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Lemminkäisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

ISBN 978-3-540-67401-6 e-ISBN 978-3-540-68635-4

Texts in Theoretical Computer Science. An EATCS Series. ISSN 1862-4499

Library of Congress Control Number: 2008921857

ACM Computing Classification: D.2.4, F.3.1, F.4.1

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover Design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

Following the Stanford Encyclopedia of Philosophy,

“the term temporal logic has been broadly used to cover all approaches to the
representation of temporal information within a logical framework”.

Applications of temporal logic include philosophical issues about time, the semantics
of tenses in natural languages, and its use as a formal framework for the treatment of
behavioural aspects of computerized systems.

In a more narrow sense, temporal logic is understood as a modal-logic type of
approach: temporal relationships between different assertions are expressed by ap-
plying particular temporal logic operators to them. This book focuses on this type
of temporal logic and we will study computer science applications to what we call
state systems: systems which involve “states” and exhibit “behaviours” by “running”
through sequences of such states.

One of the most challenging problems facing today’s software engineers and
computer scientists is to find ways and establish techniques to reduce the number of
errors in the systems they build. It is widely acknowledged that formal methods may
contribute to solving this challenge with significant success. In particular, temporal
logic is a well-established and successfully used formal tool for the specification
and verification of state systems. Its formulas are interpreted over “runs” of such
systems and can thus express their behavioural properties. The means induced by
the (semantical and deductive) logical apparatus provide methods to formally prove
such properties.

This monograph is written in the tradition of the first author’s textbook [83]

Temporal Logic of Programs

and the two volumes

The Temporal Logic of Reactive and Concurrent Systems – Specification and
The Temporal Logic of Reactive and Concurrent Systems – Safety

of Manna and Pnueli [102, 104]. This means that we will present the “mathemat-
ics” of temporal logic in considerable detail and we will then systematically study
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specification and verification methods, which will be illustrated by fully elaborated
examples.

Compared with those books, however, the topics and their presentation are re-
arranged and we have included significant new material and approaches. In partic-
ular, branching time logics, expressiveness issues of temporal logic, aspects related
to Lamport’s Temporal Logic of Actions (TLA), and model checking methods are
additionally presented.

There is a wealth of relevant and interesting material in the field. The “main text”
of this book presents topics that – in our opinion – constitute a “canonical” exposition
of the field. In additional Second Reading paragraphs we have occasionally inserted
short “excursions” that expand on related or advanced themes or that present inter-
esting complements. These paragraphs can be skipped without loss of continuity in
the main presentation.

The first chapter of this book gives a short overview of basic concepts and no-
tions of (mathematical) logic. This is not only to introduce the reader not familiar
with logic into that world, it also defines basic terminology and notation that we use
throughout the remaining text.

Chapters 2–5 and 10 form the purely logical part of the book. Even when re-
stricted to the modal-logic type as mentioned above, there are many different ver-
sions and variants of temporal logic. We start in Chap. 2 with the basic propositional
linear temporal logic and study in Chap. 3 some important propositional extensions.
It should be mentioned that even the borderline between temporal logic(s) and modal
logics is not really well defined. Some relationships concerning this are briefly dis-
cussed in Second Reading paragraphs.

Chapter 4 is devoted to the expressiveness of propositional linear temporal logics.
In particular, the logics are compared with other description formalisms: classical
predicate logic and ω-automata.

Chapter 5 introduces first-order linear temporal logic together with some addi-
tional useful extensions. Chapter 10 discusses some other temporal logics and, par-
ticularly, introduces branching time logics.

The remaining Chaps. 6–9 and 11 deal with applications of temporal logics to
state systems. Various versions of transition systems – as formal representations of
such systems – are introduced in Chap. 6, and Chap. 7 gives a general systematic
presentation of (deductive) temporal logic verification methods for them. Chapter 8
applies the methods to the special (“classical”) case of the verification of concurrent
programs.

Chapter 9 addresses aspects that arise when system specifications are “struc-
tured”. Particularly, the refinement of specifications is considered and we study how
this can be described in the logic TLA.

The “semantical” model checking approach to system verification offers an alter-
native to deductive methods. It has attracted much interest, largely because it can be
fully automated in a way that scales to systems of interesting complexity. Chapter 11
presents the essential concepts and techniques underlying this approach.
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Every chapter ends with some bibliographical notes referring to the relevant liter-
ature. After the last chapter we include an extensive list of formal laws of the various
temporal logics studied in this book.

We have used drafts of this book as supports for courses at the advanced un-
dergraduate and the graduate level. Different selections of the material are possible,
depending on the audience and the orientation of the course. The book is also in-
tended as an introduction and reference for scientists and practicing software engi-
neers who want to familiarize themselves with the field. We have aimed to make the
presentation as self-contained as possible.

We are indebted to P. Fontaine, M. Hammer, A. Knapp, and H. Störrle for helpful
remarks during the preparation of this text.

Finally, we thank Springer-Verlag for the interest in publishing this book and the
overall support during its completion.

Munich and Nancy, Fred Kröger
January 2008 Stephan Merz
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1

Basic Concepts and Notions of Logics

In this book various temporal logics will be studied. In preparation, we first introduce
some basic concepts, notions, and terminology of logics in general by means of a
short overview of classical logic. Particularly, items are addressed which will be of
relevance in subsequent considerations. This includes some well-known results from
classical logic which we list here without any proofs.

1.1 Logical Languages, Semantics, and Formal Systems

A logic formalizes the reasoning about “statements” within some area of application.
For this purpose, it provides formal languages containing formulas for the representa-
tion of the statements in question and formal concepts of reasoning like consequence
and derivability relations between formulas.

Classical (mathematical) logic applies to mathematical systems: number systems
such as the natural or real numbers, algebraic systems such as groups or vector
spaces, etc. In a separable “nucleus” of this logic, called propositional logic PL, the
effect of building formulas with boolean operators like and, or, implies, etc. is stud-
ied, while the atomic building blocks of such formulas are viewed as “black boxes”
without any further internal structure.

Generally, a logical language is given by an alphabet of different symbols and the
definition of the set of formulas which are strings over the alphabet. Given a set V
whose elements are called propositional constants, a language LPL(V) (also shortly:
LPL) of propositional logic can be defined as follows.

Alphabet

• All propositional constants of V,
• the symbols false | → | ( | ) .

(The stroke | is not a symbol but only used for separating the symbols in the list.)
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Formulas

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.

The clauses 1–3 (also called formation rules) constitute an inductive definition which
may be understood to work like a set of production rules of a formal grammar: a
string over the alphabet is a formula if and only if it can be “produced” by finitely
many applications of the rules 1–3.

The set V is a parameter in this definition. For concrete applications, V has to
be fixed yielding some particular language tailored for the “universe of discourse” in
question. There are no assumptions on how many elements V may have. This most
general setting may sometimes cause some technical complications. In applications
studied in this book we do not need the full generality, so we actually may restrict V
to be finite or “at most” denumerable.

In general, a logical language is called countable if its alphabet is finite or denu-
merable. We will tacitly assume that all the languages still to be defined subsequently
will be countable in this sense.

The symbol→ is a (binary) logical operator, called implication; false is a special
formula. Further logical operators and another distinguished formula true can be
introduced to abbreviate particular formulas.

Abbreviations

¬A ≡ A→ false,
A ∨ B ≡ ¬A→ B ,
A ∧ B ≡ ¬(A→ ¬B),
A↔ B ≡ (A→ B) ∧ (B → A),
true ≡ ¬ false.

(We have omitted surrounding parentheses and will do so also in the following. By
≡ we denote equality of strings.) The operators ¬, ∨, ∧, and↔ are called negation,
disjunction, conjunction, and equivalence, respectively.

The symbols A and B in such definitions are not formulas (of some LPL) them-
selves but syntactic variables ranging over the set of formulas. Accordingly, a string
like ¬A→B is not a formula either. It yields a formula by substituting proper formu-
las for A and B . Nevertheless, we freely use wordings like “formula A” or “formula
¬A → B” to avoid more precise but complicated formulations like “formula of the
form ¬A→ B where A and B stand for formulas”. Moreover, we speak of formulas
“of PL” since the concrete language LPL is not relevant in this notation. In all the
other logics developed subsequently, we will adopt these conventions accordingly.

The language definition of a logic constitutes its syntax. Its semantics is based on
formal interpretations J of the syntactical elements together with a notion of validity
in (or satisfaction by) J.

In the case of PL, interpretations are provided by (boolean) valuations. Given
two distinct truth values, denoted by ff (“false”) and tt (“true”), a valuation B for a
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set V of propositional constants is a mapping

B : V → {ff, tt}.

