of context-free grammar recognizers. Comm. ACM 8, 5
(May 1965), 289-300. CR-6564-7999.

36

A comparative discussion of a number of syntactic analysis al-
gorithms.

15. IEEE Computer Group, Switching and Automata Theory Com-
mittee. Conf. Rec. 1967 8th Ann. Symposium on Switching
and Automata Theory. Special Publication 16 C 56, Insti tute of
Electrical and Electronic Engineers, New York, 1967.
Contains a number of papers relevant to this course including
those by: Rosenkrantz, pp. 14-20; Aho, pp. 21-31; Hopcroft
and Ullman, pp. 37-44; Ginsburg and Greibach, pp. 128- 139.

16. IRONS, E. T. A syntax directed compiler for ALGOL 60. Comm.
ACM4, I (Jan. 1961), 51-55.
The first paper on syntactic compilation. It discusses both a
top-down implementat ion of a syntactic compiler and the way
in which semantics is associated with the generation steps of
such a compiler.

17. IRONS, E. T. Structural connections in formal languages. Comm.
ACM 7, 2 (Feb. 1964), 67-72. CR-6455-6212.
The concept of structural connectedness defined is essentially
the same as tha t of a bounded context grammar.

18. KNUTH, D. E. On the translation of languages from left to
r i g h t . I n f . Contr. 8, 6 (D e c . 1965) , 6 0 7 - 6 3 9 . C R - 6 6 7 4 - 1 0 , 1 6 2 .

The concept of a grammar which permits translation from left
to right with forward context k (LR(fc) grammar) is developed
and analyzed.

19. MCCLURE, R. M. TMG—a syntax directed compiler. Proc.
ACM 20th Nat . Conf., 1965, pp. 262-274.
A description of a compiler in which the syntax is specified by
an ordered sequence of labeled productions and in which se-
mantics can be explicitly associated with productions.

20. NAUR, P. (Ed.) Revised report on the algorithmic language,
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17. CR-6345-4540.
The first systematic application of context-free languages to the
description of actual programming languages.

21. REYNOLDS, J . C. An introduction to the C O G E N T program-
ming system. Proc. ACM 20th Nat . Conf., 1965, pp. 422-436.
Describes the structure and major facilities of a compiler-com-
piler system which couples the notion of syntax-directed com-
piling with tha t of recursive list processing.

22. WIRTH, N . , AND WEBER, H . E U L E R : a g e n e r a l i z a t i o n of
ALGOL, and its formal definition, Par ts I & II. Comm. ACM 9,
1 (Jan. 1966), 13-23, and 2 (Feb. 1966), 89-99.
The first discussion of pure precedence grammars and their use
in ALGOL-like languages. Many of the concepts introduced by
other authors are discussed in an il luminating way.

Course A2. Advanced Computer Organization (3-0-3)

This title could label either a course in the organization of ad-
vanced computers or an advanced course in computer organization.
It is meant to be primarily the latter, with some material on novel
computer organizations included. The approach is tha t of "compara-
tive ana tomy": first, each of several organization and system design
problems should be identified; then, a comparison of the solutions
to the problem should be made for several different computers;
next, the rationale of each solution should be discussed; and finally,
an a t t empt should be made to identify the best solution. Students
should prepare papers on designs used in other machines for several
of the problem areas. These papers should include discussions of
the circuit technology available a t the t ime the machine was de-
signed and the intended market for the machine, and they should
compare the machine design with other designs.

The computer system design problem areas which should be
covered in this course are listed below followed by a list of some of

the machines which might be used to illustrate various solutions to
these problems. Each major problem area should be discussed in
general and at least three actual machine designs should be used to
illustrate the widest possible range of solutions. A brief overall sys-
tem description of each machine should be given before it is used
to illustrate a particular design area.

Computer System Design Problem Areas

1. Arithmetic Processing. Integer and floating point representa-
tion, round-off and truncation, word and register lengths. Number
and types of ari thmetic units, malfunction detection and reaction,
ar i thmetic abort detection, and reaction (overflow, etc.).

2. Nonarithmetic Processing. Addressable quanta and operation
codes. Compatibil i ty and interaction of nonari thmetic and arith-
metic operands. Types of additional processing units.

3. Memory Utilization. Relationship between memory width
and addressable quanta , memory block autonomy and phasing,
memory access priorities (operands, instructions, input-output , etc.).
Factoring of command-fetch processes (look-ahead).

4. Storage Management. Relocation, paging, and renaming.
Storage protection. Hierarchy storage provisions and transfer mech-
anisms.

5. Addressing. Absolute addressing, indexing, indirect address-
ing, relative addressing, and base addressing.

6. Control. Clocking, interrupt processing, privileged mode
operations, and autonomy of control functions.

7. Input-Output. Buffer facilities, channels (autonomy, inter-
action, interrupts), processing options (editing, formatting), input-
output byte size versus memory width versus addressing quanta .
Rate-matching (especially for input-output devices with inertia)
and channel-sharing.

8. Special System Designs. Array or cellular computers, vari-
able structure computers, and other advanced designs.

Illustrative Computers

ATLAS one of the first machines to use paging
Bendix G-15 a bit serial machine with drum store
Burroughs B5000 a zero-address machine with stacks and Polish

processing
CDC 6600 a very high-speed computer using look-ahead,

instruction stacking and multiple peripheral
processors

GIER (Denmark) a machine which uses a small core storage with
an auxiliary drum

IBM 701 a classic Von Neumann binary machine
IBM 1401 a serial character machine with peculiar ad-

dressing
IBM S T R E T C H a machine which was intended to incorporate

all state-of-the-art knowledge
IBM 360/ij a series of machines which combine character

and word handling capabilities
KDF-9 a computer using a nesting store
PB 440 a microprogrammable computer
SDS Sigma 7 a real-time time-sharing computer
UNIVAC I a classic decimal machine

ANNOTATED BIBLIOGRAPHY

In addition to the references cited below, it is important tha t a
collection of reference manuals for the actual computers be avail-
able to the s tudent . These can be obtained from the computer
manufacturers in most cases or from various reports such as the
Auerbach Standard EDP Reports. In some cases where the title of
the citation is self-explanatory, no annotat ion is given.

General references
1. AMDAHL, G . M . , BLAAUW, G . A . , AND BROOKS, F . P . , J R . A r c h i -

tecture of the IBM System/360. IBM J. Res. Develop. 8, 2 (Apr.
1964), 87-101. CR-6465-8374.
Although not a technical paper, it does give some insight into

37

the decisions which determined many of the features of this
family of computers.

2. BLAAUW, G. A., ET AL. The structure of System/360. IBM Syst.
J. 3,2(1964), 119-195.
Describes the design considerations relating to the implementa-
tion, performance, and programming of the System/360 family
of computers.

3. BOUTWELL, E . 0 . , J R . , AND HOSKINSON, E . A . T h e l o g i c a l o r -
ganization of the PB 440 microprogrammable computer. Proc.
AFIPS 1963 Fall Joint Comput. Conf., Vol. 24, Spartan Books,
N e w Y o r k , p p . 2 0 1 - 2 1 3 .

Describes the use of a fast-read, slow-write memory for micro-
programs. The bus structure connecting the processing registers
allows data transfers under control of the microprogram.

4. BUCHHOLZ, W. The system design of the IBM 701 computer.
Proc. [RE 41, 10 (Oct. 1953), 1262-1274.
Describes one of the first commercial binary computers.

5. BUCHHOLZ, W. (Ed.) Planning A Computer System. McGraw-
Hill, New York, 1962, 336 pp. CR-6346-4786.
Describes in reasonable detail a design philosophy and its bear-
ing on specific design decisions for an entire computer system—
in this case, STRETCH.

6. DEVONALD, C . H . , AND FOTHERINCHAM, J . A. T h e A T L A S c o m -
puter. Datamation 7, 5 (May 1961), 23-27. CR-6231-1405.

7. Digital Computer Laboratory, University of Illinois. On the
Design of a Very High Speed Computer. Rep. No. 80, U. of
Illinois, Urbana, 111., 1957.
A description of the first design for ILLIAC II.

8. ECKERT, J . P., ET AL. The UNIVAC system. Rev. of Elec. Dig.
Comput., Proc. Joint IRE-AIEE Conf., Philadelphia, Pa., 10-12
Dec. 1951, pp. 6-14.
A description of the UNIVAC I computer.

9. Engineering Summer Conference, University of Michigan.
Theory of computing machine design (course notes). U. of Mich-
igan, Ann Arbor, Mich., 1960-1962. (Distribution of these notes
was limited to participants.)
Cover many aspects of design—from the applications of autom-
ata theory to the system design of parallel computers.

10. FERNBACH, S. Very high-speed computers, 1964—the manufac-
turers' point of view. Proc. AFIPS 1964 Fall Joint Comput. Conf.,
Vol. 26, Pt. II, Spartan Books, New York, 1965, pp. 33-141.
Contains detailed reports on the CDC 6600, the IBM System/360
Model 92, and a Philco multiprocessing system.

11. GRAM, C., ET AL. GIER—A Danish computer of medium size.
IEEE Trans. EC-12, 6 (Dec. 1963), 629-650.
Gives an evaluation of the order structure and the hardware
organization and describes the operating system and the ALGOL
60 system.

12. GRAY, H. J. Digital Computer Engineering. McGraw-Hill,
New York, 1963, 381 pp. CR-6341-3654.-
Chap. 1 discusses ENIAC and EDVAC as examples of parallel and
serial organization. Chaps. 2-4 deal with organization problems.

13. GSCHWIND, H. W. Design of Digital Computers. Springer-Ver-
lag. New York, 1967, 530 pp.
A general reference.

14. HELLERMAN, H. Digital Computer System Principles. McGraw-
Hill, New York, 1967, 424 pp.
A possible text. A good reference.

15. HOLLANDER, G. L. (Ch.) The best approach to large computing
capacity—a debate. Proc. AFIPS 1967 Spring Joint Comput.
Conf., Vol. 30, Thompson Book Co., Washington, D. C., pp.
463-485.
Presents four approaches to achieving large computing capacity
through: aggregation of conventional system elements (G. P.
West); associative parallel processing (R. H. Fuller); an array
computer (D. L. Slotnick); and the single-processor approach
(G. M. Amdahl).

16. MENDELSON, M . J . , AND ENGLAND, A . W . T h e S D S S i g m a 7: a
real-time time-sharing system. Proc. AFIPS 1966 Fall Joint
Comput. Conf., Vol. 29, Spartan Books. New York. pp. 51-64.
CR-6700-0752.
Discusses seven critical design problems—including interrupt
processing, memory protection, space sharing, and recursive
processing—and their solutions.

17. RICHARDS, R. K. Electronic Digital Systems. Wiley, New York.
1966, 637 p p . C R - 6 6 7 6 - 1 0 , 6 4 9 .

Contains a good discussion of reliability and design automation.

18. WALZ, R. F. Digital computers—general purpose and DDA.
Instrum. and Automat. 28, 9 (Sept. 1955), 1516-1522.
Describes the G-15 computer and the use of a digital differen-
tial analyzer (DDA) in general purpose digital systems.

19. WARE, W. H. Digital Computer Technology and Design: Vol.
I, Mathematical Topics, Principles of Operation and frogram-
ming; Vol. II, Circuits and Machine Design. Wilev. New York.
1963, 237 pp. and 521 pp. CR-6562-7103 and 7104.
Useful because of its coverage of early design techniques. Con-
tains extensive bibliographies (at the end of each chapter),
which refer to papers presenting the design features of numerous
machines.

References on arithmetic and control

20. BLAAUW, G. A. Indexing and control-word techniques. IBM J .
Res. Develop. 3, 3 (July 1959), 288-301.
Describes some of the control techniques used in the STRETCH
computer.

21. BECKMAN, F . S . , BROOKS, F . P . , JR . , AND LAWLESS, W . .).. IK.
Developments in the logical organization of computer arith-
metic and control units. Proc. IRE 49, 1 (Jan. 1961). 53-66. CR-
6 2 3 2 - 1 6 8 0 .

Summarizes the developments in logical design and in arith-
metic and control units through 1960. Contains a good bibliog-
raphy.

22. BROOKS, F . P . , JR . , BLAAUW, G . A. , AND BUCHHOLZ, W . P r o c -
essing data in bits and pieces. IEEE Trans. EC-8, 3 (June 1959).
118-124. CR-6012-0035.
Describes a data-handling unit which permits variable length
binary or decimal arithmetic.

23. SUMNER, F. H. The central control unit of the ATLAS com-
puter. Proc. IFIP Congress, Munich, 1962, North-Holland Pub.
Co., Amsterdam, pp. 292-296. CR-6342-3961.

References on storage management

24. ARDEN, B . W . , GALLER, B . A. , O'BRIEN, T . C . , AND VVESTERVF.LT.
F. H. Program and addressing structure in a time-sharing en-
vironment.,/ . ACM 13, 1 (Jan. 1966), 1-16. CR-6781-11.210.
Describes the hardware and software devices used to facilitate
program switching and efficient use of storage in a time-sharing
computer system.

25. BELADY, L. A. A study of replacement algorithms for a virtual
memory computer. IBM Syst. J. 5, 2 (1966). 78-101.
Discusses several algorithms for automatic memory allocation
and compares them using the results of several simulation runs.

26. COCKE, J., AND KOLSKY, H. G. The virtual memory in the
STRETCH computer. Proc. AFIPS 1959 Eastern Joint Comput.
Conf., Vol. 16, Spartan Books, New York, pp. 82-93.

27. EVANS, D. C., AND LECLERK, J . Y. Address mapping and the
control of access in an interactive computer. Proc. AFIPS 1967
Spring Joint Comput. Conf., Vol. 30. Thompson Book Co..
Washington, D. C., pp. 23-30.
Describes the hardware implementation of a design based on
separate program and data entities.

28. GIBSON, D. H. Considerations in block-oriented systems de-
sign. Proc. AFIPS 1967 Spring Joint Comput. Conf.. Vol. 30.
Thompson Book Co., Washington, D. C., pp. 75-80.
Analyzes block size, high-speed storage requirements, and job
mix as they affect system design.

Reference on stack computers

29. ALLMARK, R . H . , AND LUCKING, J . R . D e s i g n o f a n a r i t h m e t i c
unit incorporating a nesting store. Proc. IFIP Congress, Munich,
1962, North-Holland Pub. Co., Amsterdam, pp. 694-698. CR-
6455-6460 .

Describes the arithmetic unit for the KDF-9 computer.
30. HALEY, A. C. D. The KDF-9 computer system. Proc. AFIPS

1962 Fall Joint Comput. Conf., Vol. 22, Spartan Books, New
York, pp. 108-120. CR-6452-5466.
Describes the stack register concept, the means used to com-
municate with it, and the use of zero-address instructions of
variable length.

31. BARTON, R. S. A new approach to the functional design of a
digital computer. Proc. AFIPS 1961 Western Joint Comput.
Conf., Vol. 19, Spartan Books, New York, pp. 393-396. CR-
6234-2158.
The earliest published description of a Polish string processor—
the B5000.

Parallel and variable structure organizations

32. ESTRIN, G. Organization of computer systems: the fixed plus
variable structure computer. Proc. AFIPS 1960 Western Joint
Comput. Conf., Vol. 17, Spartan Books, New York, pp. 33-40.
CR-6235-2643.

33 . ESTRIN, G . , AND VISWANATHAN, C . R . O r g a n i z a t i o n o f a fixed
plus variable structure computer for computation of eigenvalues
and eigenvectors of real symmetric matrices. J. ACM 9, 1 (Jan.
1962), 41-60.

34. ESTRIN, G., AND TURN, R. Automatic assignment of computa-
tions in a variable structure computer system. IEEE Trans. EC-
12, 6 (Dec. 1963), 755-773.

35 . GREGORY, J . , AND MCREYNOLDS, R . T h e S O L O M O N c o m -
puter. IEEE Trans. EC-12, 6 (Dec. 1963), 774-781.
Presents the system organization, functional description, and
circuit design from a total systems viewpoint.

36. HOLLAND, J. H. A universal computer capable of executing an
arbitrary number of subprograms simultaneously. Proc. AFIPS
1959 Eastern Joint Comput. Conf., Vol. 16, Spartan Books, New
York, pp. 108-113.

37. HOLLAND, J. H. Iterative circuit computers. Proc. AFIPS 1960
Western Joint Comput. Conf., Vol. 17, Spartan Books, New
York, pp. 259-265.

38. SLOTNICK, D . L . , BORCK, W . C . , AND MCREYNOLDS, R . C . T h e
SOLOMON computer. Proc. AFIPS 1962 Fall Joint Comput.
Conf., Vol. 22, Spartan Books, New York, pp. 97-107.

A general description of the philosophy and organization of a
highly parallel computer design which is a predecessor of
ILLIAC I V .

39. SCHWARTZ, J. Large parallel computers. J. ACM 13, 1 (Jan.
1966), 2 5 - 3 2 .

Considers various classes of machines incorporating parallelism,
outlines a general class of large-scale multiprocessors, and dis-
cusses the problems of hardware and software implementation.

Course A3. Analog and Hybrid Computing (2-2-3)

APPROACH

This course is concerned with analog, hybrid, and related digital
techniques for solving systems of ordinary and partial differential
equations, both linear and nonlinear. A portion of the course should
be devoted to digital languages for the simulation of continuous or
hybrid systems (MIDAS, PACTOLUS, DSL/90, etc.). The course
will have both lecture and laboratory sessions. The laboratory will
allow the students to solve some problems on analog and /or hybrid
computers and other problems through digital simulation of analog
or hybrid computers. (Digital simulators of analog computers are

now available for digital machines of almost any size [13-22]. Some
simulators are written in problem oriented languages such as FOR-
TRAN and may be adapted to almost any computer.)

CONTENT

1. Basic Analog Components. Addition, multiplication by a con-
stant, integration, function generation, multiplication, division,
square roots, noise generation, and other operations. Laboratory as-
signments are used to familiarize the student with the operation of
the components. (15%)

2. Solution of Differential Equations. The block-oriented ap-
proach to the solution of linear, nonlinear, and partial differential
equations. Magnitude and time scaling. Estimation of maximum
values. Equations with forcing functions and variable coefficients.
Simultaneous equations. Statistical problems. (20%)

3. Analog Computer Hardware. Description of various analog
computers. Amplifiers, potentiometers, and other linear and non-
linear components. The patch board and the control panel. Record-
ing and display equipment. Slow and repetitive operation. Several
laboratory assignments to give the student "hands-on" experience
with the available machines. (15%)

4. Hybrid Computer Systems. Different types of hybrid sys-
tems. Patchable logic and mode control. Comparators, switches, and
different types of analog memories. Control of initial conditions or
parameters. (15%)

5. Analog and Digital Conversion. Brief treatment of analog-to-
digital and digital-to-analog conversion. Methods of conversion,
sampling, interpolation, smoothing. Accuracy and speed considera-
tions. Multiplexing of analog-to-digital converters. (10%)

6. Digital Simulation of Analog and Hybrid Systems. Compari-
son of available languages. (One language should be presented in
detail. The students should compare some of the previous analog
solutions to those obtained by simulation.) (20%)

7. Exams. (5%)

ANNOTATEO BIBLIOGRAPHY

In the citations which follow, applicable chapters are sometimes
indicated in parentheses after the annotation.

General textbooks or references for the major part of the course
1. ASHLEY, J . R., Introduction to Analog Computation. Wiley,

New York, 1963, 294 pp.
A compact textbook which stresses the use rather than the de-
sign aspects of analog computing. The text could be used for
an undergraduate course, but hybrid computers would have to
be covered from separate sources. (All chapters)

2 . CARLSON, A . , HANNAUER, G . , CAREY, T . , AND HOLSBERG, P . In
Handbook of Analog Computation. Electronics Associates, Inc.,
Princeton, N. J. , 1965.
Although this manual is oriented to EAI equipment, it is a
good basic reference and has an extensive bibliography on se-
lected applications.

3. FIFER, S. Analog Computation, Volumes l-IV. McGraw-Hill,
New York, 1961,1,331 pp. CR-6126-1122.
This series of four volumes contains a complete coverage of an-
alog computers, including hardware and applications. It is a
good source of problems and references up to 1961.

4. HUSKEY, H. D., AND KORN, G. A. (Eds.) Computer Handbook.
M c G r a w - H i l l , N e w York , 1 9 6 2 , 1 , 2 2 5 p p . C R - 6 2 3 4 - 2 1 7 9 .

This comprehensive volume on both analog and digital com-
puters is somewhat hardware-oriented although applications
are also included.

5. JACKSON, A. S. Analog Computation. McGraw-Hill, New York,
1960, 652 pp. CR-6015-0190.
Although now somewhat out-of-date, this is an excellent text
for serious students in engineering, especially those with an
interest in feedback-control theory. The text has many refer-
ences and an appendix with problem sets. (Chaps. 2-5, 7, 8 ,11,
14)

39

6. JENNESS, R. R. Analog Computation and Simulation: Labora-
tory Approach. Allyn and Bacon, Boston, 1955, 298 pp.
Two parts: the first introduces the analog computer; the sec-
ond gives the solutions of 21 problems in great detail.

7. JOHNSON, C. L. Analog Computer Techniques, 2nd ed. Mc-
Graw-Hill, New York, 1963, 336 pp. CR-6451-5162.
The text assumes a knowledge of basic electrical and mathe-
matical principles. Some parts require an understanding of

• servo-mechanism theory and the Laplace transform. Each chap-
ter has references and problems. (Chaps. 1-3, 7, 10, 12)

8. KARPLUS, W. J. Analog Simulation, Solution of Field Problems.
McGraw-Hill, New York, 1958, 434 pp. CR-6123-0729.
A reference on analog techniques for partial differential equa-
tions. Includes material on the mathematical background for
analog study of field problems, a description of analog hard-
ware, and a mathematical discussion of applications of analog
techniques to different classes of differential equations. Prob-
lem-oriented. Extensive bibliographies.

9 . KARPLUS, W . J . , AND SOROKA, W . J . Analog Methods, 2 n d e d .
McGraw-Hill, New York, 1959, 496 pp.
Three parts: on indirect computing elements; on indirect
computers; and on direct computers. Describes both electro-
mechanical and electronic computers and covers applications

' comprehensively.

10. KORN, G. A., AND KORN, T. M. Electronic Analog and Hybrid
Computers. McGraw-Hill, New York, 1963, 584 pp. CR-6562-
7468.
This text covers the theory, design, and application of analog
and hybrid computers and has one of the most complete bibli-
ographies available. Its compactness makes it more suitable
for an undergraduate text.

11. LEVINE, L. Methods for Solving Engineering Problems Using
Analog Computers. McGraw-Hill, New York, 1964, 485 pp. CR-
6455-6477.
One of the best available texts, but it needs supplementing on
equipment. (Ref. 2 might be good for this purpose.) In addition
to the usual topics, there are chapters on optimization tech-
niques, estimation and testing of hypotheses, and applications
in statistics. (Chaps. 1-7).

12. SMITH, G. W., AND WOOD, R. C. Principles of Analog Compu-
tation. McGraw-Hill, New York, 1959, 234 pp. CR-6121-0411.
Introdupes analog computers and illustrates various program-
ming techniques in simulation and computation.

Descriptions of digital simulators of continuous systems

13. BRENNAN, R. D., AND SANO, H. PACTOLUS—a digital analog
simulator program for the IBM 1620. Proc. AFIPS 1964 Fall
Joint Comput. Conf., Vol. 26, Spartan Books, New York, pp!
299-312. CR-6563-7630.
Well-written article describes a digital program for the simu-
lation of an analog computer. The program is written in FOR-
TRAN and may be adapted to most machines. It allows man-ma-
chine interaction.

14. FARRIS, G. J. , AND BURKHART, L. E., The DIAN digital simu-
lation program. Simulation 6, 5 (May 1966), 298-304.
Describes a digital computer program which has some of the
features of a digital differential analyzer and which is particu-
larly suitable for the solution of boundary value problems.

15. HARNETT, R . T . , AND SANSOM, F . J . MIDAS Programming
Guide. Report No. SEG-TDR-64-1, Analog Comput. Divn.,
Syst. Engng. Group, Res. and Techn. Divn., US Air Force Sys-
tems Command, Wright-Patterson Air Force Base, Ohio, Jan.
1964. CR-6672-9510.
This is the programming manual for the MIDAS simulation
language. It is well-written and contains four examples com-
plete with problem descriptions, block diagrams, coding sheets,
and computed results.

16. JANOSKI, R . M . , SCHAEFER, R . L . , AND SKILES, J . J . C O B L O C —
a program for all-digital simulation of a hybrid computer.
IEEE Trans. EC-15, 2 (Feb. 1966), 74-91.

COBLOC is a compiler which allows all-digital simulation of a
hybrid computer having both analog and digital computation
capability.

17. MORRIS, S . M . , AND SCHIESSER, W . E . U n d e r g r a d u a t e u s e of
digital simulation. Simulation 7, 2 (Aug. 1966), 100-105. CR-
6781-11,027.
Describes the LEANS (Lehigh Analog Simulator) program and
shows the solution of a sample problem.

18. RIDEOUT, V . C . , AND TAVERNINI, L . M A D B L O C , a p r o g r a m fo r
digital simulation of a hybrid computer. Simulation 4. 1 (Jan.
1965), 20-24.
Gives a brief description of the hybrid simulation language
MADBLOC (one of the Wisconsin "BLOC" programs) which is
written in the MAD language. Parameter optimization of a sirn-
ple feedback system is given as an example.

19. STEIN, M . L . , ROSE, J . , AND PARKER, D . B . A c o m p i l e r w i t h a n
analog oriented input language. Simulation 4, 3 (Mar. 1965).
158-171.
Gives a description of a compiler program called "ASTRAL"
which accepts analog oriented statements and produces FOR-
TRAN statements. It is a reprint of the same paper from the
Proc. of 1959 Western Joint Comput. Conf.

20. SYN, W. M., AND LINEBARGER, R. M. DSL/90—a digital simula-
tion program for continuous system modeling. Proc. AFIPS
1966 Spring Joint Comput. Conf., Vol. 28, Spartan Books, New
York, pp. 165-187. CR-6676-10,708.
A program which accepts block-oriented statements and com-
piles them into FORTRAN IV statements. Mixing of DSL /90 and
FORTRAN statements is allowed. The program is available for
the IBM 7090 /94 and 7040 /44.

Comparisons of digital simulators for continuous systems
2 1 . LINEBARGER, R . N . , AND BRENNAN, R . D . A s u r v e y of d i g i t a l

simulation: digital analog simulator programs. Simulation 3. 6
(Dec. 1964), 22-36. CR-6671-9009.
Gives a brief account of the following digital-analog simula-
t i o n l a n g u a g e s : SELFRIDE, DEPI, ASTRAL, DEPI4, DYSAC, PART-
NER, DAS, JANIS, MIDAS, a n d PACTOLUS

2 2 . LINEBARGER, R . N „ AND BRENNAN, R . D . D i g i t a l s i m u l a t i o n fo r
control system design. Instr. Contr. Syst. 38, 10 (Oct. 1965), 147-
152. CR-6675-10,425.
This paper has a very complete bibliography of digital simu-
lators and a table classifying them.

Course A4. System Simulation (3-0-3)

APPROACH

This course can be taught from several different points of view:
simulation can be treated as a tool of applied mathematics; it can
be treated as a tool for optimization in operations research; or it
can be treated as an example of the application of computer science
techniques. Which orientation is used and the extent to which com-
puter programs are an integral part of the course should depend
upon the interests of the instructor and the students. Most in-
structors will find it useful to require several small programs and a
term project. The availability of a simulation language for student
use is desirable.

CONTENT

The numbers in square brackets refer to the items listed in the
bibliography which follows.

1. What is simulation? (5 ' f) {1, 2, 3)
a. Statistical sampling experiment. [20]
b. Comparison of simulation and other techniques. [7]
c. Comparison of discrete, continuous, and hybrid simulation.

[12, 2 1]
2. Discrete Change Models. (20r,)

a. Queueing models. [13]
b. Simulation models. [1, 2, 3]

40

3. Simulation languages. (20',) [16, 21, 22]
4. Simulation Methodology. (20',) [1, 2, 3}

a. Generation of random numbers and random variates. [14]
b. Design of experiments and optimization. [6, 8, 9, 17]
c. Analysis of data generated by simulation experiments. [10,

11, 15]
d. Validation of models and results. [8, 19]

5. Selected Applications of Simulation. (10'V) [4, 5]
a. Business games.
b. Operations research. [18]
c. Artificial intelligence.

6. Research Problems in Simulation Methodology. (5'V)
7. Term Project. (20',)

BIBLIOGRAPHY

Textbooks covering a number of the topics of this course
1. CHORAFAS, D. N. Systems and Simulation. Academic Press,

New York, 1965," 503 pp.
2. NAYLOR, T . H „ BAI.INTKY, J . L . , BURDICK, D . S „ AND CHU, K .

Computer Simulation Techniques. Wiley, New York, 1966,
352 pp. CR-6781-11,103.

3. TOCHER, K. D. The Art of Simulation. D. Van Nostrand,
Princeton, N. J. , 1963, 184 pp. CR-6454-6091.

Bibliographies devoted to simulation
4. IBM Corporation. Bibliography on Simulation. Report 320-

0924-0, 1966.
5. SHUBIK, M. Bibliography on simulation, gaming, artificial in-

telligence, and allied topics. J. Amer. Statist. Assoc. 55, 292
(Dec. 1960), 736-751. CR-6122-0581.

Other works on simulation (which also contain extensive bibliog-
raphies)
6. BURDICK, D. S., AND NAYLOR, T. Design of computer simula-

tion experiments for industrial systems. Comm. ACM 9, 5 (May
1966) , 3 2 9 - 3 3 8 . C R - 6 7 8 3 - 1 1 , 7 1 4 .

7. CONNORS, M . M . , AND TEICHROEW, D . Optimal Control of Dy-
namic Operations Research Models. International Textbook
Co., Scranton, Pa., 1967, 118 pp.

8. CONWAY, R. W. Some tactical problems in digital simulation.
Management 10, 1 (Oct. 1963), 47-61.

9. EHRENFELD, S . , AND BEN-TUVIA, S . T h e e f f i c i e n c y of s t a t i s t i c a l
simulation procedures. Technometrics 4, 2 (May 1962), 257-
276 . C R - 6 3 4 1 - 3 7 4 2 .

10. FISHMAN, G. S. Problems in the statistical analysis of simula-
tion experiments: The comparison of means and the length of
s a m p l e r e c o r d s . Comm. ACM 10, 2 (F e b . 1967) , 9 4 - 9 9 . C R - 6 7 8 3 -
12 ,103 .

11. FISHMAN, G. S., AND KIVIAT, P. J . The analysis of simulation-
generated time series. Mgmt. Sci. 13, 7 (Mar. 1967), 525-557.

12. FORRESTER, J . W. Industrial Dynamics. M.I.T. Press, Cam-
bridge, Mass., and Wiley, New York, 1961, 464 pp.

13. GALLIHBR, H. Simulation of random processes. In Notes on
Operations Research, Operations Research Center, M.I.T.,
Cambridge, Mass., 1959, pp. 231-250.

14. HULL, T. E., AND DOBELL, A. R. Random number generators.
SIAM Rev. 4, 3 (July 1962), 230-254. CR-6341-3749.

15. JACOBY, J . E . , AND HARRISON, S . M u l t i v a r i a b i e e x p e r i m e n t a -
tion and simulation models. Naval Res. Log. Quart. 9, (1962),
1 2 1 - 1 3 6 .

16. KRASNOW, H . S . , AND MERIKALLIO, R . T h e p a s t , p r e s e n t a n d
future of general simulation languages. Mgmt. Sci. 11, 2 (Nov.
1964) , 2 3 6 - 2 6 7 . C R - 6 5 6 6 - 8 5 2 1 .

17. MCARTHUR, D. S. Strategy in research—alternative methods
for design of experiments. IRE Trans. Eng. Man. EM-8, 1 (Jan.
1961), 3 4 - 4 0 .

18. MORGENTHALER, G. W. The theory and application of simula-
tion in operations research. In Russel L. Ackoff (Ed.), Progress
in Operations Research, Wiley, New York, 1961, pp. 363-419.

19. SCHENK, H . , J R . C o m p u t i n g " A D A B S U R D U M . " The Na-
tion 196, 12 (June 15, 1963), 505-507.

20. TEICHROEW, D. A history of distribution sampling prior to the
era of the computer and its relevance to simulation. J. Amer.
Statist. Assoc. 60, 309 (Mar. 1965), 27-49. CR-6673-9823.

21. TEICHROEW, D. Computer simulation—discussion of the tech-
nique and comparison of languages. Comm. ACM 9, 10 (Oct.
1966), 723-741. CR-6782-11,466.

22. TOCHER, K. D. Review of simulation languages. Oper. Res.
Quart. 15, 2 (June 1965), 189-218.

Course A5. Information Organization and
Retrieval (3-0-3)

APPROACH

This course is designed to introduce the student to information
organization and retrieval of natural language data. Emphasis
should be given to the development of computer techniques rather
than philosophical discussions of the nature of information. The
applicability of the techniques developed for both data and docu-
ment systems should be stressed. The student should become famil-
iar not only with the techniques of statistical, syntactic and logical
analysis of natural language for retrieval, but also with the ex-
tent of success or failure of these techniques. The manner in which
the techniques may be combined into a system for use in an opera-
tional environment should be explored. In the event that a com-
puter is available together with natural language text in a com-
puter-readable form, programming exercises applying some of the
techniques should be assigned. If this is not possible, the student
should present a critique and in-depth analysis of an article selected
by the instructor.

CONTENT

1. Information Structures. Graph theory, document and term-
document graphs, semantic road maps, trees and lists, thesaurus
and hierarchy construction, and multilists.

2. Dictionary Systems. Thesaurus look-up, hierarchy expansion,
and phrase dictionaries.

3. Statistical Systems. Frequency counts, term and document
associations, clustering procedures, and automatic classification.

4. Syntactic Systems. Language structure, automatic syntactic
analysis, graph matching, and automatic tree matching.

5. Vector Matching and Search Strategies. Keyword matching,
direct and inverted files, combined file systems, correlation func-
tions, vector merging and matching, matching of cluster vectors,
and user feedback systems.

6. Input Specifications and System Organization. Input op-
tions. Supervisory systems, their general organization, and operat-
ing procedures.

7. Output Systems. Citation indexing and bibliographic cou-
pling. Secondary outputs including concordances, abstracts, and in-
dexes. Selective dissemination. Catalog systems.

8. Evaluation. Evaluation environment, recall and precision,
presentation of results, and output comparison.

9. Automatic Question Answering. Structure and extension of
data bases, deductive systems, and construction of answer state-
ments.

ANNOTATED BIBLIOGRAPHY

There is no one book currently available that could be used as
a text for this course, so most of the material must be obtained
from the literature. References 2 and 6 provide excellent state-of-
the-art surveys and guides^ to the literature.

1. BECKER, J . , AND HAYES, R . M . Introduction to Information
Storage and Retrieval: Tools, Elements, Theories. Wiley, New
York, 1963, 448 pp.
A standard textbook, perhaps the best of those presently avail-
able.

41

2. CUADRA, C. (Ed.) Annual Review of Information Science and
Technology. Interscience, New York, Vol. 1, 1966 and Vol. 2,
1967.
A survey and review publication.

3. HAYS, D. G. (Ed.) Readings in Automatic Language Processing.
American Elsevier, New York, 1966.
Includes examples of text processing applications.

4. SALTON, G. Progress in automatic information retrieval. IEEE
Spectrum 2 , 8 (A u g . 1 9 6 5) , 9 0 - 1 0 3 . C R - 6 6 7 5 - 1 0 , 4 0 9 .

A survey of current capabilities in text processing.

5. SALTON, G. Automatic Information Organization and Retrieval.
McGraw-Hill, New York, to be published in 1968.
A text concentrating on automatic computer-based information

' retrieval systems.

6. STEVENS, M. E. Automatic Indexing: A State-of-the-Art Re-
' port. Monograph 91, National Bureau of Standards, US Dept.
of Commerce, Washington, D.C., March 30,1965.
A survey article that covers the historical development of auto-
matic indexing systems through 1964.

7 . STEVENS , M . E . , GIULIANO, V . E . , AND HEILPRIN , L . B . (E d s .)
Statistical Association Methods for Mechanized Documentation
—Symposium Proceedings. Miscellaneous Publication 269,
US Dept. of Commerce, Washington, D. C., 1964.

i A collection of papers concerned with statistical association
techniques.

Course A6. Computer Graphics (2-2-3)

APPROACH

Since this field is basically only a few years old, it is not sur-
prising that no underlying theories are uniformly accepted by the
researchers and implementers. Rather, the pertinent information
exists as a number of loosely related project descriptions in con-
ference proceedings and professional journals. This situation is
similar to that in the information retrieval field, where those con-
ducting courses at a number of major universities report on current
accomplishments and research in an effort to coordinate and struc-
ture the mass of available information and to teach those tech-
niques which have been found useful. Thus, for the present, this
course probably should be taught as a seminar where the literature
is read and perhaps reported by selected students. After some texts
become available and after more experience has been gained, a
more formal course atmosphere could be established.

Although the literature is plentiful, this course clearly assumes
substantial value to the student only when it includes an intensive
laboratory (hopefully using a display console) where the various
algorithms can be tested, compared, and extended. The laboratory
periods are meant to be used for explaining the details of algorithms
or hardware and software that are not appropriate to a more formal
lecture. A variety of programming projects in pattern recognition or
display programming, for example, are within the scope of a one-
semester course. The time spent on these projects would be in
addition to the laboratory time.

CONTENT

The thread running through the topics listed below is the unit of
information—the picture. The course should deal with common ways
in which the picture is handled in a variety of hitherto largely un-
related disciplines. First hardware and then software topics should
be considered, since the software today is still a function of present
hardware.

