

Praise for Software Testing with Visual Studio 2010

“Jeff Levinson has written a remarkable book. Remarkable because it distills a mas-
sive amount of information into a clear, readable book that will teach you how to
best use the Visual Studio 2010 Testing Tools. Remarkable because it shows not
just how to use the strengths of the tools, but also how to work around any of their
weaknesses. Remarkable because Jeff walks you through the implementation
strategies that can bring real business value, not just to the testing team, but also
to test the entire organization. If you are implementing the test tools, this book
belongs on your desk. My dog-eared and marked-up copy sits on mine.”

—Steven Borg, Owner, Northwest Cadence

“Testing—and testers—don’t get enough respect. By providing a great mix of the
what, why, and how of testing with Visual Studio 2010, this book will help change
that. More important, it will help make the software we use better.”

—David Chappell, Principal, Chappell & Associates

“Jeff has once again written a great book, filled with nice nuggets of testing wis-
dom. A great addition to your testing and ALM library for anyone using Visual
Studio 2010 and Team Foundation Server 2010.”

—Mickey Gousset, Microsoft ALM MVP and Senior
Technical Developer, Infront Consulting Group

“Jeff’s book is by far the most in-depth investigation of the Test features in Visual
Studio ALM I have seen. His insight and experience help the readers understand
the impact of poor testing and how they can improve the quality of their software.
I particularly liked the obvious real-world understanding of the realities of soft-
ware testing when applied in practice and the effort by the author to show the
readers the ways around those realities.”

—Martin Hinshelwood, Visual Studio ALM MVP
and Visual Studio ALM Ranger

“Software Testing defines much more than the usage of a testing tool; it shows the
practical way in which we test at Microsoft Corporation. Additionally, this book
provides the definitive process to using Microsoft Test Manager with the rigor
that we test here at Microsoft.”

—Randy Miller, ALM Architect, Microsoft

“Jeff provides the rare combination of deep, insider knowledge of Microsoft’s 2010
testing tools coupled with pragmatic details about how to plan, manage, and exe-
cute testing in the real world.”

—Mark Mydland, Director of Test, Visual Studio
Ultimate, Microsoft

“With Jeff’s extensive knowledge with Microsoft’s ALM offering, this book will get
you started on the right track with all the new testing capabilities offered by the
Visual Studio 2010 suite. Whether you are a new or veteran tester, the personal
insights the author brings to the testing topic are very interesting and useful….”

—Etienne Tremblay, Microsoft ALM MVP

Software Testing with
Visual Studio® 2010

Jeff Levinson

Software Testing
with Visual
Studio® 2010

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris

Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Studio, Visual Basic, Visual C#, and Visual C++ are either registered trademarks
or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Levinson, Jeff.
Software testing with Visual studio 2010 / Jeff Levinson.

p. cm.
Includes index.
ISBN 978-0-321-73448-8 (pbk. : alk. paper) 1. Computer software—Testing—Automation. 2. Microsoft

Visual studio. I. Title.
QA76.76.T48L48 2010
005.1’4—dc22

2010038104

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-73448-8
ISBN-10: 0-321-73448-3
Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville,
Indiana.

First printing February 2011

To my wife, Tami, and my daughter, Caitlin, who supported

me and had to deal with me for the last year.
And my new son, Sean: I hope you start sleeping through the night soon.

This page intentionally left blank

Contents at a Glance

Foreword xvii
Preface xxi
Acknowledgments xxix
About the Author xxxi

1 State of Testing 1

2 Software Quality and Testing Overview 13

3 Planning Your Testing 29

4 Executing Manual Tests 71

5 Resolving Bugs 107

6 Automating Test Cases 135

7 Executing Automated Test Cases 183

8 Lab Management 209

9 Reporting and Metrics 239

ix

This page intentionally left blank

Contents

Foreword xvii
Preface xxi
Acknowledgments xxix
About the Author xxxi

1 State of Testing 1
Software Testing Challenges 1
The Need for Testers 3
A Different Approach 5

Fixing Communication 5

Increasing Project Visibility 6

What Are the Tools Designed to Do? 7

Metrics 10
Citations 12

2 Software Quality and Testing Overview 13
Software Quality 13

Requirements 14

Business Value 14

Expectations 15

Nonfunctional Requirements 15

Where Do You Build Quality? 17

Process and Quality 19

xi

Software Testing 19
The Testing Mindset 20

Software Testing Strategies 21

Types of Software Testing 22

Test Management 27

After the Product Is Shipped or Deployed 27

3 Planning Your Testing 29
Microsoft Test Manager 30

Test Plans 36

Properties 38

Contents 43

Adding Suites and Test Cases to Your Plan 46

Testing Configurations 48
Managing Test Configurations 49

Assigning Test Configurations 51

Assigning Testers 53
Test Case Planning Workflow 55

Analysis and Initial Design 56

Construction 61

User Acceptance Testing 62

Common Scenarios 64
Scheduling and Tracking Test Case Creation and Execution 64

Feature Driven Development 65

Moving from One Iteration to Another 67

Handling Different Test Configurations 68

4 Executing Manual Tests 71
Using the Test Case Work Item Type 72

Shared Steps 75

Data Driven Test Cases (Test Parameters) 77

Running Your First Tests 79
Test Runner 80

Contentsxii

Examining Test Results 92
Test Run Results 93

Detailed Test Results 95

Exploratory Testing with MTM 101

5 Resolving Bugs 107
A Bug’s Life 107

Customer Reported Bug 110

Test Team Reported Bug 110

Triaging the Bug 110

Reactivations 111

Bug Differences and Modifications 111
The Generated Bug 116
How a Developer Uses IntelliTrace 120
Fixing the Bug 122

Associated Changesets 124

Associated Work Items 124

Impacted Tests 125

Setting the Build Quality 125
Assigning a New Build 127
Verifying That the Bug Is Fixed 129
Dealing with Impacted Tests 131

6 Automating Test Cases 135
To Automate or Not to Automate 136
The Automated Testing Framework 139
Creating an Automated Test from a Manual Test 141

Examining a Generated Web Application Coded UI Test 142

Adding Validations 157
Adding Additional Recorded Steps 164
Parameterized Coded UI Tests 166

Handling Issues Due to Inconsistency 168

Resolving the Data Inconsistency 169

Contents xiii

Handling Dynamic Values 172
Other Tips 177

Combining Multiple Tests 178
Associating Coded UI Tests and Test Cases 178

7 Executing Automated Test Cases 183
Executing Automated Tests Through Visual Studio 183

Local Execution 184

Local Execution with Remote Collection 184

Remote Execution 185

Executing Automated Tests from the Command Line 190
Executing Automated Tests in MTM 191

Creating an Automated Build 191

Setting Up the Physical Environment 193

Running a Coded UI Test Through MTM 196

Executing Automated Tests with Team Build 202
Automated Testing Gotchas 205

Custom Dialogs 205

Cleaning Up Your Tests 207

8 Lab Management 209
Managing Virtual Environments Through MTM 210
Finishing Virtual Environment Configuration 217
Automated Test Settings 221

Lab Management Workflow 222

Executing a Lab Build 231
Running Automated Tests Through MTM 233
Manual Tests in a Virtual Environment 234

9 Reporting and Metrics 239
Understanding the Reporting Structure 240
Built-In Reports 242

Bug Status 244

Bug Trends 245

Reactivations 246

Contentsxiv

Build Quality Indicators 246

Build Success over Time 248

Build Summary 249

Stories Overview 250

Test Case Readiness 251

Test Plan Progress 252

Excel Services Reports (Dashboards) 253
Reporting with Microsoft Excel 254

Creating a Generated Report 255

The Testing Measures 256

Metrics 268
What to Measure 271

First-Time Defect Rate 273

Bug Reactivations 276

General Bug Counts 277

Index 283

Contents xv

This page intentionally left blank

xvii

Foreword

OU R P R O D U C T T E A M L I K E S TO S AY that when we started building Visual
Studio Test Professional 2010 we wanted to deliver world peace as a feature.
To make our ship date, we reduced our aspirations to making peace between
software developers and software testers.

Even with this drastic reduction in scope, we faced a daunting task. Our
profession often creates substantial separation, organizationally and some-
times physically, between those responsible for creating and maintaining
software and those responsible for validating that the software meets the
needs of businesses and customers. Because of the separation developers and
testers often communicate by throwing information “over the wall,” which
results in poor communication of issues (bugs); in uncertainty about what
features, bug fixes, and improvements development has added to a particu-
lar build; and in mistrust between the development and test organizations.
All of which, in turn, contribute to the quality issues, schedule delays, and
outright project cancellations that continue to plague our industry. Many of
the QA tools currently available in the market exacerbate the communication
problems by managing the planning, testing, and tracking of the test effort
independently from the tools used to track planning and development.

As we began to dig into the source of the communication breakdowns, we
found, somewhat to our surprise, that manual black-box style testing
accounts for approximately 70 percent of all testing in our industry. To suc-
ceed with this style of testing, testers develop deep domain knowledge
around the products they test but spend less time cultivating their knowledge

of the deep technical and architectural aspects of the system. To manage their
testing efforts, these testers relied largely on Microsoft Word, Microsoft Excel,
handwritten notes, and whiteboards. Worse, testers had no tool support for
running tests and therefore spent significant portions of the day on time-con-
suming and often menial tasks such as deploying software, writing bug
reports, and finding clear steps to reproduce bugs.

As a software development company, Microsoft clearly recognizes the
importance of allowing all members of software development teams, devel-
opers, testers, architects, project and program managers, and business ana-
lysts to participate fully in the development process. We built Microsoft
Visual Studio Test Professional 2010 and the Lab Management capability of
Microsoft Team Foundation Server 2010 to help eliminate the friction
between developers and testers by providing self-documenting builds that
include tests impacted by developers’ changes, single-click actionable bugs
that eliminate the “No Repro” problem, and work item-based test planning
and management that enables visibility and traceability by all project stake-
holders. To streamline the test effort and increase the effectiveness of testing,
we added streamlined virtual build, deploy and test, fast forward for manual
testing, and the capability to generate an automated Coded UI test based on
a previously completed manual test.

During development, we relied heavily on feedback and advice from a
number of external sources who could provide both industry perspective and
feedback based on extensive personal experience. In that capacity, Jeff Levin-
son helped to shape Microsoft’s test offering and TFS’s Lab Management
capability in just about every way possible. Jeff participated in every formal
design review, special interest group, technology preview, and beta program
that existed. Beyond the formal interactions, Jeff spent days and weeks of his
“free time” installing, using, and testing our product followed by hours spent
with me and other members of the team providing feedback, pushing for
improvements, and making suggestions. I can’t say that all Jeff’s feedback
made it into the final product, but our product is better for his effort.

As much as I would like to believe that Jeff spent all this time and effort
just to make my life easier, I know that Jeff’s real motivation came from his
passion for helping teams to build quality software. In his book, Jeff brings

Forewordxviii

a pragmatic approach, years of experience, and a clear understanding of how
the entire development team must work together to build truly great soft-
ware. The combination of Jeff’s insider knowledge and deep understanding
of Microsoft Visual Studio Test Professional 2010 with his proven approach to
software testing create a roadmap that can help any team to build high-qual-
ity software while avoiding the pitfalls and friction that so often lead to
“death marches,” missed deadlines, and unsatisfied customers.

Mark Mydland
Director of Test, Microsoft

Foreword xix

This page intentionally left blank

Preface

AS A P R O C E S S I M P R O V E M E N T professional, I have experienced many team
challenges. Big challenges. It is not unusual to see teams that seem so per-
fectly compatible start in excitement only to fizzle in different directions and
end up not working together. Products suffer, customers suffer, and ulti-
mately relationships suffer. When Microsoft introduced a new set of tools to
help ensure quality applications and bring teams together in an evolution-
ary way, I was at first skeptical, but not now.

From one company to the next, one organization to the next, or even
within a given team, the same problems arise. Granted, the circumstances can
make basic problems much more challenging, but you can consistently iden-
tify the following issues:

• Challenged or poor communication between developers and testers

• Constant churning with precious little progress due to fixing the same
things over and over again

• Organizational structures that sabotage quality work and the capabil-
ity to productively manage resources

• Management that focuses on the shipping date with no consideration
of the long-term cost of poor quality

• Lack of proven toolsets to maximize productivity and efficiency of teams

Enter Microsoft Test Manager. Now there is this single point at which
teams can coalesce: quality. Microsoft Test Manager offers the following
proposition: Do you want to build a better quality product with less rework,

xxi

less divisiveness in a shorter period of time? If so, what are you willing to do
to achieve this goal? The response seems simple enough:

• Incorporate a basic process with some good old-fashioned common
sense.

• Use common tools.

• Share data.

In my experience, there is one obvious set of tools: Team Foundation
Server, Visual Studio, and Microsoft Test Manager. Using these tools has been
proven to break down barriers, get teams talking, and deliver the promises of
the preceding proposition. It is my goal to demonstrate how to accomplish
this to as many people as possible. With the tools that Microsoft provides, the
level of effort required to use them is minimal and the benefits are huge. Will
the tools work for everyone? Well, with the wide variety of tools and plat-
forms that individuals need to test against, I can’t make any promises. But if,
for the most part, the platforms and languages you test against are somewhat
commonplace, you can reap benefits from using this tool suite.

It’s funny how we see the process differently depending on our role on a
project. I have served in many roles (some better than others). As a developer,
I couldn’t stand testers because they always broke my code because they
didn’t know how to use the application. As a tester, I couldn’t stand devel-
opers because they didn’t know how to code. As an architect, I looked on
much of the process as a necessary evil. As a process improvement expert, I
realized (even though this may be patently obvious) that without testers I
couldn’t get the metrics I needed to make a difference. As an author, I hope
to communicate that by bringing testers and developers together to work
cooperatively we can make positive changes across the board in a fun and coop-
erative environment. We can accomplish this by objectively assessing and
learning about these unique and valuable new tools from Microsoft.

Thank you for reading this book, and I hope it helps you improve
the quality of your software. If you have questions, errata, suggestions,
additions, or disagreements with anything you read, please drop me a note at
jeffstuff@jtlevinson.com.

Prefacexxii

Who Should Read This Book?

This book is primarily for software testers or people who test software as one
of their primary job roles—from the professional tester or developer to the
business analyst who needs to verify software for end users.

The testing process with Microsoft Test Professional 2010 and Visual Stu-
dio 2010 Ultimate is structured in a way that the tester can perform manual
testing, and the developer can automate the tests. For this reason, developers
can also find this book useful because considerable resources are dedicated to
the developer’s role in the testing process. Further, much of this book covers
best practices for developers and testers working together. Chapter 6,
“Automating Test Cases,” and Chapter 7, “Executing Automated Test Cases,”
are especially relevant to the topic.

For those new, or relatively new, testers Chapter 2, “Software Quality and
Testing Overview” provides a solid introduction to the goals of testing,
approaches to testing, and considerations when testing. This is designed to be
a primer and can be skipped by those already familiar with testing processes.

Test and development managers, in particular those looking for a better
understanding of the overall process or those wanting to leverage the report-
ing offered in Team Foundation Server, can also benefit from reading this
book. Understanding reporting is often a conduit for discovering that a seem-
ingly insurmountable problem can actually be fixed. Add to that mix the
capability to quantify metrics and improve them over time, and you have a
powerful tool for managers. Chapter 1, “State of Testing,” Chapter 3, “Plan-
ning Your Testing,” and Chapter 9, “Reporting and Metrics,” are most appli-
cable to managers.

I hope you find this book helpful in your organization and as a guide for
your testing teams.

What This Book Does Not Cover

One topic not covered is the virtualization infrastructure required to run Lab
Management. The lab infrastructure requires a network administrator and
people familiar with virtualization technologies including hardware and soft-
ware. It would have been too complicated to include everything and would
have been beyond the scope of this book. This includes information such as

Preface xxiii

System Center Virtual Machine Manager and Hyper-V. Setup of the Test
Agent, Test Controller, and Build Hosts are discussed because these are items
the testing or development team will probably need to deal with at some
point—especially if teams switch back and forth between user interface test-
ing and unit testing.

Additionally, you will not find information on load testing, stress testing,
and Web performance testing, and only minimal information on unit testing
is available. The information on unit testing is presented from the perspective
of how a tester or developer might execute these automated tests and relate
them to requirements. You will not find any in-depth discussions on the phi-
losophy of unit testing or specific unit testing techniques.

About the Application Used in This Book

The application used throughout this book (and in the exercises) is the Blo-
gEngine.NET application because it is a popular real-world application used
by many individuals. It is also open source with a thriving community
behind it. BlogEngine.NET was created by Al Nyveldt and Mads Kristensen.
You can get more information about it from dotnetblogengine.net and down-
load the original version of this application at blogengine.codeplex.com.

The version used in this book has been modified somewhat because it was
ported to Visual Studio 2010 and converted to a Web Application for use with
Team Build. You can download the source from here: informit.com/title/
9780321734488. This download includes a readme file describing how to set
up the application so that you can follow along with the examples. Aside
from these modifications, no other material modifications have been made
to the source code. The Database project and the MSDeploy project were
added to support the different capabilities of the tools demonstrated.

Other software is required to follow these examples. You must have either
Visual Studio Ultimate or Premium to create Coded UI tests. You must also
have Microsoft Test Professional or Visual Studio Ultimate to get Microsoft
Test Manager. Although not a tested configuration, you might run these exam-
ples with Microsoft’s all-up Lab Management virtual machine. This virtual
machine can be downloaded here: www.microsoft.com/downloads/details.
aspx?FamilyID=592e874d-8fcd-4665-8e55-7da0d44b0dee&displaylang=en.

Prefacexxiv

How This Book Is Organized

This book is structured to not only be used as a reference but also as a step-
by-step guide for a process. The book guides you through the testing process
as it would occur on an application. The book starts with a discussion of
problems the industry faces and quickly moves to development methodolo-
gies and the role of testers. From there, you learn how to plan the testing
process using Microsoft Test Manager to write first-draft Test Cases and exe-
cute those Test Cases. During the course of execution, bugs can be filed, and
developers can fix those bugs. Testers can verify the fix and then determine
which Test Cases to automate. Developers automate the Test Cases and then
they can be executed by developers and testers in a physical or a virtual envi-
ronment. Finally, the book ends with a discussion of reporting and metrics
and offers some ideas that you can apply to your processes to improve
quality.

• Chapter 1, “State of Testing”—This chapter provides an introduction
to the problems facing software development teams today from a
quality perspective. It covers the cost of poor quality, legal actions
because of poor quality, and other commonly known but frequently
ignored issues. It also discusses the author’s philosophy of software
testing and the goals of this book. Finally, it covers some of the basic
software development methodologies and where software testing fits
in with these methodologies. This chapter provides an overview of the
Microsoft technology stack and end-to-end process flow.

• Chapter 2, “Software Quality and Testing Overview”—This chapter
presents an introduction to software testing. This includes why we
need to do software testing, what the goals of software testing are, dif-
ferent types of software testing and software testing techniques. It pro-
vides a foundational view of the tester’s world.

• Chapter 3, “Planning Your Testing”—First, you must plan for testing.
This chapter shows you how to use the tools in Microsoft Test Man-
ager (MTM). It also details how to navigate MTM, create test settings,
and structure Test Cases. It explains how to manage the testing
process using the Test Case work item type and requirements.

Preface xxv

• Chapter 4, “Executing Manual Tests”—This is your introduction to
executing tests with Microsoft Test Manager and Test Runner. You
learn how to create Test Cases, reuse test steps, execute manual tests,
and file bugs. When teams first start using MTM, this is what they do
on a day-to-day basis. This chapter also covers exploratory testing.

• Chapter 5, “Resolving Bugs”—When you file a bug, the process and
lifecycle of the bug is critical to reducing rework and driving report-
ing. This chapter discusses the Bug work item type, some customiza-
tions you might want to make to it, and how it serves as a
communication mechanism for testers and developers. You are also
introduced to how developers can use the Bug work item type to fix
software correctly the first time and then how testers can verify that
fix. This chapter introduces Test Impact Analysis.

• Chapter 6, “Automating Test Cases”—This is largely a developer-
focused chapter on creating automated Test Cases. These Test Cases
can be manual (recorded by testers) or automated (unit sting and
other types of tests). One key item in this chapter is associating any
type of automated test with a requirement. The features in this chapter
require Visual Studio 2010 Premium or Ultimate.

• Chapter 7, “Executing Automated Test Cases “—After automating the
Test Cases, teams need to execute those automated tests. This chapter
describes all possible ways to execute an automated test. This is both a
developer-focused chapter (using Visual Studio to execute the tests)
and a tester-focused chapter (using Microsoft Test Manager to execute
the tests). You also learn how to execute tests as part of the build
process.

• Chapter 8, “Lab Management”—This chapter focuses on the Lab Man-
agement features of Microsoft Test Professional 2010 and Visual Studio
2010 Ultimate. You learn how to use the virtualization platform to test
applications and how to snapshot environments to help developers
reproduce bugs. This chapter also focuses on both developers and
testers: Developers learn how to set up the code to be deployed in a
lab environment and executed through the build process. Testers learn

Prefacexxvi

how to execute both manual and automated tests in a virtual environ-
ment and file actionable bugs.

• Chapter 9, “Reporting and Metrics”—This chapter covers reporting
and metrics. By following the processes in this book, a team has
detailed metrics by which they can determine the quality of their
product and where the testing process can be improved. You explore
the built-in reports provided by TFS but also how to do custom report-
ing on the data cube to get detailed information about your testing
endeavors. This also serves as a brief guide to what type of customiza-
tions you can make to the Test Case work item type to capture more
detailed information.

Preface xxvii

This page intentionally left blank

Acknowledgments

WR I T I N G T H I S B O O K H A S been a labor of love over the last year, and there
is no way I could have done it alone. Writing about beta software requires
cooperation from the teams at Microsoft, and in this case I got more than I
could have imagined. The number of people who provided input is long.
If I have left anyone out, my apologies. First a special thanks to Mark Myd-
land, Ram Cherala, and Euan Garden—all of them put up with me for what
seemed like hours on end. Long before starting the book, I pestered them
on the philosophy of testing and their approaches to it and tools to imple-
ment it. I learned a lot from all of them. Other members of the testing team
helped with everything from technical aspects to the understanding of spe-
cific decisions made during the creation of Microsoft Test Manager, Lab
Management, and the Coded UI features. Many thanks to Naysawn Nadiri,
David “Dr. Will” Williamson, Dominic Hopton, Pradeep Narayan, Ravi
Shanker, Chris Patterson, Anutthara Bharadwaj, Daryush Laqab, Shay
Mandel, Vinod Malhotra, Gautam Goenka, Vijay Machiraju, and Mathew
Aniyan.

One other group of individuals helped as well, whether they knew it—
the Application Lifecycle Management (ALM) Most Valuable Professionals
(MVPs). They put up with hundreds of e-mails and provided responses
that helped shape my approach to using the testing tools. Many were sup-
portive during the writing process. I am honored to be included in this
exceptionally talented and knowledgeable group of people.

xxix

On a personal note, my wife Tami and daughter Caitlin have had to put
up with an absentee husband and father for the last several months. Needless
to say I could not have done this without their love and support.

My four reviewers deserve a big thank-you. Mario Cardinal, Etienne
Tremblay, and Mike Vincent are fellow ALM MVPs who thoroughly vetted
my content not once but twice. The book is better for their input. And to
Anutthara Bharadwaj (a member of the test team), even after a long plane
flight with no power and bad service, she provided excellent feedback and
comments and continued to teach me even after I thought I “knew it all.”
Thank you, Anu, for putting up with me.

I want to call out Mike Vincent specifically here for not only his help but
his contributions. Mike was the last reviewer of this book. During the pro-
duction of this book many ideas were discussed as to what this book should
be about and what it should cover. Late in the process we decided that Chap-
ter 2 should be added to provide an introduction for those just coming into
the testing space. I did not have time at that point in the schedule to write this
chapter. In came Mike to the rescue. Chapter 2 was contributed by Mike and
helps round out the book in a way that makes it better than it was before.
Thanks Mike!

For Brian Keller, a senior technical evangelist with Visual Studio, I can
only say “Thank you.” I am just in awe of his ability to quickly read, distill,
and correct information or add the tiny details that were missed. And to Sam
Guckenheimer for helping iron out the most difficult part of any technical
book—the direction.

And to my co-workers at Northwest Cadence who were supportive of the
entire process from beginning to end and through the days, weeks, and
months of the writing process.

Most important, thanks to my editor Joan Murray and assistant editor
Olivia Basegio, without whom this book would not have been possible. As
with any endeavor, it isn’t the big stuff that trips you up; it’s the small stuff.
And to the rest of the team at Addison-Wesley from San Dee Phillips my copy
editor to Andrew Beaster who shepherded the book through production
twice, thank you for sticking with it!

Acknowledgmentsxxx

About the Author

Jeff Levinson has 16 years of experience in software development in many
different roles—developer, tester, architect, project manager, and scrum
master at several large companies. Jeff is currently a Senior Application
Lifecycle Management (ALM) Consultant for Northwest Cadence, which is
a company that specializes in Team Foundation Server, Visual Studio,
methodologies, and process improvement. In his day-to-day work, Jeff
helps teams, organizations, and companies adopt more efficient processes,
improve quality, and reduce costs associated with software development.
Jeff is a frequent speaker at industry events and writes a twice-monthly col-
umn for Visual Studio Magazine Online. This is his fourth book on software
development. His other books are Building Client/Server Applications with

VB.NET (Apress 2003), Pro Visual Studio Team System 2005 (Apress 2006), and
Pro Visual Studio Team System with Team Edition for Database Professionals (Apress
2007). Jeff has a master’s degree in software engineering from Carnegie
Mellon University and is an MCP, MCAD, MCSD, MCDBA, and MCT.

Jeff currently lives in Washington State with his wife and two children.

xxxi

This page intentionally left blank

1
State of Testing

T H I S C H A P T E R A N S W E R S S O M E questions about the current crop of chal-
lenges and problems that plague the software testing process in organi-

zations today. It offers some new ideas and approaches to testing. It can also
give you a slightly different view on how you can accomplish testing with the
Microsoft Visual Studio 2010 testing tools. Following this is a series of exam-
ples of major failures in testing as a reason for why we, as an industry, need
to change our approach to testing. The chapter concludes with the technical
capabilities of the Microsoft Visual Studio 2010 and Microsoft Test Profes-
sional 2010 tools and how they fit into the software development process.

Software Testing Challenges

I recently started working with a company and was discussing some of the
issues the group manager was facing. I remarked that the software did not
seem to be tested. He asked what led me to this conclusion. The answer was
an apparent lack of testers, lack of comprehensive Test Cases, and upper
management being frustrated with the cost of rework. In reply the manager
said that the software is tested—by the developers but that they did not have
dedicated testing resources. This was obviously a red flag, and the conversa-
tion quickly moved to the challenges we face today with software quality
assurance and testing. The biggest issues he mentioned were getting all the

1

people associated with software development working together, using a
good, consistent process, and having clear testable requirements.

These are some problems you may be facing:

• Your organization doesn’t test and you want to start testing.

• Testing leads to finger pointing, which kills morale.

• Projects are late because bugs are found late in the process.

• Developers use one set of tools, and testers use another, and the tools
do not integrate.

• The team is always finding and fixing bugs, but the customers con-
tinue to find critical bugs.

These items generally all relate to each other. Here are a few quick exam-
ples of what these items lead to. Organizations, even though they realize the
importance of testing, don’t test. They don’t hire the resources or have the
wrong roles testing the software—namely they rely on the developers to test
the software. This invariably leads to customers finding many bugs, which
leads to a large amount of rework.

In organizations in which testing does take place, there seems to be a lot of
blame to go around. Testers blame developers for not coding something right.
Developers blame testers for not using the software correctly. Customers
always question why there are so many bugs and why the developers and
testers aren’t working together better.

Project schedule slips in waterfall processes are frequently built into the
process. If you use a process that batches everything from one phase to the
next (analysis to architecture to development to testing to release), when bugs
are found in testing the team has a short time to find and fix the problem.
Because this is not possible in many cases, and the goal is frequently a zero
defect release, the schedule slips.

Tooling is frequently a problem both from a usage and an economic stand-
point—especially when those tools don’t integrate. Consider a situation in
which developers use one Integrated Development Environment (IDE) and
they work on requirements entered in another system, and the testers work
in yet another system and none of the systems talk to each other. Not only is

Chapter 1: State of Testing2

the organization paying for two or three sets of licenses, but also the users
(developers and testers) need to be trained on two or three different systems.
This situation also contributes to throwing things over the wall in a discon-
nected fashion, which impacts speed, communication, discoverability, and
accuracy.

Finally, many teams strive for a zero defect release, which is a laudable
goal. In reality, this is not usually a necessity. Rather, finding and fixing the
right bugs is the key to a successful release. For example, fixing normal path
bugs first can lead to customers finding fewer bugs because they don’t use
the alternative paths of features as often. Second, the more bugs you find and
fix, the higher the cost is to find and fix each bug. At what point is this cost
no longer worth it? Many organizations don’t take into account this financial
consideration when analyzing bugs. (This book does not cover the economic
factors involved in finding and fixing bugs, but which bugs to fix is
discussed.)

These issues all negatively impact development teams, products, and ulti-
mately organizations. But there are better ways to approach this process, and
better, more integrated tools with which to approach it.

The Need for Testers

If you are reading this book, you know that software is not tested as well as
it should be, but it is helpful to step back and put it in perspective. Poor soft-
ware quality costs the United States’ economy approximately $59,500,000,000
(yes, that’s 59.5 billion and not a typo) every year (NIST 2002). This is because
of lost productivity and resources. Although this is a large number, it does-
n’t actually put the problem in perspective. Here are a few practical instances
of poor testing and the consequences that resulted. When organizations ask
themselves what the cost of poor quality is, this data should help answer this
question.

In March 2008, Waste Management, Inc., sued SAP for a complete failure
of a $100 million software installation.1 Waste Management stated that SAP
could not run even the most basic processes.

The Need for Testers 3

In March 2004, the Ohio State Attorney General sued PeopleSoft for $510
million over a failed installation of the PeopleSoft software at Cleveland State
University.2 It was stated, among other items, that the software was “unsta-
ble” and that it had to install “hundreds of fixes.”

In January 2002, Cigna Corporation, a major provider of health-related
services, installed a new set of tools from Siebel Systems and Computer Sci-
ence Corporation. It went live, had numerous failures, and Cigna concluded
that “the new system had not been tested well….”3 This led to the loss of
major corporate customers and numerous customer complaints.

In January 2005, it was reported that the FBI’s Virtual Case File system
built by Science Applications International Corporation and which cost $170
million was being canceled. According to the Washington Post, there were
hundreds of problem reports, and many basic functions had not even been
tested at that time—and this was one month before delivery.4

And only the high profile failures are actually reported. Many hundreds
or thousands of other project failures occur every year that no one ever hears
about. And although some companies can afford huge losses such as those
mentioned here, many cannot. And in particular, smaller companies cannot
afford even a small number of failures because they do not have the same
resources available as larger companies do.

These are just a handful of the hundreds of incidents that have made
headlines in the last several years. And these aren’t unusual. Numerous other
issues have occurred because adequate testing of software was not per-
formed. But none of these incidents had to occur. Yes, it is true that almost no
software system is 100% bug free; the law of diminishing returns does apply
here. If you had an infinite amount of money and time, you could theoreti-
cally make a system bug free, but most organizations don’t have that type of
time or money.

It can probably (with a high degree of certainty) be stated that testing
alone was not the downfall of all these projects. Fluid requirements, project
management issues, and other items most likely contributed to the problems.
But testing being identified as a key area of concern is notable.

Even more disturbing is a study by Coleman Parkes Research presented at
a quality conference in London November 5, 2007, where it was noted that

Chapter 1: State of Testing4

the “testing budget was the first to be squeezed if difficulties are encoun-
tered” and 47% of respondents to the survey believed testing was a necessary
evil.5

A Different Approach

Microsoft created a set of testing tools and reports that are tightly integrated
into the software development process as a way to solve these problems.
Microsoft Visual Studio 2010 and Microsoft Test Manager incorporate inte-
grated, traceable Test Cases with tight feedback loops resulting in actionable
bugs. Microsoft’s mantra for this release was “no more no repro.” The goal
was to eliminate things like the constant re-opening of supposedly fixed bugs
and constant rework related to features being completed but failing testing in
ways that the features should not fail. They did this through increasing com-
munication (both the quantity and quality) between all team members and by
providing visibility to decision makers. The information is exposed to the
stakeholders in a way that they can judge the quality of the software and
make timely business decisions based on this information. Leveraging the
power of Team Foundation Server as a central hub for all information related
to a feature enables developers and testers to communicate efficiently in a col-
laborative, rather than adversarial, environment.

Fixing Communication
In many organizations the relationship between developers and testers is not
the best. This has been viewed as a natural by-product of the work that testers
do; they try to find defects in the developers’ work. This is a situation that
needs to change, and it is a change you can make relatively easily. Develop-
ers need to produce code with fewer defects (contrary to popular belief, bugs
in functionality are not the sole province of the developer; they are usually
nurtured in the requirements phase) and testers need to provide better infor-
mation to developers to help them run down bugs in the application.

Part of this is solved simply by testers having access (at least in a read-only
mode) to what the developers are doing. Testers can see the documents the
developers are working off of and can trace the requirements to the code.

A Different Approach 5

Another part of the solution is that as testers write Test Cases, developers
have access to the Test Cases, so they can run them before they submit code for
testing. This is huge. Too many times testers complain of “stupid” bugs. (That
is, they clicked a button and the application crashed.) These types of bugs are
completely unacceptable—there is just no excuse for them. With developers
running the Test Cases first, the testers should rarely find bugs in the Test
Cases they run. (And by extension the users won’t find bugs either.)

The other half of the communication issue is the quality of the bug reports;
they are inadequate to use in fixing a bug. Some bug reports contain a one-
line description with a note saying, “fix it.” Okay, I admit that filling out bug
reports is tedious and boring; however, if testers don’t provide enough infor-
mation, they can’t complain when the bug isn’t fixed.

This is a key barrier that Microsoft Visual Studio 2010 breaks down. Visual
Studio, combined with Team Foundation Server, enables developers and
testers to communicate through a common medium and in a common lan-
guage in a collaborative environment—they are all working off the same
information.

Increasing Project Visibility
Although this isn’t a book on project management, it is always amazing to see
that the only people who are ever surprised about the status of a project are
the customers. Why? Teams do not report information in a way that the busi-
ness can make effective decisions. Clear information about the status of a
project is not reported either. This lack of information paints a rosy picture for
the customers, and the day after the release when they start using the soft-
ware and everything starts breaking, the customers become extremely dis-
satisfied, upset, and confused. They want to know how the team could
release such buggy software. And if the team didn’t know, how come they
didn’t know? At what point in the process did everything go wrong?

This is why transparency is such a key part of software development, and
projects that aren’t transparent don’t succeed. This is another key scenario
that Team Foundation Server and Visual Studio 2010 address.

Chapter 1: State of Testing6

What Are the Tools Designed to Do?
Up to this point you have learned about what the tools were designed to do
and how they can help improve your process. Now let’s walk through a sce-
nario and discuss the technical capabilities of the tools.

This scenario shows a process flow and some of the technical capabilities
(see Figure 1-1). Granted, you need to actually use the features properly for
all this to work correctly, but it doesn’t require a team to go out of its way to
get these benefits from the testing tools. Other options haven’t been specifi-
cally called out in this flow but are covered in Chapter 8, “Lab Management.”
This also meets a vast number of needs not met by other tools currently avail-
able. Look at a few of the highlights.

A Different Approach 7

Developers write
code

Code is automatically
built each night

Testers write test
cases

Testers select a build
to test against

MTM tells the testers
all of the changes
since the previous

build

Testers execute the
appropriate test cases

Testers file actionable
bugs

Developers fix the
bugs within a short

period of time

Code is automatically
built

Testers verify that
each bug is fixed
and run identified
regression tests

Testers (or
developers) automate

test cases for
regressions

Testers run regression
tests as needed

Automated tests are
executed as part of
the build process

Comprehensive data
on code quality is

collected and updated
nightly

Full traceability from
requirements to test

cases to code to bugs
is available

Figure 1-1: Development and testing process flow

Automatedbuilds are critical for capturing metrics and using other fea-
tures of the testing tools such as Test Impact Analysis (TIA). In addition, auto-
mated builds quickly help find and identify the cause of build breaks with
minimal impact. On top of this, a build is built on Windows Workflow 4.0

(yes, you can still use MSBuild, so no investments are lost) that makes con-
trolling the build, deployment, and testing process easy, and you can easily
customize the build process.

Microsoft Test Manager (MTM) (through the automated build) automati-
cally notifies the testers of changes between different builds. Instead of the
testers asking the developers what changed between each build, they will
know. That lets them focus their testing efforts on new features and reduces
the back and forth between testers and developers; therefore, the testers can
work more efficiently.

Whether testers file bugs with full information is often a point of con-
tention between the testing and development teams. It evokes comments like,
“It works on my machine,” and “I can’t get the bug to occur,” or shouting
something like “What did you do to break it?” This is not an optimal situa-
tion. The issue stems from the amount of information provided with a bug
report. Sometimes not enough information is provided. Sometimes testers
can’t remember what they did during exploratory testing. Sometimes it is a
system configuration issue. Most of that goes away with MTM and VS 2010.
Imagine this scenario: The testers execute a test and find a bug. They file a
bug that includes screen shots of the problem; a time-stamped video record-
ing log with each step in the test; an IntelliTrace™ log that provides complete
debugging information (a historical log of all actions and methods executed
during the test run); a list of all tests performed before and after the bug was
found; and complete system information from the system on which the test
was run. Sounds crazy, huh? In MTM this is standard operating procedure.
And other information can be provided as well; that is, developers can work
more efficiently, and it is easier for testers to file bugs (testers can work more
efficiently) without the testers having to fill out comprehensive reports.

Test Impact Analysis (TIA) is one of the most compelling new features of
Visual Studio. The problem that TIA solves is this: Testers have hundreds (if
not thousands) of Test Cases as they get close to the release of the product. But
lots of last-minute changes are made to code. How do you know that bugs
aren’t introduced? The only way to verify that bugs haven’t been introduced
is to run regression tests. But who has time to run hundreds or thousands of
regression tests? How do you know which code changes require which tests

Chapter 1: State of Testing8

to be rerun to verify that there are no regression bugs with a given change?
The short answer today is that testing teams spend a large amount of time
maintaining matrices that record, as best as possible, this information. But by
using Visual Studio, you have the potential for a whole different story. TIA
can inform you that tests have been successfully run previously but that a
code change was made on a portion of code exercised by the Test Case. In this
way TIA can cut down the guessing about which tests to run and the num-
ber of tests that need to be run to verify that no regression bugs exist. (For
example, testers can work more efficiently.) Chapter 4, “Executing Manual
Tests,” covers TIA in more depth.

Automating functional Test Cases in VS 2010 requires a little bit of work
but, depending on the scenario, you do not need any coding skill to do it.
Testers can perform this automation, but Microsoft’s current vision is that
developers would help with the automation of Test Cases (or the testing team
would include Software Developers in Test). After a Test Case has been auto-
mated, testers can run full suites of automated tests while they perform other
work (functional or Unit Tests); therefore, testers can work more efficiently.

A Different Approach 9

MAINTAINING AUTOMATED TESTS
Automated tests have overhead. Microsoft has tried to reduce this overhead

by making the automation code more “intelligent” (see Chapter 6, “Automat-

ing Test Cases”). The functionality is great but it should be used to achieve

specific goals because otherwise the maintenance associated with

user interfaces that change significantly over time can quickly become

overwhelming.

Comprehensive data collection and reporting is a hallmark of TFS. The
reporting capabilities far outstrip anything else available in terms of the
amount, quality, and reporting mechanisms available to you. Instantly know-
ing how many Test Cases you have, how many have been executed, how
many have been successful, and how much code they have covered is a tool
that every manager should have. Knowing the quality of the code and not
just guessing it is critical to a successful release. You can achieve this only
with TFS; managers can work more efficiently with better information.

To build on top of the data collected, the traceability features of TFS are
second to none for a simple reason: No other testing tools seamlessly inte-
grate with the source code repository or work item tracking. You can argue
that other tools have the same features, but this is accomplished mostly
through integrations between different systems. They are not built from the
ground up to integrate and report on the data, and TFS is built for that
purpose.

You might have noticed the not-so-subtle benefit of all this tooling: sim-
ple efficiency. The tools are simple to use; they collect most of the information
in the background; and they provide the maximum amount of benefit with
the least amount of work. Now that isn’t to say that the tools are not power-
ful and not extensible; they are both. The majority of organizations can gain
the advantages previously outlined with process change and a small amount
of training. More advanced capabilities require a little more work but are
available to you. Think of the issues that you have right now. Will any of the
preceding features help reduce these issues? If yes, keep reading.

Metrics

In the past, metrics was a dirty word (and maybe still is). Metrics meant a
heavy process with developers constantly noting in detail every little step
they took. Looking at methodologies such as the Personal Software Process
(PSP) or Team Software Process (TSP) that are based on comprehensive met-
rics, you can see why this is the case. Many organizations took metrics to the
extreme, which was the wrong thing to do. Metrics, used properly, do not add
a large amount of overhead to a development process and produce tangible
benefits.

No organization can determine quality without metrics, so what metrics
are important to improving quality? Table 1-1 summarizes the metrics that
you should be looking for and why you should be interested in them. These met-
rics are a large focus of Chapter 9, “Reporting and Metrics.”

Chapter 1: State of Testing10

Table 1-1: Critical Metrics

Metrics 11

Metric Description

Total bug count This number simply puts all the other numbers in per-
spective, such as the percentage of bugs found in a
given step or iteration.

Bug count per phase The goal is to reduce the number of bugs as you pro-
ceed along the development path. Teams need to show
that the time they put into defect reduction pays off.

Bug count per feature If certain features experience more defects than other
(bug density map) features, it is a good indicator that the team might need

to work proactively to find defects before the users do.

Code coverage Having a lot of tests is not helpful if those tests cover
only 10% of the total application. The goal of every
team may be different, but strive for approximately 70%
to 80% coverage.

Regression bugs Knowing when bugs reoccur is a good indication of
overall regression testing issues. You can also use this to
detect fragile areas of code that might need to be made
more maintainable.

Defect root cause Knowing the most common root causes of defects gives
you the ability to proactively work to eliminate certain
categories of defects.

Defect cost This is a somewhat nebulous and misleading metric.
You do not need to try to hit a cost per defect mark or
anything like that. Teams need to determine how much
time in manpower (user, analyst, developer, tester) it
takes to fix a bug and what the business impact of the
bug is (monetary impact if possible). This feeds back
into the ROI of a good prevention program, which
Chapter 9 discusses.

These are the basic metrics that will be focused on. You can use other met-
rics, but these are the most prescriptive in trying to improve process and
release a quality product.

In addition to determining quality, metrics also measure the effectiveness
of any process, but this is especially true with processes involving quality. A
quality program without metrics is not useful. One of the key features of the

Team Foundation Server is the capability to capture information and output
it in a variety of ways. These include dashboards via Microsoft Office Share-
Point Server (MOSS) and Excel Services, SQL Server Reporting Services
(SSRS), and through Excel with its capability to report off of a data cube.

SUMMARY

This chapter covered some of the problems that you or your organization
may face due to inadequate testing, poor communication between develop-
ers and testers, and low project visibility. The impact of testing (good or bad)
is not adequately quantified, but you have seen some examples of extremely
high profile and expensive cases of the testing process not working correctly.
And you have also seen how Microsoft is working to build tools that help to
directly improve the role of testers in the software development process. In
the next chapter you get your first look at these tools and the process start-
ing with planning your testing efforts with Microsoft Test Manager.

Citations

National Institute of Standards and Technology. (2002). Planning Report
02-3, “The Economic Impacts of Inadequate Infrastructure for Software Test-
ing.” U.S. Department of Commerce.

1. http://www.intelligententerprise.com/channels/enterprise_applications/showArticle.
jhtml?articleID=207000273&cid=nl_ie_week

2. http://www.computerweekly.com/Articles/2004/03/29/201438/peoplesoft-sued-over-
faulty-installation.htm

3. http://wps.prenhall.com/bp_laudon_essbus_7/48/12303/3149749.cw/content/index.html
4. http://www.washingtonpost.com/wp-dyn/content/article/2006/08/17/

AR2006081701485.html
5. http://www.techcentral.ie/article.aspx?id=11470

Chapter 1: State of Testing12

2
Software Quality and Testing
Overview

T H I S C H A P T E R I S A Q U I C K S Y N O P S I S of the fundamentals of software
quality and testing. For those of you who are developers or new to test-

ing, this is a crash course (but by no means complete) in testing software. If
you are an experienced software testing professional, I suggest skimming
through the chapter. By the end of this chapter, you should have a good
understanding of software quality, the goals of each type of software testing,
and various testing techniques, and how they can be applied depending on
the overall Software Development Lifecycle (SDLC) process in use.

Software Quality

A solid understanding of software quality is necessary to be effective at soft-
ware testing. So, just what is software quality and who is responsible for it? A
definition in Steve McConnell’s Code Complete divides software into two
pieces: internal and external quality characteristics. External quality charac-
teristics are those parts of a product that face its users, whereas internal qual-
ity characteristics are those that do not.

Overall software quality is determined and influenced from several per-
spectives. Everyone has their own view influenced by how they interact with

13

the product or solution. At the core quality means the software meets the
requirements for which it is created, it has business value, it meets or exceeds
expectations, and it meets the nonfunctional requirements defined and
expected .

Requirements
Quality starts with the definition of good requirements. If a stakeholder or
customer writes a list of requirements, is that good enough? Probably not
because fully understanding such a list typically requires extensive domain
knowledge. Good requirements should specify the desired functionality and
how to validate that the functionality has been achieved. Creating and under-
standing good requirements usually evolves through interaction of the stake-
holders, project management, development, and test during project
definition and frequent reviews and adjustments as development progresses.
Be careful, however, that the requirements do not go into how to achieve the
functionality. That is the responsibility of the development team. As require-
ments are agreed upon, it is then the development team’s responsibility to
deliver working software that meets these requirements.

Business Value
High-quality software must have business value for those who will use it,
whether for internal use, commercial sale, social, entertainment, web, or
embedded use. A software solution or product is not high quality unless it
adds value for both the consumer and the manufacturer. Both a luxury car
and an entry-level car will get you from point A to point B. But the luxury car
offers features and capabilities that go beyond the essentials of transporta-
tion: usability, safety, comfort, reliability, and so on. Quality encompasses
added value plus attention to detail.

Development teams with a quality focus know that a “quality” applica-
tion must do more than simply provide correct results without crashing.
Does the application meet or exceed stakeholder and user requirements and
expectations? Is it usable? Secure? Scalable? Reliable? Easily maintained? Eas-
ily extended?

Chapter 2: Software Quality and Testing Over view14

Expectations
From the user’s perspective, a software product must provide a level of user
satisfaction for accomplishing its intended purpose. This is probably the most
important external quality characteristic. Fundamentally all users want the
same thing: “I just want it to work!” So, first and foremost, quality means that
it must work.

An application user interface is subjective, but there are some specifics
you should think about concerning qualities of a good user experience. Con-
sider the implicit cost of keystrokes, mouse travel and clicks, shifts in eye
focus, and the resulting brain power required to run the UI. Some keys are
easier to press than others. Keeping your hands on the keyboard is most effi-
cient. There is context shift to access the number pad, shifted keys, combined
keys (key binding), and symbol keys. Mouse travel and clicks can become
expensive with options scattered all over the screen. A user may have to drill
down several layers in a menu hierarchy to select a desired operation—mov-
ing your eyes away from the actual task you are working on to navigate the
application. All this effort with awkward user interfaces diverts your focused
concentration away at a substantial cost in overall productivity, increased
stress and tension, and likely creates a negative emotional response.

Watch customers carefully. Make use of frequent inspect and adopt cycles
throughout the development cycle to make sure you get the user interface
refined for your users.