Every such B can be inductively extended to the set of all formulas of LPL(V):

1. B(v) for v ∈ V is given.
2. B(false) = ff.
3. B(A→ B) = tt ⇔ B(A) = ff or B(B) = tt.

(We use ⇔ as an abbreviation for “if and only if”; later we will also use ⇒ for
“if. . . then. . . ”.) This also defines B for the formula abbreviations above:

4. B(¬A) = tt ⇔ B(A) = ff.
5. B(A ∨ B) = tt ⇔ B(A) = tt or B(B) = tt.
6. B(A ∧ B) = tt ⇔ B(A) = tt and B(B) = tt.
7. B(A↔ B) = tt ⇔ B(A) = B(B).
8. B(true) = tt.

A formula A of LPL is called valid in B (or B satisfies A), denoted by �
B
A, if

B(A) = tt.
Based on this notion, the consequence relation and (universal) validity in PL are

defined. Let A be a formula, F a set of formulas of LPL.

• A is called a consequence of F if �
B
A holds for every valuation B with �

B
B for

all B ∈ F .
• A is called (universally) valid or a tautology if it is a consequence of the empty

set of formulas, i.e., if �
B
A holds for every B.

The pattern of this definition will occur analogously for all other subsequent
logics with other interpretations. For any logic,

F �A, also written B1, . . . ,Bn �A if F = {B1, . . . ,Bn},n ≥ 1

will denote that A is a consequence of F , and

�A

will denote that A is valid.
With these definitions there are two possible formal statements (in PL) of what

informally is expressed by a phrase like “B follows from A”. The first one is asserted
by implication within the language:

A→ B .

The second one is given by the consequence relation:

A � B .

A fundamental fact of classical (propositional) logic is that these notions are equiva-
lent:
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A � B ⇔ � A→ B

or more generally (F being an arbitrary set of formulas):

F ∪ {A} � B ⇔ F � A→ B

which can be “unfolded” for finite F to

A1, . . . ,An � B ⇔ � A1 → (A2 → . . .→ (An → B) . . .)

or, equivalently, to the more readable

A1, . . . ,An � B ⇔ � (A1 ∧ . . . ∧An) → B .

Note that we write (A1 ∧ . . .∧An) without inner parentheses, which is syntactically
not correct but justified as a shortcut by the fact that the real bracketing is of no
relevance (more formally: the operator ∧ is associative). The analogous notation will
be used for disjunctions.

Validity and consequence are key notions of any logic. Besides their semanti-
cal definitions they can (usually) be described in a proof-theoretical way by formal
systems. A formal system Σ for a logical language consists of

• a set of formulas of the language, called axioms,
• a set of (derivation) rules of the form A1, . . . ,An �B (n ≥ 1).

The formulas A1, . . . ,An are called the premises, the formula B is the conclusion
of the rule. To distinguish it from other existing forms, a formal system of this kind
is called Hilbert-like. Throughout this book we will use only this form.

The derivability (in formal system Σ) of a formula A from a set F of formulas
(assumptions), denoted by F �

Σ
A or F �A when Σ is understood from the context,

is defined inductively:

1. F �A for every axiom.
2. F �A for every A ∈ F .
3. If F �A for all premises A of a rule then F �B for the conclusion of this rule.

A formula A is called derivable, denoted by �
Σ

A or �A, if ∅ �A. If A is derivable
from some A1, . . . ,An then the “relation” A1, . . . ,An �A can itself be used as a
derived rule in other derivations.

For languages of PL there are many possible formal systems. One of them, de-
noted by ΣPL, is the following.

Axioms

• A→ (B → A),
• (A→ (B → C )) → ((A→ B) → (A→ C )),
• ((A→ false) → false) → A.
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Rule

• A,A→ B � B (modus ponens).

We remark once more that the strings written down are not formulas. So, for example,
A → (B → A) is not one axiom but an axiom scheme which yields infinitely many
axioms when formulas are substituted for A and B . Actually, ΣPL is written in a
form which is independent of the concrete language of PL. So we may call ΣPL a
formal system “for PL”. In the same sense we will subsequently give formal systems
for other logics. A formal system for a logic is also called its axiomatization.

Like the semantical consequence relation �, derivability is related to implication
in the following sense:

F ∪ {A} � B ⇔ F � A→ B .

The only if part of this fact is called the Deduction Theorem (of PL).
An indispensable requirement of any reasonable formal system is its soundness

with respect to the semantical notions of the logic. ΣPL is in fact sound, which means
that

F �
ΣPL

A ⇒ F � A

holds for every F and A. Moreover, it can also be shown that

F � A ⇒ F �
ΣPL

A

which states the completeness of ΣPL. As a special case both facts imply

�
ΣPL

A ⇔ � A

for every formula A.
A formal system allows for “producing” formulas by applying rules in a “me-

chanical” way. So, a particular effect of the latter relationship is that the set of valid
formulas of (any language of) PL can be “mechanically generated” (in technical
terms: it is recursively enumerable). Moreover, this set is decidable (shortly: PL is
decidable), i.e., there is an algorithmic procedure to decide for any formula whether
it is valid.

We illustrate the main concepts and notions of this section by an example. A
simple logical principle of reasoning is informally expressed by

“If B follows from A and C follows from B then C follows from A”.

This chaining rule can formally be stated and verified in several ways: we can estab-
lish the formula

F ≡ ((A→ B) ∧ (B → C )) → (A→ C )

as valid, i.e., �F (speaking semantically), or as derivable, i.e., �F (speaking proof-
theoretically), or we can express it by
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A→ B ,B → C � A→ C (or A→ B ,B → C � A→ C ).

The proofs for the semantical formulations are straightforward from the definitions.
As an example of a formal derivation within the formal system ΣPL and in order to
introduce our standard format of such proofs we derive A → C from A → B and
B → C , i.e., we show that A→ B ,B → C �A→ C :

(1) A→ B assumption
(2) B → C assumption
(3) (B → C ) → (A→ (B → C )) axiom
(4) A→ (B → C ) modus ponens,(2),(3)
(5) (A→ (B → C )) → ((A→ B) → (A→ C )) axiom
(6) (A→ B) → (A→ C ) modus ponens,(4),(5)
(7) A→ C modus ponens,(1),(6)

In each of the numbered steps (lines) we list some derivable formula and indicate
on the right-hand side if it is an axiom or an assumption or by what rule applied to
previous lines it is found.

We add a selection of some more valid formulas. These and other tautologies will
(very often implicitly) be used in the subsequent chapters.

• A ∨ ¬A,
• ¬¬A↔ A,
• (A ∧ (B ∨ C )) ↔ ((A ∧ B) ∨ (A ∧ C )),
• ¬(A ∧ B) ↔ (¬A ∨ ¬B),
• ((A ∧ B) → C ) ↔ (A→ (B → C )),
• (A→ B) ↔ (¬B → ¬A),
• (A ∧ true)↔ A,
• (A ∨ false) ↔ A,
• (A→ C ) → ((A ∧ B)→ C ),
• ((A ∨ B) → C ) → (A→ C ).

As mentioned at the beginning, PL formalizes (a part of) reasoning about state-
ments in mathematical systems. Its semantics formalizes the natural basic point of
view of “usual” mathematics that a statement is something which is either “false” or
“true”. We still remark that, for specific applications or propagated by philosophical
considerations, there are other “non-standard” semantical concepts as well. Exam-
ples are three-valued logic (a statement can have three different truth values which
may be understood as “false”, “possible”, or “true”), probabilistic logic (truth is
given with a certain probability), or intuitionistic logic (statements are interpreted
constructively which, e.g., means that the tertium non datur formula A ∨ ¬A is no
longer valid since it might be that neither the truth nor the falsity of A can be found
in a constructive way).
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1.2 Classical First-Order Logic

Mathematical statements and argumentations usually need more means than can be
represented in propositional logic. These are provided by extending PL to predicate
logic which investigates a more detailed structure of formulas dealing with objects,
functions, and predicates, and includes the concept of quantification with operators
like for some and for all.

The standard form of predicate logic is first-order logic FOL which we describe
in its many-sorted version as follows.

A signature SIG = (S,F,P) is given by

• a set S of sorts,
• F =

⋃
�s∈S∗,s∈S F(�s,s) where F(�s,s), for every �s ∈ S∗ and s ∈ S, is a set of

function symbols (also called individual constants in the case of �s = ε),
• P =

⋃
�s∈S∗ P(�s) where P(�s), for every �s ∈ S∗, is a set of predicate symbols

(also called propositional constants in the case of �s = ε).

(S∗ denotes the set of finite strings over S; ε is the empty string.) For f ∈ F we will
often write f (�s,s) to indicate that f belongs to F(�s,s), and analogously for p ∈ P.