The order and depth of coverage of the material suggested below
is quite flexible—another sensible order of the material might be
topics 1, 2, 6, 7, 8, and 3, 4, 5 optional, which would then constitute
a course in displays. (In any case some material in Sections 6 and 7

would have to be covered briefly to prepare students for their proj-
ects.) Also an entire semester could be devoted to pattern recogni-
tion.

1. Motivation for graphical data processing and its history, par-
ticularly that of displays. (5%)

2. Brief introduction to psycho-physical photometry and display-
parameters such as resolution and brightness. Block diagram of dis-
play systems and delineation of the functions of their components:
the computer subsystem; buffer or shared memory; command de-
coder; display generator; and producers) of points, lines, vectors,
conic sections, and characters. Extended capabilities such as sub-
routining, windowing, hardware matrix operations, and buffer ma-
nipulation. Comparison of various types of CRTs with other display
producing techniques such as photochromies and electrolumines-
cence. Brief discussion of passive graphics (output only) devices
such as x-y plotters, and microfilm recorders. Interrupts, manual
inputs and human interaction with active displays via light pens,
voltage pens, function keys, tablets, wands, joy sticks, etc. Dem-
onstration of equipment. (10%)

3. Contrast of information retrieval with document retrieval and
definition of indexing and locating. Image recording parameters such
as resolution, and their comparison with display parameters. Dem-
onstration or discussion of microfilm and microfilm handling de-
vices (manual and automated). Brief discussion of photochromies,
thermoplastics and other nonconventional media. Brief discussion
of electro-optical techniques for recording, modulating, and deflect-
ing. (5%)

4. Scanning and digitizing of paper or film, and subsequent trans-
mission of digitized information, including band-width /cost trade-
offs. Brief review of digital storage techniques and parameters, and
discussion of tradeoffs in bulk digital versus image storage for pic-
torial and digital data. Introduction of the notion of a combination
of a digital and an image system. (5%)

5. Digitizing as an input process for pattern description and recog-
nition and preprocessing of this input (cosmetology and normaliza-
tion). Contrast of symbol manipulative, linguistic, and mathemati-
cal techniques, such as gestalt, caricatures, features, moments,
random nets, decision functions, syntax-directed techniques and
real-time tracking techniques using scopes and tablets. Electro-
optical techniques such as optical Fourier transforms may also be
covered briefly. (20%)

6. Picture models and data structures. Geometry, topology, syn-
tax, and semantics of pictures, stressing picture/subpicture hier-
archy. The differences between block diagram, wire frame, and sur-
face representations. Use of tables, trees, lists, plexes, rings, as-
sociative memory, and hashing schemes for data structures, and
the data structure (or list processing) languages which create and
manipulate them. Mathematics of constraint satisfaction, window-
ing, three-dimensional transformations and projections, and hidden-
line problems. (25%)

7. Display software (probably specific to a given installation).
Creation and maintenance of the display file, translations between
the data structure and the display file, interrupt handling, pen
pointing and tracking, and correlation between light pen detects and
the data structure. Use of macros or compiler level software for
standard functions. Software for multiconsole time-shared graphics
with real-time interaction. (20%)

8. Selected applications: (10%)
a. Menu programming and debugging
b. Flowchart and block diagram processing
c. Computer assisted instruction
d. Computer aided design
e. Chemical modeling
f. Business
g. Animated movies

ANNOTATED BIBLIOGRAPHY

This bibliography is not complete in its coverage and consists

42

primarily of survey articles, as no textbooks exist. A number of the
more detailed technical articles in the literature were omitted be-
cause they were concerned with specific situations or machines.
Most of the survey articles listed have good bibliographies. A se-
lection of topics from the outline above can thus be followed by a
selection of appropriate research papers from the literature.

1. FETTER, W. A. Computer Graphics in Communications. Mc-
Graw-Hill, New York, 1965, 110 pp.
This volume is strong on engineering applications and illustra-
tions.

2. GRAY, J . C. Compound data structures for computer-aided de-
sign: a survey. Proc. ACM 22nd Nat. Conf., 1967, Thompson
Book Co., Washington, D. C., pp. 355-366.
A brief survey and comparison of various types of data struc-
tures currently in use.

3. GRUENBERGER, F. (Ed.) Computer Graphics: Utility /Produc-
tion /Art. Thompson Book Co., Washington, D. C., 1967, 225 pp.
Collection of survey papers, useful for orientation.

4. NARASIMHAN, R. Syntax-directed interpretation of classes of
pictures. Comm. ACM 9, 3 (Mar. 1966), 166-173.
An introduction to syntactic descriptive models for pictures,
implemented using simulated parallel processing. This linguis-
tic approach is also taken by Kirsch, Grenander, Miller, and
others.

5. PARKER, D. B. Solving design problems in graphical dialogue.
In W. J. Karplus (Ed.), On-Line Computing, McGraw-Hill,
1967, pp. 176-219.
A software-oriented survey of display console features.

6. Ross, D. G., AND RODRIGUEZ, J. E. Theoretical foundations for
the computer-aided design system. Proc. AFIPS 1963 Spring
Joint Comput. Conf., Vol. 23, Spartan Books, New York, pp.
305-322.
Introduction of the "plex" as a compound list structure for
both graphical and nongraphical entities. Outline of the AED
philosophy and algorithmic theory of language.

7. SUTHERLAND, I. E. Sketchpad: a man-machine graphical com-
munication system. Lincoln Lab. Tech. Rep. No. 296, M.I.T.,
Lexington, Mass., 1963, 91 pp.
Presents the pace-setting Sketchpad system: its capabilities,
data structure, and some implementation details.

8. SUTHERLAND, W. R. The on-line graphical specification of
computer procedures. Ph.D. Dissertation, M.I.T., Cambridge,
Mass., Jan. 1966, and Lincoln Lab. Tech. Rep. No. 405, May
1966.
Describes a graphical language, executed interpretively, which
avoids written labels and symbols by using data connections
between procedure elements to determine both program flow
and data flow.

9. VAN DAM, A. Bibliography on computer graphics. ACM SIG-
GRAPHICS Newsletter 1, 1 (Apr. 1967), Association for Com-
puting Machinery, New York.
This extensive bibliography is being kept up-to-date in suc-
cessive issues of the Newsletter.

10. VAN DAM, A. Computer-driven displays and their uses in man/
machine interaction. In F. L. Alt (Ed.), Advances in Computers,
Vol. 7, Academic Press, New York, 1966, pp. 239-290.
A hardware-oriented description of CRT console functions.

Course A7. Theory of Computability (3-0-3)

APPROACH

This is a theoretical course which should be taught in a formal
and precise manner, i.e. definitions, theorems, and proofs. The
theory of recursive functions and computability should, however,
be carefully motivated and illustrated with appropriate examples.

CONTENT

More material is listed than can easily be covered in a three-hour
one-semester course. The first three topics should definitely be
covered, but the instructor can select material from the remaining
topics.

1. Introduction to Turing machines (TM's) and the invariance of
general computability under alterations of the model. Wang ma-
chines, Shepherdson-Sturgis machines, machines with only 2 sym-
bols, machines with only 2 states, machines with nonerasing tapes,
machines with multiple heads and multidimensional tapes. (4 lec-
tures)

2. Universal Turing machines. (2 lectures)
3. Godel numbering and unsolvability results, the halting prob-

lem, and Post's correspondence problem. (3 lectures)
4. Relative uncomputability, many-one reducibility and Turing

reducibility, and the Friedberg-Muchnik theorem. (6 lectures)
5. TM's with restricted memory access, machines with one

counter, pushdown automata and their relation to context-free lan-
guages. Universality of machines with two counters. (3 lectures)

6. TM's with limited memory, linear bounded automata and
their relation to context-sensitive languages, and the Stearns-Hart-
manis-Lewis hierarchy. (5 lectures)

7. TM's with limited computing time and the Hartmanis-Stearns
time hierarchy. (5 lectures)

8. Models for real-time computation, TM's with many tapes ver-
sus 1 or 2 tapes, and TM's with many heads per tape versus 1 head
per tape. (4 lectures)

9. Random-access stored-program machines, iterative arrays, gen-
eral bounded activity machines, n-counter real-time machines, and
other computing devices. (8 lectures)

10. Complexity classification by functional definition, primitive
recursive functions, the Grzegorczyk hierarchy and its relation to
ALGOL programming, real-time countability, and an algorithm for
fast multiplication. (6 lectures)

ANNOTATED BIBLIOGRAPHY

1. AANDERAA, S . , AND FISCHER, P . C . T h e s o l v a b i l i t y of t h e ha l t -
ing problem for 2-state Post machines. J. ACM 14, 4 (Oct. 1967),
677-682.
A problem unsolvable for quintuple Turing machines is shown
to be solvable for the popular quadruple version of Post.

2. CAIANIELLO, E. R. (Ed.) Automata Theory. Academic Press,
N e w York, 1966 , 3 4 2 p p . C R - 6 6 7 6 - 1 0 , 9 3 5 .

A collection of research and tutorial papers on automata, formal
languages, graph theory, logic, algorithms, recursive function
theory, and neural nets. Because of varying interest and diffi-
culty, the papers might be useful for supplementary reading
by ambitious students.

3. DAVIS, M. Computability and Unsolvability. McGraw-Hill,
New York. 1958, 210 pp.
Contains an introduction to the theory of recursive functions,
most of Kleene's and Post's contributions to the field and some
more recent work.

4. DAVIS, M. (Ed.) The Undecidable—Basic Papers on Unde-
cidable Propositions, Unsolvable Problems and Computable
Functions. Raven Press, Hewlett, New York, 1965, 440 pp.
CR-6673-9790.
An anthology of the fundamental papers of Church, Godel,
Kleene, Post, Rosser, and Turing on undecidability and unsolva
bility.

5. FISCHER, P. C. Multitape and infinite-state automata—a sur-
vey. Comm. ACM8. 12 (Dec. 1965), 799-805. CR-6675-10,561.
A survey of machines which are more powerful than finite
automata and less powerful than Turing machines. Extensive
bibliography.

6. FISCHER, P. C. On formalisms for Turing machines. J. ACM 12.
4 (Oct. 1965). 570-580. CR-6675-10.558.

43

Variants of one-tape Turing machines are compared and trans-
formations from one formalism to another are analyzed.

7. Friroberg . R. M. Two recursively enumerable sets of incom-
parable degrees of unsolvability (Solution of Post's Problem.
1944). Proc. Nat. Acad. Sci. 43. (1957). 236-238.
The "priority" method for generating recursively enumerable
sets is introduced and used to solve this famous problem.

8. GINSBURG, S. Mathematical Theory of Context-Free Lan-
guages. McGraw-Hill. New York, 1966. 243 pp.
The first textbook on the theory of context-free languages. It
gives a detailed mathematical treatment of pushdown automata,
ambiguity, and solvability.

9. HARTMANIS, J . , AND STEARNS, R . E . O n t h e c o m p u t a t i o n a l c o m -
plexity of algorithms. Trans. AMS 117. 5 (May 1965), 285-306.
Turing computable sequences are classified in terms of the rate
with which a multitape Turing machine can output the terms
of the sequence, i.e. the "Hartmanis-Stearns time hierarchy."

10. HERMES, H. Enumerability, Decidability, Computability.
Academic Press, New York, 1965, 245 pp. CR-6673-9781.
A systematic introduction to the theory of recursive functions,
using Turing machines as a base.

11. KLEENE, S. C. Mathematical Logic. Wiley, New York, 1967,
398 pp.
A thorough yet elementary treatment of first-order mathemati-
cal logic for undergraduates. Contains much of the material of
the author's graduate text, Introduction to Metamathematics,
(D. Van Nostrand, Princeton, N. J. , 1952, 550 pp.). The material
has been updated and reorganized to be more suitable for the
beginning student.

12. MCNAUGHTON, R. The theory of automata, a survey. In F. L.
Alt (Ed.), Advances in Computers, Vol. 2. Academic Press, New
York, 1961, pp. 379-421. CR-6342-3920.
Most of the areas of automata theory are included with the ex-
ception of switching theory and other engineering topics. A
list of 119 references.

13. MINSKY, M. L. Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, N. J. , 1967, 317 pp.
The concept of an "effective procedure" is developed. Also
treats algorithms, Post productions, regular expressions, com-
putability, infinite and finite-state models of digital computers,
and computer languages.

14. MYHIIA, J . Linear bounded automata. WADD Tech. Note 60-
165. Wright-Patterson Air Force Base, Ohio, 1960.
The paper which first defined a new class of automata whose
power lies between those of finite automata and Turing ma-
chines.

15. POST, E. L. Recursive unsolvability of a problem of Thue. J.
Symbol. Logic 11, (1947), 1-11.
Contains results on one variant of the "word problem" for semi-
groups using Turing machine methods.

16. ROGERS, H., JR. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, New York, 1967, 482 pp.
A current and comprehensive account of recursive function
theory. Proceeds in an intuitive semiformal manner, beginning
with the recursively enumerable sets and ending with the analy-
tical hierarchy.

17. SHANNON, C. E., AND MCCARTHY, J . (Eds.) Automata Studies.
Princeton University Press, Princeton, N. J., 1956, 285 pp. CR-
6565-8330.
A collection of many of the early papers on finite automata,
Turing machines, and synthesis of automata which stimulated
the development of automata theory. Philosophical papers, in
addition to mathematical papers, are included since the aim of
the collection is to help explain the workings of the human
mind.

18. SHEPHERDSON, J . C . , AND STURGIS, H . E . C o m p u t a b i l i t y of
r e c u r s i v e f u n c t i o n s . J . ACM 10, 2 (A p r . 1963) , 2 1 7 - 2 5 5 . C R -
6 4 5 1 - 5 1 0 5 .

A class of machines which is adequate to compute all partial

recursive functions is obtained by relaxing the definition of a
Turing machine. Such machines can be easily designed to carry
out some specific intuitively effective procedure.

19. STEARNS, R . E . , HARTMANIS, J . , AND LEWIS, P . M . H i e r a r c h i e s
of memory limited computations. 1965 IEEE Conference Record
on Switching Circuit Theory and Logic Design, Special Publi-
cation 16 C 13, Institute of Electrical and Electronic Engineers,
New York, Oct. 1965, pp. 179-190.
Turing computable functions are classified according to the
relationship of the amount of storage required for a computation
to the length of the input to the computation, i.e. the "Steams-
Hartmanis-Lewis hierarchy."

20. TRAKHTENBROT, B. A. Algorithms and Automatic Computing
Machines, transl. by J. Kristian, J . D. McCawley, and S. A.
Schmitt. D. C. Heath, Boston, 1963, 101 pp.
A translation and adaptation from the second Russian edition
(1960) of the author's elementary booklet on solvability and
Turing machines.

21. TURING, A. M. On computable numbers,-with an application
to the Entscheidungsproblem. Proc. London Math. Soc., Ser. 2,
42, (1936-1937), pp. 230-265.
The famous memoir on decision problems which initiated the
theory of automata.

22. VON NEUMANN, J . Theory of Self-Reproducing Automata.
(Edited and completed by A. W. Burks.) University of Illinois
Press, Urbana, Illinois, 1966, 388 pp. CR-6700-0670.
Consists of all previously unpublished sections of Von Neu-
mann's general theory of automata. Part I includes the kine-
matic model of self-reproduction. Part II, which is much longer,
treats the logical design of a self-reproducing cellular autom-
aton.

23. WANG, H. A variant to Turing's theory of computing machines.
J. ACM 4, 1 (Jan. 1957), 61-92.
An abstract machine is defined which is capable of carrying out
any computation and which uses only four basic types of instruc-
tions in its programs.

Course A8. Large-scale Information Processing
Systems (3-0-3)

APPROACH

This course is intended to give the student some appreciation of
how computers fit into information systems and how information
systems fit into a "large organization framework." As this field is
evolving rapidly, the most interesting and relevant material ap-
pears in articles; moreover, the field is so large that not all the rele-
vant material can be covered. The course may be conducted as a
lecture course, but assignment of individual readings in a seminar-
type situation might be more suitable.

Many information processing systems are so large that they re-
quire a number of computer programs to be run on a continuing
basis using large quantities of stored data. The process of establish-
ing such a large system involves a number of steps: (1) the determi-
nation of the processing requirements; (2) the statement of those
requirements in a complete and unambiguous form suitable for the
next steps; (3) the design of the system, i.e. the specification of
computer programs, hardware devices, and' procedures which to-
gether can "best" accomplish the required processing; (4) the con-
struction of the programs and procedures, and the acquisition of the
hardware devices; and (5) the testing and operation of the assembled
components in an integrated system. This course is designed to help
prepare the student to participate in the development of such sys-
tems.

CONTENT

The numbers in square brackets after each topic listed below refer
to the items listed in the bibliography which follows.

1. Examples of large-scale information systems. (10Cr) [12, 28, 30)

44

a. Computer centers. [20, 27, 34]
b. Information retrieval. [2]
c. Real-time and time-sharing. [15, 16, 33]
d. Business da ta processing. [14, 18, 19, 31, 32]

2. Data structures and file management systems. (20' ,) [1, 4, 5, 9,
10, 13, 17, 29, 38]

3. Systems design methodology. (40' ,) [22, 32]
a. "Nonprocedural" languages. [8, 26, 38, 40]
b. Systems design. [3, 11, 21, 23, 24, 25, 36, 37]
c. Evaluation. [7]

4. Implementat ion problems. (10' ,) [6, 35]
5. Term project. (20',)

BIBLIOGRAPHY

1. BAUM. C., AND GORSUCH, L. (Eds.) Proceedings of the second
symposium on computer-centered da ta base systems. TM-2624/
100/00. System Development Corporation, Santa Monica, Calif.,
1 Dec. 1965.

2. BERUL. L. Information storage and retrieval, a state-of-the-art
report. Report AD-630-089, Auerbach Corporation, Philadel-
phia, Pa., 14 Sept. 1964.

3. BRICGS, R. A mathemat ica l model for the design of informa-
tion management systems. M.S. Thesis, U. of Pi t tsburgh, Pitts-
burgh. Pa., 1966.

4. BROOKS, F. P., .JR., AND IVERSON, K. E. Automatic Data Proc-
essing. Wiley, New York, 1963, 494 pp.

5. BRYANT, J . H„ AND SEMPLE, P., JR. GIS and file management .
Proc. ACM 21st Nat . Conf., 1966, Thompson Book Co., Wash-
ington, D. C., pp. 97-107.

6. BUCHHOLZ, W. (Ed.) Planning a Computer System. McGraw-
Hill, New York, 1962, 322 pp. CR-6346-4786.

7. CALINGAERT, P. System evaluation: survey and appraisal .
Comm. ACM 10, 1 (Jan. 1967), 12-18. CR-6782-11,661.

8. Codasyl Development Committee, Language Structure Group.
An information algebra, phase I report. Comm. ACM 5, 4 (Apr.
1962), 190-201. CR-6235-2621.

9. CONNORS, T. L. ADAM—generalized da ta management system.
Proc. AFIPS 1966 Spring Joint Comput . Conf., Vol. 28, Spar tan
Books, New York, pp. 193-203. CR-6676-10,822.

10. Control Data Corporation. 3600/3800 INFOL Reference Manual.
Publ. No. 60170300, CDC, Palo Alto, Calif., July, 1966.

11. DAY, R. H. On optimal extracting from a multiple file da ta
storage system: an application of integer programming. J. ORSA
13, 3 (M a y - J u n e , 1965) , 4 8 2 - 4 9 4 .

12. DESMONDE. W. H. Computers and Their Uses. Prentice-Hall,
Englewood Cliffs, N. J. , 1964, 296 pp. CR-6561-6829.

13. DOBBS, G. H. State-of-the-art survey of da ta base systems.
Proc. Second Symposium on Computer-Centered Data Base
Systems, TM-2624/100/00, System Development Corporation,
Santa Monica, Calif., 1 Dec. 1965, pp. 2 -3 to 2-10.

14. ELLIOTT, C. O., AND WASLEY, R. S. Business Information Proc-
essing Systems. Richard D. Irwin, Homewood, 111., 1965, 554 pp.

15. FIFE, D. W. An optimization model for time-sharing. Proc.
AFIPS 1966 Spring Joint Comput . Conf., Vol. 28, Spar tan Books,
New York, pp. 97-104. CR-6676-10,869.

16. FRANKS, E. W. A data management system for time-shared file
processing using a cross-index file and self-defining entries.
Proc. AFIPS 1966 Spring Joint Comput . Conf., Vol. 28, Spar tan
Books, New York, pp. 79-86. CR-6676-10,754.

17. General Electric Company. Integrated Data Store—A New Con-
cept in Data Management. Application Manual AS-CPB-483A,
Revision of 7-67, GE Computer Division, Phoenix, Ariz., 1967.

18. GOTLIEB, C. C. General purpose programming for business
applications. In F. L. Alt (Ed.), Advances in Computers, Vol. 1,
Academic Press, New York, 1960, pp. 1-42. CR-6016-0206.

19. GREGORY, R. H., AND VAN HORN, R. L. Automatic Data Proc-
essing Systems. 2nd ed. Wadsworth Pub. Co., San Francisco,
1963, 816 pp CR-6016-0301, of 1st ed.

20. HUTCHINSON, G. K. A computer center simulation project.
Comm. ACM8. 9 (Sept. 1965), 559-568. CR-6673-9617.

21. KATZ, J . H. Simulation of a multiprocessor computer system.

Proc. AFIPS 1966 Spring Joint Comput . Conf., Vol. 28, Spar tan
Books, New York, pp. 127-139. CR-6676-10,870.

22 . LADEN, H . N . , AIJD GILDERSLEEVE, T . R . System Design for
Computer Application. Wiley, New York, 1963, 330 pp.

23. LANGEFORS, B. Some approaches to the theory of information
systems: BIT3, 4 (1963), 229-254. CR-6455-6399.

24. LANGEFORS, B. Information system design computat ions using
generalized matrix algebra. BIT5, 2 (1965), 96-121.

25. LOMBARD), L. Theory of files. Proc. 1960 Eastern Joint Comput .
Conf., Vol. 18, Spar tan Books, New York, pp. 137-141. CR-
6236-3165.

26. LOMBARDI, L. A general business-oriented language based on
decision expressions. Comm. ACM 7, 2 (Feb. 1964), 104-111.
CR-6671-9013.

27. LYNCH, W. C. Description of a high capacity, fast turnaround
university computer center. Comm. ACM 9, 2 (Feb. 1966), 117-
123. CR-6673-9546.

28. MALEY, G. A., AND SKIKO, E. J . Modern Digital Computers.
Prentice-Hall, Englewood Cliffs, N. J . , 1964, 216 pp. CR-6561-
7081.

29. MCCABE, J . On serial files with relocatable records. J. ORSA
13, 4 (July-Aug. 1965), 609-618.

3 0 . MCCARTHY, E . J . , MCCARTHY, J . , AND HUMES, D . Integrated
Data Processing Systems. Wiley, New York, 1966, 565 pp.

3 1 . MCCRACKEN, D . D . , WEISS, H . , AND LEE, T . - H . Programming
Business Computers. Wiley, New York, 1959, 510 pp. CR-6013-
0 0 7 6 .

32. MCGEE, W. C. The formulation of da ta processing problems
for computers. In F. L. Alt (Ed.) Advances in Computers, Vol. 4,
Academic Press, New York, 1964, pp. 1-52.

33. NIELSON, N. R. The simulation of t ime sharing systems. Comm.
ACM 10, 7 (J u l y 1967) , 3 9 7 - 4 1 2 .

34. ROSIN, R. F. Determining a computer center environment.
Comm. ACM8, 7 (July 1965), 463-488.

35 . SCHULTZ, G . P . , AND WHISTER, T . L . (E d s .) Management Or-
ganization and the Computer. Free Press, Macmil lan, New
York, 1960, 310 pp.

36. SMITH, J . L. An analysis of t ime-sharing computer systems
using Markov models. Proc. AFIPS 1966 Spring Joint Comput .
Conf., Vol. 28, Spar tan Books, New York, pp. 87-95. CR-6676-
10,835.

37. TURNBURKE, V. P., JR. Sequential da ta processing design. IBM
Syst. J . 2 , (M a r . 1963) , 3 7 - 4 8 .

38. VER HOEF, E. W. Design of a multilevel file management sys-
tem. Proc. ACM 21st Nat . Conf., 1966, Thompson Book Co.,
Washington, D. C., pp. 75-86. CR-6781-11,185.

39. YOUNG, J . W„ JR. Nonprocedural languages—a tutorial. Paper
7th Ann. Tech. Symposium, Mar. 23, 1965. South Calif. Chap-
ters of ACM. Copies may be obtained from the author, Elec-
tronics Division, M S 50, National Cash Register, 2815 W. El
Segundo Blvd., Hawthorne, Calif. 90750.

40. YOUNG, J . W„ JR., AND KENT, H. Abstract formulation of data
processing problems. J. Ind. Eng. 9, 6 (Nov.-Dec. 1958), 471-
479. (Also reprinted in Ideas for Management, 1959.)

Course A9. Artificial Intelligence and Heuristic
Programming (3-0-3)

APPROACH

As this course is essentially descriptive, it might well be taught
by surveying various cases of accomplishment in the areas under
study. Each s tudent should undertake some independent activity as
part of his course work. This might take the form of a survey article
on some aspect of the field: a program which simulates some of the
rudimentary features of learning and forgetting; a program which
plays some simple game like three-dimensional tic-tac-toe; or some
other comparable activity. It would probably be best for the s tudent
to write any such programs in a list processing language.

45

CONTENT

The following outline is only a guide. Depending on the instruc-
tor's preferences and experience, variations will be introduced and
new material will be added to the subject matter to be presented.

1. Definition of heuristic versus algorithmic methods using an
example such as game playing. Description of cognitive processes
taking place in deriving a new mathematical theorem. Outline of
Polya's and Hadamard's approaches to mathematical invention.
Discussion of the heuristic method as an exploratory and as an ex-
clusive philosophy (cf. theorem proving a la Newell-Shaw-Simon,
Robinson and Wang). Objectives, goals and purposes of work in
areas under discussion. (3 lectures)

2. Game playing programs (chess, checkers, go, go-moku, bridge,
poker, etc.). (3 lectures)

3. Theorem proving in logic and geometry. (3 lectures)
4. Formula manipulation on computers. (3 lectures)
5. Pattern recognition and picture processing. (3 lectures)
6. General problem solvers and advice takers. (4 lectures)
7. Question answering programs. (3 lectures)
8. Verbal and concept learning simulators. (3 lectures)
9. Decision making programs. (3 lectures)
10. Music composition by computers. (3 lectures)
11. Learning in random and structured nets. Neural networks. (3

lectures)
12. Adaptive systems. (3 lectures)
13. State-of-the-art in machine translation of languages and

rtatural language processing. (4 lectures)
14. Questions of philosophical import: the mind-brain problem

and the nature of intelligence, the relevance of operational defini-
tions, and what is missing in present day "thinking machines." (2
lectures)

BIBLIOGRAPHY

The entries given below are grouped according to the items of
the "Content" above to which they apply. This list serves only as a
starting point and can be extended easily using the bibliographies
listed below.

General reference
1. FEIGENBAUM, E . A . , AND FELDMAN, J . (E d s .) Computers and

Thought. McGraw-Hill, New York, 1966, 535 pp. CR-6563-7473.
Contains many of the articles listed below and a "Selected
Descriptor-Indexed Bibliography" by Marvin Minsky.

Heuristic versus algorithmic methods [Item /]
2. ARMER, P. Attitudes toward intelligent machines. In Computers

and Thought, pp. 389-405. CR-6125-0977 and CR-6236-2900.
3. FINDLER, N. V. Some further thoughts on the controversy of

thinking machines. Cybernetica 6, (1963), 47-52.
4. HADAMARD, J . The psychology of invention in the mathemati-

cal field. Dover Publications, New York, 1945, 145 pp. CR-6345-
4614.

5. MINSKY, M. Steps toward artificial intelligence. In Computers
and Thought, pp. 406-450. CR-6232-1528.

6. NAGEL, E. The Structure of Science: Problems in the Logic of
Scientific Explanation. Harcourt, Brace & World, New York,
1961,612 pp.

7. POLYA, G. Mathematics and Plausible Reasoning: Vol. I, In-
duction and Analogy in Mathematics; Vol. II, Patterns of Plausi-
ble Inference. Princeton University Press, Princeton, N. J. , 1954,
280 and 190 pp.

Game playing programs [Item 2]
8. BERLEKAMP, E. R. Program for double-dummy bridge prob-

lems—a new strategy for mechanical game playing. J. ACM 10,
3 (J u l y 1963) , 3 5 7 - 3 6 4 . C R - 6 4 5 2 - 5 2 9 7 .

9. FINDLER, N. V. Computer models in the learning process. In
Proc. Internal. Symposium on Mathematical and Computational
Methods in the Social and Life Sciences, Rome, 1966.

10. NEWELL. A. , SHAW, J . C . . AND SIMON. H . A. C h e s s p l a y i n g
programs and the problem of complexity. In Computers and
Thought, pp. 39-70. CR-6012-0048.

11. PERVIN, I. A. On algorithms and programming for playing at
dominoes, transl. from Russian. Automation Express 1 (1959).
26-28. CR-6235-2328.

12. REMUS, H. Simulation of a learning machine lor playing Go.
Proc. IFIP Congress. Munich. 1962, North-Holland Pub. Co-
A m s t e r d a m . p p . 1 9 2 - 1 9 4 . C R - 6 3 4 1 - 3 4 2 0 .

13. SAMUEL, A. L. Some studies in machine learning using the
game of checkers. In Computers and Thought, pp. 71-105.

Theorem proving in logic and geometry [Item ,7]
14. DAVIS, M . , LOGEMANN, G . , AND LOVELAND. D . A m a c h i n e p r o -

gram for theorem-proving. Comm. ACM .5. 7 (Julv 1962). 394-
397.

15. GELERNTER, H . , HANSEN, J . R . , AND LOVELAND, D . W . E m p i r i -
cal exploration of the geometry-theorem proving machine. In
Computers and Thought, pp. 134-152. CR-6233-1928.

16. NEWELL, A. , SHAW, J . C . , AND SIMON, H . A . E m p i r i c a l ex -
plorations with the logic theory machine: a case study in heu-
ristics. In Computers and Thought, pp. 109-133.

17. ROBINSON, J . A. Theorem proving on the computer, J. ACM 10,
2 (A p r . 1963), 1 6 3 - 1 7 4 . C R - 6 4 5 2 - 5 4 6 0 .

18. WANG, H. Proving theorems by pattern recognition. Comm.
ACM3, 4 (Apr. 1960), 220-234. CR-6016-0369.

Formula manipulation on computers [Item 4\
19. BOND, E . , AUSLANDER, M . , GRISOKF, S . , KENNEY. R . . MYSZEW-

SKI, M . , SAMMET, J . E . , TOBEY, R . G . , AND ZILLES, S . F O R -
MAC—an experimental FORmula MAnipulation Compiler.
Proc. ACM 19th Nat. Conf., 1964, Association for Computing
Machinery, New York, pp. K2.1-1 to K2.1-19.

20. BROWN, W. S. The ALPAK system for nonnumerical algebra
on a digital computer, I and II. Bell Syst. Tech. J. 42 (1963).
2081-2119, and 43 (1964), 785-804.

21. PERLIS, A . J . , AND ITURRIAGA, R . A n e x t e n s i o n t o A L G O L fo r
manipulating formulae. Comm. ACM 7, 2 (Feb. 1964), 127-130.

22. SAMMET, J . E. An annotated descriptor based bibliography on
the use of computers for nonnumerical mathematics. Com. Rev.
7, 4 (Jul.-Aug. 1966), B-l tc B-31.

23. SLAGLE, J . R. A heuristic program that solves symbolic in-
tegration problems in freshman calculus. In Computers and
Thought, pp. 191-203. CR-6236-3068.

Pattern recognition and picture processing [Item 5]
2 4 . MCCORMICK, B . H . , RAY, S . R . , SMITH, K . C . , AND YAMADA, S .

ILLIAC III: A processor of visual information. Proc. IFIP Con-
gress, New York, 1965, Vol. 2, Spartan Books, New York, pp.
359-361.

25 . TIPPETT, J . T . , BERKOWITZ, D . A . , CLAPP, L . C . , KOESTER, C . J . ,
AND VANDERBURGH, A., JR. (Eds.) Optical and Electro-Optical
Information Processing, Proc. Symp. Optical and Electro-Opti-
cal Inf. Proc. Tech., Boston, Nov. 1964. M.I.T. Press, Cambridge,
M a s s . , 1965, 7 8 0 p p . C R - 6 6 7 3 - 9 8 2 9 .

26. UHR, L. (Ed.) Pattern Recognition. Wiley, New York, 1966,
3 9 3 p p . C R - 6 6 7 4 - 1 0 , 0 2 8 .

General problem solver and advice taker [Item 6]
27. MCCARTHY, J . Programs with common sense. In D. V. Blake

and A. M. Uttley (Eds.), Proc. Symp. on Mechanisation of
Thought Processes, Two volumes, National Physical Labora-
tory, Teddington, England. H.M. Stationery Office, London.
1959, pp. 75-84.

28 . NEWELL, A . , SHAW, J . C . , AND SIMON, H . A . A v a r i e t y of i n -
telligent learning in a general problem solver. In M. Yovits and
S. Cameron (Eds.), Self-Organizing Systems, Pergamon Press.
New York, 1960, pp. 153-159. CR-6236-2908.

29. NEWELL, A., AND SIMON, H. A. Computer simulation of human
thinking. Science 134, 3495 (22 Dec. 1960), 2011-2017. CR-6234-
2062.

46

Question answering programs [Item 7]
30. BOBROW, D. G. A question answering system for high school

algebra word problems. Proc. AFIPS 1964 Fall Joint Comput.
Conf., Vol. 26, Spartan Books, New York, pp. 591-614. CR-6562-
7183.

31. GREEN, B . F . , WOLF, A. K . , CHOMSKY, C „ AND LAUGHERY, K .
Baseball: an automatic question answerer. In Computers and
Thought, pp. 207-216. CR-6341-3417.

32. LINDSAY, R. K. Inferential memory as the basis of machines
which understand natural language. In Computers and Thought,
pp. 217-233.

33. RAPHAEL, B. A computer program which "unders tands." Proc.
AFIPS 1964 Fall Joint Comput. Conf., Vol. 26, Spartan Books,
New York, pp. 577-589. CR-6562-7207.

34. SIMMONS, R. F. Answering English questions by computer—A
s u r v e y . Comm. ACM8, 1 (J a n . 1965), 5 3 - 7 0 . C R - 6 5 6 3 - 7 6 4 3 .

Verbal and concept learning [Item 8]

35. FEIGENBAUM, E. A. The simulation of verbal learning behavior.
In Computers and Thought, pp. 297-309. CR-6234-2060.

36. FEIGENBAUM, E . A. , AND SIMON, H . A. F o r g e t t i n g in a n a s s o c i a -
tive memory. Preprints of papers presented a t the 16th Nat .
Meeting of the ACM, Los Angeles, Sept. 5-8, 1961, Association
for Computing Machinery, New York. CR-6232-1667.

37. HUNT, E. B. Concept Learning: An Information Processing
Problem. Wiley, New York, 1962, 286 pp. CR-6561-6872.

38. MILLER, G . A. , GALANTER, E „ AND PRIBRAM, K . Plans and the
Structure of Behavior. Holt, Rinehart and Winston, New ,York,
1960.

Decision making programs [Item 9]
39. CLARKSON, G. P. E. A model of the trust investment process.

In Computers and Thought, pp. 347-371. CR-6563-7473.
40. FELDMAN, J . Simulation of behavior in the binary choice ex-

periment. In Computers and Thought, pp. 329-346. CR-6342-
3760.

41. FINDLER, N. V. Human decision making under uncertainty and
risk: computer-based experiments and a heuristic simulation
program. Proc. AFIPS 1965 Fall Joint Comput. Conf., Pt . I.
Spartan Books, New York, pp. 737-752. CR-6673-9594.

Music composition [Item 10}
42. Computers in Music. Session 7, Tues. Nov. 8, at the AFIPS

1966 Fall Joint Computer Conf., San Francisco. (The papers for
this session were not published in the conference proceedings.)

43. GILL, S. A technique for the composition of music in a com-
puter. Comput. J. 6, 2 (July 1963), 129-133. CR-6451-4983.

44. HILLER, L . A. , JR. , AND ISAACSON, L . M . Experimental Music.
McGraw-Hill, New York, 1959, 197 pp. CR-6012-0047.

45. MATHEWS, M. V. The digital computer as a musical instrument.
Science 142, 3592 (1 Nov. 1963), 553-557.

46. REITMAN, W. R. Cognition and Thought: An Information Proc-
essing Approach. (Chap. 6). Wiley, New York, 1965, 312 pp.

47. SEAY, A. The composer of music and the computer. Comput.
Autom. 13, 8 (A u g . 1964) , 1 6 - 1 8 . C R - 6 5 6 3 - 7 5 4 8 .

Learning nets and neural networks [Item 11]
48. ARBIB, M. Brains, Machines and Mathematics. McGraw-Hill,

New York, 1964, 163 pp. CR-6455-6254.
49. BLOCK, H. D. Adaptive neural networks as brain models.

Experimental Arithmetic, High Speed Computing and Mathe-
matics, Proc. of Symposia in Appl. Math. 15, American Mathe-
matical Society, Providence, R. I„ 1963, pp. 59-72. CR-6453-
5608.

50. LETTVIN, J . Y . , MATURANA, H . , MCCULLOCH, W . S . , AND PITTS,
W. What the frog's eye tells the frog's brain. Proc. IRE 47,
(1959), 1940-1951.

51. ROSENBLATT, F. Principles of Neurodynamics. Cornell Aero-
naut . Lab. Rep. 1196-G-8, Spartan Books, New York, 1962.

52. YOUNG, J . Z. A Model of the Brain. Clarendon Press, Oxford,
England, 1964, 384 pp.

Adaptive systems [Item 12]
53. FOGEL, L . J . , OWENS, A. J . , AND WALSH, M . J . Artificial In-

telligence Through Simulated Evolution. Wiley, New York,
1966, 170 pp.