Nonfunctional Requirements
In addition to requirements for specific behavior or functional requirements,
nonfunctional requirements deal with the operation or qualities of a system:
how a system is expected to behave. These are sometimes known as the “ili-
ties” for the suffix many of the words share. You can see an extensive list at
http://en.wikipedia.org/wiki/Ilities. A few important nonfunctional
requirements for just about all solutions include usability, reliability, per-
formance, security, and maintainability. To the extent reasonably possible,
you should try to identify specific metrics to measure, which Chapter 9,
“Reporting and Metrics,” discusses in more detail.

Software Quality 15

Usability

Usability is probably the most difficult to specifically measure. Requirements
might be expressed about how difficult it will be to learn and operate the sys-
tem. The requirements are often expressed in learning time or similar metrics.

Reliability

Reliability deals with the capability of a system or component to perform its
required functions under stated conditions for a specified period of time
without failure. The measurement is often expressed in mean time between
failures (MTBF). The definition of a failure must be clear. You may require a
specific measure of up-time or have specific service level agreements (SLAs)
that you are contractually committed to. Performance is characterized by the
amount of useful work accomplished by a system compared to the time and
resources used. You may need to support a specific maximum number of
users without degradation of response returning data or serving up a new
web page.

Security

Security is the degree of protection against damage, loss, unauthorized
access, and criminal activity. This is another difficult area to measure because
you need to consider so many parameters. Assume that attackers are out
there. How do you know that the user of the system is who they say they are
and only give them access to authorized functions? How can you protect
your system from attack? Think about network attacks, machine attacks, and
even attacks from within your own systems.

Maintainability

Maintainability is the ease with which a product can be maintained to cor-
rect defects, meet new requirements, make future maintenance easier, or cope
with a changed environment. Although maintainability is undisputedly con-
sidered one of the fundamental quality attributes of software systems, it is
difficult to find a sound and accepted definition or even a common under-
standing of what maintainability actually is. One good metric related to
maintainability is regression bugs. If simple changes cause high numbers of

Chapter 2: Software Quality and Testing Over view16

regression bugs, then it’s a good bet that the system will be difficult to
maintain.

Where Do You Build Quality?
Building quality from the beginning of a project or trying to bolt it on at the
end has an impact on both overall quality and total cost. Pay now or pay later.
As many managers are fond of saying, “you can’t test quality in.”

At the End of the Project?

Can you build software quality at the end of the project? This is putting the
burden on system testing. In spite of how many may answer this question,
in practice you see a lot of organizations that tend to work this way. Critical
decisions are pushed back on the project timeline with the expectation that
it will be discovered and corrected in testing. Waiting until the eleventh hour
to validate quality through testing inevitably extends both the schedule and
budget. Good testing can identify potential problem areas and bugs, but this
is only part of the overall quality equation.

In the Middle of the Project?

How about building quality in the middle of the project? This focuses on
quality engineering practices, also a necessary component of quality. Here
you run the risk of building a technically good product, but the ultimate
result is a failure because the requirements missed the target. Poor problem
domain analysis—and thus poor requirements—can lead to unplanned and
costly reworking.

At the Beginning of the Project?

What if you start building quality at the beginning of the project? This is
where you can proactively plan and design with a focus on quality. Good
requirements, good architectural planning, continuous attention to technical
excellence and good design, and involving tests from beginning to end is
your best investment for building in quality.

Software Quality 17

Quality Is a Team Effort

Everyone plays a part in building quality; stakeholders, project management,
business analysis, architecture, development, testing, and operations. Agile
practices embody the concept of building quality from the beginning. Agile
methodologies stress frequent inspections and adoptions by frequently deliv-
ering increments of working software, usually every few weeks. Require-
ments can change, even late in development. Agile processes embrace change
for the competitive advantage of the customer. Even if you are not doing pure
agile development, consider implementing these practices to improve quality.

Definition of Done

A key concept from agile methodologies is having a well understood and
agreed upon definition of done. A clear definition of done applied to each
increment of delivered working software is a rich embodiment of quality. So
what should a good definition of done include? Consider the following:

• Designed

• Refactored

• Coded

• Code reviewed

• Design reviewed

• Unit tested

• Functional tested

• User Acceptance tested

• Integration tested

• Regression tested

• Performance tested

• Security tested

Adhering to a good definition of done goes a long way to lowering both
the cost of producing software and the total cost of ownership. Consider the
cost of a defect. As shown in Figure 2-1, a defect discovered and corrected
during development is vastly less expensive than a defect released to
production.

Chapter 2: Software Quality and Testing Over view18

Figure 2-1: The cost of a defect in the software development lifecycle

Process and Quality
Product quality also reflects the process behind the product. In the software
world, a high-quality SDLC process can keep development organizations
from losing time reworking, refactoring, and rewriting software. These
organizations can produce more innovative and creative products because
they have more time to think about adding value and quality details.

Visual Studio 2010 Application Lifecycle Management (ALM) provides a
great end-to-end platform for process implementation.

Businesses that value quality become more responsive and innovative,
increase their competitive differentiation, and greatly reduce their total cost
of development and ownership. Quality enables responsiveness and innova-
tion; quality is a differentiator in the marketplace between leaders and fol-
lowers; and quality is (almost) free.

Software Testing

Software Testing helps you assure throughout the development process that
your software projects actually conform to the established quality objectives.
A primary purpose of testing is to detect software dysfunction and failures so
that defects may be discovered and corrected; preferably as early in the
develop/deploy cycle as possible.

Software Testing 19

120

100

80

60

40

20

0
Design

Phase/Stage of the S/W Development in Which the Defect is Found

Source: IBM Systems Sciences Institute

1x

Implementation

6.5x

Testing

15x

Maintenance

100x

The Testing Mindset
Good testers are kind of like bull dogs. They bite into a system to be tested and
don’t let go. Professional testers approach an application with the attitude that
the product is already broken: It has defects and it is their job to discover them.
Although developers and designers typically look at the expected paths for an
application to work correctly, testers look for edge and corner cases in which
things can go wrong. They assume the product or system inherently has flaws
and it is their job to find them. This approach makes for good testing.

Developing an application’s expected paths is certainly important, that is,
the purpose, requirement, and user story being satisfied. It’s also often times
the relatively easy part of development. But a truly great application is
resilient; it anticipates things that can go wrong and handles them gracefully.
This is where the testers’ bull-dog mindset adds value. The testers take noth-
ing at face value. Testers always ask the question “Why?” They seek to drive
out the edge-and-corner cases and discover the unexpected paths that must
be controlled well to drive quality and a great user experience.

Sometimes this attitude can cause conflict with developers and designers.
But you want developers and designers that can be testers, too! You can have
developers and testers work as a paired team for a period of time to broaden
the team’s approach to quality and help to tear down the old traditional wall
between development and testing.

Chapter 2: Software Quality and Testing Over view20

AGILE TESTING
Testing and QA is a key component of agile development. The widespread

adoption of agile methods has brought the need for effective testing into the

limelight, and agile projects have transformed the role of testers. With

SCRUM, development teams are cross-functional and self-organizing, so QA

is integrated into the development team. Although everyone on the team con-

tributes to what needs to be worked on, the QA function (and mindset) is cru-

cial from the beginning to end of each sprint and to the project as a whole.

For a more in-depth look at agile testing see Agile Testing: A Practical Guide

for Testers and Agile Teams by Lisa Crispin and Janet Gregory. Addison-

Wesley. (Jan 9, 2009)

Software Testing Strategies
Software testing strategies are traditionally divided into white box, black box,
and gray box testing. These three approaches describe the point of view that
a test engineer takes when designing Test Cases.

Black Box

Black-box testing is the testing of completed units of functional code. Testers
treat the objects as black boxes using the provided interfaces. They focus on
verifying that specific input will return expected output. They don’t worry
about the internal logic of what goes on in between. User Acceptance Testing
(UAT) and Systems Testing are typical examples of black-box testing.

White Box

White-box testing, also known as glass-box testing, focuses on analyzing the
internal logic of the software and the code. White-box testing is generally the
domain of the developers creating and executing Unit Tests. Code coverage,
code metrics, code analyses, and code reviews are also related white-box test-
ing techniques.

Software Testing 21

EDGE-AND-CORNER CASES
An edge case (or boundary case) is a problem or situation that occurs only at

or just beyond the maximum or minimum limits of an operating parameter.

For example, consider a field which accepts a number—the program may be

expecting a range between 0 and 100 but a tester may enter a value such as

2,147,483,648 which happens to be one number higher than the maximum

size of a signed integer. If the developer is putting the value into an int, the

test will fail. An edge case can be expected or unexpected. The process of

planning for and gracefully addressing edge cases can be a significant task

part of development.

A corner case is a problem or situation that occurs only outside of normal

operating parameters—specifically one that manifests when multiple envi-

ronmental variables or conditions are simultaneously at extreme levels, even

though each parameter is within the specified range for that parameter.

Gray Box

Gray-box testing is a software testing technique that uses a combination of
black-box testing and white-box testing. It involves having knowledge of
internal data structures and algorithms for purposes to design the Test Cases,
but testing at the user or black-box level.

You can make better informed testing choices because you know how the
underlying components operate and interact. Exploring boundary conditions
and error messages are typical examples.

Types of Software Testing
Many different types of software testing may be performed throughout the
SDLC to assure that completed work meets or exceeds the targeted level of
quality. No one testing type does it all. Rather, it is the sum collection of test-
ing and test results that help the extended development team and stake-
holders have a high level of predictability in overall project quality. Tests can
be either manually scripted or automated. In either case tests should be
repeatable so that you can compare progress during the course of develop-
ment and refinement. You should strive for a high degree of automation and
use manual testing where a high degree of human judgment and interpreta-
tion is most beneficial.

Unit Tests

A Unit Test is an automated piece of code that invokes the method or class
being tested and then checks some assumptions about the logical behavior
of that method or class. A Unit Test is almost always written using a unit-test-
ing framework. It can be written easily and runs quickly. It’s fully automated,
trustworthy, readable, and maintainable. Unit Tests are written and run by
developers as they write code. Unit Tests are typically automated as a suite to
be run on code check-in (continuous integration) and used by testers as part
of integration tests and regression tests.

Database Unit Tests

Just as unit testing plays a critical role in code development with languages
such as C# and Visual Basic, in database development T-SQL-based Unit

Chapter 2: Software Quality and Testing Over view22

Tests verify database objects during development and are also included in
integration and regression test suites.

Software Testing 23

AGILE PRACTICES
Agile practices endorse test-first development—building tests before you

code. Although unit testing and run-time analysis have become more main-

stream, many managers still have the misconception that these procedures

add unnecessary time to the schedule. In reality, schedules typically

lengthen because of the time developers have to spend debugging code

later in the lifecycle after QA or customers find problems. And defects dis-

covered later are significantly more expensive. For teams that want to reduce

risk and increase predictability, a well-formed, proactive QA approach by the

development team is a good solution.

Smoke Tests

Smoke tests are used as an acceptance test prior to introducing new changes
to the main testing process. A smoke test is usually the first test made after
modifications to provide some assurance that the system under test will not
catastrophically fail.

Exploratory Testing

Exploratory testing is a type of testing in which the tester does not have
specifically planned Test Cases, but does the testing more to explore the soft-
ware features and to discover unknown bugs. It is approached with the
intention to learn and understand the software and its features. During this
process, the tester also tries to think of all possible scenarios in which the soft-
ware may fail and a bug can be revealed. Exploratory testing is likely the only
type of testing that can help in uncovering bugs that stand more chance of
being ignored by other testing strategies.

Integration Testing

Integration testing is the process to ensure that different components of the
application work (interact with each other) together. Integration testing fits

between unit testing and system testing. It is best performed as a continuous
activity rather than waiting until the end of the development cycle and tak-
ing a big-bang approach (which never has a happy ending). You can also per-
form integration testing between your application and external applications
with which the system communicates. This is frequently a very, very difficult
task—especially if the development team has no control over the other sys-
tem. This leads to issues such as how to get the other system owner to pro-
vide testing data and a test environment. This is where testing relies more on
playing nice with other teams than on any specific methodology.

Functional Testing

Functional testing is testing performed to validate specific requirements (that
is, not the entire system at once) and is appropriate for a continuous testing
process in which each function is tested as it is completed and retested as new
functions are integrated to discover regression bugs.

Load Testing

Load testing is the process to subject the system under test to a work level
approaching the limits of its design specification. Load testing is usually per-
formed in a controlled lab environment where accurate measurements can be
taken under repeatable conditions. You can also perform load testing in the
field to obtain a qualitative assessment of system performance in the “real
world.”

Automated Testing

You can use Visual Studio 2010 Ultimate or Visual Studio 2010 Premium to
create automated tests of the user interface (UI) known as coded UI tests.
These tests provide functional testing of the UI and validation of UI controls.
Automated UI tests enable you to test that the UI is functioning correctly after
code changes. They are quicker to run than manual tests.

Chapter 2: Software Quality and Testing Over view24

Regression Testing

Regression testing is the process to test changes to software programs to
make sure that the older code still works with the new changes (for example,
bug fixes or new functionality) that have been made. Regression testing is a
normal part of the application development process. The intent of regression
testing is to ensure that a change, such as a bug fix, did not introduce new
bugs. Regression test suites are typically automated to the extent possible
including Unit Tests and integration tests but usually also include manual
tests.

System Testing

System testing is the process to test the entire system to ensure that functional
and nonfunctional requirements have been met. This testing is performed by
the development team. (Development, test, and business analysts are usually
involved in performing these tests.) It can be considered “pre-user acceptance
testing” to ensure that everything works as it should. Ideally, system testing
should be performed in an environment that closely reflects the physical
environment that the production system runs in. Lab Management, discussed
in Chapter 7, “Executing Automated Test Causes,” is ideal for this.

Acceptance Testing

Acceptance testing is a functional trial performed on a completed increment
of functional software before it is accepted and deemed ready for release to
the market or delivery to the end user. The acceptance testing process is
designed to replicate the anticipated real-life use of the product to ensure that
what the consumers or end users receive is fully functional and meets their
needs and expectations. In traditional predictive processes, this is usually at
the end of the product development cycle, whereas with agile development,
processes acceptance testing is done at the conclusion of each development
iteration. As shown in Figure 2-2, acceptance testing is the pinnacle of build-
ing quality.

Software Testing 25

Chapter 2: Software Quality and Testing Over view26

Acceptance Test Driven Development
“Begin with the end in mind.”—Stephen R. Covey

Acceptance Test Driven Development (ATDD) is a practice in which the whole

team collaboratively discusses acceptance criteria, with examples, and then

distills them into a set of concrete acceptance tests before development

begins. It’s the best way to ensure that everyone has the same shared under-

standing of what is actually being built. This practice helps to uncover

assumptions and confirm to everyone that there is a shared definition of

“Done.”

Acceptance tests are created from user stories. During an iteration the user

stories selected during the iteration planning meeting will be translated into

acceptance tests. The customer specifies scenarios to test when a user story

has been correctly implemented. A story can have one or many acceptance

tests, whatever it takes to ensure the functionality works.

Acceptance tests are black-box system tests. Each acceptance test repre-

sents some expected result from the system. Customers are responsible for

verifying the correctness of the acceptance tests and reviewing test scores to

decide which failed tests are of highest priority. Acceptance tests are also

used as regression tests prior to a production release.

A user story is not considered complete until it has passed its acceptance

tests. This means that new acceptance tests must be created each iteration

or the development team will report zero progress.

Acceptance tests should be automated so that they can be run often. The

acceptance test score is published to the team. It is the team's responsibil-

ity to schedule time for each iteration to fix any failed tests.

Acceptance Test Driven Development helps developers build high-quality

software that fulfills the business’s needs as reliably as TDD helps ensure the

software’s technical quality.

http://testobsessed.com/wp-content/uploads/2008/12/atddexample.pdf

http://controlchaos.squarespace.com/storage/scrum-articles/

Acceptance%20Test%20Driven%20Development.pdf

http://testingguidance.codeplex.com

Figure 2-2: Building quality to completion

Test Management
You can’t test everything. Accept it, understand it, and move on—but don’t
forget it. To prove the point, understand that testing everything means test-
ing every possible input that an application could possibly accept. Use this
small definition of everything, and you can quickly understand that even a
simple application such as a calculator would take a lifetime and then some
to test. Starting from this point gives you the basis for formulating your test
plans and using the appropriate testing methodologies to meet your needs.

For 99.9% of the applications in the world, you cannot make them bug
free. You cannot find all of the bugs; but hopefully you can find the majority
of them. At a certain point in time, the law of diminishing returns applies, and
beyond a certain point, the time and effort you spend to find and remove
bugs becomes too expensive to be practical. This should also guide your phi-
losophy in choosing a testing strategy.

After the Product Is Shipped or Deployed
Quality and testing continue after the product or application is placed into
service. Operational downtime caused by reliability or performance problems
can incur opportunity costs if customers cannot access your system or the
business cannot do its work. Operations monitoring, help-desk bug logging
and tracking, and user feedback must be communicated back to development

Software Testing 27

Acceptance
Testing

Integration and
Functional Testing

Unit Testing

and reviewed on a regular and frequent basis. Frequent inspection and adop-
tion is a key element of agility, staying in tune with your customers and con-
tinuously improving quality.

SUMMARY

In this chapter, you went through a quick synopsis of the fundamentals of
software quality and testing. The chapter taught you that software quality is
a team effort and an integral part of the software development lifecycle from
beginning to end. As part of that team effort, everyone must understand and
agree to a comprehensive definition of “done.” Defects found and corrected
early are significantly less expensive than those not found until released into
production. You saw the importance of “The Testing Mindset” and explored
many of the types of tests commonly used in software testing. In the next
chapter you start planning your testing process. Chapter 3, “Planning Your
Testing,” covers Test Plan components, how to create them, and how to
manage them.

Chapter 2: Software Quality and Testing Over view28

3
Planning Your Testing

T O B E G I N, Y O U N E E D A P L A N . The plan does not need to be 500 pages of
documentation or a massive Gantt chart. This chapter covers how to cre-

ate a Test Plan with Microsoft Test Manager (MTM) and the various options
that the Test Plan provides to you. More important, this chapter covers what
to test and how to get involved as a tester early in the development process.
In addition, Microsoft provides a little-used Test Plan Word template that can
help answer some questions about the testing process up front.

Another key item covered here is how to plan and test for multiple itera-
tions. Can you reuse your Test Cases, and does it make sense to do that?
Many items come into play when planning the testing for an entire release
versus a single iteration. By the end of this chapter, you will know how to use
the Plan tab of MTM, create new plans, and create a framework for testers to
work in for a given period of time.

As mentioned in Chapter 1, “State of Testing,” testers should be involved,
ideally, during the requirements gathering process. In a waterfall cycle this
is during the Analysis phase. In an agile cycle this is during the period of time
in which the business analyst or product owner fills in the details for items on
the Product Backlog but before introducing the item into an Iteration Backlog.
This chapter covers what the testers’ responsibilities should be and what they
can do to help reduce the potential for bugs to be introduced into the
software.

29

Microsoft Test Manager

Microsoft provides a separate tool for testers: Microsoft Test Manager (MTM)
where you can create Test Plans and add and update Test Cases and where
manual and automated tests are executed from. Before getting into the details
of creating Test Plans, you need to understand how to navigate within MTM.
Figure 3-1 shows the navigation controls.

Chapter 3: Planning Your Testing30

TEST APPROACH
When starting any testing endeavor, you need an approach to the process.

Consider what is acceptable, what are the criteria for release, how you can

perform each type of test, and other information that forms the framework of

the approach. If you use the MSF for Agile v5.0 process template, there is a

Test Approach Word template located in the sample documents on the

SharePoint site. (The path to the document is Documents/Samples and

Templates/Test/Document Template - Test Approach.dotx.) You can also find

a sample document showing how the Test Approach looks when filled out.

Navigation

Pages in this Tab

Add/Change Test Plan

Create New Work Item Jump to
Open Pages

Add/Change Test Plan

Current Center

Tabs in this Center

Figure 3-1: MTM navigation controls

MTM is organized into Centers, Tabs, and Pages, as shown in Figure 3-2.

Figure 3-2: Microsoft Test Manager navigation layout

Table 3-1 briefly describes each section. These pages and the options they
enable are described throughout the book.
Table 3-1: MTM Pages Described

Microsoft Test Manager 31

Contents

Properties

Plan

Run Tests

Analyze Bugs

Test

Queries

Assign Build

Track

Test Plan
Manager

Test Configuration
Manager

Analyze Test
Runs

Recommended
Tests

Test Case
Manager

Project Portal
Shared Steps

Manager

Organize
Te

st
ng

 C
en

te
r

Environments

Lab

Test Setting
Managers

Test Settings

Environments

Virtual Machines
and Templates

Library

Test Controller
Manager

Controllers

La
b

C
en

te
r

Test Plan Summary

Test Run Summary

Documentation

To
o

s

Center Tab Page Description

Testing Plan Contents Contains the settings for the
given Test Plan including manual
and automated test settings, test
configurations, and the build in
use

Properties Contains the suites and Test
Cases that need testing for the
selected plan

Table 3-1: Continued

Chapter 3: Planning Your Testing32

Center Tab Page Description

Test Run Tests Main page for executing test runs

Verify Bugs Contains bugs that have been
resolved that the tester can
quickly get to and verify

Analyze Test Runs Shows all test runs (manual and
automated) but used mainly to
view an automated test run and
take appropriate actions based on
the outcome of the test runs

Track Queries Same as in Team Explorer; it
enables you to execute stored
work item queries or create new
queries

Assign Build Enables a tester to assign an auto-
mated build to the Test Plan

Recommended Shows the list of all tests that have
Tests been impacted by a code change

Project Portal Provides a quick link to the proj-
ect portal (opens a web browser)

Organize Test Plan Manager Lists all the Test Plans in the cur-
rent Team Project

Test Configuration Lists all test configurations
Manager

Test Case Manager Lists all Test Cases in the current
Team Project

Shared Steps Lists all the shared steps (reusable
Manager test steps) in the current Team

Project

Lab Lab Environments Contains all the physical and vir-
tual environments ready for test-
ing purposes

Microsoft Test Manager 33

Center Tab Page Description

Test Settings Test Settings Contains all manual and auto-
Manager mated test settings

Library Environments Lists all the environments
prepped for use in testing, includ-
ing environments that have been
deployed

Virtual Machines Contains all the virtual machines
and Templates available to be composed into a

test environment

Controllers Test Controller Contains a list of all test
Manager controllers and all agents associ-

ated with those controllers

Tools Documentation Test Plan Summary Generates a document with the
selected Test Plans, associated
Test Suites, Test Cases, Test Steps
and related work items

Test Run Summary Generates a document with the
results of the selected test runs

TEST SCRIBE AND THE TOOLS CENTER
The Tools Center does not exist when you first install MTM. After the release

of Visual Studio 2010, Microsoft released a Test Scribe tool (available at

http://visualstudiogallery.msdn.microsoft.com/en-us/e79e4a0f-f670-47c2-

9b8a-3b6f664bf4ae.) (Or you can Bing "Test Scribe Visual Studio Gallery,"

and this link will be the first one.)

This addition is critically important to most organizations and should be in-

stalled immediately after installing MTM. The documentation it generates

can be provided to users or external testers and serves as an excellent,

detailed document showing the tests and test runs.

When you first start MTM, you will be asked to connect to a server
(Figure 3-3), select a Team Project (Figure 3-4), and then select a Test Plan
(Figure 3-5).

Chapter 3: Planning Your Testing34

Figure 3-3: Connect to a Team Foundation Server

Figure 3-4: Connect to Your Team Project

Figure 3-5: Select or add a Test Plan

Note the Copy URL for the plan option in Figure 3-5. MTM enables you
to provide URLs to specific plans, so you can send the URL to someone who
can then click it and have MTM open to the right plan. Only Active plans
show up in this dialog. You can view all plans (Active and Closed) from the
Testing Center, Organize Tab, Test Plan Manager page.

MTM enables you to work in one Team Project and only one Plan in that
Team Project at a time, although you can change plans and projects as
needed. After doing this the first time, MTM remembers your last selection,
so MTM can open to the last selected Plan.

Microsoft Test Manager 35

Before starting the exercises, see the section "About the Application Used in

This Book" in the front matter. These exercises assume that you have fol-

lowed the steps in that section.

Test Plans
Before using the testing tools, you need to understand where all the various
artifacts fit together because it matters when you start to manage an actual
project. Figure 3-6 shows a container view of the artifacts.

Chapter 3: Planning Your Testing36

Team Project

Work Items Source Code

Test Suite(s)

Requirement based Query-based Static

Test Plan(s)

Start and End Dates Run Settings

Test Case(s)

Test Steps Test Data

Figure 3-6: Relationships between Team Projects, Test Plans, Test Suites, and Test
Cases

Figure 3-6 shows that a Test Plan in MTM is associated with a specific
Team Project. A Test Plan is composed of one or more Test Suites, and each
Test Suite is composed of one or more Test Cases. This is a straightforward
structure that enables flexible reporting and easy management of the Test
Plans.

E X E R C I S E 3 - 1

Create a New Test Plan
This step assumes that you have not used MTM before. If you have, but you
want to work through this exercise, you need to select the Home button in the
upper-left corner of the screen and select Change Project:

1. Open MTM.

2. Select Add Server, or select an existing server if the correct server is
listed.

3. Select the BlogEngine.NET project, and click Connect Now.

4. On the Testing Center screen, click Add to create a new Test Plan.

5. Enter the name as Iteration 1 and click Add.

6. Highlight the Plan, and click Select Plan.

Figure 3-7 shows the Iteration 1 Test Plan.

Test Plans 37

Figure 3-7: Test Plan

Properties
Test Plans have a name and a description, and if you use multiple Test Plans
concurrently, you need to give them a descriptive name and also a more
detailed description. The owner is usually the test manager but can also be a
test lead if a lead is responsible for the testing that occurs within a plan. The
state can either be Active or Inactive depending on whether it is currently
used, and this is not customizable. Inactive Test Plans can either be previ-
ously completed Test Plans or Test Plans that have yet to be started and are
still being created. The default state for new Test Plans is Active, but you
might want to set the plan to Inactive if it is still being designed.

The area and iteration are the standard work item classification scheme. In
general Test Plans should be related to iterations in some way (or whatever
scheme the development team uses to produce software) because the testing
follows the requirements or the coding, which are distinct phases in any
methodology whether they are called out.

Test Plans are not work items such as a requirement, user story, or task.
They are independent of the work item system. This is both a benefit and a
disadvantage. The benefits are in the flexibility: the Test Plan contains more
information and is more dynamic than a work item. On the other hand, items
such as the Start and End date cannot be reported through a simple mecha-
nism. You need to use the data warehouse (refer to Chapter 9, “Reporting and
Metrics”) to report on Test Plans.

Run Settings

Run settings define where tests execute and what diagnostic data adapters
are implemented. Figure 3-7 shows the two categories of Run settings: Man-
ual and Automated. Manual Run settings relate to any tests executed with the
Test Runner (refer to Chapter 4, “Executing Manual Tests”). Automated Run
settings relate to the execution of any automated tests (refer to Chapter 6,
“Automating Test Cases”) through MTM.

Chapter 3: Planning Your Testing38

To create a new Run setting, go to the Lab Center, Test Settings tab, Test
Settings Manager page, and copy an existing setting or add a new setting.
These can then be assigned in the Test Plan Properties page. Figure 3-8 shows
the Test Settings creation screen.

Test Plans 39

CHANGE THE TEST SETTINGS IMMEDIATELY
When the test settings are set to <Default> you have no control over them.

You cannot set any diagnostic data adapters to run specifically or any other

options associated with manual or automated runs. For the manual settings,

simply select the drop-down list, and pick Local Test Run, or create a new test

setting and change the properties as needed.

Figure 3-8: Test settings

Depending on whether you create an automated or manual setting, the
options will be slightly different. Figure 3-8 shows a manual test setting on
the Data and Diagnostics tab that contains the diagnostic data adapters. Table
3-2 lists the default diagnostic data adapters you can choose.

Table 3-2: Default Diagnostic Data Adapters

Chapter 3: Planning Your Testing40

Collector Description

Action Recording and Records each step that the tester takes in the application
Action Log during a manual test run.

ASP.NET Client Proxy Enables you to capture IntelliTrace and Test Impact
for IntelliTrace and information during a test execution of an ASP.NET
Test Impact application. Note: This setting does not actually per-

form the capture; you must check the IntelliTrace
and/or Test Impact collectors in addition to this
collector.

Event Log Captures selected events written to the Event Log dur-
ing a test run.

IntelliTrace Enables capturing of the debug log.

Network Emulation Throttles the network performance based on the speci-
fied settings.

System Information Captures system configuration information for the sys-
tem on which the test is performed.

Test Impact Records Test Impact information for calculating Test
Cases affected by modified code.

Video Recorder Records a video of all actions taken on the screen dur-
ing a test run.

Diagnostic data adapters enable the test infrastructure to gather data—
any particular piece of data you want. They are fully extensible and easy to
create and modify (literally 20 lines of code plus whatever code is needed to
collect data).

Builds
If you aren’t using automated builds right now, you should be. Automated
builds are one of the most effective ways to reduce the amount of time it takes
to find and fix bugs. These automated builds can be Continuous Integration
builds (the process of running a build immediately upon check-in to deter-
mine if the check-in broke anything) or nightly builds, and they can discover

build breaks faster and with fewer lines of code to review to find the problem.
They are also critical to manual testing; although not required for automated
testing, they will certainly make things easier.

Builds enable you to specify which build you can execute the tests against.
After you select a build to execute the Test Cases against, MTM provides you
with information related to the build. Automated builds help light up the Test
Impact Analysis results and provide the testing team with a list of all changes
made to the code since the build they were previously using.

The build filter enables you to filter by build definition and build quality.
Chapter 5, “Resolving Bugs,” discusses build quality.

Configurations
On one hand configurations play an important part in test execution, and on
the other hand they provide only metadata. Configurations enable you to
specify various pieces of information about the tests you execute in the Test
Plan. They also have a material effect on the number of tests that you need
to execute and how you plan your Test Suites. For example, the default set-
ting in MTM is Windows 7 and IE 8. If you have a Test Suite with 20 Test
Cases, you need to execute 20 Test Cases. For every configuration that you
add to a suite, all the tests need to be executed against the additional config-
urations as well. (By default, but you can change this.) So, if you have three
configurations that you need to test against, you need to run 60 tests. The
effect of configuration on testing and reporting are discussed in the “Assign-
ing Test Configurations” section later in this chapter.

Test Plans 41

Obviously, you do not have to execute any Test Cases you don’t want to, and

in many cases you can't execute every Test Case because of the time avail-

able to you.

The “Test Configurations” section covers Test Configuration details.

Test Plan Status

This section provides status on the current Test Plan. The first pie chart lists
the total number of tests broken down by successful tests, failed tests, and
tests that have not yet been executed. The Failures by Type pie chart breaks
down the categories of each failure. Table 3-3 shows the available categories.
Table 3-3: Failure Categories

Chapter 3: Planning Your Testing42

Category Description

None Use if the test failure is a nonissue.

Regression Where the previous test results indicate a pass.

New issue Has not been seen before.

Known issue Possibly because a previous run found this bug or the devel-
opment team has notified the testing team that the build is
ready to test, but it knows about this particular failure.

Unknown An error occurred, but the tester is not sure what the classifica-
tion of the issue is. A test lead or manager should look further
at Unknown issues.

You can also provide a category for a failure type before or after it has
been fixed, but leave this empty until the defect has been fixed. Table 3-4 lists
the analysis categories.
Table 3-4: Analysis Categories (Also Called Resolution Type)

Category Description

None No resolution at this time.

Needs investigation The test team has decided to do a further investigation
because it isn’t sure of the cause.

Test issue Usually set if the Test Case were at fault or the setup for
the test were incorrect. This might be cause for concern
because if a Test Case is wrong, the requirement it is
based on might also have potential inaccuracies that need
to be investigated.

Product issue A valid failure occurred in the code.

Configuration issue Usually a failure in the configuration files or on the
machine on which the test was deployed.

These graphs are updated as changes are made to the Test Plan and as test
runs are completed and analyzed. (For performance reasons you might need
to click the Refresh button to see the latest data.) This is a great view that
quickly enables a testing team to see the progress of its testing within a given
plan (as shown at the bottom of Figure 3-7).

Contents
The Contents portion of a Test Plan contains information on what will be
tested; that is, it contains a list of all the Test Cases broken down into Test
Suites. Figure 3-9 shows the Contents page of the Plan tab.

Test Plans 43

FAILURE AND RESOLUTION EXTENSIBILITY
You can customize the Resolution type through the process template or the

object model; however, you cannot customize the Failure type. (It looks like

you can do it by editing the process template, but it does not actually work

because of technical reasons.)

Figure 3-9: Test Plan contents

Refer to Figure 3-3 for the relationships between items. Test Suites can be
composed in three ways: requirement-based, query-based, or customized
with a static suite, and there are good uses for each of the three. The type of
Test Suite is differentiated by icons next to the suite name (see Figure 3-10).

Chapter 3: Planning Your Testing44

Requirements-based Suite

Static Suite

Static Suite

Remove Suite

Copy Test Suites
from another Plan

Add New Static or
Query-based Suite

Add Requirements-based Suite

Figure 3-10: Test Suites

Requirements-Based Suites

For most teams developing line-of-business applications, the entire applica-
tion is based around completing requirements; therefore, it makes sense that
testers should test in relationship to the requirements that the developers fin-
ish. In other words, testers can rarely perform testing on partially completed
requirements. They also can’t perform testing on random pieces of the appli-
cation because, in general, functional and integration testing relies on com-
plete features. Even performing boundary tests must be done in the context
of a requirement.

And, for the most part, customers want to know the status of their
requirements. Are they close to completion? Did they pass their tests? How
many bugs does a given requirement have? This is true regardless of what
type of methodology you use. Grouping suites by requirement makes it
extremely easy to report this information back to the customer.

To create requirements-based suites, simply select a static suite (the root
node or another static suite) and click Add Requirements; then choose one
or more requirements. Each requirement becomes its own suite. Any Test
Cases already associated with the requirement are automatically added to
the suite.

Query-Based Suites

These are suites created based on the results of a work item query. An exam-
ple of why you might want to create a suite of this type is the need to test a
specific area of your application that might be involved in different func-
tionality. Using the requirement-based suite, you could not do this. Another
reason for this type of suite can be the need to test all the bug fixes regard-
less of what requirement they are related to. The query-based suite simply
provides you with more flexibility in selecting what you test and also enables
you to run Test Cases from multiple Team Projects or requirements at the
same time.

When creating this type of suite, you are limited to the results of the query,
and the query specifies that you can query only work items in the Test Case
category. So a query-based suite is specific to Test Cases. Because this type of
suite is based on the results of a query, if the results of that query change, so
will your Test Suite. Use this suite for short-term suites or suites where you
don’t mind them changing. An example of where this is effective is auto-
mated regression testing. You can create a query where Automation Status =
Yes; when you execute the suite, all the automated tests execute.

Test Plans 45

REQUIREMENTS AND WORK ITEM TYPES
Whether you use the MSF for Agile or CMMI templates, you have a require-

ment work item type. For the CMMI template, it is a Requirement, and for the

Agile template it is a User Story. What determines a requirement from the

perspective of a requirements-based suite is the category that the require-

ment is in. Categories are new to TFS 2010 and are a classification scheme for

work item types. MTM operates on the requirement, Test Case, and bug cate-

gories. The reason it operates on categories is so that you can create a cus-

tom work item type, for example, called a Use Case that also appears in MTM

if it is in the requirement category. In addition, you can create a Defect work

item type that generates when you file a bug.

Static Suites

A static suite is a fully custom suite; you provide the title of the suite and then
add Test Cases as needed. One benefit of a static suite is that you can nest
suites. This is not possible with the other two suite types. The reasons to use
this type of suite can vary; however, an example of this might include final
application testing where you might have time to only test requirements from
various areas and iterations, and you want to break those up into subsuites so
that you can roll the results up. In MTM when you select the New drop-down
to add a new suite, the only two options you see are Suite and Query-Based
Suite. The Suite option is the static suite.

Adding Suites and Test Cases to Your Plan
The mechanics of using the Contents window are fairly straightforward but
offer a lot of options to help you control what happens when testers begin
testing. The list of Test Suites is on the left side. Figure 3-6 shows a series of
Test Suites starting with the Root Test Suite that is always the name of the Test
Plan (Iteration 1 here). The Root Test Suite is a static suite, so you can add Test
Cases directly to the root. Icons that have a red check on them are require-
ments-based suites. Another way to know this is to look above the list of Test
Cases in the right pane; you can click the Requirement 1 link to open the
requirement that these Test Cases relate to.

The Automated Regression Tests Suite in Figure 3-6 is a query-based suite,
which you can tell by looking at the icon. The last suite listed, Custom, is a
static suite with a Future Work subsuite that enables you to easily compose
and manage your Test Suites.

You can change the default configuration for all the Test Cases here, or you
can change the configuration for only individual tests. (This is not recom-
mended because it can be difficult to keep track of which test is supposed to
be run on which configuration.) You can change who the Test Cases are
assigned to—either individually by selecting a Test Case and clicking the
Assign button or by right-clicking the Test Suite on the left and selecting
Assign Testers for All Tests (or any combination of testers to Test Cases).

In addition notice where it says State: In Progress in the upper-right cor-
ner. You can set the state to be one of three states: In Planning, In Progress,

Chapter 3: Planning Your Testing46

or Completed. In Progress is the default, and tests in a Test Suite that is In
Progress may be executed. A Test Suite that is In Planning will not show up
on the Test tab, so those tests cannot be executed. The same is also true for
Completed suites.

You can also change the columns displayed for the Test Cases by right-
clicking the column headers. You can filter certain columns (any column with
a discrete list) to limit what displays. (For example, you can filter the Prior-
ity column in the default list of columns.)

Finally, you have the option to open a Test Case that has been added to a
suite, add Test Cases that already exist in the suite, or create new Test Cases
from within MTM. Any Test Cases you create or add are automatically linked
with the requirement (or user story) if the suite is a requirements-based suite
with a Tested By link type. The opposite is also true; if you remove a Test Case
from a requirements-based suite, the Test Case is no longer in a relationship
with the requirement. (The Tests/Tested By link is deleted, but the Test Case
is not deleted.)

E X E R C I S E 3 - 2

Create a Test Suite
This exercise assumes that you have completed Exercise 3-1.

1. Open MTM, if it’s not already open.

2. Select Testing Center, Test Plan, Contents tab.

3. Select the Iteration 1 suite, which is the root suite and the only one that
exists at this point.

4. Click Add Requirements from the toolbar for the suite name.

5. In the Add Existing Requirements to This Plan page, click Run (see
Figure 3-11).

6. Select the requirement As the Blog Author I Want to be Able to Log
onto the Blog Engine, and click Add Requirements to Plan in the
lower-right corner.

Test Plans 47

Figure 3-11: Add Existing Requirements to This Test Plan page

Testing Configurations

Testing configurations are configurable and can have an impact on the num-
ber of tests that need to be executed (mentioned previously). Test configura-
tions specify any particular piece of information needed to ensure that your
software is tested against all possible configuration options users could have
on their machine.

Chapter 3: Planning Your Testing48

As of this release, test configurations are strictly metadata. That is, they do

not have any impact on the test runs and cannot be used to specify the hard-

ware or software a particular test is actually executed against.

The most typical example is using different browsers to ensure the ren-
dering works correctly. Added to that may be the operating system those
browsers run on. The two default configuration options are Operating Sys-
tem and Browser; to this you can add other things such as a Silverlight ver-
sion or a particular piece of hardware, such as a webcam.

The biggest benefit to using test configurations is reporting results. All
your test results can be broken down into configurations. In addition you
have to write the Test Cases only one time, but this presents other issues, such
as that the actions you take on one configuration may not be valid on another
configuration. In some cases the differences may be so great it doesn’t make
sense to use the same Test Case. Consider these items when deciding on how
to use test configurations.

Managing Test Configurations
You can access the Test Configuration Manager in two ways. The first is to
go to Testing Center, Plan, Properties and select the drop-down arrow next
to the configuration; then click Manage. The easier way is to go to Testing
Center, Organize, Test Configuration Manager. This brings up the screen
shown in Figure 3-12.

Testing Configurations 49

Figure 3-12: Test Configuration Manager

The Manage Configuration Variables option enables to you create new
configuration categories. You can also add new values to an existing config-
uration variable.

E X E R C I S E 3 - 3

Adding a New Configuration Variable
To add a new configuration variable, follow these steps:

1. Click Manage Configuration Variables.

2. Click New Configuration Variable.

3. Enter Silverlight Version for the name.

4. Enter Default Silverlight Versions for the description.

5. In Allowed Values, enter the following (shown in Figure 3-13): 1, 2, 3,
and 4.

6. Click Save Configuration Variables.

Chapter 3: Planning Your Testing50

Figure 3-13: Silverlight Version Configuration Variable

The variables themselves cannot be used directly. You need to create an
actual configuration composed of one or more configuration variables.

E X E R C I S E 3 - 4

Create a New Test Configuration
To create a new test configuration, follow these steps:

1. Click New from the Test Configuration Manager.

2. Enter the Name as Vista, IE7, and Silverlight 2.

3. (Optional) Enter an appropriate description.

4. Select the Add button, and notice that you can add configuration vari-
ables from the three existing categories. You can add only one variable
from each category in a given configuration.

5. Click Operating System, and select Vista for the value.

6. Click Add, Browser, and select Internet Explorer 7.0 for the value.

7. Click Add, Silverlight Version, and select 2 for the value.

8. Click Save and Close.

You now have a new test configuration that can be assigned to plans. You
can also delete test configurations if they are not being used or have not been
used by previous Test Plans. If you try to delete a test configuration that is in
use, you are prompted to set it to Inactive instead.

Assigning Test Configurations
To assign configurations to Test Cases, you have a few options. The first is to
go to the Properties page of the plan and change the configuration. This can
instantly apply the changes to all Test Cases contained within the plan and
any Test Cases you add to the plan at a later date. The next option is to change
the Default configurations from the Plan Contents tab (see Figure 3-9 just
below the Test Suite name in the Test Suite Details pane). To make a change
here, uncheck the Use Configurations from Parent Test Suite option, and
check any additional test configurations you want to include. Changes you
make here apply to the individual suite and any suites contained in the cur-
rently selected suite. For example, looking at Figure 3-9, if you select the Iter-
ation 1 node and change the default configurations, the new set of
configurations apply to all Test Suites in Iteration 1. If, however, you change

Testing Configurations 51

the default configurations at Test Suite 1 (log onto the blog engine) the change
applies only to this suite. Changing the configuration here is not automati-
cally reflected on the Test tab. To illustrate this, after making one of the pre-
vious changes, select the Test tab; notice the same number of tests to be run as
there are Test Cases. You see how to change this in a minute.

Another option is to assign test configurations at the suite level for exist-
ing Test Cases. To do this, right-click the suite in the left pane of the Contents
tab, and choose Select Test Configurations for all Tests. This shows the screen
in Figure 3-14.

One option available to you is the Reset Defaults option. If you have pre-
viously changed the default configuration at the Suite level and want to
apply it to all existing Test Cases, selecting the Reset Defaults button will do
this for you. (As shown in Figure 3-14, pressing this button automatically
selects both configurations for all tests listed.)

Chapter 3: Planning Your Testing52

Figure 3-14: Assign test configurations to specific tests

After assigning one or more Test Cases to different configurations and
applying the changes, you return to the Plan Contents page. The one appar-
ent difference is the configurations column now has a value greater than 1.
This column notes how many configurations are assigned to a given Test

Case; you might see the Tester for a Test Case listed as Multiple. (You revisit
this when assigning testers to Test Cases is discussed.) You see the changes
when you select the Test tab. You can execute two more tests than there are
Test Cases; these additional tests have different configurations, as shown in
Figure 3-15.

Assigning Testers 53

Figure 3-15: Testing multiple configurations

An additional option for setting test configurations is to select one or more
tests and click the Configurations button. This enables you to set configura-
tions just for the specific tests selected.

So far you have seen how to set test configurations for a plan. Options can
be set at the Plan, Suite, and Test Case level, and generally they cascade
down. The next step is to assign and manage testers in the context of the plan.

Assigning Testers

As with the test configurations, you can assign testers in a number of ways.
The first and most obvious way (and certainly the easiest to report on) is to
simply assign the Test Case work item to a tester. That person is then the
“tester” of record. There are numerous scenarios in which the person who

writes the Test Case does not also execute it. There are also scenarios in which
the Test Case, as previously mentioned, is executed on different configura-
tions, and different testers work those different configurations.

To assign a tester to a Test Case, you work at the suite or Test Case level.
The screen for both is the same; the only difference is which testers show up.
Right-click the Test Suite or the Test Case, and click Assign Testers for
Selected Tests or Assign Testers for All Tests, or click the Assign button in the
Suite Details pane. This brings you to the page shown in Figure 3-16.

Chapter 3: Planning Your Testing54

Figure 3-16: Assigning testers to Test Cases

You can select individual testers for each Test Case and configuration
either one at a time or in bulk. To assign testers in bulk, select the Test Cases
you want to assign (using the Control or Shift keys) and change the assign-
ment for any Test Case. This change will be duplicated to all selected Test
Cases. At this point some Test Cases on the Planning tab show Multiple in the
Testers column. Remember that the Plan tab has a distinct list of Test Cases,
but because different testers are assigned for different configurations, MTM
aggregates all the testers assigned to a Test Case as Multiple. You can see the
individual testers on the Test tab.

Test Case Planning Workflow

Now that you have seen the Plan tab in MTM, it’s time to talk about usabil-
ity. How do you use it to manage the testing workflow? What are the conse-
quences of managing it in any particular way? How does the usage of it
translate into reporting? Before jumping into the planning, take a look at a
rough overall software development process. This process, shown in Figure
3-17, is not specific to any methodology.

Test Case Planning Workflow 55

Validate and
File Bugs

R
el

ea
seValidate and

File Bugs

U
se

r A
cc

ep
ta

nc
e

Te
st

in
gExecute

Test Cases

Validate and
File Bugs

C
on

st
ru

ct
io

nUpdate Test
CasesD

es
ig

nWrite Initial
Test Cases

A
na

ly
si

s

Figure 3-17: Basic development process with a focus on testing

What Is Presented Versus What You Should Do
It is logically impossible to present scenarios that cover every situation.

Because of that much of what is presented is generalized, but some strong

opinions are presented about what should be done regardless of the method-

ology used. Please be skeptical! What is presented here may not apply to

your particular situation. There are many situations in which conventional

wisdom must be discarded. In addition, theory and reality don’t go together

particularly well—which is why theory is discussed but is always balanced

with practicality—such as with some of the advice you are about to get on

creating Test Plans.

What should be obvious is that the basic steps you need to take are the same—

regardless of whether you work in an agile or waterfall methodology. Someone

needs to gather requirements; someone needs to write Test Cases; and someone

needs to execute Test Cases. For example, using Test Driven Development is not

enough to ensure the application meets the needs of the user, so even in TDD

functional testing needs to be performed. However, the way in which it is per-

formed and the emphasis placed on functional testing can vary widely. So pick

and choose those practices that make sense for your organization.

Figure 3-17 presents a basic development process in which the testers
come into play—and roughly when they come into play in an ideal model.
The three phases of the development lifecycle where testers work are initial
design and construction, testing, and maintenance.

Chapter 3: Planning Your Testing56

PHASES IN AGILE
In an agile methodology, the analysis, design, construction, and testing can

be tightly compressed and not visible as distinct phases. This is an important

consideration to determine what works best for you. In Figure 3-17 testing

is not presented as a distinct phase because it should be occurring hand-in-

hand with development.

Analysis and Initial Design
During the initial design (for those plans created that deal with the analysis
and design phase) the Test Plans look radically different than after the testing
team can actually perform tests. Tests in these phases are created to validate
the analysis and design of the application. Tests turn a subjective requirement
into an objective understanding of what the customer wants.

This is a common practice. Formal specification languages—one of the
best known is “Z”—enable you to precisely state requirements. (You can find
more information on Z at http://formalmethods.wikia.com/wiki/Z.)

Specifications written in a formal modeling language follow strict math-
ematical theory that does not, in general, enable ambiguity. However, read-
ing Z or other formal languages can be difficult. A well-constructed Test Case
may not meet the rigor of a formal modeling language but can provide
roughly the same benefits in an easy-to-read form in much less time. A good
Test Case is one with little or (ideally) no ambiguity and provides the same
result for every run.