Given a signature SIG = (S,F,P), a first-order language LFOL(SIG) (also
shortly: LFOL) is given by the following syntax.

Alphabet

• All symbols of F and P,
• for every s ∈ S denumerably many (individual) variables,
• the equality symbol = ,
• the symbols false | → | ∃ | , | ( | ) .

We will denote the set of variables for s ∈ S by Xs and define X =
⋃

s∈S Xs .
Strictly speaking, LFOL(SIG) does not only depend on the given signature SIG but
also on the choice of (the notations for) all these variables. We do not display this
dependence since X could also be fixed for all languages. Note that requesting each
Xs to be denumerable is only for having “enough” variables available.

Terms and their sorts (inductively defined):

1. Every variable of Xs is a term of sort s .
2. If f ∈ F(s1...sn ,s) is a function symbol and ti are terms of sorts si for 1 ≤ i ≤ n

then f (t1, . . . , tn) is a term of sort s .

An atomic formula is a string of the form

• p(t1, . . . , tn), where p ∈ P(s1...sn) is a predicate symbol and ti are terms of sorts
si for 1 ≤ i ≤ n , or

• t1 = t2, where t1 and t2 are terms of the same sort.

Formulas (inductively defined):

1. Every atomic formula is a formula.
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2. false is a formula, and if A and B are formulas then (A→ B) is a formula.
3. If A is a formula and x is a variable then ∃xA is a formula.

We reuse the abbreviations from LPL and introduce two more:

∀xA ≡ ¬∃x¬A,
t1 �= t2 ≡ ¬ t1 = t2.

Furthermore, we will write f instead of f () for individual constants f ∈ F(ε,s) and
p instead of p() for propositional constants p ∈ P(ε); x , y and the like will be used
to denote variables.

A variable x (more precisely: an occurrence of x ) in a formula A is called bound
if it appears in some part ∃xB of A; otherwise it is called free. If t is a term of
the same sort as x then Ax (t) denotes the result of substituting t for every free
occurrence of x in A. When writing Ax (t) we always assume implicitly that t does
not contain variables which occur bound in A. (This can always be achieved by
replacing the bound variables of A by others.) A formula without any free variables
is called closed. If A is a formula that contains no free occurrences of variables other
than x1, . . . , xn then the (closed) formula ∀x1 . . . ∀xnA is called the universal closure
of A.

As an example of a first-order language consider the signature

SIGgr = ({GR}, {NEL(ε,GR), ◦(GR GR,GR), INV (GR,GR)}, ∅).

The terms of LFOL(SIGgr ) are the variables x ∈ XGR = X of the language, the
individual constant NEL, and expressions of the form ◦(t1, t2) or INV (t) with terms
t , t1, t2. All terms are of the sole sort GR. Since SIGgr contains no predicate symbols
the only atomic formulas are “equalities” t1 = t2 with terms t1, t2. The string

∀x ◦(NEL, x ) = x

is an example of a formula.
For the semantics of FOL, interpretations are given by structures which gen-

eralize the valuations of PL to the new situation. A structure S for a signature
SIG = (S,F,P) consists of

• |S| =
⋃

s∈S |S|s where |S|s is a non-empty set (called domain) for every s ∈ S,
• mappings f S : |S|s1× . . .×|S|sn → |S|s for all function symbols f ∈ F(s1...sn ,s),
• mappings pS : |S|s1×. . .×|S|sn → {ff, tt} for all predicate symbols p ∈P(s1...sn).

Note that for individual constants f ∈ F(ε,s) we obtain f S ∈ |S|s . For p ∈ P(ε) we
have pS ∈ {ff, tt} which justifies these p again being called propositional constants.

A variable valuation ξ (with respect to S) assigns some ξ(x ) ∈ |S|s to every
variable x ∈ Xs (for all s ∈ S). A structure together with a variable valuation ξ
defines inductively a value S(ξ)(t) ∈ |S| for every term t :

1. S(ξ)(x ) = ξ(x ) for x ∈ X .
2. S(ξ)(f (t1, . . . , tn)) = f S(S(ξ)(t1), . . . ,S(ξ)(tn)).
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Furthermore, we can define S(ξ)(A) ∈ {ff, tt} for every atomic formula:

1. S(ξ)(p(t1, . . . , tn)) = pS(S(ξ)(t1), . . . ,S(ξ)(tn)).
2. S(ξ)(t1 = t2) = tt ⇔ S(ξ)(t1) and S(ξ)(t2) are equal values in |S|s

(where s is the sort of t1 and t2).

Analogously to the valuations B in PL, S(ξ) can be inductively extended to all for-
mulas of LFOL. Defining the relation ∼x for x ∈ X between variable valuations
by

ξ ∼x ξ′ ⇔ ξ(y) = ξ′(y) for all y ∈ X other than x ,

the inductive clauses are:

1. S(ξ)(A) for atomic formulas is already defined.
2. S(ξ)(false) = ff.
3. S(ξ)(A→ B) = tt ⇔ S(ξ)(A) = ff or S(ξ)(B) = tt.
4. S(ξ)(∃xA) = tt ⇔ there is a ξ′ such that ξ ∼x ξ′ and S(ξ′)(A) = tt.

The truth values for formulas like ¬A, A ∨B , etc. result from these definitions as in
PL, and for ∀xA we obtain:

5. S(ξ)(∀xA) = tt ⇔ S(ξ′)(A) = tt for all ξ′ with ξ ∼x ξ′.

The value S(ξ)(A) depends only on the valuation of variables that have free occur-
rences in A. In particular, S(ξ)(A) does not depend on the variable valuation ξ when
A is a closed formula. This observation justifies our convention that bound variables
are suitably renamed before a substitution Ax (t) is performed.

A formula A of LFOL is called valid in S (or S satisfies A), denoted by �
S
A, if

S(ξ)(A) = tt for every variable valuation ξ. Following the general pattern from
Sect. 1.1, A is called a consequence of a set F of formulas (F �A) if �

S
A holds

for every S with �
S
B for all B ∈ F . A is called (universally) valid (�A) if ∅ �A.

Continuing the example considered above, a structure Z for the signature SIGgr

could be given by

|Z| = |Z|GR = Z (the set of integers),
NELZ = 0 ∈ Z, ◦Z(k , l) = k + l , INV Z(k) = −k (for k , l ∈ Z).

The formula ∀x ◦(NEL, x ) = x is valid in Z but not universally valid: consider the
structure S that differs from Z by defining NELS = 1. An example of a valid formula
is

◦(x , y) = INV (y) → INV (y) = ◦(x , y).

More generally,

t1 = t2 → t2 = t1

is a valid formula (“scheme”) for arbitrary terms t1, t2 (of the same sort), and this
formulation is in fact independent of the concrete signature SIG in the sense that it
is valid in every LFOL(SIG) for terms t1, t2 that can be built within SIG .
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The fundamental relationship

F ∪ {A} � B ⇔ F � A→ B

between implication and consequence stated in Sect. 1.1 for PL has to be modified
slightly in FOL. It holds if A does not contain free variables.

In contrast to PL, FOL is not decidable (for arbitrary first-order languages), but
there exist again sound and complete axiomatizations of FOL. An example is given
by the following formal system ΣFOL (which uses x and y to denote variables).

Axioms

• All axioms of ΣPL,
• Ax (t) → ∃xA,
• x = x ,
• x = y → (A→ Ax (y)).

Rules

• A,A→ B � B ,
• A→ B � ∃xA→ B if there is no free occurrence of x in B

(particularization).

According to the remark above, the Deduction Theorem for FOL must be formu-
lated with somewhat more care than in PL. A possible formulation is:

F ∪ {A} � B ⇒ F � A→ B if the derivation of B from F ∪ {A} con-
tains no application of the particulariza-
tion rule involving a variable that occurs
free in A.

Note in particular that the condition for the applicability of this rule is trivially ful-
filled if A is a closed formula.

The converse connection holds without any restrictions (as in PL).
Again we list some valid formulas (now of FOL) in order to give an impression

what kinds of such predicate logical facts may be used subsequently.

• t1 = t2 ↔ t2 = t1,
• t1 = t2 ∧ t2 = t3 → t1 = t3,
• ∀xA→ Ax (t),
• ∀x (A→ B) → (∀xA→ ∀xB),
• ∃x (A ∨ B) ↔ (∃xA ∨ ∃xB),
• ∃x (A→ B) ↔ (∀xA→ B), x not free in B ,
• ∃x∀yA→ ∀y∃xA.