54. NILSSON, N. J . Learning Machines. McGraw-Hill, New York,
1965, 137 pp. CR-6565-8177.

55. Tou, J . T., AND WILCOX, R. H. (Eds.) Computer and Informa-
tion Sciences. Proc. of Symposium at Northwestern University,
1963, Spartan Books, New York, 1964, 544 pp.

56. VON FOERSTER, H . , AND ZOPF, G . W . , JR. , (E d s .) Principles of
Self-Organization. Pergamon Press, New York, 1962.

57. YOVITS, M . C . , JACOBI, G . T . , AND GOLDSTEIN, G . D . (E d s .)
Self-Organizing Systems, 1962. Spartan Books, New York, 1962,
563 pp. CR-6456-6603.

Natural language processing [Item 13]
58. BAR-HILLEL, Y. Language and Information: Selected Essays on

Their Theory and Application. Addison-Wesley, Reading,
Mass., 1964, 388 pp. CR-6562-7178.

59. BOBROW, D. G. Syntactic analysis of English by computer—a
survey. Proc. AFIPS 1963 Fall Joint Comput. Conf., Vol. 24,
Spartan Books, New York, pp. 365-387. CR-6671-8838.

60. CHOMSKY, N. Aspects of the Theory of Syntax. M.I.T. Press,
Cambridge, Mass., 1965, 251 pp. CR-6676-10,735.

61. GARVIN, P. L. (Ed.) Natural Language and the Computer.
McGraw-Hill, New York, 1963, 398 pp. CR-6456-6569.

62. HAYS, D. (Ed.) Readings in Automatic Language Processing.
American Elsevier, New York, 1966, 202 pp.

Questions of philosophical import [Item 14}
63. MACKAY, D. M. Mind-like behavior in artifacts. Brit. J. Phil.

Sci. 2, (1951), 105-121.
64. SAYRE, K . M . , AND CROSSON, F . J . (E d s .) The Modeling of

Mind: Computers and Intelligence. University of Notre Dame
Press, Notre Dame, Ind., 1963, 275 pp. CR-6455-6205.

65. SIMON, H. A. The architecture of complexity. Proc. Am. Phil.
Soc. 106, (1962), 467-482.

66. TURING, A. M. Computing machinery and intelligence. In
Computers and Thought, pp. 11-35.

47

Education
E.I. Organick
Editor

A Computer
Science
Course Program
for Small Colleges

Richard H. Austing
University of Maryland
and
Gerald L. Engel
The Pennsylvania State University

The ACM Subcommittee on Small College
Programs of the Committee on Curriculum in
Computer Science (C3S) was appointed in 1969 to
consider the unique problems of small colleges and
universities, and to make recommendations regarding
computer science programs at such schools. This report,
authorized by both the subcommittee and C9S, supplies a
set of recommendations for courses and necessary
resources.

Implementation problems are discussed, specifically
within the constraints of limited faculty and for the
purposes of satisfying a wide variety of objectives.
Detailed descriptions of four courses are given;
suggestions are made for more advanced work; and an
extensive library list is included.

Key Words and Phrases: computer science education,
course proposals, small colleges, programming course,
social implications course, computer organization course,
file organization course, bibliographies

CR Categories: 1.52

This report gives recommendations for the content,
implementation, and operation of a program of com-
puter science courses specifically directed to small col-
leges. In no way does this material represent a major
program in computer science. It does describe a program
for those schools with limited resources, but with an
interest, enthusiasm, and desire for some course offer-
ings in computer science. Those institutions interested
in computer science and with the resources necessary
for a major program in this field should refer to the
existing reports of A C M ' S Committee on Curriculum in
Computer Science (C3S) [87a] and other curriculum
studies. Institutions which desire to complement com-
puter science course offerings with a set of courses in
computational mathematics should consider the report
of the Committee on the Undergraduate Program in
Mathematics [86d].

The Program

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

The work reported here was supported in part by National
Science Foundation grant GJ-1177 to the Association for Comput-
ing Machinery. A preliminary version was presented for discussion
at the second annual SIGCSE Symposium, St. Louis, Missouri in

Four courses are described and suggestions are made
for additional study and courses for students interested
in further work. No names have been given to the four
courses, but they correspond roughly to the areas of al-
gorithms and programming (Course 1), application of
computers and their impact on society (Course 2),
machine and systems organization (Course 3), and
file and data organization (Course 4). Though these
March 1972 and subsequently appeared in the IAG Journal under
the title Computer Science Education in Small Colleges—A Report
with Recommendations. Authors' addresses: Richard H. Austing,
Computer Science Center, University of Maryland, College Park,
MD. 20742; Gerald L. Engel, Computer Science Department, The
Pennsylvania State University, University Park, PA. 16802; on
leave from Hampden-Sydney College, Hampden-Sydney, VA 23368.

49

courses in a real sense represent a coherent program,
they are structured so as to allow a student with limited
objectives and limited time to pick and choose those
parts most relevant to his needs.

Course 1 is the introduction, which in most cases
gives a student his first experience in computer science.
This is accomplished primarily by the presentation of a
higher level programming language. Course 2 expands
on Course I by giving the student further programming
experience. In addition the student is introduced to a
variety of applications of computers and the effects
that these applications will have on the individual and
on society. In Course 3, the student gains familiarity
with various aspects of computer systems and how the
parts of such systems interact. Finally, in Course 4
the concepts and applications of data representation
and organization are considered.

Three of the courses (Courses 1, 3, and 4) correspond
in basic content to courses in "Curriculum 68" [87a].
However, there is a good deal of difference in structure
and emphasis in these courses from the way in which
they are commonly taught. In order to allow as many
students as possible to take the courses, the prerequisite
structure is held to a minimum. Also, in order to provide
a more general background, the courses (especially
Courses 3 and 4) are more concerned with concepts
of a particular system than with details or extensive
programming exercises. For example, in Course 3 no
particular assembler would be studied, but rather the
general concept and vocabulary of computer systems
would be presented. In this way a student, anticipating a
career in business management, could equip himself
with the tools to select a computer system without having
to bury himself in the details of a particular system.

Course 2 does not have an equivalent in "Curricu-
lum 68." This course in applications would, in most
cases, be the natural sequel to the introductory program-
ming course. It combines further experience in program-
ming with a limited survey of application areas. Though
programming would be an integral part of the course,
something of the overall descriptive nature of the pro-
gram would be involved. Where possible and appro-
priate, the students would be expected to use programs
and data bases that are available. For example, if the
class was studying simulation, it would be appropriate
for the student to gain experience by using a computer-
based traffic flow simulation to study the i /o prob-
lems involved, and possibly by studying some of the
techniques involved in writing appropriate programs,
but not necessarily by writing the program itself.

Implementation of this program would make in-
struction available to all students on campus at least
at the level of being able to communicate intelligently
with a computer. In addition advanced instruction would
be readily accessible. For the student anticipating a
career in computing or considering application for grad-
uate work in computer science, several approaches are
possible. Independent study courses can provide intro-

ductions to certain topics (courses in assembly language
programming, programming languages, or even some
large scale programming project would be appropriate).
Also, since we are dealing with small schools, coopera-
tion with other departments can be anticipated. Through
this interdepartmental cooperation, certain courses can
be modified to serve the student anticipating graduate
work in computer sciencc. Such a student should be ad-
vised to follow a mathematics curriculum, and could
anticipate taking at least a computer oriented course
offered by the mathematics department in probability
and statistics, or a numerical analysis eoursc, or a
course in abstract algebra that would emphasize com-
puter applications, or any of the computational mathe-
matics courses recommended in the C U P M report [87b|.
Finally, with the general introduction of computers in
the undergraduate curricula as documented in the pro-
ceedings of the Conferences on Computers in the Under-
graduate Curricula]86e|, it seems reasonable to antici-
pate that an interested student can select several courscs
from various disciplines that make significant use of
computers.

Implementation

One of the purposes of this program is to ensure its
implementation with a minimal staff. Obviously, com-
puting equipment must also be considered, and since
most small schools are working under a small budget
for computer services, the course structure reflects the
fact that extensive computer power will probably not be
available on campus. The courses recommended require
that the students have access to a computer which has a
higher level programming language for student use.
Only one higher level language is required inasmuch as
every computer installation satisfies that requirement.
If additional languages are available, their use might be
appropriate in one or more courses. Whether the com-
puter is a small stand-alone or has one or more terminals
makes little difference. The important requirement is
that the students have easy access to the equipment and
to student oriented software.

As important as the computer science course struc-
ture is, the most important area of computing at a small
school is the service area. The cost of computing on
campus, in terms of both equipment and personnel, can
only be justified if computing services are used on a
campus-wide basis. To achieve this, the development of a
community of computer users on campus, as well as the
excellent development of Course 1, is necessary and for
schools that are not already involved in such programs,
the first effort of the faculty member in charge of the
development of computing must be made in these direc-
tions. The introduction of the additional course work
should take place after these aspects of the program are
completed.

The program requires one full-time instructor. In

50

most eases, Course I and Course 2 would be offered
each semester, while Course 3 and Course 4 would be
offered once each year. It is common practice in small
schools to have the computer science faculty and com-
puter center staff one and the same. It is clear that the
demands of this program (at least nine hours per
semester) plus the desirability of offering additional
special courses at the more advanced level make this
situation impossible. Thus the instructional staff and
computer center staff should be separate. There should
be, of course, a close relationship between the instructor
and the center staff, but the instructor should have no
administrative responsibilities in the center.

Another common practice in small schools is to take
a faculty member from a department that is a computer
user, and assign him the responsibility for computer
science instruction. Such a practice often leads to the
courses being not in computer science but rather in
applications of computers. Whenever possible this should
be avoided, but if it is necessary, the instructional ma-
terial should be clearly separated from any other de-
partment of the school.

It is well to note that the present market situation
places a small school in an excellent position to hire a
computer scientist. Where possible this should be done,
at least to the extent of bringing in the individual re-
sponsible for the implementation of the program. Where
this cannot be done, a commitment should be made to
allow an existing faculty member to develop himself in
computer science education. Summer programs for this
purpose are not plentiful, and doing such work in the
normal environment of teaching and other responsibil-
ities at the small school is close to impossible. Thus,
where an existing faculty member is asked to be respon-
sible for the program, it is strongly recommended that
this faculty member be granted a year's leave of ab-
sence to work and gain experience in a computer science
department. It is also recommended that universities
with the facilities to do so develop programs that will
help these faculty members to achieve their objective.

As with any program, the usual supporting facilities
of the college are necessary. Though no great amount
of specialized material is expected, it should be recog-
nized that there will be a need for a rather large initial
expenditure in the area of library materials, both books
and periodicals. To provide a starting point for the
development of a collection, a library list has been in-
cluded.

Courses

There is much evidence that some exposure to com-
puters should be an essential part of every college
student's education. Many students will become users in
their chosen occupations. Included in this group would
be teachers, managers, researchers, and programmers
who will need the computer as a tool. Other students
will become directly involved in computer education
and the computer industry. All students will be affected
by the use of computers in our society.

Asa minimum, students should acquirc some under-
standing of the implications of the computer impact on
individuals, organizations, and society. One way in
which an academic institution can do this is to offer a
survey type course in computers and society. However,
there are some inherent difficulties with such an ap-
proach, particularly in schools which have no more
than one or two faculty members in the computer
science area. The breadth and amount of knowledge
needed to give a worthwhile course of this type almost
precludes its being offered by any one person. Devel-
opments and applications span such a wide range of
areas that faculty from a variety of fields would need to
be used. The course then might take on the flavor of a
lecture series in which students would be presented a
great deal of information but almost no feeling about
what a computer is or how it should be used.

A better approach, as well as a more practical one
in terms of faculty utilization, would consist of teach-
ing fundamentals of computer science in a first course
and allowing students the option of acquiring addi-
tional knowledge through their own reading, on-the-job
training, or further course work in computer science or
other disciplines. The first course described below fol-
lows this approach. It plays the role of a beginning
course and the prerequisite course to each of the other
three courses described. The latter three courses are
designed not to be sequential. However, the most desir-
able path through them for students taking all of them
would be in the order presented.

There is an intended overlap in the material of the
four courses. Some ideas are worth repeating at differ-
ent levels. Also, the same problem or concept can be
enhanced by looking at it from different points of view
or by bringing different material to bear on it.

Very few matters related to courses or curriculum
are generally agreed upon among computer scientists.
The question of whalt language to teach in a first course
is no exception. Although there appears to be general
agreement that a higher level language should be pre-
sented before an assembly language, there is a substan-
tial difference of opinion regarding the specific language
to use. A P L , B A S I C , F O R T R A N , and PL/i, to name a few,
each has a band of advocates. F O R T R A N is still the most
widely used general purpose language and is the most
easily transferable from computer to computer. Despite
its shortcomings, F O R T R A N would seem to be the most

useful for the greatest number of students and is the
language recommended for the first course, PL/I, if it
is available, could be chosen in place of F O R T R A N , par-
ticularly because its capabilities for nonnumeric appli-
cations make it useful in Courses 2 and 4. If strong
reasons compel a different choice of language, some
modifications might be necessary in course topics or
approach. The introduction of and programming in a
second language (e.g. A L G O L , A P L , S N O B O L) is not rec-
ommended; it greatly decreases the programming ex-
perience and competence the student acquires in the
first course. However, if time permits, a short discussion
of a different kind of language and a demonstration
program could be added at the end of the course.

Course 1 (3 Credits)
Introduction. This is a first course which emphasizes

good programming techniques in a higher level lan-
guage. No programming background is assumed. Upon
completion of this course, the student: (a) should have
practical experience in programming, including seg-
mentation of both a problem and a program for its
solution, debugging, implementation of basic data
structures such as lists, and use of "canned" programs;
(b) should know basic characterization of computer
organization; (c) should be able to distinguish among
program assembly, loading, compilation and execution,
including some of the kinds of programming errors that
can occur at each stage; and (d) should know the
details of the language and have a basic idea of the
relation of its statements to machinc code.

The topics listed for this course do not differ sub-
stantially from the topics included in the outline of
course Bl in "Curriculum 68"; however, a shift in em-
phasis is recommended. Course Bl stressed the notion
of algorithm, problem analysis, and the formulation of
algorithms for problem solution. Learning a language,
practice in its use, and concepts of computer organiza-
tion were also emphasized, but mainly as the means to
obtain the actual solution of the problem. Unfor-
tunately, no texts have appeared which have achieved
the goal of presenting the subject of problem solving in
an effective way (several books by Polya might be con-
sidered exceptions to this statement but they are not of
the algorithmic orientation specified in course Bl).
Judging from the great variety found in introductory
computing courses, it would seem that few, if any,
teachers have been able to achieve the goal. It is not an
easy problem to solve, but it is worth working toward
a solution.

On the other hand, it is possible to teach program-
ming techniques with the aid of a language manual and,
possibly, one of the existing texts. The textbook could
be used as a source of problems, at least, and in some
cases, to supplement discussions of appropriate pro-
gramming techniques applied to specific classes of
problems. By concentrating on programming, the in-
structor is better able to teach a language, put it in

proper perspective with computer organizations and
systems, develop good programming practices (in-
cluding coding, debugging, and documentation), and
motivate the need for algorithms in the solution process.
Students should be required to use subprograms exten-
sively (both their own and ones that are provided);
this, in turn, would encourage at least one good prob-
lem solving technique—breaking up a problem into
solvable parts.

An important benefit to the general approach sug-
gested here is that the course is more easily defensible
as a service course. Students could be urged to find
problems in their own field of interest which they would
program as course projects. Duplication of first courses
for different groups of students could be minimized
and, possibly, avoided entirely. For the first few semes-
ters it might be difficult to obtain reasonable problems
from a variety of areas, but as more faculty members
become users, their fields of interest will become a
source of good problems. In addition, a collection of
(possibly large) data bases and subprograms can be
accumulated and used as files to be referenced by stu-
dent programs. The degree of success achieved by the
computer center in developing a community of compu-
ter users has a significant influence here. As a result,
some very interesting and nontrivial problems can be
considered both in this course and in Course 2.

Though laboratory-like sessions for small groups of
students may be desirable, they are not essential. If
these sessions are used, an instructor may want to
scatter them throughout the semester or bunch them at
the beginning of the course and let the students program
on a more individual basis toward the end of the course.
Whether or not the laboratory sessions should be sched-
uled is a matter that is best decided by the instructor
and/or the department.

Catalog Description. A first course in programming,
using the F O R T R A N language. Introductory concepts of
computer organization and systems. Programming
projects, including at least one from the student's field
of interest.

Outline. Even though topics are listed sequentially,
some topics (e.g. computer organization) should be
distributed throughout the course with increasing de-
grees of detail. Problem analysis should be emphasized.
1. Overview of a computer. Basic computer modules,
organization, and program execution. (5%)
2. Overview of problem solving process, beginning
with the problem statement and ending with verifica-
tion of the correct computer solution. (5%)
3. Introduction to the specific computer environment
in which the student will work. Information needed by
the student to interact with the computer in this course.
(5%)
4. Language details. Components and types of assign-
ment, control, and specification statements; data repre-

52

sentation and structures; storage allocation; i/o; sub-
programs; local and global variables; common and
equivalence statements. (30%)
5. Programming techniques. Segmentation of prob-
lems and programs; comments and other documenta-
tion; debugging; library subroutines. (15%)
6. Simple data structures and list processing. Pointers;
structures such as strings, stacks, linear and circular
lists. (10%)
7. Limitations of F O R T R A N . Nonnumeric programming;
recursion. (5%)
8. Computer organization and systems. More detailed
presentation of hardware and systems software, in-
cluding registers, instruction codes, addressing, assem-
bler, loader, compiler, and characteristics of compo-
nents; peripheral units; past, present, and future devel-
opments. (20%)
9. Examinations. (5%)

Texts. A language manual, either the manufacturer's
or one of the numerous manuals and primers that are
available, should be used. Also, any local documenta-
tion concerning the installation's computer and/or
systems should be readily available. No current book
covers the material as presented in the outline, but
parts of many books could be used as source material
or student reference. For example, the following refer-
ences are pertinent: 1, 3, 4, 11, 12, 15, 17, 22, 24, 28,
32, 34, 42, 59, 65, 66, 73, 77-80, 86a, 86d, and 88a-d.

Course 2
Introduction. This course emphasizes the use of

computers in a variety of problem areas. It is an appli-
cations oriented course which should give the student
concrete experience in solving representative problems
of a practical nature. As in Course 1, large data bases
can be established as experience in teaching the course
is gained. Discussion of problems and problem areas
should include algorithms, application techniques from
Course 1, and social implications. New concepts and
tools (e.g. complex data structures, tree search tech-
niques, sorting methods) can be introduced as required
in the context of specific problems, and the need for
additional tools, including different kinds of languages,
can be motivated. Occasionally, it might be feasible to
invite a faculty member from another department or
university or a local businessman to supplement ma-
terial on a topic. Student assignments should vary, both
in depth and in subject areas. In particular, a student
who has completed Course 3 or 4 should be expected
to use different techniques and solve larger or more
difficult problems than a student who has completed
only Course 1. Students should be encouraged to dis-
cover and solve problems in their own areas of interest.

Because students in this course have completed a
programming course, no discussion should be necessary
on such topics as what a computer is and how it works,
number representation, flowcharts, and other elemen-

tary matters included in a computer appreciation-type
course. However, a discussion of various systems (time-
sharing, batch, etc.) should be included so that students
are aware of the kinds of computer environments in
which problems are solved.

The instructor should pose a suitably difficult prob-
lem in a real context, indicate possible approaches to
its solution, break it up into smaller problems, discuss
appropriate algorithms, introduce whatever new topics
pertain to the problem, and let the student write a pro-
gram to obtain the solution. If an entire problem is too
difficult to solve in this way, one or more subproblems
can be identified and handled as described. More ad-
vanced methods can be indicated when appropriate,
and the student can be directed to appropriate refer-
ences. Social and historical implications can be dis-
cussed at various stages of the solution process. As the
course progresses, students should be expected to do
more analysis and algorithm writing than specified
above. The desired effects are that the student becomes
acquainted with the computer's impact in a number of
areas, is exposed to concepts and methods applicable
to different kinds of problems, and gains practical ex-
perience in solving problems.

Catalog Description. Prerequisite, Course 1. Survey
of computer applications in areas such as file manage-
ment, gaming, CAI, process control, simulation, and
modeling. Impact of computers on individuals and
society. Problem solving using computers with emphasis
on analysis. Formulation of algorithms, and program-
ming. Projects chosen from various application areas
including student's area of interest.

Outline. The selection and ordering of topics are
highly dependent on the local situation. The topics are
listed separately but should be combined as much as
possible during discussion of problems. Problems and
projects should have a practical flavor and should use a
variety of computer oriented techniques and concepts.
Attention should be given to the kind of technique that
applies to a particular class of problems but not to
other classes of problems. Each problem should be dis-
cussed in such a way that the student is aware of its
relation to a real world context and sees the computer as
a natural tool in the solution process.
1. Computer systems. Batch and interactive; real-time;
information management; networks. Description of
each system, how it differs from the others, and kinds
of applications for which each system is best suited.
(15%)
2. Large data bases. Establishment and use; data defi-
nition and structures. (10%)
3. Errors. Types; efTects; handling. (5%)
4. Social implications. Human-machine interface, pri-
vacy; moral and legal issues. (15 %)
5. Future social impact. Checkless society; CAI; na-
tional data bank. (10%)

53

6. Languages. Business oriented; list processing;simu-
lation; string and symbol manipulation. Brief exposi-
tion of characteristics which make these languages
appropriate for particular classes of problems. (10%)
7. Concepts and techniques used in solving problems
from applications areas such as CAI, data management,
gaming, information retrieval, and simulation. (25%)
8. Discussion of completed projects and/or examina-
tions. (10%)

Texts. The italicized references cited below could
serve as basic texts for this course. Many books and
magazine articles could provide useful supplementary
material either for class use or for student or teacher
reference. Only a sampling of the available material is
included in the Library List: 2, 3, 8, 9, 14, 15, 16, 19,
34, 36, 44, 56-59, 61, 63, 64, 68, 70, 72, 74, 76, 77, 85a,
85b, and 86a-e.

Course 3
Introduction. This course emphasizes the relation-

ships between computer organization (hardware) and
software. Each module's organization should be dis-
cussed, and its features should be related to the im-
plementation of programming language features and
assembly language instructions. Whenever possible, ex-
planations should be included about why specific hard-
ware features are better suited than others to certain
types of problems or environments (e.g. real-time com-
puting, interactive systems, data processing, scientific
applications), and how this could affect selection of
components. The effects of adding or changing modules
should be viewed with respect to costs, capabilities,
and software. Minicomputers should be discussed both
as stand-alone computers and as components of larger
systems.

Programming in assembly language should not be
taught as such. However, students should be exposed
to the use of macros and microprogramming. They
should acquire a basic understanding of monitors, in-
terrupts, addressing, program control, as well as im-
plementation of arrays, stacks, and hash tables. In short,
they should become familiar with assembly language
concepts but in relation to their use in the total com-
puter environment rather than through extensive pro-
gramming. The need for assembly language program-
ming experience is no longer great enough to argue that
most students should have it. For those students who
become interested in it, a special study course can be
provided. With the background acquired in Course 3, a
student should be able to gain programming experience
without much additional guidance.

Catalog Description. Prerequisite, Course 1. Rela-
tionships among computer components, structures, and
systems. Hardware features, costs, capabilities, and selec-
tion. Assembly language concepts and implementation.

Outline. Because this course is, at least to some
extent, dependent on the specific computer available,
the selection, ordering, and depth of coverage of topics
will vary from institution to institution.
1. Processor. Arithmetic and control functions; rela-
tionships of features to language features; data handling;
addressing. (20%)
2. Memory. Various types; cost, capabilities, and func-
tions of each type; direct, random and sequential access;
implementation of arrays, stacks, and hash tables. (20 %)
3. i/o. Types, costs, and capabilities of units and media;
control; channels; interrupts. (20%)
4. Communication among components. Effects of
changing configurations; interactive and real-time sys-
tems. (5%)
5. Minicomputers. Capabilities as stand-alone com-
puters ; components of larger systems; costs. (10%)
6. Assembly language concepts. Instructions and their
relations to components included above; macros, micro-
programming. (20%)
7. Examinations. (5%)

Texts. No available text is suitable for this course.
Material can be drawn from the following references
and from manufacturers' manuals: 5, 6, 7, 13, 16, 26,
27, 29, 30, 31, 33, 35, 38-41, 43, 45-48, 53, 56, 60, 67,
69, 71, 74, 75, 81, 84, 86a, and 87b.

Course 4
Introduction. This is a course in file organization

and manipulation. It stresses concepts, data structures,
and algorithms used in the solution of non-numerical
problems. Proper motivation for each should be given;
an encyclopedia approach is not intended. Whenever
several methods for achieving the same result are dis-
cussed (e.g. sorting or searching algorithms) compara-
tive evaluations should be included. Differences between
using core only and core plus auxiliary memory for
various applications should be pointed out. If appro-
priate hardware is available, students should be assigned
programming projects that require performing opera-
tions on large data bases and that require manipulating
records on auxiliary memory devices. Immediate sources
of problems are in the areas of mailing lists, registration,
scheduling, student records, and library automation. If
a suitable language for list processing applications is
available, it could be taught and used in part of the
course. Otherwise, characteristics of languages for this
purpose should be given.

Catalog Description. Prerequisite, Course 1. Data
structures, concepts and algorithms used in the solu-
tion of non-numerical problems. Applications to data
management systems, file organization, information re-
trieval, list processing, and programming languages.

54

Outline. Neither mathematical applications nor
mathematical properties of structures is included in this
outline. They could become part of the course if stu-
dents have sufficient background. Although some of the
topics are discussed in Courses 1, 2 and 3, only the ma-
terial in Course 1 is assumed.
1. Stacks, queues, arrays, lists. Structures; algorithms
for manipulating, storage allocation and maintenance;
applications. (25%)
2. Languages for list processing. Features of one or
more languages (e.g. LISP, L", P L / I) . (5%)
3. Trees. Binary; threaded; traversal schemes: storage
representation; applications. (15'/<)
4. Hash coding. Addressing; collisions; applications of
symbol tables; storage allocation. (15%)
5. Searching and sorting. Comparison and evaluation
of methods; techniques for use with auxiliary memory
devices; applications. (15%)
6. Complex structures. Hierarchical; indexed sequen-
tial; inverted list; multilinked; applications to large
information systems including case studies with illus-
trations of why they might not work. (20%)
7. Examinations. (5 %)

Texts. A text for this course could be chosen from
the italicized items included in the following list. How-
ever, the text would have to be supplemented with ma-
terial from other references. 10, 20, 21, 24, 26, 28, 31,
37, 41, 44, 47, 49, 51, 54, 75, and 81a.

Additional Recommended Courses

The four courses described above are designed to
service a broad segment of the undergraduate student
body with an extremely limited number of faculty mem-
bers, possibly one. Students should also have the oppor-
tunity to take computer-oriented courses in their own
departments. The number of possible courses in this
category is too great to try to list. Instead, we will recom-
mend additional courses for the student who is seriously
interested in computer science whether or not that
student intends to pursue a graduate degree program in
the field.

Each of the following specific courses could be given
for special study to one or a few students or as a regular
course if the demand is great enough and an instructor
is available. Other topics could be included but might
not be possible to implement in a practical way unless
access to a large computer were available.

Assembly Language Programming. This course would
enable a student interested in software to apply the
concepts learned in Course 3; it provides a means to
become experienced in assembly language program-
ming and an introduction to systems programming.
Desirable goals for this course include proficiency in
assembly language programming, particularly using the
system on hand; knowledge of basic principles of sys-

tems programming; and implementation of specific seg-
ments of systems programs (e.g. i/o routines). Manu-
facturer's manuals would initially serve as texts. The
COSINE Committee's report, "An Undergraduate Course
on Operating Systems Principles" (June 1971) provides
a number of ideas for possible topics and references after
the student acquires some programming experience.

Structure of Programming Languages. This course
would include an introduction to grammars, lan-
guages they generate, scanners, recognizers, and other
topics as time allows. Reference material for this course
might include portions of Compiler Construction for
Digital Computers by David Cries, Ten Mini-Languages
by H.F. Ledgard or A Comparative Study of Program-
ming Languages by E. Higman. Also the features of
languages such as A L G O L and S N O B O L 4 could be studied.

Programming Languages. If any language other than
those included in courses is available, a special-study
programming course may be appropriate. As part of
this course, a student might be required to design and
implement a major software project of some benefit
either to the center or to the user community. Such a
course might carry only one credit and it might be best
given as a month-long course in schools on 4-1 -4 system.

Library List

The following list is not exhaustive. No attempt was made
to compile a list of all books on any specific topic. Certain areas
are omitted entirely; namely, programming language manuals,
books directed toward specific computers, and books primarily
oriented toward use in other disciplines (such as numerical methods,
computers and music, and programming for the behavioral
sciences).
1. Arden, B.W. An Introduction to Digital Computing.
Addison-Wesley, Reading, Mass., 1963.
2. Baer, R.M. The Digital Villain. Addison-Wesley, Reading,
Mass., 1972.
3. Barrodale, I., Roberts, F., and Ehle, B. Elementary Computer
Applications. Wiley„New York, 1971.
4. Barron, D.W. Recursive Techniques in Programming. American
Elsevier, New York, 1968.
5. Barron, D.W., Assemblers and Loaders. American Elsevier,
New York, 1969.
6. Beizer, B. The Architecture and Engineering of Digital Computer
Complexes. Plenum Press, New York, 1971.
7. Bell, C.G., and Newell, A. Computer Structures: Readings and
Examples. McGraw-Hill, New York, 1971.
8. Bemer, R.M. (Ed.) Computers and Crisis. ACM, New York,
1971.
9. Benice, D.D. (Ed.) Computer Selections. McGraw-Hill,
New York, 1971.
10. Berztiss, A.T. Data Structures: Theory and Practice. Academic
Press, New York, 1971.
11. Brooks, F., and Iverson, K. Automatic Data Processing. Wiley,
New York, 1969.
12." Cole, R.W. Introduction to Computing. McGraw-Hill,
New York, 1969.
13. Cuttle, G., and Robinson, P.B. (Eds.) Executive Programs and
Operating Systems. American Elsevier, New York, 1970.
14. Davenport, W.P. Modern Data Communications. Hayden,
New York, 1971.
15. Desmonde, W.H. Computers and Their Uses. Prentice-Hall,
Englewood Cliffs, N.J., 1971.
16. Dippel, G., and House, W.C. Information Systems. Scott,
Foresman, Chicago, 1969.

55

17. Dorf, R.C. Introduction to Computers and Computer Science.
Boyd and Fraser, San Francisco, 1972.
18. Elson, M. Concepts of Programming Languages. Science
Research Associates, New York. In press.
19. Feigenbaum, E.A., and Feldman, J. (Eds.) Computers and
Thought. McGraw-Hill, New York, 1963.
20 Flores, I. Sorting Prentice Hall, Englewood Cliffs, N.J. 1969.
21. Flores, I. Data Structures and Management. Prentice-Hall,
Englewood Cliffs, N.J., 1970.
22. Forsythe, A.I., Keenan, T.A., Organick, E.I., and Stenburg,
W. Computer Science: A First Course. Wiley, New York, 1969.
23. Foster, J.M. List Processing. American Elsevier, New York,
1967.
24. Galler, B.A. The Language of Computers. McGraw-Hill, New
York, 1962.
25. Galler, B.A., and Perlis, A.J. A View of Programming
•Languages. Addison-Wesley, Reading, Mass. 1970.
26. Gauthier, R., and Ponto, S. Designing Systems Programs.
Prentice-Hall, Englewood-Cliffs, N.J., 1970.
27. Gear, C.W. Computer Organization and Programming.
McGraw-Hill, New York, 1969.
28. Gear, C.W. Introduction to Computer Science. Science Research
Associates, New York, In press.
29. Genuys, F. (Ed.) Programming Languages. Academic Press,
New York, 1968.
30. Gordon, G. System Simulation. Prentice-Hall,
Englewood-Cliffs, N.J. 1969.
31. Gries, D. Compiler Construction for Digital Computers. Wiley,
New York, 1971.
32. Gruenberger, F. Computing: An Introduction. Harcourt Brace
and Jovanovich, New York, 1969.
33. Gruenberger, F. Computing: A Second Course. Canfield Press,
Cleveland, Ohio, 1971.
34. Gruenberger, F., and Jaffray, G. Problems for Computer
Solution. Wiley, New York, 1965.
35. Gschwind, H.W. Design of Digital Computers, An Introduction.
Springer-Verlag, New York, 1970.
36. Hamming, R. W. Computers and Society. McGraw-Hill, New
York, 1972.
37. Harrison, M.C. Data Structures and Programming. Courant
Institute of Mathematical Sciences, New York U., New York, 1970.
38. Hassitt, A. Computer Programming and Computer Systems.
Academic Press, New York, 1967.
39. Hellerman, H. Digital Computer System Principles.
McGraw-Hill, New York, 1967.
40. Higman, B. A Comparative Study of Programming Languages.
American Elsevier, New York, 1967.
41. Hopgood, F.R.A. Compiling Techniques. American Elsevier,
New York, 1969.
42. Hull, T.E., and Day, D.D.F. Computers and Problem Solving.
Addison-Wesley, Don Mills, Ontario, Canada, 1970.
43. Husson, S. Microprogramming: Principles and Practice.
Prentice-Hall, Englewood Cliffs, N.J., 1970.
44. IFIP. File Organization, selected papers from File 68—an
I.A.G. Conference. Swets and Zeitinger N.V., Amsterdam, 1969.
45. Iliffe, J. K. Basic Machine Principles. American Elsevier,
New York, 1968.
46. Iverson, K. A Programming Language. Wiley, New York, 1962.
47. Johnson, L.R. System Structure in Data, Programs and
Computers. Prentice-Hall, Englewood Cliffs, N.J., 1970.
48. Katzan Jr., H. Computer Organization and the System/370.
Van Nostrand Rheinhold, New York, 1971.
49. Knuth, D. The Art of Computer Programming, Vol. 1,
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1969.
50. Knuth, D. The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms. Addison-Wesley, Reading, Mass. 1969.
51. Knuth, D. The Art of Computer Programming, Vol. 3, Sorting
and Searching. Addison-Wesley, Reading, Mass., In press.
52. Korfhage, R. Logic and Algorithms with Applications to the
Computer and Information Sciences. Wiley, New York, 1966.
53. Laurie, E. J. Modern Computing Concepts—The IBM 360
Series. Southwestern, Cincinnati, Ohio, 1970.
54. Lefkovitz, D. File Structures for On-Line Systems. Wiley,
New York, 1967.
55. Martin, J. Design of Real-Time Computer Systems.
Prentice-Hall, Englewood Cliffs, N.J., 1967.

56. Martin, J. Telecommunications and the Computer. Prentice-Hall,
Englewood Cliffs, N.J., 1969.
57. Martin, J. Introduction to Teleprocessing. Prentice-Hall,
Englewood Cliffs, N.J., 1972.
58. Martin, J., and Norman, A.R.D. The Computerized Society.
Prentice-Hall, Englewood Cliffs, N.J., 1970.
59. Maurer, H.A., and Williams, M R. A Collection of
Programming Problems and Techniques. Prentice-Hall, Englewood
Cliffs, N.J., 1972.
60. Maurer, W.D. Programming: An Introduction to Computer
Languages and Techniques. Holden-Day, San Francisco, 1972.
61. Meadow, C. The Analysis of Information Systems. Wiley,
New York, 1967.
62. Minsky, M. Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, N.J., 1967.
63. Oettinger, A.G., and Marks, S. Run Computer Run. Harvard
U. Press, Boston, 1969.
64. Parkhill, D. The Challenge of the Computer Utility.
Addison-Wesley, Reading, Mass., 1966.
65. Ralston, A. Introduction to Programming and Computer
Science. McGraw-Hill, New York, 1971.
66. Rice, J. K., and Rice, J. R. Introduction to Computer Science:
Problems, Algorithms, Languages, Information and Computers.
Holt, Rinehart and Winston, New York, 1969.
67. Rosen, S. (Ed.) Programming Languages and Systems.
McGraw-Hill, New York, 1967.
68. Rothman, S., and Mosmann, C. Computers and Society.
Science Research Associates, New York, 1972.
69. Sammet, J. E. Programming Languages: History and
Fundamentals. Prentice-Hall, Englewood Cliffs, N.J., 1969.
70. Sanders, D. Computers in Society: An Introduction to
Information Processing. McGraw-Hill, New York, In press.
71. Sayers, A.P. (Ed.) Operating Systems Survey. Auerbach Corp.,
Princeton, N.J., 1971.
72. Sprague, R.E. Information Utilities. Prentice-Hall, Englewood
Cliffs, N.J., 1970.
73. Sterling, T.D., and Pollack, S.V. Computing and Computer
Science. Macmillan, New York, 1970.
74. Stimler, S. Real-Time Data-Processing Systems. McGraw-Hill,
New York, 1969.
75. Stone, H.S. Introduction to Computer Organization and
Data Structures. McGraw-Hill, New York, 1972.
76. Taviss, I. The Computer Impact. Prentice-Hall, Englewood
Cliffs, N.J., 1970.
77. Teague, R. Computing Problems for FORTRAN Solution.
Canfield Press, Cleveland, Ohio, 1972.
78. Trakhtenbrot, B. A. Algorithms and Automatic Computing
Machines. D.C. Heath, Boston, 1963.
79. Walker, T. Introduction to Computer Science: An
Interdisciplinary Approach. Allyn and Bacon, Boston, 1972.
80. Walker, T., and Cotterman, W.W. An Introduction to Computer
Science and Algorithmic Processes. Allyn and Bacon, Boston, 1970.
81. Watson, R.W. Timesharing System Design Concepts.
McGraw-Hill, New York, 1970.
82. Wegner, P. Programming Languages, Information Structures
and Machine Organization. McGraw-Hill, New York, 1968.
83. Weingarten, F. Translation of Computer Languages.
Holden-Day, San Francisco. In press.
84. Wilkes, M.V. Time-Sharing Computer Systems. American
Elsevier, New York, 1968.
85. In addition to the above list, several collections of articles
originally appearing in Scientific American have been published
in book form by W.H. Freeman, San Francisco. Specifically,
they are

a. Information, 1966.
b. Computers and Computation, 1971.