GOOD TEST CASES
One definition for a good Test Case is that it is likely to find bugs.

Goal

The goal of Test Cases in the initial design phase is simple: Objectify and
thereby validate the requirements. The following is a relatively simple, often-
used example. Take a requirement that states the following: Visitors should
comment on a blog post. This is a straightforward requirement—or is it?
Remember that you are now looking at this requirement from the perspective
of testability. You don’t necessarily need to come up with all possible tests
(virtually impossible in any small system and absolutely impossible in any
large system) but you need to make sure that the requirement is testable. For
a requirement to be testable, it cannot be ambiguous because if it is ambigu-
ous, it is not repeatable. Before examining the details, look at Table 3-5, which
is a use case that documents this requirement in more detail.

Test Case Planning Workflow 57

REQUIREMENT STATEMENTS VERSUS REQUIREMENT
DETAILS
It is acceptable to get a requirements statement like the one just given.

These are supposed to be high-level statements that provide a container

for users to narrow down their requirements. The details need to be

unambiguous.

Table 3-5: “As a Visitor” Requirement Use Case

ID BE-1-1

Title Visitors should comment on a blog post.

Description Visitors should comment on blog posts. The visitors do not
need to be registered to comment on posts but can comment
only on blog posts that permit comments.

Actors User (not logged on), Logged on User, System.

Preconditions A blog post must have been published.

Post-Conditions A blog post has a comment attached to it and displayed when
the blog post is viewed.

Table 3-5: Continued

Chapter 3: Planning Your Testing58

ID BE-1-1

Normal Path 1. User navigates to the blog site.

2. User selects a blog post.

3. System displays the blog post and all associated comments.

4. User elects to add a comment.

5. System provides a comment entry display.

6. User adds and saves the comment.

7. System displays the comment at the end of the list of exist-
ing comments.

Alternative Path [ID BE-1-1a: User is logged on]

[Branch after step 1]

1a. User logs onto the site. (User becomes a Logged on User.)

[Resume at step 2.]

5a. System prefills fields with the Logged on User’s profile
information.

[Resume at step 6.]

[ID BE-1-1b: User has visited the site before.]

[Branch after step 5.]

5a. System prefills all information from previously set cookie
(as long as the cookie has not expired).

[Resume at step 6.]

This use case raises a number of questions. First, what is the order of
precedence when pulling cookie information or profile information? In other
words, what if a user has logged onto the system before and made a comment
(and thereby had the cookie set) and another user who has never made a
comment before is using the system? Does the system clear the information?
Does it use the cookie information? What about when a user logs onto the
blog engine (from the same machine) after a nonlogged-on user has made a
comment? Which information do you use? “Can a blog poster comment on
his own post?” That’s another good question that isn’t answered by the use
case.

These questions seem minor, and this is a small example, but these can
lead to questions that, unanswered, can cause bugs. It also makes it difficult
for developers to say they got it right. Testers have to ask these questions to
create good Test Cases. Other ambiguous items show up here as well—what
information is needed to create a comment? Do I just need the comment, or
do I need to provide an e-mail address? What information is actually in the
user profile, and just because it is there, do I use it to fill in whatever fields are
available? These questions are more important because there is a data model
issue here. These fields must be saved someplace, so you must know some-
thing about them; otherwise, you may end up having to rewrite the data
access code to pull data from a different place.

Having seen this use case, you can roughly infer that there are three “sub”
requirements:

• A visitor can add a comment to a blog post.

• Logged-on users can add a comment to a blog post, and their informa-
tion should be prefilled from their profile.

• If users previously made a comment, their information should be pre-
filled from the cookie.

Now look at a simple Test Case to validate the requirement (see Table 3-6).

Test Case Planning Workflow 59

Table 3-6: Simple Test Case

Chapter 3: Planning Your Testing60

Action Expected Result

Navigate to the blog engine BlogEngine.NET welcome page displays, and
website. you are not logged in.

Click a blog post. The post detail page displays with the post and
all comments listed below it.

Click the Comment link. The page displays places to enter your name, e-
mail address, website, and nationality.

Enter the name Joe.

Enter the e-mail address
as joe@nowhere.com.

Enter the comment as Test The comment displays above all the existing
Comment and click Save comments and below the blog post.
Comment.

This simple Test Case follows the normal path. It also identifies a few
details you didn’t have before; the user can supply the name, e-mail address,
website, and nationality. Now, it doesn’t specifically say the fields are
required, but it enables users to understand that this is what the developer
is coding to, and if they want additional fields, they can ask for them. This
Test Case does enable room for ambiguity—what blog engine website?
Which post should they click? What information displays in addition to the
comment? However, during the analysis phase you may not have anything
concrete to latch onto or need that level of information.

The important piece here is that the user now knows exactly what to
expect. This is good enough for the analysis phase. The user can say, “If this
Test Case passes, the system does what I want it to do.” So, at the end of the
analysis and design phases, you may have a series of Test Cases marked as
either In Design (the initial state of a Test Case work item type) that played
a part in validating the requirements, or you may choose to change the state
to Ready to indicate it is done and the users have validated the Test Case(s)
against the requirement. Mostly, this will be a choice of how you want to
report on these during the analysis and design phase. However, you should

probably opt to leave the Test Cases in the In Design state so that you will
almost always have to do minor updates after the functionality is built and
ready for testing. This may include adding or removing steps and putting in
concrete controls (such as Select Your Nationality From the Drop Down List
as opposed to the preceding scenario in which the Test Case specified that
places were merely provided for you to enter your nationality; now the con-
trol type is known). In general, a Test Case that is Ready is in a final form that
can be executed.

Test Case Planning Workflow 61

CUSTOMIZING WORK ITEMS
Because of how flexible the work item system is, it is easy to add additional

states, which is another option available to you. In general, adding addi-

tional states will not break the reports, but the reports need to be updated

to see the new states.

However, this does bring up another point: Test Cases and iterations. Use
the following: Iteration 1 is the analysis iteration and as such no testing will
be done on this iteration, but Test Cases will be written. It is perfectly accept-
able to mark Test Cases in Iteration 1 as Ready when they are completed by
the standards of Iteration 1.

Then, when you begin Iteration 2, which is the start of the construction
iterations, you may want to duplicate the Test Cases and reclassify them into
Iteration 2. This also enables for granular tracking of Test Cases and enables
you to say that a Test Case was ready in one iteration but not ready in
another. Again, how you do this is up to you and how you want to report on
it. The “Scenarios” section provides more detail.

Construction
The goal of Test Cases in construction is straightforward; they should be
repeatable to find bugs before the user does and test the functionality of the
application. The first and last items are open for discussion. Exploratory test-
ing is not necessarily repeatable, unless you record it. Fortunately, you can
record with MTM, so this isn’t too much of a problem. The test may not be

repeatable because of back-end data or processes, but at least a tester or
developer can duplicate the steps taken to find a bug if one is found. The last
item can be a bit of a problem.

In a perfect world you can achieve 100% code coverage through functional
testing. Anyone who has ever done testing can tell you that this is not possi-
ble unless this is your quality bar that usually occurs only in life safety appli-
cations. So assume that this isn’t going to be possible. What do you test? It
goes back to the second point; you should run those tests first that are likely
to be used by the user (and therefore the place to find bugs). To make it a bit
clearer, in most applications, 20% of the code is used 80% of the time, and the
other 80% of the code is used to handle alternative or exception paths. It’s
amazing how much code applications need to handle these outlying condi-
tions. So a good rule of thumb is that the 20% of the code (100% of the nor-
mal path requirements) is tested 100%. All the other code is tested if time is
available.

Will there be exceptions to this? Sure. There always are. Using this guide-
line can help catch the majority of the bugs before the users catch them. Test-
ing the other 80% of the code should be done if time permits or if bugs are
found that relate to the outlying conditions. That isn’t to say that no testing in
these areas should be done, but in general keep it to spot testing or let Unit
Testing cover those conditions.

User Acceptance Testing
As an industry, there tends to be a lack of agreements (Service Level Agree-
ments [SLAs] or other agreements) relating to the acceptance of software by
the customer. This makes things difficult for the development team. Imagine
completing the software for the customer, and after the “final presentation,”
the customer says, “Nope, this isn’t what I wanted,” and them asking you to
redo parts of it. Who pays the cost for it? Who messed up? Does it matter?
Yes. Even if the development team doesn’t see it, someone has to pay for the
rework, and someone cares about who made the mistake. And that’s the
thing: It usually isn’t a mistake; it’s because of changing requirements or mis-
interpretation. That’s why it’s puzzling to see this lack of an acceptance
agreement.

Chapter 3: Planning Your Testing62

Ideally, the conditions under which the customers will accept or reject the
software are documented in a contract. The best basis for this is that an agreed
upon set of Test Cases execute correctly. If this were the case, the customers
would be saying that these Test Cases adequately demonstrate the features of
the system that you are supposed to deliver. If these Test Cases pass, the sys-
tem does what they asked you to do, and they can validate that you have
delivered that functionality to them.

Now this does a couple of things: The customers have to sign off on the
Test Cases. Changes to the requirements cause changes to the Test Cases that
require customer signoff. Changes that go outside the scope of the agreed
upon Test Cases are easily discoverable because the Test Cases are objective
rather than subjective, which allows for ambiguity and therefore changes that
aren’t discoverable. The last benefit is that user acceptance testing is well
defined. Sure, the users can do exploratory testing (that is, playing with the
system to see if it works). But the real meat is the execution of the Test Cases,
and this makes acceptance easy. The reason is that the Test Cases should have
all been executed, at a minimum, twice: once by the developers and once by
the testers. The users should almost never find problems with UAT Test
Cases. So these Test Cases you create now are of benefit when delivering the
software as well.

Test Case Planning Workflow 63

A GOOD UAT OPTION
One potential benefit of MTM being separate from Visual Studio is that for

users performing UAT, this can be installed, and the users can run their ex-

ploratory testing through the Test Runner. In this way, if the user does find a

bug, the development team has a complete record of the steps the user took

to arrive at the bug. (This does require the end user to have a license for the

software.)

Are SLAs going to be used? After all this, it is sad to say that the answer
is probably no, because there will almost always be some last-minute items
the customers want that can cause problems somewhere. Keep a process but
be aware of the customer needs. Finding a way to fit both the process and the

customer needs together can give you the power to use what has been dis-
cussed here. Even if you can’t get there right now, start thinking about it now
so that when the opportunity comes you can take advantage of it.

Common Scenarios

This section covers some common scenarios and how you can handle them
from a planning and tracking perspective.

Scheduling and Tracking Test Case Creation and Execution
Before everyone on the team rushes to write features and write Test Cases,
you need a plan for how to manage and track this work. Out-of-the-box, you
can notice that the Test Case work item type (regardless of whether you use
the MSF for Agile or MSF for CMMI template) lacks the Remaining Work and
Completed Work fields. There is a reason for this. What would that time
track? Is it tracking the creation of the Test Case or the execution of the Test
Case? Or both? It would be hard to say.

Another item to consider is projects in which the project manager uses
Microsoft Project to track work. It uses a Work Breakdown Structure (WBS)
that uses parent/child relationships between work items to create that WBS.
The Test Case work item is related to the requirements with a Tests/Tested By
relationship, so Test Cases will not show up in the WBS, and the project man-
ager cannot schedule them the way they would schedule a task.

The best way to handle this is with the structure shown in Figure 3-18.

Chapter 3: Planning Your Testing64

Requirement Task Test CaseParent/
Child

Tests/
Tested By

Parent/
Child

Figure 3-18: Work item relationships

This structure solves a number of problems. First, a project manager can
assign the task of creating a Test Case to the test team, which means that the

activity can be captured in a Microsoft Project WBS. Second, the project man-
ager has the option to schedule the Test Case for creation and for execution
separately. When doing it this way, the Assigned To field would be the person
creating it in the first case and executing it in the second case. You do not need
to use the Assign To Tester functionality unless testing on multiple configu-
rations. This enables the project manager to track the time discretely for each
activity; however, you may not want to assign a task to execute a Test Case.
This is quite difficult for a tester to realistically keep track of. The task would
be associated with the Test Case and not the test run, which makes reporting
even more difficult.

The Parent/Child relationship between the Task and Test Case is not nec-
essary. It provides some additional structure and enables the Test Cases to
show up in a tree query (as opposed to a directed links query) but does not
feed any reports.

Feature Driven Development
In FDD, software development is done on multiple branches. That is, you
may have a branching structure like the one shown in Figure 3-19.

Common Scenarios 65

PROD

QA

DEV

F1

F2

F3

Figure 3-19: A typical FDD source code structure

In this type of branching structure, it is generally considered a best prac-
tice to perform comprehensive testing on all code in each feature branch
before merging it to the main development environment. As part of this

process, Test Cases need to be “migrated.” For example, if you create a series
of Test Cases (Test A, Test B, Test C) for code on feature branch F1 and that
code is merged to Dev and then back down to feature branch F2, those Test
Cases may need to be executed against the code in branch F2. How do you
keep track of it?

The recommended solution is to create one Test Plan per feature branch.
Because you can copy suites between Test Plans, this becomes relatively sim-
ple. Figure 3-20 shows the Copy Suites screen.

Chapter 3: Planning Your Testing66

Figure 3-20: Copy Test Suites from Another Test Plan dialog

To get to this dialog, right-click Test Suite in the Plan, Contents page, and
select Copy Suite from another Test Plan. You can either copy the entire suite
(which includes the root node) or you can copy individual suites. It is criti-
cal to note that this does not create a copy of the Test Case. It simply references
the existing Test Cases, which in this situation is exactly what you want—
change the Test Case in one place and it changes it in all places. In this way
multiple Test Plans can be associated with different code from different
branches (because each Test Plan can be associated with its own build) but
the results can all be reported on together.

Moving from One Iteration to Another
When you move from iteration to iteration, you need to deal with a number
of issues. Some of these include uncompleted Test Cases, and in others the
Test Cases were completed but never executed. Do you simply “copy” them
from one suite to another, which creates a reference, or do you duplicate the
Test Cases? This depends on how you want to report on them.

If you have a Test Case with the area set as Iteration 1 but then you copy
the suite that it is part of to another Test Plan, which is testing Iteration 2, you
have a problem. Because a suite copy is actually a “reference,” the Test Case
continues to show up in Iteration 1—not Iteration 2. This can significantly
skew your reporting depending on how you report on it. On the other hand,
creating actual copies of the Test Cases adds to the “number” of Test Cases,
even though this number doesn’t change.

What are your options? In the first case, the suite copy is an expedient way
to handle the problem. But the recommendation for this is to go one step far-
ther. After you perform a suite copy, update all the Test Cases that were
copied to be the same iteration that the new plan is in. To make this clearer,
consider the following: You have a plan (Analysis) that is set for Iteration 1.
All Test Cases in the plan are also set for Iteration 1. The analysis phase is
complete, and you move to the next phase in which these Test Cases will be
updated. If you plan to do work on these Test Cases, use the suite copy to add
them to a new Test Plan called Construction. After they are copied over,
update all the Test Cases so that the iteration is set to Iteration 2 (to match the
iteration in which they will be worked on). Then continue to work on them as
you normally would.

The second option in many ways is more appealing. Creating copies of the
Test Cases allows you to preserve the Test Case as it was executed against the
code in a given iteration. An example is that Iteration 3 ended in a release to
the customer. The team begins work on Iteration 4, which will modify some
of the features in Iteration 3. (This is an every-day occurrence in agile devel-
opment but less so in waterfall.) However, between the current release and
the next release, those Test Cases may need to be re-executed against pro-
duction code. If you are actively changing those Test Cases, you need to go
back into the Test Case work item type history to get back to the Test Case

Common Scenarios 67

executed against the current release. In this way it acts almost as a branching
mechanism for your Test Cases and enables you to preserve the Test Cases
executed against a release. This may be handy for auditing purposes.

The advice for this issue is “It depends on what you’re trying to do.” There
are no “best practices” because everything is dependent on your situation.
Just be aware of what can happen in the various scenarios, and think it
through before developing your plan.

Handling Different Test Configurations
As previously mentioned you can use configurations as metadata for report-
ing purposes and to cut down on the number of Test Cases that you need to
maintain. But does it always make sense to do this? The answer is no. No
tools can easily solve this problem, so it takes some planning. First, you need
to determine if the different configurations require different tests. If they do,
your answer is simple: Do not use the MTM test configurations to differen-
tiate configurations. In this scenario, it requires you to create separate Test
Cases and differentiate by Area. In addition, you would be better off creat-
ing separate Test Plans. Why? As noted earlier, Test Plans have one manual
test setting and one automated test setting. It can be assumed that for differ-
ent configurations you may be testing on different systems or with different
settings, so it is easier to manage with separate Test Plans. If you do this, you
do not need to use Areas to break up your configurations; MTM can work
for you.

This is one item that should absolutely not be overlooked. The test settings
can be cumbersome to manage if you have to change them on a per-run basis.
It is easy enough to group Test Plans in different areas and then arrange the
Test Cases under them. If you have to group Test Cases together that require
different test settings, you are adding more work for the testers, so plan this
before you get to the point where it is a problem.

Chapter 3: Planning Your Testing68

SUMMARY

In this chapter, you learned about Test Plan components and how to create
them. You learned the relationships between all the different test containers
and about the goals of different stages of testing: analysis, construction, and
user acceptance testing. This chapter also showed you how to create different
testing configurations and their effects on Test Cases. You learned how to
start managing a Test Plan by assigning testing configurations and testers to
different Test Cases and configuration combinations. Most important, you
explored a number of different scenarios that require you to think about the
structure of your testing environment and common problems to these sce-
narios. In the next chapter, you learn how to execute tests using Microsoft
Test Manager.

Summary 69

This page intentionally left blank

4
Executing Manual Tests

I N CH A P T E R 1, “STAT E O F TE S T I N G,” one of the goals mentioned for the
Visual Studio 2010 family of products was the no-more-no-repro scenario.

The first step in this process is to run tests in a repeatable fashion and to file
“actionable” bugs. What is an actionable bug? It is a bug that the developers
can act on, which means that the bug can be fixed with the available infor-
mation in a reasonable period of time. Today, much of the problem is that
developers are not exactly the happiest people in the world when someone
comes to them and says, “We found a bug in screen x, please fix it,” and then
walk away. That’s not actionable; that’s a recipe for wasting hours of devel-
oper time.

For testers to file actionable bugs, they need good Test Cases. Or do they?
What happens when testers runs exploratory tests or ad-hoc tests and the
tests fail? They aren’t working from a good test script, so it’s hard to docu-
ment how the failure occurred. With Test Runner (TR) the problems caused
by trying to reproduce the results of an exploratory test are a thing of the past.
In this chapter, you see how TR works.

This chapter also exposes the power of having the testing tools, require-
ments, and code base linked together because it enables testers to gather
detailed information to provide back to developers to virtually ensure that

71

they can re-create the problem. This information includes stack trace infor-
mation and the ability to actually walk through the code that was executing
during the test using a technology Microsoft calls IntelliTrace.

By the end of this chapter, you will know how to work with the Test Case
work item type, execute a manual test, and file bugs through TR. All aspects
of executing manual tests from straight execution to restarting a test and cre-
ating and running parameterized tests are covered. In addition you start to
learn how to use the built-in data collectors to gather important information.

Using the Test Case Work Item Type

The Test Case work item type contains the normal fields that you expect in a
TFS work item type. One difference is that the priority setting has an actual
function other than notification to the tester of what needs to be worked on
first. When coupled with automation, the Priority field filters out automated
tests that you don’t want to run. Keep this in mind as you set and change the
Test Case priority. The Test Case also adds a new control: Steps. Figure 4-1
shows the Test Case work item type.

Chapter 4: Executing Manual Tests72

Figure 4-1: Test Case work item type

The Steps tab contains an Action column that shows the steps testers must
take. The Expected Result column explains what testers should see after they
complete the step. The first column shows any attached items for that step. As
you can see in Figure 4-1, not every step requires an expected result. This
plays into how the test execution behaves and how test automation works.
Below the steps are the parameters that show information related to para-
meterized Test Cases. Figure 4-2 shows the specific controls and information
related to test steps.

Using the Test Case Work Item Type 73

Figure 4-2: Steps control details

EDITING TEST STEPS
Test steps can be edited only in MTM. Opening the Test Case work item in

Team Explorer or Team Web Access displays a read-only view of the test

steps.

In the second column of the Steps tab is an icon indicating if the step
includes a validation or expected result, which are the same things. An
expected result requires that you validate that a step is successful, which is
why the terms are used interchangeably. The check mark indicates an
expected result; the step without a check mark indicates there isn’t an
expected result.

Above the Steps tab are a series of buttons that enable you to perform dif-
ferent actions on the selected step. Table 4-1 explains these options.

Delete Step

Manage Step Attachments

Non-validation Step

Validation Step

Open Shared StepMove Step Down

Move Step Up Create Shared Step

Table 4-1: Steps Control Options

Chapter 4: Executing Manual Tests74

Option Description

Insert Step Inserts a step before the currently selected step.

Delete Step Deletes the currently selected step.

Move Step Up Moves the currently selected step up one step.
Move Step Down Moves the currently selected step
down one step.

Insert Shared Step Inserts a Shared Step before the currently selected
step.

Create Shared Step Takes the currently selected steps and creates a
Shared Step set and replaces the current selection
with the Shared Step. This works only with con-
tiguous steps.

Open Shared Step Opens the Shared Step work item type for viewing
or editing.

Insert Parameter Displays a dialog for adding a parameter, but in
practice you do this manually.

Manage Step Attachments Enables you to associate attachments with each
step in the test.

The associated Automation tab contains the information necessary to
automate the Test Case. I explore this in more detail in Chapter 6, “Automat-
ing Test Cases.”

E X E R C I S E 4 - 1

Creating a Manual Test Case
This exercise assumes that you have performed the exercises in Chapter 3,
“Planning Your Testing.” To create a manual Test Case, follow these steps:

1. Select the Plan tab, Contents page.

2. Select the As the Blog Author I Want to Be Able to Log onto the Blog
Engine Test Suite from the list of suites.

3. Click New from the toolbar in the Test Suite Details pane.

4. Type the title Logon with Administrator credentials gives appropri-
ate access and click Save.

5. Click the Action column in the first row of the test steps.

6. Type Navigate to http://[servername]:8001 and press Tab.

7. Type Blog Engine welcome page is displayed in the Expected Results
column, and press Enter.

8. Type Click the Log In link, and press Tab.

9. Type Log In page is displayed in the Expected Results column, and
press Enter.

10. Type Enter ‘Admin’ for the username and press Enter. (There are no
expected results for this step.)

11. Type Enter ‘admin’ for the password and click Log In, and press the
Tab key.

12. Enter The welcome page is displayed and you are logged in–verify
this by noting that the Admin control is displayed, and press Enter.

13. Set the State to Ready, and click Save.

Refer to Figure 4-1 to see the results of this exercise.

Shared Steps
The first item that needs some explanation is the Shared Step, which has
many interesting and time-saving effects on a Test Case. A Shared Step
enables you to create a reusable set of steps, but you need to follow some
rules. Using the example steps shown in Figure 4-1, you might presume that
many tests require a user to log on as an administrator to carry out tests
related to administration functions. The first Test Case is a basic “does the
logon work correctly” Test Case, but these steps can be applied to many Test
Cases. To create a Shared Step, complete Exercise 4-2.

Using the Test Case Work Item Type 75

E X E R C I S E 4 - 2

Create Shared Steps
To create Shared Steps, follow these steps:

1. Select the test steps you want to reuse (in this case all test steps).

2. Select Create Shared Steps.

3. Enter the name as Log on as Administrator in the Create Shared Steps
dialog, and click OK.

Figure 4-3 shows the resulting test steps.

Chapter 4: Executing Manual Tests76

Figure 4-3: Results of creating a Shared Step

The first question to ask is, “What happened to my steps?” Good ques-
tion. To see the list of Shared Steps you created, select the Organize tab,
Shared Steps Manager page (see Figure 4-4).

Figure 4-4: Shared Steps Manager

Here, you can open the Shared Step, which is just another work item type.
Shared Steps cannot contain other Shared Steps, so there is a limit to how Test
Cases can be composed. You can have as many Shared Steps in a given Test
Case as you want, but not in a Shared Steps work item type. As part of the
Shared Steps Manager you can copy Shared Steps, open them for editing, and
create new Shared Steps. You can also create an action recording for Shared
Steps independent of any tests that may implement the Shared Steps. You see
the action recording in the section on Test Results.

You can also edit Shared Steps by clicking the Open Shared Steps button
in the Test Case work item type with the Shared Steps selected. The next sec-
tion discusses how a Shared Step affects the run.

Using the Test Case Work Item Type 77

IMPORTING EXISTING TEST CASES
Microsoft released a tool (Test Case Migrator) to import Test Cases from either

Excel or from an existing .mht file used by the testing framework in Visual Stu-

dio 2008, which can be downloaded from http://tcmimport.codeplex.com. The

download contains extensive documentation and walkthroughs on how to use

the tool.

Data Driven Test Cases (Test Parameters)
You can augment any set of test steps by using parameters that enable you
to specify how many iterations a given Test Case will go through and provide
different data for each iteration. To add a parameter to a Test Case, simply
add a space, an @ symbol, and the name of the parameter. For example,
@Value creates a parameter named Value. However, P@ssw0rd will not cre-
ate a new parameter named ssw0rd because a space does not proceed the @
symbol.

The best way to show this is through an example. In the previous exam-
ple you created a specific Test Case for logging on as an administrator. This
is helpful when running many different types of tests but causes more work
than you need when you want to validate different logons. To put it another
way, you can create three Test Cases to validate the Administrator, Editor,
and Guest permissions, or you can create one Test Case with three sets of
parameters. Exercise 4-3 shows how to do this.

E X E R C I S E 4 - 3

Create a Parameterized Test Case
To create a parameterized Test Case, follow these steps:

1. Create a new Test Case called Logon with Valid Credentials.

2. Enter the following actions to receive the expected results.

Action Expected Result

Navigate to http://[server name]:8001. Blog engine welcome page
displays.

Click the Log In link. Log In page displays.

Enter the username as @username.

Enter the password as @password The welcome page displays,
and click Log In. and the administrator widget

contains the following entries:
@result.

3. In the Parameter Values section, you now see username, password,
and result (Figure 4-5). Click in this section and add the following
values:

username password result

admin admin Users

jeff P@ssw0rd Add Entry but does not contain Users

steve P@ssw0rd Change Password only

4. Change the state to Ready, and click Save and Close.

Figure 4-5 shows the outcome of Exercise 4-3.
Here, the Test Case validates that valid logins are successful and grants

the right level of access. Instead of writing three separate Test Cases, you can
simply write one with multiple iterations. Note the Parameter Value section
at the bottom of the Steps tab. Select Delete Iteration to delete a set of param-
eters because each new parameter is a new iteration.

The parameter columns displayed in the Parameter Values list are auto-
matically created as you add parameters to the Steps control. Step 3 and 4
each have parameters that display in the Parameter Values list.

Chapter 4: Executing Manual Tests78

Figure 4-5: Parameterized Test Case

Running Your First Tests

For this example, execute the tests selected in Figure 4-6.

Running Your First Tests 79

Figure 4-6: Test Tab, Run Tests Page

As shown in Figure 4-6, three tests are selected to be executed for this
first run.

Chapter 4: Executing Manual Tests80

USING STATIC (CUSTOM) SUITES
The suite the Test Cases are contained in is a static suite for this test run. The

static suite has one major benefit that a requirements or query-based suite

does not have; you can order the Test Cases for the run.

The test settings for this specify Test Impact Analysis, System Information,
IntelliTrace, and the Video Recorder.

INTELLITRACE SETTINGS
By default, IntelliTrace information is not collected for ASP.NET applications.

You must click the Configure button in the Test Settings creation screen and

specifically select this option. (See Chapter 5 for more information about

IntelliTrace Settings.)

A build has been assigned to this Test Plan, and each Test Case is Active.
You can find the build number above the Test Suites in Figure 4-6. Each Test
Case is marked as Active, Passed, or Failed. Because none of the Test Cases
have been executed, they are listed as Active. To execute the test run, simply
click Run, or select the drop-down and select Run with Options, which
enables you to change the build in use, test settings, or the test environment
on a per-run basis.

Test Runner
Clicking the Run button hides Microsoft Test Manager and brings up the Test
Runner, as shown in Figure 4-7.

Figure 4-7: Test Runner before the start of a test run

Before running the test, here’s a quick tour of Test Runner, which is
detailed in Figure 4-8 for your reference.

Running Your First Tests 81

Test List

Save Results
and Close TR

Dock

Maximize

Minimize
Return to the

Testing Center

Save Results

Save Results
and Close TR

Current Test

Test Comments

Current Test Status

Configuration

Build Number

Attachments

Figure 4-8: Test Runner Layout (header)

In the upper-left corner is the number of tests to be executed as part of this
run (three in this case) with the first test listed (111: Log on with valid cre-
dentials). To the right you can see a “0” with a paperclip. This denotes that no

attachments are associated with this test execution run. The icon to the right
of that indicates the status of this Test Case in this run. In Figure 4-8 this is
the Active icon and indicates that no status exists yet (that is, it hasn’t been
run yet); a green check mark indicates a successful run; and a red X indicates
a failed run. Below this is the test configuration that this run should be exe-
cuted with; clicking the down arrow below that displays the build that this
Test Case is executing against. You can also add comments related to the Test
Case result during and after the run as well.

Chapter 4: Executing Manual Tests82

BUILDS AND BINARIES
Although a build has been associated with a Test Plan, you aren't actually

executing those binaries when running manual tests. This is especially true

of Web Applications. You still need to make sure the builds are deployed to

the appropriate location for the testers to execute the right binaries.

In the upper-right corner of the Test Runner is an icon that looks like a lit-
tle Windows Explorer icon. This enables you to dock TR. Dock Left is the
default or Undock It makes it float.

You can exit TR and go back to Microsoft Test Manager in three ways. You
can use the Save and Close button that saves the test results to TFS and closes
TR. Or click the X in the upper-right corner, which is the same as Save and
Close. Any completed tests have their results reported to TFS; any that have
not been run are still in the Active state. Or click the Return to the Testing
Center button to the right of the Save disk. This returns you to MTM but
leaves the run in an “in progress” state. This enables you to pause and
resume testing at a later time. Only one test run can be in progress at any
given time. If you start another test run, the run in progress will be discarded.

To start the test, create an action recording. You can select this option as
part of the test settings, but in some cases, you may not want to record an
action log, so this displays as part of the normal test start process. For this
example an action recording is created. To do that, select this check box and
click Start Test. Figure 4-9 shows the Test Runner during a test execution.

Figure 4-9: Test Runner during a basic test execution

Each step in the Test Case is listed with the expected result listed directly
below it. Each test step expands to show the expected result. This enables you
to see the full text of the step and the results without taking up more room
than necessary. To the right of each test step is the Active/Pass/Fail indicator.
The third line of the Test Case, Enter the Username as ‘Jeff’, has a different
icon because no validation is associated with this step. You can still mark it as
Passed or Failed, but you don’t have to do anything for this step if you don’t
want. However, if you don’t mark it, you have to manually move to the next
step by clicking it.

Marking a step as Pass/Fail or not marking it at all has three conse-
quences. First, when you turn the manual Test Case into an automated Test
Case, every step marked pass becomes a separate method that enables you to
apply discrete validations. (Refer to Chapter 6.) Second is when you manu-
ally play back the Test Case in TR (covered in the “Replaying Test Steps” sec-
tion). For steps where no validation exists, the tester does not need to
examine anything, so the playback plays back the step but doesn’t stop at that
point. The idea of stopping at only a validation point enables the tester to
visually inspect the screen to make sure everything is correct. Finally is a

Running Your First Tests 83

trade-off that you have to make when creating a CodedUI (automated) test.
By marking every step as passed, if the user interface ever changes, it
becomes much easier to replace a section of the CodedUI test (the cheaper
option). If you mark only validation steps as passed, when the user interface
changes you might need to put in more work to maintain the CodedUI test
than you might need to do otherwise.

Across the top of the test steps (detailed in Figure 4-10) are various options
you can take during the test run. They enable you to Play back a section of the
Test Case, Stop the test execution, Pause the test execution, and Redo the Test
Case. (This resets everything as though the test never started.) Following this
you can file a bug (or an Exploratory Bug covered in the “Exploratory Testing
with MTM” section) or update an existing bug, capture a screenshot, attach
it to the step, connect to or snapshot a virtual environment (covered in Chap-
ter 7, “Executing Automated Test Cases”) or add a comment to the current
step.

Chapter 4: Executing Manual Tests84

Figure 4-10: Test Runner Layout (toolbar)

The bottom of Test Runner shows how long the existing Test Case has
been running; clicking the up arrow to the right shows you the action log for
the existing recording. This list of actions also serves another purpose. An
example is a scenario in which an unexpected dialog displays (more than
likely this applies only to browser-based applications, but it could be caused
by any number of items) such as the Internet Explorer First Run Customiza-
tion dialog, and you click through it. If you try to play the test back, it fails
because the dialog displays only once. You can select individual steps to
delete or a range of steps, as shown in Figure 4-11, to complete the Internet
Explorer First Run Customization dialog. To delete the steps, expand the
action log steps, select the steps to delete, right-click the steps, and select
Delete, or press the Delete key.

Playback Test Steps

Create/Update Bug

AttachmentsRedo Test

Stop Test Screenshot

Connect to/Snapshot
Virtual EnvironmentPause Test

Figure 4-11: Action log list

Executing a Test

To begin executing a test, simply select Start Test and check the Create Action
Recording check box. This begins recording the test; the time the test is run-
ning starts to increment. For each step that you are on (assuming this is not
a Shared Step) do the following:

1. Execute whatever actions the step tells you to take.

2. Optionally, if there are expected results, validate that they are correct.

3. Optionally, add a comment or take a screenshot that is attached to the
test execution step. (The distinction between associating something
with a test step and what the effect is of associating something with an
executing test step will be covered shortly.)

4. Optionally, Pass (Win+Ctrl+Q) or Fail (Win+Ctrl+W) the step. (You
can also just click the active icon, once for Pass, twice for Fail.)

5. Move to the next step (manually if it is not a validation step).

Any comments you make or screen captures you take are automatically
associated with the given test run and step. At this point it is worthwhile to
take a minute and explain test step association in a Test Case versus test step
association with an executing Test Case. From a development perspective,

Running Your First Tests 85

think of the Test Case as a class and each execution of the Test Case as an
object of that class. You can spool up an unlimited amount of test executions
for a given Test Case. Therefore, when you attach an item to a test step from
within the Test Case work item type, that item is available to you during any
test run. Items associated with a test execution step become part of the test
results for that Test Case.

If you pass or fail a step, Test Runner automatically moves you to the next
step. If you choose not to pass or fail a step, you must manually move to the
next step in the Test Case. There are no negative effects for not passing or fail-
ing a step with no validation.

Figure 4-12 shows the second of the three tests executing that contains the
set of Shared Steps.

Chapter 4: Executing Manual Tests86

Figure 4-12: Shared Step execution

In the first panel, the Shared Step is listed as a collapsed, single step with
a green option drop-down next to it. The second panel shows the available
options: Start and Start and Record. A third option is also available here if you
have already run a Test Case with this particular Shared Step: Play. Start will
start the test but will not record an action log. Start and Record starts the test
and records an action log for the Shared Step. The last panel shows the
Shared Step being executed. There are two items to note here: Each step in a
Shared Step is part of the Shared Step, and you can see this by looking at the
step numbers, 1, 1.1, 1.2, 1.3, and 1.4. You must end the Shared Step sepa-
rately from the test (bottom of the third panel).

Executing a Parameterized Test

A parameterized test executes once for each row of data. It displays in Test
Runner, as shown in Figure 4-13.

Running Your First Tests 87

Figure 4-13: A parameterized Test Case

A few differences in this Test Case execution are immediately obvious.
First is the test designation at the top of Test Runner, Test 3 of 3: Iteration 2
of 3. This indicates that the current Test Case has three rows of data associ-
ated with it, so to complete the run the test must be executed three times with
different data. The second item is the currently selected test step with user-
name = jeff and a check mark and a data symbol next to it; jeff is the value
from the parameters grid filled in for you on each iteration. The check mark
and data symbol display after you have successfully bound a value to a field.
A third difference is that at the end of the test, you end the iteration and not
the test. After all iterations have been completed you can end the test.

One other nice feature of parameterized tests is that the parameter values
are copied to the clipboard for you. This means that, for example, when you
select Step 3, you can click in the username textbox and do a Ctrl+v and the
value “jeff” will be pasted into the username textbox.

Finding and Filing a Bug

So far you have looked at running a basic set of manual tests and a parame-
terized test. The next feature of Test Runner is filing bugs, which is where the
magic happens. This shows the power of MTM to find and trace bugs and
track them to their resolution.

In Figure 4-14, you can see the selected step for which a Test Case failed.

Chapter 4: Executing Manual Tests88

BEST PRACTICES FOR RUNNING PARAMETERIZED TESTS
To make the testing experience as fast as possible, execute the first itera-

tion in a parameterized test (marking each step as passed) and then play

back subsequent iterations. One of the great benefits of data binding is that

for each subsequent test run the correct parameters will be inserted for you.

Then simply note the end result and mark the overall test as passed or failed

(using the status icon in the upper-right corner of TR). For tests that require

validation along the way, you can selectively play back test steps by Shift-

clicking test steps to select them.

Figure 4-14: A failed test step

At the point of failure, note a few pieces of new information. A screenshot
of the failed step is automatically attached to the failed test step. You take a
screenshot by clicking the camera icon on the toolbar and either selecting the
full screen (which includes TR), a window, or a rectangle (the default) that
enables you to select the area you want to capture. This screenshot is auto-
matically attached to the test step. Next, a comment has been added to the test
step to indicate what was displayed, which was the information from a pre-
viously executed Test Case. After taking the appropriate screenshots and
notes, make sure you fail the step before you click the Create Bug button on
the toolbar. (You also have the option to update an existing bug.) If you don’t
do this step first, when developers look at the bug, they cannot see a step
marked as failed, and you want them to know where things went wrong. This
brings up a new Bug work item type (or whatever work item type you
denoted in the Bug category) with all the information for the entire test
attached. You can look at the generated bug in the Results section.

Pausing and Resuming Test Runs

Complex test runs may take several hours. If you need to stop testing to
address other issues, MTM enables you to pause test runs. The test run is not
completed but is still “in progress” and you can resume at any time. This
makes it easier to handle testing tasks without losing your place.

To pause a test run, click the Return to MTM button at the top of the Test
Runner window (shown to the right of the Save icon in Figure 4-14) instead
of Save and Close. After doing this, you see a screen similar to Figure 4-15 on
the Test tab, Run Tests page.

Figure 4-15 shows the test run in progress. Note that above the Run Tests
page is the small Test Runner icon with an arrow that is the Return to Test
Runner button. Essentially Test Runner is hidden and still runs in the back-
ground. The state of your application (the one tested) is not saved, so you
should pause between tests and not in the middle of a test.

Running Your First Tests 89

Figure 4-15: Test run in progress

Chapter 4: Executing Manual Tests90

VIRTUALIZED TESTING
This situation is remedied to a certain extent through the use of virtualized

testing environments. Chapter 8, "Lab Management," covers this topic in

great detail.

To continue a run in progress, simply click the Return to Test Runner but-
ton. If you close MTM or take any number of other actions (such as closing all
the pages in MTM without actually exiting MTM), MTM automatically com-
pletes the test run for you and records the results. Test runs do not survive
MTM sessions. Also, you cannot have multiple test runs in progress simul-
taneously. If you have a run in progress, you must stop or complete the run
before starting a new run. MTM automatically ends the run for you if you
start a new test run without explicitly taking an action.

Replaying Test Steps

A strip of orange or blue color is along the right side of the Test Runner; this
is the playback strip. Any place you see this strip, you can select test steps
and click the Play button in Test Runner. A blue playback strip represents a
previously recorded strip; an orange strip represents a strip currently being

recorded. Notice the grouping of test steps in relationship to the strip. Figure
4-13 shows that the grouping of the playback strip has a one-to-one relation-
ship with every step because every step has a validation. Playback groupings
are created based on validations with an obvious benefit: When you are sim-
ply running a test back, you do not want (in general) the playback to stop at
steps on which there is nothing to validate. For example, if you work in a
form with many fields to fill in and each field is its own step, there is noth-
ing to verify; however, after you cause an action to be executed based on that
data, you need to verify the results. So the strip helps avoid time-consuming
steps and takes the testers to where they need to be to verify the results of one
or more actions.

In Figure 4-12, the Log On as Jeff (Editor) Shared Step has been executed
before. You know it works. There are no problems, so why go through each
step for every test run? The answer is that you shouldn’t do this, therefore the
playback. Figures 4-13 and 4-14 show the playback strip. To play back a por-
tion of the script, highlight steps you want to play back (or select a step within
the strip) and click Play. If you record a new Test Case and the Test Case con-
tains a Shared Step for which you already have a recording, a small icon
appears to the right of the Shared Step and enables you to Start, Start and
Record, or Play. When you are not recording a Test Case, simply press the
Play button on the toolbar above the test steps.

Figure 4-16 shows the playback in progress.
Test Runner plays back each action and notifies you of where it is in the list

of steps. As shown in Figure 4-16, don’t play with the keyboard or mouse
during playback. The playback goes as quickly as the application can
respond. This is another feature of the testing tools in Visual Studio; they
understand the application. There are no “wait” commands for the browser
or application to respond. Test Runner knows, for example, when a page fin-
ishes loading or a response is completed, so your tests will not go off track
because Test Runner tried to process a command before the application was
ready. This feature is called Fast Forward for Manual Testing.

Running Your First Tests 91

Figure 4-16: Playback in progress

Examining Test Results

After you complete a test run, it’s time to look at your results and understand
what was collected and what it is used for. Upon completing a test run, the
Run Tests page changes to display the results of the latest run, as shown in
Figure 4-17.

Chapter 4: Executing Manual Tests92

Figure 4-17: Run Tests page after a completed test run

From Figure 4-17, you can see that one of the tests passed on the last run
and one test failed. One test has never been run before and is in the active
state. Tests can also be in the blocked state, which is discussed later. To block
a test, select the Test Case, and click the Block icon on the toolbar.

In the upper-right corner, you can see a bar graph showing the status of
the test suite; holding your cursor over it creates a summary.

Examining Test Results 93

THE ACTIVE STATE
Tests can be in the active state because they haven’t been executed before

or because you manually set them back to the active state because a Test

Case needed to be verified after a bug fix. They may also be active because

the Test Case was copied from another suite and had to be reset or was set

to be rerun to verify existing functionality had not been broken.

Test Run Results
Instead of seeing just the last set of results in the Run Tests page, you can
select the Analyze Test Runs page that shows the results of all completed or
in-progress runs, as shown in Figure 4-18.

Figure 4-18: Analyze Test Runs page

The Show Manual Runs toggle is off by default, so if you work only with
manual runs, make sure you select this; otherwise, nothing shows up in the

list. This page is designed more to analyze automated test runs that might
need some analysis after the fact. For a manual test run, it is assumed that if
any work on the test results is needed you would do that immediately after
the fact. Select any run, and click Open to view the overall test run results, as
shown in Figure 4-19.

Chapter 4: Executing Manual Tests94

Figure 4-19: Test run results

The Test Results page displays information on the test run including a
summary of the results of each Test Case executed and a listing of each indi-
vidual Test Case and the results of that Test Case so that you can drill into
the details of the test.

This view enables you to quickly and easily update various items in all
Test Cases. For example, if five tests fail, instead of drilling into each test to
set the Failure Type or Resolution (typically the resolution is set after the fix
has been verified, which is discussed in Chapter 5, “Resolving Bugs”) you
can simply set it for every test from this screen. If you decide that a test was
successful but you still want to file a bug against the test run, you can do that
here. Any items that you want to attach to the overall results can be attached

and viewed on this page. This page is actually the dashboard for an individ-
ual test run.

Detailed Test Results
Double-clicking a Test Case in the list displays the detailed Test Results page,
as shown in Figure 4-20.

Examining Test Results 95

Figure 4-20: Detailed Test Results

This is the collapsed view of the test results. The summary section pro-
vides a high-level view of the test result. In this case you are told that the test
failed, it was a manual run, and the configuration for this run was on Win-
dows 7 and IE 8. Any notes that you added to the run results can display by
hovering over the Note icon or double-clicking it to open up the Notes page.

Analysis

Figure 4-21 shows the Analysis section.

Figure 4-21: Analysis section

The Analysis section enables you to add comments to the Test Case if any
additional details are discovered during analysis. (The Comments section is
for general purpose notes about the run.)

Test Step Details

This section displays each step taken during the test and any comments or
attachments associated with each step. In addition, whether the step passed,
failed, or was not marked is shown here. The Test Step Details section is par-
tially shown in Figure 4-22.

Chapter 4: Executing Manual Tests96

Figure 4-22: Test Step Details section

You can begin to see how things come together. (You will complete this
understanding when you examine the bug that was created from this failure.)
Here the screenshot from the failed step is available, as well as the notes the
tester put in for the test failure. The video link is the fun one. One of the
options is to use video recording to record the test set up for this particular
test run. Test Runner indexes the video with each step taken and marked as
passed or failed. This is one reason why it is better to mark each step; if you
have to zip through a long video, this makes it much easier. Clicking this link
opens a video recording of the test at mark 00:30. A screenshot of the video
playback is shown in Figure 4-23.

Figure 4-23: Video playback screen capture

The actions of the tester are recorded along with the application, so you
can see what the testers were doing when they were not stepping through the
application. This also enables developers and testers to verify that the tests
were executed correctly. In addition the developers can see the exact steps
and expected results the way the testers saw them. From a time-saving per-
spective, this is priceless and can give testers and developers huge efficiencies
when trying to repro and fix bugs.

Examining Test Results 97

ANOTHER USE FOR THE VIDEOS
When time gets short, budgets get cut, and deadlines loom; usually two

things get cut: code reviews and documentation. Even testing gets cut. One

purpose that these videos can be used for is documentation. Think about it.

The Test Case executed tests a feature because these are system tests in

many cases. And you test the major features in their entirety. So if you don’t

have time to do end-user documentation, you can simply provide them

Attachments

The Attachments section stores all attachments generated for the test, either
manually or as a result of a data collector running. Figure 4-24 shows a typi-
cal set of attachments.

Chapter 4: Executing Manual Tests98

videos from the testers. By capturing the test steps as well, you have built-

in documentation for how to use every major feature of your application. No

additional time, money, or work is needed to produce them. (They output in

Windows Media Video format.) Use them wisely.

You must configure the Data Diagnostic Adapter for video recording to save

the video even if the Test Case passes. Do this from the test settings Data and

Diagnostics tab.

Figure 4-24: Test result attachments

Table 4-2 describes each of the file types.
Table 4-2: Test Result File Attachments

File Type Description

System Information.xml Contains all the information collected about the sys-
tem on which the test is running (if the system collec-
tor is enabled)

Action Log.txt A list of all steps taken against the application and
recorded by Test Runner in a raw text format (if an
action log is recorded)

Action Log.html A formatted view of the contents of the Action Log.txt
file

In Figure 4-24, certain files appear to be duplicates. The reason for the
duplicate files is because a test step failed during the test run. For example,
the IntelliTrace file size is slightly different from one to the next. At the point
that a step fails, a snapshot of everything is taken and stored for use by any
bug that you may file. In the IntelliTrace log, the two logs combined are not
taking up 55MB on the server. The smaller of the two files is “pointing” to a
subset of the full IntelliTrace log, and that subset is 25,984KB but is not a sep-
arate file.

Figure 4-25 shows the contents of the Action Log.txt file in a formatted
state.

Examining Test Results 99

File Type Description

Video.wmv The video file of the test (if the video collector is
enabled)

IntelliTrace log (.iTrace) The IntelliTrace file with detailed debugging informa-
tion (if the IntelliTrace collector is enabled)

Figure 4-25: ActionLog.html

The Action Log.txt contains the raw text of the log whereas the Action-
Log.html file contains the table format shown in Figure 4-25; however, they
have the same contents. The action log plays a large role in both automated
testing and manual exploratory testing, which is covered in the next section.