Finally we note a derivable rule, called generalization, which is “dual” to the
above particularization rule:

• A→ B �A→ ∀xB if there is no free occurrence of x in A.
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1.3 Theories and Models

Languages of predicate logic provide a general linguistic framework for the descrip-
tion of mathematical systems. This framework is instantiated to specific systems by
fixing an according signature. For example, the language LFOL(SIGgr ) with

SIGgr = ({GR}, {NEL(ε,GR), ◦(GR GR,GR), INV (GR,GR)}, ∅),

mentioned in the previous section, is an appropriate language for formalizing groups:
GR represents the underlying set of the group, NEL should be interpreted as the
neutral element, ◦ as the group product, and INV as the inverse operation. This
interpretation is formally performed by a structure, and in fact, the sample structure
Z for SIGgr of Sect. 1.2 is a group.

Valid formulas hold in all structures. Structures that “fit” the mathematical sys-
tem in question can be distinguished by a set of formulas that are valid in those
structures, though not necessarily universally valid. Formalizing this concept, a (first-
order) theory Th = (LFOL(SIG),A) is given by a language LFOL(SIG) and a set
A of formulas of LFOL(SIG), called the non-logical axioms of Th . A structure S for
SIG satisfying all formulas of A is called a model of the theory Th . Given a class
C of structures for a signature SIG , a C-theory is a theory Th = (LFOL(SIG),AC)
such that all structures of C are models of Th . A formula F of LFOL(SIG) is valid
in all structures of C if

AC �ΣFOL
F

since ΣFOL is sound and therefore AC �ΣFOL
F implies AC � F .

With these definitions, the theory Group = (LFOL(SIGgr ),G) with G consisting
of the formulas

(x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3),
NEL ◦ x = x ,
INV (x ) ◦ x = NEL

– where we write x1 ◦ x2 instead of ◦(x1, x2) – is a (first-order) group theory. More
precisely, Group is a Cgr -theory where Cgr is the class of all structures G for SIGgr

such that the set |G| = |G|GR together with the interpretations NELG, ◦G, and INV G

form a group. The non-logical axioms of G are just well-known group axioms. For-
mulas F valid in groups can be obtained within the logical framework by derivations

G �
ΣFOL

F .

The axioms of G contain free variables. Sometimes it might be convenient to write
such axioms in “closed form” by taking their universal closures, e.g.,

∀x1∀x2∀x3((x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3))

instead of the first axiom above. The definition of validity in a structure implies that
any structure satisfies a formula A if and only if it satisfies the universal closure of
A; therefore the two versions of how to write the axioms are in fact equivalent.
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We give some more examples of theories: let

SIGlo = ({ORD}, ∅, {≺(ORD ORD)}),
LinOrd = (LFOL(SIGlo),O)

with O consisting of the axioms (in non-closed form)

¬ x ≺ x ,
(x1 ≺ x2 ∧ x2 ≺ x3) → x1 ≺ x3,
x1 �= x2 → (x1 ≺ x2 ∨ x2 ≺ x1).

(As for ◦ in LFOL(SIGgr ), we mostly use infix notation – here and in the fol-
lowing – for “binary” function and predicate symbols.) Every structure O where
|O| = |O|ORD is a non-empty set and ≺O is a (strict) linear order on |O| is a model
of LinOrd which, hence, may be called a linear order theory.

A natural number theory Nat is based on a signature

SIGNat = ({NAT},F, ∅)

with

F = {0(ε,NAT),SUCC (NAT ,NAT),+(NAT NAT ,NAT), ∗(NAT NAT ,NAT)}.

In the intended structure N for SIGNat , |N| = |N|NAT is the set N of natural num-
bers (including zero), 0N is the number zero, SUCCN is the successor function
on natural numbers, and +N and ∗N are addition and multiplication, respectively.
Nat = (LFOL(SIGNat),N ) is an {N}-theory if we let N contain the following ax-
ioms:

SUCC (x ) �= 0,
SUCC (x ) = SUCC (y) → x = y ,
x + 0 = x ,
x + SUCC (y) = SUCC (x + y),
x ∗ 0 = 0,
x ∗ SUCC (y) = (x ∗ y) + x ,
(Ax (0) ∧ ∀x (A→ Ax (SUCC (x )))) → ∀xA.

The notion of C-theories is not very sharp. If Th = (LFOL,A) is a C-theory
then, by definition, so is every (LFOL,A′) where A′ ⊆ A. Hence, in general, a
C-theory does not really “characterize” the class C of structures. The reason is that in
the definition we only required that all structures of C satisfy the non-logical axioms,
but not that these structures be the only models of the theory.

The theories Group and LinOrd actually satisfy this stronger requirement:
somewhat roughly speaking, a structure is a model of Group or LinOrd if and only
if it is a group or a linearly ordered set, respectively. The theories characterize these
mathematical systems and we may call them theory of groups and theory of linear
orders (instead of “C-theories”).
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In the case of Nat , however, the situation is fundamentally different. The struc-
ture N cannot be characterized in this way: every first-order theory which has N as a
model has also other (even “essentially” different) models. This is a consequence of
the famous (First) Gödel Incompleteness Theorem which (particularly) says that N
cannot be completely axiomatized in first-order logic. More precisely: for any first-
order {N}-theory whose non-logical axiom set A is decidable there are formulas F
of SIGNat such that �

N
F but F is not derivable from A in ΣFOL.

In the presence of different models for natural number theories, N is usu-
ally called the standard model. This model, together with its underlying signature
SIGNat , will frequently occur in subsequent sections. If necessary, we will feel free
to assume (without explicitly mentioning) that the signature may also be enriched by
more symbols than shown above (e.g., symbols for other individual constants like
1, 2, . . ., for subtraction, division, order relations, etc.) together with their standard
interpretations in N. Furthermore, we will overload notation by denoting the inter-
pretations of syntactic symbols by these same symbols (e.g., +N, ∗N, 1N, 2N, . . . will
be denoted by +, ∗, 1, 2, . . .).

Besides formalizing mathematical systems such as groups and linear orders, the
concept of logical theories also finds applications in computer science. For exam-
ple, the theory Nat (perhaps presented with some extra “syntactic sugar”) would
typically be called an algebraic specification of the natural numbers. In general, an
algebraic specification of an abstract data type (in a functional setting) is just the
same as a theory.

A further example is given by the signature

SIGst = ({OBJ ,STACK},F, ∅)

with

F = {EMPTY (ε,STACK ),PUSH (STACK OBJ ,STACK ),
POP (STACK ,STACK ),TOP (STACK ,OBJ)}

and the theory (or algebraic specification)

Stack = (LFOL(SIGst),S)

with S consisting of the axioms

PUSH (x , y) �= EMPTY ,
POP(PUSH (x , y)) = x ,
TOP(PUSH (x , y)) = y

(where x ∈ XSTACK , y ∈ XOBJ ). Clearly, Stack is a theory of stacks: the domain
|S|STACK of its (standard) models consists of stacks of objects from |S|OBJ and
EMPTY S, PUSH S, POPS, and TOPS are functions implementing the usual stack
operations.

Note that the semantical definitions in the previous section obviously assume
that the mappings which interpret function and predicate symbols are total since
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otherwise the evaluation S(ξ) would not always be defined. In this example, on the
other hand, pop and top are usually understood to be partial (not defined on the
empty stack). To solve this technical problem in a trivial way, we assume that pop
and top deliver some arbitrary values when applied to the empty stack and, hence,
are total. In subsequent similar situations we will always tacitly make corresponding
assumptions.

In some computer science texts, specifications like Nat or Stack additionally
contain (or “use”) an explicit specification of a data type Boolean containing the
boolean values and the usual boolean operators. Because Boolean is implicitly con-
tained in the propositional fragment of first-order logic, it does not have to be an
explicit part of a first-order theory.

We have introduced the concept of theories in the framework of classical first-
order logic. Of course, it can be defined in the same way for any other logic as well.
For example, a theory could also be based on propositional logic. Such propositional
theories are of minor interest in mathematics. In computer science, however, this
changes, particularly because of the decidability of PL. A typical situation arises by
first-order theories of structures with finite domains. These can be encoded as propo-
sitional theories (essentially by expressing a quantification ∃xA by a disjunction of
all instantiations of A with the finitely many possible values ξ(x ) of x ) and can then
be accessible to appropriate algorithmic treatments. We will investigate this aspect
in the context of temporal logic in Chap. 11 and content ourselves here with a toy
example of the kind which typically serves as a measure for automatic proof systems.
Consider the following criminal story:

Lady Agatha was found dead in her home where she lived together with her butler
and with uncle Charles. After some investigations of the detective, the following
facts are assured:

1. Agatha was killed by one of the inhabitants.
2. Nobody kills somebody without hating him or her.
3. The perpetrator is never richer than the victim.
4. Charles hates nobody whom Agatha was hating.
5. Agatha hated all inhabitants except perhaps the butler.
6. The butler hates everybody not richer than Agatha or hated by Agatha.
7. No inhabitant hates (or hated) all inhabitants.