86. Various conference proceedings, journals, bulletins, and the
like, should also be maintained in a library collection. The
following are of special interest:

a. Communications of the ACM (monthly); Computing
Reviews (monthly); Computing Surveys (quarterly);
Proceedings, ACM National Conference (yearly); SIGCSE
Bulletin (ACM's Special Interest Group-Computer Science
Education); SIGCUEBulletin (ACM's Special Interest Group-
Computer Uses in Education); SIGUCC Bulletin (ACM's
Special Interest Group-University Computing Centers).
(Information on these publications may be obtained from

56

ACM Headquarters Office, 1133 Avenue of the Americas,
New York, NY 10036.)
b.) Proceedings, AFIPS Fall Joint Computer Conference
(yearly); Proceedings, AFIPS Spring Joint Computer Confer-
ence (yearly). (Available from AFIPS Press, 210 Summit
Avenue, Montvale, NJ 07645.)
c. Proceedings, IFIP Congress (every three years). (Available
through North-Holland, P.O. Box 3489, Amsterdam.)
d. Proceedings, IFIP World Conference on Computer Educa-
tion. (Distributed by Science Associates/International, New
York.)
e. Proceedings, Conference on Computers in the Undergrad-
uate Curriculum, 1970-1-2. (Available through Southern
Regional Education Board, Atlanta, GA 30313.)

87. The following curriculum reports are relevant to computer
science education :

a. Curriculum 68—Recommendations for academic programs
in computer science. Comm. ACM 11 (Mar. 1968), 151-197.
b. An undergraduate course on operating systems principles.
COSINE Committee Report, June 1971. (Available from
Commission on Education, National Academy of Engineering,
2101 Constitution Avenue, N.W., Washington, DC 20418.)
c. Curriculum recommendations for graduate programs in
information systems. Report of the ACM Curriculum Com-
mittee on Computer Education for Management, Comm.
ACM 15 (May 1972), 363-398.
d. Recommendations for an undergraduate program in com-
putational mathematics. Committee on the Undergraduate
Program in Mathematics May 1971. (Available from CUPM,
P.O. Box 1024, Berkeley, CA 94701.)

88. The following statistical reports provide information on the
status of computing as obtained from recent surveys:

a. Hamblen, J.W. Computers in Higher Education: Expendi-
tures, Sources of Funds and Utilization for Research and In-
struction: 1964-65 with Projections for 1968-69. (1967) 325
pp. (Available through Southern Regional Education Board,
Atlanta, GA 30313.)
b. Hamblen, J.W. Inventory of Computers in U.S. Higher
Education 1966-67: Utilization and Related Degree Programs.
(1970) 400 pp. (Available through Superintendent of Docu-
ments, U.S. Government Printing Office, Washington, D.C.)
c. Hamblen, J.W. Inventory of Computers in U.S. Higher
Education 1969-70: Utilization and Related Degree Programs.
(1972) 400 pp. (Available through Superintendent of Docu-
ments, U.S. Government Printing Office, Washington, D.C.)
d. Engel, G.L. Computer science instruction in small colleges
—An initial report. SIGCSEBull. 3, 2 (June 1971), 8-18.

57

Reports and Articles

— CURRICULUM '78
Recommendations for the Undergraduate Program
in Computer Science
A Report of the ACM Curriculum Committee on Computer Science

Editors: Richard H. Austing, University of Maryland
Bruce H. Barnes, National Science Foundation
Delia T. Bonnette, University of Southwestern Louisiana
Gerald L. Engel, Old Dominion University
Gordon Stokes, Brigham Young University

Contained in this report are the recommendations for
the undergraduate degree program in Computer Science
of the Curriculum Committee on Computer Science (C3S)
of the Association for Computing Machinery (ACM).

The core curriculum common to all computer science
undergraduate programs is presented in terms of elemen-
tary level topics and courses, and intermediate level
courses. Elective courses, used to round out an under-
graduate program, are then discussed, and the entire
program including the computer science component and
other material is presented. Issues related to undergrad-
uate computer science education, such as service courses,
supporting areas, continuing education, facilities, staff,
and articulation are presented.

Key Words and Phrases: computer sciences courses,
computer science curriculum, computer science educa-
tion, computer science undergraduate degree programs,
service courses, continuing education

CR Categories: 1.52

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Contents
1. Introduction
2. Core Curriculum

2.1 Introduction
2.2 Objectives
2.3 Elementary Material
2.4 Implementation Considerations
2.5 Sample Elementary Level Courses
2.6 Sample Intermediate Level Courses

3. Computer Science Electives
3.1 Introduction
3.2 Elementary Level
3.3 Advanced Level

4. The Undergraduate Program
4.1 Introduction
4.2 Computer Science Requirements and Electives
4.3 Mathematics Requirements
4.4 Other Requirements and Electives

5. Service Courses
5.1 Introduction
5.2 General Service Courses
5.3 Supporting Areas
5.4 Continuing Education

6. Other Considerations
6.1 Introduction
6.2 Facilities
6.3 Staff
6.4 Articulation
References
Appendix

59

1. Introduction

Curriculum development work in computer science
has been a continuing effort of the Curriculum Commit-
tee on Computer Science (C^S) of the Association for
Computing Machinery (ACM). The work leading to the
material presented in this report was started under the
chairmanship of C'S of Preston Hammer, and continued
when John Hamblen was appointed chairman in 1976.

In the time since the publication of "Curriculum '68"
[1] by C 'S, many significant developments have occurred
within computer science education, and many educa-
tional efforts have been undertaken by C3S, other groups
within ACM, and other professional organizations. As
part of the background work in preparation of this re-
port, an extensive survey of the literature of computer
science education since "Curriculum '68" was prepared
and published [2]. The efforts of C'S since 1968 are
summarized in this document.

The writing group, in its preparation of this set of
recommendations, paid considerable attention to the de-
velopments as reported in the literature, and to informal
comments received regarding "Curriculum '68." In addi-
tion to this, a variety of individuals, representing many
different types of institutions, and many different inter-
ests within computer science, were brought into C'S
meetings and working sessions to present their ideas. A
working draft of the report was prepared and published
in the June 1977 S1GCSE Bulletin in order that the ma-
terial receive as wide a distribution as possible, and to
provide an opportunity for input from interested individ-
uals. Prior to the publication of the working paper, draft
reports on specific areas were widely circulated and nu-
merous panel and discussion sessions were held both to
inform interested parties of the thinking of the Commit-
tee and to allow for comments and suggestions on the
work done to that point.

The wide circulation of the various drafts and work-
ing papers resulted in numerous suggestions and con-
structive criticisms, many of which have been incorpo-
rated into this final document. In addition to this input,
a relationship of mutual benefit has developed by inter-
action with the parallel, but independent, development
of the Model Curricula Subcommittee of the IEEE Com-
puter Society leading to the publication of their curricu-
lum guidelines in Computer Science and Engineering [3].

The writing group is most grateful to all those indi-
viduals who contributed to the effort. The Appendix con-
tains the names and affiliations of those people who
contributed by serving on C'S, by supplying course out-
lines, by supplying comments on the draft report, and in
other ways contributing to the final version presented
here. The Committee, of course, assumes full responsi-
bility for the substance of this material and the recom-
mendations contained herein.

The report first presents the core curriculum com-
mon to all computer science undergraduate programs.
This is presented in Section 2 in terms of elementary level

material and courses, and intermediate level courses.
Section 3 presents computer science ©lectives that may
be used to round out an undergraduate program. In Sec-
tion 4, the full course of study is presented which includes
the computer science component, and other material
necessary in a program at the bachelor degree level. The
important areas of service courses, including general
service courses, supporting areas, and continuing educa-
tion are discussed in Section 5. The report concludes by
addressing the areas of facilities, staff, and articulation
in Section 6.

In studying this report, it should be recognized that
it is a set of guidelines, prepared by a group of individuals
working in a committee mode. As such, the recommen-
dations will not satisfy everyone, nor is it intended that
they be appropriate to all institutions. It is the hope of the
Committee that this report will further stimulate com-
puter science educators to think about their programs
and, as appropriate, to share their thinking with others.
If this is done, the primary objective of the preparation
of these guidelines will have been met.

2. Core Curriculum

2.1 Introduction
Within the present work, C 'S has considered the clas-

sification scheme of computer science as defined in "Cur-
riculum '68" with a view to isolating those areas which
should be common to all computer science undergradu-
ate degree programs.

The core curriculum, described in this section, repre-
sents this refinement. The material is divided into a sec-
tion on elementary material, including the specifications
of topics at this level and the description of five sample
courses, and the intermediate levels, including the de-
scription of three sample courses. This collection of eight
courses represents one way to include the required core
material in the computer science undergraduate major.

While the course material is detailed later on in the
section, to gain perspective the eight courses (three se-
mester hours each) are listed here:
CS 1. Computer Programming I
CS 2. Computer Programming II
CS 3. Introduction to Computer Systems
CS 4. Introduction to Computer Organization
CS 5. Introduction to File Processing
CS 6. Operating Systems and Computer Architecture 1
CS 7. Data Structures and Algorithm Analysis
CS 8. Organization of Programming Languages

The structuring of the courses as to prerequisites is
shown in Figure 1. The solid lines represent required pre-
requisites, while the dashed lines represent highly recom-
mended prerequisites. This diagram includes courses
representing only the computer science material consid-
ered to be essential to the program. The entire program,
including relevant mathematics requirements, is illus-
trated in Figure 2 on page 160.

60

Fig. 1. Computer science core curriculum.

C S 1

C S 2

C S 3 C S 4 C S 5

The discussion of the core course material in this
section concentrates on the computer science compo-
nents which are necessary for the undergraduate pro-
gram. The relationship of this material to two-year pro-
grams (especially transfer programs) and the developing
high school programs will be considered in Section 6.4.

The elementary core material represents subject mat-
ter necessary for all students in computer science in order
to be able to achieve the objectives of the undergraduate
major. The intermediate level core material follows nat-
urally by providing the students who have been equipped
with the basics of the field with the tools to be operational
computer scientists.

2.2 Objectives
The core material is required as a prerequisite for ad-

vanced courses in the field and thus it is essential that the
material be presented early in the program. In learning
this material, the computer science student should be
provided with the foundation for achieving at least the
objectives of an undergraduate degree program that are
listed below.

Computer science majors should:
1. be able to write programs in a reasonable amount of

time that work correctly, are well documented, and
are readable;

2. be able to determine whether or not they have written
a reasonably efficient and well organized program;

3. know what general types of problems are amenable
to computer solution, and the various tools necessary
for solving such problems;

4. be able to assess the implications of work performed
either as an individual or as a member of a team;

5. understand basic computer architectures;
6. be prepared to pursue in-depth training in one or

more application areas or further education in com-
puter science.

It should be recognized that these alone do not rep-
resent the total objectives of an undergraduate program,
but only those directly related to the computer science
component. Material addressing other requirements and
electives is covered in Section 4.4.

2.3 Elementary Material
In order to facilitate the attainment of the objectives

above, computer science majors must be given a thor-
ough grounding in the study of the implementation of
algorithms in programming languages which operate on
data structures in the environment of hardware. Empha-
sis at the elementary level then should be placed on algo-
rithms, programming, and data structures, but with a
good understanding of the hardware capabilities involved
in their implementation.

Specifically, the following topics are considered ele-
mentary. They should be common to all undergraduate
programs in computer science.

Programming Topics
PI. Algorithms: includes the concept and properties of

algorithms; the role of algorithms in the problem
solving process; constructs and languages to facili-
tate the expression of algorithms.

P2. Programming Languages: includes basic syntax and
semantics of a higher level (problem oriented) lan-
guage; subprograms; I /O; recursion.

P3. Programming Style: includes the preparation of
readable, understandable, modifiable, and more
easily verifiable programs through the application
of concepts and techniques of structured program-
ming; program documentation; some practical as-
pects of proving programs correct. (Note: Program-
ming style should pervade the entire curriculum
rather than be considered as a separate topic.)

P4. Debugging and Verification: includes the use of de-
bugging software, selection of test data; techniques
for error detection; relation of good programming
style to the use of error detection; and program ver-
ification.

P5. Applications: includes an introduction to uses of
selected topics in areas such as information retrieval,
file management, lexical analysis, string processing
and numeric computation; need for and examples of
different types of programming languages; social,
philosophical, and ethical considerations.

Software Organization
51. Computer Structure and Machine Language: in-

cludes organization of computers in terms of I /O,
storage, control and processing units; register and
storage structures, instruction format and execution;
principal instruction types; machine arithmetic; pro-
gram control; I /O operations; interrupts.

52. Data Representation: includes bits, bytes, words and
other information structures; number representa-
tion; representation of elementary data structures;
data transmission, error detection and correction;
fixed versus variable word lengths.

53. Symbolic Coding and Assembly Systems: includes
mnemonic operation codes; labels; symbolic ad-
dresses and address expressions; literals; extended
machine operations and pseudo operations; error
flags and messages; scanning of symbolic instruc-

61

tions and symbol table construction; overall design
and operation of assemblers, compilers, and inter-
preters.

54. Addressing Techniques: includes absolute, relative,
base associative, indirect, and immediate address-
ing; indexing; memory mapping functions; storage
allocation, paging and machine organization to facil-
itate modes of addressing.

55. Macros: includes definition, call, expansion of
macros; parameter handling; conditional assembly
and assembly time computation.

56. Program Segmentation and Linkage: includes sub-
routines, coroutines and functions; subprogram
loading and linkage; common data linkage transfer
vectors; parameter passing and binding; overlays;-
re-entrant subprograms; stacking techniques; link-
age using page and segment tables.

57. Linkers and Loaders: separate compilation of sub-
routines; incoming and outgoing symbols; reloca-
tion; resolving intersegment references by direct and
indirect linking.

58. Systems and Utility Programs: includes basic con-
cepts of loaders, I /O systems, human interface with
operating systems; program libraries.

Hardware Organization
HI. Computer Systems Organization: includes charac-

teristics of, and relationships between I /O devices,
processors, control units, main and auxiliary storage
devices; organization of modules into a system; mul-
tiple processor configurations and computer net-
works; relationship between computer organization
and software.

H2. Logic Design: includes basic digital circuits; AND,
OR, and NOT elements; half-adder, adder, storage
and delay elements; encoding-decoding logic; basic
concepts of microprogramming; logical equivalence
between hardware and software; elements of switch-
ing algebra; combinatorial and sequential networks.

H3. Data Representation and Transfer: includes codes,
number representation; flipflops, registers, gates.

H4. Digital Arithmetic: includes serial versus parallel ad-
ders; subtraction and signed magnitude versus com-
plemented arithmetic; multiply/divide algorithms;
elementary speed-up techniques for arithmetic.

H5. Digital Storage and Accessing: includes memory
control; data and address buses; addressing and
accessing methods; memory segmentation; data flow
in multimemory and hierarchical systems.

H6. Control and I /O: includes synchronous and asyn-
chronous control; interrupts; modes of communi-
cation with processors.

H7. Reliability: includes error detection and correction,
diagnostics.

Data Structures and File Processing
Dl.Data Structures: includes arrays, strings, stacks,

queues, linked lists; representation in memory; algo-
rithms for manipulating data within these structures.

D2. Sorting and searching: includes algorithms for in-
core sorting and searching methods; comparative
efficiency of methods; table lookup techniques; hash
coding.

D3. Trees: includes basic terminology and types; repre-
sentation as binary trees; traversal schemes; repre-
sentation in memory; breadth-first and depth-first
search techniques; threading.

D4. File Terminology: includes record, file, blocking,
database; overall idea of database management sys-
tems.

D5. Sequential Access: includes physical characteristics
of appropriate storage media; sort/merge algo-
rithms; file manipulation techniques for updating,
deleting, and inserting records.

D6. Random Access: includes physical characteristics of
appropriate storage media; physical representation
of data structures on storage devices; algorithms and
techniques for implementing inverted lists, multi-
lists, indexed sequential, hierarchical structures.

D7. File I /O: includes file control systems (directory,
allocation, file control table, file security); I /O spec-
ification statements for allocating space and catalog-
ing files; file utility routines; data handling (format
definition, block buffering, buffer pools, compac-
tion).

2.4 Implementation Considerations
Throughout the presentation of the elementary level

material, programming projects should be assigned; these
projects should be designed to aid in the comprehension
and use of language details, to exemplify the problem
solving process, and/or to introduce more advanced
areas of computer science.

Good programming style should be stressed in the
teaching of all of this material. The discipline required
to achieve style will promote the development of effec-
tive algorithms and should result in students writing cor-
rect, understandable programs. Thus emphasis in the
programming exercises should be placed on efficient
algorithms, structured programming techniques, and
good documentation.

A specific course on structured programming, or on
programming style, is not intended at the elementary
level. The topics are of such importance that they should
be considered a common thread throughout the entire
curriculum and, as such, should be totally integrated into
the curriculum. They provide a philosophy of discipline
which pervades all of the course work.

Throughout the presentation of this elementary ma-
terial, meaningful actual computer applications should
be cited and reviewed. In the process of so doing, refer-
ence must be made to the social, philosophical, and ethi-
cal considerations involved in the applications. Like
structured programming, these issues are of such import-
ance to the development of the computer scientist that
they must permeate the instruction at this level.

It would be desirable, though not necessary, for the

62

computer science major to be familiar with all of the ele-
mentary level topics before taking intermediate level
courses. This, however, may not always be possible. Fac-
tors influencing how and when courses are offered which
include the material are: the purpose and circumstances
of a particular department within the context of its edu-
cational institution, the availability of computer re-
sources, and whether an institution is on the quarter or
semester system.

Most courses at this level should include laboratory
sessions. These laboratories provide the student with the
opportunity to gain practical experience by actually solv-
ing problems on the computer. Laboratory sessions
should be implemented in such a way that the student
can develop good programming techniques under close .
supervision. The instructor may or may not be the same
as for the lecture portion of the course. The absence of
a specific laboratory in a course description does not im-
ply that programming should not be required.

2.5 Sample Elementary Level Courses
The following set of courses is provided merely as a

sample to illustrate one of the ways in which core mate-
rial at the elementary level might be presented. Other
implementations are possible. No matter what implemen-
tation is attempted, however, all of the elementary mate-
rial specified in Section 2.3 should be included so that
students are equipped with adequate background for in-
termediate and advanced level material.

Each course described in the sample set is assumed
to be offered on a semester basis. Suggested numbers of
hours of credit are given in parentheses immediately after
the course titles. For example, (2-2-3) indicates two
hours of lectures and two hours of laboratory per week
for a total of three semester hours of credit.

CS 1. Computer Programming I (2-2-3)
The objectives of this course are:

(a) to introduce problem solving methods and algorithm
development;
(b) to teach a high level programming language that is
widely used; and
(c) to teach how to design, code, debug, and document
programs using techniques of good programming style.
C O U R S E O U T L I N E

The material on a high level programming language
and on algorithm development can be taught best as an
integrated whole. Thus the topics should not be covered
sequentially. The emphasis of the course is on the tech-
niques of algorithm development and programming with
style. Neither esoteric features of a programming lan-
guage nor other aspects of computers should be allowed
to interfere with that purpose.
T O P I C S

A. Computer Organization. An overview identifying
components and their functions, machine and assem-
bly languages. (5%)

B. Programming Language and Programming. Repre-
sentation of integers, reals, characters, instructions.
Data types, constants, variables. Arithmetic expres-
sion. Assignment statement. Logical expression. Se-
quencing, alternation, and iteration. Arrays. Subpro-
grams and parameters. Simple I/O. Programming
projects utilizing concepts and emphasizing good
programming style . (45 %)

C. Algorithm Development. Techniques of problem
solving. Flowcharting. Stepwise refinement. Simple
numerical examples. Algorithms for searching (e.g.
linear, binary), sorting (e.g. exchange, insertion),
merging of ordered lists. Examples taken from such
areas as business applications involving data manip-
ulation, and simulations involving games. (45%)

D. Examinations. (5%)

CS 2. Computer Programming II (2-2-3)
Prerequisite: CS 1

The objectives of this course are:
(a) to continue the development of discipline in program
design, in style and expression, in debugging and testing,
especially for larger programs;
(b) to introduce algorithmic analysis; and
(c) to introduce basic aspects of string processing, recur-
sion, internal search/sort methods and simple data struc-
tures.
C O U R S E O U T L I N E

The topics in this outline should be introduced as
needed in the context of one or more projects involving
larger programs. The instructor may choose to begin with
the statement of a sizeable project, then utilize structured
programming techniques to develop a number of small
projects each of which involves string processing, recur-
sion, searching and sorting, or data structures. The em-
phasis on good programming style, expression, and doc-
umentation, begun in CS 1, should be continued. In order
to do this effectively, it may be necessary to introduce a
second language (especially if a language like Fortran is
used in CS 1). In that case, details of the language should
be included in the outline. Analysis of algorithms should
be introduced, but at this level such analysis should be
given by the instructor to the student.

Consideration should be given to the implementation
of programming projects by organizing students into
programming teams. This technique is essential in ad-
vanced level courses and should be attempted as early as
possible in the curriculum. If large class size makes such
an approach impractical, every effort should be made to
have each student's programs read and critiqued by an-
other student.
T O P I C S

A. Review. Principles of good programming style, ex-
pression, and documentation. Details of a second lan-
guage if appropriate. (15%)

B. Structured Programming Concepts. Control flow. In-
variant relation of a loop. Stepwise refinement of

63

both statements and data structures, or top-down
programming. (40%)

C. Debugging and Testing. (10%)
D. String Processing. Concatenation. Substrings. Match-

ing. (5 %)
E. Internal Searching and Sorting. Methods such as bi-

nary, radix, Shell, quicksort, merge sort. Hash cod-
ing. (10%)

F. Data Structures. Linear allocation (e.g. stacks,
queues, deques) and linked allocation (e.g. simple
linked lists). (10%)

G. Recursion. (5%)
H. Examinations. (5%)

CS 3. Introduction to Computer Systems (2-2-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to provide basic concepts of computer systems;
(b) to introduce computer architecture; and
(c) to teach an assembly language.
C O U R S E O U T L I N E

The extent to which each topic is discussed and the
ordering of topics depends on the facilities available and
the nature and orientation of CS 4 described below.
Enough assembly language details should be covered
and projects assigned so that the student gains experience
in programming a specific computer. However, concepts
and techniques that apply to a broad range of computers
should be emphasized. Programming methods that are
developed in CS 1 and CS 2 should also be utilized in
this course.
T O P I C S

A. Computer Structure and Machine Language. Mem-
ory, control, processing and I /O units. Registers,
principal machine instruction types and their formats.
Character representation. Program control. Fetch-
execute cycle. Timing. I /O operations. (15%)

B. Assembly Language. Mnemonic operations. Sym-
bolic addresses. Assembler concepts and instruction
format. Data-word definition. Literals. Location
counter. Error flags and messages. Implementation
of high level language constructs. (30%)

C. Addressing Techniques. Indexing. Indirect Address-
ing. Absolute and relative addressing. (5%)

D. Macros. Definition. Call. Parameters. Expansion.
Nesting. Conditional assembly. (10%)

E. File I/O. Basic physical characteristics of I /O and
auxiliary storage devices. File control system. I /O
specification statements and device handlers. Data
handling, including buffering and blocking. (5%)

F. Program Segmentation and Linkage. Subroutines.
Coroutines. Recursive and re-entrant routines.
(20%)

G. Assembler Construction. One-pass and two-pass as-
semblers. Relocation. Relocatable loaders. (5%)

H. Interpretive Routines. Simulators. Trace. (5%)
I. Examinations. (5%)

CS 4. Introduction to Computer Organization
(3-0-3) or (2-2-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to introduce the organization and structuring of the
major hardware components of computers;
(b) to understand the mechanics of information transfer
and control within a digital computer system; and
(c) to provide the fundamentals of logic design.
C O U R S E O U T L I N E

The three main categories in the outline, namely
computer architecture, arithmetic, and basic logic de-
sign, should be interwoven throughout the course rather
than taught sequentially. The first two of these areas may
be covered, at least in part, in CS 3 and the amount of
material included in this course will depend on how the
topics are divided between the two courses. The logic
design part of the outline is specific and essential to this
course. The functional, logic design level is emphasized
rather than circuit details which are more appropriate in
engineering curricula. The functional level provides the
student with an understanding of the mechanics of in-
formation transfer and control within the computer sys-
tem. Although much of the course material can and
should be presented in a form that is independent of any
particular technology, it is recommended that an actual,
simple minicomputer or microcomputer system be stud-
ied. A supplemental laboratory is appropriate for that
purpose.
T O P I C S

A. Basic Logic Design. Representation of both data and
control information by digital (binary) signals. Logic
properties of elemental devices for processing (gates)
and storing (flipflops) information. Description by
truth tables, Boolean functions and timing diagrams.
Analysis and synthesis of combinatorial networks ot
commonly used gate types. Parallel and serial regis-
ters. Analysis and synthesis of simple synchronous
control mechanisms; data and address buses; ad-
dressing and accessing methods; memory segmenta-
tion. Practical methods of timing pulse generation.
(25%)

B. Coding. Commonly used codes (e.g. BCD, ASCII).
• Parity generation and detection. Encoders, decoders,

code converters. (5%)
C. Number Representation and Arithmetic. Binary

number representation, unsigned addition and sub-
traction. One's and two's complement, signed mag-
nitude and excess radix number representations and
their pros and cons for implementing elementary
arithmetic for BCD and excess-3 representations.
(1 0 %)

D. Computer Architecture. Functions of, and communi-
cation between, large-scale components of a com-
puter system. Hardware implementation and se-
quencing of instruction fetch, address construction,
and instruction execution. Data flow and control

64

block diagrams of a simple processor. Concept of
microprogram and analogy with software. Properties
of simple I /O devices and their controllers, synchro-
nous control, interrupts. Modes of communications
with processors. (35%)

E. Example. Study of an actual, simple minicomputer
or microcomputer system. (20%)

F. Examinations. (5 %)

CS 5. Introduction to File Processing (3-0-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to introduce concepts and techniques of structuring
data on bulk storage devices;
(b) to provide experience in the use of bulk storage de-
vices; and
(c) to provide the foundation for applications of data
structures and file processing techniques.
C O U R S E O U T L I N E

The emphasis given to topics in this outline will vary
depending on the computer facilities available to stu-
dents. Programming projects should be assigned to give
students experience in file processing. Characteristics
and utilization of a variety of storage devices should be
covered even though some of the devices are not part of
the computer system that is used. Algorithmic analysis
and programming techniques developed in CS 2 should
be utilized.
T O P I C S

A. File Processing Environment. Definitions of rccord,
file, blocking, compaction, database. Overview of
database management system. (5%)

B. Sequential Access. Physical characteristics of sequen-
tial media (tape, cards, etc.). External sort/merge
algorithms. File manipulation techniques for updat-
ing, deleting and inserting records in sequential files.
(30%)

C. Data Structures. Algorithms for manipulating linked
lists. Binary, B-trees, B*-trees, and AVL trees. Algo-
rithms for traversing and balancing trees. Basic con-
cepts of networks (plex structures). (20%)

D. Random Access. Physical characteristics of disk/
drum and other bulk storage devices. Physical repre-
sentation of data structure on storage devices. Algo-
rithms and techniques for implementing inverted
lists, multilist, indexed sequential, and hierarchical
structures. (35%)

E. File I/O. File control systems and utility routines,
I /O specification statements for allocating space and
cataloging files. (5 %)

F. Examinations. (5%)

2.6 Sample Intermediate Level Courses
Sample versions of three courses at the intermediate

level are given to illustrate topics and material which
should be required of all computer science majors. This
material and the elementary level topics in Section 2.3

constitute the minimum requirements which should be
common to all computer science undergraduate pro-
grams to achieve the basic objectives of those programs.

Courses which cover the intermediate level material
contain a strong emphasis on fundamental concepts ex-
emplified by various types of programming languages,
architecture and operating systems, and data structures.
Neither theoretical treatments nor case study approaches
in and of themselves are adequate or appropriate at this
level. Advanced level (elective) courses may be used for
predominantly theoretical treatment of topics or for com-
prehensive case studies.

CS 6. Operating Systems and Computer
Architecture I (2-2-3)
Prerequisite: CS 3 and CS 4

(CS 5 recommended)
The objectives of this course are:

(a) to develop an understanding of the organization and
architecture of computer systems at the register-transfer
and programming levels of system description;
(b) to introduce the major concept areas of operating sys-
tems principles;
(c) to teach the intcr-relationships between the operating
system and the architecture of computer systems.
C O U R S E O U T L I N E

This course should emphasize concepts rather than
case studies. Subtleties do exist, however, in operating
systems that do not readily follow from concepts alone.
It is recommended that a laboratory requiring hands on
experience be included with this course.

The laboratory for the course would ideally use a
small computer where students could actually implement
sections of operating systems and have them fail without
serious consequences to other users. This system should
have, at a minimum, a CPU, memory, disk or tape, and
some terminal device such as a teletype or CRT. The
second best choice for the laboratory experience would
be a simulated system running on a larger machine.

The course material should be liberally sprinkled
with examples of operating system segments imple-
mented on particular computer system architectures. The
interdependence of operating systems and architecture
should be clearly delineated. Integrating these subjects
at an early stage in the curriculum is particularly impor-
tant because the effects of computer architecture on sys-
tems software has long been recognized. Also, modern
systems combine the design of operating systems and the
architecture.
T O P I C S

A. Review. Instruction sets. I /O and interrupt structure.
Addressing schemes. Microprogramming. (10%)

B. Dynamic Procedure Activation. Procedure activation
and deactivation on a stack, including dynamic stor-
age allocation, passing value and reference parame-
ters, establishing new local environments, addressing
mechanisms for accessing parameters (e.g. displays,

65

relative addressing in the stack). Implementing non-
local references. Re-entrant programs. Implementa-
tion on register machines. (15%)

C. System Structure. Design methodologies such as
level, abstract data types, monitors, kernels, nuclei,
networks of operating system modules. Proving cor-
rectness. (10%)

D. Evaluation. Elementary queueing, network models
of systems, bottlenecks, program behavior, and sta-
tistical analysis. (15%)

E. Memory Management. Characteristics of the hier-
archy of storage media, virtual memory, paging, seg-
mentation. Policies and mechanisms for cflicicncy of
mapping operations and storage utilization. Memory
protection. Multiprogramming. Problems of auxil-
iary memory. (20%)

F. Process Management. Asynchronous processes. Us-
ing interrupt hardware to trigger software procedure
calls. Process stateword and automatic SWITCH in-
structions. Semaphores. Ready lists. Implementing
a simple scheduler. Examples of process control
problems such as deadlock, producer/consumcrs,
readers/writers. (20%)

G. Recovery Procedures. Techniques of automatic and
manual recovery in the event of system failures. (5%)

H. Examinations. (5%)

CS 7. Data Structures and Algorithm Analysis
(3-0-3)
Prerequisite: CS 5

The objectives of this course are:
(a) to apply analysis and design techniques to nonnu-
meric algorithms which act on data structures;
(b) to utilize algorithmic analysis and design criteria in
the selection of methods for data manipulation in the
environment of a database management system.
C O U R S E O U I . I N E

The materia! in this outline could be covered sequen-
tially in a course. It is designed to build on the founda-
tion established in the elementary material, particularly
on that material which involves algorithm development
(PI, P3) and data structures and file processing (Dl,
D7). The practical approach in the earlier material
should be made more rigorous in this course through the
use of techniques for the analysis and design of efficient
algorithms. The results of this more formal study should
then be incorporated into data management system de-
sign decisions. This involves differentiating between theo-
retical or experimental results for individual methods
and the results which might actually be achieved in sys-
tems which integrate a variety of methods and data struc-
tures. Thus, database management systems provide the
applications environment for topics discussed in the
course.

Projects and assignments should involve implemen-
tation of theoretical results. This suggests an alternative
way of covering the material in the course, namely to

treat concepts, algorithms, and analysis in class and deal
with their impact on system design in assignments. Of
course, some in-class discussions of this impact would
occur, but at various times throughout the course rather
than concentrated at the end.
T O P I C S

A. Review. Basic data structures such as stacks, queues,
lists, trees. Algorithms for their implementation.
(1 0 %)

B. Graphs. Definition, terminology, and property (e.g.
connectivity). Algorithms for finding paths and span-
ning trees. (15%)

C. Algorithms Design and Analysis. Basic techniques of
design and analysis of efficient algorithms for internal
and external sorling/merging/searching. Intuitive
notions of complexity (e.g. NP-hard problems).
(30%)

D. Memory Management. Hashing. Algorithms for dy-
namic storage allocation (e.g. buddy system, bound-
ary-tag), garbage collection and compaction. (15%)

H. System Design. Integration of data structures, sort/
merge/search methods (internal and external) and
memory media into a simple database management
system. Accessing methods. Effects on run time,
costs, cflicicncy. (25%)

F. Examinations. (5%)

CS 8. Organization of Programming Languages
(3-0-3)
Prerequisite: CS 2 (CS 3 and CS 5 highly

recommended)
The objectives of this course are:

(a) to develop an understanding of the organization of
programming languages, especially the run-time behav-
ior of programs;
(b) to introduce the formal study of programming lan-
guage specification and analysis;
(c) to continue the development of problem solution and
programming skills introduced in the elementary level
material.
C O U R S E O U T L I N E

This is an applied course in programming language
constructs emphasizing the run-time behavior of pro-
grams. It should provide appropriate background for
advanced level courses involving formal and theoretical
aspects of programming languages and/or the compila-
tion process.

The material in (his outline is not intended to be cov-
ered sequentially. Instead, programming languages could
be specified and analyzed one at a time in terms of their
features and limitations based on their run-time environ-
ments. Alternatively, desirable specification of program-
ming languages could be discussed and then exemplified
by citing their implementations in various languages. In
either case, programming exercises in each language
should be assigned to emphasize the implementations of
language features.

66

T O P I C S

A. Language Definition Structure. Formal language con-
cepts including syntax and basic characteristics of
grammars, especially finite state, context-free, and
ambiguous. Backus-Naur Form. A language such as
Algol as an example. (15%)

B. Data Types and Structures. Review of basic data
types, including lists and trees. Constructs for speci-
fying and manipulating data types. Language fea-
tures affecting static and dynamic data storage man-
agement. (10%)

C. Control Structures and Data Flow. Programming
language constructs for specifying program control
and data transfer, including DO . . . FOR, DO . . .
WHILE, REPEAT . . . UNTIL, BREAK, subrou-
tines, procedures, block structures, and interrupts.
Decision tables, recursion. Relationship with good
programming style should be emphasized. (15%)

D. Run-time Consideration. The effects of the run-time
environment and binding time on various features of
programming languages. (25%)

E. Interpretative Languages. Compilation vs. interpre-
tation. String processing with language features such
as those available in SNOBOL 4. Vector processing
with language features such as those available in
APL. (20%)

F. Lexical Analysis and Parsing. An introduction to
lexical analysis including scanning, finite state ac-
ceptors and symbol tables. An introduction to pars-
ing and compilers including push-down acceptors,
top-down and bottom-up parsing. (10%)

G. Examinations. (5%)

3. Computer Science Electives

3.1 Introduction
In this section a variety of computer science electives

will be considered which are appropriate at the elemen-
tary and advanced levels. Elective courses at the elemen-
tary level, while enhancing the program of a student,
normally should not be used to meet the requirements of
the major program. Elective courses at the advanced
level should be selected to meet major requirements as
well as to allow the student to explore particular areas of
computer science in more detail.

3.2 Elementary Level
At the elementary level it would be highly desirable to

provide a mechanism for offering courses in specific pro-
gramming languages such as APL, Cobol, LISP, or PL/I
which could be taken as electives by computer science
majors or majors in other disciplines. The extent of the
course, the number of credits offered and the prerequi-
sites would depend on the language offered and the pur-
pose for offering it. One convenient way to achieve this
goal would be to include in the curriculum a Program-
ming Language Laboratory for variable credit (i.e. one

to three semester hours). The prerequisite could be des-
ignated in general as "consent of instructor" or more
specifically as CS 1 or CS 2 and the laboratory could be
taken for repeated credit provided that different lan-
guages were taught. In addition to its function as an elec-
tive, the laboratory could be offered in conjunction with
an intermediate or advanced course, thus enabling an
instructor to require students to learn a specific language
at the same time they take a course (e.g. LISP in the
laboratory along with CS 7 - D a t a Structures and Algo-
rithm Analysis).

3.3 Advanced Level
Ten advanced level elective courses are specified.

Computer Science departments should offer as many as
possible of these courses on a regular basis, but few de-
partments are expected to have sufficient resources to
offer all, or even a large majority, of them. Possible addi-
tional courses which could be offered as special topics
are listed in Section 3.4.

CS 9. Computers and Society (3-0*3)
Prerequisite: elementary core material

The objectives of this course are:
(a) to present concepts of social value and valuations;
(b) to introduce models which describe the impact of
computers on society;
(c) to provide a framework for professional activity that
involves explicit consideration of and decisions concern-
ing social impact;
(d) to present tools and techniques which are applicable
to problems posed by the social impact of computers.