Links

This section contains links to work items generated from the test results. You
can also create additional linked work items from this screen. Figure 4-26
shows the Links section from this test run.

Chapter 4: Executing Manual Tests100

Figure 4-26: Links section

Bug #150 is the bug created as a result of the test failure on the last step.
You can see what the generated bug looks like in the next section. A list of all
work items linked by a Tested By link type will be shown here. Bugs are
Tested By a Test Case while Test Cases “Test” a Requirement, which is why
only the Bug is displayed here.

Result History

This section shows the test result for every run of this particular Test Case.
The history of this Test Case is shown in Figure 4-27.

Figure 4-27: Test Case Result History

This Test Case has gone through “two” runs. Two is in quotes because it
was actually only run once. However, when you set a Test Case to Blocked,
a new test run is automatically created, and “Blocked” is the result of that test
run. You can view the results of any test run from here.

Another feature of the Result History is that you can create a new bug
directly from this section. Assume that you failed a test step during the test
run but you forgot to file a bug. Going to this screen, selecting the test result,
and clicking Create bug creates the bug with all the information that the
developer needs, just as though you had created it from MTR. (With the
exception that the log files will include the entire test run rather than just
stopping at the point the failure occurred.)

Exploratory Testing with MTM

So far you have seen scripted testing; that is, a test in which the testers know
exactly what steps they will take. Certainly this is critical in any testing
process, but there has been an uptake in ad-hoc testing, the only form of test-
ing performed. Although this is not ideal, budget and resource cuts and
schedule cuts seem to frequently necessitate this step.

MTM has an exceptionally cool feature built into it so that you do not actu-
ally need to have a Test Case with test steps in it to run the test with Test Run-
ner. Exercise 4-4 demonstrates how to perform ad-hoc testing with MTM. It
does require at least an empty Test Case; you need one test step so that you
can automate it.

Exploratory Testing with MTM 101

BLOCKED TEST CASES
A blocked Test Case is one that cannot be executed for some reason. Maybe

there is a reason the code can’t be fixed or some dependency such as an ex-

ternal system that isn’t ready to be part of a test yet. Whatever the reason,

a blocked Test Case is one that a tester should not attempt to run until it is

un-blocked. A Test Case can be blocked by any tester, and the block can also

be removed by any tester. There is no particular ownership of a blocked Test

Case. This is a process that each team must work out.

E X E R C I S E 4 - 4

Exploratory Testing
This exercise walks you through executing a Test Case with no test steps and
filing a bug against a Test Case of this type.

1. Create a new Test Case with the title Ad-hoc and save it.

2. Add the new Test Case to a Test Suite in MTM.

3. Go to the Test tab, select the Ad-hoc Test Case, and run it.

4. When MTR comes up, select Create action recording, and click Start
Test.

5. Perform a series of actions. (The amount of time does not matter.)

6. At some point in the test, assume a failure occurs; click the drop-down
next to the Create Bug icon in MTR, and select Create Exploratory
Bug. (This displays the Time Range dialog, as shown in Figure 4-28.)

7. Move the slider about half way to the left, and click Use Range to Cre-
ate Bug.

8. Click Resume and End Test.

Chapter 4: Executing Manual Tests102

Figure 4-28: Range Selector for creating an exploratory bug

The Range Selector enables you to specify the time period you want the
bug to cover. With the entire range selected (which is the default and which
you should probably leave it at unless it is an extraordinarily long test) every-
thing from the beginning of the test to the current point in time is included
in the bug. In some cases a bug might have been caused by recent actions
rather than a string of actions, so you don’t need to clutter up the developers’
list of things to check with meaningless steps that occurred early in the test.
There are no hard-and-fast rules as to what to select; it’s up to the testers’
judgment about what caused the failure.

Exercise 4-4 shows some good practices and bad practices of using
exploratory testing; understanding these is critical to performing good test-
ing. You do not need a test step to perform exploratory testing, but notice that
you could not grab a snapshot of the screen. You need at least one test step
to do that. Also, you can associate only comments with the entire Test Case
and not a particular step if there are no steps. In addition, the default action
for ending an exploratory test is to pass the test. In general, you need to leave
it that way; the reasons for this are discussed in the next section.

When the test concludes, go to the Test tab, Verify Bugs page. This page
lists the bug you just filed (refer to Chapter 5). One of the options available
at the top of the page is the option to Create Test Case from Bug. Select the
bug you created, and create a Test Case from the bug. Figure 4-29 shows the
created Test Case.

Exploratory Testing with MTM 103

Figure 4-29: A Test Case created from an exploratory bug

Figure 4-29 shows the list of steps created from the action log attached to
the bug. Granted, the output doesn’t look that great, but from developers’
perspective they know every step the tester took while performing

exploratory testing. And more important, they can re-create the steps. From a
testers’ perspective, when they find a bug, they have a number of advantages:
They can track this failed “test” and add the exploratory steps to the list of
valid Test Cases to rerun when the bug has been fixed. They also have a bet-
ter understanding of how they got to where they found the bug—no more
guessing about what steps they took.

When creating a Test Case from a bug, there will be some cleanup work.
In Figure 4-29, for example, you can delete many of the lines, and some of the
steps in the action column can be moved to the expected results column. One
thing you can’t do though is update an existing Test Case (that is, the
exploratory Test Case) with these steps unless you want to do it manually.

For this reason, you need to determine how to maintain exploratory Test
Cases from normal tests. In general the exploratory Test Cases are throw-
aways, one-use-only tests. Make sure to close them afterward, or have an
administrator destroy them. On the other hand, you can also have just one
exploratory Test Case and use it as the basis for all exploratory testing. Either
situation works but using individual exploratory Test Cases enables you to
assign testers to perform exploratory testing.

As a recommendation, keep one exploratory test for each feature. When
a bug is found, you should create a Test Case that reproduces the bug. The fol-
lowing are the recommended steps in this process:

1. Run the exploratory test. If you find a bug, file one and then generate
a Test Case from that bug.

2. Execute the Test Case to verify that it finds the bug. (In other words,
your exploratory test might hit upon something data-driven or some-
thing else that makes it not easily reproducible.)

3. After you have done that, you can create a “real” bug. The original
bug can then be set to Closed.

Chapter 5 discusses the lifecycle of a Bug work item type. This may skew
your metrics a little, but some simple work item customizations can handle
this problem (refer to Chapter 5).

Chapter 4: Executing Manual Tests104

SUMMARY

This chapter gave you your first taste of working with Microsoft Test Man-
ager and Test Runner. You can now create Test Cases, execute manual tests,
and file bugs from those tests. More important, you know how Test Plans can
be tracked and how Test Cases, test results, and Test Plans relate to each other
through actual use.

The data collectors provide powerful tools for gathering data to help
developers fix bugs. You can use the action logs and video logs to find and
document the cause of bugs in your application.

The power of using a testing tool is integrated with your development
tool. Developers have access to everything that testers have access to. With
this power comes a decreased amount of time to find and solve problems. In
addition, with this integration the communication barriers between devel-
opers and testers are eliminated.

In the next chapter you learn how the information generated by the work
of the testers is used by developers to resolve the discovered bugs. At the end
of the next chapter, you learn how to manage the process full circle—after the
developer fixes the bug, how does the tester verify that the bug is fixed?
Chapter 5 covers this information in detail.

Summary 105

This page intentionally left blank

5
Resolving Bugs

C H A P T E R 4 , “EX E C U T I N G MA N UA L TE S T S ,” covers how to execute
Test Cases and file bugs. This chapter walks you through the contents

of bugs and how developers use this information to find and resolve bugs.
After a bug is resolved, the tester verifies that the bug was actually fixed.
At the end of this chapter, you will have an understanding of the lifecycle
of a bug.

This chapter includes one of Visual Studio’s most interesting and time-
saving new features: Test Impact Analysis (TIA). You look at what it does and
how, and how you can take advantage of it to give your team more confi-
dence because it has identified and tested those areas most likely to have a
regression bug.

A Bug’s Life

Before examining a bug, you need to understand the Bug work item type so
that you know how to handle it. In many cases, there are no easy answers,
and each team (or organization) must decide how to handle bugs. Depending
on whether you use the MSF for Agile or MSF for CMMI process template, a
bug’s life slightly differs. After looking at the lifecycle of the bug, you may
decide to make some changes. Make some recommended changes based on
certain scenarios in the next section. Also, depending on how the bug is filed,

107

it may be treated differently and require different lifecycles depending on the
submission process. Figure 5-1 shows the bug states and transitions for both
MSF for Agile and CMMI.

Chapter 5: Resolving Bugs108

MSF for CMMI v5.0MSF for Agile v5.0

[New]
Build Failure

Active

[Not Fixed]
Test Failed

[Verified]

[Regression]
Reactivated

[Fixed]
Deferred
Duplicate
as Designed
Cannot Reproduce
Obsolete

Resolved

Closed

[New]

Proposed

[Investigation]
Complete

[Not Fixed]
Test Failed

[Fixed]
Deferred
Duplicate
as Designed
Cannot Reproduce
Obsolete

[Closed in Error]
Regression

[Rejected]
Deferred
Duplicate

Active

Resolved

[Verified]

Closed

[Approved]
Investigate

Figure 5-1: Life of a bug

The first and most obvious item is that all bugs in Agile start off as Active.
Bugs in CMMI start off as Proposed. This is an important distinction and
has ramifications for how a team handles the bug in scheduling and for
reporting.

Figure 5-2 shows the MSF for Agile bug, and Figure 5-3 shows the MSF for
CMMI bug.

Figure 5-2: MSF for Agile Bug work item type

A Bug’s Life 109

Figure 5-3: MSF for CMMI Bug work item type

The “Bug Work Item Type Differences” section discusses differences
between these bugs. For now the major differences are that more data is gath-
ered in the CMMI bug. Look at a couple of scenarios and some potential
processes for handling them.

Customer Reported Bug
When a customer reports a bug, it should first go to the testing team for val-
idation to ensure it is reproducible and is actually a bug (as opposed to a
change request). In an Agile project it may be put in the backlog for the next
iteration. In a CMMI project it may go to a change board before going to the
testers; it depends on your processes.

When the test team gets the bug, as part of the verification process, a Test
Case should be created. In addition the Test Case should then be linked to the
requirement. This provides the out-of-the-box traceability needed to light up
the various reports discussed in Chapter 9, “Reporting and Metrics.” If the
“bug” is not actually a bug, it should be transitioned to either a Change
Request (CMMI) or a User Story (Agile) and handled appropriately.

Test Team Reported Bug
For the most part when the testing team reports the bug, you can be quite cer-
tain that the bug has been verified to actually be a bug and reproduced and
that an associated Test Case exists. In this situation if you use CMMI, the team
should skip the Proposed state; the testing team should simply move it to
Active.

Triaging the Bug
After you have a verified bug, you need to triage it. The process of triaging
is simply assigning a priority to the bug. You do need to have certain pieces
of information to help with this process. The business needs to provide
answers to questions such as “Does it affect the business?” or “Is there a
workaround?” The technical team also needs to provide information such as
what is the impact of fixing it? How long will it take to fix it? (That is, an esti-
mate is needed.)

Chapter 5: Resolving Bugs110

Reactivations
An important point is in dealing with reactivations of both bugs and require-
ments. Bugs can either be new bugs or “fixed” bugs that were not actually
fixed. The following process applies in each situation: For the testers to begin
testing a feature, the feature must be complete (or should be, in most cases).
This is indicated by the developer setting the requirement to Resolved. (This
is true in both process templates.) When testers find a new bug, they should
not only create the bug but also set the requirement back to Active. This causes
the story to appear in the Reactivations report (discussed in Chapter 9).

For an existing bug that has been resolved, the tester should set the bug
back to Active if the bug is not actually fixed. It is up to the team to deter-
mine whether the tester should also set the requirement that the bug is asso-
ciated with back to Active. The act of setting the bug back to Active can cause
the bug to show up on the Reactivations report. A bug appearing in the Reac-
tivations report is likely more critical than a requirement appearing in the
report because it indicates the bug has occurred multiple times. But it is crit-
ical that this be done correctly so that the process can be improved.

Bug Differences and Modifications

To this point you have seen the out-of-the-box work items and a basic process
flow for handling bugs. In many cases teams want to revise the Bug work
item type definition in the process template to capture additional informa-
tion. This decision depends on what type of information you want to capture
and if it is worthwhile to capture it. Table 5-1 lists the major fields in the MSF
for CMMI Bug work item type but which are not in the MSF for Agile Bug
work item type.
Table 5-1: Fields in MSF for CMMI Bug WIT That Are Not in MSF for Agile Bug WIT

Bug Differences and Modifications 111

Field Need

Blocked Indicates that work cannot proceed on this work item
because of some issue (waiting on someone else, unable
to get needed materials, and so on).

Found in Environment Which physical environment was it found in? (Devel-
opment, testing, testing with one operating system ver-
sus another, production, and so on; this is a free form
field.)

Table 5-1: Fields in MSF for CMMI Bug WIT That Are Not in MSF for Agile Bug WIT

Chapter 5: Resolving Bugs112

Field Need

How Found What was going on when this bug was found? This is a
free form field.

Original Estimate How long is it going to take to fix this bug?

Proposed Fix What is the developer proposing to fix this bug?

Root Cause How did this bug get in the code? The default values
are Unknown, Coding Error, Communication Error,
Design Error, and Specification Error.

Symptom How was this bug manifesting itself? (The screen didn’t
complete a redraw, the data was incorrect, and so on.)
This is a free form field.

Triage Where is the team in the triage process? The default
values are Pending, Info Received, More Info, and
Triaged.

The questions are, “What do you do about these differences?” and “Are
they important?” Answering the second question first, the answer is an
unqualified “yes.” The first question is a little bit more involved, so it helps
to look at each field and what the benefits might be.

This discussion is highly subjective, and there are reasons to do things and
not do things. One of the major issues between an Agile process and a more
formal process is the involvement of users. With the daily interaction
between developers and users, much of the need for recording information
goes away because there is such a short time between being given the infor-
mation and acting on it to fix the problem. The same goes for developers and
testers working together. Because of this if your team has the luxury of being
in this type of environment, you can easily exclude some of these fields; how-
ever, not all of them, and other changes may make sense as well. What fol-
lows are some items to think about as you determine your strategy.

Out of the gate you should consider changing the Bug work item type (if
you use the MSF for Agile template) to start as Proposed or another state such
as Unverified. The reason for this should be obvious: Just because a bug is

filed does not mean that a) anyone is actively working on it, b) that it is a ver-
ified bug, or c) that it is a bug. Because everything starts as active, this can
tend to skew the metrics by reporting a higher than accurate number of bugs.

Bug Differences and Modifications 113

BUG WORKFLOW
The discussion of workflow is based on the built-in MSF process templates

and not by any other influences. For that reason you should also determine

if the process flow makes sense for your team. For instance, when a bug has

been verified (assume this is a more formal CMMI type of process), moving

a bug from Proposed to Active doesn't make a lot of sense if you want to

manage work in progress. After a bug has been investigated (and it is back in

the Proposed, Investigation Complete state), when it is approved for work

does not mean anyone is actually working on it. In Agile, the bug would be

accepted into an iteration. In CMMI there needs to be a way to say it is a valid

bug (maybe by adding a Verified state) and that the team has agreed to fix

the bug (maybe by adding an Accepted state). Then when the developers

work on the bug, they set it to Active. This enables far more granular tracking

of what is occurring with the bug to the point in which you can run a report

saying, "x number of bugs have been reported, y number are not actually

bugs, and z number have been verified; and of those that have been verified,

the team is going to fix n number of them." You get all this information just

from adding two states that you cannot otherwise get.

The Blocked field is an all or nothing field; you add it to all the work items
or none of them because applying it to just one work item type does not make
sense. In addition, it depends on your feedback mechanism. One reason this
is missing from the Agile template is because if you work in an environment
in which you do daily stand-ups or your team is close together, you can sim-
ply inform someone that there is an issue—barring that you can create an
issue work item to notify the appropriate people. For a more waterfall
process or a larger team that is geographically distributed, the Blocked field
has the potential to quickly and easily notify project managers and team

members that an issue exists, and you can create an issue work item to further
detail why something is blocked. Adding this field is at your discretion and
depends on whether you have a problem which you need to solve.

The Found in Environment field is not necessary in its default form. A free
form field provides no benefit for quantification purposes (and doesn’t pro-
vide benefit for fixing the bug). The main reason for this is that with the Sys-
tem Info data gathered (see this in the “The Generated Bug” section), all the
information you need is collected for you. Where this provides some benefit
is when you can quantify where in the process the bug was found (Develop-
ment, Testing, denoting internal team testing, User Acceptance Testing, or
Production). This helps gauge the successfulness of the testing process. To do
this, update the work item with an Allowed Values rule and put in these val-
ues (refer to Chapter 9).

The How Found field is also free form and provides little or no benefit.
The reason is that there are only three answers: through production use, as a
tester was testing, or as a developer was testing. This information is essen-
tially provided by the Found in Environment field. For more detailed “how
found” information, the team would look to the Test Case. This field is redun-
dant and does not provide any benefit.

The Original Estimate field provides a huge benefit, which is why you
need to update the Agile Bug work item type. It lets a team receive a bug and
then include it in planning the next release or phase of work. Even in Agile,
bugs go on the backlog for a future iteration, but there is no way to estimate
these bugs. For this reason, update the Agile Bug work item type to include
the Story Points field, which is equivalent to the Original Estimate field.

Chapter 5: Resolving Bugs114

UPDATING THE BUG IN AGILE
If you choose to update the bug to add a Story Points field in Agile, you

should also update the Product Planning query and the Iteration X queries.

This enables the bug to show up in the Product Planning workbook and the

Iteration Planning workbook. In the default implementation, this is not the

case, but a bug is simply another backlog item to be addressed.

The Proposed Fix field is valuable if there is a period of time between the
bug being found and the developer starting on the fix, or if there needs to be
a design review process for a complex bug. There are no hard-and-fast rules
for this one. It is valuable, but it may not be valuable to you in your current
situation.

The Root Cause field is valuable no matter what methodology you use.
Without pinpointing how a bug was introduced, you can never make
changes to prevent it from occurring again. The root cause default values are
fairly broad and encompass almost everything you will encounter. However,
if you can add additional values that can help narrow the root cause, that will
be beneficial in devising a plan to fix it. This field should be retrofitted to the
Agile Bug work item type. In addition, make the list of Allowed Values a
Global List so that it can easily be updated for every Team Project.

Bug Differences and Modifications 115

CUSTOMIZING THE PROCESS TEMPLATES
The process of customizing work items is beyond the scope of this book be-

cause although it is generally a simple process, there are so many options

it is almost another book in itself. For more information on customizing

process templates, see this MSDN topic: http://msdn.microsoft.com/

en-us/library/ms243849(VS.100).aspx. Again, the MSDN documentation

team has done an excellent job with the 2010 release, and this topic links you

to all the information you need to know to perform a customization.

This page also includes a download link to the Team Foundation Server

Power Tools, which includes the Process Template Editor to make the edit-

ing process easy.

The Symptom field is actually a description of what happens when the
bug occurs. This information is critical for the initial bug report (customer
telling the development team what happened). This information is not cap-
tured at all in the Agile Bug. Whether you want to call this a Symptoms field
(it can’t be reported upon because it is a Plain Text field), there should be a
way to capture the users’ perception of the bug. The reason why this is not

in the Agile Bug work item is again because of the proximity of users to the
development team; they can just call someone over and show them. This,
however, does not take into account the maintenance period after the appli-
cation is released; the development team is not going to be there forever, and
there will be some communication done through the use of work items in the
future.

Triaging bugs is always necessary; you need to know the priority of the
bug. The big difference here is that the product owner sets the priority with
the team during a planning meeting. For the CMMI Bug work item, it does-
n’t make sense to have this field. The reason is that the Priority field is
required. Theoretically, you can look at the Triage field first, and if it does not
say “Triaged,” you know the priority is invalid but that doesn’t make much
sense. So there are two options you can take: Make the priority field not
required for the CMMI Bug and remove the Triage field, or add some ridicu-
lous priority and set it as the default. (Use a value like 99 that indicates it has-
n’t been triaged and is easy to filter out of results.) Any of these options
enhance these fields above what is available in the default structure.

The Generated Bug

Now that you have seen the Bug work item, its workflow, and from Chapter
4 how easy it is for testers to file rich bug reports, look at the generated bug.
A bug is the primary means of communication between testers and develop-
ers for problem solving. The Bug work item is important to the developer
because the goal is to allow the developer to track down the source of the bug
as quickly as possible and to fix it. In many environments today, that goal is
often hindered because of a lack of good information and sometimes just a
lack of context. How Visual Studio handles bugs is a key benefit to everyone.
Figure 5-4 shows the Bug work item filed from the failure, as shown in Figure
4-11 of Chapter 4. This benefit is only available because of the tight integra-
tion between the testing and development tools. It enables the testers to file
incredibly accurate and actionable bug reports with no extra effort and no
wasted time.

Chapter 5: Resolving Bugs116

Figure 5-4: Bug work item type

The information contained above the tabs is fairly standard across the dif-
ferent work item types. The critical pieces of information to the developer are
contained on the Details, System Info, and Test Cases tab. The Details tab con-
tains two controls: Repro Steps and History. Figure 5-5 shows the repro steps
for the bug.

The Generated Bug 117

Figure 5-5: The Repro Steps control

This control provides the context of the bug for the developer. Here is the
set of steps the testers took before they encountered the bug. The context is
provided by showing the order of steps that the testers took and which steps
passed and which steps failed. You also see the time index into the video for
every step. Clicking this starts the video at that location. With the video, the
developer can immediately see the problem. Directly below this is the screen-
shot and comments captured by the tester—again the information is imme-
diately available and nothing is lost in translation.

Below this are the test configurations and the applications that were not
recorded at the time of the test. (If the tester specifically identified an appli-
cation, it will be called out here.) Finally, the list of data collectors that were
running during the test is displayed and their output. The key file here is the
IntelliTrace log because this enables the developer to “replay” what was hap-
pening—in code. The IntelliTrace log and capabilities of IntelliTrace are cov-
ered in the “How a Developer Uses IntelliTrace” section. Not only can the
developers replay the session, but also the IntelliTrace log can take the devel-
opers to the exact point in the code where step 5 began, so they don’t need
to trace through the entire application!

The System Information tab contains two (and eventually three) impor-
tant pieces of information. The first is the build that the bug was found in.
This makes it easy for the developers to know which build the testers were
working with and for them to quickly grab it and go. Eventually, when the
bug is fixed, built, and re-tested, the Integrated In field will contain the infor-
mation that the build was fixed in.

The system information provided is shown in Figure 5-6.
This is the information for the system that the test was running on. In

many situations (especially when dealing with specific hardware that your
software may interact with), what was happening with the system makes a
big difference. Sometimes, it’s the operating system version that makes the
difference, and sometimes it is the language or the amount of available mem-
ory. This information is captured in the SystemInformation.xml file and is for-
matted and displayed here.

Chapter 5: Resolving Bugs118

Figure 5-6: System Information

The Generated Bug 119

TEST ATTACHMENTS *WARNING*
Test attachments are stored with Test Results, not with the Bug WIT. For this

reason, be extremely careful when deleting a test result. Check to make sure

no bugs are in the active state. If you accidentally delete a set of test results,

the links in the Bug work item type no longer connect to anything, and you

cannot undo the deletion of the test results (without a full restore of the SQL

Server database).

The last important tab, Test Cases, provides a link to the Test Case that
caused the bug, so the developer can view the entire Test Case and its his-
tory—and the requirement to which the Test Case was related.

TOUCHING THE SURFACE ABOUT INTELLITRACE
IntelliTrace provides so many options and has so many different possibilities

that a full book could be written on just how to debug problems with it. The

view provided here gives you a somewhat detailed introduction to Intelli-

Trace but leaves out many features and skips over much of what occurs.

How a Developer Uses IntelliTrace

By way of an introduction, IntelliTrace captures historical data related to the
code executed by the test. In this way, developers can move back and forth
through the test run examining variable data and conditions at a point in
time, and they don’t need access to the actual code. On the other hand, the
developer can also attach the IntelliTrace log to the code and replay the test-
ing session after the fact.

When developers are assigned the bug, one of the first things they do is
look at the context of the bug and try to reproduce it. For this, they can just
walk through the list of steps in the Steps to Reproduce section of the filed
bug. When they have successfully done this, the developer will most likely
jump into the IntelliTrace log (Figure 5-7).

Chapter 5: Resolving Bugs120

Figure 5-7: IntelliTrace Summary Log

Figure 5-7 shows those sections that are most important for the discus-
sion. The top section lists the threads that were running before, during, and
after the test failure occurred. The Exception Data shows all exceptions

thrown during the test. The Test Data shows all information related to the
actual tests that were run, including the Test Case and the test steps taken
during the Test Case and whether they passed or failed.

Before you step into finding and fixing the bug, it is worth noting that you
can find two types of bugs during a test: an exception bug (the application
does something it cannot actually do, such as creating a file in a location
where the application does not have permission to create that file) and a logic
bug. Exception bugs will be listed in the Exception data, and debugging these
problems is extremely simple; the developers just double-click the exception
and are taken to the line of code that it occurred on. Logic bugs are a differ-
ent problem because developers can’t point to a single spot in the code and
say this is where everything went wrong; they need to track it down.

How a Developer Uses IntelliTrace 121

A NOTE ABOUT THIS PARTICULAR INTELLITRACE FILE
You can see the rather large amount of exceptions thrown by this particular

application. Some basic assumptions are made (incorrectly as it turns out)

and some prevalidations are not done (such as checking to see if a file exists

before trying to load data). The exceptions are handled, but it is much

cheaper to prevalidate rather than handle an exception, so this would be

detrimental to application performance. This is the type of information that

IntelliTrace helps you discover quickly and easily.

For this situation, the developers can start debugging by double-clicking
the failed test step, which takes them to the point in time at which the test
failed. Now the developers have a number of options. This bug is fairly
straightforward (it is the result of incorrect data populating a text box), so the
developers can just search for that text box in the IntelliTrace file, as shown in
Figure 5-8.

Here, you can see the number of occurrences called during the test run (2
of 2 at the top of the code pane) and the developers are taken to the spot
where the txtName text box is populated. It is easy to see that the applica-
tion is checking the cookie file before the authenticated users’ information,
even if they are logged on. So it’s a case of simply reversing these values.

Figure 5-8: Finding the bug

For additional help, the pane on the right shows the entire stack trace up
to this point. Although the image is hard to see, you can see that there is a lot
there—there always is when debugging an ASP.NET application because of
the calls made by IIS—but that’s for the developers to worry about, not the
testers!

Fixing the Bug

This bug can easily be fixed by moving a little bit of code around. After mov-
ing this code, the developer can check the code in.

A part of fixing this bug, when the code is checked in it, is associated with
Bug #155, which is the bug generated as a result of the test failure. This cre-
ates a changeset association between the code and the work item that is crit-
ical to making the rest of this scenario work. The Pending Changes window
and Associated Work Items tabs are shown in Figure 5-9.

Chapter 5: Resolving Bugs122

Figure 5-9: Pending Changes and Associated Work Items tab

Next, the changes need to be included in an automated build. To do this,
the developer would rerun the build definition in use by the testers (in this
case, the BlogEngine.NET build). The build report is shown in Figure 5-10.

Fixing the Bug 123

Figure 5-10: Build output, which contains the bug fix

Three items on this report are of interest: Associated Changesets, Associ-
ated Work Items, and Impacted Tests.

Associated Changesets
If you have used TFS but have never used automated builds, you are miss-
ing out on a big feature. In many organizations, a manifest must be created
showing which files and which versions of files are included in a release. This
is painstaking (and painful) and time consuming to do correctly. Automated
builds solve that problem with no work. All you need are automated builds!
Changesets are associated with builds through the following mechanism: As
part of a successful build (this is not true if the build fails), Team Build creates
a label. (This label is per build definition.) When performing a new build, TFS
looks at all the changesets added after the previous build (which is identified
via the label) and incorporates them as associated changesets.

Figure 5-10 shows that only one changeset is associated with the build,
and the comment for the changeset displays.

Associated Work Items
Associated Work Items is a list of all work items affected by the code changes
in the build from the last successful build of this particular build definition.
This is tracked by changesets associated with work items. If you have not
used work items before, or automated builds, this is an extremely valuable
tool and one of the key reasons for using TFS. Often, testers or users (or both)
ask what changed from the last build of software they tested or used. This
information isn’t usually available unless the project manager or build mas-
ter is keeping detailed notes on what is going on.

In Figure 5-10, you can see that only one work item, Bug 155, is associated
with this build. This information (which you can see in Figure 5-12) is also
available to the testers when they decide to accept a new build. The only way
this information is available to them is through the use of automated builds.

Chapter 5: Resolving Bugs124

Impacted Tests
This section comes to you courtesy of a new feature in Visual Studio 2010
called Test Impact Analysis (TIA), which was covered briefly in Chapter 1,
“State of Testing.” This is where you can see it in action. In Chapter 4, a num-
ber of tests were executed; among them were the tests that involved adding
blog entries and making comments. Every one of those tests passed, which
means that you don’t have to run them again, right? Of course not! What TIA
is telling us is that these two tests had been previously run and were suc-
cessful, but that this code change may cause the results of those tests to
change. Note that it did not list the Test Case that actually caused the bug
because that test had not been successful before. Also it did not list the logon
tests that were run because they did not touch the changed code.

Test Impact Analysis works for Unit Tests as well. This is helpful when the
number of Unit Tests grows to a large number or when there are some Unit
Tests that take a while to run and you don’t want to wait. This can also help
testers because they can execute the Unit Tests created by developers as part
of executing automated tests.

Setting the Build Quality

In the upper-right corner of Figure 5-10, you can see the Build Quality selec-
tion. This option was available in TFS 2005 and 2008 but was not used fre-
quently because there were many options that had to be set from a different

Setting the Build Quality 125

NOT ALL WORK ITEMS ARE ASSOCIATED WITH BUILDS
A word of caution: Not all the work items associated with a build are listed.

Consider the following: A requirement has a task. A developer writes code

and checks the code in and associates it with the task. The build runs, and

the report show that only the task is associated with the build. Why? There is

no changeset related to the requirement work item.

So what can you do about this? When you do a code check-in, make sure

to associate it with both the task and the requirement. This can also be done

as a post check-in step but is easier to do at the time of the check in. You

need to be aware of this out-of-the-box limitation.

screen. In addition, there were no integrated functional testing tools to take
advantage of this value. With 2010, this might change; if it does you should
use this setting to inform and communicate to testers whether a build is suit-
able for a variety of things. In addition, testers can update this field to further
communicate with the release team. You must decide what you are going to
use the build quality for. For example, the first quality available to you is Ini-
tial Test Passed. Well, what initial test? The Unit Tests that ran as part of the
build or when the testers got the build and ran their regression tests? It can
mean different things to different people, so you must define these before
using them so that everyone has a common understanding.

Table 5-2 describes the default options available to you.
Table 5-2: Build Quality Usage and Description

Chapter 5: Resolving Bugs126

Quality Description/Usage

Initial Test Passed Indicates that the build has been tested in some capac-
ity and that the tests passed.

Lab Test Passed Indicates that the build executed tests in a lab environ-
ment and that those tests passed. This generally refers
to automated UI tests but can also refer to Unit Tests
that ran as part of the lab build.

Ready for Deployment This quality should be set only by the test team after all
tests have passed and the build is “signed off” that it is
ready to go to UAT or production.

Ready for Initial Test Indicates that the build was successful and is ready for
testers. Successful may mean that the Unit Tests passed
(if there are Unit Tests) or simply that the build did not
break.

Rejected For whatever reason (usually test failure or build fail-
ure) this build is unsuitable for use. This can be set by
the developers or the testers, but in general a failed
build will not be used, so this will be set by the testers
after a series of tests has failed.

Released Indicates that the particular build has been used to
release to production or beta testing.

UAT Passed Indicates that the users approved the build after run-
ning their series of tests.

Under Investigation Indicates that the build is used by the developer or
tester to discover a problem.

To customize these build qualities, go to the Build Explorer page in Team
Explorer, and select Manage Build Quality. After the build is complete, the
testing team should redeploy the code to wherever it is the testers are testing
from.

Assigning a New Build 127

DEPLOYING TEST CODE
Test code can be deployed automatically as part of the build. This is much

easier to manage with a virtual testing infrastructure because you can have

many more different versions of the build available to testers. So whose re-

sponsibility is it? The testers are responsible for deploying and testing the

code, but it’s nice when the developers help with an automated deploy script

or an MSI package or a set of instructions.

Assigning a New Build

After the build with the fix has been deployed, the testers can be notified in
a number of ways: by e-mail alerts, build alerts (via the build notification
tool), or by word of mouth. In any case, the first step for the testers is the
determination of whether they will use the build. For this explanation, they
can use the build. Testers can use the build filter to make sure they do not
select from a build that is not ready for testing. One point to be aware of is
that the build quality filter is an exact match—you cannot set an “at least this
quality” filter. This is why, as noted, the team should agree on how they will
use the build quality setting.

USING A BUILD NOT ASSIGNED TO THE PLAN
To use a build that has not been assigned to the plan, use the Run with Op-

tions selection on the Test tab, Run Tests page. However, this requires that

you configure a separate test environment from the one the plan is using. In

addition you don’t get the benefit of the Test Impact Analysis notifications

or the Verify Bugs functionality (discussed next).

In MTM, you can assign a new build in two ways: from the Plan tab, Prop-
erties page or from the Track tab, Assign Build page (Figure 5-11). (They are
the same screen, so it’s just a matter of preference.) When you assign a new
build, MTM lists the latest build for the given build definition.

Chapter 5: Resolving Bugs128

Figure 5-11: Assign Build page

In the example scenario covered in the last few chapters, you know that
there are impacted tests, so selecting the latest build displays a test impact
dialog. The impacted tests are shown in Figure 5-12.

Figure 5-12: Test Impact Analysis, Recommended Tests

The impacted tests between two different builds are shown; the builds do
not need to be consecutive, so you can see all the tests that have been
impacted over a period of time. Each impacted test is shown once for each
Test Suite that the test is a part of. (This is why the same test shows up twice
in Figure 5-12.) When you select one or more tests, you have the option to
reactivate the Test Cases. You cannot run these tests directly from this dialog.
To return to this list, select Track tab, Recommended Tests page. On this page
is the option to show the related work items. Selecting this shows the screen
in Figure 5-13.

Verifying That the Bug Is Fixed 129

Figure 5-13: Related work items

In this case, the related work item is a single bug fixed by the previous
build. However, all related work items of any type are shown here.

Verifying That the Bug Is Fixed

View all the bugs filed for the Team Project that this plan is associated with
on the Test tab, Verify Bugs page. These bugs are grouped by state and, as you
may imagine, the resolved bugs are of most interest to a tester (Figure 5-14).
Bugs in the resolved state (as noted in Figure 5-15) indicate that the bug has
been fixed and is ready to be verified by the testing team.

Figure 5-14: Verify Bugs screen

The Verify Bugs screen has a number of options. The default view shows
the bugs assigned to you. As you can see in Figure 5-14, one bug is assigned
to Jeff. Open the bug to view the fix or any notes the developer may have
added to the bug, or open the Test Case that spawned the bug. The Create
Test Case from bug option is discussed in Chapter 4.

Chapter 5: Resolving Bugs130

BUILD RETENTION POLICY MATTERS
You must retain builds that a bug was filed against. You must decide upfront

who is responsible for this because if the build that reported the bug is de-

leted, when testers click Verify, they receive an error message stating that the

original test results are not available. In this situation, the tester needs to re-

execute the Test Case and then mark the bug as Closed manually after the

test passes.

Use the Verify button to make sure that the bugs are resolved. With this
method, you can verify only one bug at a time. Select the bug that you want
to verify, and click the Verify button. This launches Test Runner loaded with
the Test Case associated with the bug you want to verify.

Generally when verifying a bug, you need to create an action recording
because the first time you ran the test a bug occurred, so there is a strong like-
lihood that the original action recording is not suitable for use in generating

an automated Test Case. As soon as you create an action recording, the play-
back is not available to you, so determine when this makes the most sense.
However, when using the playback feature, the benefit is immediately appar-
ent. Now you simply play back the existing recording until you get to the
point in which the bug occurred and simply execute that part of the test man-
ually. This makes bug verification simple and virtually painless. When you
complete the test run of the bug and click Save and Close, a bug resolution
dialog displays (as shown in Figure 5-15).

Dealing with Impacted Tests 131

Figure 5-15: Bug resolution dialog

The bug resolution dialog enables you to quickly update the bug that has
been resolved. In this case, it is setting the bug to Closed. You can also add a
comment, which will be applied to the bug.

Dealing with Impacted Tests

In Figure 5-12, you saw the tests that were impacted by the code change, but
how should you actually handle them? In a small suite of tests, such as what
is shown here to demonstrate functionality in this book, you don’t need to
worry about it too much. If there is only a small list of Test Cases, the assump-
tion is that you can rerun them all to verify regression bugs have not been
introduced. On the other hand, consider a system that has hundreds or thou-
sands of Test Cases and a limited period of time and limited testers to run
regression testing. This situation is specifically what Test Impact Analysis
was built for. This scenario requires that testers pick from all the tests avail-
able to them with the hope that they pick high-value Test Cases that can find

defects. To do this, they have only the information provided by the develop-
ers and their experience in running these Test Cases before to determine
which Test Cases are best to execute.

Chapter 5: Resolving Bugs132

TEST IMPACT ANALYSIS WON'T FIND EVERYTHING
TIA does not know about changes made to external components or to things

such as data. For this reason it is still the responsibility of the testers to make

sure that the right tests are executed. Use TIA as a guide but not as the only

guide.

For a small number of tests, the easiest option is to reset all the impacted
tests to Active. Use the Test Plan Summary page to determine how many are
Active in the overall set of tests and make sure they are all executed. To do
this, select the Test Cases on the Track tab, Recommended Tests page, and
select Reset to active. This enables testers to see which tests are active on the
Test, Run Tests page. The testers can then execute those tests again.

For a large number of tests, things become a little more complicated, and
you can use several techniques. First, use the Priority field of the Test Case—
that’s what it’s there for. By default all the Test Cases are set at Priority 2. If
you might be in this situation, consider changing the default setting from 2 to
4 so that as you reprioritize them, it makes more sense. In combination with
the priority setting, you can create a query-based suite where the Priority =
1 for example; then testers will know that this suite must be completely
tested. Maybe the suite based on Priority 2 should be mostly tested, and
suites based on Priority 3 and 4 are on an as-time-permits basis. By creating
tiers in this manner, it becomes easier to report on their status and to ensure
the testers are testing the right features at the right times.

SUMMARY

In this chapter, you examined the workflow structure of bugs in the Agile and
CMMI templates and explored all the critical fields in these work items. You
also explored a bug created through the testing process and the information

contained in the filed bug, and you know the value of the information col-
lected for you automatically by Microsoft Test Manager and Test Runner.
Knowing what information is gathered and how developers can use that
information is critical to improving the communication between developers
and testers. When the developers have completed their bug fixes, testers can
be notified through a number of different mechanisms. After the testers have
the resolved bug back in their hands, they not only can verify that the bugs
were fixed, but also rerun high-value tests to increase their confidence that no
regression bugs were created by the bug fixes.

You have been dealing with manual Test Cases and a completely manual
process for testing and verifying code, but starting in Chapter 6, “Automat-
ing Test Cases,” you learn how to automate many aspects of the testing
process, execute those tests, and verify the results.

Summary 133

This page intentionally left blank

6
Automating Test Cases

U P TO T H I S P O I N T, Y O U H AV E S E E N how to perform manual testing and
file bugs and how to verify those bugs. However, manual testing is not effi-
cient for use in regression testing. Regression testing takes time and, in few
cases is performed comprehensively because of a lack of automation. Visual
Studio 2010 enables you to create automated Test Cases from your manual
tests (or as completely stand-alone automations), which enables you to use
many tests without having someone babysit the Test Cases or take away from
other testing opportunities.

135

WHO SHOULD READ THIS CHAPTER
Read this chapter if you need to create automated tests. You might be a tech-

nical tester or developer who wants to create your own automated functional

tests. Although it does not have to be a coding-intensive process, it might be

depending on what you want to accomplish. Therefore, this chapter presents

a large number of coding examples. Chapter 7, "Executing Automated Test

Cases," covers executing already-created automated tests and is more

appropriate if you do pure testing, as opposed to coding work.

Automation in Visual Studio is accomplished through three technologies:
Microsoft Active Accessibility (MSAA), User Interface Automation (UIA),
and Internet Explorer Document Object Model (IE DOM). MSAA is an older
technology still used in web automation, whereas UIA is a newer implemen-
tation for providing automation. For this reason MSAA is used to automate
C++ applications and Web Applications (with the IE DOM) whereas UIA is
used to automate WPF applications. This chapter overviews both technolo-
gies. You also examine the code that Visual Studio generates in both cases.
The chapter concludes with showing how to associate automated tests (both
Coded UI and Unit Tests) with Test Cases.

Chapter 6: Automating Test Cases136

DEVELOPERS CAN WRITE AND EXECUTE TESTS ALSO
Coded UI Tests are not relegated to the next step after a manual test. Devel-

opers can write Coded UI Tests that validate a user interface where a Unit

Test would either not be possible or practical. Don’t let that this is part of a

“testers” toolkit dissuade developers from taking full advantage of every

quality tool available to ensure that the code is free of bugs. The section

"Adding Additional Recorded Steps" describes the process of recording

automated tests from within Visual Studio.

To Automate or Not to Automate

This simple question deserves some serious thought. The answers can run
the gamut from “Automate everything” to “It isn’t worth it to automate any-
thing.” Or another favorite is “We have Unit Tests; why do we need to auto-
mate functional tests?” The reality is that the first response is appropriate (but
rarely achievable); the second is almost never appropriate; and the third
question is actually a good question. If you have large amounts of Unit Tests
that give you high code (and maybe even functional) coverage, why bother
with automated functional tests? The answer is that although many people
like to think that Unit Tests are the be all and end all of testing, they aren’t—
regardless of how far down the path you go. Unit testing done properly, by
definition, does not test integration. It doesn’t test a whole series of events,

and that’s what functional testing does. (Also, unit testing user interfaces is
fairly difficult, so many teams don’t do it.) So although Unit Tests may give
you 100% code coverage, they can never give you 100% functional coverage.

Having accepted this reality, you then need to determine what to auto-
mate. The answer is always “everything,” but that rarely works out. The rea-
son for this is that you can’t afford it. Automating tests, even with a
framework as slick as what Visual Studio 2010 offers, takes time. And that
costs money. And it usually isn’t worth it to automate everything because
your ROI diminishes as you automate more tests.

Tests, by one definition, are only good if they are likely to find bugs. This
was discussed earlier when the case for what makes a good test was laid out.
This same holds true for automating tests; automated tests are only useful if
they have a high likelihood of finding bugs. So what types of tests are likely
to meet this criteria and what questions should you ask yourself?

• Is the work to automate the test to provide benefits in the future?

If it takes 10 man hours to automate a test and the test is only 2 min-
utes long and you’re only going to run the test maybe 10 times in the
foreseeable future, this is not a beneficial use of your time.

Tests that can quickly and easily be automated are good candidates,
whereas complex tests that take a long time to automate are not usu-
ally a good choice.

• How often is the feature you’re testing likely to change in the future?

If there is a high degree of likelihood that the feature will undergo
many changes, it is not a good candidate because too much mainte-
nance work would need to be done.

• Is the feature tested used frequently?

This is where trade-offs come into play. A frequently used feature is
likely to be changed frequently because users will create new ideas
that they want to see implemented. However, a frequently used fea-
ture is also an area in which users can find bugs because they use
every aspect of it, so it must be tested to a higher degree than other
parts of the system.

To Automate or Not to Automate 137

In general, frequently used features are not good candidates because
of the maintenance costs. In addition, testers also write and update
new test scripts all the time to take into account the changes. However,
if the feature is frequently used and stable (that is, the customers like it
the way it is) it might make a good candidate for automated tests.

• Is the test likely to find regression bugs?

Finding regression bugs is one of the key reasons for creating auto-
mated tests. Regression bugs can, of course, be found anywhere, but
they are typically found in areas of the application that are central and
shared by many features. This includes common business logic and
user interface portions of the application. If it is the business logic that
is shared, a comprehensive set of Unit Tests as opposed to Coded UI
Tests are probably the best way to go. A cost is associated with Unit
Tests as well, but these tests are prime candidates for automation.

If the test you devise is not likely to find regression bugs, avoiding it
can lower your maintenance costs because an automated test provides
value only if it is likely to find regression bugs. Well, peace of mind is
another reason to automate tests, but this reason may not be as
compelling.

• How many different versions of the software do you need to
maintain?

If you are maintaining many different versions side by side, you prob-
ably have the same test in each version (or a derivation of the same
test, which is much worse). The maintenance can be phenomenally
expensive when all other things are considered. If you maintain only
one or two versions of the software in production, automation is okay.
If you maintain more, consider sticking with manual testing.

You might not have all these answers the first few iterations because you
don’t know this information. Talk with the developers and have them give
you some ideas. Keep these points in mind as you go through this chapter.

Chapter 6: Automating Test Cases138

The Automated Testing Framework

Before diving into Coded UI testing, it is helpful to understand the auto-
mated testing framework in Visual Studio and to become familiar with the
various screens. All types of automated testing in Visual Studio rely on this
framework, so if you understand how it works once, you understand how it
works for everything. Unit Tests, Coded UI Tests, Web Performance tests,
Generic tests, and Database Unit Tests all use this infrastructure. The basic
structure of these tests is the code that supports them. When you create, for
example, a new Unit Test, the generated code enables you to use certain
attributes, which are shown in the order executed in Figure 6-1.

The Automated Testing Framework 139

AssemblyInitialize

ClassInitialize

TestInitialize

TestMethod

TestCleanup

ClassCleanup

AssemblyCleanup

Figure 6-1: Attributes used in test execution

These attributes are identical for all tests, but some variations exist in the
different test types. Some classes that contain tests (such as a Unit Test) are
decorated with the TestClass attribute, and others such as the Coded UI test
class are decorated with the CodedUITest attribute. There are other differ-
ences such as that the Web Performance test supports plug-ins and other fea-
tures such as extensible validation and extraction rules. And Database Unit

Tests support executing SQL statements that are the test. But at their core,
they all support these basic attributes and are executed in the same manner.

Two screens support executing automated tests: the Test List Editor and
the Test View window (see Figure 6-2). From the Test menu select Test List
Editor and Test View.

Chapter 6: Automating Test Cases140

Figure 6-2: Test List Editor and Test View

Both windows enable you to execute automated tests of any type, but the
Test View window is a light-weight window that is meant to be docked. The
major difference between the two windows is that you can create test lists to
use for whatever purpose you want. The most common use of test lists is to
break up tests so that only certain tests are executed as part of a build or for
developers to quickly and easily run blocks of tests rather than all tests.

Each test has properties such as Owner, Test Name, Test Categories,
Description, and Data Connection information. This means that tests such as
Coded UI Tests can be data-driven using an external data source or the para-
meterized data (as opposed to manual tests that can use parameterized data
stored in the Test Case). In many cases setting, these properties add addi-
tional attributes to the test method to store the data. VS2010 introduces two
additional options of importance to these tests to those managing automated
tests. The first is that you can right-click a test and select Associate with Test
Case; this walks you through associating the automated test with a specific

Test Case Work Item. The other is the ability to right-click a test and select
Create Test Case from Test. This provides the ability to automatically create
an automated Test Case. And this enables developers to now associate devel-
oper level tests with requirements so that they can understand the Test Case
coverage of a requirement from the developer tests. This also means that one
existing property should not be used anymore: Associated Work Items. This
value is not reported to the data warehouse and therefore cannot be used for
reporting. If you currently use this property, consider associating your test
with an actual Test Case work item type.

Creating an Automated Test from a Manual Test 141

UNIT TEST REQUIREMENTS COVERAGE
Normally, you don’t see Unit Tests and requirements coverage in the same

sentence because Unit Tests are blocks of code that aren’t associated with

a requirement, in any reportable way. Using the Test Case work item type and

associating it with a Unit Test means a couple things: First, you can now re-

port on requirements coverage by Unit Tests, even if you don’t use the fea-

tures of MTM, and second, this enables testers to execute the Unit Tests to

help verify code quality.