Who killed Agatha?

In order to fix a language of propositional logic we have to determine the set V of
propositional constants. For our story we represent the persons Agatha, the butler,
and Charles by a , b, and c, respectively, and let P = {a, b, c} and

Vmurder = {killij , hateij , richerij | i , j ∈ P}.

The elements of Vmurder represent the propositions “i killed j ”, “i hates (or hated)
j ”, and “i is (was) richer than j ” for i , j ∈ P, respectively. With this in mind we get a
propositional theory (LPL(Vmurder ),M) by collecting inM the following formulas
which formally express the above facts:
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1. killaa ∨ killba ∨ killca ,
2. killij → hateij for all i , j ∈ P,
3. killij → ¬richerij for all i , j ∈ P,
4. hateaj → ¬hatecj for all j ∈ P,
5. hateaa ∧ hateac ,
6. (¬richerja ∨ hateaj ) → hatebj for all j ∈ P,
7. ¬hateia ∨ ¬hateib ∨ ¬hateic for all i ∈ P.

The case can be solved semantically by showing that for any model M of the theory,
which in this propositional situation is just a valuation M : Vmurder → {ff, tt},
M(killaa) = tt must hold whereas M(killba) = M(killca) = ff, or proof-theoretically
by showing that

M �
ΣPL

killaa ∧ ¬killba ∧ ¬killca .

Anyway, the conclusion is that Agatha committed suicide. One should also convince
oneself by exhibiting a model M forM that the assumed facts are not contradictory:
otherwise, the conclusion would hold trivially.

1.4 Extensions of Logics

The logic FOL extends PL in the sense that every formula of (any language LPL(V)
of) PL is also a formula of (some language containing the elements of V as propo-
sitional constants of) FOL. Furthermore, PL is a sublogic of FOL: all consequence
relationships and, hence, universal validities in PL hold in FOL as well. The logics
to be defined in the next chapters will be extensions of PL or even FOL in the same
way.

Staying within the classical logic framework, we still want to mention another
extension of FOL which allows for addressing the non-characterizability of the stan-
dard model of natural numbers in FOL as pointed out in the previous section. The
reason for this deficiency is that FOL is too weak to formalize the fundamental Peano
Postulate of natural induction which states that for every set M of natural numbers,

if 0 ∈ M and if for every n ∈ N, n + 1 ∈ M can be concluded from the
assumption that n ∈ M, then M = N.

This is only incompletely covered by the induction axiom

(Ax (0) ∧ ∀x (A→ Ax (SUCC (x )))) → ∀xA

of the theory Nat . In our assumed framework of countable languages (cf. Sect. 1.1)
this fact is evident since A (which “represents” a set M) then ranges only over denu-
merably many formulas whereas the number of sets of natural numbers is uncount-
able. But even in general, the Peano Postulate cannot be completely described in
FOL.
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An extension of FOL in which the Peano Postulate can be described adequately is
(classical) second-order logic SOL. Given a signature SIG = (S,F,P), a second-
order language LSOL(SIG) (again shortly: LSOL) is defined like a first-order lan-
guage with the following additions: the alphabet is enriched by

• denumerably many predicate variables for every �s ∈ S∗.

Let the set of predicate variables for �s ∈ S∗ be denoted by R�s and R =
⋃

�s∈S∗ R�s .
These new symbols allow for building additional atomic formulas of the form

• r(t1, . . . , tn), where r ∈ Rs1...sn is a predicate variable and ti are terms of sorts
si for 1 ≤ i ≤ n ,

and the inductive definition of formulas in FOL is extended by the clause

• If A is a formula and r is a predicate variable then ∃rA is a formula.

∀rA abbreviates ¬∃r¬A.
The semantics of a language LSOL(SIG) is again based on the concept of a

structure S for SIG . Variable valuations are redefined to assign for all s ∈ S and
s1 . . . sn ∈ S∗

• some ξ(x ) ∈ |S|s to every individual variable x ∈ Xs (as in FOL),
• some mapping ξ(r) : |S|s1 × . . . × |S|sn → {ff, tt} to every predicate variable

r ∈ Rs1...sn .

The definition of S(ξ)(A) is extended to the new kind of formulas by

• S(ξ)(r(t1, . . . , tn)) = ξ(r)(S(ξ)(t1), . . . ,S(ξ)(tn)),
• S(ξ)(∃rA) = tt ⇔ there is a ξ′ such that ξ ∼r ξ′ and S(ξ′)(A) = tt

where r ∈ R and ξ ∼r ξ′ ⇔ ξ(r̄) = ξ′(r̄) for all r̄ ∈ R other than r . Finally the
notions of validity and consequence from FOL are transferred verbatim to SOL.

A second-order theory (LSOL,A) consists of a second-order languageLSOL and a
setA of non-logical axioms (formulas of LSOL). Models of such theories are defined
as in FOL. Any first-order theory can be viewed as a second-order theory as well.
E.g., the theory LinOrd of the previous section can be made into a second-order
theory of linear orders just by replacing LFOL(SIGlo) by LSOL(SIGlo).

A proper second-order theory for the natural numbers takes the signature SIGNat

and the first six axioms of the first-order theory Nat together with the new induction
axiom

∀r(r(0) ∧ ∀x (r(x ) → r(SUCC (x ))) → ∀x r(x ))

where r ∈ RNAT is a predicate variable. The standard model N is a model of this
theory and in fact it is the only one (up to “isomorphism”; this relation will be made
more precise in Sect. 5.3). So this theory really characterizes the natural numbers.

But the background of Gödel’s Incompleteness Theorem is some inherent in-
completeness of Peano arithmetic and this now becomes manifest at another place:
in contrast to FOL, SOL cannot be completely axiomatized, i.e., there is no sound
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and complete formal system for SOL, not even in the simple sense that every valid
formula should be derivable.

This statement has to be taken with some care, however. If we took all valid
formulas of SOL as axioms of a formal system then this would be trivially sound
and complete in that sense. But this is, of course, not what is intended by a formal
system: to allow for “mechanical” generation of formulas. This intention implicitly
supposes that in a formal system the set of axioms is decidable and for any finite
sequence A1, . . . ,An ,B of formulas it is decidable whether A1, . . . ,An � B is a
rule. Since SOL (like FOL) is undecidable, the above trivial approach does not meet
this requirement.

To sum up, a logic LOG with a consequence relation � is called incomplete if
there is no formal system Σ for LOG in this sense such that

�A ⇔ �
Σ
A

for every formula A of (any language of) LOG. According to this definition, SOL is
incomplete.

We finally note that the above considerations are not restricted to SOL. In fact, the
incompleteness result of Gödel may be extended to the following general principle:

Gödel Incompleteness Principle. Let LOG be a logic with a consequence relation �
and LLOG a language of LOG such that every formula of LFOL(SIGNat) is a formula
of LLOG. If there is a decidable set F of formulas of LLOG such that

F �A ⇔ �
N
A

holds for every closed formula A of LFOL(SIGNat) then LOG is incomplete.

(As before, SIGNat = ({NAT}, {0,SUCC ,+, ∗}, ∅) and N is the standard model
of natural numbers.) This shows the fundamental “trade-off” between logical com-
pleteness and characterizability of the natural numbers.
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logic as we understand it nowadays – investigating mathematical reasoning and it-
self grounded in rigorous mathematical methods – began at the end of the nineteenth
century with Frege’s Begriffsschrift [50], the Principia Mathematica [158] by White-
head and Russell, and other pioneering work. For some time, logicians then had the
“vision” that it should be possible to “mechanize” mathematics by completely for-
malizing it within logic. Gödel’s work, particularly his famous incompleteness re-
sult [57], showed that there are fundamental bounds to this idea.

In the present-day literature, there is a huge number of textbooks on mathematical
logic. The selection of contents and the usage of notions and terminology is not
uniform in all these texts. In our presentation we mainly refer to the books [43, 60,
105, 137].
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Basic Propositional Linear Temporal Logic

We now begin to present temporal logics. Being the focus of our attention, the origi-
nal and perhaps best elaborated linear (time) temporal logic will be studied at great
length in the subsequent chapters. Other frameworks for modeling time will be con-
sidered in Chap. 10.

There are many versions of linear temporal logic. In order to provide a systematic
presentation we choose a “modular” way: we start in this chapter with the basic
“building block”. Various extensions will be studied in later chapters.

Temporal logic is a branch of modal logic. In a Second Reading paragraph in
Sect. 2.3 we will give some short explanations of this relationship.