Much debate surrounds the role of this course in the
curriculum. While few will disagree that professional
computer scientists should be instructed to evaluate
social issues regarding that which they do, it has been
argued that such a course is not a computer science
course, but rather should be in the area of the social sci-
ences. Another argument is presented which states that
this material is so important that it should not merely be
covered in a single course, but instead should be inte-
grated throughout the curriculum. Although this latter
argument has validity, it is difficult to insure sufficient
coverage of topics when they are scattered throughout
a number of courses. As a result it is recommended that
this coursc be considered at least as a strongly recom-
mended elective. If, in fact, the material to meet the
above objectives is not covered in the other intermediate
and advanced level courses in this program, then this
course should be required.

A computer science major taking an advanced level
computers and society course would be expected to be
familiar with the elementary material described in the
previous section. All of that material, however, is not
necessarily prerequisite for such a course. The prerequi-
site should, in fact, be chosen in such a manner that non-
majors would also be able to take the course. A mixture
of majors in such a course would provide broadening

67

interchange and would benefit both the computer science
students and the other majors. The course should be
taught by the computer science faculty, but team-teach-
ing with faculty from other disciplines should be encour-
aged. The course could be general and treat a number of
computer impact topics, or specific, and treat in depth
one of the topics (such as legal issues in computing). This
recommendation is conditioned on the assumption that
instructors who present material on societal impact,
whether as an entire course or as part of other courses,
will try to include both sides of or approaches to issues
without instilling their own philosophical leanings 011
complex societal issues. For example, certain topics con-
tain political overtones which should be discussed, but
which, if not done carefully, can give the material a polit-
ical science flavor it does not deserve.

A strict outline is not given. The number of topics
and extent of coverage as well as the instructional tech-
niques used can vary considerably and still meet the ob-
jectives of the course. A term project involving computer
applications that are manifested in the local community
is strongly recommended. Possible topics, but certainly
not an exhaustive list, that could be included in such a
course are as follows:
A. History of computing and technology
B. The place of the computer in modern society
C. The computer and the individual
D. Survey of computer applications
E. Legal issues
F. Computers in decision-making processes
G. The computer scientist as a professional
H. Futurists' views of computing
I. Public perception of computers and computer

scientists

CS 10. Operating Systems and Computer
Architecture II (2-2-3)
Prerequisite: CS 6; Corequisite: a course in

statistics
C O U R S E O U T L I N E

This course continues the development of the mate-
rial in CS 6. Emphasis should be on intrasystem com-
munication.
T O P I C S

A. Review. I /O and interrupt structure. Addressing
schemes. Memory management. (10%)

B. Concurrent Processes. Concepts of processes in par-
allel. Problems associated with determinancy, free-
dom from deadlock, mutual exclusion, and synchro-
nization. (15%)

C. Name Management. Limitations of linear address
space. Implementation of tree-structured space of
objects for the support of modular programming.
(15%)

D. Resource Allocation. Queueing and network control
policies. Concepts of system balancing and thrashing.

Job activation/deactivation. Process scheduling.
Multiprogramming systems. (25%)

E. Protection. Contraints for accessing objects. Mech-
anism to specify and enforce access rules. Imple-
mentation in existing systems. (15%)

F. Advanced Architecture and Operating Systems Im-
plementations. Pipelining and parallelism. User in-
terface considerations. Introduction to telecommuni-
cations, networks (including minicomputers) and
distributed systems. (15%)

G. Examinations. (5%)

CS 11. Database Management Systems Design
(3-0-3)
Prerequisites: CS 6 and CS 7

C O U R S E O U T L I N E

This course should emphasize the concepts and struc-
tures necessary to design and implement a database man-
agement system. The student should become acquainted
with current literature on the subject and should be given
an opportunity to use a database management system if
possible.

During the course the student should gain an under-
standing of various physical file organization and data
organization techniques. The concept of data models
should be covered and the network, relational, and hier-
archical data models should be explored. Examples of
specific database management systems should be ex-
amined and related to the data models discussed. The
student should become familiar with normalized forms
of data relations including canonical schema representa-
tions. Techniques of systems design and implementation
should be discussed and practiced. Data integrity and file
security techniques should be explored. The major ex-
perience of the course should be the design and imple-
mentation of a simple database management system that
would include file security and some form of query into
the system.
T O P I C S

A. Introduction to Database Concepts. Goals of DBMS
including data independence, relationships, logical
and physical organizations, schema and subschema.
(5%)

B. Data Models. Hierarchical, network, and relational
models with a description of the logical and data
structure representation of the database system. Ex-
amples of implementations of the various models.
(15%)

C. Data Normalization. First, second, and third normal
forms of data relations. Canonical schema. Data in-
dependence. (5%)

D. Data Description Languages. Forms, applications,
examples, design strategies. (10%)

E. Query Facilities. Relational algebra, relational cal-
culus, data structures for establishing relations.
Query functions. Design and translation strategies.
(15%)

68

F. File Organization. Storage hierarchies, data struc-
tures, multiple key systems, indexed files, hashing.
Physical characteristics. (25%)

G. Index Organization. Relation to files. Inverted file
systems. Design strategies. (5%)

H. File Security. Authentication, authorization, trans-
formation, encryptions. Hardware and software tech-
niques. Design strategies. (10%)

I. Data Integrity and Reliability. Redundancy, recov-
ery, locking, and monitoring. (5 %)

J. Examinations. (5%)

CS 12. Artificial Intelligence (3-0-3)
Prerequisite: CS 7

C O U R S E O U T L I N E

This course introduces students to basic concepts
and techniques of artificial intelligence, or intelligent sys-
tems, and gives insights into active research areas and
applications. Emphasis is placed on representation as a
central and necessary concept for work in intelligent sys-
tems. Strategies for choosing representations as well as
notational systems and structures should be discussed.
Students should understand, for example, that the selec-
tion of a programming language is really a basic repre-
sentational choice and that an important component of
that choice is whether the programming language is
really the basic representational mode or whether it is a
translator/interpreter of an intermediate representa-
tional mode such as the predicate calculus or other nota-
tional system (e.g. modal or fuzzy logics).

Other issues of importance in this course are natural
language, vision systems, search strategies, and control.
The extent and type of coverage will vary. The use of
natural language and vision systems in applications of
intelligent systems research to other disciplines should
be emphasized. Search strategies should be seen as be-
ing implicit in representation and control. General issues
related to control should be discussed and illustrated by
examples of existing systems. A variety of applications
could be mentioned at the beginning of the course as
motivation for studying intelligent systems. These appli-
cations could then be elaborated on at appropriate times
throughout the course or at the end.

Students could profit from a background in LISP be-
cause of its widespread use in artificial intelligence work.
A Programming Language Laboratory as described in
Section 3.2 could be used to provide this background
either concurrently or with CS 7. If neither alternative is
possible, then an introduction to LISP could be included
in the course during the discussion of representation, but
there would not be enough time for an in-depth treatment
of the language.
T O P I C S

A. Representation. Constraints and capabilities of nota-
tional systems such as logics and programming lan-
guages. Notational structures such as trees, networks,
statistical representations, and frames. Strategies for

choosing representations (e.g. exploiting natural con-
straints in data, representation of similar patterns as
in analogies). Introduction to LISP. (40%)

B. Search Strategies. Tree and graph searches (e.g. depth
and breadth first, minimax, alpha-beta). Heuristics.
(15%)

C. Control. General characteristics of production and
procedurally oriented systems. Parallel vs. serial
processing. Existing systems to illustrate issues (e.g.
HEARSAY II, DENDRAL, MYCIN). (20%)

D. Communication and Perception. Introduction to
concepts related to current research in natural lan-
guage and in vision systems. Use of tactility in intel-
ligent systems. (10%)

E. Applications. Sampling of current work in such areas
as psychology, medicine, science, architecture, and
such machines as industrial robots. (10%)

F. Examinations. (5 %)

CS 13. Algorithms (3-0-3)
Prerequisites: CS 7 and CS 8

C O U R S E O U T L I N E

This course should develop students' abilities as
writers and critics of programs by exposing students to
problems and their algorithmic solution. As program-
ming is both art and science, student programmers can
benefit considerably from analysis of case studies in a
wide variety of areas. All options for presenting algo-
rithms in a very high level language should be considered,
without regard for whether a processor exists for that
language. Translation of each algorithm to a more ma-
chine-readable form can be given separately, if necessary.
Careful choice of the level of abstraction appropriate to
a given problem should be made as a means of adjust-
ing students' load in the course.

Domain independent techniques should emerge dur-
ing the course as algorithm-rich topics are presented
from various areas. One convenient classification of top-
ics into areas to ensure breadth of coverage is: combina-
torics, numerical analysis, systems programming, and
artificial intelligence. Algorithms from a majority of these
areas should be analyzed, although not necessarily in the
order indicated in the outline. The percentage ranges
are intended to give instructors flexibility in choosing
areas and topics.
T O P I C S

A. Combinatorics. Algorithms for unordered and or-
dered sets, graphs, matrices (within the semi-ring
paradigm), bit vectors. (10-25%)

B. Numerical Analysis. Algorithms for integer arithme-
tic (fast multiplication, prime testing, sieves, factor-
ing, greatest common denominator, linear Diophan-
tine equations), real arithmetic (Taylor series, how
various calculators work), polynomial arithmetic,
random numbers, matrix operations (inversion, de-
terminants). (10-25%)

69

C. Systems Programming. Algorithms in text processors
(pattern matching) language processors (parsing,
storage management), operating systems (schedul-
ing, synchronization), database management (sort-
ing, searching). (10-25%)

D. Artificial Intelligence. Algorithms in natural language
processing (concordances, context-free parsers), ro-
botics (vision, manipulator operation), theorem prov-
ing and problem solving (decision methods, search
heuristics). (10-25%)

E. Domain Independent Techniques. Divide-and-con-
quer. Solution of recurrence equations. Dynauiic
programming. (15%)

F. Examinations. (5 %)

CS 14. Software Design and Development
(3-0-3) or (2-2-3)
Prerequisites: CS 7 and CS 8

C O U R S E O U T L I N E

This course presents a formal approach to state-of-
the-art techniques in software design and development
and provides a means for students to apply the tech-
niques. An integral part of the course is the involvement
of students working in teams in the organization, man-
agement, and development of a large software project.
The team project aspect can be facilitated either by
scheduling separate laboratories or by using some of the
lecture periods to discuss practical aspects of the team
projects.
T O P I C S

A. Design Techniques. Formal models of structured
programming. Demonstrations of code reading and
correctness. Stepwise refinement and reorganization.
Segmentation. Top-down design and development.
Information hiding. Iterative enhancement. Struc-
tured design. Strength and coupling measures. (50%)

B. Organization and Management. Milestones and esti-
mating. Chief programmer teams. Program libraries.
Walk-throughs. Documentation. (15%)

C. Team Project. Organization, management, and de-
velopment of a large scale software project by stu-
dents working in teams. (30%)

D. Examinations. (5%)

CS 15. Theory of Programming Languages (3-0-3)
Prerequisite: CS 8

C O U R S E O U T L I N E

This is a course in the formal treatment of program-
ming language translation and compiler design concepts.
Course material builds on the background established
in CS 8, specifically on the introduction to lexical anal-
ysis, parsing, and compilers. Emphasis should be on the
theoretical aspects of parsing context-free languages,
translation specifications, and machinc-independentcode
improvement. Programming projects to demonstrate var-
ious concepts are desirable, but extensive projects to
write compilers, or major components of compilers,

should be deferred to a special topics course on compiler
writing.
T O P I C S

A. Review. Grammars, languages, and their syntax and
semantics. Concepts of parsing and ambiguity. BNF
description of Algol. (15%)

B. Scanners. Finite state grammars and recognizers.
Lexical scanners. Implementation of symbol tables.
(20%)

C. Parsers. Theory and examples of context-free lan-
guages and push-down automata (PDA). Context-
free parsing techniques such as recursive descent,
LL(k), precedence, LR(k) , SLR (k). (40%)

D. Translation. Techniques of machine-independent
code generation and improvement. Inherited and
synthesized attributes. Syntax directed translation
schema. (20%)

E. Examinations. (5%)

CS 16. Automata, Computability, and Formal
Languages (3-0-3)
Prerequisites: CS 8 and MA 4 (see Sect. 4.1)

C O U R S E O U T L I N E

This course offers a diverse sampling of the areas of
theoretical computer science and their hierarchical inter-
connections. Basic results relating to formal models of
computation should be introduced. Stress should be
given to developing students' skills in understanding
rigorous definitions in computing environments and in
determining their logical consequences. In this regard
strong emphasis should be placed on problem assign-
ments and their evaluations.

Material need not be presented in the order specified,
but it is important to give nearly equal emphasis among
the major areas. Topics within each area can be covered
in greater depth in appropriate special topics courses.
T O P I C S

A. Finite State Concepts. Acceptors (including non-
determinism). Regular expressions. Closure proper-
ties. Sequential machines and finite state transducers.
State minimization. (30%)

B. Formal Grammars. Chomsky hierarchy grammars,
pushdown acceptors and linear bounded automata.
Closure properties and algorithms on grammars.
(35%)

C. Computability and Turing Machines. Turing machine
as acceptor and transducer. Universal machine.
Computable and noncomputable functions. Halting
problem. (30%)

D. Examinations. (5%)

CS 17. Numerical Mathematics: Analysis (3-0-3)
Prerequisites: CS 1 and MA 5

C O U R S E O U T L I N E

This course with CS 18 forms a one-year introduc-
tion to numerical analysis. The courses are intended to

70

be independent of each other. Students should be ex-
pected not only to learn the basic algorithms of numeri-
cal computation, but also to understand the theoretical
foundations of the algorithms and various problems re-
lated to the practical implementations of the algorithms.
Thus each topic implies a discussion of the algorithm,
the related theory, and the benefits, disadvantages, and
pitfalls associated with the method. Programming assign-
ments should be given to illustrate solutions of realistic
problems rather than just the coding of various algo-
rithms. Topics such as convergence and error analysis
for specific algorithms should be treated in a theoretical
manner. Floating point arithmetic and use of mathe-
matical subroutine packages are included in both courses
because they should be discussed throughout the courses
as they relate to specific problems. All other topics in
each course should be covered sequentially. The depth
to which topics are treated may vary, but most, if not all,
topics should be discussed.
T O P I C S

A. Floating Point Arithmetic. Basic concepts of floating
point number systems. Implications of finite preci-
sion. Illustrations of errors due to roundoff. (15%)

B. Use of Mathematical Subroutine Packages. (5 %)
C. Interpolation. Finite difference calculus. Polynomial

interpolation. Inverse interpolation. Spline interpola-
tion. (15%)

D. Approximation. Uniform approximation. Discrete
least-squares. Polynomial approximation. Fourier
approximation. Chebyshev economization. (10%)

E. Numerical Integration and Differentiation. Interpola-
t o r numerical integration. Euler-McLauren sum
formula. Gaussian quadrature. Adaptive integration.
Fast Fourier transform. Richardson extrapolation
and numerical differentiation. (15%)

F. Solution of Nonlinear Equations. Bisection. Fixed
point iteration. Newton's method. Secant method.
Muller's method. Aitken's process. Rates of conver-
gence. Efficient evaluation of polynomials. Bair-
stow's method. (15%)

G. Solution of Ordinary Differential Equations. Taylor
series methods. Euler's method, with local and global
error analysis. Runge-Kutta methods. Predictor-cor-
rector methods. Automatic error monitoring—change
of step size and order. Stability. (20%)

H. Examinations. (5%)

CS 18. Numerical Mathematics: Linear Algebra
(3-0-3)
Prerequisites: CS 1 and MA 5

C O U R S E O U T L I N E

The same remarks apply to this course as to CS 17.
T O P I C S

A. Floating Point Arithmetic. Basic concepts of float-
ing point number systems. Implications of finite pre-
cision. Illustrations of errors due to roundoff. (15%)

B. Use of Mathematical Subroutine Packages. (5 %)
C. Direct Methods for Linear Systems of Equations.

Gaussian elimination. Operational counts. Imple-
mentation, including pivoting and scaling. Direct fac-
torization methods. (20%)

D. Error Analysis and Norms. Vector norms and mat-
rix norms. Condition numbers and error estimates.
Iterative improvement. (15%)

E. Iterative Methods. Jacobi's method. Gauss-Seidel
method. Acceleration of iterative methods. Overre-
laxation. (15%)

F. Computation of Eigenvalues and Eigenvectors. Basic
theorems. Error estimates. The power method. Ja-
cobi's method. Householder's method. (15%)

G. Related Topics. Numerical solution of boundary
value problems for ordinary differential equations.
Solution of nonlinear systems of algebraic equations.
Least-squares solution of overdetermined systems.
(10%)

H. Examinations. (5%)

3.4 Special Topics
The special topics courses should be offered when-

ever departmental resources are sufficient to do so. Thus
content and prerequisites may vary each time they are
offered because the available material is changing rapidly
and different faculty members may have widely differing
opinions of what should be included in a course. Most
importantly, the material should be current and topical.
In time, some of the material should be integrated into
courses previously specified or may replace entire courses
in the curriculum. Monitoring of this phase of the pro-
gram should be a continuing activity of individual de-
partments and C 'S.

Examples of special topics courses include:
A. Microcomputer Laboratory
B. Minicomputer Laboratory
C. Performance Evaluation
D. Telecommunications/Networks/Distributed

Systems
E. Systems Simulation
F. Advanced Systems Programming
G. Graphics
H. Compiler Writing Laboratory
I. Structured Programming
J. Topics in Automata Theory
K. Topics in Computability
L. Topics in Formal Language Theory
M. Simulation and Modeling

4. The Undergraduate Program

4.1 Introduction
Outlines of eighteen computer science courses are

included in previous sections. Eight of the courses indi-
cate one of the ways in which the core material might be
presented. Ten courses along with thirteen topics courses

71

Fig. 2. Recommended computer science and mathematics courses.

illustrate the kind of elective material to be offered at an
advanced level.

The eighteen computer science courses are as fol-
lows:
CS 1. Computer Programming I
CS 2. Computer Programming II
CS 3. Introduction to Computer Systems
CS 4. Introduction to Computer Organization
CS 5. Introduction to File Processing
CS 6. Operating Systems and Computer

Architecture I
CS 7. Data Structures and Algorithm Analysis
CS 8. Organization of Programming Languages
CS 9. Computers and Society
CS 10. Operating Systems and Computer

Architecture II
CS 11. Database Management Systems Design
CS 12. Artificial Intelligence
CS 13. Algorithms
CS 14. Software Design and Development
CS 15. Theory of Programming Languages
CS 16. Automata, Computability, and Formal

Languages
CS 17. Numerical Mathematics: Analysis
CS 18. Numerical Mathematics: Linear Algebra

The structure of these courses is given in Figure 2.
The following set of mathematics courses is included in
the structure for completeness and because of its rele-
vance to an undergraduate program in computer science:
MA 1. Introductory Calculus
MA 2. Mathematical Analysis I
MA 2A. Probability
MA 3. Linear Algebra
MA 4. Discrete Structures
MA 5. Mathematical Analysis II
MA 6. Probability and Statistics

Their role and the extent to which they conform to
the needs of a computer science major are discussed in
Section 4.3.

Solid and dashed lines represent, respectively, abso-
lute and recommended prerequisites. The shaded area
depicts the core curriculum in computer science and re-
quired mathematics courses.

4.2 Computer Science Requirements and Electives
The computer science major will consist of the eight

courses of the core material plus four additional courses
selected from the recommended computer science ad-
vanced electives with no more than two in any one spe-
cific subfield of the disciplines. Within the requirements
for the four elective courses, the special topics courses
specified in Section 3.4 should also be considered as pos-
sible electives for the major.

It should be noted that as students proceed through
the computer science portion of the program, they begin
at a very practical level and as they progress the work
becomes more conceptual and theoretical. At the junior
level the program is strongly conceptual while in the
senior year the program may be fully theoretical, or in-
volve a significant amount of theory supplemented with
laboratory activities.

4.3 Mathematics Requirements
An understanding of and the capability to use a num-

ber of mathematical concepts and techniques are vitally
important for a computer scientist. Analytical and alge-
braic techniques, logic, finite mathematics, aspects of
linear algebra, combinatorics, graph theory, optimization
methods, probability, and statistics are, in various ways,
intimately associated with the development of computer
science concepts and techniques. For example, probabil-
ity and statistics develop the required tools for measure-

72

ment and evaluation of programs and systems, two
important aspects of computer science. Analysis, as
commonly contained in calculus courses, gives the math-
ematical bases for important concepts such as sets, rela-
tions, functions, limits, and convergence. Discrete struc-
tures provides the bases for semigroups, groups, trees,
graphs, and combinatorics, all of which have applica-
tions in algorithms analysis and testing, as well as in data
structure design. Thus mathematics requirements are in-
tegral to a computer science curriculum even though
specific courses are not cited as prerequisites for most
computer science courses. Unfortunately, the kind and
amount of material needed from these areas for com-
puter science usually can only be obtained, if at all, from
the regular courses offered by departments of mathe-
matics for their own majors.

Ideally, computer science and mathematics depart-
ments should cooperate in developing courses concen-
trating on discrete mathematics which are appropriate to
the needs of computer scientists. Such courses, however,
if offered by mathematics departments, would substan-
tially increase their service course load and would con-
stitute a heavy additional commitment of their resources.
On the other hand, these course offerings could consti-
tute an applied mathematics component which, in turn,
might provide attractive alternatives for some mathe-
matics departments. Suitable computer oriented math-
ematics course offerings constitute an important topic
which should be explored more thoroughly both on local
(i.e. individual institutions) and national levels. Specific
course recommendations, however, are outside the do-
main of this report.

Until such time as suitable courses become readily
available, it will be necessary to rely on the most com-
monly offered mathematics courses for the mathematical
background needed by computer science majors. One
set of such courses was recommended in 1965 by the
Committee on Undergraduate Programs in Mathematics
(CUPM) of the Mathematical Association of America.
Courses MA 1, 2, 2A, 3, 5, and 6 in the structure in-
cluded in Section 4.1 are intended to be CUPM recom-
mended courses. Details on course contents can be found
in the CUPM report [5].

MA 4 represents a more advanced course in discrete
structures than that given in "Curriculum '68". The
course will build on concepts developed by the study of
calculus and linear algebra and will emphasize applica-
tions of discrete mathematics to computer science. In
particular, if techniques in probability are not included
in an earlier course, some emphasis should be given to
them in this course. A number of examples of suitable
outlines for this course have appeared in the literature,
primarily in the S1GCSE Bulletin [6, 7, 8, 9, 10].

If courses of the type cited above are the only kind
of mathematics courses available, then MA 1, MA 2,
MA 2A, MA 3, and MA 4 should be required of all
computer science majors. In addition, MA 5 or MA 6
may be required depending on which advanced level

computer science electives are selected. If more appro-
priate courses are provided as a result of interaction be-
tween computer science and mathematics departments,
then the specification of required mathematics courses
and the prerequisite structure should be reconsidered.

4.4 Other Requirements and Electives
As specified in this report, the minimum require-

ments are 36 semester hours in computer science and 15
semester hours in mathematics. This is certainly less than
half of the required hours of a typical undergraduate de-
gree program.

Additional requirements and electives will vary with
the requirements of the individual institutions and hence
only the most general of recommendations can be given.

It is certainly recognized that writing and communi-
cation skills must be emphasized throughout the pro-
gram. This must be accomplished by requiring appropri-
ate courses in the humanities, and also by emphasis on
these skills in the courses within the computer science
program itself. Surveys of employers stress the need for
these skills as a requirement for employment.

Science and engineering departments represent fruit-
ful areas for support of a computer science program. For
those institutions with access to an engineering program,
courses such as switching circuits and digital .logic should
be utilized. Within the science departments, a number of
options are available to meet general university require-
ments. In addition to courses in fields such as physics, it
should be noted that the increasing emphasis on comput-
ing in the biological and environmental sciences offers
additional options for students.

A large portion of the job market involves work in
business oriented computer fields. As a result, in those
cases where there is a business school or related depart-
ment, it would be most appropriate to take courses in
which one could learn the technology and techniques
appropriate to this field. For those students choosing this
path, business courses develop the background necessary
to function in the business environment.

The general university requirements in the social
sciences, with careful advising, will generally be ade-
quate, although it should be recognized that increasing
use of computers in these fields may make it appropriate
for some students to devise a minor in such an area if
that is within their interests.

In consideration of this entire area of general re-
quirements and electives, it must be recognized that a
person who is going into the computer job market at the
bachelor's level will, in all likelihood, initially be a sys-
tems, scientific, engineering, or business programmer. As
a result, the student is well advised to work out a pro-
gram with an advisor that will provide a meaningful and
thorough background in the area of the student's inter-
est. The general liberal arts requirements of the institu-
tion will give the necessary breadth to the program. A
well developed concentration in an area other than com-

73

puter science will put the student in a position to develop
and grow in that area as well as in computer science.

5. Service Courses

5.1 Introduction
There is a great need and demand for computer sci-

ence material by students who do not intend to major in
computer science. Faculty of computer science depart-
ments must be willing to offer different courses for those
students than for majors when that is appropriate. Service
courses should be offered by computer science faculty
rather than by faculty in other departments. This, of
course, implies that the courses must be made appealing
by providing appropriate computer science content in a
manner that is attuned to the needs, levels, and back-
grounds of the students taking such courses.

There is some possibility that certain courses can be
team-taught by faculty from computer science and from
one or more other disciplines, but it must be recognized
that this approach is difficult. Heads of departments must
make difficult decisions regarding how much of the de-
partment's teaching resources is to be used for majors
and how much is to be used for students in other dis-
ciplines. In making these decisions, it is essential that
the department and institution properly acknowledge
and reward faculty who are working in this area, if the
courses are to maintain a high level of excellence.

A variety of service courses must be considered to
satisfy the diverse needs of groups of students. Among
the categories of undergraduate level courses are the fol-
lowing: (a) liberal arts or general university require-
ments; (b) supporting work for majors in other dis-
ciplines; and (c) continuing education.

5.2 General Service Courses
Students taking a course to satisfy a requirement

such as a general university requirement may come from
any discipline other than computer science. Some of the
science, engineering, or mathematics oriented students
may profit most by taking the same first course recom-
mended for computer science students (CS 1). This has
an immediate advantage for students who become inter-
ested enough in computing to want additional computer
science courses. They will have the prerequisite for the
second (and subsequent) courses for the computer sci-
ence major. Those students who stop after one or two of
these courses at least have excellent basic programming
techniques to apply to computer oriented work in their
discipline.

Other students will require more specialized study
than that listed in CS 1. For many of these students the
courses listed in the section on elementary computer sci-
ence electives may be more appropriate.

It must still be recognized that a different course (or
courses) must be provided for majors in the fields men-
tioned above as well as for majors in business oriented

fields, social sciences, education, and humanities. Service
courses for these students normally should include a
combination of computer appreciation, programming,
applications, and societal impact. Different mixes of
these broad areas should be considered for different
groups, and the amount of each is best determined by
each institution. Topics within each area should be as
pertinent to the group served as possible, especially in
the language chosen to illustrate programming. To meet
this goal, feedback from students is important and com-
munication between computer science and other depart-
ments, including periodic review of the courses, is essen-
tial. The course should have no prerequisites and it
should be made clear to the students that the course is
not intended for those who want additional work in
computer science. If local conditions warrant, the ma-
terial could be presented in two semesters rather than
one.

Though as indicated, full specification of such courses
is impossible, an example can be given to illustrate the
kind of course under consideration:

CSS 1. Computer Applications and Impact (3-0-3)
C O U R S E O U T L I N E

A survey of computer applications in areas such as
file management, gaming, CAI, process control, simula-
tion, and modeling. Impact of computers on individuals
and society. Problem solving using computers with em-
phasis on analysis, formulation of algorithms, and pro-
gramming. Projects chosen from various application
areas of student interest.
T O P I C S (percentages dependent on local situations)
A. Computer Systems: Batch and interactive, real time,

information management, networks. Description of
each system, how it differs from the others, and kinds
of applications for which each system is best suited.

B. Databases: Establishment and use. Data definition
and structures.

C. Errors: Types, effects, handling.
D. Social Implications: Human-machine interface. Pri-

vacy. Moral and legal issues.
E. Future Social Impact: Checkless society. CAI. Na-

tional data banks.
F. Languages: As appropriate, introduction to a busi-

ness oriented language, a symbol manipulation lan-
guage, and/or a procedure oriented language. Brief
exposition of characteristics which make these lan-
guages appropriate for particular classes of problems.

G. Concepts and Techniques Used in Solving Problems:
Selected from appropriate application areas such as
CAI, data management, gaming, information re-
trieval, and simulation.

H. Projects and Examinations.

5.3 Supporting Areas
A number of students will choose computer science

as a supporting (or minor) area. Various possibilities

74

for sets of courses should be available. One of the ways
to achieve this by using the same courses as taken by a
computer science major is to require courses CS 1 and
CS 2; at least two of the courses CS 3, CS 4, CS 5; and at
least two of the courses CS 6, CS 7, CS 8. Additional
courses could then be taken as student interest and pro-
gram requirements would allow. Computer science fac-
ulty should communicate with faculty from other depart-
ments to determine the needs of the other departments
and to indicate how certain courses or course combina-
tions might satisfy the needs.

In those cases where existing courses are not appro-
priate as supporting work for other majors, new courses
should be created, probably to be offered as upper divi-
sion level courses. Two alternatives for establishing sets
of courses for use as supporting work are as follows: (a)
CS 1 and CS 2, one course combining material from CS 5
and CS 7, and one course combining material from CS 3,
CS 4, and CS 6; and (b) CS 1 and CS 2, one course
combining material from CS 3 and CS 5, and one course
combining material from CS 4, CS 6, and CS 7. Alterna-
tive (a) attempts to combine similar topics from differ-
ent levels while alternative (b) attempts to combine
different topics from similar levels. It should be recog-
nized that students who complete either of the latter two
alternatives may not be well enough prepared to take a
more advanced computer science course for which any
of the courses CS 6, CS 7, or CS 8 are prerequisite.

5.4 Continuing Education
Continuing education is an area which has grown so

rapidly and includes such a large variety of interests that
it is virtually impossible to specify course possibilities.
Nevertheless, computer science departments must ad-
dress the needs appropriate to their local situations.
Some of the possibilities which should be considered are:
(a) adult education courses, probably versions of the
courses suggested to meet general university require-
ments; (b) professional development seminars, usually
consisting of one day to several weeks devoted to a spe-
cific topical area (e.g. minicomputers, database manage-
ment systems) ; and (c) courses offered in the evenings
or on weekends (on or off campus), possibly regular
course offerings or modifications of them primarily for
employed persons who need to acquire or enhance their
computer science background. The latter possibility
would include full-scale baccalaureate or master's degree
programs.

6. Other Considerations

6.1 Introduction
Implementation of the computer science curriculum

recommendations given in this report implies more than
the development of a coherent program of courses. Ar-
ticulation with other educational institutions and with
employers of graduates of such programs must be given

serious attention, and a commitment must be made to
provide and maintain these resources. In most cases,
such commitments go well beyond the boundaries of
computer science departments.

Specific requirements involving such areas as staff,
equipment, and articulation will vary among institutions
depending on such things as size, location, capability,
and mission of the school and program. As a result,
specific recommendation in these areas cannot be given.
However, in this section, general guidelines for imple-
mentation in these areas are discussed.

6.2 Facilities
In Order to implement the full set of recommenda-

tions contained in this report, a wide range of computing
facilities will be required. Equipment such as data entry
devices, microcomputers, minicomputers^ and medium
or large-scale computer systems all play separate and
important roles in the development of the computer
scientist.

Data entry devices such as card punches, teletype-
writers, and display terminals should be provided for
program preparation and communication between stu-
dent and computer. Such equipment should be con-
veniently located and in a large enough area for both
easy and convenient student access and use. This equip-
ment may be provided and maintained by the central
computing facility at the institution for general student
and faculty use, or, if enrollments in the computer sci-
ence program and demands for service warrant, the
equipment may be located and maintained by the de-
partment with some restriction on the use by other de-
partments. To implement successfully an adequate pro-
gram that insures easy and ready access to such facilities,
close cooperation and planning is necessary that will
involve the computer science department, the computer
center, and, perhaps, other departments which use these
computer facilities.

Microcomputers are quite desirable in teaching de-
tails of computer architecture previously only attainable
by extensive programming of "hypothetical computers,"
simulators, or textbook discussions. They have provided
a relatively inexpensive and highly versatile resource
which can be used in a variety of ways including com-
bining several such units into reasonably sophisticated
and powerful computer systems. Their use is becoming
so widespread that in addition to using microcomputers
in a systems course, under some circumstances, con-
sideration may be given to offering a laboratory course
in which each student, or a group of students in the
course, would purchase a suitable kit and construct a
computer.

The availability of one or more minicomputers in a
department allows the students to obtain "hands-on" ex-
perience as well as the opportunity to utilize interactive
systems and programming languages which may not be
available, or practical, on a medium or large-scale com-
puter system. This kind of equipment also allows the

75

student to work on software development projects, and
other projects that might not be possible due to restric-
tions on the use of the central facility. It is desirable that
the department maintain and schedule such minicom-
puter facilities in such a way that student usage and
software development can proceed in an orderly fashion
through laboratory course work and individual projects.

A medium or large-scale computer, normally op-
erated and maintained as a central facility at the institu-
tion for use by all departments, should provide appropri-
ate hardware and software support for the major pro-
gram. Auxiliary memory is required in order to store
files so that access methods specified in the core courses
can be implemented and tested. Suitable input/output
devices and system facilities are needed so that rapid
turnaround of student jobs is possible, interactive com-
puting is available, and programming languages used in
the curriculum are supported.

Regardless of what specific items of computer equip-
ment are available to support a curriculum in computer
science, effective teaching and research in the field re-
quire laboratory facilities. Computer science is in part
an empirical science which involves implementing pro-
cedures as well as studying theoretically based processes.
Because systems, algorithms, languages, and data struc-
tures are created, studied, and measured via combina-
tions of hardware and software, it is essential that ap-
propriate laboratory facilities be made available that are
comparable to those necessary in the physical and bio-
logical sciences and engineering disciplines. This implies
that appropriate laboratory facilities are available for
student and faculty use, and may imply that additional
laboratory space is required by certain faculty and stu-
dents for special purposes. The initial budgetary support
for establishing these laboratories may be substantial,
and continuing regular budgetary support is essential for
successful implementation of a program.

While we have thus far stressed the hardware facili-
ties necessary for the recommended curriculum, equal
attention must also be given to software. In order for
the student to master the material in the core and elec-
tive courses, sufficient higher level languages must be
available. Additionally, special purpose systems such as
statistical systems, database management systems, infor-
mation storage and retrieval systems, and simulation sys-
tems should be available for student use. It must be
recognized in planning that many of these systems re-
quire a significant initial and continuing investment on
the part of the institution. Where possible, fast turn-
around or interactive systems should be considered in
order to provide as much access as possible for the
student.

In addition to the computer related facilities required
for the recommended curriculum, there is also a require-
ment for those resources of a university that are normally
associated with any discipline. Adequate library facili-
ties, including significant holdings of periodicals are ab-

solutely necessary, and the implementor of this report
is referred to the basic library list [4] for a basis of
establishing a library collection to support the instruc-
tional program.

While traditional library support is essential to the
computer science program, it must be recognized that
the field requires some additional resources that may
not be necessary in other disciplines. Specifically, the
student of computer science must have available, in some
form, language, programming, and systems manuals as
well as documentation for programs and other materials
directly related to the development and use of systems.
This material must be easily and conveniently available
to the student at all times.

6.3 Staff
Insofar as it is possible, the vast majority of faculty

members in departments offering the curriculum that has
been recommended in this report should have their pri-
mary academic training in computer science. At the
same time, it remains the case that demand exceeds sup-
ply for these individuals and it is often necessary, and
in some cases desirable, to acquire faculty with degrees
in other disciplines, but who have experience in com-
puting through teaching or employment in government,
business, or industry.

The size of the department will depend on available
resources, required teaching loads, commitments to of-
flring service courses, and commitments to continuing
education programs. Approximately six full-time equiva-
lent faculty members are necessary to offer a minimal
program that would include the core courses as well as
a selection of elective and service courses. Most of these
faculty members should be capable of offering all of the
core courses in addition to elective courses in their areas
of specialization. Additional continuing instructional
support may be available from the computer center, and
from other departments such as mathematics which may
offer numerical analysis or other applied mathematics
courses that could be cross-listed by both departments.
In addition, adjunct faculty from local government, busi-
ness, or industry are valuable additions in many cases.
Such individuals are often able to bring a different per-
spective to the program; however, care must be taken
to insure that the program does not become overly de-
pendent on individuals who may be unable to perform
continuing service.

Because of the rapid growth of this field, considera-
tion must be given to providing ongoing opportunities
for faculty development, such as a sabbatical leave pro-
gram, opportunities to attend professional development
seminars, and interchange programs with industry.

A department which operates its own laboratory fa-
cilities should consider obtaining a full-time staff mem-
ber to maintain such systems, be responsible for neces-
sary documentation and languages, and coordinate other
activities connected with the laboratory. Such a staff

76

member would provide continuity in the development of
the laboratory resource.

The field is still developing rapidly, and as was indi-
cated earlier, is at least in part empirical in nature. As a
result faculty will be required to devote a great deal of
time to course development, software development, de-
velopment of laboratory resources, and development of
service offerings. To provide for continuing excellence
in these areas, it must be recognized that they are essen-
tial contributions to the program and profession, and as
such should be considered within the context of the re-
ward structure of the institution.

6.4 Articulation
It is imperative that departments offering computer

science programs keep in close contact with secondary
schools, community and junior colleges, graduate
schools, and prospective employers of their graduates.
This requires a continuing, time consuming effort. Pri-
mary responsibility for this effort could be placed with
one faculty member, whose teaching load should then
be reduced. Experience has shown that person-to-person
contact on a continuing basis is necessary for successful
articulation.