Creating an Automated Test from a Manual Test

The most common scenario is to create an automated test, for the purpose of
regression testing, from a previously passed manual test. Continuing the
example from the last few chapters, you start by automating the Test Case
that a bug was found against and fixed. The Test Case is As a Logged on User
My Profile Information Prefills the Comments Field. Exercise 6-1 walks you
through the automation process.

E X E R C I S E 6 - 1

Automating a Manual Test Case
To automate a manual Test Case, follow these steps:

1. Open Visual Studio.

2. Select Test, New Test from the main menu.

3. In the Add New Test dialog, select Coded UI Test, give the test a name
(in this case LoggedOnUserPreFilledTest.cs), and click OK.

4. When the New Test Project dialog displays, enter a name (in this case
BEAutomatedTests), and click Create.

5. In the Generate Code for Coded UI Test dialog, select Use an Existing
Action Recording, and click OK.

6. Search for the Test Case you want to automate in the Work Items
Picker dialog, and click OK.

You can do a few things to make the process of selecting the appropriate
Test Case easier. The first is that a tester can set the Automation Status to
Planned so that the developer doing the work can easily find it. The second
is to notice the icons next to the result of the query that you run to find the
Test Case. Any item with a red circle and a line through it indicates that no
test automation strip exists, and as such you cannot use that Test Case to gen-
erate an automated test.

Examining a Generated Web Application Coded UI Test
This particular Test Case is about as simple as it gets, so spend some time
stepping through it to become familiar with every aspect. The Logge-
dOnUserPreFilledTest code is shown in Listing 6-1. This code has been
slightly condensed, and unnecessary comments have been removed from
what is actually generated.

Listing 6-1: LoggedOnUserPreFilledTest Class

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;
using System.Windows.Input;

Chapter 6: Automating Test Cases142

Listing 6-1: Continued

using System.Windows.Forms;
using System.Drawing;
using Microsoft.VisualStudio.TestTools.UITesting;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Microsoft.VisualStudio.TestTools.UITest.Extension;
using Keyboard = Microsoft.VisualStudio.TestTools.UITesting.Keyboard;
namespace BEAutomatedTests
{
[CodedUITest]
public class LoggedOnUserPreFilledTest
{

public LoggedOnUserPreFilledTest()
{
}
[TestMethod]
public void Coded UITestMethod1()
{
this.UIMap.Navigatetohttptfs20108001();
this.UIMap.ClicktheLogInlink();
this.UIMap.EnterPssw0rdforthepasswordandclickLogIn();
this.UIMap.ClicktheWelcometoBlogEnginepost();

}
public TestContext TestContext
{
get
{
return testContextInstance;

}
set
{
testContextInstance = value;

}
}

private TestContext testContextInstance;
public UIMap UIMap
{
get
{
if ((this.map == null))
{
this.map = new UIMap();

}
return this.map;

}
}
private UIMap map;

}
}

Creating an Automated Test from a Manual Test 143

To begin with, the class must be tagged with the CodedUITestAttribute to
identify this to Visual Studio as a Coded UI Test. Each Coded UI Test that you
generate is placed into its own class. The method that actually runs the test
is marked by the TestMethodAttribute and is given the name of Code-
dUITestMethod1. It is a good practice to immediately rename this to a more
descriptive name such as LoggedOnUserInformationIsPreFilled1 or some-
thing similar. This makes it easier to identify in subsequent dialogs.

The TestContext object provides access to information about the currently
executing test. This is the same test context instance provided for Unit Tests
as well. The information provided by test context enables you to access data
in a data-driven test (discussed later), where the test is executed from, where
the logs are written to, the results of the test, and other information.

Understanding a Coded UI Test

The UI Map class is where the real work takes place, and an assortment of
supporting classes are generated. The code you saw in the previous listing
wraps the code in the UI Map class. This code file actually contains several
classes that you can look at. Before diving into a rather convoluted set of
generated code, it helps to look at a class diagram to understand the rela-
tionships and the classes involved. Figure 6-3 shows the class diagram for the
generated code.

Now look at each of the steps in the Test Case and their associated meth-
ods. You need to understand how these calls work—not so much for using
Coded UI Tests out-of-the-box but for using them in Lab Management, which
is covered in the next chapter. Listing 6-2 contains the methods and classes
used to support the Navigate to http://tfs2010:8001 test step. These listings
include code from multiple classes to show all the relevant code together. For
example, Listing 6-2 contains the Navigatetohttptfs20108001 method in the
UIMap class and the Navigatetohttptfs20108001Params class.

Chapter 6: Automating Test Cases144

Figure 6-3: Coded UI Test generated code

Listing 6-2: Navigate to http://tfs2010:8001 Test Step

[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
Public partial class UIMap
{
public void Navigatetohttptfs20108001()
{
this.UIInternetExplorerEnhaWindow.LaunchUrl(
new System.Uri(this.
Navigatetohttptfs20108001Params.UIInternetExplorerEnhaWindowUrl));

}
public virtual Navigatetohttptfs20108001Params
Navigatetohttptfs20108001Params

{
get
{
if ((this.mNavigatetohttptfs20108001Params == null))
{
this.mNavigatetohttptfs20108001Params = new
Navigatetohttptfs20108001Params();

}
return this.mNavigatetohttptfs20108001Params;

}
}

}

Creating an Automated Test from a Manual Test 145

Listing 6-2: Continued

[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
public class Navigatetohttptfs20108001Params
{
public string UIInternetExplorerEnhaWindowUrl =
“http://tfs2010:8001/”;

}

First, the actual values used for the test are not stored inline with the test.
For each test step that requires parameters, a corresponding Params class is
created. This provides a great benefit because the values returned by the
params classes can be set elsewhere. A common use is for data binding, which
is discussed later. Using the params classes you can simply override the
default values provided.

Second, each method in the UIMap.designer.cs file has the Generated-
CodeAttribute. Any class with this attribute will be regenerated upon any
change made with the Coded UI Test Builder.

Chapter 6: Automating Test Cases146

MAINTAINING CODED UI TESTS
This is your first lesson in maintaining automated tests. For tests that you

don’t need to customize, this is something you don’t have to worry about. For

tests with a high amount of customization, regeneration can cause some

problems. This is why you should always keep any custom code in the UIMap

class located in the UIMap.cs file and not the designer file. Then all you need

to deal with is removing the ambiguous calls from the UIMap.designer.cs

when you regenerate code.

Listing 6-3: EnterPssw0rdforthepasswordandclickLogIn Test Step

[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
Public partial class UIMap
{
public void EnterPssw0rdforthepasswordandclickLogIn()
{
HtmlEdit uIUserNameEdit =

this.UISigninWindowsInterneWindow.UISigninDocument.UIUserNameEdit;
HtmlEdit uIPasswordEdit =

Listing 6-3: Continued

this.UISigninWindowsInterneWindow.UISigninDocument.UIPasswordEdit;
HtmlInputButton uILogInButton =

this.UISigninWindowsInterneWindow.UISigninDocument.UILogInButton;
// Type ‘Jeff’ in ‘User Name:’ text box
uIUserNameEdit.Text =

this.EnterPssw0rdforthepasswordandclickLogInParams.UIUserNameEditText
;

// Type ‘********’ in ‘Password:’ text box
uIPasswordEdit.Password =

this.EnterPssw0rdforthepasswordandclickLogInParams.UIPasswordEditPass
word;

// Click ‘Log In’ button
Mouse.Click(uILogInButton, new Point(35, 13));

}
}
[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
public class EnterPssw0rdforthepasswordandclickLogInParams
{
public string UIUserNameEditText = “Jeff”;

public string UIPasswordEditPassword =
“Cf6+rNQubXkqzKc/jQXexQKmdE+3YIke”;
}

In the methods presented in Listing 6-3, a couple of items are not seen in
the previous method: The first is that the code references controls on the user
interface. The first three lines in this method grab references to the username,
password, and login button controls. After that they provide parameters to
the username and password controls, and finally the Login button is clicked.
There have been many comments made about the point that you see created
when the mouse-click is simulated and whether this means the controls are
found based on their location on screen. The answer is that they aren’t. How
controls are found is covered in the next section. The point referenced here
is, for all intents and purposes, not used. This is actually the point, from the
upper-left corner of the parent control where the mouse-click was recorded
for playback, but it isn’t used to find the control except as a last resort.

Creating an Automated Test from a Manual Test 147

Finally, the password is encrypted, so it is okay to have this information
stored in the test. (Also, because this was run, hopefully, against a test server
with test accounts, this should not be a big deal.)

Chapter 6: Automating Test Cases148

ENCRYPTED PASSWORDS
Although it is okay to have throwaway usernames and passwords stored in

the Test Case, do not use actual accounts that have access to a network or

sensitive information as a prudent security measure.

Searching for Controls

Continuing with the preceding example, now dive into how the control hier-
archy is structured. Figure 6-3 accurately represents the class structure but
leaves out some detail covered here. When a test is recorded, the structure of
the test is as follows: The test contains a series of test steps that reference a
UI element (the browser in this case) that has instances of controls. The ques-
tion is, how does the test find the control on the user interface?

Now look at a single line in the EnterPssw0rdforthepasswordandclick-
LogIn method presented in Listing 6-3.

HtmlEdit uIUserNameEdit =
this.UISigninWindowsInterneWindow.UISigninDocument.UIUserNameEdit;

The first step is to get a reference to the web page that the code is going
to operate on. Drilling down into the UISigninWindowsInterneWindow prop-
erty, you see that the property creates a new instance of the class with the
same name (see Listing 6-4).

Listing 6-4: UISigninWindowsInterneWindow Class

[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
public class UISigninWindowsInterneWindow : BrowserWindow
{
public UISigninWindowsInterneWindow()
{
#region Search Criteria
this.SearchProperties[UITestControl.PropertyNames.Name] =

“Sign in”;

Listing 6-4: Continued

this.SearchProperties[UITestControl.PropertyNames.ClassName] =
“IEFrame”;

this.WindowTitles.Add(“Sign in”);
#endregion

}

public void LaunchUrl(System.Uri url)
{
this.CopyFrom(BrowserWindow.Launch(url));

}

#region Properties
public UISigninDocument UISigninDocument
{
get
{
if ((this.mUISigninDocument == null))
{
this.mUISigninDocument = new UISigninDocument(this);

}
return this.mUISigninDocument;

}
}
#endregion

#region Fields
private UISigninDocument mUISigninDocument;
#endregion

}

First, this class inherits from the BrowserWindow class, so you know it rep-
resents, in this case, Internet Explorer. The constructor is what is interesting,
though. All the values for the search properties gathered during the test are
fed into the search properties here. So the test recorded that the name of the
page was “Sign In”, it was in an IEFrame class, and the window title was also
“Sign In”. With this information the testing framework can get a reference to
the right browser window. The next step is to get a reference to the UISignin-
Document. This is the HTML document loaded in the browser (that is, the con-
tents of the browser window). Listing 6-5 shows the UISigninDocument class
(reformatted for readability). Before looking at Listing 6-5, the last point to
note about this class is the LaunchUrl method, which uses the CopyFrom
method to grab the browser window from the base BrowserWindow class. The

Creating an Automated Test from a Manual Test 149

Launch method is static and enables this step to reuse the browser window
from the previous step.

Listing 6-5: UISigninDocument Class

[GeneratedCode(“Coded UITest Builder”, “10.0.30319.1”)]
public class UISigninDocument : HtmlDocument
{
public UISigninDocument(UITestControl searchLimitContainer) :

base(searchLimitContainer)
{
#region Search Criteria
SearchProperties[HtmlDocument.PropertyNames.Id] = null;
SearchProperties[HtmlDocument.PropertyNames.RedirectingPage]
= “False”;

SearchProperties[HtmlDocument.PropertyNames.FrameDocument]
= “False”;

FilterProperties[HtmlDocument.PropertyNames.Title] = “Sign in”;
FilterProperties[HtmlDocument.PropertyNames.AbsolutePath] =

“/login.aspx”;
FilterProperties[HtmlDocument.PropertyNames.PageUrl] =

“http://tfs2010:8001/login.aspx”;
WindowTitles.Add(“Sign in”);
#endregion

}

#region Properties
public HtmlEdit UIUserNameEdit
{
get
{
if ((this.mUIUserNameEdit == null))
{
this.mUIUserNameEdit = new HtmlEdit(this);
#region Search Criteria
mUIUserNameEdit.SearchProperties[HtmlEdit.PropertyNames.Id] =

“ctl00_cphBody_Login1_UserName”;
mUIUserNameEdit.SearchProperties[HtmlEdit.PropertyNames.Name]

=
“ctl00$cphBody$Login1$UserName”;

mUIUserNameEdit.FilterProperties
[HtmlEdit.PropertyNames.LabeledBy] = “User Name:”;

mUIUserNameEdit.FilterProperties[HtmlEdit.PropertyNames.Type]
=

“SINGLELINE”;
mUIUser

NameEdit.FilterProperties[HtmlEdit.PropertyNames.Title]
= null;

mUIUser

Chapter 6: Automating Test Cases150

Listing 6-5: Continued

NameEdit.FilterProperties[HtmlEdit.PropertyNames.Class]
= null;

mUIUserNameEdit.FilterProperties
[HtmlEdit.PropertyNames.ControlDefinition] =
“id=ctl00_cphBody_Login1_UserName name=ct”;

mUIUserNameEdit.FilterProperties
[HtmlEdit.PropertyNames.TagInstance] = “5”;

this.mUIUserNameEdit.WindowTitles.Add(“Sign in”);
#endregion

}
return this.mUIUserNameEdit;

}
}

public HtmlEdit UIPasswordEdit
{
get
{
if ((this.mUIPasswordEdit == null))
{
this.mUIPasswordEdit = new HtmlEdit(this);
#region Search Criteria
mUIPasswordEdit.SearchProperties
[HtmlEdit.PropertyNames.Id] =
“ctl00_cphBody_Login1_Password”;

mUIPasswordEdit.SearchProperties
[HtmlEdit.PropertyNames.Name] =
“ctl00$cphBody$Login1$Password”;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.LabeledBy] = “Password:”;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.Type] = “PASSWORD”;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.Title] = null;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.Class] = null;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.ControlDefinition] =
“id=ctl00_cphBody_Login1_Password value=\””;

mUIPasswordEdit.FilterProperties
[HtmlEdit.PropertyNames.TagInstance] = “6”;

mUIPasswordEdit.WindowTitles.Add(“Sign in”);
#endregion

}
return this.mUIPasswordEdit;

}
}

Creating an Automated Test from a Manual Test 151

Listing 6-5: Continued

public HtmlInputButton UILogInButton
{
get
{
if ((this.mUILogInButton == null))
{

mUILogInButton = new HtmlInputButton(this);
#region Search Criteria
mUILogInButton.SearchProperties
[HtmlButton.PropertyNames.Id] =
“ctl00_cphBody_Login1_LoginButton”;

mUILogInButton.SearchProperties
[HtmlButton.PropertyNames.Name] =
“ctl00$cphBody$Login1$LoginButton”;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.DisplayText] = “Log In”;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.Type] = “submit”;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.Title] = null;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.Class] = null;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.ControlDefinition] =
“id=ctl00_cphBody_Login1_LoginButton oncl”;

mUILogInButton.FilterProperties
[HtmlButton.PropertyNames.TagInstance] = “8”;

mUILogInButton.WindowTitles.Add(“Sign in”);
#endregion

}
return this.mUILogInButton;

}
}
#endregion

#region Fields
private HtmlEdit mUIUserNameEdit;
private HtmlEdit mUIPasswordEdit;
private HtmlInputButton mUILogInButton;
#endregion

}

A key takeaway from this class is that key properties that the test could
record are used in the search. This has some major implications depending on

Chapter 6: Automating Test Cases152

your application. The biggest issue is the constructor of the class, which has
a distinct signature:

public UISigninDocument(UITestControl searchLimitContainer)

This is crucial to understand later for modifying search properties. Any
search criteria it uses to find a specific value or control on a section of the
application is contained by the parent control, which also has distinct prop-
erties. Consider this situation (as is the case with the BlogEngine.NET Web
Application).

Every time you add a blog post, that post is listed on the home page using
a repeating mechanism so that the first post on the page is contained in a div
tag called postpane0; the next one is postpane1; and so on. Well, what if you
execute and record the test when there are two or three other posts so that the
post you want to validate is contained in postpane2? As part of the validation
step, look for the innertext of some field within postpane2. But what if when
you play back the test, there was another post added, and the post you
wanted to validate is now in postpane3? Now you are in trouble because the
code may be searching for the right properties in the wrong location.

There are only two solutions to this problem. The first is to ask the devel-
opers to write the code in such a way that you can consistently perform the
tests. In other words, ask them to use a record ID or something else that is
not auto-generated and independent of the data. The second option is to
manually expand the search scope. The way to do this isn’t so obvious but is
quite easy. For each of the control property methods, there is a constructor for
the control that takes the value this. This ensures that the control is searched
for only in the parent that it was originally found in. To expand the search
scope, replace this with this.TopParent. That expands the scope to the top
of the page. This may be too far, but you can narrow down the scope from
there. To narrow the scope down, you have a number of options. Use the
GetChildren method to return a list of all controls contained by the top level
control and iterate through them (this.TopParent.GetChildren()). Another
option is to use the SearchProperties to provide specific values that you
want to search for and then call the Find() method.

Creating an Automated Test from a Manual Test 153

Another key point is the PageUrl property. The full URL for this page is
also stored as part of the class. This can cause complications when the test is
used as part of Lab Management because the server name will probably be
different. Chapter 8, “Lab Management,” discusses this scenario and ways
around it.

Chapter 6: Automating Test Cases154

MAINTAINING CODED UI TESTS
This is your second lesson in maintaining Coded UI Tests. You can make

many changes to controls without having to rewrite your automated tests.

The reason for this is that if you change the label, the test still looks for the

control by control name. If you change the name, it still searches for the con-

trol by ID, and so on. A cascading series of changes need to be made to mess

up your tests. One such change may be renaming a control and then adding

a new control with the original name. As long as something like that does-

n’t happen, in most cases you won’t need to change automated tests

because of simple control changes.

The last portion of generated code that you need to examine to round out
your understanding of a Coded UI Test is where everything is actually
stored. Up to this point, you looked at the methods responsible for running
the tests and some of the information those actions represent, but not all of
them. The UIMap.uitest file contains the rest. This is an XML configuration
file that stores the steps, actions, and additional information needed to exe-
cute the tests.

This file is rather large, so the entire file is not be presented here; however,
to illustrate several points, Listing 6-6 shows an excerpt of the file.

Listing 6-6: Partial Listing of the UI Test File

<TestStepMarkerAction MarkerInformation=”ClicktheLogInlink”>
<ParameterName />
<StepId>1</StepId>
<Direction>Both</Direction>
<Outcome />
<Disabled>false</Disabled>
<WorkItemId>815</WorkItemId>

Listing 6-6: Continued

<MarkerRegionType>Default</MarkerRegionType>
</TestStepMarkerAction>
<SetValueAction UIObjectName=

“UIMap.UISigninWindowsInterneWindow.UISigninDocument.UIUserNameEdit”>
<ParameterName />
<Value Encoded=”false”>Jeff</Value>
<Type>String</Type>

</SetValueAction>
<SetValueAction UIObjectName=

“UIMap.UISigninWindowsInterneWindow.UISigninDocument.UIPasswordEdit”>
<ParameterName />
<Value Encoded=”true”>Cf6+rNQubXkqzKc/jQXexQKmdE+3YIke</Value>
<Type>String</Type>

</SetValueAction>
<MouseAction UIObjectName=

“UIMap.UISigninWindowsInterneWindow.UISigninDocument.UILogInButton”>
<ParameterName />
<ModifierKeys>None</ModifierKeys>
<IsGlobalHotkey>false</IsGlobalHotkey>
<Location X=”35” Y=”13” />
<WheelDirection>0</WheelDirection>
<ActionType>Click</ActionType>
<MouseButton>Left</MouseButton>

</MouseAction>
<TestStepMarkerAction MarkerInformation=

“EnterPssw0rdforthepasswordandclickLogIn”>
<ParameterName />
<StepId>3</StepId>
<Direction>Both</Direction>
<Outcome />
<Disabled>false</Disabled>
<WorkItemId>815</WorkItemId>
<MarkerRegionType>Default</MarkerRegionType>

</TestStepMarkerAction>

Listing 6-6 contains the steps for logging onto the blog engine and
includes all the information needed to generate the code that performs the
automation. Further in the file (not shown) is a section that contains all the
search conditions for each element that appears in this uitest file. When you
use the Coded UI Builder, it actually creates this “map” file and generates the
code based on the contents of this file. This is included here to complete your
understanding of the underlying pieces of the test, but editing this file
directly is not supported. However, to ease this situation and enable you to

Creating an Automated Test from a Manual Test 155

add search properties, configurations, and other items directly to this file,
Microsoft will be releasing a UI Test Editor Visual Studio Extension. (This has
been released as Team Foundation Server Feature Pack 2 available to MSDN
subscribers. More information on this Feature Pack can be found here:
http://msdn.microsoft.com/en-us/vstudio/ff655021.aspx.) Figure 6-4
shows an early version of this tool, which means it will most likely change
before the release.

Chapter 6: Automating Test Cases156

Figure 6-4: UI Test Editor Visual Studio Extensibility Add-In

The features planned for this release (again, no guarantees) are as follows:

• Undo/Redo support

• Cut/Copy/Paste of actions

• Keyboard Accessibility

• Find Next & Search up in UI Control Map

• Find Missing controls

• Add Actions

• Merge two controls

• Clean up unused methods

• Move controls/methods to another UI Map

• Promote controls/methods to a shared/global UI Map

As you can see from Figure 6-4, this enables you to edit the file, not in XML
but in a nicely structured editor. It also generates code updates when you fin-
ish with it. This tool simplifies the process of making modifications that will
not be deleted upon the regeneration of the code.

At this point, you should now have a relatively good understanding of
how the test actually works, and you have a limited amount of knowledge on
how to make changes to the test. One area that you should research that is not
covered in this book is the options available to you on different controls. The
control definitions can be found in the Microsoft.VisualStudio.TestTools.
UITesting.HtmlControls namespace. (WinForms and WPF controls can be
found in the WinControls and WpfControls namespaces, respectively.) For
each control class, there is an associated PropertyNames class.

Before leaving this section, here are a few tips that, as a tester, you must
impart to the developers:

• Use meaningful names when naming UI controls.

• Assign as many properties as practical; don’t just use a single property
unless it will never change (such as the control name or ID).

• Change the test method to a meaningful name; CodedUITestMethod1
is not a good choice.

• Never make any changes to the UIMap.designer.cs file; always use the
UIMap.cs file (or the UI Test Editor).

Adding Validations

In its generated state, the Coded UI Test will always pass (unless the appli-
cation doesn’t run, or in the case of a Web Application the web server isn’t
configured correctly) because there are no validations. In the manual test, the
validations are visually checked, so you can’t turn those into programmatic
checks. Here, you add a couple of validations to the test to ensure it works
correctly.

Adding Validations 157

To begin with, execute the Coded UI test. Select Test, Windows, Test List
Editor, or double-click the .vsmdi file in the Solution Items folder to open it.
Click the Refresh button so that the latest version of your test is compiled and
displayed in the Test List Editor. Select the test, and click Run Tests. Allow the
test to run. (And don’t play with your mouse and keyboard while the test is
running; although, in general the test will still work fine.)

Chapter 6: Automating Test Cases158

MULTIPLE VALIDATIONS
For this example, you can see how to add a simple validation on a single step.

However, in many cases, you will not simply validate the last step in the test;

you will add validations every place the manual test contained those valida-

tions. This ties into when you mark steps as passed or failed during the man-

ual test run. To avoid a large number of methods that do not require

validation afterward, just mark steps where there actually is something to

validate as passed.

USING THE TEST LIST EDITOR
Because of how the test names are generated, it is strongly recommend that

you add the Class Name column to the Test List Editor. This shows you the

class names that coincidentally are the test names!

After the test has completed, and with the Coded UI Test open, place your
cursor after the step that you want to validate in the method marked with the
TestMethod attribute and add a new line. In this example that would be after
the this.UIMap.ClicktheWelcometoBlogEnginepost(); line. From the main
menu select Test, Generate Code for Coded UI Test, Use Coded UI Test
Builder (Figure 6-5).

Figure 6-5: Add Validations with the Coded UI Test Builder

Adding Validations 159

EXECUTING THE TEST FIRST
Now you can see why you should execute the test first. Executing it leaves

the application open to the point at which you want to add validations. If you

want to add multiple validations to a test, simply comment out all the steps

after the point where you want to add the validation, and the test will com-

plete at the appropriate page or form so that you can simply select which

controls and values you want to validate. Another option is to set a break-

point, run to the breakpoint, and then stop the application.

The Coded UI Test builder (see Figure 6-6) enables you to record actions
and add them into your existing Coded UI Test, view the steps that are/were
being recorded, select controls to validate, and generate code for the
whichever actions you have taken. In this example you can see how to vali-
date field controls.

Start Recording

Select UI Control

Generate Code

Show Record Steps

Figure 6-6: Coded UI Test Builder

To validate a control, click and hold the crosshairs, and drag them over the
control you want to validate. In this case, the control is the Name text box that
contains the value Jeff, as shown in Figure 6-7.

Chapter 6: Automating Test Cases160

Figure 6-7: Validating a Field Control

This action brings up the Add Assertions dialog shown in the lower-right
corner of Figure 6-7. Because the goal of this test is to ensure that Jeff is in the
Name text box and “jeff.jones@nowhere.com” is in the E-Mail text box, you
can select any control setting that has the value Jeff in it; however, it is not a
good idea to use the CopyPastedText field or DefaultText field. In this case
the Text property will be used. Highlight the property, and click the Add
Assertion button at the top of the Add Assertion dialog. Set your compara-
tor (AreEqual in this case) and click OK. A check will be displayed next to the
property indicating that the assertion has been added; however, no code has
been generated at this point.

Before doing anything else, it is worthwhile to take a good look at the Add
Assertions dialog, which is shown in its entirety in Figure 6-8.

Figure 6-8: Add Assertions dialog

The pane on the right contains three sections: Search, Control Specific, and
Generic. This window is designed to interrogate the application you are test-
ing to determine its information. It also contains a wealth of useful informa-
tion that will be covered in detail. The search section determines how the
code will find your control. As you can see, it has a variety of ways to do so.
In this instance it can search for either the ID or Name values that both con-
tain information helpful to locating the control. As noted previously, if you
change the name of the control but not the ID, there is still a good chance the
test can find it. It does not rely on coordinate positioning to discover the con-
trol. This makes Coded UI Tests less fragile than they might otherwise be.

The Control Specific section contains those properties that can logically be
validated against. (It doesn’t make much sense to validate anything in the
search section because it doesn’t contain any information about what the con-
trol contains.) The Generic section contains high-level information about the
control and is usually not specific enough to use in validation.

Adding Validations 161

Add control to UI Control Map

Delete selected UI Control

Rename selected UI Control

Copy reference to clipboard

Add assertion
Refresh properties and highlight
control in application under test

Add all descendants

Navigate the control hierarchy

One helpful control is the last one located on the toolbar of the right pane:
the Control hierarchy control. When you have a specific control selected (and
depending on which control it is), you can use the arrows to move to the par-
ent control (up arrow), child control (down arrow), or a peer control to the left
or right. This lets you drill down to the lowest possible level or move up from
the selected control easily.

The pane on the left is the UI Map pane and displays a “map” of the user
interface. From Figure 6-8, it is evident that the NameoftheblogShortdeWin-
dow is the application. Clicking Show All Properties at the bottom of the
Properties pane displays even more information. Table 6-1 shows the prop-
erties and values.
Table 6-1: IEFrame Properties

Chapter 6: Automating Test Cases162

DIFFERENT TECHNOLOGIES
ASP.NET applications rely on MSAA, and there will be different properties in

this dialog than there would be for a test that uses UI Automation. It also

greatly depends on how the automation framework was implemented.

Property Value

Search

ClassName IEFrame

ControlType Window

TechnologyName MSAA

Name Welcome to BlogEngine.NET

Control Specific

Uri http://vs2010beta2:8001/Welcome-to-BlogEngineNET-15-
using-Microsoft-Sql-Server.aspx

Version 8.0.6001.18865

Adding Validations 163

Property Value

Generic

FriendlyName Welcome to BlogEngine.NET 1.5 using Microsoft SQL….

HelpText

HasFocus False

Exists True

Enabled True

IsTopParent True

This window, as you can see in Table 6-1, displays the technology you are
dealing with (MSAA in this case) and the version of the browser. The control
can’t be interrogated for detailed information if it can’t be found. For exam-
ple, the PostPane and LoginHyperlink don’t exist on the current page, so
more detailed information can’t be provided. If you need detailed informa-
tion on a control, open up the application to that point, and then launch the
Coded UI Test Builder tool.

The next UI element down, Httpvs2010beta28001Client, is the client win-
dow through which you access the application (see Figure 6-9).

Figure 6-9: Close up of the UI Elements pane from Figure 6-8

Going down further, the NameoftheblogShortdeDocument is a control of
type Document that represents the HTML page that displays. Below that is
the PostPane, LoginHyperlink, SigninDocument (this represents the
ASP.NET Login control), username, password, login button controls, and

finally the WelcometoBlogEngineNDocument, which is the current page dis-
played and the page that hosts the post details information. The InnerText is
where all the text is stored; below that is the Name control. Both of these last
two elements were added to the Coded UI Test Builder when the last valida-
tion was added.

One of the benefits of this tool is you can add other UI elements that you
want to interact with as part of the test, even if they were not directly
involved in the test, by adding the UI element to the UI map. After you
generate code, you can make programmatic changes to it or interrogate it as
necessary.

When the validations are added, click the Generate Code button on the
Coded UI Test Builder, and in the Generate Code dialog (see Figure 6-10) pro-
vide a method name, and click Add and Generate. (Every time you click Add
and Generate, all the work up to that point is generated into a single method.)

Chapter 6: Automating Test Cases164

Figure 6-10: Generate Code dialog

Adding Additional Recorded Steps

This particular test used for this example is basically a stand-alone test as far
as the Coded UI Test is concerned. Because of this, Internet Explorer should
close after the test has been completed. This was not done as part of the man-
ual test, so an additional bit of code needs to be added. Because this is code,
you can simply wire up a simple step that closes the browser. But if you have
a series of complex actions to take, you can record additional steps from the
Coded UI Test Builder.

To record additional steps, click the red Record button on the Coded UI
Test Builder, select the window you want to record (in this case, IE), and click
the X in the upper-right corner of the window. Press the Pause button on the
Coded UI Test Builder and then select Add and Generate code. For this
option, the Coded UI Test Builder generated the code shown in Listing 6-7.

Listing 6-7: Coded Generated from Closing the IE Browser Window

public void CloseIE()
{

#region Variable Declarations
WinTitleBar uITestPostWindowsInterTitleBar =

this.UITestPostWindowsInterWindow.UITestPostWindowsInterTitleBar;
WinButton uICloseButton =

this.UITestPostWindowsInterWindow.UITestPostWindowsInterTitleBar.
UICloseButton;

#endregion

// Click ‘Test Post Windows Internet Explorer’ title bar
Mouse.Click(uITestPostwindowsIntertitleBar, new Point(854, 6));

// Click ‘Close’ button
Mouse.Click(uICloseButton, new Point(3, 10));

}

The recording grabbed a reference to the title bar and the Close button and
then simulated two mouse clicks: one to select the window and one to click
the Close button. The points are relative to the control selected and not rela-
tive to the entire window or the screen. The Coded UI Tests still work if the
screen resolution changes because of this.

This code still works if the WinTitleBar declaration were deleted (and the
associated mouse-click) because the only important thing is the mouse-click
that closes the window. There is another way to close the window as well:

Adding Additional Recorded Steps 165

RECORDING FROM SCRATCH
The process for recording a Coded UI Test from scratch is the same as record-

ing an additional test. The difference is that you would select Test, New Test

from the main menu, and select Coded UI Test. Then you simply select the

Record actions, edit UI map, or add assertions from the Generate Code for

Coded UI Test dialog.

programmatically. To do this programmatically, you need only add this line
of code: this.UITestPostWindowsInterWindow.Close(). That’s it. Both the
MSAA and UIA frameworks give you access to a variety of properties to let
you manipulate the applications in code.

Chapter 6: Automating Test Cases166

FRAMEWORKS AND APPLICATIONS
The properties available depend on how the application implements them.

For example, all applications that use a particular version of IE support the

same properties. However, the same code cannot simply be switched to Fire-

fox because it supports a different set of properties. You need to create a

basic Coded UI Test to determine the available properties.

Parameterized Coded UI Tests

This example is a Test Case to validate that basic HTML tags work as they are
supposed to when adding a new blog entry. Figure 6-11 shows the Test Case.

Figure 6-11: Entry should accept HTML tags Test Case

When generating a new Coded UI Test in an existing project, the UI map
is re-used and the test steps generated from shared steps. This at least makes
it easier if you need to regenerate the shared steps because they changed and
makes it so you don’t need to regenerate the entire Test Case.

Listing 6-8 shows the code generated for the CodedUITestMethod1.

Listing 6-8: BlogEntryHTLMBasicTest CodedUITestMethod1 (Line Numbers Added for

Readability)

1 [DataSource(“Microsoft.VisualStudio.TestTools.DataSource.TestCase”,
2 “http://tfs2010:8080/tfs/defaultcollection;BlogEngine.NET”,
3 “818”, DataAccessMethod.Sequential), TestMethod]
4 public void CodedUITestMethod1()
5 {

// To generate code for this test, select
// “Generate Code for Coded UI Test”
// from the shortcut menu and select one of the menu items.
// For more information on generated code, see
// http://go.microsoft.com/fwlink/?LinkId=179463

6 this.UIMap.LogonasJeffEditor();
7 this.UIMap.ClicktheAddEntrylink();
8 this.UIMap.ClicktheHTMLbuttonabovethebodysection();
9 this.UIMap.EnterhtmlandclicktheUpdatebuttonParams.

UIHtmlSourceEditText = TestContext.DataRow[“html”].ToString();
10 this.UIMap.EnterhtmlandclicktheUpdatebutton();
11 this.UIMap.ClicktheSavePostbutton();
12 }

The first item to note is the DataSource attribute (lines 1–3). These lines tell
you that the test is accessing a TestCase data source (as opposed to a SQL
Server or other type of data repository) and that the Test Case is located in the
default collection and the BlogEngine.NET project. In addition, the data
comes from work item number 818 (the Test Case shown in Figure 6-8) and
the data will be accessed sequentially. (You can use only sequential data
access on a Coded UI Test.)

The biggest difference between the actual test code and the previous test
that was not parameterized is line 9, which accesses the TestContext.
DataRow property that retrieves the parameter arguments from the Test Case
work item. The tool does this to make your life easier by enabling you to view
and change parameters and bindings here rather than having to search in the
methods for where this value is assigned.

Parameterized Coded UI Tests 167

One initial problem with this is that the htmlresult parameter in the Test
Case is not sufficient for the automated Test Case. A good practice if you plan
to automate an iterative Test Case is to add a third parameter, something such
as automatedresult, so that everything is in the same Test Case, and you can
use it for both manual and automated testing. (You see this in the next
section.)

Chapter 6: Automating Test Cases168

TEST CASE DATA SOURCE
One small note on the data source: You cannot set this data source using the

properties grid—there are just no options for it. So, if you decide to param-

eterize a generated test at a later point in time and use data in the Test Case,

you need to regenerate it; otherwise, you have to add information manually.

Handling Issues Due to Inconsistency
Sometimes coding inconsistencies can cause problems for teams trying to
automate Test Cases. Take the test shown in Figure 6-11. The goal is to vali-
date that the text that is the result of the post is This is a test. If you
were to select this line of text (which is in a DIV tag) you would find that the
InnerText property reads This is a test. Sure, this is helpful to verify that the
right text is displayed but hardly enough to verify that the format is right. In
this case you can drill down into the children of the DIV tag to get to the “con-
trol” that you want. The goal isn’t to find a control but a property. For this
particular application, you have to drill down two levels until you come to
a control of type Pane with an InnerText of “test” and a Generic ClassName
of HtmlTag.STRONG (or HtmlTag.EM for italics). This particular application
presents a problem because it does not use consistent methods of formatting
its code, which is something you need to think about in the design of the
application. The way an underlined piece of text is encoded is to use the Con-
trolDefinition of “style=”TEXT-DECORATION: bold””.

So, how do you get around this particular problem? Unfortunately it isn’t
easy, and for every application there are issues like this. What you need to
take away from this is how to best determine what to do and how to best
address these issues.

First, the easiest and most expedient thing is to talk to the developers to
see if they can change how they handle the anomaly. And it is an anomaly.
Anything that is different is more difficult to maintain. One of the jobs of the
tester (but certainly not the primary job) is to point out inconsistencies that
may make it more difficult to maintain in the future. If developers can change
how they do things to be consistent, that is the best approach. Mark the test
as a bug, and note that it is a technical bug rather than a functional bug
because it may not be that high on the priority list; then move on.

Another option is to split your Test Case. Copy the Test Case so that you
have two versions: one to handle the bold and italic text and one to handle the
underlined text case. This is expedient and easy to do. This also makes the
Test Cases more maintainable but has the drawback of requiring testers or the
developer who is automating the Test Cases to have deep technical knowl-
edge about the application. This knowledge is sometimes difficult to acquire
and can be time consuming to figure out.

A final option is to simply handle the issue by saying that for run number
three, you will use an “if” statement to selectively validate the third run dif-
ferently from the first two runs. Although this is fairly simple, it becomes
incredibly complex to maintain—especially if you have to change the order
of the data or you add new data that fits one pattern or the other, or even a
third pattern. This is not a good option but might fit your needs.

Resolving the Data Inconsistency
For this particular resolution, the Test Case was altered to look like that in Fig-
ure 6-12. (The Underline test was moved to a different Test Case and addi-
tional parameters were added.)

Parameterized Coded UI Tests 169

Figure 6-12: Updated parameterized Test Case

Unfortunately, although this is easy to fix in the Test Case, a lot more work
is required for the actual test. Note that you do not need to re-record the test
unless you are binding additional information to the UI because the addi-
tional columns are used in Assert statements. This is not for the faint of heart
and requires a fair bit of looking around until you get comfortable with it.
Listing 6-9 shows the updated CodedUITestMethod1 to work with the Test
Case shown in Figure 6-12.

Listing 6-9: Updated CodedUITestMethod1

[DataSource(“Microsoft.VisualStudio.TestTools.DataSource.TestCase”,
“http://tfs2010:8080/tfs/defaultcollection;BlogEngine.NET”, “818”,
DataAccessMethod.Sequential), TestMethod]
public void CodedUITestMethod1()
{
// To generate code for this test, select “Generate Code for Coded UI
// Test” from the shortcut menu and select one of the menu items.
this.UIMap.LogonasJeffEditor();
this.UIMap.ClicktheAddEntrylink();
this.UIMap.EnterTestPostforthetitle();
this.UIMap.ClicktheHTMLbuttonabovethebodysection();
this.UIMap.EnterhtmlandclicktheUpdatebuttonParams.
HtmlSourceEditText = TestContext.DataRow[“html”].ToString();

this.UIMap.EnterhtmlandclicktheUpdatebutton();
this.UIMap.ClicktheSavePostbutton();
this.UIMap.ValidateHTMLInfoExpectedValues.UIItemCustomInnerText =
TestContext.DataRow[“word”].ToString();

this.UIMap.ValidateHTMLInfoExpectedValues.UIItemCustomClassName =
TestContext.DataRow[“htmlformat”].ToString();

this.UIMap.ValidateHTMLInfo();
this.UIMap.CloseIE ();

}

Before examining the contents of this listing, let’s go through Exercise
6-2 to generate the supporting code.

Chapter 6: Automating Test Cases170

E X E R C I S E 6 - 2

Generate ValidateHTMLInfo Code
To generate the supporting code, follow these steps:

1. Execute the test to get the application to the appropriate screen; don’t
worry about the test failing as it will because IE is not yet closed
between test runs.

2. Next, place your cursor after the this.UIMap.ClicktheSavePostbut-
ton(); and press Enter.

3. Select Test, Generate Code for Coded UI Test. Use Coded UI Test
Builder from the main menu.

4. Select the crosshairs and drag it over the This Is a Test line until it is
surrounded by the blue box; then let go of the mouse button.

5. Click the Move to Child Control button twice (last control on the
Coded UI Test Builder toolbar, down arrow).

6. Select Control Specific, InnerText property, and click Add Assertion;
then click OK.

7. Select the Generic, ClassName property, and click Add Assertion; then
click OK.

8. Click Generate Code, and name the method ValidateHTMLInfo; click
OK and close the Coded UI Test Builder.

After completing this, add a method to close Internet Explorer. You reused
the CloseIE() method generated earlier because it had the same title, but you
can override the search criteria if needed so only one CloseIE() method
should be needed.

Finally, the two calls to the ValidateHTMLInfoExpectedValues were hand
added. (The method with the parameters is generated by the Coded UI Test
Builder; you just need to supply the values.) When you perform validation in
a parameterized test, the values are set in a class that is the name of your val-
idation class + ExpectedValues. This is a class generated by the testing frame-
work for a parameterized test. The set statements here exactly mimic the
columns in the Test Case.

Parameterized Coded UI Tests 171

As you can see, the most difficult part of this process is determining what
you actually need to validate against, which requires generating the Coded
UI Test and running to examine which values are important. The good news
is that after you do this, adding the additional parameters and validations are
simple.

Handling Dynamic Values

In this application, BlogEngine.NET (and most blogging tools), the URLs are
constructed based on the date that the pages are created. In looking at the posts
created in the previous set of tests, the URLs all follow the following pattern:
http://[server]:[port]/post/[year]/[month]/[day]/[post name].aspx. You
need to pull these values out to use as search criteria for the right link to click.
To make this clearer, after a post is added, the link for the post shown on the
welcome page is (for example) http://tfs2010:8001/post/2010/04/27/
Test-Post.aspx. The problem is that if the test that generated this URL were
rerun on 4/28/2010, the test would fail because of the following search criteria:

this.FilterProperties[HtmlDocument.PropertyNames.AbsolutePath] =
“/post/2010/04/27/Test Post.aspx”;

this.FilterProperties[HtmlDocument.PropertyNames.PageUrl] =
“http://tfs2010:8001/post/2010/04/27/Test Post.aspx”;

Because of this the link would not be found. To be insulated, tests need to
feed the results of generated values to subsequent actions. This applies to
applications such as order entry systems and other systems that perform nav-
igation based on a unique ID. So how do you handle it?

To demonstrate this, let’s look at one more Test Case, which logs a user on,
adds a new post, and then has another user log on afterward, and click that
added post to view the details of it. Based on the previous information, play-
ing this back on another day will also cause the test to fail. Listing 6-10 shows
the generated code for this test.

Chapter 6: Automating Test Cases172

Listing 6-10: Initial Add New Post and Read Test

[TestMethod]
public void CodedUITestMethod1()
{
this.UIMap.LogonasJeffEditor();
this.UIMap.ClickAddEntry();
this.UIMap.EnterTestBodyforthebodyandclickSavePost();
this.UIMap.ClicktheLogoffbutton();
this.UIMap.ClicktheLogOnlink();
this.UIMap.EnterthepasswordasPssw0rdandclickLogin();
this.UIMap.ClicktheNewTestPostlink();

}

The third method is the one that creates the URL that needs to be con-
sumed by the last method. However, this URL is never returned in code, so
you need to figure out how to fix it so you can actually click the link in the last
method. In this case you need to do something a little different: Alter the UI
Map by adding another control to it without adding any validations. This is
a relatively simple example because you can construct the URL because you
know the date the test is running, but you need to find the right control on the
web page to click the link.

Handling Dynamic Values 173

EVERY CIRCUMSTANCE IS DIFFERENT
This is just one example to show you the thinking behind how this is done.

If you were to try this with an actual order entry system, for example, you

might examine the order confirmation page and find the control that outputs

the value and grab it from that. Or you might want to read the value directly

from the database. Many approaches can be taken, and this is just one of

them. It would be impossible to demonstrate every example in every tech-

nology that the Coded UI testing framework supported.

In this case, another option is also open to you: Controls can search for the

name using the contains function, so you would have to pass in only the

name of the post, and the date is ignored. Of course, this also has a draw-

back because if you run the test on multiple days without cleaning up your

test environment, the test would probably pick the wrong control.

So, to do that, comment out all the lines after the first three lines and exe-
cute the test. (You want the browser to be open at the point that the new post
has been created.) Open the Coded UI Test Builder, and select the link for the
new post using the crosshairs. Next, expand the Coded UI Test Builder win-
dow using the double arrow in the upper-left corner to show the control sec-
tion. Click the Add Control to UI Map button in the upper-left corner. A dark
red check mark displays next to the control, and its parent controls and a mes-
sage display at the bottom of the window indicating the controls have been
added to the UI Map. Next, select the Generate Code button (Alt+G is the
shortcut key); you will see a message stating a new method is required and
only code related to the UI control map will be generated. Click Generate and
close the Coded UI Test Builder.

To all outward appearances no changes were made, but some underlying
changes in the UIMap class were made; it just takes a little work to find. The
best way to find changes to code is to search for a known property of the con-
trol (that is, the value that was in the UI). In this case, Listing 6-11 shows the
class that was added.

Listing 6-11: Generated Control Class (Partial)

public UINewTestPostDocument(UITestControl searchLimitContaine
base(searchLimitContainer)

{
#region Search Criteria
this.SearchProperties[HtmlDocument.PropertyNames.Id] = null;
this.SearchProperties[HtmlDocument.PropertyNames.RedirectingPage] =

“False”;
this.SearchProperties[HtmlDocument.PropertyNames.FrameDocument] =

“False”;
this.FilterProperties[HtmlDocument.PropertyNames.Title] =

“New Test Post”;
this.FilterProperties[HtmlDocument.PropertyNames.AbsolutePath] =

“/post/2010/04/27/New Test Post.aspx”;
this.FilterProperties[HtmlDocument.PropertyNames.PageUrl] =

“http://tfs2010:8001/post/2010/04/27/New Test Post.aspx”;
this.WindowTitles.Add(“New Test Post”);
#endregion

}
. . .
public UIPost0Pane2 UIPost0Pane
{
get

Chapter 6: Automating Test Cases174

Listing 6-11: Continued

{
if ((this.mUIPost0Pane == null))
{

this.mUIPost0Pane = new UIPost0Pane2(this);
}
return this.mUIPost0Pane;

}
}

The search criteria are the first critical element because that helps you find
the pane, and the second critical item is the Post Pane that contains the actual
hyperlink that you want to click. Drilling down into the UIPost0Pane2 class
gives you access to the actual hyperlink. Now, the search criteria for this con-
trol look similar to the actual information you need to find the hyperlink. In
this case, generating the additional control was not necessary because you
needed that information to find it. However, in many cases, you won’t, for
example, need the ID of an order to figure out what the order number is
because hopefully the label with the order ID number has a static name. Hav-
ing this information though enables you to access the properties of the con-
trol at runtime to get the information you need about the control.

But, what do you do with that information when you have it? It is help-
ful to look at the updated (final version) of the CodedUITestMethod1, shown
in Listing 6-12 (line numbers and breaks for readability and reference).