2.1 The Basic Language and Its Normal Semantics

Classical logic formalizes mathematical systems – (functional) data types in the
wording of computer science – that consist of domains of objects and functions and
predicates over these objects. The canonical application area of temporal logic is
the formalization of state systems. Roughly speaking (precise formalizations will
be given in Chap. 6), a state system generates (temporal) “runs” or “sequences” of
“states”. Consider the following well-known toy example of the Towers of Hanoi
puzzle:

A number of stones of pairwise different size are piled one on another with de-
creasing size from the bottom to the top. This tower, which is initially standing
on some place, is to be transferred to another place by a sequence of moves, pos-
sibly using one more auxiliary place. In each move only the top stone of a tower
on one of the three places may be taken and put on a free place or on another
tower whose topmost stone is bigger than the added stone.

This puzzle may be viewed as a state system: the states are given by the different
configurations of which stones are on which places, and moves produce sequences
of states.
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In order to formalize and argue about the “behaviour” of this system we would
like to express and reason about statements of the kind

“if the topmost stone ts on some place is bigger than the topmost stone on another
place then in the next state ts cannot be the topmost stone on this latter place”

or

“in all states, on each of the three places the stones will be piled up with decreas-
ing size”,

and the like. The structure of these statements is of the form

if A then in the next state B ,
in all states C ,

respectively, where the parts A, B , and C can easily be formulated in classical (first-
order) logic. The phrases in the next state, in all states (and the like) are the focus
of the temporal logic approach. They allow for building new statements from other
ones. More formally, they are (propositional) logical operators for formulating new
statements about the truth or falsity of other statements in states (or “points in time”)
which are related to the present state (“point in time”) in particular ways.

In a first-order language, state sequences (the “flow of time”) could be formal-
ized using a distinguished sort and appropriate predicate symbols; cf. also Sect. 4.2.
Instead, temporal logic adds such operators at the propositional level. Among several
different approaches to this, linear temporal logic follows the idea of state runs as
above. More formally, it adopts the paradigm of linearly ordered, discrete time.

Let V be a set of propositional constants. The alphabet of a basic language
LLTL(V) (also shortly: LLTL) of propositional linear temporal logic LTL is given by

• all propositional constants of V,
• the symbols false | → | �| � | ( | ) .

Inductive Definition of formulas (of LLTL(V)).

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.
4. If A is a formula then �A and �A are formulas.

Further operators can be introduced as abbreviations:

¬, ∨, ∧,↔, true as in classical logic,
�A ≡ ¬�¬A.

The temporal operators �, �, and � are called nexttime, always (or henceforth), and
sometime (or eventuality) operators, respectively. Formulas �A, �A, and �A are
typically read “next A”, “always A”, and “sometime A”.
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For notational simplicity we establish a priority order of the operators:

∨, ∧ have higher priority than→ and↔ ,
→ has higher priority than↔ .

(Note that ¬, �, �, and � are binding stronger than ∨, ∧, →, and ↔ by definition.)
Accordingly, we will omit superfluous parentheses, including the outermost.

Example. Instead of the fully parenthesized formula

(((�A1 ∧A2) → A3) ↔ (�( �A4 ∨ ¬A5) ∧A6))

we write

�A1 ∧A2 → A3 ↔ �( �A4 ∨ ¬A5) ∧A6. �

Semantical interpretations in classical propositional logic are given by boolean
valuations. For LTL we have to extend this concept according to our informal idea
that formulas are evaluated over sequences of states (“time scales”).

Let V be a set of propositional constants. A temporal (or Kripke) structure for
V is an infinite sequence K = (η0, η1, η2, . . .) of mappings

ηi : V → {ff, tt}

called states. η0 is called initial state of K. Observe that states are just valuations in
the classical logic sense. For K and i ∈ N we define Ki(F ) ∈ {ff, tt} (informally
meaning the “truth value of F in the i th state of K”) for every formula F inductively
as follows:

1. Ki(v) = ηi(v) for v ∈ V.
2. Ki(false) = ff.
3. Ki(A→ B) = tt ⇔ Ki(A) = ff or Ki(B) = tt.
4. Ki( �A) = Ki+1(A).
5. Ki(�A) = tt ⇔ Kj (A) = tt for every j ≥ i .

Obviously, the formula false and the operator→ behave classically in each state. The
definitions for �and � make these operators formalize the phrases in the next state
and in all states mentioned above. More precisely now, a formula �A informally
means “A holds in all forthcoming states including the present one”.

The definitions induce the following truth values for the formula abbreviations:

6. Ki(¬A) = tt ⇔ Ki(A) = ff.
7. Ki(A ∨ B) = tt ⇔ Ki(A) = tt or Ki(B) = tt.
8. Ki(A ∧ B) = tt ⇔ Ki(A) = tt and Ki(B) = tt.
9. Ki(A↔ B) = tt ⇔ Ki(A) = Ki(B).

10. Ki(true) = tt.
11. Ki(�A) = tt ⇔ Kj (A) = tt for some j ≥ i .
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The clauses 6–10 are as in classical propositional logic. They particularly imply that
∨ and ∧ are associative in the sense that

Ki((A ∨ B) ∨ C ) = Ki(A ∨ (B ∨ C ))

and analogously for ∧. The syntactic bracketing of such formulas is therefore unim-
portant, and we will use (as in Chap. 1) notation like

A1 ∨A2 ∨ . . . ∨An and A1 ∧A2 ∧ . . . ∧An

also abbreviated by

n∨

i=1

Ai and
n∧

i=1

Ai

(or similarly displaying the index range).
The clause 11 in the above list (saying that �A informally means that “A will

hold sometime in the present or a forthcoming state”) can easily be proved:

Ki(�A) = tt ⇔ Ki(¬�¬A) = tt

⇔ Ki(�¬A) = ff

⇔ Kj (¬A) = ff for some j ≥ i
⇔ Kj (A) = tt for some j ≥ i .

Example. Let A ≡ �¬v1 ∧ �v1 → �v2 where v1, v2 ∈ V, and let K be given as
indicated by the following matrix:

η0 η1 η2 η3 η4 . . .
v1 ff ff tt tt ff . . . (arbitrary) . . .
v2 tt tt ff tt tt . . . (tt forever) . . .

The entries define the values of η0, η1, . . . for v1 and v2. The values for other v ∈ V
are of no relevance. We can compute:

K0( �v1) = ff ⇒ K0(�¬v1 ∧ �v1) = ff ⇒ K0(A) = tt,

K1(�¬v1) = K1( �v1) = tt,K1(�v2) = ff ⇒ K1(A) = ff,

K2(�¬v1) = K2( �v1) = tt,K2(�v2) = ff ⇒ K2(A) = ff,

K3(�v2) = K4(�v2) = . . . = tt ⇒ K3(A) = K4(A) = . . . = tt. �

Definition. A formula A of LLTL(V) is called valid in the temporal structure K for
V (or K satisfies A), denoted by �

K
A, if Ki(A) = tt for every i ∈ N. A is called a

consequence of a set F of formulas (F �A) if �
K
A holds for every K such that �

K
B

for all B ∈ F . A is called (universally) valid (�A) if ∅ �A.

These definitions are a natural extension of the classical validity and consequence
concepts. We remark, however, that often another version (called initial or anchored)
of these notions is used. This semantics will be discussed in Sect. 2.6. For distinction,
we call the present approach normal or floating semantics.
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As we will see subsequently, many interesting valid formulas will be of the syn-
tactical form A↔ B . We distinguish this case with a particular notion.

Definition. Two formulas A and B of LLTL are called logically equivalent (denoted
by A ∼= B ) if the formula A↔ B is valid.

Example. The formula ¬ �A ↔ �¬A is valid, i.e., ¬ �A and �¬A are logically
equivalent. To prove this we have to show that Ki(¬ �A) = Ki( �¬A) for every K
and i ∈ N:

Ki(¬ �A) = tt ⇔ Ki( �A) = ff

⇔ Ki+1(A) = ff

⇔ Ki+1(¬A) = tt

⇔ Ki( �¬A) = tt. �

We now collect some facts about the semantical notions.

Lemma 2.1.1. Let K = (η0, η1, η2, . . .) be some temporal structure and i ∈ N. If
Ki(A) = tt and Ki(A→ B) = tt then Ki(B) = tt.

Proof. Ki(A→ B) means Ki(A) = ff or Ki(B) = tt, and together with the assump-
tion Ki(A) = tt it must be the case that Ki(B) = tt. �

Theorem 2.1.2. If F � A and F � A→ B then F � B .

Proof. Let K be some temporal structure such that �
K
C for every C ∈ F , and i ∈ N.

Then Ki(A) = Ki(A→ B) = tt, implying Ki(B) = tt by Lemma 2.1.1. This means
that F � B . �

Theorem 2.1.3. If F �A then F � �A and F � �A. In particular: A � �A and
A � �A.

Proof. Let K be some temporal structure such that �
K
C for every C ∈ F , and i ∈ N.