Usually, a central office in a four-year institution
has direct contact with secondary schools. With comput-
ing becoming more prevalent at that level, however, it
is highly useful and appropriate for a departmental rep-
resentative to maintain contact with those local second-
ary schools which offer, or desire to offer, courses in
computing.

Articulation agreements exist in many areas between
four-year institutions and community and junior col-
leges. These agreements need to be updated frequently
as programs or courses change, and personal contact
between departments is necessary to keep abreast of
these changes. Transfer programs in community and
junior colleges are often geared to programs at four-year
institutions. As a result, proposed changes in the four-
year program which influence transfer programs should
be promulgated as soon as possible so that the com-
munity and junior colleges can incorporate such changes,
thereby reducing the lag between programs to the bene-
fit of transfer students.

Some of the graduates of the recommended program
will continue academic work in computer science in
graduate school, but most will seek employment upon
graduation. Departments must be aware of the graduate
school requirements so that their programs prepare stu-
dents adequately for advanced wbrk in the field, but
they must also maintain communication with employers
in order to know what job requirements exist so that
the faculty can advise students more effectively. Feed-
back from recent graduates of the program is quite use-
ful in this regard and should be encouraged as much as
possible. In order to most effectively implement this
aspect of the program, faculty members should have

available to them graduate school brochures, Civil Serv-
ice Commission documents, and whatever else can come
from personal contacts with employees in government
and industry, as well as from the professional societies.

References
1. Curriculum Committee on Computer Science (C3S). Curric-
ulum '68, recommendations for academic programs in computer
science. Comm. ACM 11, 3 (March 1968), 151-197.
2. Austing, R.H., Barnes, B.H., and Engel, O.L. A survey of the
literature in computer science education since Curriculum '68.
Comm. ACM 20, 1 (Jan. 1977), 13-21.
3. Education Committee (Model Curriculum Subcommittee)
of the IEEE Computer Society. A curriculum in computer sci-
ence and engineering. Committee Report, IEEE Pub. EH0119-8,
January 1977.
4. Joint Committee of the ACM and the IEEE Computer
Society. A library list on undergraduate computer science—com-
puter engineering and information systems. Committee Report,
IEEE Pub. EH0131-3, 1978.
5. Committee on the Undergraduate Program in Mathematics.
A general curriculum in mathematics for colleges. Rep. to Math.
Assoc. of America, CUPM, Berkeley, Calif., 1965.
6. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 5, 1 (Feb. 1973).
7. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 6, 1 (Feb. 1974).
8. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 7, 1 (Feb. 1975).
9. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 8, 1 (Feb. 1976).
10. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 8, 3 (Aug. 1976).

Appendix
Contributors to the C3S Report

Robert M. Aiken, University of Tennessee
Michael A. Arbib, University of Massachusetts
Julius A. Archibald, SUNY at Plattsburgh
William Atchison, University of Maryland
Richard Austing, University of Maryland
Bruce Barnes. National Science Foundation
Victor R. Basili, University of Maryland
Barry Bateman, Southern Illinois University
Delia T. Bonnette, University of Southwestern Louisiana
W.P. Buckley, Aluminum Company of America
Frank Cable, Pennsylvania State University
Gary Carlson, Brigham Young University
B.F. Caviness, Rensselaer Polytechnic Institute
Donald Chand, Georgia State University
Sam Conte, Purdue University
William Cotterman, Georgia State University
Daniel Couger, University of Colorado
John F. Dalphin, Indiana University—Purdue University at

Fort Wayne
Gene Davenport, John Wiley and Sons
Charles Davidson, University of Wisconsin
Peter Denning, Purdue University
Ed Desautels, University of Wisconsin
Benjamin Diamant, IBM
Karen A. Duncan, MITRE Corporation
Gerald Engel, Old Dominion University
Michael Faiman, University of Illinois
Patrick Fischer, Pennsylvania State University
Arthur Fleck, University of Iowa
John Gannon, University of Maryland
Norman Gibbs, College of William and Mary
Malcolm Gotterer, Florida International University
David Gries, Cornell University

(Appendix continued on next page)

77

(Appendix continued from preceding page)
H.C. Gyllstrom, Univac
Douglas H. Haden. New Mexico Slate University
John W. Hamblen, University of Missouri-Rolla
Preston Hammer, Grand Valley State Colleges
Richard Hamming. Naval Postgraduate School
Thomas R. Harbron, Anderson College
Stephen Hedetniemi, University of Oregon
Alex Hoffman, Texas Christian University
Charles Hughes, University of Tennessee
Lawrence Jehn, University of Dayton
Karl Karlstrom. Prentice-Hall
Thomas Keenan, National Science Foundation
Sister M.K. Keller, Clarke College
Douglas S. Kerr, The Ohio State University
Rob Kling, University of California, Irvine
Joyce C. Little, Community College of Baltimore
Donald Loveland, Duke University
Robert Mathis, Old Dominion University
Daniel McCracken. President, ACM
Robert McNaughton, Rensselaer Polytechnic Institute
M.A. Melkanoff, University of California, Los Angeles
John Metzner, University of Missouri-Rolla
Jack Minker, University of Maryland
Howard Morgan, University of Pennsylvania
Abbe Mowshowitz, University of British Columbia
Michael Mulder, Bonneville Power Administration

Anne E. Nieberding, Michigan State University
James Ortega. North Carolina Stale University
F.G. Pagan. Memorial University of Newfoundland
John L. Pfaltz, University of Virginia
James Powell. North Carolina State University
Vaughn Pratt. Massachusetts Institute of Technology
Anthony Ralston. SUNY al Buffalo
Jon Rickmari, Northwest Missouri State College
David Rine, Western Illinois University
Jean Sammet. IBM
John F. Schrage, Indiana University—Purdue University at

Fort Wayne
Earl Schweppe, University of Kansas
Sally Y. Sedclow. University of Kansas
Gary B. Shelly, Anaheim Publishing
James Snyder. University of Illinois
Theodor Sterling. Simon Eraser University
Gordon Stokes. Brigham Young University
Alan Tucker. SUNY at Stony Brook
Ronald C. Turner, American Sign and Indicator Corporation
Brian W. Unger, The University of Calgary
James Vandergraft, University of Maryland
Peter Wegner. Brown University
Patrick Winston, Massachusetts Institute of Technology
Peter Worland, Gustavus Adolphus College
Marshall Yovits, The Ohio State University
Marvin Zelkowitz, University of Maryland

78

Report

Recommendations for Master's Level Programs
in Computer Science
A Report of the ACM Curriculum Committee on Computer Science

Editors: Kenneth I. Magel, University of Missouri-Rolla
Richard H. Austing, University of Maryland
Alfs Berztiss, University of Pittsburgh
Gerald L. Engel, Christopher Newport College
John W. Hamblen, University of Missouri-Rolla
A.A.J. Hoffmann, Texas Christian University
Robert Mathis, Old Dominion University

The ACM Committee on Curriculum in Computer
Science has spent two years investigating master's de-
gree programs in Computer Science. This report contains
the conclusions of that effort. Recommendations are
made concerning the form, entrance requirements, pos-
sible courses, staffing levels, intent, library resources,
and computing resources required for an academic,
professional, or specialized master's degree. These rec-
ommendations specify minimum requirements which
should be met by any master's programs. The Committee
believes that the details of a particular master's program
should be determined and continually updated by the
faculty involved. A single or a small number of model
programs are not as appropriate at the graduate level as
at the bachelor's level.

Key Words and Phrases: computer science courses,
computer science curriculum, computer science educa-
tion, computer science graduate programs, master's pro-
grams.

CR Categories: 1.52

Permission to copy without fee all or pari of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1981 ACM 0001-0782/81/0300-0115 $00.75.

Contents
1. Introduction
2. The Need for Masters Programs
3. Goals of Program

3.1 Basic Intent
3.2 Communication Skills
3.3 Current Literature Level
3.4 Professionalism

4. Entrance Requirements
4.1 Admission Requirements
4.2 Prerequisites

5. Program Organization
5.1 Course Work
5.2 Culminating/Unifying Activity
5.3 Seminar
5.4 Thesis or Project
5.5 Comprehensive Examination

6. Resource Requirements
6.1 Faculty
6.2 Computing Equipment
6.3 Library

7. Specializations
8. Conclusions

Appendices
A. Contributors
B. Course Descriptions

References
79

1.0 Introduction

The Committee on Curriculum in Computer Science
(C3S)* of the Association for Computing Machinery has
within its charter the obligation to address computer
science education at the baccalaureate level and above.
The Committee intends that this document establish a
basis for master's degree programs of substance while at
the same time permitting sufficient flexibility to allow
for adaptation to the objectives and resources of individ-
ual colleges and universities. A second objective of the
report is to provide guidance to those institutions which
have begun or are about to begin a master's program
without specifying a rigid blueprint for the establishment
of such programs. Finally, and perhaps most impor-
tantly, the Committee hopes this report will foster mean-
ingful interchange among computer science educators
regarding instructional programs at the master's level.

Graduate programs in computer science preceded the
introduction of undergraduate programs, the earliest pro-
grams appearing in the early 1960s. "Curriculum '68"
[S] concentrated on the definition and specification of
undergraduate programs but did consider master's pro-
grams also. Specifically the following recommendation
was given:

The master's degree program in computer science should consist
of at least nine courses. Normally at least two courses—each in a
different subject area—should be taken from each of the following
subject divisions of computer science:

I. Information Structures and Processes
II. Information Processing Systems
III. Methodologies

Sufficient other courses in computer science or related areas should
be taken to bring the student to the forefront of some area of
computer science [S, p. 163].

The section on the master's curriculum concludes
with the statement:

This proposed program embodies sufficient flexibility to fulfill
the requirements of either an "academic" degree obtained in
preparation for further graduate study or a terminal "professional"
degree. Until clearer standards both for computer science research
and the computing profession have emerged, it seems unwise to
attempt to distinguish more definitely between these two aspects
of master's degree programs [S, p. 164).

The Committee believes that the discipline has ma-
tured enough that we can now see this distinction be-
tween academic and professional programs beginning to
appear. We reject, however, the concept of an utterly
terminal program. In our view all programs should pro-
vide the possibility of additional study in the field. This
report tries to establish the common aspects of master's
programs in computer science and indicates possible
differences and distinctions.

Some attention was given to master's level programs
by C3S following the publication of "Curriculum '68."

* The Curriculum Committee on Computer Science (C^S) became a
subcommittee of the Curriculum Committee on Computer Education
in 1978.

The results of this work were presented by Melkanoff [8]
in 1973. Further work in this area was deferred, however,
while work progressed on the new C3S recommendations
at the undergraduate level. The new undergraduate rec-
ommendations were published as "Curriculum '78" in
the March 1979 Communications of the ACM [2].

In an independent effort, the ACM Curriculum Com-
mittee on Computer Education for Management (C3EM)
(now the Subcommittee on Curriculum in Information
Systems) developed guidelines for a master's program in
Information Systems [1, 9], They clearly define a related
professional degree program. The scope and extent of
existing graduate programs in computer science have
been recently surveyed [4, 7],

2.0 The Need for Master's Programs

The classical objective of academic master's pro-
grams is the preparation for study at the doctoral level,
and this remains an important aspect of such programs.
Different goals exist for professional programs, but we
believe that all programs should prepare the student for
study beyond the master's level.

Among the objectives for students in master's pro-
grams is entry into the computer field at a relatively high
level of responsibility and expertise. Computer Science
is such a new and rapidly expanding field that individ-
uals entering with a master's degree in this field will
almost immediately move to positions with great respon-
sibility. This, in turn, implies the requirement for an
advanced level of prior training in both technical and
related areas (e.g., communication skills).

Many people already in the field desire additional
training in computer science. These individuals may
have undergraduate degrees in computer science and
desire to advance; or they may have had considerable
experience in computing, but little formal education in
the field. While this latter group should be declining in
number as more undergraduate computer science majors
enter the job market, the demand does exist and will
continue to do so in the foreseeable future. In addition,
there will be a continuing need for individuals with a
bachelor's degree in computer science to update their
training.

In all of these cases, the master's degree provides
both motivation for the student and a standard for
reward by the employer.

The two-year colleges are offering a large number of
courses in data processing and related topics. For most
faculty positions in such institutions, a master's degree is
a minimum requirement and a master's in computer
science is an appropriate preparation.

Increasingly, precollege instruction in computer sci-
ence is being offered. Consequently, there is a need for
a master's program to prepare individuals to teach com-
puter science at the precollege level. Further exploration
of such a master's program should be done jointly by

80

this Committee and the ACM Subcommittee on Elemen-
tary and Secondary Education.

Graduate enrollments in computer science, informa-
tion systems, and other related programs have grown
steadily since their inception in the early 1960s. Even
though growth rates are substantial, estimates of demand
for personnel with graduate degrees in such programs
far exceed the supply. During the 80s, the need for
master's graduates is estimated to be approximately
34,000 annually. During this same period, annual pro-
duction will only increase from about 3,000 to 4,000 [6],

3.0 Goals

3.1 Basic Intent

The basic intention of a master's program in com-
puter science is to develop the student's critical profes-
sional thinking and intuition. The curriculum must be
structured to provide a balanced mixture of learning
experiences to make the graduate capable of sound
professional decisions. As a result the graduate should
be able to assume responsible positions in business,
government, and education at the research, development,
and planning levels. The program should also provide
an excellent foundation for further formal training.

The primary emphasis of the program should be on
the concepts, theory, and practice of computer science.
Students should have a broad understanding of the field.
Techniques and methodologies of computer science
should be discussed and used. Intensive education in
specific areas of computer science and/or training in an
application area is desirable. An academically oriented
program will encourage students to develop and use
abstract models. A professionally oriented program will
encourage students to apply abstract models and com-
puter science concepts in practical situations.

Academically oriented programs will tend to attract
full-time students, and these students are generally ori-
ented toward further education and research. Students
in professional programs are generally oriented toward
careers in industry or government, and such programs
are frequently designed to accommodate part-time stu-
dents.

3.2 Communication Skills
Computer scientists require special communication

skills. They must be able to communicate with the rest
of their organizations in understandable terms, both
orally and in writing. They must be able to communicate
with their co-workers, users of their computer systems,
and other professionals who require computer expertise.
They must be able to produce documentation for a
complex computing system which is clear, concise, un-
ambiguous, and accurate. They must be able to produce
well organized reports which clearly delineate objectives,
method of solution, results, and conclusions for a com-
plex task.

3.3 Current Literature Level
Graduates should be cognizant of the pertinent lit-

erature in their field of choice and be able to read,
interpret, and use this material. They should find it a
normal procedure to review current journals to keep
abreast of new trends and ideas. They should be able to
recognize and use techniques relevant to their present
endeavors.

3.4 Professionalism
Since graduates could assume responsible positions

in some organizations they should be able to function
effectively as members of teams. They should possess
qualities of leadership along with technical skills so as to
effectively lead a group to the successful completion of
a task.

Master's students should take an active part in the
activities of any local professional computer science or-
ganization which may exist. They should be aware of the
societal impact of computing as incorporated in the
ACM Code of Ethics [12],

4.0 Entrance Requirements

4.1 Admission Requirements
The Graduate Record Examinations (GRE) Ad-

vanced Computer Science Test has been available since
October 1976. Its purpose is to help graduate committees
assess the qualifications of applicants with a bachelor's
degree in Computer Science for advanced study in com-
puter science. The Advanced Test in Computer Science
is one of a number of measures that might be used to
evaluate a candidate for admission to the M.S. degree
program. The verbal part of the GRE may help measure
the communication skill level of applicants and the
quantitative part is a good general indicator of numeric
manipulation capabilities.

A "B" average for the undergraduate degree is a
common requirement for admission to graduate study.
Some schools provide a "special" status for those who
do not meet entrance requirements with subsequent re-
evaluation for admission to full status.

4.2 Prerequisites
The student entering a master's program ideally

should have a B.S. in Computer Science or at least the
material included in CS 1 through CS 8 of "Curriculum
'78" [2] or SE-1 through SE-4 and CO-1 through CO-4
of the IEEE Computer Society Model Curriculum [11],
and mathematics through calculus, linear algebra, and
one course in statistics. Course titles for CS 1 through
CS 8 are given in Appendix B. Discrete structures,
maturity in both abstract reasoning and the use of
models, and one or more years of practical experience in
computer science are desirable. Of course, the applicant
must satisfy the general entrance requirements of the
institution's graduate school or department.

81

Some schools may admit students who do not meet
the entrance requirements listed above. These students
will have to remove deficiencies early in their graduate
studies.

Removal of academic deficiencies might be through
any or all of the following approaches:

a. Require students to take specific existing under-
graduate courses for no credit toward the mas-
ter's degree;

b. Establish special "immigration" courses that rap-
idly cover the material in the areas of deficiency;
or

c. Provide the students with self-study outlines in
conjunction with appropriate proficiency exam-
inations.

Any courses taken to remove deficiencies must be in
addition to the program required for the master's degree.

5.0 Program Organization

5.1 Course Work
Formal course work is provided to give the students

a mixture of practical and theoretical work. Such courses
will typically begin at a level in which the courses may
be taken by advanced undergraduate students or grad-
uate students.

The specific graduate courses which are offered re-
flect the expertise and judgment of the faculty involved.
Graduate programs reflect their specific environments
far more than do undergraduate programs. It is possible
to envision several independent axes, e.g., software/hard-
ware, theory/practice, and numeric/nonnumeric com-
putation. Each department should determine where on
each axis its program should be, consistent with available
resources and expertise. These emphases should be re-
evaluated at least every three years.

Nevertheless, the Committee believes all master's
programs should have some aspects in common. Accord-
ingly, a list of possible courses is given below. Depart-
ments planning master's programs should start with this
list. In preparing these course descriptions, the Commit-
tee drew on material from well-established master's de-
gree programs at

Georgia Institute of Technology
University of Illinois
University of Maryland
University of Missouri-Rolla
Northwestern University
University of North Carolina at Chapel Hill
Ohio State University
Purdue University
Rutgers: The State University of New Jersey
Stanford Unversity
The University of Texas at Austin [13].

Computer Science is a rapidly changing field. The
courses listed here reflect the present state of the field

and will require periodic updating. Descriptions of these
courses are given in Appendix B. They provide a starting
point for developing or updating a master's degree pro-
gram.

Typical courses which should be offered, under the
topical areas within which they fall, might be as follows.
Courses CS 9 through CS 18 are described in [2]. Courses
CS 19 through CS 38 are described in Appendix B.

A. Programming Languages

CS 14 Software Design and Development
CS 15 Theory of Programming Languages
CS 19 Compiler Construction
CS 20 Formal Methods in Programming

Languages
CS 21 Architecture of Assemblers
CS 25 High Level Language Computer

Architecture

B. Operating Systems and Computer Architecture
CS 10 Operating Systems and Computer

Architecture II
CS 22 Performance Evaluation
CS 23 Analytical Models for Operating Systems
CS 24 Computer Communication Networks and

Distributed Processing
CS 26 Large Computer Architecture
CS 27 Real-Time Systems
CS 28 Microcomputer Systems and Local

Networks

C. Theoretical Computer Science
CS 13 Algorithms
CS 16 Automata, Computability, and Formal

Languages
CS 29 Applied Combinatorics and Graph Theory
CS 30 Theory of Computation

D. Data and File Structures
CS 11 Database Management Systems Design
CS 31 Information Systems Design
CS 32 Information Storage and Access
CS 33 Distributed Database Systems

E. Other Topics
CS 9 Computers and Society
CS 12 Artificial Intelligence
CS 34 Pattern Recognition
CS 35 Computer Graphics
CS 36 Modeling and Simulation
CS 17 Numerical Mathematics: Analysis
CS 18 Numerical Mathematics: Linear Algebra
CS 37 Legal and Economic Issues in Computing
CS 38 Introduction to Symbolic and Algebraic

Manipulation

These courses are representative of those being of-
fered today in established master's programs. Some over-

82

lap considerably with others, e.g., CS 19 and CS 21 or
CS 22 and CS 23. These pairs are included to provide
alternative examples. The Committee does not propose
that both members of a pair be offered. Further, the
Committee expects the appropriate courses to change
frequently as the field matures. Additional courses may
be offered to reflect the interests of the faculty.

In considering the courses that should be taken in the
master's program it should be recognized that one of the
purposes of such a program is to supply the opportunity
for additional course work over that possible in an
undergraduate program. Some of the courses, appropri-
ately, are available for the graduate student and ad-
vanced undergraduates, although the reasons for selec-
tion may be different.

The master's program should provide both breadth
in several areas, and depth in a few. In addition, it should
allow a degree of flexibility to address individual needs.
The typical program will consist of 30 to 36 semester
hours.

The program should include at least two courses from
A, two courses from B, and one course from each of C,
D, and E. The student who has not been exposed to
numerical analysis as an undergraduate should take CS
17. Students with strong undergraduate backgrounds in
computer science may have already satisfied some of
these requirements and may thus proceed to more ad-
vanced courses. Their degrees probably will be more
specialized than those of students with weaker back-
grounds.

The entire program should contain at least four
computer science courses which are for graduate students
only.

5.2 Culminating/Unifying Activity
Beyond the course work, each student should be

required to participate in some summarizing activity.
A thesis, project, seminar, or comprehensive exami-

nation exemplifies a kind of culminating activity for the
program. They provide a format for a student to combine
concepts and knowledge from a number of different
courses. They also provide a method of judging a stu-
dent's performance outside the narrow confines of a
single course. They may also be useful in insuring a
uniform standard in a program that may cover many
years and use many different instructors.

These culminating activities can be very time-con-
suming for both students and faculty. Faculty loads must
allow the necessary time for the preparation, supervision,
and evaluation of these activities

5.3 Seminar
A seminar in which the students make presentations

can be useful for providing experience and improving
the communication skills of students. The seminar pro-
vides an opportunity for the student to explore the
literature and make formal presentations. The seminar
is also useful in developing and encouraging the habit of

reading and discussing the current literature in computer
science.

5.4 Thesis or Project
A thesis or project usually taking more than one

semester should be done by each student. This is sug-
gested to extend the student's experience in analysis and
design and the evaluation and application of new re-
search findings or technological advances. Relating proj-
ects to work environments can strengthen a professional
program.

The thesis or project provides the primary means by
which the student gains practical experience in applying
computing techniques and methodologies. It also pro-
vides a basis for developing written and oral communi-
cation skills and documentation experience. Finally, it
provides the opportunity for exploring recent concepts
in the literature and demonstrating an understanding of
those concepts.

A project is much more difficult to evaluate than
course work or a thesis. However, because of the impor-
tance of the project within the program its careful
evaluation is vitally important. Successful completion
means:

a. The product produced performs as prescribed.
b. The project has been properly documented both

in terms of nontechnical descriptions and in
terms of technical diagrams and formal docu-
mentation.

c. A formal public oral presentation has been given.
This is seen as a mechanism for encouraging
both a high level of presentation and a high
technical standard for the project.

Through a seminar and a project the student can gain
practical experience in the evaluation, selection, and
decision making process.

5.5 Comprehensive Examination
An alternative to the thesis may be a comprehensive

examination. This examination serves a purpose similar
to the thesis or project discussed previously. It summa-
rizes the entire program. The examination should consist
of:

a. review and analysis of articles from current lit-
erature; and/or

b. questions that integrate material from more than
one course.

The period of time over which degree requirements
are satisfied will be considerably longer for part-time
students than for full-time students. The former, there-
fore, should be supplied with reading guides prior to the
comprehensive examination. Indeed, in order to encour-
age a reading habit in all students some examination
questions should be related to required readings rather
than to course work.

83

6.0 Resource Requirements

6.1 Faculty
Most faculty, are qualified to teach in more than one

area of specialization. Although in the past most com-
puter science faculty received degrees in other disciplines,
it is recommended that master's programs not be imple-
mented without experienced computer science faculty or
faculty formally trained in computer science. A mini-
mum of five computer science faculty members is re-
quired to provide adequate breadth for a stand-alone
master's program. If the department offers a bachelor's
program as well, then at least eight faculty members
would be required for both programs. Limited use of
qualified adjunct faculty is appropriate in some special
circumstances, but at least three quarters of the courses
must be offered by regular full-time faculty.

6.2 Computing Equipment
Every computer science master's program must have

access to adequate computer systems. The amount of
computing power which must be available depends on
how many students will be in the program at one time
and their specializations.

An area of specialization such as computer graphics
or design automation requires very special and possibly
dedicated computing facilities, both hardware and soft-
ware. Programs specializing in information systems place
heavy demands on a large computer system with appro-
priate software.

For the study of computer systems and languages a
variety of languages and operating systems must be
available. A dedicated system under departmental con-
trol is optimal for hands-on experience. Programs and
experiments dealing with the security of systems usually
require a dedicated system.

Proper arrangements must be made for maintenance
of the computing facility and laboratory equipment.
Plans and provisions also need to be made for growth
and periodic modernization of equipment resources.

6.3 Library
The list of books and magazines for undergraduate

programs prepared by a joint committee of ACM and
IEEE is the only available list of reference material [10].
It is a good starting point, but suffers from being for
undergraduates rather than graduate students and being
current only to 1977. Additional materials, particularly
selected applied and theoretical journals, are required
for a master's program. Besides faculty and computing
equipment, substantial library resources are essential for
an adequate master's program in computer science. Siz-
able current expenditure funds are needed to maintain
collections, but at most universities such funds will be
insufficient by themselves. An additional special alloca-
tion of tens of thousands of dollars will be needed to
establish a basic holding in the first place.

7.0 Specializations

A specialization program in the context of "master's
level programs in computer science" is defined as a
professional program which, in general, would be ad-
ministered by a Computer Science department, but
which differs from traditional and/or academic pro-
grams in several important aspects. Here the emphasis is
on the "specialist." A number of schools have already
developed such programs. Almost always the title of the
program is the key to the area of specialization and alerts
the potential student to the nontraditional (in the com-
puter science sense) nature of the offering. Examples of
such programs include health computing (also called
medical information science), library information sci-
ence, and software design and development. In each case
the professional practitioner produced by these specialist
programs is expected to draw upon a broadly based
knowledge of the technical foundations of computer
science and be able to apply these concepts in the context
of a particular application area, e.g., medicine or software
development. These specialists are expected to be the
professional level link between computer science and
another specific technical area. Justification for suggest-
ing that these programs be administered by computer
science rests with the degree to which computer science
dominates the course load imposed on the student.

There are intrinsic benefits from Computer Science
departments having specialist programs. Nevertheless, it
is not feasible for a particular department to have a
specialist program unless it has a nucleus of faculty with
appropriate similar interests and expertise. Emphasis and
content will vary widely.

On the other hand, the Committee wants to discour-
age a somewhat frivolous proliferation of programs with
specialist names. A specialist program should build on a
more general Computer Science master's program rather
than be a relatively inexpensive shortcut to a master's
level program. Therefore, the following guidelines are
presented:

a. There must be a clear and continuing need for
individuals with a particular training both locally
and nationally. This need must be expected to
last for several years.

b. There must be a distinct body of knowledge
which these individuals need and which is not
provided by a generalist degree of the type pre-
sented earlier in this report.

c. There must be at least three full-time faculty
members available with expertise in this body of
knowledge.

d. Any needed resources (e.g., special hardware,
databases) must be available in sufficient quan-
tity locally. Provision must be made for periodic
updating and improvement of these resources to
keep pace with the state of the art.

86

8.0 Conclusions

This report is the product of compromise. More than
200 Computer Science educators were consulted in its
preparation. The Committee started out to produce a
model curriculum for Computer Science master's degree
programs similar to the model curriculum for bachelor's
degree programs described in [2], We quickly determined
that even a small group of computer scientists could not
agree on a model curriculum. We tried to develop sepa-
rate model curricula for academic, professional, and
specialization programs, but could not reach a consensus
on any of those. Next we tried to develop a list of core
concepts which every master's graduate should know.
Lists of anywhere from five to thirty concepts were
generated and rejected. What one person felt should be
in the core another felt was relatively unimportant.

* *

Appendix A

Contributors

Computer Science is a volatile field. The Committee
tried to determine in which directions the field was
moving. We wanted to produce a forward looking report.
Again, we could not reach a consensus. Each expert
disagreed with the others.

This report makes some recommendations for what
a master's degree in Computer Science should be and
what it should not be. The report does not provide a
blueprint for a master's program because the Committee
believes the field is too new to have just one or even a
small number of blueprints. The Computer Science fac-
ulty at an institution must be the ultimate determiners of
what should and what should not be in the program.
This report provides some recommendations for mini-
mums which should be in every program. Beyond that
we must defer to the mature, reasoned judgments of the
local faculty.

* *

Appendix B

Course Descriptions

The following people have made substantial contri-
butions to this report:

Robert M. Aiken, University of Tennessee
* Richard H. Austing, University of Maryland
* Bruce Barnes, National Science Foundation
* Alfs T. Berztiss, University of Pittsburgh
* Delia T. Bonnette, University of Southwestern

Louisiana
Stephen E. Cline, Prentice-Hall, Inc.

* John F. Dalphin, Indiana-Purdue University
at Fort Wayne

* Gerald L. Engel, Christopher Newport College
Richad E. Fairley, Colorado State University

** John W. Hamblen, University of Missouri-Rolla
* Alex A. J. Hoffman, Texas Christian University

Lawrence A. Jehn, University of Dayton
* William J. Kubitz, University of Illinois

Joyce Currie Little, Community College of Baltimore
* Kenneth I. Magel, University of Missouri-Rolla
* Robert F. Mathis, Old Dominion University
* John R. Metzner, University of Missouri-Rolla

David Moursund, University of Oregon
* James D. Powell, Burroughs-Wellcome Co.

David Rine, Western Illinois University
Kenneth Williams, Western Michigan University
Anthony S. Wojcik, Illinois Institute of Technology
Marshall C. Yovits, Indiana-Purdue University

at Indianapolis

* Committee members ** Committee chairman

The descriptions are very brief to allow faculty to
adjust these courses to their own environments. The
Committee recognizes the need to develop an objective
list of acceptable textbooks. For some of these courses,
no textbook yet exists. Articles from the recent literature
must be used. The Committee anticipates the availability
of a textbook list in the SIGCSE Bulletin within the next
two years.

Courses CS 1 through CS 18 are described in [2].
Courses CS 1, through CS 8 are prerequisite to a master's
program.

CS 1 Computer Programming I
CS 2 Computer Programming II
CS 3 Introduction to Computer Systems
CS 4 Introduction to Computer Organization
CS 5 Introduction to File Processing
CS 6 Operating Systems and Computer Architecture I
CS 7 Data Structures and Algorithm Analysis
CS 8 Organization of Programming Languages
CS 9 Computers and Society
CS 10 Operating Systems and Computer Architecture II
CS 11 Database Management Systems Design
CS 12 Artificial Intelligence
CS 13 Algorithms
CS 14 Software Design and Development
CS 15 Theory of Programming Languages
CS 16 Automata, Computability, and Formal Languages
CS 17 Numerical Mathematics: Analysis
CS 18 Numerical Mathematics: Linear Algebra

85

The three numbers in parentheses following the
course names below are: classroom hours per week,
laboratory hours, and total course credit.

CS 19 Compiler Construction (3-0-3)
Prerequisite: C'S 8

An introduction to the major methods used in compiler implementa-
tion. The parsing methods of LL(k) and LR(k) are covered as well as
finite state methods for lexical analysis, symbol table construction,
internal forms for a program, run time storage management for block
structured languages, and an introduction to code optimization.

CS 20 Formal Methods in Programming Languages (3-0-3)
Prerequisite: CS 8

Data and control abstractions are considered. Advanced control con-
structs including backtracking and nondeterminism are covered. The
effects of formal methods for program description are explained. The
major methods for proving programs correct are described.

CS 21 Architecture of Assemblers (3-0-3)
Prerequisite: CS 6

Anatomy of an assembler: source program analysis, relocatable code
generation, and related topics. Organization and machine language of
two or three architecturally different machines; survey and comparison
of these machines in various programming environments.

CS 22 Performance Evaluation (3-0-3)
Prerequisite: CS 6

A survey of techniques of modeling concurrent processes and the
resources they share. Includes levels and types of system simulation,
performance prediction, benchmarking and synthetic loading, hard-
ware and software monitors.

CS 23 Analytical Models for Operating Systems (3-0-3)
Prerequisite: CS 6

An examination of the major models that have been used to study
operating sysems and the computer systems which they manage. Petri
nets, dataflow diagrams, and other models of parallel behavior will be
studied. An introduction to the fundamentals of queueing theory is
included.

CS 24 Computer Communication Networks and Distributed
Processing (3-0-3)

Prerequiste: CS 6

A study of networks of interacting computers. The problems, rationales,
and possible solutions for both distributed processing and distributed
databases will be examined. Major national and international protocols
including SNA, X.2I, and X.2S will be presented.

CS 25 High Level Language Computer Architecture (3-0-3)
Prerequiste: CS 6

An introduction of architectures of computer systems which have been
developed to make processing of programs in high level languages
easier. Example systems will include SYMBOL and the Burroughs
B1700.

CS 26 Large Computer Architecture (3-0-3)
Prerequisite: CS 6

A study of large computer systems which have been developed to make
special types of processing more efficient or reliable. Examples include
pipelined machines and array processing. Tightly coupled multipro-
cessors will be covered.

CS 27 Real-Time Systems (3-0-3)
Prerequisite: CS 6

An introduction to the problems, concepts, and techniques involved in
computer systems which must interface with external devices. These
include process control systems, computer systems embedded within
aircraft or automobiles, and graphics systems. The course concentrates
on operating system software for these systems.

CS 28 Microcomputer Systems and Local Networks (2-2-3)
Prerequisite: CS 6

A consideration of the uses and organization of microcomputers.
Typical eight or sixteen bit microprocessors will be described. Micro-
computer software will be discussed and contrasted with that available
for larger computers. Each student will gain hands-on experience with
a microcomputer.

CS 29 Applied Combinatorics and Graph Theory (3-0-3)
Prerequisites: CS 7, 13

A study of combinatorial and graphical techniques for complexity
analysis including generating functions, recurrence relations, Polya's
theory of counting, planar directed and undirected graphs, and NP
complete problems. Applications of the techniques to analysis of
algorithms in graph theory and sorting and searching.

CS 30 Theory of Computation (3-0-3)
Prerequisites: CS 7, 16

A survey of formal models for computation. Includes Turing Machines,
partial recursive functions, recursive and recursively enumerable sets,
the recursive theorem, abstract complexity theory, program schemes,
and concrete complexity.

CS 31 Information System Design (3-0-3)
Prerequisites: CS 6, II

A practical guide to Information System Programming and Design.
Theories relating to module design, module coupling, and module
strength are discussed. Techniques for reducing a system's complexity
are emphasized. The topics are oriented toward the experienced pro-
grammer or systems analyst.

CS 32 Information Storage and Access (3-0-3)
Prerequisites: CS 6, II

Advanced data structures, file structures, databases, and processing
systems for access and maintenance. For explicitly structured data,
interactions among these structures, accessing patterns, and design of
processing/access systems. Data administration, processing system life
cycle, system security.

CS 33 Distributed Database Systems (3-0-3)
Prerequisites: CS 11, 24

A consideration of the problems and opportunities inherent in distrib-
uted databases on a network computer system. Includes file allocation,
directory systems, deadlock detection and prevention, synchronization,
query optimization, and fault tolerance.

CS 34 Pattern Recognition (3-0-3)
Prerequisites: CS 6, 7

An introduction to the problems, potential, and methods of pattern
recognition through a comparative presentation of different methodol-
ogies and practical examples. Covers feature extraction methods, sim-
ilarity measures, statistical classification, minimax procedures, maxi-
mum likelihood decisions, and the structure of data to ease recognition
Applications are presented in image and character recognition, chem-
ical analysis, speech recognition, and automated medical diagnosis.

86

CS 35 Computer Graphics (3-0-3)
Prerequisites: CS 6, 7

An overview of the hardware, software, and techniques used in com-
puter graphics. The three types of graphics hardware: refresh, storage,
and raster scan are covered as well as two-dimensional transformations,
clipping, windowing, display files, and input devices. If a raster scan
device is available, solid area display, painting and shading are also
covered. If time allows, three-dimensional graphics can be included.

CS 36 Modeling and Simulation (3-0-3)
Prerequisites: CS 6, 7

A study of the construction of models which simulate real systems. The
methodology of solution should include probability and distribution
theory, statistical estimation and inference, the use of random variates,
and validation procedures. A simulation language should be used for
the solution of typical problems.

CS 37 Legal and Economic Issues in Computing (3-0-3)
Prerequisites: CS 9, 12

A presentation of the interactions between users of computers and the
law and a consideration of the economic impacts of computers.
Includes discussion of whether or not software is patentable, as well as
discussion of computer crime, privacy, electronic fund transfer, and
automation.