Listing 6-12: Final Version of the CodedUITestMethod1 (from Listing 6-11)

[TestMethod]
public void CodedUITestMethod1()
{
1 this.UIMap.LogonasJeffEditor();
2 this.UIMap.ClickAddEntry();
3 this.UIMap.EnterTestBodyforthebodyandclickSavePost();

//Construct the URL and any related search properties
4 string year = DateTime.Now.Year.ToString();
5 string day = DateTime.Now.Day.ToString();
6 string month = DateTime.Now.Month.ToString();
7 string post = string.Format(“/post/{0}/{1}/{2}/”, year, month,
day);
8 string controlDefinition = string.Format(

“class=taggedlink href=\”{0}”, post);
9 string absolutePath = string.Format(“{0}New Test Post”, post);

Handling Dynamic Values 175

Listing 6-12: Continued

10 string href = string.Format(“http://tfs2010:8001{0}”, absolute
Path);

11 this.UIMap.ClicktheLogoffbutton();
12 this.UIMap.ClicktheLogOnlink();
13 this.UIMap.EnterthepasswordasPssw0rdandclickLogin();

//Replace the generated search properties with our own
14 HtmlHyperlink actualLink =

this.UIMap.UIInternetExplorerEnhaWindow.
UINameoftheblogShortdeDocument.
UIPost0Pane1.UINewTestPostHyperlink;

15 actualLink.FilterProperties
[HtmlHyperlink.PropertyNames.AbsolutePath] = absolutePath;

16 actualLink.FilterProperties[HtmlHyperlink.PropertyNames.Href] =
href;

17 actualLink.FilterProperties
[HtmlHyperlink.PropertyNames.ControlDefinition] =
controlDefinition;

18 this.UIMap.ClicktheNewTestPostlink();
}

Lines 1, 2, and 3 are the original three test steps. Lines 4–7 were added to
dynamically construct the URL to the post that was created in step 3. As men-
tioned earlier, in this case it is easy to know what the resulting value would
be, so you could create it yourself. Lines 8, 9, and 10 are search conditions that
will replace the generated search conditions. To determine which search con-
ditions to replace, you need to drill into the code a bit. The best way to do it
is to start with the method in which the link is clicked and drill down from
there. In this case you would start at the ClicktheNewTestPostlink method;
then go to the UINewTestPostHyperlink (which is found in this method) and
then you see the search criteria. Not all the search criteria needs to be
replaced, just the criteria dealing with the URL. In this case, those criteria are
the Control Definition, Absolute Path, and Href values.

After these are constructed, the test continues at lines 11, 12, and 13. At line
14, you get the reference to the link. (This call was taken from the Clickthe-
NewTestPostlink method.) If you look in the UINewTestPostHyperlink prop-
erty, the first line checks to see if it is null, and if it is, it creates the link and
associates all the generated search criteria to it. So, lines 15, 16, and 17 actu-
ally overwrite that search criteria. And because the hyperlink is created only

Chapter 6: Automating Test Cases176

on the first call, when the code in line 18 calls it, it uses the already created
instance with the overridden search criteria and finds the link on whatever
day you run this Test Case on.

This might be more complicated than it seems, but consider the alterna-
tive: If you did not have access to any generated code, you could not create
tests that handle dynamic situations like this. So, although it is a bit of work
to get right, when you do you can run the tests regardless of any dynamic val-
ues, and you can tailor it to any application and any scenario. Hopefully, this
real-world type of example can make it easier for you to handle the dynamic
values in your own applications.

Other Tips
In the previous example, the URL was constructed because the assumption
is that the full path is needed to make sure you get the right hyperlink. The
good news is that this not the case, and you can simplify this with a few
caveats. To simplify it, you can use the contains method, as shown here:

actualLink.FilterProperties
[HtmlHyperlink.PropertyNames.Href].Contains(“New Test Post”);

Because you are searching for strings, this is easy to do and saves you the
hassle you went through earlier. So, why did I show you the hassle? The rea-
son is that contains will not always work the way you think it should. Imag-
ine the situation in which you run this test multiple times and instead of this
being the search criteria for a link in the post pane, what if it were the search
criteria for the post pane itself? Then contains would find multiple matches
so the first one the code finds would be used. In general, the rule is to always
use the least amount of code possible but be prepared to use more if needed.

Some additional classes and methods help you manipulate the Coded UI
tests. The UITestControl class (the base class for all controls) enables you to
specify that execution should pause until certain conditions are met. These
are embodied in WaitForCondition, WaitForControlExists, WaitForCon-
trolNotExists, WaitForControlPropertyEqual, WaitForControlProper-

tyNotEqual, WaitForControlReady, WaitForControlCondition, and
WaitForControlEnabled. Using these wait methods, delays can be intelli-
gently added into the test rather than a delay of time that might not work.

Handling Dynamic Values 177

You can find more information about these and other methods of the UITest-
Control class at http://msdn.microsoft.com/en-us/library/dd434055.aspx.

In addition to these settings, there is a static class called Playback that you
can call any member on during the testing process. This class contains a
method called PlaybackSettings that enables you to call methods such as
DelayBetweenActions that set an overall wait period between steps or the
SearchTimeout method. These two classes are key classes for manipulating the
generated Coded UI test. More information is available at http://msdn.
microsoft.com/en-us/library/microsoft.visualstudio.testtools.uitesting.
playback.aspx and http://msdn.microsoft.com/en-us/library/microsoft.
visualstudio.testtools.uitesting.playbacksettings_members.aspx. You can find
the complete list of classes in the UITesting namespace at http://msdn.
microsoft.com/en-us/library/dd405972.aspx. Get to know these classes and
methods if you plan to spend any time manipulating Coded UI Tests.

Combining Multiple Tests

One feature of the automated testing is to combine multiple tests into one
long test. For example, you might have one test that logs in to the application,
another that posts a blog, and yet another that adds a comment or edits a
post. You can combine all these into one long running functional test. Com-
bining tests is easy; simply select Test, Generate Code for Coded UI Test, Use
Existing Action Recording. Browse to the Test Case that contains the existing
recording and select it. The actions generate additional code that is added to
your existing code. Beyond that, you can take any number of different steps
to increase the number of test steps in your code.

Associating Coded UI Tests and Test Cases

At this point, you might have created one or more Coded UI Test Cases,
which might not be helpful. You can execute a Coded UI Test Case simply by
taking the compiled assembly and executing it with MSTest or TCM from the
command line. You can also continue to run them through Visual Studio. The
problem with both of these approaches is that they require you to sit there

Chapter 6: Automating Test Cases178

and do nothing while the test executes. This is, as you may guess, an incred-
ible waste of time. To get the full benefit of the automated test, you need to
associate it with a Test Case. (This also lights up many of the reports.)

To associate a Test Case with an automated test, open the Test Case you
want to make the association with and select the Associated Automation tab
(Figure 6-13).

Associating Coded UI Tests and Test Cases 179

Figure 6-13: Associated Automation tab of the Test Case work item

Click the ellipsis in the upper-right corner, and select the code to associ-
ate with the work item.

Before you do this, the solution that contains the automated test must be

loaded.

After you click the ellipsis, select the automated test to associate the Test
Case with, and click OK. The Automation Status value automatically changes
to Automated, and you see the test information displayed on the Associated

Automation tab. Save the work item and you are ready to proceed. As a crit-
ical side note, the code that you associate to the Test Case must be stored in
TFS or any attempt to execute the automated test will fail.

Another option, as mentioned previously, is in the Test List Editor: Right-
click the test, and select Associate Test to Test Case; then find the Test Case
and select it (Figure 6-14).

Chapter 6: Automating Test Cases180

Figure 6-14: Associate code with a Test Case

The Create Test Case from Test option enables you to generate Test Cases
so that if developers created a Coded UI test, they could create the Test Case
to go with it. Also, because every test type displays in the Test List Editor, it
means you can associate any type of test with a Test Case—including Unit
Tests.

A third option is to use the TCM command-line tool, which you can get
using the Visual Studio Command Prompt, or you can find it in %program-
files(x86)%\Microsoft Visual Studio 10.0\Common7\IDE. This tool has mul-
tiple features that make it easy to script getting information out of MTM
(such as lists of test suites and test plans). You can find more information on
this tool at http://msdn.microsoft.com/en-us/library/dd465192(VS.100).
aspx. The more important aspect of it is that the tool has a testcase switch that
can generate Test Cases for you from the tests that exist in a given assembly.
(You can provide filters for which tests you want to create Test Cases from.)

After the first set of Test Case work items is generated, when you run this
command again it merely updates the Test Case work items and suites with
new information rather than duplicating the Test Cases. You can also use this
tool to add these Test Cases directly to an existing suite; if this suite happens
to be a requirements-based suite, you have succeeded in linking the Unit
Tests to requirements with no additional work required.

Associating Coded UI Tests and Test Cases 181

ASSOCIATING UNIT TESTS
Use the same process to associate a Unit Test with a Test Case work item. For

Unit Tests you generally need to take one additional step. After the Test

Cases have been generated for a Unit Test, you need to associate the Test

Cases with a requirement; this is not done for you (unless you use the /sync-

suite switch). After you do this, the information available to you in reports

becomes much better in terms of tracing Unit Tests to requirements. Be

aware though that you should categorize your Unit Tests to make it easy to

perform this operation in the minimum number of steps required; otherwise,

it becomes too time consuming.

There is one consequence to associating automation; to manually run a
test from MTM, you must select Run with options from the Test page. There-
fore, if for some reason you want to execute the test manually more than once
or twice going forward, you can create a copy of the Test Case before so that
you can have one manual version and one automated version.

Finally, add the automated test solution to version control. Keep your test
automation with your code because they are designed to go together for a
given release. However, this depends on your situation. If you create auto-
mated tests that will be used for many releases and fairly insulated from
changes to new releases of the code, you may want to create a separate
branch for these Test Cases.

SUMMARY

This chapter taught you how to create and manipulate automated Test Cases.
This includes the ability to add validation to the automated test using the
Coded UI Test Builder and then to modify any generated code. At this point,
you should handle more complex situations involving dynamic data values.
Even though this chapter focused on dealing with Web Applications, the
principles apply to WinForms and WPF applications equally.

You also know that you can associate Unit Tests with Test Cases and then
with requirements to get requirements coverage information from Unit Tests
using the tcm.exe command-line tool. Using this tool, testers can also execute
Unit Tests as part of their automated test runs.

In Chapter 7, you learn how to execute automated tests using MTM and
also using Team Build.

Chapter 6: Automating Test Cases182

7
Executing Automated Test Cases

I N T H E P R E V I O U S C H A P T E R Y O U L E A R N E D how to automate Test Cases
and associate automated tests with Test Case work items. You learned how to
do this with both Coded UI tests and Unit Tests, but this is applicable to any
automated test. In this chapter you take the next step and execute the auto-
mated tests. In this chapter you learn how to execute automated tests in four
primary ways: manually through Visual Studio, from the command line,
from Microsoft Test Manager, and as part of a Team Build.

In this chapter Unit Tests and Coded UI tests are treated differently for one
major reason—to execute a Coded UI test, which interacts with the user inter-
face, the agent that runs the tests must be running as a process (as opposed
to a service). For the most part this means that certain configuration changes
must be made to the various agents that execute the tests. You learn how to
make the appropriate changes to the Test Agent and the Build Agent to
accomplish the automated execution of a Coded UI test.

Executing Automated Tests Through Visual Studio

This is arguably the easiest way to execute an automated test and requires the
least amount of setup. You can run tests within Visual Studio in three ways:
local execution (default method), local execution with remote collection, and
remote execution. Each has its place in the developer testing toolkit and all
three ways are discussed here.

183

When running tests with Visual Studio, the tests are not reported against
a build. Tests run through Visual Studio are designed to be developer-exe-
cuted tests to verify functionality, not necessarily be the tests of record. Test
results can be published to TFS and related to a particular build, but this must
be done manually after the test execution finishes.

Chapter 7: Executing Automated Test Cases184

DEVELOPER-FOCUSED TESTING
This information is not covered in great depth because this is mostly focused

on the developer testing experience rather than a tester-oriented experi-

ence. This section provides a good overview of what can be done, why it can

be done, and how to do it, but it does not cover all the options available to

a developer.

Local Execution
Whether you execute a Unit Test or a Coded UI test, the process for local exe-
cution is the same. This is because the user who runs Visual Studio is the user
who runs the tests, and this user (you) has access to the Windows user inter-
face. The default test settings are for the local execution of tests. You can
access these settings by opening the local.test settings or Trace and TestIm-
pact.test settings file in the solution node. Both of these settings are precon-
figured to provide different levels of diagnostic information.

To set the active test settings file, from the main menu, go to Test, Select
Active Test Settings, and choose the settings file you want to use. You can exe-
cute the test from the Test List Editor or Test View.

Local Execution with Remote Collection
This option enables developers to execute tests (such as load tests) from the
local machine but gather data from a remote machine. The remote machine
may be a system running SQL Server or Internet Information Services, or
may be even a proxy server if the application connects to a data source out-
side of a corporate firewall. To perform a test with this structure, a Test Con-
troller and a Test Agent need to be defined. Unlike the configurations used
with MTM or Team Build (both of these options are discussed in more detail

later) the Test Controller must not be registered with a Team Project Collec-
tion. The major reason for this is that as previously mentioned the testing
process from Visual Studio is about developers verifying functionality rather
than running authoritative tests. In addition, this enables tests to be executed
without having TFS present because no data is reported back to TFS. The Test
Agent is responsible for gathering the remote data and sending it back to
Visual Studio. The steps for performing this configuration are discussed in
the next section.

Remote Execution
Remote execution executes the test code on the remote machine. In this situ-
ation the code needs to be deployed to whichever remote machine needs to
host the application before the test is executed. During test execution the Test
Controller and Test Agent work to execute the test code on that remote
machine as well.

Executing Automated Tests Through Visual Studio 185

RUNNING THE AGENT AS AN INTERACTIVE PROCESS
Remember that for a remote execution of a Coded UI test (this does not apply

to Unit Tests because there is no user interface interaction) the Coded UI test

must be set to run as an interactive process. The steps to do this are covered

later in the section "Setting Up the Physical Environment."

To begin with, you need to configure the test controller.
To view the test controllers available to you, from the main menu select

Test, Manage Test Controllers. This displays the Manage Test Controller
screen, as shown in Figure 7-1.

All the available test controllers can be selected from the Controller drop-
down. For the selected controller, all the agents associated with it are listed.
As you can see from Figure 7-1, there are two agents associated with this con-
troller.

Figure 7-1: Manage Test Controller dialog

Selecting an agent and clicking the Properties button enables you to apply
settings specific to that agent as it relates to network switching, weighting
(used in load testing to distribute test load), and attributes. Attributes enable
you to specify tags that can be used to configure roles. Roles enable you to
specify certain configurations that the test controller can then match to the
appropriate machine. This abstracts the machines a bit so that machines can
change or more than one machine can be used to fulfill a particular need. Fig-
ure 7-2 shows the Agent Properties dialog.

After the agents are configured, you can configure the test to execute on
the remote machine. Figure 7-3 shows the Trace and Test Impact test settings
configured for remote execution.

In Figure 7-3, you see that two roles have been added: Client and Web
Server. You can specify multiple roles if the test executes on multiple
machines, or if you are going to grab data from multiple machines. After you
set some attributes, you can preview agents that match the criteria. This also
shows you all data collectors installed on the machine.

Chapter 7: Executing Automated Test Cases186

Figure 7-2: Agent Properties dialog

Executing Automated Tests Through Visual Studio 187

Figure 7-3: Visual Studio Test Settings

After the roles are set, you can select the Data and Diagnostics tab and
set which data collectors are to capture information for each machine (see
Figure 7-4).

Chapter 7: Executing Automated Test Cases188

Figure 7-4: Data and Diagnostics settings

For the client machine, the only information needed is the event log and
system information; because this is a Web Application, no actual code except
the test code is executed on this machine. But you may want to set the Net-
work Emulation that throttles the data sent to the web server. For the web
server, more detailed information will be collected. You may collect data from
as many different machines as you like. Execute the test as you would any
other test from within Visual Studio. Figure 7-5 shows the results of a remote
execution test.

After the test finishes, you can publish the results against a specific test
run (assuming you have TFS and an automated build, discussed in the next
section, which you can associate the test with). To publish the results, from
the Test Results pane, select the Publish button (see Figure 7-6).

Figure 7-5: Remote execution test results

Executing Automated Tests Through Visual Studio 189

Figure 7-6: Test Results

In the Publish Test Results dialog, select the build number, flavor, and test
runs you want to publish, and click OK (see Figure 7-7). The results are now
available to you for reporting purposes.

Figure 7-7: Publish Test Results

Executing Automated Tests from the Command Line

In the previous section, you learned how developers can execute tests from
within Visual Studio and publish those results. You can also execute tests
from the command line. You may want to do this for many reasons, but two
of the most common reasons are to schedule the execution of tests outside of
builds and to script tests along with various other commands (such as reset-
ting data). You can use two tools to script test execution:

• Tcm.exe is a superset of mstest and actually calls mstest to perform the
actual testing.

• MSTest.exe is a general purpose test execution engine that interacts
with assemblies on the client rather than what is stored in TFS.

The major difference between these two tools is that tcm is designed to
execute server tests and tightly aligns with MTM.

Chapter 7: Executing Automated Test Cases190

COMMAND-LINE TOOLS IN-DEPTH
Both tools have many options that can perform whatever tasks you need, in-

cluding automatically publishing test results. For a comprehensive discus-

sion of these tools, see http://msdn.microsoft.com/en-us/library/

ms182489(VS.100).aspx (mstest) and http://msdn.microsoft.com/en-

us/library/dd465192.aspx (tcm).

To execute the Test Cases shown in the figures, from the command line,
use the following command from the Visual Studio Command Prompt:

Mstest /testcontainer:BEAutomatedTests.dll
/testsettings:TraceAndTestImpact.testsettings
/test:BEAutomatedTests.NewPostReadTest
/test:BEAutomatedTests.LoggedOnUserPreFilledTest

Figure 7-8 shows the output of this command.
The results of the output and all attachments are stored in the TestResults

folder of the same directory where the command was executed. You can
optionally specify a different location for the results.

Figure 7-8: Command line test results

Executing Automated Tests in MTM

Before you can run an automated test in MTM, MTM needs to know where
the code for the automated test is located. The Test Case knows the assembly
that contains the code associated with it, but that’s it. To let MTM know
where the code is, an automated build needs to be associated with the test
plan.

Creating an Automated Build
In the previous examples in this book, an automated build definition already
existed for the BlogEngine.NET team project. This build is called DevOnDe-
mand. However, when the build was created, it was building only the appli-
cation solution and not the testing solution because it didn’t exist at the time.

The first step is to edit the build definition. The key change that needs to
be made is to change the Items to Build on the Process tab. Simply add the
testing solution (or project) to the list of items to build. The next change that
should be made is in the Advanced settings. Find the Disable Tests property
and set it to True. Why?

If this is set to False, any tests found in the assemblies specified in the
Basic, Automated Tests section will execute. For the moment, the build infra-
structure is not set up to execute a Coded UI test. Later you see how to run
Coded UI tests during a build but for this demonstration it is not necessary.

Executing Automated Tests in MTM 191

Chapter 7: Executing Automated Test Cases192

NAMING TEST ASSEMBLIES
One solution to this issue is to keep the Unit Test assemblies and Coded UI

test assemblies separate. Doing this you can give the Coded UI assembly a

name such as UIAutomated and just omit the word "tests." Another option

is to call the Unit Test assembly [AppName]UnitTests and the Coded UI

assembly [AppName]CodedUITests and then change the Automate Tests set-

tings to ***UnitTests*.dll; then only your Unit Tests would be run as part of

the build. This removes the assembly from the Automated Tests filter in the

build definition (shown just below 2. Basic in Figure 7-9). Why you would

want to do this is explained in the "Executing Automated Tests with Team

Build" section.

After you make these changes, save the build definition, and queue a new
build. Figure 7-9 shows the Process tab.

Figure 7-9: Automated Build Process tab

Setting Up the Physical Environment
If you have not set up your environment to execute automated tests, do this
now. This section walks you through the setup that is not a best practice. This
setup shows installing a Test Agent on the same machine as MTM. In general
you would never do this because it defeats the purpose of running tests on
remote machines, so testers can concentrate on manual tests. This assumes
that as you read this book you may have only one machine to experiment on.

The Test Controller can be installed on the same server as TFS or another
machine, but if possible, try to install it on another machine. The reason is that
you can have only one Test Controller per machine; if you intend to have
many Test Controllers, you probably do not want to have one on the actual
TFS server because the Test Controller generates traffic to and from the test
agents. This probably will not have an effect on the TFS server, but it makes
sense to avoid the potential impact. Run the Test Controller install. (The Test
Controller, Test Agent, and Lab Management Agent are all on the Agents
media and not included with the TFS or VS media.) After the install is com-
plete, run the Test Controller Configuration tool (shown in Figure 7-10).

Executing Automated Tests in MTM 193

Figure 7-10: Test Controller Configuration tool

You may run the Test Controller as a Network Service; however, if you run
it as a discrete account, you have many more options from a security per-
spective. Register the controller with your Team Project Collection and
optionally configure it for load testing (which is not covered in this book).
Apply the settings, and close the Test Controller Configuration tool.

This install adds three security groups to the machine on which the Test
Controller is installed. Table 7-1 describes these security groups.
Table 7-1: Test Controller Security Groups

Chapter 7: Executing Automated Test Cases194

Security Group Description

TeamTestAgentService Members of this group can connect to the Microsoft
Visual Studio Test Controller 2010 service.

TeamTestControllerAdmins Members of this group can run tests, view/delete
results, create environments, and administer test
controller/agents.

TeamTestControllerUsers Members of this group can run tests and view
results.

By default, the Test Controller account is added to the TeamTestCon-
trollerUsers group, the built in admins are added to the TeamTestController-
Admins, and the account that the Test Agent runs under is added to the
TeamTestAgentService.

Next, run the Test Agent (not Lab fManagement Agent) install. You need
to install a Test Agent on every physical machine (or virtual machine).

WHAT IS A VIRTUAL OR PHYSICAL MACHINE?
In the context of MTM and Lab Manager, a virtual machine is any virtual

machine controlled by System Center Virtual Machine Manager. Virtual ma-

chines not controlled by SCVMM or Lab Management are considered physi-

cal machines. The dividing line between physical and virtual is whether Lab

Management controls it. This, for example, enables you to execute tests on

VMWare virtual machines. The benefits of virtual environments controlled by

Lab Manager are discussed in Chapter 8, "Lab Management."

After the install is complete, run the Test Agent Configuration tool (see
Figure 7-11).

Executing Automated Tests in MTM 195

Figure 7-11: Test Agent Configuration tool

As with the Test Controller, you may run the test agent as a Network Ser-
vice; however, the recommendation is to run it as a discrete account because
it gives you more options from a security perspective but also, when running
Web Applications, control over browser options. In the Run Options dialog,
select Interactive Process, and click OK; then register it with a Test Controller.

This agent is configured to run as the tfstest service account. This is the
normal configuration that you want. However, when running the test agent
on a machine that you are logged onto (for example, you want to run auto-
mated tests on the same box that you are working on) you must use your
account. (This limitation is mostly related to web applications because the
web browser runs as the logged on account—if another account tries to open
the browser, the browser will not start.) After you set up the test agent, you
must reboot. Then, you see the Test Agent Status tray application, as shown
in Figure 7-12.

Figure 7-12: Test Agent Status tray application

If you see a status of Disconnected, check the following items:

• The machine the test agent is on and the machine the Test Controller is
on can communicate with each other. (This means bidirectional and
can be an issue when the controller and agents are in different
subdomains.)

• Make sure the right ports are opened; 6901 is the default.

• Make sure that the account is in the right security groups as noted in
Table 7-1.

• Make sure the Test Controller is running.

After you see the status as Online, you are good. You can also rerun the
Test Agent Configuration tool and switch the test agent back to a Service as
needed. You can find the tool on the Start Menu under Visual Studio 2010.

Running a Coded UI Test Through MTM
When the build is completed, you can head over to MTM and use this new
build in two ways, which includes the automation code. The first—and prob-
ably best—way to handle this is to update the plan to use the new build. The
other way to use this build is to select Run with Options on the Run Tests
page. After you determine how you will use the build, you need to specify the
automated run settings. As noted in Chapter 3, “Planning Your Testing,” the
automated run settings are the settings used when executing Coded UI (or
any other automated tests for that matter). Typically these settings differ a bit

Chapter 7: Executing Automated Test Cases196

from manual tests. A good example of this is that you typically won’t record
a video of the automated tests because these will be executed many times.
The data will build up on the server because these are saved regardless of
whether the tests pass or fail, unless you remember to update this setting so
that only failed tests save videos.

To begin, from the top-left portion of MTM, select the Testing Center drop-
down, and select Lab Center. The first item to check is that the Test Agent for
a physical machine is available. When you installed the Test Controller, you
registered it with a Project Collection. When you installed the Test Agent, you
registered it with a Test Controller. Therefore, when you are on the Con-
trollers page, you should see the controller and the agent, and the agent
should be running, as shown in Figure 7-13.

Executing Automated Tests in MTM 197

Figure 7-13: Controllers tab, Test Controller Manager page

After this is verified, select the Lab tab to display the environments. To
add a physical environment, select New, Physical Environment. This gives
you the ability to add a new environment that you can use for automated
testing.

For a physical environment you need to specify the name of the environ-
ment, and optionally a description and the location of the environment. The
location you specify is the test controller machine. A drop-down is available
with all test controllers registered to the Team Project Collection (TPC). If no
controllers are listed, refer back to the Controllers tab to see if any are listed
there. If they are not, the next step is to check to make sure the controller serv-
ice is running. Environment tags let you specify metadata about the envi-
ronment that enables you to determine the suitability of the environment for
specific situations.

The machines tab enables you to add the machines on which the auto-
mated tests will run. This tab is shown in Figure 7-14.

Chapter 7: Executing Automated Test Cases198

PHYSICAL ENVIRONMENTS
In some cases virtual environments are not desirable. Most often this is true

when testing hardware-based components or embedded software. In cases

like these, adding many physical environments is a great benefit.

Figure 7-14: Machines tab

You must specify at least one machine (but you can specify more, which is
common if the application is a multitier application) and specify the role that

machine plays. To set the role, click Edit Role or click the server. The machine
properties page enables you to specify tags that describe that machine. This
is again used to specify whether the machine is suitable for certain tests; you
can reference these during the build and deployment workflow. Figure 7-15
shows the completed physical environment in MTM.

Executing Automated Tests in MTM 199

Figure 7-15: Environments page in MTM

Creating the Automated Test Settings

After the environment is set up, you can create the test settings for running
automated tests.

CREATING TEST SETTINGS
Everything described here can be done from the automated test settings on

the Plan, Properties page by selecting New. Any required items will be noted,

and you are walked through what you need to set up.

The test settings for a manual test are identical to the test settings for an
automated test with the exception that you can provide a few additional
items that display on the Advanced tab.

On the General tab, you can specify the name and description of the test,
and you must select either manual (the default) or automated so that MTM
knows which settings to use for which tests. The Roles tab requires you to
add the test system that contains a test agent. You are choosing a Role, and it
chooses the matching environments. If no roles exist to select here, it means
the controller and agents are not set up correctly or the physical environment
has not been created yet. In addition, if you select an environment with mul-
tiple machines, you must select which machine the tests will be executed on
(see Figure 7-16).

Chapter 7: Executing Automated Test Cases200

Figure 7-16: Roles tab of the Automated Test Settings

The Data and Diagnostics tab is the same for the manual test settings. It
is typical to select only a few items such as IntelliTrace and to exclude items
such as the video recording. In general you can use lighter diagnostics on
automated runs; then if you do discover a problem, rerun it while gathering
more detailed diagnostics.

The Advanced tab is unique to automated test runs in MTM. Here you can
specify items to deploy that may be required for your test to run (data sources
or other external dependencies that have not been added to the solution), set
up and tear down scripts and hosts, set timeouts, and load add-ins for web
tests. These add-ins are for protocol tests and not functional tests. When

everything is configured, you see an additional entry with the Run type spec-
ified as Automated.

At this point, go to the Test Plan properties and set the automated run test
settings and the test environment. Then, you have one final step before you
can execute an automated test through MTM: Don’t forget to set the build!

Running automated tests is now a routine matter of selecting the auto-
mated tests to run on the Test tab, Run Tests page and selecting Run. Typi-
cally, these runs are conducted on machines other than the machine that they
are launched from. However, if you run these tests locally, make sure not to
play with the keyboard and mouse.

Figure 7-17 shows the Automated Test Status page.

Executing Automated Tests in MTM 201

Figure 7-17: Automated Test Status page

This is the same page as the Test Run Results page (accessed from the
Analyze Test Runs page). During the automated run, this page provides sta-
tus on what is currently happening. However, this page does not update reg-
ularly to improve performance. You need to use the Refresh button to know
what is currently happening. (If you are curious why this screen doesn’t
auto-refresh, in most situations you will set automated tests to run and check
on them later.)

Executing Automated Tests with Team Build

Executing tests with Team Build (during the build process as opposed to
using Lab Management) provides a certain elegance because Team Build cal-
culates many metrics for you and outputs a nicely formatted report that you
can run reports against. Specifically, it appears on the Build Success over Time
report and the Quality Indicators report, both of which are valuable in track-
ing application quality.

Earlier, you saw how to create an automated build. Setting the automated
build to execute your tests requires three specific changes: two in the build
definition and one in the build host. The first two changes involve enabling
the execution of tests. Ensure that the Disable Tests property of the build def-
inition is set to False and that the assembly in which your tests reside matches
the pattern in the Automated Tests property (see Figure 7-18).

Chapter 7: Executing Automated Test Cases202

Figure 7-18: Build definition settings for executing automated tests

The final change involves the build host. By default the build host runs
as a service; this means that it cannot interact with the desktop. To change
this, log onto the server that has the build host installed on it that the build
controller is registered with. Open the Team Foundation Server Administra-
tion Console, and select the Build Configuration tab (see Figure 7-19).

Figure 7-19: Team Build Configuration

The build host is the actual process under which the build agents run. For
a Coded UI test to be executed during a regular build, this process must be set
to run interactively. To set this, do the following:

1. Under the Build Host (shown as tfs2010 in Figure 7-19) click the Stop
link.

2. Click the Properties link.

3. Select Interactive Process, and re-enter the build service password (see
Figure 7-20).

4. Click Start.

When you finish, a command window opens with a note to press Esc
when you finish running the interactive build. After you complete running
the build, you need to reset the build service to run as a service. If you run this
on a machine where you are logged on, the build service must run under the
account of the user logged onto the machine. Typically, this is not an issue
because the build executes on a dedicated build machine.

Executing Automated Tests with Team Build 203

Figure 7-20: Team build properties

Chapter 7: Executing Automated Test Cases204

DEDICATED CODED UI TEST BUILD MACHINE
You may want to dedicate one build machine to do nothing but run Coded

UI tests, so you do not need to constantly reset this service.

Figure 7-21 shows the results of the build with two Coded UI tests that
have been executed.

BUILD WARNINGS
If you are curious about the build warnings, the first two are a result of the

BlogEngine.NET application—one is that an XML comment is missing (the

code is well commented, but the authors missed a spot) and the second is

a variable declared but never used by the code. The third warning relates to

the MSDeploy project added to the solution to handle the install duties for

Chapter 8—it cannot be built by MSBuild.

Figure 7-21: Build results with automated testing

Automated Testing Gotchas

You need to be aware of a number of items while performing automated tests.
(These issues do not apply to manual testing.) The biggest issue is the account
you test under and whether you have run tests under that account and on
that machine. These issues mostly apply to browsers and are not usually a
problem with other clients.

Custom Dialogs
The first item to be aware of is the custom dialogs that pop up only in certain
situations. The most obvious one is the Welcome to Internet Explorer dialog.
Other browsers have their own ways to deal with a first time run, but con-
sider how to handle IE. To get rid of this dialog, do the following (this applies
to Windows 7):

1. Run regedit.exe.

2. Navigate to HKEY_LOCAL_MACHINE\Software\Policies\
Microsoft\Internet Explorer\Main.

Automated Testing Gotchas 205

3. Add a new key of type REG_DWORD, and call it DisableFirstRun-
Customize and set the value to 1.

4. Exit the Registry editor.

To perform this same configuration on a server or in a domain, you need
to edit the group policy. To do this, follow these steps:

1. From the command line or the run dialog in the Start menu, run
gpedit.msc.

2. Navigate to the following branch: Computer Configuration, Adminis-
trative Templates, Windows Components, Internet Explorer.

3. Select the setting Prevent Performance of First Run Customize Set-
tings.

4. Select Enabled, and set your choice to Go Directly to Home Page.

5. Click OK.

In the Group Policy Editor, some additional settings are available that may
also make custom dialogs a little easier to handle in Internet Explorer:

• Turn off Reopen Last Browsing Session.

If IE crashes, this dialog prompts you to restore your last session.

• Internet Control Panel, Security Page, Intranet Sites: Include all local
(intranet) sites not listed in other zones.

If you log into an application, for example, the login may not be suc-
cessful depending on your network security settings. By adding the
local sites to the Intranet security group automatically, this problem
can be negated in most circumstances.

• Internet Control Panel, Security Page: Turn on automatic detection of
the intranet.

As with the previous setting, this can help eliminate the issues associ-
ated with applications being in the Internet zone instead of the
Intranet zone.

Chapter 7: Executing Automated Test Cases206

• User Configuration, Administrative Templates, Windows Compo-
nents, Internet Explorer: Turn on the auto-complete feature for user-
names and passwords on forms.

When you first enter a username or password on a form, IE prompts
you to auto-complete and save usernames and passwords.

• User Configuration, Administrative Templates, Windows Compo-
nents, Internet Explorer, Disable AutoComplete for forms.

This disables the general pop-up dialog that occurs the first time you
fill in any fields on a form (except the username and password fields)
that prompts you to turn on auto-complete.

• Disable changing default browser check.

By default IE checks to see if it is the default browser when you first
run it. Enabling this setting disables that check. This is typically
important when you have multiple browsers installed on a single
machine, and they all want to be your “go to” browser.

It’s also okay if you don’t handle these settings, but that means that you
need to log on once as every user on every test machine that will be executing
the Coded UI tests. Typically, you should do this for both the TFS Build and
TFS Test accounts; otherwise, your tests will fail the first time you run them
because unexpected dialogs were shown that the test wasn’t ready to
handle.

Another tip here is that you should not generate a Coded UI test from any
test that has one of these one-time dialogs because subsequent runs will fail
when the test can’t find the dialog.

Cleaning Up Your Tests
As a good practice, each test should be absolutely stand-alone. That is, it
should not depend on any particular test running before it or any particular
test running after it. During a manual test run, you can easily reset the system
in between tests. This is not the case with a series of automated tests run as
part of a regression suite, for example. You also can’t make use of the pre- and
post-scripts that can be run as part of the automated test run settings because
you need to clean up after each test—not the run as a whole.

Automated Testing Gotchas 207

Because of this, make sure that you either record and integrate the steps
necessary to clean up your Test Cases as part of the automation of the test or
find some way to script the cleanup and include the script in the Test Cleanup
method. Failure to do so will end with a lot of failed tests that didn’t actually
fail.

SUMMARY

This chapter taught you to execute automated tests from within Visual Stu-
dio, the command line, and Microsoft Test Manager, and as part of Team
Build. As a tester, you now know how to set up a Test Controller and Test
Agent and to put that Test Agent into an Interactive Process mode so that it
can interact with the user interface. In addition you know how to set up a
physical environment and create automated test settings. Having this knowl-
edge means that you can execute functional tests and Unit Tests to verify
application functionality. In Chapter 8, you learn about Lab Management.

Chapter 7: Executing Automated Test Cases208

8
Lab Management

L A B MA N A G E M E N T I S T H E M O S T exciting new feature to be released by
Microsoft for both developers and testers. Before explaining what this

chapter contains, it is important to define Lab Management because you may
have never heard of it. After reading this chapter, you will want to give
it a try!

Lab Management is Microsoft’s Virtual Environment manager for devel-
opers and testers. One of the core concepts is the capability of a development
team to start up an environment that mimics production as closely as possi-
ble whenever it is needed. And not just one environment—as many environ-
ments as are needed with the minimal amount of work. You can use these
environments to run automated builds, automate tests, or to just provide
developers and testers a clean environment to run code on. In addition,
because it works on virtual machines (VM), you can “snapshot” the environ-
ments at a point in time and rollback to that point in time if necessary. This
helps find and fix bugs faster as you will see.

In this chapter you learn about the various scenarios that can be executed
with Lab Management, how to set up and manage VMs with Lab Manage-
ment, and how to actually execute each scenario. You also learn how to
deploy applications to multiple tiers using the technology that Visual Studio
provides. By the end of this chapter, you will understand the concepts and
know how to handle many different situations you are likely to run into.

209

Managing Virtual Environments Through MTM

Before getting into the usage of Lab Management, you need to understand
how to interact with the Virtual Environments through MTM.

Chapter 8: Lab Management210

WHAT THIS CHAPTER DOESN’T COVER
This chapter does not cover the set up of an environment to support Lab

Management nor does it cover configuring TFS to use Lab Management

because these are administrative tasks and play no part in the actual test-

ing process.

PREPPED VMs
This chapter assumes that you have VMs prepped with the necessary agents

stored in System Center Virtual Machine Manager (SCVMM). For more infor-

mation on how to prep the VMs, see http://code.msdn.microsoft.com/vslab-

mgmt for the lab prep tool that Microsoft provides to help simplify the

process. Some of this chapter assumes you used this tool to configure your

VMs.

Exercise 8-1 walks you through importing a VM into your project.

E X E R C I S E 8 - 1

Import a VM
This exercise uses a VM template instead of a stored VM. Some options will
not exist for you (specifically items on the Hardware profile and OS Profile
pages).

1. Open MTM and select Lab Center, Library tab, Virtual Machines, and
Templates page.

2. Click Import (see Figure 8-1).

3. On the Name and Machine step, select Browse (see Figure 8-2).

4. Find an appropriate template or stored VM, and click Add (see
Figure 8-3).

5. Enter the Name, Description (optional), and Default role, and click
Next.

6. Set the amount of memory to use, and click the OS profile tab.

7. Fill in any relevant information. (For this chapter, the machines are
joined to the external domain already.)

8. Click Finish.

Managing Virtual Environments Through MTM 211

Figure 8-1: Import step 1

Figure 8-2: Import step 2

Figure 8-3: Import step 3

One important step is the Identity Information page of the OS Profile tab.
By default it is set to * when using a template. That means that SCVMM can
provide a generated name for the VM. This is probably a bad thing—espe-
cially for Web Applications. Consider that your script needs to enter a URL,
but how does it do that when it doesn’t know the name of the machine? The
same is true for dealing with a database server; the connection string in your
application needs to be updated, which can’t be done easily if you don’t
know the name of the virtual machine. All is not as bad as it seems because
there are ways to access this information during the deployment process, but
it is extra work that you probably don’t want to do.

When the VMs are imported, they are listed as Stored in MTM (see Fig-
ure 8-4). This process takes time, depending on your network speed. What is
happening is that when you import a template to use in MTM, the VM tem-
plate is copied so that the original is not touched in any way and can be
reused.

After you have the VMs imported, select the Environments page. Here,
you can compose your environments. (You can also compose them from the
Lab tab by selecting New, New Virtual Environment.) Composing a new Vir-
tual Environment lets you add any number of machines, override the
machine properties that were set when you imported the templates, and most
important, set Capabilities.

Chapter 8: Lab Management212

Figure 8-4: A stored VM

Managing Virtual Environments Through MTM 213

VIRTUAL MACHINES VERSUS VIRTUAL ENVIRONMENTS
You need to understand the distinction between a VM and a Virtual Environ-

ment. A VM is a single machine. A Virtual Environment is a set of Virtual

Machines that work together and are treated as one. For example, you may

have one VM that is a database server, another VM that is an application

server, and another VM that is a client machine. These three individual VMs

can be configured as a single three-tier environment consisting of a database

server, application server, and client.

Capabilities describe what can be done with a VM. The three capabilities
available are Run Tests, Run Workflows, and enable the environment for Net-
work Isolation. The ability to run tests is obvious; Test Agent on the machine
executes tests of any type, including Coded UI Tests, Web Performance tests,
Unit Tests, and so on.

Run Workflows enables the machine to be used as a build machine and
enables deployment workflows to be executed. This requires the Build Agent
to be installed on the VM. Finally, the Network Isolation capability enables
VMs to be reused. You can do this in two ways; both require that the template

not be joined to an external domain. Network Isolation enables you to either
create your own virtual domain (this requires that one of the machines in the
environment be a domain controller) or the VMs are just in a workgroup. If
the machines are joined to a domain, this option is not be available to you.
This capability and general control of the VMs and environment as it relates
to testing is provided by the Lab Agent.

A completed two-tier environment (the environment used for the rest of
the examples in this chapter) is shown in Figure 8-5.

Chapter 8: Lab Management214

Figure 8-5: Completed two-tier environment

This environment contains a database server and a web server. The sum-
mary page shows information relating to each VM and the environment as
a whole.

After an environment has been composed, you need to deploy the envi-
ronment. (At this point an environment has been “created” but is just a series
of configurations until the environment deploys.) To deploy the environ-
ment, go to the Lab tab, Environments page, and select the environment; click
Deploy (see Figure 8-6).

Figure 8-6: A deployed VM

During the deploy operation, the VMs are copied to the location specified
in the Lab Management configuration settings. (This is transparent to you
and is configured by the administrator.) The time it takes to perform this
deploy is based on the network infrastructure, the number of VMs in the
environment, and the size of the VMs.

After the environment deploys, you can then begin to use it. For each envi-
ronment deployed you can choose the options shown in Table 8-1.
Table 8-1: Environment Options

Managing Virtual Environments Through MTM 215

Option Description

Open Opens the settings for the environment that enable you to
change various hardware and OS properties, and the capabili-
ties of the environment.

Store in Library Copies all the machines in the environment to a library for reuse.

Start Starts all VMs in the environment.

Connect Opens the Virtual Environment Viewer that provides access to
environment snapshots and remote connections to each of the
machines in the environment.

Table 8-1: Continued

Chapter 8: Lab Management216

Option Description

Shut Down Shuts down each machine in the Virtual Environment. This is
the equivalent of selecting Start, Shut Down from each machine.

Power Off Shuts down each machine in the Virtual Environment. This is
the equivalent of pulling the power cord out of the back of each
machine; in general, do not use this method to shut down an
environment.

Pause Suspends each machine in the Virtual Environment. The state
of the environment is stored, and resources the environment
was using are released back to the operating system.

Because you may have created certain environments for certain uses on
a project, you may want to mark that environment as “in use” so that other
testers or developers do not use the environment. To do this, in the upper-
right corner of the Environments page, select the In Use drop-down
(Figure 8-7).

Figure 8-7: Mark ‘In Use’

It does not lock the environment, but other users who may want to use it
will be alerted that someone is already using it.

Finishing Virtual Environment Configuration

Before starting any types of builds, you need to finish the configuration of the
Virtual Environment. This is actually a post-setup configuration done by the
test team. To that end following are three critical tips:

1. Be sure to install any software needed for the deployment of applica-
tions before taking any snapshots.

2. Always take a snapshot of the Virtual Environment in its base state—
that is, before you have made any changes to it and while it is in the
Off state.

3. Always take a snapshot of the Virtual Environment in the running
state with the account running the Test Agent as the logged on user.

Why these recommendations? The first recommendation is required, if,
for example, you use MS Deploy to deploy applications. If you use Windows
Installer XML (WIX) to create an MSI package, this is not necessary because
Windows can execute an MSI package with no additional software, so it
depends on your deployment mechanism.

The second recommendation simply enables you to go back to the base
machine and change settings such as the amount of memory used, which can-
not be done while the machine is in a running state or has been a snapshot
in a running state.

Finishing Virtual Environment Configuration 217

WHAT IS A SNAPSHOT
If you are unfamiliar with VMs, a snapshot is what it sounds like; it is the VM

as it exists at a given point in time. The power of snapshots is that you can

roll back to that point in time, you can take multiple snapshots, or you can

delete snapshots. You see snapshots discussed frequently throughout this

chapter.

The third recommendation seems a bit odd because it violates one of the
reasons for taking the first snapshot. This is an issue of configuration and
speed. To run Coded UI Tests, you must be logged on as the account under
which the TFS Test service runs. Taking a snapshot at this point means you
don’t need to log on. Another benefit is that when the environment runs and
you roll back to that running snapshot, the environment does not need to
spool up again; it simply resumes where it last was. This makes your testing
process that much faster.

The first step is to configure the machine that will be executing the tests,
for this example the Webserver (App Tier) server. Connect to the Virtual Envi-
ronment which will open the Environment Viewer (see Figure 8-8).

Chapter 8: Lab Management218

Figure 8-8: Microsoft Environment Viewer

In Figure 8-8, you can see both machines that have been logged onto. First,
configure the Test Agent on the App Tier to run in interactive mode rather
than as a service. Configure this according to the instructions in Chapter 7,
“Executing Automated Test Cases.” Then log onto the machine as the account
that the Test Agent runs under.

Next, on the machine that is going to run the tests, if you test a Web Appli-
cation that must work with Internet Explorer, make the updates as outlined

in Chapter 7. Then shut down the environment and take two snapshots: the
base and a running snapshot. Exercise 8-2 walks you through this process.

E X E R C I S E 8 - 2

Snapshot of an Environment
To take a base and running snapshot of your environment, follow these steps:

1. In the Environment Viewer, click the Shut Down Environment button
above the Machines and Snapshot tabs.

2. When all the machines in the environment have shut down, select the
Snapshots tab.

3. Click the Take Snapshot button and name the snapshot <environ-
ment> (Base – Off).

You do not need to give it this name, but it is worthwhile to come up
with a standard naming convention as you will see when running an
automated deployment.

4. Switch to the Machines tab, and restart the environment. (Make sure
that all capabilities are running.)

5. Log on to the Web Server VM.

6. Switch to the Snapshots tab, and click Take snapshot.

7. Name this <environment> (Base – Running).

At the end of the steps in Exercise 8-2, you should see something similar
to Figure 8-9.

Finishing Virtual Environment Configuration 219

Figure 8-9: Snapshot tab of the Environment Viewer

On the Snapshot tab, you have a number of options to manage your snap-
shots. You can take a new snapshot, rename a snapshot, delete a snapshot,
revert to the previous snapshot, or restore to a specifically selected snapshot.
Another option discussed in the section “Manual Tests in a Virtual Environ-
ment” is sharing a snapshot that enables some easy troubleshooting of failed
tests. If you are not familiar with Hyper-V, the Now node indicates the snap-
shot that the current state of the VM started from. In other words, the current
state is the point in time at which the snapshot was taken plus any additional
actions up to now. And the tree structure is not by accident; you can have a
complex tree with different branches to meet a variety of needs. For exam-
ple, looking at Figure 8-9, you could select the Two Tier (Base–Off) node and
select Restore to Selected Snapshot, and you would end up with the situation
shown in Figure 8-10.

Chapter 8: Lab Management220

Figure 8-10: Restored to a previous snapshot

At this point, the machine may or may not be running, but the Two Tier
(Base–Running) snapshot is not affected by anything that happens at the
moment because the base snapshot that the machine is running off of is the
Two Tier (Base–Off) snapshot.

As a rule, because this can get complicated—even for people who know
Hyper-V well, following are a few simple, recommend guidelines:

• If the tree is complicated, create additional Virtual Environments; it
takes up only a little more space than numerous snapshots and is eas-
ier to navigate.

• Try to keep only three levels deep to the tree: the base (off), the base
(running), and a snapshot for each build, and deploy to the Virtual
Environment. There is a performance impact when you have large
numbers of snapshots.

• Perform maintenance on the snapshots as you would for any environ-
ment, and remove unnecessary snapshots.

For the purposes of this chapter, everything depends on the Two Tier
(Base–Running) snapshot.

Automated Test Settings

Before creating the lab build, you need to create the automated test settings
(which are referenced during the lab build creation process). In MTM, select
the Lab Center, Test Settings tab, and select New. Creating the test settings for
automated tests is virtually identical to doing it for manual tests with one
basic difference and a few more options. The first and most obvious differ-
ence is that you need to select Automated instead of Manual from the type
of tests you want to run. The second difference appears on the Roles tab, as
shown in Figure 8-11.

Automated Test Settings 221

Figure 8-11: Roles tab of the automated test settings creation dialog

Here you can select the type of roles to execute the tests. Roles are things
such as a database server or client or application server, or some other type of
environment. The environments that match the required roles display. (Phys-
ical environments are also shown.) After you select the type of role for the
automated settings, you have the option to choose any environment that
matches the role (in the Test Plan properties, Automated Settings, Environ-
ment selection). The other key item, which was briefly noted in Chapter 7, is
that you must select which role will execute the tests. In this case the tests will
be executed from the Web Server role. The last difference, which was also
noted in Chapter 7, is the Advanced page that enables you to execute scripts
and select other items related to automated tests.