Then Kj (A) = tt for every j ∈ N; in particular Ki+1(A) = tt and Kj (A) = tt for
every j ≥ i . This means that F � �A and F � �A. �

Theorem 2.1.4. If F � A→ B and F � A→ �A then F � A→ �B .

Proof. Let K be some temporal structure such that �
K
C for every C ∈ F , and i ∈ N.

We must show that Ki(A→ �B) = tt. This holds trivially if Ki(A) = ff, so assume
that Ki(A) = tt. Inductively, we show that Kj (A) = tt holds for all j ≥ i . The base
case (where j = i ) holds by assumption. For the induction step, fix some j ≥ i
and assume that Kj (A) = tt. Now, the assumption F � A → �A implies that
Kj (A→ �A) = tt, and therefore Kj ( �A) = tt by Lemma 2.1.1, i.e., Kj+1(A) = tt.

The assumption F � A → B implies Kj (A → B) = tt for all j ∈ N, and in
particular Kj (A → B) = tt for all j ≥ i . But since Kj (A) = tt for all j ≥ i it
follows, again by Lemma 2.1.1, that Kj (B) = tt for all j ≥ i , i.e., Ki(�B) = tt.
Altogether, we obtain Ki(A→ �B) = tt, which completes the proof. �
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For any temporal structure K = (η0, η1, η2, . . .) (for some V) and i ∈ N,
let Ki = (η′

0, η
′
1, η

′
2, . . .) be defined by η′

j = ηi+j for every j ∈ N, i.e.,
Ki = (ηi , ηi+1, ηi+2, . . .). Ki is also a temporal structure for V.

Lemma 2.1.5. Let K be a temporal structure, i ∈ N. Then Ki
j (A) = Ki+j (A) for

every j ∈ N and every formula A.

Proof. The proof runs by structural induction (i.e., induction on the syntactical struc-
ture according to the inductive definition of formulas) on A, simultaneously for all
j ∈ N. We will indicate the application of the respective induction hypothesis by
“ind.hyp.”. Let K = (η0, η1, η2, . . .) and Ki = (η′

0, η
′
1, η

′
2, . . .).

1. A ≡ v ∈ V: Ki
j (v) = η′

j (v) = ηi+j (v) = Ki+j (v).
2. A ≡ false: Ki

j (false) = ff = Ki+j (false).
3. A ≡ B → C :

Ki
j (B → C ) = tt ⇔ Ki

j (B) = ff or Ki
j (C ) = tt

⇔ Ki+j (B) = ff or Ki+j (C ) = tt (ind.hyp.)

⇔ Ki+j (B → C ) = tt.

4. A ≡ �B :

Ki
j (

�B) = Ki
j+1(B)

= Ki+j+1(B) (ind.hyp.)

= Ki+j ( �B).

5. A ≡ �B :

Ki
j (�B) = tt ⇔ Ki

l (B) = tt for all l ≥ j
⇔ Ki+l(B) = tt for all l ≥ j (ind.hyp.)

⇔ Ki+j (�B) = tt. �

Theorem 2.1.6. F ∪ {A} � B if and only if F � �A→ B .

Proof. For the “only if” part, assume that F ∪{A} � B and let K = (η0, η1, η2, . . .)
be some temporal structure such that �

K
C for every C ∈ F , and i ∈ N. Then

Kj (C ) = tt for every C ∈ F and every j ∈ N. We must show Ki(�A → B) = tt.
If Ki(�A) = ff this holds trivially, so assume that Ki(�A) = tt, i.e., Kj (A) = tt for
every j ≥ i . Now let Ki be the temporal structure defined as above. By Lemma 2.1.5
we get Ki

j (A) = Ki
j (C ) = tt for every j ∈ N and every C ∈ F , and by assumption

it follows that �
Ki B . In particular, Ki

0(B) = tt, which again by Lemma 2.1.5 implies
that Ki(B) = tt.

The converse direction is shown as follows: assume that F � �A → B and let
K be a temporal structure such that �

K
C for every C ∈ F ∪ {A}, and i ∈ N. Then

Kj (�A → B) = Kj (A) = tt for every j ∈ N, so particularly Ki(�A → B) = tt
and Kj (A) = tt for every j ≥ i , i.e., Ki(�A) = tt. By Lemma 2.1.1 we obtain
Ki(B) = tt. This means �

K
B , and so we have F ∪ {A} � B . �
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Theorem 2.1.6 is the temporal logic analogy of the classical

F ∪ {A} � B ⇔ F � A→ B .

It should be noted that the latter does no longer hold in LTL. A simple counterexam-
ple (with F = ∅) is given by A � �A which holds according to Theorem 2.1.3, but
A→ �A is clearly not valid. It is the only if part of the equivalence which fails; the
other direction still holds:

Theorem 2.1.7. If F � A→ B then F ∪ {A} � B .

Proof. If F � A → B then also F ∪ {A} � A → B . Furthermore, F ∪ {A} �A,
and hence F ∪ {A} � B by Theorem 2.1.2. �

Theorem 2.1.8. If F �A and �B for every B ∈ F then �A.

Proof. Let K be a temporal structure. Then �
K
B for every B ∈ F and hence �

K
A.

This holds for every K, so we have �A. �

We define still another semantical notion which will be needed in Sect. 2.4.

Definition. A formula A is called (locally) satisfiable if there is a temporal structure
K and i ∈ N such that Ki(A) = tt.

Example. Consider the formulas A ≡ �¬v1 ∧ ¬v2 → �v1 and B ≡ �¬v1 ∧ �v1

where v1, v2 ∈ V. For a temporal structure K with Ki(v1) = ff for all i ∈ N and
K0(v2) = tt we obtain K0(A) = tt, which shows that A is satisfiable. The formula
B , however, is not satisfiable since, for any K and i ∈ N, Ki(B) = tt would imply
Ki+1(v1) = ff as well as Ki+1(v1) = tt which is impossible. �

Validity and satisfiability are “dual” notions in the following sense:

Theorem 2.1.9. �A if and only if ¬A is not satisfiable.

Proof. �A if and only if Ki(A) = tt and hence Ki(¬A) = ff for every temporal
structure K and every i ∈ N. This just holds if and only if ¬A is not satisfiable. �

We conclude this section by listing some (forms of) temporal logic formulas that
typically occur in applications together with their informal meanings.

A→ �B : “If A then B in the next state”,
A→ �B : “If A then (now and) henceforth B”,
A→ �B : “If A then sometime (now or in the future) B”,
�(A→ B): “Whenever (now or) henceforth A then B in that state”,
��A: “For all following states, A will hold in some later state”, i.e.,

“A holds infinitely often from now on”,
��A: “Sometime A will hold permanently”, i.e.,

“A is false only finitely often from now on” or
“A is almost always true from now on”.
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2.2 Temporal Logical Laws

In any logic, the valid formulas and consequence relationships express “logical
laws”. An example from classical logic is the tautology

(A→ B) ∧ (B → C ) → (A→ C )

mentioned in Sect. 1.1. According to the semantical definitions in the previous sec-
tion we should expect that such tautologies remain valid in temporal logic where we
may substitute formulas of LLTL for A and B , e.g.,

( �C → �D) ∧ (�D → �E ) → ( �C → �E ).

Let us confirm this expectation formally:

Definition. A formula ofLLTL is called tautologically valid if it results from a tautol-
ogy A of LPL by consistently replacing the propositional constants of A by formulas
of LLTL.

Theorem 2.2.1. Every tautologically valid formula is valid.

Proof. Let V′ = {v1, . . . , vn} be a set of propositional constants, and let A1, . . . ,An

be formulas of LLTL. For any formula A of LPL(V′), let A∗ denote the formula of
LLTL which results from A by replacing every occurrence of a propositional constant
vj ∈ V′ in A by Aj . Let K be a temporal structure (for the propositional constants
of LLTL) and i ∈ N. We define a (classical) valuation B for V′ by B(vj ) = Ki(Aj )
for j = 1, . . . ,n and claim that

B(A) = Ki(A∗),

which proves the theorem. Indeed, if B is tautologically valid, and therefore B ≡ A∗

for some classical tautology A, then Ki(B) = B(A) = tt. The proof of the claim runs
by structural induction on A.