CS 38 Introduction to Symbolic and Algebraic Manipulation (3-0-3)
Prerequisite: CS 7

A survey of techniques for using the computer to do algebraic manip-
ulation. Includes techniques for symbolic differentiation and integra-
tion, extended precision arithmetic, polynomial manipulation, and an
introduction to one or more symbolic manipulation systems. Automatic
theorem provers are considered

References

1. Ashenhurst, R. L. (Ed.) Curriculum recommendations for
graduate professional programs in information systems, a report of
the ACM Curriculum Committee on Computer Education for
Management. Comm. ACM 15, 5 (May 1972), 363-398.
2. Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, L„ and
Stokes, G. (Eds.) Curriculum '78: Recommendations for the
undergraduate program in computer science, a report of the ACM
Curriculum Committee on Computer Science. Comm. ACM 22, 3
(March, 1979), 147-166.
3. Austing, R.H., Barnes, B.H., and Engel, G.L. A survey of the
literature in computer science education since curriculum '68. Comm.
ACM 20, 1 (Jan. 1977), 13-21.
4. Berztiss. A T. The M.S. program in computer science. SIGCSE
Bulletin (ACM) / / , 1 (Feb. 1979), 61-69.
5. Curriculum Committee on Computer Science (C 'S). Curriculum
'68: Recommendations for academic programs in computer science, a
report of the ACM Curriculum Committee on Computer Science.
Comm. ACM 11, 3 (March 1968), 151-197.
6. Hamblen, J.W. Computer Manpower -Supply and Demand—by

States. Information Systems Consultants, R.R. 1, Box 256A, St.
James, Mo., 1973, 1975, and 1979.
7. Hamblen, J.W., and Baird, T.B. Fourth Inventory of Computers in
U.S. Higher Education. 1V76- 77. EDUCOM, Princeton, N.J., 1979.
8. Melkanotf, M.A. An M.S. program in computer science. SIGCSE
Bulletin (ACM) 5, 1 (Feb. 1973), 77-82.
9. Teichroew, D. (Ed). Education related to the use of computers in
organizations, position paper by the ACM Curriculum Committee on
Computer Education for Management. Comm. ACM 14, 9 (Sept.
1971), 575-588.
10. Joint Committee of ACM and IEEE-CS. A Library List on
Undergraduate Computer Science, Computer Engineering, and
Information Systems. ACM, New York, 1978.
11. IEEE Computer Society. A curriculum in computer science and
engineering. EH 0119-8, Los Alamitos, Calif., Nov. 1976.
12. Association for Computing Machinery. Professional Code of
Ethics. ACM. New York.
13. Association tor Computing Machinery. Administrative Directory.
ACM, New York, 1980.

87

REPORTS

LETTERS TO THE EDITOR

FORUM

Letter to the Editor
Vol. 11, No. 9, September 1968, p. 594

On Computer Appreciation in the
Undergraduate Curriculum

Key Words and Phrases: computer appreciation courses, under-
graduate curriculum

CR Categories: 1.52, 1.59, 2.12

E D I T O R :
The article on computer appreciation courses in the under-

graduate curriculum edited by Dr. Elliot Organick, "Panel Dis-
cussion on Computer Appreciation" [Comm. ACM 11, 4 (Apr.
1968), 263), presented the problem of acquainting the educated
public with computer technology.

The need to communicate the capabilities of the computer seems
to be best satisfied at the college level. However, to insist that
appreciation courses be created to show the applications of com-
puter technology to areas of scientific endeavor is to insist that
mathematics appreciation courses be established. Obviously the
sciences aren't taught without extensive references to mathe-
matics.' What is needed is the introduction of computer applica-
tions to the content of courses in the science and liberal arts areas.
This would not presuppose any knowledge of computers or pro-
gramming languages, but would provide a real and meaningful
application of computers to noncomputer science people.

This doesn ' t mean t h a t one should not under take the creation
of computer appreciation courses, but is intended only to point
out t ha t computers must be shown in a real application, not an
artificially constructed one. The curriculum which offers an intro-
duction to computers, but not reinforcement of computer con-
cepts and applications in the scientific as well as the liberal ar ts
curriculum, does l i t t le to acquaint the managers, industrial ists ,
scientists, and government officials with computer capabilit ies.

The artificially constructed problems found in many appreci-
ation courses consist of sort ing, finding zeros of polynomials,
prime number generators, and searching techniques. These prob-
lems to the engineer or archi tect , historian or sociologist, are not
indicative of the significance of computer capabilities, bu t are
only special cases of the field of computer science—a field which
may be interesting, but may not be meaningfully connected to any
other . The difficulty is not in the selection of problems tha t will
generalize in a natural way to other important problems; it is in
the recognition by noncomputer science instructors tha t the com-
puter has come of age in the noncomputer science field, thereby
providing a natural entrance to the computer science field. When
the impetus is on "appl ica t ions ," the s tudent can go from the
general to the specific. The applications point the way to the s tudy
and appreciation of computers.

I t is a t this point t ha t the computer appreciation course should
be introduced. I t should not consist of languages and elementary
problems bu t of the ideas in computer techniques which should be
independent of hardware and software. The awkward grammar of
FORTRAN or the tedious coding of machine language programs has
no place here. Ideas must be taught , not the memorization of
s tandard procedures.

Only when computer applications are taught as pa r t of the
subject material in noncomputer science courses can the capa-
bilities of computer technology be understood in n. computer ap-
preciation course. The computer will then take on its proper role
as a tool, an instrument of scientific investigation.

J K F F R E Y P . KRISCHKK
Department of Defense
1S821 Briarwood Drive
Laurel, MD. 20810

89

Comment on Curriculum 68
Key Words and Phrases: computer science curriculum, com-

puter case studies, system case studies
CR Categories: 1.52

E D I T O R :
May I point out a deficiency in Curriculum 68 [Comm. ACM 11,

3(Mar. 1968) 151-197]: i ts lack of orientation to the practi t ioners
of computer systems analysis.

A good education should not be solely directed toward academi-
cians whose only economic justification is to teach in order to turn
out recursively new generations of academicians. Such has been
the problem in the teaching of economics since i t was defined as a
subject without insti tutional content . Universi ty economic de-
par tments (notably not in the schools of business) have turned out
t rained economic theoreticians who have found little relat ionship
between their academic knowledge and the existing practices
which guide business firms and government. A balanced education
in economics must properly emphasize the descriptions of existing
economic inst i tut ions as well as the inadequate theories of eco-
nomics.

Thus, in the education of the undergraduate computer scientist
(?), emphasis mus t be given to a description of what a practi t ioner
of computer science does as well as to the teaching of the inade-
quate theories of the science (?).

If this is not done, practical men will place the required " in-
s t i tu t iona l" courses in other depar tments of the university. This
would be comparable to the current practice of taking business
" ins t i tu t iona l " courses in the school of business and not in the
economics depar tment .

Concretely, I find i t difficult to accept an undergraduate cur-
riculum in this field which would not include six academic hours
in the s tudy of existing computer systems, i.e. case studies. The
college graduate trained in computer science will work most likely
in the environment of such systems. Why not , therefore, give the
apprentice scientist a f rame of reference for the application of
theories t ha t are being taught .

In a way, the report a t t empts to circumvent this criticism by
s ta t ing :

I t is also likely tha t the major i ty of application programmers in
such areas as business da t a processing, scientific research and
engineering analysis will continue to be specialists educated in
the related subject ma t t e r areas, al though such s tuden ts can un-
doubtedly profit by taking a number of computer courses.

The implication is t h a t computer science can be isolated f rom a
system of application. However, upon close examination t he
recommended course work is highly s lanted towards the needs of
physical scientists and engineers. Very much neglected are the
knowledge requirements of business systems designers and infor-
mation technologists.

RAYMOND P . W I S H N E R
American University
Center for Technology
Washington, D. C.

90

On Master's Level Curricula Survey

Key Words and Phrases: surveys, education, computer science
curricula

CR Categories: 1.52

E D I T O R :
After reading R. W. Elliott's article, "Master's Level Computer

Science Curricula" [Comm. ACM 11, July 1968], I begin to wonder
about the "marketability" of students, with a master's degree in
Computer Science and exactly where they fit into the computer
and information processing community. The article conveys the
impression that current M.S. students are weak and inadequately
trained in the areas where industry requires the most help.

I make this statement as chairman of a two-year associate de-
gree program in Computer Technology. Our graduates (1) are
thoroughly familiar with the programming languages of FORTRAN,
COBOL, RPG, ALGOL, and P L / I , as well as a machine and assembly
language on a third generation computer; (2) have been exposed
to courses in data processing management, system design, and
commercial or scientific applications; (3) have had at least one
course in numerical analysis and computer mathematics; (4) have
taken computer application courses in statistics, linear program-
ming, PERT, CPM, and simulation; and (5) have been trained
using the "hands on" approach to operate computers and other
peripheral devices and to debug their programs.

Obviously, the M.S. student, in view of his academic ex-
perience, should be superior to the A.A.S. student. However, the
A.A.S. student is at least "marketable" and has a place in the real
and practical world of computing.

From my contacts in industry it has been disappointing to ob-
serve some recent M.S. students who have been trained in the
theoretical aspects of computer science but who were not able to
apply their training to the solution of the practical problems
facing industry. I strongly feel that more effort should be exerted
in tying in the various A.A.S. degree programs with the existing
B.S., M.S., and Ph.D. programs in areas of Computer Science,
since all these programs are part of a continuum called computing
and information processing.

JOHN M A N I O T E S
Computer Technology
Purdue University Calumet Campus
Hammond, IN 4688S

91

Letter from the ACM Vice-President Letter from the ACM Vice-President
Vol. 20, No. 10, October 1977. p. 683

Trends in Graduate Computer Science Education
(Will They All Find Work?)

This generation of computer sci-
ence graduate students enjoys the
prospect of a strong demand for its
services, but a "Ph.D. glut" some
years down the road is a worrisome
possibility. Computer science educa-
tion must adapt to changing educa-
tional and employment patterns if it
is to remain effective.

These are among the conclusions
I come to after leading a discussion
by senior computer science educa-
tors, industrial employers, and ACM
leadership, at an informal meeting
held before the National Computer
Conference earlier this year in Dal-
las. This letter is a summary of that
discussion; I won't call it a consensus
because the process of reviewing an
earlier draft of this letter made it
clear that on some crucial issues edu-
cational leaders are at variance on
how they see the future.

Here, then, is my view of the fu-
ture of graduate computer science
education, guided by the insights of
some two dozen people at a face-to-
face meeting, by the Conte-Taulbee
reports on computer science Ph.D.'s.
(Comm. ACM, June 1976, June
1977), by my travels and discussions
at colleges and universities, and by
reviewers. For three other views in
what I hope will be a continuing
dialog, see the ACM Forum in this
issue for letters by Professors Den-
ning, Nunamaker, and Sibley.
I. For a number of years some of us
have worried that computer science
might develop an oversupply of

Ph.D.'s, as has happened in a number
of other fields. I have tried to track
this matter on the thought that if we
could get early warning signals, it
might be possible to find some way
to soften the crunch.

That problem will probably have
to be faced someday, but, it appears,
not right away. This year's graduates
have had their pick of jobs, academic
or industrial as their interests dictate,
at high salaries. Schools trying to hire
new faculty arc, in some cases, in
desperate straits. There are some in-
dications of a new industrial demand
for Ph.D.'s, although it may be that
this demand is confined to a rather
few industrial research organizations.
Industry is becoming increasingly at-
tractive to both Ph.D. and Master's
students, because of substantial sal-
ary differentials between industrial
and academic jobs and because aca-
demic tenure has become difficult to
obtain.

In short, graduate students now
in school have rosy 'employment
prospects.

Mind you, I am not saying that
the function of education is to maxi-
mize students' starting salary offers.
Education is different from voca-
tional training. Still, however much
we prize the aspects of a true educa-
tion that go beyond the merely voca-
tional, we do seek to prepare our
students to play a useful role in so-
ciety. The ability to get a job is—
perhaps unfortunately—the most ob-
vious measure of social usefulness. If

large numbers of graduates, however
well educated, could not find work,
we would surely feci that somehow
things were out of kilter.

And that will probably happen
at some point. The very success of
today's graduate programs is a strong
incentive to expansion; once the new
faculty members are in place and an
enlarged pipeline of students is full,
it is painful to cut back. Today's eu-
phoria about employment must not
blind us to the fact that nothing can
grow forever, and that there really is
some limit to the number of com-
puter science Ph.D.'s that the world
needs. The top graduates will never
have a problem, but in an oversupply
situation, some of those below the
top are going to be in trouble.
2. One of the most rapidly-growing
areas of computer education is that
of Master's degree programs, espe-
cially those in information systems
management. Often these are rela-
tively new ventures in the Business
School. Others have existed for some
time within departments of computer
science or electrical engineering.
These are terminal Master's pro-
grams, usually two years, directed
toward students who will be working
in applications and possibly later in
their careers moving into manage-
ment.

A computer science graduate
whose academic work has focused
on individual research in some useful
but narrowly-defined specialty is
rather poorly equipped to step into

92

such a teaching environment. People
running information systems man-
agement programs say that they can
find almost no qualified new gradu-
ates for teaching positions. It is nec-
essary either to recruit from industry
or to engage in on-the-job training.

It is becoming less and less true
that the typical Ph.D. in computer
science goes into teaching in a de-
partment similar to the one from
which he or she graduates. More are
going into industry, apparently, and
those who go into teaching are in-
creasingly in Master's and under-
graduate programs, where a research-
oriented Ph.D. may be a rather poor
preparation.

T h s implications of these shifts
in the employment of Ph.D.'s may
not be clear in detail, but it is fairly
obvious that some overhaul of cur-
riculum and methods may be re-
quired.
3. As measured by employment op-
portunities, society has a place for
both Ph.D.'s and Master's graduates
who know about computers—but the
two are quite different and should
not be confused. Just as a chipmunk
is not a squirrel that didn't grow up, a
Master's graduate is not just a Ph.D.
candidate who ran out of money or
failed the qualifying exam. Of course
we need Ph.D.'s. But we also need
the rather different preparation of the
applications-oriented Master's. For
many industrial jobs, a person with a
Master's is at least as attractive as
one with a Ph.D.—in some cases
more so. A Master's degree is a de-
cided plus over the Bachelor's, if the
preparation is right, but, except for
some research environments, a Ph.D.
does not necessarily add to a pros-
pective employee's qualifications.
4. The features of a computer sci-
ence education attractive to employ-
ers can be identified as follows:

First, multidisciplinary prepara-
tion is valuable. The person who
knows computers and accounting, or
computers and hospital administra-
tion, or computers and whatever, will
usually have a decided advantage
over the narrowly-trained person.
The combination of a Bachelor's in
computer science and a Master's in

some application area, or vice versa,
is especially attractive.

Second, the graduate needs to
have some area of specialization,
some area in which he or she comes
to grips with an intellectual disci-
pline, masters a portion of it, and
learns how to approach the learning
of a body of new material—which will
be a life-long process.

Third, college experience in
working in teams is highly desirable.
Most work in business involves team
operations, whether formalized un-
der such names as chief programmer
team or not, and the educational ex-
perience should reflect this fact. Vari-
ous programs exist, ranging from
simple procedures in which students
in programming classes have to
modify each other's programs, to ex-
tensive group projects working with
local industry. It is widely agreed
that such experience is a very large
advantage for any graduate. Setting
up programs to provide such experi-
ence can require significant time, ef-
fort, and expense, but the payoff is
large.

Unfortunately, the educational
system is largely geared to an indi-
vidualistic approach to measurement
and rewards. There are shining ex-
ceptions to be sure, but the faculty
generally doesn't know how to give
grades for joint projects, and stu-
dents are conditioned against putting
the control of their evaluation in the
hands of other students. This is a
difficult problem, but one that must
be tackled if education is to adapt to
the needs of society.

Fourth, it is agreed that almost
all technical graduates arc deficient
in communication skills, and that
most know little about how to moti-
vate others. No one seems to be able
to offer much guidance on what to do
about this essentially universal com-
plaint, exccpt to note that experience
working in teams helps to uncovcr
latent communication and leadership
skills in those students who have
them.

* * * *

Computer science education
thrives. The people involved seem to
be enjoying themselves, the gradu-

93

ates currently find work, the needs of
society are being addressed (if not
always met). But the winds of change
blow here as elsewhere, and constant
evolutionary adaptation is required.
The law of survival is still "Adapt or
die."

The ACM will play its part as it
has in the past. The curriculum re-
ports on computer science education
{Comm. ACM,March 1968) and
computer education for management
(Comm. A CM, May 1972, December
1973) have had a profound impact
on education. It is to be expected that
the reports on undergraduate com-
puter science education and on com-
munity college programs, now in
draft form in the S I G C S E Bulletin
(June 1977), will have a similar im-
pact. Coordination among various
efforts is improving. The ACM—and
computer science education—may de^
velop hardening of the arteries some-
day, but there is very little sign of it
so far.

—Daniel D. McCracken

Acknowledgments and Attendees. The
meeting mentioned at the beginning of the
letter originated in earlier conversations
with Robert M. Graham, of the University
of Massachusetts, and Walter J. Karplus,
of the University of California at Los
Angeles.

The attendees were: William F. Atchi-
son, University of Maryland and chairman
of the ACM Educat ion Board; Richard
Aust ing, Universi ty of Mary land and
cha i rman of the ACM Special In teres t
Group on Computer Science Education;
Cyril H.P. Brookes, University of New
South Wales; David S. Burris, University
of Southern Mississippi; Sam D. Conte,
Purdue University and chairman of the
Computer Science Board; William Cotter-
man, Georgia State University and the
ACM Council; Joel Cyprus, Texas Instru-
ments; Gordon B. Davis, University of
Minnesota; George Dodd, General Motors
Research and ACM secretary; Gerald En-
gel, Virginia Institute of Marine Science
and vice-chairman, ACM Education Board;
Herbert R.J. Grosch, consultant and ACM
president; John Hamblen, University of
Missouri at Rolla and chairman of the
ACM Committee on Curriculum in Com-
puter Sciences; Fred Harris, University of
Chicago and ACM director of the Institute
for Certification of Computer Profession-
als (iccp) ;Thomas E. Murray, Del Monte
Corporation and chairman, ACM Special
Interest Group on Business Data Process-
ing; Jay F. Nunamaker, University of Ari-
zona and chairman of the ACM Committee
on Curriculum on Computer Education
for Management; Oliver R. Smoot, CBEMA
and ACM director of ICCP; Orrin E. Taul-
bee. University of Pittsburgh and chair-
man of the ACM Committee on Computer
Science Conferences; Judy Townley, Har-
vard University; Marshall Yovits, Ohio
State University and ACM Council.

ACM Forum
Vol. 20. No. 10. October 19 77, p. 774

Comments on Vice-President's
Letter on Graduate Education
In This Issue

• The Vice-President has made
some interesting observations (see
pages 683-684) about Computer Sci-
ence (CS) education. Herewith arc
some relevant further observations.
1. Philosophy of Education. In the
past decade or so, the philosophy of
American education has shifted no-
ticeably, away from the traditional
concept of "scholarship" toward a
new concept of "vocationalism." The
reasons for this originate in Big Edu-
cation run by Big Government, with
its mission of "educating" as many
students as possible and preparing
them for "useful roles" in society. In
this view a Ph.D. is merely an admis-
sion certificate to glutted academic
ranks, and it "overqualifies" for most
jobs. Many students believe that em-
ployers will hire no one whose edu-
cation "exceeds" the minimum re-
quired for the job. Educators must
deal with the attitude that the student
who chooses a broad education does
so at the expense of job training and
utility to society.
2. "Ph.D. Glut." We presently ex-
perience no oversupply of Ph.D.
holders in CS. This is because jobs
are plentiful; attractive offers are
made to holders of Bachelor's and
Master's degrees. Few students feel
inclined to work for the highest de-
gree, when similar pay and more job
security are available immediately.
But a Ph.D. glut is likely to develop,
for the job market will eventually
tighten.
3. "Tapping the Pipeline." Many an
employer hires topnotch students in
the early stages of their Ph.D. studies,
offering a good salary at a Master's
level—much to the satisfaction of
both employer and student. This phe-
nomenon may have a curious side
effect; if the very best students arc

plucked from the pipeline, the sec-
ond best are left to complete Ph.D.
studies. The result could be a decline
in the quality of Ph.D. holders. Put
that in your pipe.
4. EE i'.v. CS Tensions. Tensions be-
tween Electrical Engineering (EE)
and CS arc resurfacing. Symbolized
by Texas Instruments' trademarked
"solid state software," many people
find plausible the argument that all
important software will be hard-
burned into cheap chips for plugging
into a calculator or personal com-
puter. Some EE departments have
taken the position that, being now so
close to hardware, software research
belongs in the EE department—even
if the CS department has been offer-
ing software engineering and pro-
gramming methodology courses for
years. Such conflict serves no one.
Our profession is unique, including
in its purview both purely scientific
and purely engineering subjects. Pos-
sibly A C M (and I E E E ?) education
committees should study this, seek-
ing a mitigating position.

These issues are probably less
troublesome at private universities,
which still can afford high admission
standards and lighter teaching loads.
But the majority who reccivc degrees
in computer science and engineering
do so courtesy of the State, in whose
universities these issues are real.

P E T E R J . D E N N I N G

Computer Science Department
Purdue University
W. Lafayette, IN 47907

• 1 agree with Dan McCracken's
remark that "Computer Science edu-
cation must adapt to changing educa-
tional and employment patterns if it
is to remain effective." However, be-
fore we changc or adapt, wc must
decide how the proposed changes re-
late to the existing structure of Com-
puter Science programs. In the spirit
of McCracken's letter, I have a num-

94

ber of comments related to graduate
computer education, not just grad-
uate computer science education.

In the context of my comments,
the Information Systems discipline is
defined as being concerned with the
use of computers for the manage-
ment and operation of organizations.
Information Systems programs must
stress two components: (1) functional
areas in business and management,
and (2) technical topics in comput-
ing related to analyzing, designing,
and building information systems.

The ACM Curriculum Committee
on Computer Education for Manage-
ment (C'EM) has been discussing the
issues raised in McCracken's letter
since 1970. In May 1972, the ACM
C'EM Committee published in Com-
munications an extensive report
dealing with curriculum in Informa-
tion Systems. The task of the current
C'EM Committee is to update the
1972 report with findings on how
well the 1972 recommendations have
been implemented. Preliminary re-
sults of our study are as follows:

Most common name in use in university
programs for undergraduate and graduate
programs in "Information Systems Area:"

Number Name of Program
27 Management Information Systems
18 Information Systems
5 Business Information Systems • •

2 Information Systems Management
""142
There are 37 distinct names or permuta-
tions of words to label Information Sys-
tems programs.

Location of Information
Systems Programs

Business or Computer
Management Science

College Department
Bachelor 64 8
Master 35 12
Ph.D. 18 5

The ACM C'EM survey indicates
that Business and Management

Schools are very active in the devel-
opment of Information Systems pro-
grams.

A second point concerns Mc-
Cracken's implications that Informa-
tion Systems programs should be
implemented by Computer Science
departments. The implication being
made is that Computer Science de-
partments must stress applications in
order to survive. While this may be
in part true, it is fallacious to state
that all Computer Science depart-
ments must develop Information Sys-
tems programs as a major area of
concentration. There are many po-
tential facets to a Computer Science
department; the large number of
areas of specialization assure that a
department can develop expertise in,
at most, only a few of them. Informa-
tion Systems programs should exist
somewhere within the university
structure, but it is not clear that the
Information Systems program should
necessarily be in a Computer Science
department. The important consider-
ation is that a successful Information
Systems program must have the
cooperation and support of the Com-
puter Science department. The Com-
puter Science and the Information
Systems groups must be willing to
work together.

Indeed, the Computer Science
department of the future will have to
be able to cooperate with an even
larger community of applications-
oriented faculty in other areas of the
university. Graduate computer edu-
cation has always been, and should
continue to be, a cooperative venture
between people of various disci-
plines. Cooperation between areas
and resulting multi-disciplinary pro-
grams assure precisely the type of
integrated training McCracken de-
sires.

Finally, I disagree with the state-
ment that the training of a research-
oriented Ph.D. may be a rather poor
preparation for a faculty position in

Information Systems education. Now
more than ever, qualified researchers
are needed in the Information Sys-
tems area. The question is not
whether there should be research,
but what type of research should be
done. Research-oriented Ph.D.'s are
sorely needed in Information Sys-
tems to assure that all organizations
using such systems are capable of
utilizing rationally our constantly
changing technology. This back-
ground is especially needed for fac-
ulty teaching in either undergraduate
or Master's programs. The very na-
ture of the university environment
demands that Information Systems
faculty members also be competent
researchers. The Information Sys-
tems programs at many universities
are also producing many of the
Ph.D's to teach the Information Sys-
tems programs that arc currently
being developed at the undergradu-
ate and graduate level.

I think it is important for Mc-
Cracken to recognize the need for
programs in Information Systems,
but it is clearly misleading to label
the changes that are occurring with
respect to Information Systems as
trends in graduate computer science
education. It would be more appro-
priate to label McCraeken's remarks
as trends in graduate computer edu-
cation.

J . F . N U N A M A K E R J R .

Chairman, ACM C'EM
Professor of Management
Information Systems and
Computer Science
The University of Arizona
Tucson, AZ 85721

• I read with interest a prepublica-
tion version of Dan McCracken's
Vice-President's Letter and would
like to express two allied if slightly
differing points of view.
1. Why does everyone seem to think
the Ph.D. (and lower degree) job

95

market is about to dry up? Maybe we
are just producing the wrong pro-
ducts at the University.
2. What are the educational units of
interest? Maybe Computer Science
and Business are not enough (or at
least they have ill defined bound-
aries).

First, the question of growth and
the job market for highly educated
"information and computer scien-
tists." A recent study of the Depart-
ment of Commerce states that the
"information sector" in 1967 ac-
counted for 46 percent of the U.S.
Gross National Product. Now even if
we remove the entertainment, purely
electrical engineering, and line com-
munication industry from this, we are
left with a large and probably grow-
ing percentage, composed of hard-
ware, software, and "systemeering"
personnel, possibly in the ratios of 1
to 4 to 2.

For such a potentially large in-
dustrial and governmental need,
there must be a large body of educa-
tors—after all, engineering colleges at
major universities have several hun-
dred faculty members, and though
the vicissitudes of fortune effect their
distribution, the overall number now
appears to have stabilized. The whole
area of "informationeering" (to coin
a new word) could well support uni-
versity faculties of the size of a hun-
dred or so in the future; the other
question is, however, "Should it be in
one department or several?"

I thus reach my second question,
and approach it with an analogy: that
of science and engineering. We have
Physics departments which deal with
the structure and properties of mat-
ter, and we have Electrical Engineer-
ing departments which deal with a
particular branch of applied Physics.
No physicist cxpects to go into indus-
try as a designer or builder of electric
generators, while hardly any engineer
expects to do research on the basic

properties of materials (there are ex-
ceptions, of course).

There is one basic science which
we can call Computer Science—and
provide it with a mathematical and
theoretical existence. It includes
automata theory, numerical analysis,
switching theory, some concepts of
digital circuitry (though this might
overlap Electrical Engineering), lin-
guistics, the more abstract parts of
artificial intelligence, theory and
some applications of statistics and
probability (e.g. queueing theory) in
computing systems, aspects of net-
working (though again this impinges
on Electrical and Systems Engineer-
ing), and the more basic theory of
programming languages and systems
design.

Juxtaposed to this, wc have an-
other area which could be called
Computer and Information Engi-
neering, or Information Systems
Management, which deals with the
practice and building of automated
information systems. Maybe Infor-
mation Systems Management is really
a group of departments with some
basic "software engineering" general-
ity in much the same way as a univer-
sity engineering college. Thus we
might have hospital information sys-
tems, and social information systems
departments, etc., though I think that
the level of our knowledge is not yet
sufficient to fractionate ourselves to
this extent.

The basic syllabus of Informa-
tion Systems Management is presum-
ably a grounding in Computer Sci-
ence, particularly the more practical
aspects, and a knowledge of infor-
mation systems with respect to po-
tential interfaces, the user and human
factor aspects, and the problems of
building large scale systems. This lat-
ter includes information systems

analysis and design, management as-
pects of large scale systems, opera-
tion research and statistics applica-
tions in large scale systems, and
understanding of the important
building blocks (like operating sys-
tems and data base management sys-
tems), governmental aspects (such as
privacy and the law as it applies to
computing), social problems (such
as crime, discrimination, and monop-
olies as they apply to the information
systems field), and the general organ-
izational theory as it applies to
management of change and the intro-
duction of large scale information
systems into an enterprise. The im-
portant point here, however, is the
fact that the syllabus transcends busi-
ness and encompasses most of the
"soft" sciences (e.g. Sociology and
Urban Studies).

I feel that it. is not necessary to
belabor the parts of these two differ-
ent curricula; there arc several good
examples of the efficiency and effec-
tiveness of having such a split. On
the other hand, attempts to put both
computer scientists and information
engineers into the same department
have led to problems. Apparently the

body of knowledge and the method-
ology of research are too different. It
is difficult to see how some of the
faculty will ever get tenure and pro-
motion when members of the other
part consider them either too theo-
retical to be of use or beneath aca-
demic contempt. Apparently, wc arc
talking about two different "breed of
cat" that cannot be judged by the
same criteria.

One of my Swedish colleagues
has a joint appointment with the
business school, partly because he
feels that the biggest problem in prac-
tice is management and not technol-
ogy; another friend thinks that the
business school only turns out second
rate students who arc not worth con-
sidering. But maybe our biggest
problem in industry and in the ac-
ceptance of the "computer scientist"
in industry is that we are trying to
train and sell physicists to do engi-
neering jobs.

E D G A R H . S I B L E Y

Department of Information
System Management
University of Maryland
College Park, MD 20742

96

A Report by the ACM Accreditation Committee
Vol. 20, No. 11, November 1977, p. 891

A Report by the AGM Accreditation Committee

Accreditation Guidelines for Bachelor's Degree Programs
in Computer Science
Introduction

The Accreditation Committee of
the Association for Computing Ma-
chinery (ACM) was formed in 1967
to provide information and guidance
to Various educational endeavors re-
lating to the use and development of
computing systems. The efforts of the
committee were directed toward es-
tablishing a set of standards for speci-
fied programs that could be used in
determining whether a program was
worthy of accreditation.

The Association for Computing
Machinery determined that ACM
would not become an accrediting
agency and arrangements were made
to work with existing accrediting
bodies, ACM would provide informa-
tion to be used by these groups in
their accreditation studies in what-
ever way the agency deemed appro-
pr ia te . This in format ion is also
expected to be used by guidance
counselors and prospective students
to aid in the assessment of programs
covered by the guidelines. Copies of
the guidelines will be made available
for these purposes.

The first report of the committee
in May 1969 dealt with guidelines
for data processing schools. This re-
port is one of a series that will be
issued on guidelines for computer
education and computer facilities in
institutions of higher education.
These reports are intended for use
in the institutional self study portion
of the regional accrediting activities
of the Federation of Regional Ac-
crediting Commissions of Higher
Education.

The rapid increase in Computer
Science or computer oriented depart-
ments at the college or university
level in the last few years has led to
some concern over the educational
product. It has been recognized that
some guidance is necessary to main-
tain an identifiable area of training.
The following guidelines are the rec-

ommendations of the Association for
Computing Machinery, approved by
the Education Board in January
1977, and the Executive Committee
in June 1977. These are considered
to be minimum requirements for an
acceptable degree program in com-
puter science. The guidelines cover
curriculum, faculty, course offerings
and facilities.

1.0 Curriculum
The following topics are a minimum set
of concepts to be provided in the curric-
ulum.
1.1 Programming Topics

/ . / / Algorithms. The concept and
properties of algorithms. The role of
algorithms in the problem solving
process. Flowcharts and languages to
facilitate the expression of algorithms.
1.12 Languages. Basic syntax of a
higher level (problem oriented) lan-
guage. Subprograms. I /O. Recursion.
1.13 Programming Style. The need for
discipline and style. Concepts and tech-
niques of structured programming.
Documentation.
1.14 Debugging and Verification. Se-
lection of test data, techniques for
error detection. Relation of program-
ming style to use of error detection
and program verification.

1.2 Software Organization
1.21 ComputerStruclure and Machine
Language. Organization of computers
in terms of input-output, storage, con-
trol and processing units. Register and
storage structures, instruction format
and execution, principle instruction
types, and machine language pro-
gramming. Machine arithmetic, pro-
gram control, input-output operations
and interrupts.
1.22 Digital Representation of Data.
Bits, bytes, words, codes, and other
information structures. Radices and
radix conversion, representation of in-
tegers, floating-point, and multiple-
precision numbers, roundoff errors.
1.23 Symbolic Coding and Assembly
Systems. Mnemonic operation codes,
labels, symbolic addresses and address
expressions. Literals, extended ma-
chine operations arid pseudo opera-
tions. Error flags and messages. Scan-
ning of symbolic instructions and
symbolic table construction. Concepts
of design and operation of assemblers.

1.24 Addressing Techniques. Absolute
addressing, indexing, indirect address-
ing, relative addressing, and base ad-
dressing. Memory mapping functions,
storage allocation, associative address-
ing, concepts of paging, and machine
organization to facilitate modes of ad-
dressing.
1.25 Program Segmentation and Link-
age. Subroutines, co-routines, and
functions. Subprogram loading and
linkage, common data linkage, trans-
fer vectors, overlay subprograms, and
stacking techniques.

1.3 Hardware Organization
1.31 Computers. Basic characteristics
and organization including memory,
processors, control and input-output.
How programs are executed. Repre-
sentation of information.
1.32 Computer Systems Organization.
Characteristics and use of tapes, disks,
drums, cores, and other large volume
devices in storage hierarchies. Process-
ing unit organization. Characteristics
of input-output channels and devices,
peripheral and satellite processes, mul-
tiple processor configurations, com-
puter networks, and remote access
terminals.
1.33 Data Communications. Protocol,
full and half duplex, packet switching.

1.4 Data Structures and File Processing
1.41 Data Structures. Arrays, strings,
stacks, queues, linked lists. Repre-
sentation in memory. Algorithms for
manipulating data within the struc-
tures.
1.42 Trees. Basic terminology and
types. Representation as binary trees.
Traversal schemes. Representation in
memory. Breadth-first and depth-first
search techniques. Threading.
1.43 File Terminology. Record, file,
blocking, and database.
1.44 Sequential Access. Physical char-
acteristics of tapes. Sort /merge algo-
rithms. File manipulation techniques
for updating, deleting, and inserting
records.
1.45 Direct Access. Physical charac-
teristics of disk/drums and other
storage devices. Physical representa-
tion of data storage devices. Physical
representation of data structures on
storage devices. Algorithms and tech-
niques for implementing inverted
lists, multilists, indexing, and sequen-
tial and hierarchical structure.

1.5 Systems Programming
1.51 lob Control Languages. Consid-
eration for command language inter-
preter, macro futilities in control lan-
guages, user interface considerations.
1.52 Operating Systems. Concepts of
processors in parallel. Problems of re-
solving deadlock, exclusion and syn-
chronization. Processor scheduling,
queueing and network control, con-

97

cepts of system balancing. Memory
management.
1.53 Compilers. Syntax and semantics
of languages, lexical analysis, parsing,
information structures, code genera-
tion.

2.0 Faculty
2.1 Number of Faculty Members

A minimum of 4 full-time equivalent
faculty members will be needed to
staff a department covering the recom-
mended course offerings and provide
adequate individual professional de-
velopment time for the faculty mem-
bers.

2.2 Qualifications
All the faculty will be formally edu-
cated in computer science or have
equivalent work or informal educa-
tional experience in the computer sci-
ence field. Continued formal and in-
formal professional development ex-
periences will be provided to keep
faculty abreast of recent developments
in computer science.

2.3 Teaching Load
The faculty teaching load must not
exceed 12 hours per faculty member
per semester. In terms of student load,
a faculty member who is teaching full-

time must not have more than 360
student semester/quarter credit hours
to teach each semester or quarter with-
out significant help in terms of student
assistants or lab assistants in the
courses involved. The teaching load
should be reduced appropriately for
any faculty member who has exten-
sive research, laboratory supervision,
or university committee responsibili-
ties.

3.0 Course Offerings
A minimum of 10 different computer sci-
cncc courses should be offered leading to
the Bachelor's degree. These courses must
cover the topics contained in the section
on curriculum. The courses must be a
graduated set of courses with early courses
preparing students for the courses that fol-
low with a more advanced treatment of
a topic.

4.0 Computer Facilities
There will be a hands on facility available
for student use sometime during the stu-
dents' course work in the department.
Laboratory experiences will be provided
for some of the upper division courses on
a dedicated computer or via simulation on
a shared system. The students must have

access to a time-shared or batch oriented
computer system with several high level
languages, such as Fortran, Cobol, PL/ I ,
Snobol, Algol, LISP, APL, GPSS, GASP
IV, etc., available.

This system must have sufficient speed
and capacity to provide a normal turn-
around of submitted student programs of
at least three times a day.

PRI-:PARI:.D BY:

ACM Accreditation Committee
Gordon I-. Stokes, Chairman

Brigham Young University
Committee Members:
Anita Cochran

Bell Telephone Labs
Sam Conte

Purdue University
John Gorgone

Purdue University
John Hamblen

University of Missouri-Rolla
Joyce Currie Little

Community College of Baltimore
Ottis Rechard

University of Denver
Marshall Yovits

Ohio State University

98

The University User Service

• At the same time that guidelines
for degree programs in computer sci-
ence are being presented ("Accredi-
tation Guidelines for Bachelor's De-
gree Programs in Computer Science,"
C A C M , November 1977) and a call
for continued and strengthened co-
operation between disciplines is
heard (J.F. Nunamaker Jr., ACM
Forum, October 1977), it seems ap-
propriate to consider tapping the uni-
versity computer center's user service
as an educational resource.

User services offer a unique op-
portunity for on-the-job training in
an environment that includes individ-
uals drawn from the computer sci-
ence and engineering areas as well as
from the humanities and social sci-
ences. Typical user services' projects
range from the installation of a gen-
eral usage tool such as a language
compiler to the extension of some
software technique to a particular
faculty or graduate research problem.

There are obstacles to be over-
come, however, before a cooperative
program could be implemented.
First, there is no guarantee that user
services represent a good mix of
academic interests. Too often a single
academic group dominates—com-
monly a technically oriented area.
Study options within user services
should not duplicate courses offered
by computer science or engineering
departments.

Another difficulty is that the com-
puter center, as administrator of a
computer installation, lacks aca-
demic status and is thus unable to
give academic credit. This is partially
overcome at some ccnters where user
services personnel hold faculty ap-
pointments. But this tends to bias the
emphasis toward the credit-granting
department, thereby losing the ad-
vantage of neutrality.

Faculty members who are given
temporary financial assistance by the

computer center for release time for
computer-related research tend to do
little to encourage interdisciplinary
student involvement. Their sympa-
thies lie with the department from
which they expect to return upon
termination of computer services'
funding.