The last thing to take care of is to set the automated test settings for the
Test Plan. In the situation in which you use the lab build template, you must
set the environment to a Virtual Environment; otherwise, key options from
the lab build will be unavailable to you, which defeat the purpose of using
the lab build template. For this demonstration, the settings are Lab Auto-
mated Settings, and the environment is Two Tier.

Lab Management Workflow
Chapter 7 mentioned the need for automated builds in relationship to auto-
mated tests. Without automated builds, the testing tools don’t know where
the code that automates the test is located. So the assumption at this point is
that you have an automated build. After you have an automated build, you
can use a lab build.

Chapter 8: Lab Management222

OTHER USES FOR THE LAB WORKFLOW
In addition to using the Lab Management workflow to run automated tests,

it can also be used as a build and deploy mechanism. In this usage the code

would be built and deployed to a Virtual Environment; then testers can man-

ually test the latest build.

For every Team Project you create, a folder called BuildProcessTemplates is
added to source control. You can view this through the Source Control Explorer

in Visual Studio. (Workflows cannot be edited in MTM.) This folder contains
three build templates: DefaultTemplate.xaml, LabDefaultTemplate.xaml, and
UpgradeTemplate.xaml. These are the Workflow (WF) 4.0 build definitions. You
can reuse workflows as needed and simply supply different data. Double-click-
ing any file shows you the workflow (see Figure 8-12).

Automated Test Settings 223

Figure 8-12: Partial view of the LabDefault template workflow

As you can see from the partial view shown in Figure 8-12, the flow
through the process is straightforward to read but can be long. (The entire
workflow could not fit readably onto two full pages in this book.) As you can
see in this figure, part of the lab workflow enables you to roll back to a pre-
vious snapshot and then deploy your application.

Before covering the specific steps for using the lab workflow, look at the
many workflow activities available out-of-the-box. Double-click any work-
flow definition file and view the Toolbox in Visual Studio. You can find more
information on Windows Workflow 4.0 at http://msdn.microsoft.com/en-
us/library/dd489396(VS.100).aspx.

Many options specifically handle builds and lab management. This list
does not include the standard WF 4.0 activities. You can trace many of these
activities back to the lab template that you will see now. In addition, you can
also create your own activities. (Find more information on this at

http://blogs.msdn.com/b/jimlamb/archive/2009/11/18/how-to-create-a-
custom-workflow-activity-for-tfs-build-2010.aspx.)

For the purposes of this section, the BlogEngine.NET already exists. The
actual creation of the Lab build is shown next. Open Visual Studio, and go to
Team Explorer. Expand the Team Project, and right-click the Build node.
Select New Build definition. Creating the build settings is the same for any
build until you change the process template. On the Process tab, click the
Show Details button next to DefaultTemplate.xaml, and select the LabDe-
faultTemplate.xaml from the list.

Chapter 8: Lab Management224

USING THE BUILT-IN TEMPLATES
The built-in templates have been thoroughly tested, so you should use them.

Just don’t change them. In this walkthrough the default templates are used

but you need to branch them or otherwise copy them so that other builds in

this Team Project can also start from the original version of these files and

make changes as needed. If everyone starts editing the default templates,

eventually (sooner rather than later) teams will start stepping on each other.

After you select the LabDefaultTemplate.xaml, the Process tab changes
(see Figure 8-13).

Figure 8-13: Process tab after selecting LabDefaultTemplate.xaml

Clicking in the Lab Process Settings gives you access to an ellipsis that
brings up a lab-specific set of build options. These screens are covered in
detail here. Figure 8-14 shows the Environment screen.

Automated Test Settings 225

Figure 8-14: Environment screen of the Lab Workflow Parameters

You must select the specific environment in which the tests will be exe-
cuted. (If you choose to execute them, you might also choose to just deploy to
this environment.) The environment must already be deployed and running.
The one option here to revert to a specific snapshot is one that is highly rec-
ommended. By starting with a known configuration, when issues are dis-
covered it is easier to reproduce the issue. Select Next to move to the Build
screen (Figure 8-15).

This screen lets you choose which build the tests will actually be executed
against. The default is to create a new build (as shown in Figure 8-15).
Another option is to use an existing build for the selected build definition. If
the build definition is stable, selecting this option saves you the time of exe-
cuting a whole new build. The amount of time you save is based on the
amount of time it takes to complete the build, which can be from minutes to
hours, so this is project-specific. If the build definition builds multiple con-
figurations, select which configuration to actually deploy and test.

Figure 8-15: Build screen of the Lab Workflow Parameters

The second option is to simply point to a build in a specific location
(regardless of the build definition).

Figure 8-16 shows the Deploy screen.

Chapter 8: Lab Management226

Figure 8-16: Deploy screen of the Lab Workflow Parameters

After you select the option to Deploy the build, you can provide pointers
to scripts that execute to perform this deployment. Deploying applications
via scripts is actually simple in Visual Studio 2010. In Figure 8-16 you can see
three listed scripts: Deploy.cmd, SetupWebServer.cmd, and DeployData-
base.cmd. Two good options for creating these scripts are PowerShell or the
Windows Shell command line. PowerShell provides the most options. The
command line is used for this walkthrough. Also, although this deployment
has been broken up into three scripts, these can all be in one script. You will
probably like the granularity and reusability of scripts. Look at each of these
scripts, starting with the Deploy.cmd script in Listing 8-1. (Line numbers are
added for clarity.)

Listing 8-1: Deploy.cmd Deployment Script

1 set RemotePath=%1
2 set LocalPath=%2
3 if not exist %RemotePath% (
4 echo remote path %RemotePath% doesn’t exist
5 goto Error
6)
7 if exist %LocalPath% (
8 rmdir /s /q %LocalPath%
9)
10 mkdir %LocalPath%
11 xcopy %RemotePath% %LocalPath% /s /y
12 @echo Copied the build locally
13 :Success
14 echo Deploy succeeded
15 exit /b 0
16 :Error
17 echo Deploy failed
18 exit /b 1

The first two lines simply assign the command line arguments to vari-
ables. The deployment script is passed two values: $(BuildLocation) (any-
thing surrounded by a $(…) is called a macro) and C:\BlogEngineDeploy.
Table 8-2 describes the available macros. This is the first critical item when
constructing these scripts—the scripts are executed on the machine that you
specify as the role that runs the automated tests (set when you create the
automated test configuration settings). So, in this file the RemotePath points
to the build machine, and the LocalPath points to the role that executes the
tests.

Automated Test Settings 227

Table 8-2: Macros and Their Descriptions

Chapter 8: Lab Management228

Macro Description

$(BuildLocation) The location of the build output or the specific
directory selected if you chose to use an exist-
ing build.

$(InternalComputerName_ The name of the machine that you are referring to.
<VMName> In this chapter you have been using two systems:

DataServer and WebServer. To reference them you
use $(InternalComputerName_WebServer) or
$(InternalComputerName_Dataserver).

$(ComputerName_<VMName> The fully qualified domain name (FQDN) of the
machine (for example webserver.demo.local).
The reason for a second computer name macro
is to support isolated environments. Isolated
environments have one reference name when
working inside the environment but communi-
cate outside of the environment via the FQDN.
How you reference the names depends on
where the script that uses this macro is executed.

The next block of script (lines 3–6) check to see that the build location actu-
ally exists (and that you have permission to it) and if it doesn’t, it throws an
exception. It exits with a 1 (line 18). This triggers the build to fail and stops
the execution of subsequent scripts.

Lines 7–10 check to see if the path provided (in this case C:\Blo-
gEngineDeploy) exists on the VM. If it does, it deletes the folder and then re-
creates it. Line 11 copies the entire contents of the build location to the VM.
This is not necessary; you can simply copy only the files needed, which sim-
plifies the script.

When the necessary files are on the VM, it’s time to run the next script:
SetupWebServer.cmd, as shown in Listing 8-2.

Listing 8-2: SetupWebServer.cmd

1 %windir%\System32\inetsrv\appcmd add site /name:”BlogEngineWeb” /id:2
/bindings:http://*:8001 /physicalPath:”C:\inetpub\wwwroot\BlogEngineWeb”

2 cmd /c %1_PublishedWebsites\Package\BlogEngineWeb.deploy.cmd /Y %2
3 iisreset

Line 1 of the SetupWebServer script invokes the appcmd command-line
tool (this is an IIS-specific command-line tool) to actually create the Blo-
gEngineWeb site, set the appropriate bindings, and create the physical path
where this site points to. You can find more information on this tool at
http://technet.microsoft.com/en-us/library/cc772200(WS.10).aspx. There
are many more options to appcmd, and if you haven’t used it before, it can be
a big help. Line 2 performs a neat trick; it executes the MSDeploy engine. You
learned in the section on configuring the VM environment that you need to
install any applications that are a prerequisite to installing your application.
In this case MSDeploy is installed on the web server. The end result of this
deployment is that the website content has been deployed to the physical
directory, and all virtual directory settings have been set based on the Blo-
gEngineWeb project. You can find more information on MSDeploy at
http://blogs.iis.net/msdeploy/.

The last script, DeployDatabase.cmd does the actual work of deploying
the database, which is shown in Listing 8-3. (Line breaks are for formatting
purposes.)

Listing 8-3: DeployDatabase.cmd

1 “C:\Program Files (x86)\Microsoft Visual Studio 10.0\VSTSDB\Deploy\vsdbcmd”
/a:Deploy /dd+ /dsp:sql /model:%1\SharedDBServer.dbschema
/manifest:%1\SharedDBServer.deploymanifest /p:TargetDatabase=”master”
/cs:”Server=%2;uid=SA;pwd=P@ssw0rd”

2 “C:\Program Files (x86)\Microsoft Visual Studio
10.0\VSTSDB\Deploy\vsdbcmd”

/a:Deploy /dd+ /dsp:sql /model:%1\BlogEngineData.dbschema
/manifest:%1\BlogEngineData.deploymanifest
/p:TargetDatabase=”BlogEngineData”
/cs:”Server=%2;uid=SA;pwd=P@ssw0rd”

This script deploys the logins and other security associated with the Blo-
gEngine.NET database; then the actual database is deployed. The usernames
and passwords listed here are for the database on the Data Server VM. You
could just as easily set this to integrated authentication and give the account
that the test is running under the appropriate rights to the database server.
This deployment script is made possible through the use of the Database
Project in Visual Studio that simplifies deployments of any databases. The
vsdbcmd command-line tool is installed with the build agent and does not

Automated Test Settings 229

need to be installed separately. The first command-line argument provides
the path to the files, and the second argument provides the name of the data-
base server to connect to.

One option you have is running different scripts on different machines.
The first column of the script list enables you to select which machine the
script is executed on, so many different scripts can be executed on many dif-
ferent machines. The limit is only your imagination.

So where do these scripts come from? They are part of the actual project
and placed in a Scripts folder with the action set to Copy Always. These
scripts can be part of the test project as well or even a separate project
included as part of the build—it’s up to you. The recommended method for
doing this though is to version them as part of the actual project because they
reference information contained in the project (such as the database project
names and related information).

The final option on this screen is taking a snapshot after the deployment,
which is highly recommended. The reason for this is because if a test fails,
you want the developer to either re-execute the test or manually walk
through the test on the machine starting in the state that it was in after the
application was deployed but before any of the tests executed.

The last screen contains the testing options, as shown in Figure 8-17.

Chapter 8: Lab Management230

Figure 8-17: Test screen of the Lab Workflow Parameters

This screen enables you to select your test plan, tests to execute, test con-
figuration, and the automated settings. The biggest gotcha here is making
sure the automated test settings are created first. If you forget to create them,
you will not have any options available to you in the final drop-down, and
the tests will not execute. (You can save this build definition, create the test
settings, and then come back and update the definition.) The settings here are
self-explanatory. When you finish, click Finish and save the build.

Executing a Lab Build

When you execute the build, assuming everything is set up correctly, it just
runs and executes the tests specified. That’s it. No drama, no fuss, no muss.
Okay, the reality is that the first time you go to execute any lab build you may
have a lot of failed builds. You could get the paths and the filenames wrong
or forget to set a value on the server for setup or to include the test data. You
could forget many things when you do the first run. Don’t worry. The builds
execute rather quickly, and the following suggestions can help you avoid
wasted time:

• Don’t revert to a snapshot when you first execute your tests; manually
do this outside of the environment because your first few attempts
may not be successful—why waste the time of a restore?

• Don’t take snapshots after the deployment until you get the build
working correctly; it just wastes time with snapshots that most likely
don’t have the application deployed correctly.

• If you deploy a database, make sure the database server is configured
correctly and that the usernames and passwords you provide are
valid.

• As a corollary to the previous point, make sure you set the right user-
name and password in the script executed by vsdbcmd or pass them
in as a parameter to the script.

• Validate that you have passed the correct parameters to all the scripts.

• Make sure that all the Coded UI Tests pass on the machine on which
they are created.

Executing a Lab Build 231

Figure 8-18: Completed Lab Management build

This build report is a bit different compared to a normal build report. First,
selecting View Log opens the log for the lab build, not the application build.
To view that log you need to select View Summary under the Compilation
heading. You can also directly open the post deployment snapshot by click-
ing the link; you need to have MTM installed for this to work. Otherwise this
report is the same as any other build report except that the test results shown
here are not reported to TFS as part of the build. (But the results are published
against that particular build number, and their results are available for report-
ing on.) That means that these results will not show up on the Build Success
over Time report.

You can watch the tests execute by connecting to the server on which the
tests are run during the build, but the usual rule applies: Don’t play with any-
thing while the test runs.

Chapter 8: Lab Management232

Figure 8-18 shows a completed lab build.

Running Automated Tests Through MTM

After a build deploys to a Virtual Environment, running automated tests
against the build is trivial. At this point, you have already created the auto-
mated run settings because they were required for the lab build. So it is sim-
ply a matter of updating the build that you run against. Remember that the
build you run against serves two purposes: The first is from a reporting per-
spective so that you know the outcome of the tests, and the second is to locate
the test assemblies.

Running Automated Tests Through MTM 233

SERVER NAMES
Pay special attention to server names, especially when dealing with web ap-

plications. To make life easier, record the manual tests against a web server

in the virtual environment against which the tests will be executed. This way

the correct server name is recorded and output as part of the Coded UI test.

If you forget to do this, do a search and replace in the .uitest file to replace

the server name with the correct name.

DUAL PURPOSE BUILDS
In MTM the builds serve a dual purpose, which means you may need to make

some adjustments to how you handle application code and test code. For

now, this code must be tied together; that is, when you revise the test code,

you must also rebuild the application code. They cannot move independently

of one another, even though the test code can be executed against a differ-

ent version of the application code. The critical report—which tests worked

against which build—is what counts to the end users, so create your strat-

egy around that notion.

To perform an automated run in MTM, make sure that the Virtual Envi-
ronment is running, select the automated tests you want to execute, and click
Run. This uses the automated test settings and performs the execution of the

tests in the Virtual Environment, enabling you to work on other items. At this
point, as with executing the build, it is all fairly well done for you.

Chapter 8: Lab Management234

SPEED UP YOUR TESTING
Adding lots of diagnostic data adapters to gather information takes time. It

is worthwhile to keep multiple sets of automated (and maybe even manual)

settings that you can use as needed. For example, one set may collect virtu-

ally no information (no IntelliTrace, no video recording, nothing) and another

may gather detailed diagnostics because a bug was found in an earlier test

run, and you need more data for the developer.

When the tests finish running, you can view them in the Analyze Test
Runs page of the Test tab. Here you can drill into and see the results of the test
and take the appropriate action (file bugs, grab environment snapshots—
more on that in a moment—update the Failure Analysis, and add other
comments).

Manual Tests in a Virtual Environment

Microsoft Test Manager and Lab Management have one last trick up their col-
lective sleeve—handling manual test execution in a Virtual Environment.
MTM does not need to be installed on the VM, although this is definitely ben-
eficial because not having MTM installed means that you cannot record an
action log.

WHY MANUAL TESTING IN A VIRTUAL ENVIRONMENT
This model provides many benefits. First, you can start up a VM with a build

and let the user play with the application. Second, user acceptance testing

can be done in an entirely controlled environment so that any bugs found can

be more easily reproduced. Finally, performing manual testing in a Virtual

Environment simply requires that the application be installed on the Virtual

Environment. No builds or lab builds need to be created. (You should use

automated builds, but the deployment does not need to be automated.)

To set up manual testing in a Virtual Environment from outside of the envi-
ronment, create a new set of test settings, and on the Roles tab, select the Vir-
tual Environment configuration you want (see Figure 8-19).

Manual Tests in a Virtual Environment 235

Figure 8-19: Configuring manual test settings in a lab environment

On the Data and Diagnostics tab, the one missing item is the ability to
record an action log, although you still have the ability to gather other data
and diagnostics.

GATHERING DIAGNOSTIC DATA
On the Data and Diagnostics tab, you can set different diagnostics to be run

for each machine in the environment.

On the Test Plan Properties page, you can then select the test settings you
created and an environment that matches the specified roles. When you start
the test, Test Runner pops up next to the Virtual Environment viewer, as
shown in Figure 8-20.

Figure 8-20: Manual testing in a Virtual Environment (MTM outside of the Virtual
Environment)

This is a quick-and-easy way to run through manual tests when you do
not have to record test steps.

When running manual tests in a Virtual Environment, you have the abil-
ity to snapshot the environment and have that snapshot automatically
attached to a bug created during the test run. (You can also attach a snapshot
to any work item at any time if you want.) To do this you would fail the test
step, select the Snapshot Environment button (third from the right on the Test
Runner toolbar) that not only snapshots the environment but also attaches
the snapshot link (a .lvr file that stands for Lab Viewer) and then create the
bug. Figure 8-21 shows the Repro Steps section of a bug created in this envi-
ronment. To attach a snapshot to a work item at any time, select the Snapshots
tab in the Microsoft Environment Viewer, select the snapshot you want to
share, and click the Share snapshot button located directly above the list of
snapshots. This creates a .lvr file that you can save to the machine and then
add as a file attachment to any work item.

Two things are different about this particular set of steps: First, on step 5,
there is a .lvr attachment. Clicking this opens the Microsoft Environment
Viewer window and loads the snapshot this is associated with. There is one
important warning here. When you click the link, Figure 8-22 appears.

Chapter 8: Lab Management236

Figure 8-21: Repro steps of a bug filed on a VM

Manual Tests in a Virtual Environment 237

Figure 8-22: Connect to environment dialog

If you simply select Connect to the snapshot in this environment, whoever
is working in this environment and has not made a snapshot of the environ-
ment will lose their work! You should put in place a process to make sure this
does not inadvertently happen.

Second, data was captured from both agents.
The ability to execute manual tests in a controlled environment according

to a set of scripts opens up several possibilities for managing software accept-
ance. Users can test the latest builds of software without impacting their day-
to-day work and provide fast feedback to the team. Acceptance testing can
also be performed in a controlled environment so that when a customer finds
a problem it can be easily diagnosed.

SUMMARY

Whether you need a single machine or an entire farm of VMs, Lab Manage-
ment provides an infrastructure to meet your testing and development needs.
Regardless of whether you do only manual testing or a mix of manual and
automated testing, Lab Management can create an environment that closely
mimics your production environment at a fraction of the cost of physical
machines.

Based on the value proposition of Lab Management, virtualization is the
future of testing. Not only does it provide a huge cost savings from an infra-
structure and maintenance perspective, but also from the time savings of
quickly and easily spinning up multiple environments for test teams of any
size. Combined with the fact that developers can also take advantage of these
environments for their own development purposes or for testing purposes,
Lab Management provides a powerful but easy-to-use solution for the entire
team.

And, the primary reason for using Lab Management is to ensure that
when a tester finds a bug, the developers can always reproduce it. Now there
is no question. The environment will be the same, the state will be the same,
the settings will be the same, and so will everything else because the machine
the developers reproduce the bug on is the machine that the bug was
found on!

Chapter 8: Lab Management238

9
Reporting and Metrics

T H I S B O O K P R E S E N T S Y O U W I T H the process of testing using the tools
provided by Visual Studio and Team Foundation Server 2010. Chapter 1,

“State of Testing,” mentioned that metrics were one of the most important
items to come out of testing because without metrics, you can’t prove, or
improve, quality. This chapter teaches you about the reporting capabilities of
Visual Studio and Team Foundation Server with a look at several different
aspects of reporting. The chapter concludes with a specific look at metrics:
what are good metrics, how you record them, and what actions you should
take based on them.

TFS includes a number of different mechanisms to make data available to
you, but at its core you report off of a SQL Server Analysis Services (SSAS)
data cube (described in the following section) through a number of different
user interfaces. These interfaces include SQL Server Reporting Services
(SSRS), Excel, and Excel Services (through Microsoft Office SharePoint Server
[MOSS]). You can also use PerformancePoint, PowerPivot, SQL Server Report
Builder, and Visio. Although all these interfaces are not covered, you learn
about the basic mechanics and see many examples that should provide guid-
ance when creating your own reports.

239

Understanding the Reporting Structure

Before discussing the details of the reports and data, you need to understand
how the data is stored and transformed and some of the ramifications. Figure
9-1 shows the databases that the data passes through to get to the data cube.

Chapter 9: Reporting and Metrics240

Data
Warehouse

Data
Cube

TPC #1

TPC #2

TPC #3

Figure 9-1: TFS data repositories

Team Project Collections (TPCs) are housed in individual databases in
SQL Server. Every time a user makes a change to anything in TFS (work
items, version control, test results, and so on) the changes are transformed
and transferred to the Data Warehouse, which is a separate SQL Server rela-
tional database. Each TFS instance has one data warehouse. From here, every
2 hours (by default) the data is loaded into the SQL Server Analysis Services
cube. The structure of these databases is beyond the scope of this book, but
you can find additional information here:

• Relational Warehouse: http://msdn.microsoft.com/en-us/library/
ms244691.aspx

• Analysis Services Cube: http://msdn.microsoft.com/en-us/library/
ms244710.aspx

The cube is structured in dimensions and measures. Figure 9-2 shows this
view.

Figure 9-2: Visualizing the data cube

Figure 9-2 is a simplistic view of a cube but is illustrative of the structure.
The Work items, State items, and Time items are dimensions. The values con-
tained at the intersection of the dimensions are the measures. Looking at this
cube, you can see that on August 15, 2010, there were three Active Bugs.
Dimensions can be hierarchical. For example, here the Time dimension is rep-
resented in weeks, but you can navigate up the hierarchy to group informa-
tion by Month, Quarter, or Year as well or navigate down to the specific date.
Having this basic information it is helpful to examine another example. If you
were to query the total number of work items, the value would be 142. Div-
ing into a specific work item, say the Test Case work item, would lower that
number to 90. Further querying on just the work items in the Design state
would give you the value 25. Adding the date dimension would further
reduce this number. In this way you can easily drill into specific information
or view the information at any level.

When data is transferred from the TPC databases to the data warehouse,
time is stripped out, which means that data based on date fields can be cal-
culated for only full days and not hourly intervals. There is a good reason for

Understanding the Reporting Structure 241

18

8/1/2010

8/8/2010

8/15/2010

5 6

15 25 50

3 5 15

User Story

W
or

k
Ite

m
s

Tim
e

Test Case

Bug

State

A
ct

iv
e

R
es

ol
ve

d

C
lo

se
d

D
es

ig
n

R
ea

dy

this; to incorporate time as a dimension, there would have to be additional
values for every minute or hour for every day of the year including a hierar-
chy. This has a negative impact on the performance of the cube. So, if you do
need to report on time, you need to do it from the TPCs directly. There are
other options, but they are advanced and beyond the scope of this book.

The cube is one of the most exciting features in TFS. Without the data it
provides (historical and current) the information collected on the work items
and in test results is wasted. Excel provides the ability to query directly on
almost any data source. This makes it the easiest way for you to get informa-
tion on that data and is far easier than using SQL Server Reporting Services.
One drawback to using Excel is that you can’t schedule report delivery and
can’t create composite reports. (You can have different reports on each tab,
but that isn’t quite the same.) These capabilities are available in SSRS. With
this understanding the rest of the chapter talks about the data contained in
the database, how to get to it, and how to create custom reports. This infor-
mation is especially helpful when using Excel to report on data.

Built-In Reports

A standard set of reports provided for you highlight various pieces of infor-
mation about your project. These reports are SQL Server Reporting Services
(SSRS) reports. Depending on your installation of SharePoint, these reports
are also available as Excel Services reports. Figure 9-3 shows the out-of-the-
box Test Plan Progress report.

If you are familiar with the reports provided with TFS 2005 and 2008, you
can notice many helpful differences. The salient parts of the report are the fol-
lowing areas:

• Related reports provide links to reports that further detail or provide a
different perspective on the presented data.

• Questions This Report Helps Answer provides a link at the bottom that
takes you directly to the MSDN documentation describing the informa-
tion each report provides and what a good or bad report looks like.

• Parameter Values lets you know what parameters were provided to
generate the report so that you can always re-create the report.

Chapter 9: Reporting and Metrics242

Figure 9-3: Test Plan Progress report

The How to Use This Report link provides the most valuable information,
which isn’t re-created here. Instead a few insights are provided on the trends
and patterns to look for and some areas that the MSDN documentation does
not cover. These reports and the additional information to consider are
covered next.

Built-In Reports 243

SHAREPOINT VERSION AND REPORTS
Windows SharePoint Services (WSS) is the free version of SharePoint and

includes dashboards composed of SSRS reports. The full version of Share-

Point (Microsoft Office SharePoint Server) includes a feature called Excel

Services that enables SharePoint to display data from an Excel file to the end

user without the user having to open the file, as shown in Figure 9-13. The

Excel Services reports, in most cases, are re-creations of the SSRS reports for

use in creating custom dashboards.

Whether you use the Agile or CMMI template, the built-in reports are essen-
tially the same. The reports related to quality are covered in some detail here.
Additional information is available on the MSDN site. (Links are provided
at the end of this section.) This is not an all-inclusive list of reports because the
focus of this book is on providing only information about the quality reports.

Bug Status
The Bug Status report provides a timeline view of all bugs and their state over
the lifetime of the bug (see Figure 9-4).

Chapter 9: Reporting and Metrics244

Figure 9-4: Bug Status report

At the beginning of a project there will be an increase in the active bug
count because you are starting from no bugs at all; however, over time the
number of active bugs should level off and then decrease as you approach a
release. Following are a number of warning signs to look for on this report:

• Growing number of active bugs

• Bugs not being resolved

• Resolved bugs not being closed

• A large number of priority-one bugs

The last point is an important one. It is okay to ship with known bugs, but
not usually with priority-one bugs still outstanding (maybe not even with
priority-two bugs depending on how you classify each priority).

Another item to look for is a growing number of active bugs near the end
of the iteration or the release, which are an indication that the team is strug-
gling to get work done to meet a deadline and sacrificing quality. This is a
common pattern at the end of a release cycle.

Bug Trends
The Bug Trends report provides information on the rate of arrival of new
bugs and the rate of resolution and closure for existing bugs (see Figure 9-5).

Built-In Reports 245

Figure 9-5: Bug Trends report

Notice the convergence (or rather divergence) of the trend lines. If the 7-
day arrival rate is higher than the 7-day close rate, you will ship with bugs.
The larger this gap is, the more problematic it will be for you. This also points
to the philosophy teams use when dealing with bugs. Some teams have “bug
bashes;” when the bug count gets to a certain point, they work on fixing bugs
to the exclusion of all else. This is a key component of Technical Debt and can
be an expensive approach to software development.

Chapter 9: Reporting and Metrics246

TECHNICAL DEBT
The concept of Technical Debt is not covered in this book but it is worthwhile

to understand how bugs fit in with this. Technical Debt is a term coined by

Ward Cunningham to describe the cost associated with not fixing problems

when they occur but letting the problems build up.

Other teams (typically teams doing agile development) fix bugs and other
problems as they occur. If this is your approach, this report is more important
to you, and the active, resolved, and closed trend lines should be fairly close
to each other and not divergent.

Reactivations
This report indicates how many times a bug or requirement has been marked
as resolved or closed only to be reactivated (see Figure 9-6).

This report shows waste, pure and simple. Any item that shows up as red
indicates that rework must be done. The more items reactivated, the less time
a team has to work on new features. Reactivating items is covered in depth in
Chapter 4, in the section “Reactivations.”

Build Quality Indicators
The Build Quality Indicators report overlays test results performed during a
build, code churn, code coverage, and active bugs to provide a comprehen-
sive view of application quality over time (Figure 9-7).

Figure 9-6: Reactivations report

Built-In Reports 247

Figure 9-7: Build Quality Indicators report

The example shown here does not show the results of tests because no
tests were run during these builds. This build report shows the lines of code
that were changed for a bug fix and the corresponding number of active bugs.
Over time the number of active bugs should decrease, and the code churn
should decrease going into a release.

The tests that show up on this report are any tests executed during a nor-
mal build. In other words, tests executed as part of a Lab Build are not shown
on this report. However, if your Coded UI tests are executed by the TFS Build
service account as part of a build, those results display here as well.

The information on this report shows items that have a fairly tight and
predictable correlation. For example, a high code churn most likely can lead
to a smaller code coverage percentage (which is a bad sign) unless the team
increases the number of tests in-line with the new and modified code. High
code churn generally leads to a higher count of active bugs because of the
increased likelihood of regression bugs being introduced. Over time, look at
this report to show a downward trend in code churn and active bugs and an
upward trend in code coverage and passing tests.

Build Success over Time
This report provides a heat map with build status, code coverage, and test
result indicators for every build and platform over time (Figure 9-8).

Chapter 9: Reporting and Metrics248

Figure 9-8: Build Success over Time report

Use this report to, at a glance, determine trends in your automated builds.
Green and light-green are good; everything else is bad. Cases where the build
passes (as in Figure 9-8) are good but that no automated testing occurs is gen-
erally something that should be rectified. In some cases this is not possible
(Lab Build test results are not factored into this report) so yellow is actually
a good sign.

You can drill into the Build Summary report by clicking the date link at the
top of each column.

Build Summary
The Build Summary report provides the same information as the Build Suc-
cess over Time report except the information is more specific with percentage
of tests passed, percentage of code coverage, and actual code churn as
opposed to generalities (Figure 9-9).

Built-In Reports 249

Figure 9-9: Build Summary report

The report is ordered by date with the latest builds at the top. Over time
the percentage of tests passing should increase, and code churn should
decrease. These builds show high code churn because the churn is calculated
for each successful build, not partially successful builds. Any tests failing
should be immediately addressed. As with other reports, code coverage

should go up over time, and code churn should go down. One piece of infor-
mation not shown on this report is the executed number of tests. For that look
at the specific build log or the Build Quality Indicators report.

Stories Overview
Everything comes together on the Stories Overview report, which provides
the percentage of work completed, number of hours remaining, total number
of tests, test results, and bugs (and their status) for each requirement
(Figure 9-10).

Chapter 9: Reporting and Metrics250

Figure 9-10: Stories Overview report

This is the information that customers want. Virtually all the other reports
show things the team wants to know (there is value in customers knowing
the information shown on other reports also) but this report speaks to the
customers’ requirements and the quality of those requirements. If I am a cus-
tomer, I am monitoring this report. In particular it tells a customer how close
to completion the team is, whether the requirement has a sufficient number

of Test Cases, and if those Test Cases have been executed. For any bugs
related to a requirement, this provides the status for those as well. This report
combined with the Bug Status report gives a customer enough information to
make a decision about the readiness of a feature for release. And because this
is important to the customer, it is also important for the team to monitor
because this is the visibility of your progress.

Test Case Readiness
The Test Case Readiness report indicates the number of Test Cases and the
state they are in (Figure 9-11).

Built-In Reports 251

Figure 9-11: Test Case Readiness report

This report provides only general information. Remember to scope it to
the right level (iteration or date range) but use it only as a guide. Test cases
can also be executed in the design state, so this isn’t necessarily indicative of
whether the tests can be executed. (Although it can be inferred that any Test
Cases that are Ready can be.)

What you should look for in this report is simple: The number of Test
Cases in the Design state is dropping, and the number of Test Cases in the
Ready state is increasing. One trend to watch for is the number of Test Cases
increasing in any given period of time, which means that the iteration began
without a good understanding of the acceptance criteria or that the team is
working on writing code first without understanding how the features will
be validated. This can be a dangerous situation that can lead to more bugs,
not fewer bugs.

Test Plan Progress
The Test Plan Progress report displays the state of all Test Cases and results
for one or more of the Test Plans (see Figure 9-12).

Chapter 9: Reporting and Metrics252

Figure 9-12: Test Plan Progress report

The information on this report is straightforward. You want to see a
steadily decreasing number of Test Cases that have Never Run and a steadily
increasing number of Passed Test Cases. Where you see Failed tests, there

should be only a narrow band of failed tests. If the number of failed tests
starts growing, you need to ensure that the bugs created from the failures are
fixed quickly.

A growing number of failed tests indicate that you are in danger of ship-
ping bugs. However, remember that it is the type of bug you ship that is crit-
ical, so use this report with the Bug Status report to ensure that the failures are
something that the team needs to immediately work on. By itself this report
can be misleading.

You can find more information on these reports on the Microsoft Devel-
oper Network (MSDN) documentation site:

• MSF for Agile v5.0: http://msdn.microsoft.com/en-us/library/
dd380714(v=VS.100).aspx

• MSF for CMMI v5.0: http://msdn.microsoft.com/en-us/library/
ee332487(v=VS.100).aspx

Excel Ser vices Reports (Dashboards) 253

MSDN DOCUMENTATION
In past releases of Visual Studio and Team Foundation Server, the documen-

tation was not complete; it didn't provide much key process information. In

the 2010 release, however, the MSDN team completely revised the documen-

tation, and the value of that documentation is fantastic. Included in the docu-

mentation are examples of good and bad reports, and the data required to

“light up” the report. (The reports are shown as well; this is another new

change, showing screenshots.)

Excel Services Reports (Dashboards)

The Excel Services reports largely follow the built-in SSRS reports except they
are broken into smaller chunks because you can have only one graph per
Excel Services report. An example of an Excel Services dashboard is shown in
Figure 9-13.

Figure 9-13: Partial view of the test dashboard (Agile template)

All the information from the related SSRS reports is shown on this dash-
board. One difference between the dashboard and the SSRS reports is that
you cannot set the filters without editing the Excel spreadsheet that these are
based on. For that reason, using the dashboards is a starting point and
drilling into additional data may be necessary. Because the dashboards are
built from individual Excel graphs, building the individual graphs that make
up the dashboards is the focus here.

Reporting with Microsoft Excel

Now that you have seen some of the built-in reports, it is time to create your
own. Although you can build SSRS reports, they require a bit more work than
building the reports with Excel. This section teaches you how to use Excel to
quickly get to the data in the correct format. Excel is the primary means by
which you create reports on the data stored in TFS. You can create these
reports in two ways: have Visual Studio generate them for you and create

Chapter 9: Reporting and Metrics254

them manually. In many cases starting with a generated report and then aug-
menting it is a good idea because the generated report takes care of several
details.

Creating a Generated Report
You can generate reports through the results of a work item query in Visual
Studio. Exercise 9-1 walks you through the basic steps. This works only with
Flat queries and not with Directed Links or Tree queries.

E X E R C I S E 9 - 1

Generating Reports from a Work Item Query
The available types of graphs are based on the columns returned by the
query. Selecting different columns can yield additional options.

1. Open Visual Studio 2010.

2. Expand the Work Items node for any team project.

3. Execute any flat work item query.

4. On the query results toolbar, select Open In Microsoft Office, and
select Create Report in Microsoft Excel.

At this point, Excel opens and you are prompted with the New Work
Item Report dialog (see Figure 9-14).

Reporting with Microsoft Excel 255

Figure 9-14: New Work Item Report dialog

5. Select one or more Current and Trend reports to create, and click Fin-
ish.

One graph from the generated report is shown in Figure 9-15.

Chapter 9: Reporting and Metrics256

Figure 9-15: A generated Excel Report

At the bottom of Figure 9-15, a series of filters have been automatically
created that narrow the scope of the query, and the fields that display have
been created. At this point you can easily expand the scope of the query, nar-
row it down further, or just change it to fit your needs. This provides a head
start for developing queries in Excel. Before creating your own reports in
Excel, you need to understand one additional piece of information: Test
Measures.

The Testing Measures
You will experience four testing measures in your test reporting endeavors:
result count, result count trend, build result count trend, and point count

trend. Selecting the wrong measure can result in data that looks valid but is
not, so you need to understand what these measures are and how they man-
ifest themselves. This applies to any reporting done from the cube. Table 9-1
defines these terms. The basic concept to understand is that the term point
refers to a point in time. The term trend refers to data over time, and the
absence of either of these terms refers to the current state.
Table 9-1: Test Measures Defined

Reporting with Microsoft Excel 257

Measure Description

Point Count Trend Provides a history of test outcomes and provides
the latest result for each test point

Result Count Shows the sum of all test results

Result Count Trend Provides a history of test results over time

Build Result Count Trend Provides the result count broken down by build

Result Transition Count Shows results that have changed the outcome
from one run to the next

With this understanding, Exercise 9-2 shows you how to create a Pivot
Table report from scratch.

E X E R C I S E 9 - 2

Creating the Test Cases to User Stories Report
The data contained in this report is available to you in the Stories Overview
report and also on an Excel Services report (the User Story Test Status shown
in Figure 9-13) but this report can serve as the starting point for more detailed
information that isn’t available on those reports.

This exercise assumes that you use Excel 2007 or 2010. This works with
Excel 2003, but the menu locations are different.

1. Open Microsoft Excel.

2. Select the Data tab, and choose From Other Sources, From Analysis
Services.

3. In the Data Connection Wizard, enter the server name and click Next.

4. Depending on your version of SQL Server, you may see different items
listed; select the database (Tfs_Analysis by default) and the Team Sys-
tem cube, and click Next.

5. After entering a description (optional) click Finish.

6. Click OK on the Data Import dialog. This displays the screen shown in
Figure 9-16.

Chapter 9: Reporting and Metrics258

Figure 9-16: Excel Pivot Table reporting

7. From the Show Fields Related To (upper-right corner) select the
Linked Current Work Item Test Case. This narrows your available
selection to a more meaningful subset of data.

8. Scroll down this list to the Work Item Linked section, and drag the
Work Item Linked.Work Item Type field to the Report Filter box below
it. This places the field in the upper-left corner of the Pivot Table area
(cell A1).

9. Select the drop-down in cell B2 (where it says all) and change it to
either User Story or Requirement depending on the process template
you are working with.

10. Next, select the Work Item Linked.Iteration Path, and drag that field to
the Report Filter box as well. Set this filter to be the iteration you want
to report on. (For this example, I use Iteration 2, but you can filter by
Area, Team Project, or virtually anything else you want to filter on.)

11. Place a check mark in the Work Item Linked.Title field. This adds it to
the Row Labels box. (You can also drag this field to the Row Labels
box.)

12. Find the Test Case section in the PivotTable Field List, and check the
Title field.

This will blow out your list of fields in a way that doesn’t make sense.
What it does is add all Test Cases related to any User Story or Require-
ment to every user story or requirement listed. This is obviously not
valid, but don’t worry too much about what shows up while you are
constructing the pivot table. Until you add the measures, all this is
meaningless.

13. Select the Show fields related to Test.

14. Select the Point Count Trend measure from the Test measures (the Test
measure has a Sigma [Σ] sign next to it) and then collapse all the
requirements. (Do this by right-clicking a requirement and selecting
Collapse Entire Field.)

15. Now that you have the data, you can create the graph. Select the
Options Tab of the PivotTable Tools, and click PivotChart. (You need a
cell selected that is part of the pivot table.)

16. Select the Stacked Bar in 3D. The results are shown in Figure 9-17.

Reporting with Microsoft Excel 259

Figure 9-17: Test Cases with results per requirement

Now, what just happened? In this exercise you selected requirements, and
then you selected Test Cases linked to requirements. When you selected the
measures, the scope of that relationship was narrowed down so that you saw
only Test Cases that had a result for the specific requirement that the Test
Case was related to. When you start playing with the cube, there are many
possibilities, and it is easy to end up with data that doesn’t make sense.
Always verify the information in the report the first time you create the
report. In the next section there is a list of common structures that can provide
a starting point for your reports.

With this basic chart, you can start adding additional information to it. For
example, drag the Outcome field from the Test Results section field list to the
Legend box; you get the graph shown in Figure 9-18.

This matches the current state of the test plan shown in Figure 9-13. You
have many options, so included is a description of the various areas as they
relate to testing and quality measures in Table 9-2. This is by no means
exhaustive and obviously does not take into account any customizations you
may make to the process templates.

Chapter 9: Reporting and Metrics260

Figure 9-18: Requirement test outcomes

Table 9-2: PivotTable Field Sections

Reporting with Microsoft Excel 261

Section Description

Test Case Represents a Test Case work item type. Although the Work
Item section can also represent a Test Case work item type,
this group of fields has specific test data associated with
them. When possible, always use the fields in the Test Case
section to display information on Test Case work item
types.

Test Configuration Represents the test configurations set up in Microsoft Test
Manager.

Test Plan Provides access to information on the test plan. This is usu-
ally used for grouping Test Cases and test results.

Test Result Provides information on the result or status of a Test Case.
This grouping provides information on Passed, Failed,
Never Run, and so on. It also provides who executed the
test that enables seeing test execution by tester.

Table 9-2: Continued

Chapter 9: Reporting and Metrics262

Section Description

Test Run Provides a more granular breakdown of the information in
the Test Plan section.

Test Suite Provides information for each suite in a test plan.

Work Item Linked Enables access to work items linked to Test Cases. (In this
particular case, although you can use it to provide infor-
mation on any linked work items.) This enables you to dis-
cover if, for example, a Test Case failed and no associated
bug was filed or to discover if multiple bugs were filed
against the same test failure.

The graphs shown in Figure 9-19 through Figure 9-27, created from the
test fields in the cube, show what you can accomplish; each graph could be
part of a dashboard in Excel Services. The fields required and their locations
(that is, how to construct the graphs) are also noted. Afterward, some of the
information that the graphs display will be discussed.

35

30

25

20

15

10

5

0

Test Results (Result Count Trend)

Failed In Progress Passed

5/
18

/2
01

0
5/

19
/2

01
0

5/
20

/2
01

0
5/

21
/2

01
0

5/
22

/2
01

0
5/

23
/2

01
0

5/
24

/2
01

0
5/

25
/2

01
0

5/
26

/2
01

0
5/

27
/2

01
0

5/
28

/2
01

0
5/

29
/2

01
0

Figure 9-19: Test Results (Result Count Trend)

Figure 9-20: Test Results (Point Count Trend)

Reporting with Microsoft Excel 263

35

30

25

20

15

10

5

0

Test Results (Point Count Trend)

Never Run Passed Fail
5/

17
/2

01
0

5/
18

/2
01

0
5/

19
/2

01
0

5/
20

/2
01

0
5/

21
/2

01
0

5/
22

/2
01

0
5/

23
/2

01
0

5/
24

/2
01

0

5/
26

/2
01

0
5/

27
/2

01
0

5/
28

/2
01

0
5/

29
/2

01
0

5/
25

/2
01

0

12

10

8

6

4

2

Add a blog post Add new
categories

Comment on a
blog post

Log on to the
blog engine

Test Case Count by Requirement

Figure 9-21: Test Case Count by Requirement

Figure 9-22: Requirements Status (1)

Chapter 9: Reporting and Metrics264

Log on to the blog engine

0

Comment on a blog post

Add new categories

Add a blog post

Requirements Status

Failed Never Run Passed

2 4 5 6 10 12

98: Add new categories

0

Te
st

 It
er

at
on

 1

B
og

E
ng

ne
N

E
T

N
W

C

92: Comment on a blog post

79: Add a blog post

73: Log on to the blog engine

Requirement Status

Failed Never Run Passed

2 4 5 6 10 12

Figure 9-23: Requirements Status (2)

Figure 9-24: Execution by Tester

Reporting with Microsoft Excel 265

14

12

10

8

6

4

2

0

Execution by Tester and Date

Jeff Smith Linda Collier Rennie Arcturo

5/
18

/2
01

0
5/

19
/2

01
0

5/
20

/2
01

0
5/

21
/2

01
0

5/
24

/2
01

0
5/

25
/2

01
0

5/
26

/2
01

0
5/

27
/2

01
0

5/
29

/2
01

0

Test Failures by Type

Failed Known Issue

Failed Regression

Failed New Issue

Failed Unknown

Figure 9-25: Test Failures by Type

Figure 9-26: Test Results by Build

Chapter 9: Reporting and Metrics266

18

16

14

12

10

8

6

4

2

BlogEngine.NET
Dev 20100524.1

BlogEngine.NET
Dev 20100525.1

BlogEngine.NET
Dev 20100526.1

Test Results by Build

Failed PassedIn Progress

4

3

2

1

Active Closed Resolved

Bug Count by State

Figure 9-27: Bug Count by State

The information needed to create each of these reports is shown in
Table 9-3.

Table 9-3: Fields and Placement to Create Excel Reports

Reporting with Microsoft Excel 267

Figure Report Filter Legend Field Axis Field Value

9-19 Test Plan Name Outcome Date, Test Run Title Result Count Trend

9-20 N/A Outcome Date Point Count Trend

9-21 Work Item Linked. N/A Work Item Linked. Point Count Trend
Work Item Type, Title, Test Case.Title
Work Item Linked.
Iteration Path

9-22 Work Item Linked. Outcome Work Item Linked. Point Count Trend
Work Item Type, Title, Test Case.Title
Work Item Linked.
Iteration Path

9-23 N/A Outcome Test Suite Hierarchy Point Count Trend

9-24 Team Project Test Result Date Result Count
Hierarchy Executed By

9-25 Team Project N/A Outcome, Failure Result Count Trend
Hierarchy Type

9-26 N/A Outcome Build Name Build Result Count
Trend

9-27 Work Item Type N/A State Work Item Count
(bug)

Some of these reports look almost identical—and they are. This shows
you some of the different information available and that some ways are a bit
easier than others to get to the same data. In addition, some of these charts
make a good demonstration for the test measures discussed earlier.

The difference between Figure 9-19 and Figure 9-20 is a perfect example of
the difference between the Point Count Trend and Result Count Trend. Fig-
ure 9-19 provides information on just the Test Cases that have been executed,
so the Result Count Trend gives you that information. But, if you want to

know information about the number of Test Cases that have not been
executed (that is, they have no results) the Point Count Trend provides that
information.

Figures 9-21 and 9-22 are actually closely related. The only thing that sep-
arates them is the addition of the Outcome dimension on Figure 9-22. And
Figure 9-22 is simply a refinement of already existing data but shows so much
more information. Figure 9-23 is another way to present the same information
shown in Figure 9-22 but in a far simpler manner. Figure 9-23 uses the Test
Suite Hierarchy dimension to represent the information; you can see that
hierarchy in the label (NWC\BlogEngine.NET\Test Iteration 1). It is easy to
remove this label after the fact. This report required only three fields to create,
whereas the reports shown in Figures 9-21 and 9-22 required six fields.

Figure 9-24 is a simple way to determine which tester executed how many
tests with what outcomes on a given day. It helps keep track of the amount
of Test Cases each tester is actually executing and whether some testers find
more or less bugs than other testers. In practice this information isn’t partic-
ularly helpful except to ensure that testers are testing. (Although I don’t like
reports used for this purpose, management most assuredly will.) This report
can be refined further by adding test configuration information, or test plan
information to note how many different plans testers are working in.

In addition to reporting with Excel, you can create many more powerful
reports and Scorecards with other tools in the Microsoft family of products
from PowerPivot (an Excel add-in) to PerformancePoint and Visio and SQL
Server Reporting Services. Explore the different platforms to see what fits
your organization’s needs best.

Metrics

Up to this point, you have learned how to create test plans, create tests, and
execute tests. You also gained hints and tips for the types of information you
should look for. This section brings that information together in a discussion
about what makes a quality metric and what you can do with it.

Before discussing metrics, determine what metrics are important and rel-
evant in the testing context. Metrics can best be defined as “measurements
taken of specific processes with the intention of improving those processes

Chapter 9: Reporting and Metrics268

over time.” If you take measurements and do not compare them to previous
measurements, they are useless. If you take measurements of all processes,
the value of the measurements is useless because you have no clearly defined
purpose for gathering those measurements. There are many great quotes
from people of all walks of life that apply. Some of those that apply are listed
here.

“Where you cannot measure your knowledge is meagre and unsat-
isfactory.”

—Lord Kelvin (Sir William Thomson)

“I believe in evidence. I believe in observation, measurement, and
reasoning, confirmed by independent observers. I’ll believe any-
thing, no matter how wild and ridiculous, if there is evidence for it.
The wilder and more ridiculous something is, however, the firmer
and more solid the evidence will have to be.”

—Isaac Asimov

“If it can’t be expressed in figures, it is not science; it is opinion.”

—Robert Heinlein

“It is really just as bad technique to make a measurement more accu-
rately than is necessary as it is to make it not accurately enough.”

—Arthur David Ritchie

“The progress of science is often affected more by the frailties of
humans and their institutions than by the limitations of scientific
measuring devices. The scientific method is only as effective as the
humans using it. It does not automatically lead to progress.”

—Steven S. Zumdahl

These quotes all convey different ideas about measurement—what it
means to have a measurement and what it means to not have a measurement.
Probably the most important of all the quotes about metrics is the last one by
Steven Zumdahl. His point is elegantly stated—just because you are given
the information with which to make improvements, it is up to you to act on
that information—information without action is wasted information.

Metrics 269

When trying to improve a company’s process, the company must start
with a desire to make a change. If a company does not want to change, gath-
ering metrics is not useful and a further waste of time on top of the time
already wasted. For those organizations that do want to make a change, that
is the first step. It is exactly like any 12-step program: You can’t get help until
you admit you have a problem. But when you do, and are willing to make a
change, the possibilities are almost endless. This is not a simple decision. Not
because companies don’t want to make a change but because there is a cost
associated with gathering metrics, reviewing them, and then improving the
process—it is not free. But the reality is that if an organization spends the time
and money to do it correctly, it can get a ROI by improving efficiency, increas-
ing quality, and increasing customer satisfaction.

In general two areas exist in which people want to make improvements:
time management (tracking time, schedule, resources, and so on) and quality.
Although separate, these two areas are inextricably linked. Why? You cannot
manage time, schedule, and resources without understanding the effects of
poor quality. And you cannot become more efficient unless you reduce the
number of defects. This is why testers are so critical to any strategy to
improve process.

Chapter 9: Reporting and Metrics270

CUSTOMIZING THE PROCESS TEMPLATES
The process of customizing work items is beyond the scope of this book be-

cause although it is generally a simple process, so many options exist. For

more information on customizing process templates, see http://msdn.

microsoft.com/en-us/library/ms243849(VS.100).aspx. Again, the MSDN

documentation team has done an excellent job with the 2010 release, and

this topic links you to all the information you need to know to perform a

customization.

As you read this information, be aware that this is not a full-blown dis-
cussion of how to implement a metrics gathering program in an organization.
Many steps are involved in that process and many organizational challenges.
Rather, read this with an eye toward understanding what you should be

gathering and work to apply it on a project-by-project basis. (Or augment an
organizational plan if these ideas are relevant to you.)

What to Measure
The first question to ask is, “What should I measure?” To answer that you
need to ask another question, “What am I having problems with?” This may
be a bit more difficult to answer. What are you having problems with right
now, or what areas do you want to improve efficiency and quality in? You’ve
probably identified some items you want to improve—even if you don’t have
hard data on what the specific problem is, you “know” a problem exists. After
you identify what you want to change, cut the list down to just one or two
items. Trying to measure everything at one time can throw up too many vari-
ables for you to adequately determine root cause and also cause you to not
measure the results of changes easily. (That is, what change did I make that
changed the results?) Also, too many changes at one time can overwhelm the
development team—a team that probably already has enough work to do
that concentrating on many additional changes at one time would be detri-
mental to its productivity.

After you have the order of items you want to improve, you need to deter-
mine how to quantify the problem because if you can’t measure it, you can’t
determine improvement. In any organization, management will not author-
ize a dime being spent if you can’t prove that you are having a problem and
don’t have a plan to show improvement. So before you start making changes,
make the case in an objective way. To do this you need to determine what
measure (or measures) to use—don’t worry about the solution to it now.
Depending on the issue, you may want to track different aspects.

Look for several basic aspects of software development that relate directly
to quality. These are the “low-hanging fruit” and can be easy to fix with the
right plan, resources, and tools:

• First-time defect rate

• Bug reactivations (bad bug fixes)

• General bug counts

These serve as the basic high-level metrics and lay the groundwork for all
other quality metrics. These may be too high level for you if you want to solve

Metrics 271

a specific problem but are discussed toward the end of this section. Now look
at each of these items to determine how to measure them, the cause, and the
solution.

Chapter 9: Reporting and Metrics272

How to Capture a Metric
When you first set out to gather a measurement, you need to do a little bit

of upfront work. Worry about how to fix it after you have proven it. This work

starts with defining the problem that you want to prove. (Assuming that you

don't already have a baseline, you need to create one first.) Maybe the prob-

lem is a high number of defects with a certain feature in the application.

After you define the problem, determine the measurement that you want to

use. In this example, you may determine that comparing the bug count in

this particular feature with the bug counts in the other features is the way

to go. Possibly you could simplify this by measuring the percentage of bug

counts in this feature versus the rest of the application, to save on some

overhead.

Having done this, you need to determine what pieces of data are required

to calculate the metric. In this case you need a way to map the bug that was

filed against a specific feature. Guess what? If you correctly use TFS and file

bugs against a requirement, the information is automatically captured and

calculated.

But maybe the team is not associating bugs with requirements. You need to

document the process change so that the team understands how to do this.

And this is a critical point that you must not underestimate: One of the key

barriers to capturing valid data is the culture. If developers and testers don't

follow the process, any data you gather is, by extension, invalid. You must

socialize the information you are trying to gather. Explain to the team why

this process must be followed, what data you are trying to gather, and what

you will use it for. If there isn't a business decision at the end of the tunnel,

why bother? So what's the explanation?

In this particular case, you want the team to be proactive about finding and

fixing the bugs because of poor customer satisfaction or lost sales due to the

product not working properly.

First-Time Defect Rate
The first-time defect rate is a popular metric that people like to look at, which
tells how many defects are filed against requirements after the developer
says, “I’m done.” Usually first-time defect rates are quite high. The downside
of this is that it means testers and developers (and maybe users) are wasting
a lot of time.

Causes of First-Time Defects

The two major causes of first-time defects are coding errors and expectations.
The first item, coding errors, is straightforward. The developers made a mis-
take and didn’t catch it while they were testing. This happens all the time,
even though we wish that were not the case. The second item is a bit more
insidious but actually easier to solve than the first item. So let’s look at the
second item first.

What do I mean by expectations? I mean that what the tester expects the
application to do and what the developer thought the application should do
are different. If this is the case, teams are setting up for a high first-time defect
rate. The solution is easy: Make sure the developers and testers have the same
expectations from the beginning.

The second problem, coding errors, usually occurs because not all possi-
ble paths were thought through or the developers were rushing to get code
done and overlooked something. The solution to this is also simple: code
reviews and in many cases Unit Testing.

Measuring the Defect Rate

Measuring the problem is fairly easy if you use the process templates cor-
rectly. But it can still be a little tricky. Following is the process: Developers

Metrics 273

You may need to determine the accuracy of this perception.

Whatever you do, realize that the development team must be your ally, and

you cannot gather information that does not somehow benefit the team. At

the end of the day, people do what makes things better for them. That may

sound cynical, but if you do not approach the process like this, you can have

an uphill battle.

have a requirement in the Active state and a series of tasks also in the Active
state. As the developers finish each task, they set the state to Closed. (Even if
you use the CMMI template, you can simply skip the Resolved state for Task
work item types.) After all the tasks related to the requirement are closed, the
developers set the requirement to Resolved. This is the indicator to the testers
that they can test the requirement. During testing, if they find bugs, they will
do a couple of things. First, they file a bug that by default is associated with
the Test Case. The next step the testers perform is more difficult. They assign
the bug to the developers. Why is this more difficult? Because, if they simply
assign bugs to the developers as they file them, you can’t determine a first
time defect versus a reoccurring defect. With a constant flow back and forth,
it is difficult to determine.

This is one of the lessons you should take away about metrics: You must
figure out how the process affects the measurements. If you don’t, everyone
can still follow the process, but you can end up with measurements that you
can’t parse to come up with valid information. How do you get around this?
You can set a time frame. For example, maybe you create a test plan for
“newly completed requirements” and test only on first-time finished require-
ments as part of this plan. Then it’s fairly straightforward because you can
look at the plan and say how many bugs were filed against it. You can clone
the test suite to another plan that can be the “fixed requirements” plan. To
report on first-time defects, list the bugs created based on Test Cases in the
“newly completed requirements” test plan. And to compare first-time defects
with the rest of the defects, compare this to the total number of defects in all
other plans. Simple. But it requires planning.

Lowering the First-Time Defect Rate

As mentioned previously, lowering these defects is straightforward if the
commitment is there. To start with, have customers sign off on Test Cases in
addition to requirements before developers start coding. Right now you are
thinking, “No way will that ever happen.” That’s why you need to have a
commitment. But if you think about it, it isn’t that hard to make happen.

The Test Cases don’t need to be fantastically detailed. The more detailed
the better, but you want to create a baseline that makes sense: Look at certain
agile techniques such as writing Acceptance Test Cases on the back of the user
story index card. Keep it simple. What you need to do in this situation is to
get a common understanding between the customer, developers, and testers.

Chapter 9: Reporting and Metrics274

This next recommendation applies to both causes of first-time defects:
Make sure the developers’ work goes through a formal code review. Only in
this case you need to add one more twist: The developers execute the Test
Case before they give it to the testers. What are the odds of the testers find-
ing a defect? The answer is a lot less than if the developers didn’t first run
the testers’ Test Case.

Comparing Measurements

This metric can be easy to measure if you work on an agile project in which
the team is working on a certain number of features each iteration. You can
baseline it by not making any changes to how you normally do work the first
few iterations and then compare the first-time defect rate every iteration. This
is a good example of the time box style of measurement previously men-
tioned. For longer running projects with larger iterations or no iterations, you
need to create artificial time boxes to perform measurements and break up
requirements in such a way that you can measure them accurately.

Comparing this metric between projects is valid. It is not team-dependent;
it is process-dependent. Some metrics, such as estimating accuracy, are team-
dependent, but this isn’t one of those metrics.

Metrics 275

WHAT TO TEST
Chapter 3, "Planning Your Testing," started this discussion. When time is

short you must ensure that you test 100% of the normal path activities. That

is, you want to test the parts of the system that will be most used by the cus-

tomer. Test as many of the alternative and exception paths as you can, (Obvi-

ously, if you can, test all of them 100%, but that is rarely the case.) If you can't

wait for testers to create every Test Case, make sure they create the impor-

tant ones first. Tests such as boundary conditions and other nuanced tech-

nical tests can be created while the developers are writing code. It is the

business-oriented Test Cases that are most important in this situation.

It won’t be perfect because customers change their mind all the time, but at
least you can tell when it was the customer changing its mind versus the
developers making a mistake.

Related Metrics

This is a list of metrics that can have some type of impact on the first-time
defect rate metric. Although this metric appears be fairly easy to capture and
reduce, other data is pertinent to this metric:

• Requirement complexity—The more complex the requirement, the
greater likelihood of first-time defects. Try breaking the requirements
down into smaller requirements.

• Number of external systems involved—Some things are beyond your
control. At a certain point, you need to accept it, but you should
account for it if possible.

• Defects versus change requests—Customers can and do change their
mind. This leads to what looks like defects but in reality are not. Hav-
ing Test Cases available to verify functionality should enable you to
account for these changes as actual change requests rather than
defects.

Bug Reactivations
A bug reactivation is just what it sounds like. The bug was “fixed” before but
wasn’t actually fixed. This is just straight waste, and teams must eliminate
this almost entirely.

Causes of Bug Reactivations

Only one cause for reactivating a bug exists: The bug was not well docu-
mented the first time. This causes the developer to have to guess at the solu-
tion, or the developer cannot reproduce the bug in the first instance and
closes it; then a tester or user finds it.

Measuring Reactivations

TFS tracks reactivations—that is, how many times bugs and requirements
transition from the Resolved or Closed state back to the Active state. This
requires some diligence on the part of the team. Every time a bug is filed
against a resolved requirement, the tester must reset the requirement back to

Chapter 9: Reporting and Metrics276

the Active state. When a tester goes to verify a bug, if the bug is not resolved,
the tester must set the bug back to Active. Typically, every time a bug is reac-
tivated, a requirement must also be reactivated, but this largely depends on
your teams’ strategy. (The built-in reports can give you information on either
work item type, but the Bug work item type is more important.) If testing
occurs on unresolved functionality, this does not apply. For this reason, what
appears on the Reactivations report may give you different information
depending on your process.

Lowering the Reactivation Rate

Fortunately, the tools available in MTM and Visual Studio should reduce
reactivations. Where the tools won’t help as much is when customers file
bugs. This is where process is important and somewhat independent of any
tool suite that you use. But assuming that you are reading this book because
you are using MTM and VS, you have an advantage over everyone else.

From a process perspective, take the time to have testers reproduce the
bug, and have testers close the bug if it can’t be reproduced. Do not assign the
work to developers when you haven’t verified the bug and provided detailed
instructions on how to re-create it. That just annoys everyone. Using testers
as the gatekeepers to the developers keeps the developers doing what they
should be doing—writing code.

Comparing Measurements

You probably want to compare measurements against your current project
because fewer reactivations mean less wasted time and higher productivity.
Your best bet is simply to trend the reactivations using the built-in reactiva-
tions report.

General Bug Counts
Chapter 1 mentioned four bug count metrics: Total Bug Count, Bug Count
per Phase, Bug Count per Feature (bug density map), and Regression Bug
Count. Each of these numbers provides information about waste but also
about how to prevent future problems. This information is actually some of
the easiest information to capture but might be a bit tricky.

Metrics 277

Measuring General Bug Counts

Let’s look at the Total Bug Count. Are you capturing it right now? Are you
sure? You may not be because the Total Bug Count includes bugs found in pro-
duction. Where this becomes tricky is if there is no integration with the help
desk. Every bug that comes in from the help desk, and bugs found in testing
must be entered into TFS. The obvious goal of counting bugs is to know the
quality of the software and to improve that quality.

Bug Count per Phase is an interesting metric because it is designed to
measure the effectiveness of the testing process and also the developer/tester
relationship. At the Bug Count per Phase (this metric applies only to a water-
fall structure) look for a steady reduction in Bug Counts per Phase. In other
words, if you find bugs earlier, there will be fewer bugs later. And this makes
perfect sense. Bugs not found earlier in the process lead to an increased num-
ber of bugs later in the process. Improving this number involves introducing
testers early in the process, including peer reviews of requirements, design,
and functional specifications. If formal testing is not done early in the process
(and yes, peer reviews are a form of testing) the reduction of bugs in later
phases can never be accomplished. It is almost impossible to code around a
requirement or design defect, and if you do, it will simply come back to haunt
you later. This information can be captured by TFS in a variety of ways. As
mentioned in Chapter 5, “Resolving Bugs,” there is a Found In field in the
Bug work item type for the CMMI template but not for the Agile template.
One easy way to solve this without customizing the work item type is to use
areas. Set up one area for Testing, User Acceptance Testing, and Production,
and simply classify the bugs based on when they are discovered.

Chapter 9: Reporting and Metrics278

A NOTE ABOUT GENERAL BUG COUNTS
Often there is a big push to lower the total bug count. This is obviously a

good idea if the time is available. But a key focus is on making sure that the

right bugs are fixed. Recognizing that there will always be bugs, you want to

make sure you get rid of the bugs that customers are most likely to find.

Therefore, use general bug counts as a guide but work to understand which

bugs are the highest priority and fix those first.

Bug Count per Feature has a different focus. The goal of this metric is to
identify weak features—those features likely to produce more bugs in the
future. The effect of gathering the number of bugs per feature enables you to
classify the highest risk features and to implement additional testing against
those features. There should be a correspondingly high number of Test Cases
against a feature that has a high number of bugs. This enables teams to get
ahead of the problem. Maybe this also includes doing additional code
reviews and being proactive about the feature quality. This information can
be captured in one of two ways: by using areas to classify bugs as belonging
to a feature or by simply linking bugs to the requirement. (I would argue for
the latter.)

Regression bugs are the last of the bug count totals. Regression bugs indi-
cate two items: The testing process is inadequate when dealing with bug fixes
(reactivations) or change requests and that some code may be more fragile
than other pieces of code. When a bug is discovered in an area that has already
been tested, the information must be captured in a way that facilitates report-
ing these bugs as regressions. The Reactivations section describes resetting
bugs from Closed back to Active, which is a way to capture a regression bug
as well. Another way to handle this is to simply set the Failure Type in the test
result to Regression, which provides a clean, easy way to report on it.

Metrics 279

HOW TO REPORT THEM
How you report a regression is up to you. You need to take proactive steps to

ensure that regression bugs don’t occur. Whether these are reactivations,

you need to recognize the issues and make changes. Or you can record them

as both reactivations and regressions; just don’t look at the reports with

each other because they can give an inflated and incorrect view of applica-

tion quality.

Reducing General Bug Counts

Following are a couple of general suggestions for reducing bug counts: for-
mal reviews and testing the 20% of code used 80% of the time.

Formal Reviews
Formal reviews, or the lack of, are one of the key issues when looking at qual-
ity. So how do you track reviews and what does this have to do with testers?
The MSF for CMMI template includes a Review work item type. One thing
that works is to attach one or more Review work items to each feature that
needs to be reviewed (maybe a design review, in-progress review, and final
review). This enables you to schedule reviews. But how effective are your
reviews? A review requires a couple of key items. A formal agenda is
absolutely required; if you perform informal reviews, they cannot provide as
many benefits. You also need to provide a list of items that will be reviewed
and what the expectations of those items are. You must have the code metrics,
the results of a static code analysis run, code comments, and so on. You also
must give individuals who will be involved in the review some time to read
the documentation related to the feature so that they are prepared.

How much money does it cost to hold a review? The costs depend on the
salary of the people involved, but you can do a basic cost calculation with a
burden of $100 per person. Say there are four people involved in the review
(the developer who wrote the code, another developer, a tester, and a note
taker). Each of these people prepares for the meeting for 1 hour for a total of
4 hours. The review is 1 hour for a total of another 4 hours. This is a total of
8 hours, $800 dollars. Now, contrast this against finding a bug. The bug is
filed, and the developer talks to the tester about the bug—or even worse they
must figure out what is causing the bug. This takes maybe 2 hours. The devel-
oper then fixes the bug. There is no easy way to determine how long it takes
to fix it, but let’s say it’s a simple 3-hour fix. Next, the tester needs to test the
feature again—the time it takes is unknown but say 1 hour. So this is 6 hours
of rework plus the developer can’t work on new features for those 3 hours
and the tester for that 1 hour. So finding a single bug would cost more than
a single review. The truth is that code reviews almost always find more than
one issue before it becomes a bug. When applied to documentation reviews,
the number of potential issues found will probably be much higher.

Now how do you track reviews? The first rule is that you do not fix prob-
lems during the review; you’ll never finish the review if you do. The second
rule is that you do not file bugs during a review. Because you are supposed to

Chapter 9: Reporting and Metrics280

find things during reviews, the developers’ work should not be “complete”
at this point, so don’t penalize them. And the third rule is that the review is to
provide constructive criticism—not beat the person who made the mistakes
over the head. This is where the old axiom of not throwing stones in glass
houses applies. But what should you do? You can do a few things that give
you the ability to report on reviews. The first is to simply create child tasks for
the review—one for each issue discovered. This enables you to track the sta-
tus of all the items found during the review and does not penalize the devel-
oper but provides a list of what needs to be fixed. This also enables you to
determine the effectiveness of the review process. If you hold a review and no
tasks are created from the review, you aren’t doing the review correctly. The
reality is that you will almost always find something to fix. So a lot of reviews
with no associated tasks mean the process needs to be examined. The second
solution is to associate tasks with the Review work item and the Requirement
for which the review was done. If you do it this way, the tasks created from
the review would be linked to the review with a Related link type and would
be a child of the Requirement.

Test the Normal Path First
In every development project, a limit exists on time and resources. The prac-
tical effect of this for testers is that they cannot test everything. You should
have thorough coverage of all requirements, but reality almost always gets in
the way. This means that you need to be selective in what you test. The prob-
lem occurs when testers feel like they have to test everything with no time or
software that isn’t ready for testing. This leads to lower quality tests that have
broad coverage but no depth. The solution is to focus on the normal path,
which means 100% test coverage of the normal path. This actually has a pos-
itive effect on the metrics. The number of bugs found by users can decrease
because the part of the application used most by users has the highest
amount of test coverage. The key to using this technique is that when bugs
start to get filed against alternative path scenarios that you jump on them
with a vengeance. If users find one bug, okay. If they find two bugs, you bet-
ter work up and execute Test Cases quickly for those scenarios. Determining
the bug density count by feature can help you track this trend.

Metrics 281

How do you track this coverage? The easiest way is to add an area for
Normal Path and an area for Alternative Path and simply classify the Test
Cases in the appropriate area. This may not always be acceptable because
areas may be used for some other specific purpose. Another way to handle
this is to modify the Test Case work item type and add a field that enables you
to specify normal or alternative paths. Either of these simple changes can
enable you to run reports that determine what percentage of the normal path
tests have been executed against a requirement and what percentage of alter-
native path tests have been executed against a requirement. You can then cor-
relate bugs found with test coverage of the requirements and make an
informed decision about when to increase the test coverage of alternative
path tests.

SUMMARY

At the end of the day, teams write Test Cases to validate requirements and
execute tests to verify quality. Doing this is not helpful if the information can-
not be quickly and easily examined for trends and forecasting, which is
exactly what the TFS Cube lets teams do. By using the innate capabilities of
TFS, teams have an in-depth understanding of their applications in a way
that was previously unavailable. You can use this information to apply
resources to resolve problems before they start to affect the team.

Stakeholders can use this information to make informed business deci-
sions based on accurate data. Is a requirement ready for release? Should the
requirement be delayed because too many problems exist? The additional
information provided by the reports enables businesses to make better
decisions.

This chapter introduced you to the TFS Cube, how data is processed, and
how to report on that data to meet your needs. It also brings you full circle
in your understanding of the testing tools in Visual Studio 2010, Microsoft
Test Manager 2010, and Team Foundation Server 2010. You have the ability to
plan the testing process, write and execute Test Cases, file and resolve bugs,
and report those results to your users. Over time Microsoft will evolve the
platform to include even more capabilities and further reduce the cost of find-
ing and fixing bugs.

Chapter 9: Reporting and Metrics282

Index

283

A
Acceptance Test Driven Development

(ATDD), 26
acceptance testing, 25

ATDD (Acceptance Test Driven
Development), 26

access to Test Cases, 6
active state, 93
adding

recorded steps, 164-165
validations, 157-164

advantages of Microsoft Visual
Studio 2010, 5

automated tests, 9-10
communication, 5-6
development and testing process

flow, 7-9
metrics, 10-12
project visibility, 6

agents, running as interactive
processes, 185

Agile, updating bugs, 114
agile practices, 23
agile testing, 20

Agile Testing: A Practical Guide for
Testers and Agile Teams (Crispin and
Gregory), 20

ALM (Application Lifecycle
Management), 19

analysis categories, 42-43
analysis phase (Test Cases), 56-61
Analysis section, detailed test results, 95
Application Lifecycle Management

(ALM), 19
applications

BlogEngine.NET. See application, xxiv
Asimov, Isaac, 269
ASP.NET, MSAA, 162
assigning

builds, 127-129
test configurations, 51-53
testers, 53-54

Associated Change sets, 124
Associated Work Items, 124
associating

Coded UI Tests and Test Cases, 178-181
Unit Tests, 181

ATDD (Acceptance Test Driven
Development), 26

Attachments section, detailed test results,
98-100

attributes, 186
automated builds, creating, 191
automated builds (Test Plans), 40-41
automated test settings, 221-222

Lab Management workflow, 222-231
automated testing, 24
automated testing framework, 139-141
automated tests, 9-10

creating from manual tests, 141-142
coded UI tests, 144-157
examining generated web application

coded UI tests, 142-144
executing, 183-184

from command line, 190
local execution, 184
local execution with remote

collection, 184
in MTM, 191-196
remote execution, 185-189

executing with Team Build, 202-203
issues with, 205

custom dialogs, 205-207
running through MTM, 233-234

automating manual Test Cases, 142
automation, choosing to automate,

136-138

B
best practices for parameterized tests, 88
binaries, 82
black-box testing, 21
Blocked field, 113
blocked test cases, 101
BlogEngine.NET application, xxiv

BlogEntryHTMLBasicTestCodedUI-
TestMethods, 167

boundary cases, 21
Browser Window class, 150
bug count per feature, 11, 279
bug count per phase, 11, 278
bug reactivations, 276

comparing measurements, 277
lowering, 277
measuring, 276

Bug Status reports, 244-245
Bug Trends reports, 245-246
Bug work item type, 107-110

customer reported bugs, 110
reactivations, 111
test team reported bugs, 110
triaging bugs, 110

Bug work item type, generated bugs,
116-119

bug workflow, 113
bugs

bug count per feature, 11
bug count per phase, 11
differences and modifications, 112-116
finding and filing, 88-89
fixing, 122-124

Associated Change sets, 124
Associated Work Items, 124
impacted tests, 125

regression bugs, 11, 16, 138
total bug count, 11
triaging, 116
updating in Agile, 114
verifying fixes, 129-131

$(Build Location), 228
Build Quality Indicators reports, 246-248

Index284

build reports, 232
Build Result Count Trend, 257
Build Success over Time reports, 248-249
Build Summary reports, 249-250
build warnings, 204
building quality at the beginning of

projects, 17
builds, 82

assigning, 127-129
automated builds, creating, 191
dual purpose, 233
lab builds, executing, 231-232
quality, 125-127
retention, 130
work items, 125

builds (Test Plans), 40-41
built-in reports, 242-244

Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

built-in templates, 224
business value of software quality, 14

C
capturing metrics, 272
challenges of software testing, 1-3
Cigna Corporation, 4
cleaning up tests, 207
closing IE Browser window, 165
Code Complete (McConnell), 13

code coverage, 11
Coded UI Test builds, 159
Coded UI Tests, 24, 144-147

associating with Test Cases, 178-181
maintaining, 154
recording from scratch, 165
running through MTM, 196-199
searching for controls, 148-157

CodedUITestMethods, 170, 175
combining tests, 178
command line, executing automated

tests, 190
communication, improving, 5-6
$(ComputerName_), 228
Computer Science Corporation, 4
configurations (Test Plans), 41
configuring virtual environments,

217-218
connecting to Team Foundation Server,

33-34
construction phase (Test Cases), 61-62
Contents section (Test Plans), 43

query-based suites, 45
requirements-based suites, 44-45
static suites, 46

Continuous Integration builds, 40
Control Specific section, validations, 161
controls, searching for (Coded UI Tests),

148-157
corner cases, 21
cost of poor software quality, 3-5
costs, defect cost, 11
Covey, Stephen R., 26
Crispin, Lisa, 20
cube (SSAS), 240-242
Cunningham, Ward, 246
custom dialogs, automated tests, 205-207

Index 285

customer reported bugs, 110
customizing

process templates, 115, 270
work items, 61

D
cashboards, 254
data, gathering diagnostic data, 235
data driven test cases, 77
data sources, Test Cases, 168
database unit testing, 22
default diagnostic data adapters (Test

Plans), 40
defect cost, 11
defect root cause, 11
Deploy.cmd, 227
DeployDatabase.cmd, 229
deployed products, testing, 27-28
deployed VMs, 214
deploying test code, 127
detailed test results, 95

Analysis section, 95
Attachments section, 98-100
Links section, 100
Result History section, 100-101
Test Step Details section, 96-97

developer-focused testing, 184
developers, testing, 136
development

ATDD (Acceptance Test Driven
Development), 26

FDD (feature-driven development),
65-66

moving from one iteration to another,
67-68

development of Lab Management,
xviii-xix

development of Microsoft Visual Studio
Test Professional 2010, xvii-xix

diagnostic data, gathering, 235
diagnostic data adapters (Test Plans), 40
differences, bugs, 112-116
documentation, MSDN, 253
done, definition of, 18
dual purpose builds, 233
dynamic values, 172-178

E
edge cases, 21
editing test steps, 73
encrypted passwords, 148
end of projects, building quality at, 17
environments, setting up (executing

automated tests), 193-196
examining test results, 92-93

detailed test results, 95-101
test run results, 93-94

Excel Services, 243
Excel Services reports, 253-254
Exception Data, 120
executing

automated tests, 183-184
from the command line, 190
in MTM, 191-196
local execution, 184
local execution with remote

collection, 184
remote execution, 185-189
with Team Build, 202-203

lab builds, 231-232
tests, 85-86, 159

parameterized tests, 87
expectations of software quality, 15

Index286

exploratory testing, 23
MTM, 101-104

external software quality, 13-14

F
failures, failure categories, 42
FBI’s Virtual Case File system, 4
FDD (feature-driven development), 65-66
feature-driven development (FDD), 65-66
filing bugs, 88-89
finding bugs, 88-89
first-time defect rate, 273

causes of, 273
comparing measurements, 275
lowering, 274-275
measuring, 273-274
related metrics, 276

fixing bugs, 122-124
Associated Change sets, 124
Associated Work Items, 124
impacted tests, 125

formal reviews, reducing general bug
count, 280

Found in Environment field, 114
FQDN (fully qualified domain

name), 228
frameworks, automated testing, 139-141
functional testing, 24

G
general bug counts, 277

measuring, 278-279
reducing, 279-282

Generate Code dialog, 164
generated bugs, 116-119

generated control class, 174
generated web application coded UI

tests, 142-144
generating

reports from work item queries, 255-256
ValidateHTMLInfo code, 171

goals of software testing, 19
gray-box testing, 22
Gregory, Janet, 20
Group Policy Editor, 206

H
Heinlein, Robert, 269
How Found field, 114

I
IE Browser windows, closing, 165
IE DOM (Internet Explorer Document

Object Model), 136
IEFrame properties, 162
impacted tests, 125, 131-132
importing

Test Cases, 77
VMs, 210-212

improving communication, 5-6
inconsistency issues, parameterized

Coded UI Tests, 168-169
resolving, 169-170

increasing project visibility, 6
initial design (Test Cases), 56-61
integration testing, 23-24
IntelliTrace, 119-122
Intellitrace Settings, 80
internal software quality, 13-14
$(InternalComputerName_ring, 228

Index 287

Internet Explorer Document Object
Model (IE DOM), 136

iterations, moving from one iteration to
another, 67-68

K
Kelvin, Lord, 269
Kristensen, Mads, xxiv

L
lab builds, executing, 231-232
Lab Management, 194, 209

development of, xviii-xix
Lab Management workflow, 222-231
Links section, detailed test results, 100
load testing, 24
local execution, automated testing, 184

with remote collection, 184
LoggedOnUserPreFilledTestClass,

142-143
lowering

bug reactivations, 277
defect rates, 274-275

M
macros, 227-228
maintainability, 16
management, test management, 27
manual black-box testing, xvii-xviii
manual Test Cases, creating, 74-75
manual tests in virtual environments,

234-238
McConnell, Steve, 13
mean time between failures (MTBF), 16
measuring

bug reactivations, 276
defect rates, 273-274
general bug counts, 278-279

metrics, 268-271
bug reactivations, 276-277
capturing, 272
explained, 10-12
first-time defect rate, 273

causes of, 273
comparing measurements, 275
lowering, 274-275
measuring, 273-274
related metrics, 276

general bug counts, 277
measuring, 278-279
reducing, 279-282

what to measure, 271-272
Microsoft Active Accessibility. See MSAA
Microsoft Environment Viewer, 218
Microsoft Excel

fields and placement, 267
reporting with, 254

creating generated reports, 255
testing measures, 256-257

reports, creating Test Cases, 257-268
Microsoft Team Foundation Server 2010,

Lab Management, 194, 209
Microsoft Test Manager. See MTM
Microsoft Visual Studio Test Professional

2010, development of, xvii, xix
middle of project, building quality at, 17
modifications, bugs, 112-116
MOSS (Microsoft Office SharePoint

Server), 239
MSAA (Microsoft Active

Accessibility), 136
ASP.NET, 162

MSBuild, 8
MSDN (Microsoft Developer Network),

documentation, 253
MSF for Agile Bug work item types, 108
MSF for CMMI Bug work item type, 109

Index288

MSI packages, 217
MSTest.exe, 190
MTBF (mean time between failures), 16
MTM (Microsoft Test Manager), 8

connecting to Team Foundation Server,
33-34

executing automated tests, 191-192
setting up physical environment,

193-196
explained, 30
exploratory testing, 101-104
managing virtual environments,

210-216
navigation controls, 30
navigation layout, 31
running automated tests, 233-234
running Coded UI Tests, 196-199

creating test settings, 199-201
selecting team projects, 34
table of components, 31-33
Test Plans. See Test Plans
Tool Center, 33

N
NameoftheblogShortdeDocument, 163
naming test assemblies, 192
navigation controls (MTM), 30
navigation layout (MTM), 31
need for testers, 3-5
nightly builds, 40
nonfunctional requirements

explained, 15
maintainability, 16
reliability, 16
security, 16
usability, 16

Nyveldt, Al, xxiv

O
Original Estimate field, 114

P
parameterized Coded UI Tests, 166-168

inconsistency issues, 168-169
resolving inconsistency issues, 169-170

parameterized test cases, creating, 78
parameterized tests

best practices, 88
executing, 87

passwords, encrypted, 148
pausing test runs, 89-90
PeopleSoft, 4
physical environments, 198
physical machines, 194
PivotTable field sections, 261
plans. See test plans
Point Count Trend, 257
poor software quality, cost of, 3-5
PowerShell, 227
pre-user acceptance testing, 25
process, impact on quality, 19
process flow, 7-9
process templates, customizing, 115, 270
project visibility, increasing, 6
projects

relationship with test suites, test cases,
and Test Plans, 36

selecting in MTM (Microsoft Test
Manager), 34

properties of Test Plans, 38
Proposed Fix field, 115
purpose of software testing, 19

Index 289

Q
quality

as team effort, 18
building at beginning of project, 17
builds, 125-127
business value, 14
cost of poor software quality, 3-5
definition of done, 18
expectations, 15
impact of process on, 19
internal versus external, 13-14
maintainability, 16
reliability, 16
requirements, 14
security, 16
usability, 16

query-based suites, 45

R
Range Selector, 102
reactivations, 111, 246
recorded steps, adding, 164-165
recording Coded UI Tests from

scratch, 165
reducing general bug counts, 279-281

test normal pathfirst, 281-282
regression bugs, 11, 16, 138, 279
regression testing, 25
related metrics, defect rates, 276
reliability, 16
remote collection, local execution

(automated tests), 184
remote execution, automated testing,

185-189
replaying test steps, 90-91

reporting with Microsoft Excel, 254
creating generated reports, 255
testing measures, 256-257

reporting structures, 240-242
reports

built-in reports, 242-244
Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

Excel Services, 253-254
generating from work item queries,

255-256
User Stories, creating Test Cases,

257-268
requirements for software quality, 14
requirements coverage, unit tests, 141
requirements-based suites, 44-45
resolution types, 42-43
resolving data inconsistency,

parameterized Coded UI Tests,
169-170

Result Count, 257
Result Count Trend, 257
Result History section, detailed test

results, 100-101
resuming test runs, 89-90
Ritchie, Arthur David, 269
Root Cause field, 115
Run settings (Test Plans), 38-40
Run Tests page, 92

Index290

running
automated tests through MTM, 233-234
Coded UI Tests through MTM, 196-199
tests, 79-80

Test Runner, 80-84

S
SAP, 3
Scheduling Test Cases, 64-65
Science Applications International

Corporation, Virtual Case File
system, 4

SCRUM, 20
SCVMM (System Center Virtual Machine

Manager), 210
search conditions, 176
searching for controls, coded UI tests,

148-157
security, 16
security groups, test controllers, 194
server names, 233
servers, Team Foundation Server

(connecting to), 33-34
service level agreements (SLAs), 16
SetupWebServer.cmd, 228
Share-Point, 243
Shared Step, executing tests, 86
shared steps

creating, 76-77
Test Case work item type, 75

shipped products, testing, 27-28
Siebel Systems, 4
SLAs (service level agreements), 16
smoke tests, 23
snapshots, 217

of environments, 219-221

software quality
as team effort, 18
building at beginning of project, 17
business value, 14
definition of done, 18
expectations, 15
impact of process on, 19
internal versus external, 13-14
maintainability, 16
reliability, 16
requirements, 14
security, 16
usability, 16

software testing, need for testers, 4
speeding up testing, 234
SSAS (SQL Server Analysis Services), 239

cube, 240-242
SSRS (SQL Server Reporting

Services), 239
built-in reports, 242-244

Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

static suites, 46
Test Cases, 80

Stories Overview reports, 250-251
suites. See Test Suites
Symptom field, 115
System Center Virtual Machine Manager

(SCVMM), 210
system testing, 21, 25

Index 291

T

Tcm.exe, 190
Team Build, executing automated tests,

202-203
Team Foundation Server. See TFS

connecting to, 33-34
Team Project Collections. See TPCs
teams, involvement in building software

quality, 18
Technical Debt, 246
templates

built-in, 224
process templates, customizing, 115, 270
Test Approach Word template,30

test approach, 30
Test Approach Word template,30
test assemblies, naming, 192
test attachments, 119
Test Case Readiness reports, 251-252
Test Case work item type, 72-74

data driven test cases, 77
shared steps, 75

creating, 76-77
Test Cases

access to, 6
adding to Test Plans, 46-47
assigning testers to, 53-54
associating with Coded UI Tests,

178-181
automating manual Test Cases, 142
blocked, 101
creating manual, 74-75
data sources, 168
FDD (feature-driven development),

65-66
handling different test,

configurations, 68

importing, 77
moving from one iteration to another,

67-68
parameters, creating, 78
relationship with team projects, test

suites, and Test Plans, 36
scheduling and tracking, 64-65
static suites, 80
testing workflow, 55-56

analysis and initial design, 56-61
construction, 61-62
user acceptance testing, 62-64

User Stories Report, 257-268
test code, deploying, 127
Test Configuration Manager

accessing, 49
adding configuration variables, 50
assigning test configurations, 51-53
creating test configurations, 51

test configurations
accessing Test Configuration

Manager, 49
adding configuration variables, 50
assigning, 51-53
benefits of, 49
creating, 51
explained, 48
handling different test

configurations, 68
Test Controller Configuration tool, 193
Test Impact Analysis (TIA), 7, 125
Test List Editor, 158
test management, 27
Test Manager. See MTM (Microsoft Test

Manager)
test parameters, 77
Test Plan Progress reports, 252-253

Index292

Test Plan Status section (Test Plans), 42
analysis categories, 42-43
failure categories, 42

Test Plans, 55. See also testing workflow
builds, 40-41
configurations, 41
Contents section, 43-44. See also Test

Suites
static suites, 46

creating, 37
default diagnostic data adapters, 40
properties, 38
relationship with team projects, test

suites, and test cases, 36
Run settings, 38-40
Selecting, 35
Test Cases

adding to plans, 46-47
assigning testers to, 53-54
FDD (feature-driven development),

65-66
handling different test

configurations, 68
moving from one iteration to another,

67-68
scheduling and tracking, 64-65

Test Plan Status section, 42
analysis categories, 42-43
failure categories, 42

Test Suites
adding to plans, 46-47
creating, 47
query-based suites, 45
requirements-based suites, 44
static suites, 46

test results, examining, 92-93
detailed test results, 95-101
test run results, 93-94

Test Results, test attachments, 119
test run results, 93-94
Test Runner, 80-84

bugs, finding and filing, 88-89
pausing and resuming test runs, 89-90
replaying test steps, 90-91

Test Runner (TR), 71
test runs, pausing and resuming, 89-90
Test Scribe tool, 33
test settings, creating, 199-201
Test Step Details section, detailed test

results, 96-97
test steps

editing, 73
replaying, 90-91

Test Suites, 43-44
adding to Test Plans, 46-47
creating, 47
query-based suites, 45
relationship with team projects, test

cases, and Test Plans, 36
requirements-based suites, 44-45
static suites, 46

test team reported bugs, 110
testers

assigning, 53-54
need for, 3-5
testing mindset, 20

testing
automated testing framework, 139-141
developer-focused testing, 184
exploratory testing with MTM, 101-104
manual black-box testing, xvii-xviii
speeding up, 234

testing measures, Microsoft Excel,
256-257

testing mindset, 20

Index 293

testing workflow, 55-56
analysis and initial design, 56-61
construction, 61-62
user acceptance testing, 62-64

tests
automated tests. See automated tests
cleaning up, 207
Coded UI Tests. See Coded UI Tests
combining, 178
executing, 85-86, 159

parameterized tests, 87
generated web application coded UI

tests, 142-144
impacted tests, 131-132
manual tests in virtual environments,

234-238
parameterized Coded UI Tests, 166-168

inconsistency issues, 168-169
resolving inconsistency issues,

169-170
parameterized tests, best practices, 88
running, 79-80

Test Runner, 80-84
Test Runner

finding and filing bugs, 88-89
pausing and resuming test runs, 89-90
replaying test steps, 90-91

Unit Tests
associating, 181
requirements coverage, 141

tests coded UI tests, 144-147
searching for controls, 148-157

TFS (Team Foundation Server), 12, 239
automated tests, 9-10
metrics, explained, 10-12

TIA (Test Impact Analysis), 125, 132
explained, 7-9

time, 241
Tool Center, 33
tools, Test Controller Configuration

tool, 193
total bug count, 11
TPCs (Team Project Collections), 240
tracking Test Cases, 64-65
transparency, 6
triaging bugs, 110, 116

U
UAT (User Acceptance Testing), 21, 63
UI test files, 154-155
UIA (User Interface Automation), 136
UISigninDocument class, 150-152
UISigninWindowsInterneWindow

class, 148
unit testing, 22
Unit Tests, associating, 181

requirements coverage, 141
updating bugs in Agile, 114
usability, 16
User Stories reports, Test Cases

(creating), 257-268
user acceptance testing, 62-64
User Acceptance Testing (UAT), 21
User Interface Automation (UIA), 136
users, expectations of software quality, 15

V
ValidateHTMLInfo code, generating, 171
validations

adding, 157-158, 160-164
multiple validations, 158

values, dynamic values, 172-178
variables, adding to test

configurations, 50

Index294

verifying bug fixes, 129-131
videos, 97
Virtual Case File system (FBI), 4
virtual environments

configuring, 217-218
managing with MTM, 210-216
manual tests, 234-238
options, 215
snapshots, 219-221
versus virtual machines, 213

virtual machines, 194
versus virtual environments, 213

virtualized testing, 90
visibility of projects, increasing, 6
Visual Studio Test Professional 2010,

development of, xvii, xviii
VMs (virtual machines), importing,

210-212
VMWare virtual machines, 194
vsdbcmd command-line tool, 229

W-X-Y
Waste Management, Inc., 3
white-box testing, 21
Windows SharePoint Services (WSS), 243
work item queries, generating reports,

255-256
work items

builds, 125
customizing, 61

workflow, 55-56
analysis and initial design, 56-61
bugs, 113
construction, 61-62
user acceptance testing, 62-64

WSS (Windows SharePoint Services), 243

Z
zero defect releases, 3
Zumdahl, Steven S., 269

Index 295

This page intentionally left blank

Microsoft .NET Development Series

978-0-321-15489-7 978-0-321-19445-9 978-0-321-37447-9 978-0-321-38218-4

978-0-321-33488-6 978-0-321-41175-4978-0-321-51444-8

978-0-321-56299-9 978-0-321-41834-0

978-0-321-19769-6 978-0-321-23770-5

978-0-321-39820-8

978-0-321-41850-0978-0-321-34138-9

978-0-321-27872-2 978-0-321-35017-6

978-0-321-44006-8

For more information go to informit.com/msdotnetseries/

978-0-321-22835-2

978-0-321-26892-1

978-0-321-16951-8

978-0-201-73411-9

978-0-321-54561-9 978-0-321-33421-3

978-0-321-53392-0 978-0-321-15493-4 978-0-321-24673-8

978-0-321-30363-9978-0-321-41059-7 978-0-321-26796-2 978-0-321-39983-0

978-0-321-43482-1

978-0-321-17403-1 978-0-321-17404-8

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 State of Testing
	Software Testing Challenges
	The Need for Testers
	A Different Approach
	Fixing Communication
	Increasing Project Visibility
	What Are the Tools Designed to Do?

	Metrics
	Citations

	2 Software Quality and Testing Overview
	Software Quality
	Requirements
	Business Value
	Expectations
	Nonfunctional Requirements
	Where Do You Build Quality?
	Process and Quality

	Software Testing
	The Testing Mindset
	Software Testing Strategies
	Types of Software Testing
	Test Management
	After the Product Is Shipped or Deployed

	3 Planning Your Testing
	Microsoft Test Manager
	Test Plans
	Properties
	Contents
	Adding Suites and Test Cases to Your Plan

	Testing Configurations
	Managing Test Configurations
	Assigning Test Configurations

	Assigning Testers
	Test Case Planning Workflow
	Analysis and Initial Design
	Construction
	User Acceptance Testing

	Common Scenarios
	Scheduling and Tracking Test Case Creation and Execution
	Feature Driven Development
	Moving from One Iteration to Another
	Handling Different Test Configurations

	4 Executing Manual Tests
	Using the Test Case Work Item Type
	Shared Steps
	Data Driven Test Cases (Test Parameters)

	Running Your First Tests
	Test Runner

	Examining Test Results
	Test Run Results
	Detailed Test Results

	Exploratory Testing with MTM

	5 Resolving Bugs
	A Bug’s Life
	Customer Reported Bug
	Test Team Reported Bug
	Triaging the Bug
	Reactivations

	Bug Differences and Modifications
	The Generated Bug
	How a Developer Uses IntelliTrace
	Fixing the Bug
	Associated Changesets
	Associated Work Items
	Impacted Tests

	Setting the Build Quality
	Assigning a New Build
	Verifying That the Bug Is Fixed
	Dealing with Impacted Tests

	6 Automating Test Cases
	To Automate or Not to Automate
	The Automated Testing Framework
	Creating an Automated Test from a Manual Test
	Examining a Generated Web Application Coded UI Test

	Adding Validations
	Adding Additional Recorded Steps
	Parameterized Coded UI Tests
	Handling Issues Due to Inconsistency
	Resolving the Data Inconsistency

	Handling Dynamic Values
	Other Tips

	Combining Multiple Tests
	Associating Coded UI Tests and Test Cases

	7 Executing Automated Test Cases
	Executing Automated Tests Through Visual Studio
	Local Execution
	Local Execution with Remote Collection
	Remote Execution

	Executing Automated Tests from the Command Line
	Executing Automated Tests in MTM
	Creating an Automated Build
	Setting Up the Physical Environment
	Running a Coded UI Test Through MTM

	Executing Automated Tests with Team Build
	Automated Testing Gotchas
	Custom Dialogs
	Cleaning Up Your Tests

	8 Lab Management
	Managing Virtual Environments Through MTM
	Finishing Virtual Environment Configuration
	Automated Test Settings
	Lab Management Workflow

	Executing a Lab Build
	Running Automated Tests Through MTM
	Manual Tests in a Virtual Environment

	9 Reporting and Metrics
	Understanding the Reporting Structure
	Built-In Reports
	Bug Status
	Bug Trends
	Reactivations
	Build Quality Indicators
	Build Success over Time
	Build Summary
	Stories Overview
	Test Case Readiness
	Test Plan Progress

	Excel Services Reports (Dashboards)
	Reporting with Microsoft Excel
	Creating a Generated Report
	The Testing Measures

	Metrics
	What to Measure
	First-Time Defect Rate
	Bug Reactivations
	General Bug Counts

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y
	Z