Granting academic credit is a ne-
cessity to insure the viability of any
academic program. A committee with
faculty membership drawn from vari-
ous academic departments could de
velop, oversee, and accredit multi-
disciplinary work-study programs
within user services. Committees with
the appropriate membership mix are
already in existence at many univer-
sities, serving in an advisory capacity
concerning the computer center's
policies and budget. It would be a
natural extension of their duties to
develop and maintain academic pro-
grams.

I would be interested to hear if
something like this has ever been
tried.

H I L D A S T A N D L E V

2745 Rathbun Dr.
Toledo, OH 43606

99

ACM Forum
V»1 21. A'". 4. April 1078. p. 329

A Core of Computer
Knowledge

In my computer-related em-
ployment, I have become increas-
ingly aware of the need for defining
a "core" of basic knowledge (infor-
mation, topics, subjects) that every-
one claiming computcr-rclatcd ex-
pertise should be conversant with
and interested in. As a member of
Council, I find the need for a defini-
tion of such a core of basic knowl-
edge to be a consideration in many
important activities of ACM. In the
remainder of this letter, I will use the
word "core" in place of the expres-
sion "a corc of basic knowledge."

A schematic diagram below illus-
trates my view of the relation be-
tween the core and four of the more
important ACM activities. Consider
each of these activities and their re-
lation to the core, proceeding clock-
wise beginning with the Journal for
all Members (J A M) .

There has been much discussion
of a JAM. The style and content of
Communications has been criticized
and some have attempted to define
an appropriate style and content for
a JAM. It seems to me that we will be
unable to prescribe the appropriate
content for a JAM until we define the
core. (We may also be unable to pro-
scribe the appropriate style but that
is beyond the scope of this letter.)

Computer science is still a newly
emerging discipline. Academicians
have defined its content implicitly in
terms of the curricula associated with
computer sciencc degrees. But this
definition varies depending on
whether we are talking about com-
puter science or information sciencc
or data processing or a computer
specially in clcctrical engineering.
Surely, we should be able to prepare
specifications for a few courses that
everyone who wishes to claim exper-
tise relating to computers should suc-
cessfully complete. So far wc have
been unable to do this.

This has led to a related problem
in our certification effort. Wc have
been unable to define a set of pre-
liminary examinations that all per-
sons seeking certification by the I C C P

should pass. 1 believe that unless we
have a series of two or three prelimi-
nary exams, followed by one or more
specialty exams (much like the actu-
arial examinations), we will be un-
able to gain widespread acceptance
for ICCT certification.

Finally, we come to the issue of
the professional status of persons in
computer-rclated occupations. This
issue is related to two of the areas
discussed above: educational degree
programs and certification. This issue
relates to the core in much the same
way these two areas relate to the
core. Consider, for example, the
Civil Service Commission view that
a professional should have mastered
a body of knowledge as evidenced
by successfully completing a course
of study at an accredited institution
and/or passing a series of examina-
tions administered by a professional
organization. The core is that por-
tion of this body of knowledge that
would be shared by all computer-
related professionals.

I hope that this letter indicates
why I believe that a definition of the
core should have a high priority. Al-
though the core is related to several

100

different existing ACM activities, its
definition does not appear to be the
responsibility of any one of them. I
would not presume to suggest a
mechanism for arriving at a defini-
tion. This is something that the Coun-
cil as a whole or the Executive Com-
mittee might do.

H F . R n i . R i M A I S I - I .

ACM Council Member,
Capital Region Representative
9432 Curran Rd.
Silver Spring, MD 20901

A CM Forum
Vol. 21, No. 4, April 1978, p. 329

On Accreditation

• We have these comments on the
ACM Accreditation Committee's
Computer Science curriculum guide-
lines (Communications, November
1977, pages 891-892).

On Section 1.0 (Curriculum): All
of these topics are software related.
Graduates of the subsequent degree
programs would be well qualified to
work for vendors developing operat-
ing systems, compilers, and control
programs; or to work for large-scale
users as systems programmers, data-
base administrators, or data com-
munications programmers . The
larger employment area of systems
analysts and applications program-
mers, primarily employed by users
but also a growing field with vendors,
is not addressed. One or two good ac-
counting and finance courses should
be added to the curriculum, because
many business systems are organized
along the lines of budgeting, variance
analysis, cost accounting and double-
entry bookkeeping.

On Section 2.3 (Teaching Load):
Many universities presently offer
five-hour courses, particularly in the
student's major area. The maximum
load should be at least 15 hours, with
a two-course limitation on the num-
ber of dilferent subjects taught per
term. A second section of a course is
not as demanding as an additional
topic.

J . C I . A R K K E Y

J A C K B . S A M P S E L I . E

Corporate Information Services
Southwire Company
Carrollton, GA 30117

• The accreditation guidelines for
a bachelor's degree in Computer Sci
ence developed by the ACM Accred-
itation Committee are fine, so far as
they go. However, our experience
has been that wc already have a seri-

ous need for people with a capability
to understand the architecture of,
and effectively program, micro-
processors. I do not see any logical
design, microprocessor architecture,
microprocessor applications, use of
R A M S , R O M S , P R O M S a n d E P R O M S , o r

mini-to-micro cross-assemblers men-
tioned in the Accreditation Commit-
tee's guidelines.

In addition, in my view, Section
1.33 on Data Communications ig-
nores basic things like intelligent ter-
minals, message switching, circuit
switching, error, delay (particularly
satellite circuits), and any treatment
of distributed (dispersed?) process-
ing or the economics of data commu-
nications.

Without the items I have men-
tioned, your bachelor's degree should
be entitled "Large Computer Pro-
gramming," not "Computer Science."

H.F. Hession
Western Union
Government Systems Division
7916 Wcstpark Drive
McLean, VA 22101

Response
The letters coming in on the

accreditation recommendations for
Computer Science (the two above
submitted to the Forum and others)
have commented on the lack of sys-
tems analysis work and on a weak-
ness in preparation for applications
programming tasks.

This was a conscious omission
by the Accreditation Committee as
we worked on this recommendation.
Our work with the curriculum com-
mittees of ACM and I K E E have con-
vinced us that there is more material
in the systems programming and ap-
plications programming areas than
can be treated in one curriculum. Be-
cause of this we are developing ac-
creditation recommendations for an
applications programming area called

101

Information Systems in addition to
the Computer Science area.

We relied heavily on work by
the Curriculum Committee for Com-
puter Science of ACM for applicable
subject areas in our work on Com-
puter Science. We intend to work just
as closely with A C M ' S curriculum
committees working on information
systems topics for our accreditation
guidelines for Information Systems
departments.

On topics such as teaching loads,
minimum faculty, and computer re-
sources we drew extensively from the
experience of many department
chairmen. We feel that changes that
allow increased load on the faculty
in the end produce a lower quality
education for the student. We opted
for some heavier loading than we
thought wise but we recognized there
are budgetary constraints that push
for heavier loading. We stand on our
recommendations. They have been
thoroughly reviewed and discussed.

Our committee has always' felt
that the accreditation guidelines set
a minimum level for acceptable pro-
grams. Departments striving for
quality will use the curriculum rec-
ommendations of the ACM curriculum
committees to measure their effec-
tiveness and program strengths in-
stead of the accreditation guidelines.

We are moving ahead and will
soon have accreditation guidelines
for Information Systems departments
and for computer facilities at educa-
tional institutions.

G O R D O N E . S T O K E S

Chairman, ACM
Accreditation Committee

Wrought Into the Core

• In his ACM Forum letter of April
1978 [p. 329] Herbert Maisel calls
for an appropriate corps within ACM
to define a core of basic knowledge
assumed to be known by all members
of ACM. He pictured his proposal
with a square wheel whose hub was
the "core" and whose four sides were
J O U R N A L F O R A L L M E M B E R S , E D U -

C A T I O N , C E R T I F I C A T I O N , a n d P R O -

F E S S I O N A L STATUS—representing his
perceptions of A C M ' S four principal
activities.

If each of us were asked to draw
a diagram showing A C M ' S main activ-
ities in relation to a "core," I think
we would get a lot of pictures show-
i n g P U B L I C A T I O N S , E D U C A T I O N ,

C H A P T E R S , and SIGS as the four main
activities. Some would depict round
wheels that roll forward, rather than
square ones that remain stationary.

And what is in the "core"? An
operational definition is the intersec-
tion of all the sets of computer
knowledge of all members, A C M ' S

present specifications invite the
membership of any college graduate
interested enough to invest $35, even
if he has no deep knowledge of com-
puters. Thus the operational "core"
is essentially empty. Maisel's percep-
tion of a lack of a present "core" is
an observation of the operational
reality. An attempt by one group of
ACM to develop a "core" might well
be opposed by other groups of ACM.
(No one wants his ox cored.) Diver-
sity is A C M ' S strength. Maybe we
should learn to live with it, and to
capitalize on it, as the SIGS have done
so successfully.

Ever since our financial crises of
a few years back, we have devoted
much volunteer time to meeting and
planning: someone has observed that
committee-meeting hours exceed
technical-session hours at our annual
conference. Now, I'm a believer in
planning for schemes that cannot be

cheaply reversed once started—for
example, undertaking a new major
publication. But there are many
schemes which can be easily reversed
—for example, if the direction and
style of the Computing Surveys are
unacceptable, we simply replace the
Editor-in-Chief.

Planning is important, but it has
become AC M'S major activity. 1 think
we should plan less, do more, retreat
when needed from poor decisions. I
would view a core-finding committee
as more unnccdcd planning.

P E T F . R J . D E N N I N G

Member-at-Largc of Council
Editor-in-Chief, Computing
Surveys
Purdue University
W. Lafayette, IN 47907

Response
I am pleased to see that Peter

Denning and I agree that A C M ' S core
is essentially empty. I would prefer
that we had a more substantial foun-
dation. I do not agree that defining a
core is planning—it is doing some-
thing that will be of great importance
to the A C M .

I did not say that the J O U R N A L

FOR AI L M E M B E R S , E D U C A T I O N , C E R -

T I F I C A T I O N , a n d P R O F E S S I O N A L STA-

TUS are the principal activities of the
ACM but rather that they are "four
of the more important ACM activi-
ties." These four important activities
would all benefit from a definition of
a core of basic knowledge.

I did not realize when I drew it
that Peter planned to ride on my
diagram. However, considering the
direction in which he would take us,
I am rather glad that I provided a
square wheel for his ride.

H E R B E R T M A I S E L

ACM Council Member
Capital Region Representative
9432 Curran Rd.
Silver Spring, MD 20901

102

Report
Vol. 23, No. 2, February 1980, p. 67

Reports

Curriculum '78—Is Computer Science
Really that Unmathematical?
Anthony Ralston
SUNY at Buffalo

Mary Shaw
Carnegie-Mellon University

Key Words and Phrases: Curriculum '78, computer
science education, discrete mathematics

CR Category: 1.5

If computer science had not developed—signifi-
cantly—as a science in the ten years between Curriculum
'68 [2] and Curriculum '78 [3], then perhaps all those
people who wondered if computer science was really a
discipline would have been correct. In 1968 computer
science was searching for but had not yet found much in
the way of the principles and theoretical underpinnings
which characterize a (mature) science. Ten years later,
there is nothing laughable about calling computer science
a science. This decade has seen major advances in the
theory of computation and in the utility of theoretical
results in practical settings. The rapid growth of the field
of computational complexity has greatly increased our
ability to analyze algorithms. And perhaps most signifi-
cantly, we have finally started to make real progress in
developing principles and theories for the design and
verification of algorithms and programs.

Are these changes evident in Curriculum '78? Sadly,
no. That curriculum only lends support to the equation

Computer Science = Programming

Permission lo copy without fee all Or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its dale appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' present addresses: A. Ralston. State University of New
York at Buffalo, Dept. of Computer Science, 4226 Ridge Lea Road,
Amherst, NY 14226; M. Shaw, Carnegie-Mellon University. Computer
Science Dept., Pittsburgh, PA 15213.
© 1980 ACM 0001-0782/80/0200-0067 $00.75.

that is mistakenly believed by so many outside the
discipline. In the "Objectives of the Core Curriculum"
(3] only the second objective—"be able to determine
whether or not they have written a reasonably efficient
and well-organized program"—recognizes that good
programming requires more than just mastery of the
syntax and semantics of a programming language. And
even here the reference to principles and theory is, to be
charitable, vague.

The principles and theories of any science give it
structure and make it systematic. They should set the
shape of the curriculum for that science, for

—only in that way can they provide a framework for
the mastery of facts, and

—only in that way will they become the tools of the
practicing scientist.

This is as true for computer science as it is for mathe-
matics, for the physical sciences, and for any engineering
curriculum. Inevitably, for any science or any engineer-
ing discipline, the fundamental principles and theories
can only be understood through the medium of mathe-
matics. In the following sections we focus on the place of
mathematics in the computer science curriculum and try
to show how badly Curriculum '78 fails in this respect.

But first we note one matter of crucial importance
which makes an emphasis on principles and theory even
more important in computer science than in other disci-
plines. Computer science is an evolving field. Specific
skills learned today will rapidly become obsolete. The
principles that underlie these skills, however, will con-
tinue to be relevant. Only by giving the student a firm
grounding in these principles can he or she be protected
from galloping obsolescence. Even a student who aspires
only to be a programmer needs more than just program-
ming skills. He or she needs to understand issues of
design, of the capability and potential of software, hard-
ware, and theory, and of algorithms and information
organization in general.

T a b l e I R e q u i r e d M a l h e m a l i c s C o u r s e s

C u r r i c u l u m '6X

M l I n t r o d u c t o r y ca l cu lus
M 2 M a t h e m a t i c a l ana lys i s I
M 2 P P robab i l i t y
M 3 L inea r a lgeb ra
B3 I n t r o d u c t i o n to d iscre te s t r u c t u r e s
B4 N u m e r i c a l ca l cu lus

p lu s 2 o f
M 4 M a t h e m a t i c a l ana lys i s II
M 5 A d v a n c e d m u l t i v a r i a t e c a l cu lu s
M 6 A l g e b r a i c s t ruc tu re s
M 7 P r o b a b i l i t y a n d s tat is t ics

(urruulum '78

M A I I n t r o d u c t o r y c a l c u l u s
M A 2 M a t h e m a t i c a l ana lys i s I
M A 2 A P r o b a b i l i t y
M A 3 L i n e a r a l g e b r a
M A 4 Disc re te s t ruc tu re s

(R e q u i r e d fo r s o m e s t u d e n t s)

M A S M a t h e m a t i c a l ana lys i s II
M A 6 P r o b a b i l i t y a n d s tat is t ics

Curriculum '78 and Mathematics

A comparison between the mathematics content of
Curriculum '78 and that of Curriculum '68 is instructive.
It reveals that

(1) Whereas Curriculum '68 required the student to
take eight (8) mathematics courses (see Table I), Curric-
ulum '78 requires only five (5) mathematics courses.

(2) The mathematics courses in Curriculum '68
formed an integral part of its prerequisite structure (see
Table II). Note, in particular, for how many courses the
discrete structures course (B3) is a prerequisite. In Cur-
riculum '78, however, there is no mathematics prerequi-
site for any undergraduate computer science course with
the exception of three advanced and clearly quite math-
ematical courses (only one of which has a computer
science prerequisite). True, Curriculum '78 notes that the
"mathematics requirements are integral to a computer
science curriculum even though specific courses are not
cited as prerequisites for most computer science courses."
But this was clearly an afterthought, not present in the
preliminary publication [4], and added only in response
to criticism of the preliminary version.1 Moreover, if the
mathematics courses are not prerequisite to the computer
science courses, the latter cannot teach or use formal
techniques that require mathematical literacy.

(3) The mathematics emphasized in both curricula
is traditional, calculus-based continuous mathematics. In
both curricula the only course which is not a common
part of the undergraduate mathematics curriculum is a
single course in discrete structures.

More generally, the attitudes of Curriculums '68 and
'78 toward mathematics are very different. Whereas the
authors of C68 aver that "an academic program in
computer science must be well based on mathematics
since computer science draws so heavily upon mathe-
matical ideas and methods," the authors of C78 say only
that "An understanding of and the capability to use a
number of mathematical concepts and techniques are

' We think a comparison of the sections devoted to mathematics
in the preliminary and final versions of Curriculum '78 clearly imply
a "quick fix" which docs not address the substantive issues.

vitally important for a computer scientist." The latter,
too, was an afterthought since the preliminary report
stated that "It was recognized in the process of specifying
this core material that no mathematical background
beyond the ability to perform simple algebraic manipu-
lation is a prerequisite to an understanding of the topics."
And note that this "core material" consists of eight
courses including one on Data Structures and Algorithm
Analysis.

One would have to conclude that the authors of
Curriculum '78 believe that

(1) Mathematics is less important in the computer sci-
ence undergraduate curriculum today than ten
years ago.

(2) Basic computer science courses have less need for
mathematical prerequisites today than ten years
ago.

(3) The mathematics that is appropriate for computer
science undergraduates has changed not at all in
general flavor over the ten-year period between the
two curricula.

We think all three of these propositions are wrong, and
dangerously so. In the next section we will indicate why
and how we would modify Curriculum '78.

Mathematics for Computer Scientists

A key sentence in C78, also not in the preliminary
version, states that "Ideally computer science and math-
ematics departments should cooperate in developing
courses on discrete mathematics which are appropriate
to the needs of computer scientists." But, as if to empha-
size that this recognition of the importance of discrete
mathematics was only an attempt at a quick fix in
response to criticism of the preliminary proposal, C78
goes on to say that "Until such time as suitable courses
become readily available, it will be necessary to rely on
the most commonly offered mathematical courses for the
mathematical background needed by computer science
majors." And the report goes on to recommend the five
courses listed in Table I, four of which are standard

104

Table II. Prerequisite Structure.

Curriculum 78

O Mathematics Courses

c u Programming and Related Courses

o Other Computer Science Courses

undergraduate mathematics courses from a 1965 report
of the Committee on the Undergraduate Program in
Mathematics (CUPM) [I] and the fifth is "a more ad-
vanced course in discrete structures than that given in
C68." In other words, instead of going back to the
drawing board and doing the mathematics portion of
C78 properly, the authors elected to fudge the issue with
pretty words and no substance.

For, of course, the quotation in the first sentence of
the previous paragraph is correct and should have been
the basic philosophy which informed the entire C78
report. In rather more detail this (and our) philosophy
is:

(1) Mathematical reasoning does play an essential
role in all areas of computer science Which have devel-
oped or are developing from an art to a science. Where
such reasoning plays little or no role in an area of

computer science, that portion of our discipline is still in
its infancy and needs the support of mathematical think-
ing if it is to mature. Large portions of software design,
development, and testing are still in this stage.

(2) The student of computer science must be en-
couraged to use the tools and techniques of mathematics
from the beginning of his or her computer science edu-
cation. This means, for example, that even in the very
first course in computer science (e.g., CS1 in C78 where,
among other things, the student is to be introduced to
"algorithm development") the basic ideas of the perform-
ance and correctness of algorithms and their associated
mathematics need to be introduced or assumed from a
parallel or prerequisite course.2

' The authors of C78 are, of course, quite correct in not making
MAI, Introductory Calculus, a prerequisite for CSI; the problem is
that MA I is the wrong first mathematics course for computer science
students.

(3) The mathematics curriculum for the computer
science student must be designed to

—provide, either in separate courses or within a com-
puter science course, the mathematics prerequisites
appropriate to the computer science curriculum.
(Obvious, no? But signally missing from C78.)

—more generally, develop mathematical reasoning
ability and mathematical maturity so that students
will be able to apply more and more sophisticated
mathematics to their computer science courses as
they progress through the computer science curric-
ulum.

Some other, more pragmatic points are worth making
before we discuss the mathematics curriculum for a
computer science major in more detail:

(1) Only the quite basic courses can be required for
all students. Depending upon the emphases and areas of
specialization in the last year or two, one set of mathe-
matics courses rather than another may be most appro-
priate.

(2) The needs of the practicing computer profes-
sional rather than those of the research computer scientist
should be uppermost in consideration of appropriate
mathematics for the undergraduate curriculum. To the
extent that these needs are different—it is not obvious
that they are—the future researcher will have to satisfy
his/her needs through undergraduate electives or in
graduate school.

(3) Although we believe strongly that the values of
a liberal education should infuse any undergraduate
program, our focus here is on the professional needs of
the computer scientist not on the general education
needs. Thus, it may be true that all educated men and
women should be familiar with the essence of calculus
but it does not necessarily follow that computer scientists
have a significant professional need to know calculus.

What then is an appropriate sequence of mathematics
courses for the computer science major?

(1) Discrete Mathematics. The overwhelming math-
ematical needs in the courses which normally comprise
the first two years of a computer science major are in
areas broadly covered by the rubric discrete mathemat-
ics—elementary logic, inductive proof, discrete number
systems, basic combinatorics, difference equations, dis-
crete probability, graph theory, some abstract and linear
algebra, etc. We believe a two-year sequence can and
must be developed (by mathematicians, if possible, but
without them, if necessary) for computer science majors.
This sequence should be integrated with the first two
years of the computer science curriculum. Beyond the
subject matter itself, we believe that such a sequence
would be able to develop mathematical literacy and
maturity at least as well as the classical two-year calculus
sequence.

(2) Calculus. A year—but perhaps only a semes-
ter—of calculus in the junior year would be appropriate
for all or almost all computer science majors. The tech-

106

niques of calculus have just enough application in stan-
dard undergraduate computer science courses to make
this desirable. Note also that a year of calculus at the
junior level could cover quite a bit more material than a
year of freshman calculus.

(3) Statistics. A basic knowledge of statistics is es-
sential to almost all areas of professional work in com-
puter science. It is not, however, entirely clear to us
whether or not an adequate course in statistics can be
taught to computer science students without a calculus
prerequisite. If not, then at least a semester of calculus
would be mandatory for computer science students.

Much more could be said about possible mathematics
courses for computer science students but we shall not
do so here. Rather our aim is to urge that the ACM
Curriculum Committee on Computer Science go back to
the drawing board, make a real study of the mathematics
needs of a computer science curriculum, and emerge
with recommendations which will have the respect and
support of the computer science community.

The mathematics of central importance to computer
science has changed drastically in the ten years from C68
to C78. The lack of recognition of this in C78 will
undoubtedly lessen the impact of the entire report. Math-
ematics is at least as important to computer science today
as in 1968. But the 1965 recommendations of CUPM are
singularly inappropriate to the needs of computer science
today.

Received and accepted November 1979

References
1. Committee on the Undergraduate Program in Mathematics. A
general curriculum in mathematics for colleges. Rep. to Math. Assoc.
of America, CUPM, Berkeley, Calif., 1965.
2. Curriculum Committee on Computer Science (C3S). Curriculum
'68—Recommendations for academic programs in computer science.
Comm. ACM II, 3 (March 1968), 151-197.
3. Curriculum Committee on Computer Science (C'S). Curriculum
'78—Recommendations for the undergraduate program in computer
science. Comm. ACM 22, 3 (March 1979), 147-166.
4. Curriculum Committee on Computer Science (CaS). Curriculum
recommendations for the undergraduate program in computer
science. SIGCSE Bulletin (ACM) 9, 2 (June 1977), 1-16.

ACM Forum
Vol 23, No. 6, June 1980, p. 356

Comments
on the Mathematical
Content of Curriculum '78

• I read with interest the Ralston-
Shaw article [1) on the mathematical
content of Curriculum '78 [2], While
I hesitate to overstress the mathe-
matical principles of computer sci-
ence for fear of keeping those who
are not mathematically inclined
away from the field, I still strongly
agree with the arguments presented
in this article. Historically part of the
problem has been the inclusion of
mathematics-based courses in the
computer science curriculum (1)
without sufficient emphasis on the
integration of the mathematical con-
tent of these sometimes theory-based
courses with the more practitioner-
oriented computer science courses,
and (2) without sufficient emphasis
that these mathematical concepts are
the principles upon which computer
science is founded. The end result of
this situation has been that many
computer science students are not
able to relate their computer science
and mathematical courses (I) be-
cause the courses have not been
taught in a relatable fashion and (2)
because the student is not aware that
the two areas are supposed to be
related.

The Ralston-Shaw article focuses
on the first of these two conditions
and, as a long-term objective, spells
out the guidelines for introducing the
proper mathematical content into the
curriculum. As a short-term objec-
tive, however, a solution to the sec-
ond problem might be more useful.
In particular, I think the following
objective ought to be added to the
objectives for course CS1:

(d) to foster an awareness of the
mathematical principles behind
computer science.

Upon completing this course the
student should be able to recognize

the relationship of mathematics to
computer science both from a histor-
ical point of view and as regards
current research and development
efforts. More important, however,
the student will be able to recognize
the relationship of the mathematics
courses in his/her curriculum to the
computer science courses regardless
of whether the course content is in-
tegrated or not. This overview of the
"foundations" of computer science
will also help to replace the equation

Computer Science = Programming

with a more balanced view of what
computer science is all about.

A second concern 1 have regard-
ing the curriculum is that it lacks a
"real world" view from a career de-
velopment standpoint. Too often a
student completes a computer sci-
ence curriculum (1) without any
awareness of what he/she wants to
do with the knowledge gained, or (2)
without any awareness of the true
nature of the available alternatives.
As an illustration, consider the stu-
dent who had more fun in the oper-
ating system writing course (CS6)
than he/she had writing a payroll
check printing program (CS2) and
on that basis applies for a job at
several major companies as a "sys-
tems programmer," not willing to
consider a position as a "program-
mer/analyst." While the solution to
(I) requires career guidance which is
beyond the scope of this curriculum,
a solution to (2) can easily be con-
structed.

I would like to propose the fol-
lowing course as an addition to the
curriculum:

CS2A. Roles of a Computer
Scientist (1-0-1)
Prerequisite: C'S2

The objectives of this course are:
(a) to develop an understanding of
the various roles that a person with
a computer science education can
take in society; and

107

(b) to develop an understanding of
the basic skills and requirements
needed in each of these roles.

C O U R S E O U T I . I N E

After an initial overview of the
subject, an in-depth look at some of
the major segments of the computer
science community should be under-
taken. Guest speakers should defi-
nitely be considered. A partial list of
topics which should be discussed are:

A. Industry vs. Education vs. Gov-
ernment job segments

B. Business vs. Scientific vs. Systems
programming

C. Research vs. Software/Hardware
development vs. End-User
programming

D. Small shops vs. Large shops
E. Outlook of demand in the var-

ious segments.
While it is not expected that such

a course can be a substitute for per-
sonalized career counseling, there
should be sufficient breadth and
depth in the coverage of the various
roles so that each student has an
appreciation of the differences as
well as the similarities of the require-
ments for each role. This course will
not only give a better sense of direc-
tion to some students by giving them
more definite goals, but will also give
a better perspective of the integration
of the total curriculum and its ulti-
mate application to society.

As a final point, I think we can
all be proud of the tremendous ad-
vances that have been made in the
development of the science of com-
puter science in the past decade and
the role that ACM has played in
helping to direct a corresponding de-
velopment in the computer science
curriculum. Curriculum '78, and
Curriculum '68 before it, have had a
major role in shaping the direction
of computer science education. I look

ACM Forum
Vol. 23, No. 6. June 1980, p. 356

forward to continuing developments
in this area.

A L A N R U S S E L L , C D P

RD 1, Box 223C
Zionsville, PA 18092

1. Ralslon. A. and Shaw. M. Curriculum '78 i.s
computer science really that unmathematical'.'.
Comm. ACM 2.1. 2 (Feb. 1980). 67-70.
2. Curriculum Committee on Computer Scienec
(C'S) Curriculum '78: Recommendations for the
undergraduate program in computer science. Comm.
ACM 22. 3 (March 1979). 147-166

• The recent article by Ralston and
Shaw concerning the undergraduate
mathematics sequence in computer
science is timely, appropriate, and
absolutely correct. The February
issue of Communications arrived
as 1 was preparing the following
in a memo to the computer science
faculty here at Colorado State Uni-
versity:
1. Mathematics is a necessary and
desirable component of computer
science education. Mathematical
problem solving ability is the pri-
mary skill that distinguishes a com-
puter scientist from a programmer,
and a strong foundation in mathe-
matics is the best hedge against tech-
nical obsolescence of our graduates.

2. We are not requiring the correct
math courses for our undergradu-
ates. This conclusion is based on the
following considerations:

(a) Our graduate curriculum has
seven tracks: architecture, data struc-
tures and databases, graphics, lan-
guages and compilers, numerical
methods, operating systems, and
computing theory. Only one track
(numerical methods) requires a
strong calculus background. This is
an indication that the undergraduate
mathematics sequence is out of sync
with the subject matter of computer
science.

(b) I have revised the formal lan-
guages course to include a month of
review of discrete structures and
modern algebra. The students cannot
handle the material without this re-
view.

(c) Graduate students in my soft-
ware engineering course complain
that they are not equipped to read
the literature in software specifica-
tion techniques, proof of correctness,
testing theory, etc. I believe this is
also true in the graduate level com-
pilers, data structures, database,
graphics, and operating systems
courses.

3. A better math sequence is:
two semesters of calculus

(freshman level)
two semesters of discrete math

(sophomore level)
one semester of probability and

statistics (junior level)
one semester of math elective

(junior or senior level)
The math elective would be

geared to the students' senior level
elective courses in computer science.
It could be used as follows:

Numerical Methods—Linear Al-
gebra, Advanced Calculus, or
Differential Equations

Graphics—Linear Algebra or Ge-
ometry

All Others—Applied Algebra

4. Possible topics in the discrete
math sequence would include:

Elementary Logic
Proof Techniques

(induction in particular)
Number Systems
Combinatorics
Difference Equations
Discrete Probability
Grap'i Theory
Matrix Algebra
Introduction to Modern Algebra

5. I suggest that we pursue the de-
sign of a two-semester, sophomore
level sequence in discrete mathemat-
ics as a joint venture with the math
department.

In a subsequent letter to Ralston
and Shaw, I suggested that a national
committee be formed to prepare a
study of undergraduate mathematics
in computer science. I would like to

108

use this forum to express my appre-
ciation to these two authors for ini-
tiating a dialogue on the appropriate
mathematics sequence in undergrad-
uate computer science.

R I C H A R D E . F A I R L E Y

Colorado State University
Fort Collins, CO 80523

• I have read with great interest the
article "Curriculum '78—Is Com-
puter Science Really that Unmathe-
matical?" by Ralston and Shaw, ap-
pearing in the February 1980 issue
of Communications. It seems to me
that these authors have identified a
small (albeit important) issue in the
very difficult task of computer sci-
ence curriculum development, iso-
lated it from its context, and arrived
at conclusions which, in isolation, are
very difficult to oppose. The diffi-
culty is that, in isolation, the issue
has become oversimplified.

The context of the curriculum de-
velopment process can be set through
the posing of a sequence of ques-
tions, many of which do not have
answers agreed upon across the com-
puting disciplines and professions.

The sequence is as follows:
1. The question of definitions.

(a) What is computer science?
(b) How does it relate to the

other disciplines?
(c) How does it relate to the

other computer professions?
2. The question of expectations.

(a) What does society, in general,
expect of computer scientists?

(b) What does industry, in par-
ticular, that part of industry that is
concerned in one way or another
with computing, expect of computer
scientists?

(c) What does academia expect
of computer scientists?
3. The overall questions of prepa-
ration.

(a) How are practitioners to be
prepared to meet the expectations of

society, industry, and/or academia,
as may be appropriate?

(b) What should be the division
between formal training (ie. training
in academic institutions) and infor-
mal training (ie. training through ex-
perience)?
4. The specific questions of aca-
demic training.

(a) What should be the division
between the quantities and levels of
training at training institutes, two-
year undergraduate schools, four-
year undergraduate schools, master's
level graduate schools, and doctorate
level graduate schools?

(b) What should be the division
between theory and applications at
each of these levels?

(c) What should be the level of
specialization at the undergraduate
level: liberal arts (at most one-third
specialized), or professional (up to
two-thirds specialized)?

(d) What are the priorities for
the inclusion in the computer science
program of material from other dis-
ciplines?

Part of the difficulty lies in the
fact that, in the twelve years since
Curriculum '68, the computing dis-
ciplines and professions themselves
have become very greatly diversified.
These disciplines and professions
certainly include what are referred to
by many as computer science, com-
puter engineering, information sci-
ence. software engineering, program-
ming, .systems design, systems anal-
ysis, data processing, etc. The ques-
tions are of identity, even of self-
identity. Is there agreement as to the
definitions of the foregoing fields by
persons who identify themselves as
practitioners of these respective
fields? 1 think not! Before issues such
as the one raised by Ralston and
Shaw can be resolved, definitions of
these respective subfields, and oth-
ers, will have to be formulated and
agreed to by a broad cross section of
individuals in the computing profes-

sions. This may be a job for AFIPS.
The problem is that Ralston and
Shaw are using a traditional defini-
tion of computer science, one that
goes back to an almost classical pe-
riod in the computing profession,
and certainly to a period of infancy
in computer education. This was a
period in which, because of imma-
turity in the field, agreements were
more easily reached.

The 1968 definition of computer
science was highly mathematical,
and, as a consequence, Curriculum
'68 was also highly mathematical. In
the interim, there have appeared in
the literature any number of com-
plaints from the industry which we
serve that our graduates were of little
benefit to them. Thus, highly theo-
retical programs which were inspired
by Curriculum '68 were of benefit
only to prepare students to enter
graduate school.

The bottom line, here again, is
one of definitions. Industry's defini-
tion of what it wanted was different
from academia's definition of what
it was producing. Whether or not
either is to be called a computer sci-
entist is irrevelent. The point is that
the academic institutions were pro-
ducing a product of little benefit to
industry. I maintain that any under-
graduate curriculum which does lit-
tle more than prepare students for
graduate school is of little benefit to
society. There is also the question of
the students' expectations from their
college educations. What do they see
themselves wanting to be or do? It
must be assumed that the majority
of undergraduate students, regard-
less of major, at a majority of the
undergraduate colleges on this con-
tinent, are not going to graduate
school and therefore must be pre-
pared for useful employment in the
industrial community. 1 realize that
this statement strikes at the heart of
the concept of "liberal education."
but one must realize that the students

109

whom we serve have become ex-
tremely practical in their outlook.
We must also recognize that the pres-
ent high enrollments in computer sci-
ence are due to the high level of
employment opportunities. Accord-
ingly, we must respond to the expec-
tations of industry.

The specific problem, as it per-
tained to Curriculum '68, was that
an urgent need had developed for
greater applied content. There has
also developed a need for greater
liberal arts content, communication
skills in particular. Given these new
demands, and given the time limita-
tions inherent in a four-year aca-
demic program, the only solution is
a reduction in the theoretical content
of the program. Indeed, it must be
argued, independently, that heavy
theoretical content is much more ap-
propriate in graduate school than it
is in undergraduate school. Curricu-
lum '78 may not be perfect, but it is
a step in the right direction.

Let me again return to the diver-
sification of the last twelve years. It
seems to me that this diversification
is a key to future developments. The
ACM, the IEEE Computer Society
and other concerned agencies have,
from time to time, published sug-
gested curricula. That is all that they
are, suggested curricula, or guides.
Each department, in each institution,
must be responsible for its own cur-
riculum development. Curriculum
development must be an ongoing ac-
tivity; curricula are not static. They
must be based upon several factors:
(I) the department's review of socie-
tal needs, both recognized and un-
recognized; (2) the department's per-
ceived strengths and capabilities: (3)
the exchange of ideas through the
professional societies and the printed
media: and (4) other considerations
deemed appropriate by the depart-
ment concerned.

Let us view the published profes-
sional differences of judgment as a

positive testimonial to the maturing
process taking place within our
profession. The proper response to
both Curriculum '78 and the Ral-
ston-Shaw article is for each depart-
ment to review its own curriculum in
terms of the published material and
its own local situation, and to take
whatever actions seem to be appro-
priate to it, in a professional and
collegia! manner.

J U L I U S A . A R C H I B A L D , J R .

SUNY at Pittsburgh
Plattsburgh, NY 12901

A uthors' Response:
We appreciate the support of the

essential theses of our article in the
letters of Fairley and Russell, and
note only that there are various pos-
sible different sequences of mathe-
matics courses which would support
a computer science curriculum better
than what is proposed in Curriculum
•78.

As to Archibald's letter, it raises
some important issues, but two
things in it disturb us:

1. There is an implication--admit-
tedly no more than this—that "math-
ematical" should be equated with
"theoretical." We reject this. The ar-
gument in our article was addressed
to all undergraduate computer sci-
ence programs whether or not stu-
dents in them are likely to go to
graduate school. Mathematics is—or
should be—a practical tool for work-
ing programmers and should be as
important in their education as in
that of the research computer
scientist.

2. The argument that academe did
not or is not producing a "product"
of "benefit to industry" is a hoary
one. We doubt this was ever true
although it is true that some seg-
ments of industry did and do and
always will complain about the edu-
cation of computer science majors.

And it is probably true that computer
science departments are less sensitive
to the current needs of prospective
employers than they might be. But
almost all complaints about the ed-
ucation of computer science majors
have been short-sighted and oriented
to the very short-term concerns
which motivate the "expectations" of
most of industry. To respond to them
would be to guarantee the early ob-
solescence of our "products." More-
over, we don't believe that Archi-
bald's characterization of industry's
concerns is accurate. We see a sig-
nificant and growing trend among
industrial leaders to place a high
value on the mastery of mathemati-
cal fundamentals. This often takes
the form today of extensive in-house
training programs.

One last point. Archibald men-
tions the need for the formulation of
definitions of the fields and sublields
encompassed by what we call com-
puter science. In this connection we
direct the attention of readers of
Communications to the Taxonomy of
Computer Science and Engineering
which has just been published by
AFIPS Press.

A N T H O N Y R A L S T O N

S U N Y at Buffalo
Amherst, N Y 1 4 2 2 6

M A R Y S H A W

Carnegie-Mellon University
Pittsburgh, PA 15213

110