1. A ≡ vj ∈ V′: Then A∗ ≡ Aj ; hence B(A) = B(vj ) = Ki(Aj ) = Ki(A∗).
2. A ≡ false: Then A∗ ≡ false and B(A) = ff = Ki(A∗).
3. A ≡ B → C : Then A∗ ≡ B∗ → C ∗, and with the induction hypothesis we get

B(A) = tt ⇔ B(B) = ff or B(C ) = tt

⇔ Ki(B∗) = ff or Ki(C ∗) = tt

⇔ Ki(B∗ → C ∗) = Ki(A∗) = tt. �

Clearly, the transfer of classical logical laws to LTL can be extended to the re-
lation �. Suppose a formula B is a consequence of some set F of formulas in PL.
Again, if we (consistently) substitute formulas of LTL in the formulas of F and B ,
we should not destroy the logical relationship. For example,

�C → �D ,�D → �E � �C → �E
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should hold because of the classical

A→ B ,B → C � A→ C .

For a simple formulation of this fact (restricted to finite sets F) we remember that

A1, . . . ,An � B ⇔ � A1 → (A2 → . . .→ (An → B) . . .)

in PL, and so we may define:

Definition. Let A1, . . . ,An ,B (where n ≥ 1) be formulas of LLTL. B is called a
tautological consequence of A1, . . . ,An if A1 → (A2 → . . . → (An → B) . . .) is
tautologically valid.

Theorem 2.2.2. A1, . . . ,An � B whenever B is a tautological consequence of
A1, . . . ,An .

Proof. Let B be a tautological consequence of A1, . . . ,An . Then, by Theorem 2.2.1,
� A1 → (A2 → . . . → (An → B) . . .). Applying Theorem 2.1.7 n times (starting
with F = ∅) we get A1, . . . ,An � B . �

Example. As a simple application of theorems 2.2.1 and 2.2.2 we may show that
logical equivalence ∼= of formulas ofLLTL is an equivalence relation (i.e., a reflexive,
symmetrical, and transitive relation): since A ↔ A is tautologically valid we have
the reflexivity assertion A ∼= A, i.e.,

� A↔ A

with Theorem 2.2.1. Second, A ↔ B is a tautological consequence of B ↔ A,
so we have A↔ B � B ↔ A by Theorem 2.2.2, and this implies the symmetry
A ∼= B ⇒ B ∼= A , i.e.,

� A↔ B ⇒ � B ↔ A

with Theorem 2.1.8. An analogous argument establishes

� A↔ B and � B ↔ C ⇒ � A↔ C

expressing the transitivity of ∼=. �

With the Theorems 2.2.1 and 2.2.2 we know of logical laws in LTL coming from
the “classical basis” of the new logic. Let us now turn to proper temporal logical laws
concerning the temporal operators. We give quite an extensive list of valid formulas,
proving the validity only for a few examples. Many of these laws describe logical
equivalences.

Duality laws

(T1) ¬ �A↔ �¬A,
(T2) ¬�A↔ �¬A,
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(T3) ¬�A↔ �¬A.

(T2) and (T3) express the duality of the operators � and �. (T1) asserts that � is
self-dual and was proved in the previous section.

Reflexivity laws

(T4) �A→ A,
(T5) A→ �A.

These formulas express the fact that “henceforth” and “sometime” include the
“present”.

Laws about the “strength” of the operators

(T6) �A→ �A,
(T7) �A→ �A,
(T8) �A→ �A,
(T9) ��A→ ��A.

Proof of (T9). We have to show that, for arbitrary K and i ∈ N, Ki(��A) = tt
implies Ki(��A) = tt:

Ki(��A) = tt ⇒ Kj (�A) = tt for some j ≥ i
⇒ Kk (A) = tt for some j ≥ i and every k ≥ j
⇒ Kk (A) = tt for some k ≥ j with arbitrary j ≥ i
⇒ Kj (�A) = tt for every j ≥ i
⇒ Ki(��A) = tt. �

Idempotency laws

(T10) ��A↔ �A,
(T11) ��A↔ �A.

Proof of (T10). Here we have to show that Ki(��A) = Ki(�A) for arbitrary K and
i ∈ N:

Ki(��A) = tt ⇔ Kj (�A) = tt for every j ≥ i
⇔ Kk (A) = tt for every j ≥ i and every k ≥ j
⇔ Kk (A) = tt for every k ≥ i
⇔ Ki(�A) = tt. �

Commutativity laws

(T12) � �A↔ ��A,
(T13) � �A↔ ��A.

These logical equivalences state the commutativity of �with � and �.
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Proof of (T12). For arbitrary K and i ∈ N:

Ki(� �A) = tt ⇔ Kj ( �A) = tt for every j ≥ i
⇔ Kj+1(A) = tt for every j ≥ i
⇔ Kj (A) = tt for every j ≥ i + 1
⇔ Ki+1(�A) = tt

⇔ Ki( ��A) = tt. �

Distributivity laws

(T14) �(A→ B) ↔ �A→ �B ,
(T15) �(A ∧ B) ↔ �A ∧ �B ,
(T16) �(A ∨ B) ↔ �A ∨ �B ,
(T17) �(A↔ B) ↔ ( �A↔ �B),
(T18) �(A ∧ B) ↔ �A ∧�B ,
(T19) �(A ∨ B) ↔ �A ∨�B ,
(T20) ��(A ∨ B) ↔ ��A ∨��B ,
(T21) ��(A ∧ B) ↔ ��A ∧��B .

(T14)–(T17) express the distributivity of �over all (binary) classical operators. Ac-
cording to (T18) and (T19), � is distributive over ∧ and � is distributive over ∨.
Finally, (T20) and (T21) assert that “infinitely often” distributes over ∨ and “almost
always” distributes over ∧.

Proof of (T14). For arbitrary K and i ∈ N:

Ki( �(A→ B)) = tt ⇔ Ki+1(A→ B) = tt

⇔ Ki+1(A) = ff or Ki+1(B) = tt

⇔ Ki( �A) = ff or Ki( �B) = tt

⇔ Ki( �A→ �B) = tt. �

Weak distributivity laws

(T22) �(A→ B) → (�A→ �B),
(T23) �A ∨�B → �(A ∨ B),
(T24) (�A→ �B) → �(A→ B),
(T25) �(A ∧ B) → �A ∧�B ,
(T26) ��(A ∧ B) → ��A ∧��B ,
(T27) ��A ∨��B → ��(A ∨ B).

These formulas state that at least “some direction” of further distributivities of �, �,
��, and �� hold.

Proof of (T23). For arbitrary K and i ∈ N:
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Ki(�A ∨�B) = tt ⇒ Ki(�A) = tt or Ki(�B) = tt

⇒ Kj (A) = tt for every j ≥ i or
Kj (B) = tt for every j ≥ i

⇒ Kj (A) = tt or Kj (B) = tt for every j ≥ i
⇒ Kj (A ∨ B) = tt for every j ≥ i
⇒ Ki(�(A ∨ B)) = tt. �

Fixpoint characterizations of � and �

(T28) �A↔ A ∧ ��A,
(T29) �A↔ A ∨ ��A.

(T28) is a recursive formulation of the informal characterization of �A as an “infinite
conjunction”:

�A ↔ A ∧ �A ∧ ��A ∧ ���A ∧ . . . ,

and (T29) is analogous for �A. These formulas are therefore also called recursive
characterizations. The relationship with “fixpoints” will be reconsidered in a more
general context in Sect. 3.2.

Proof of (T28). For arbitrary K and i ∈ N:

Ki(A ∧ ��A) = tt ⇔ Ki(A) = tt and Ki( ��A) = tt

⇔ Ki(A) = tt and Kj (A) = tt for every j ≥ i + 1
⇔ Kj (A) = tt for every j ≥ i
⇔ Ki(�A) = tt. �

Monotonicity laws

(T30) �(A→ B) → ( �A→ �B),
(T31) �(A→ B) → (�A→ �B).

It may be observed that this list of laws is (deliberately) redundant. For example,
(T30) can be established as a consequence of the laws (T6) and (T14). We now give
a direct proof.

Proof of (T30). For arbitrary K and i ∈ N:

Ki(�(A→ B)) = tt ⇒ Kj (A→ B) = tt for every j ≥ i
⇒ Kj (A) = ff or Kj (B) = tt for every j ≥ i
⇒ Ki+1(A) = ff or Ki+1(B) = tt

⇒ Ki( �A) = ff or Ki( �B) = tt

⇒ Ki( �A→ �B) = tt. �

Frame laws

(T32) �A → ( �B → �(A ∧ B)),
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(T33) �A → (�B → �(A ∧ B)),
(T34) �A → (�B → �(A ∧ B)).

These formulas mean that if A holds forever then it may be “added” (by conjunction)
under each temporal operator.

Proof of (T32). For arbitrary K and i ∈ N:

Ki(�A) = tt ⇒ Ki+1(A) = tt

⇒ Ki+1(B) = ff
or
Ki+1(B) = tt and Ki+1(A) = tt

⇒ Ki( �B) = ff or Ki( �(A ∧ B)) = tt

⇒ Ki( �B → �(A ∧ B)) = tt. �

Temporal generalization and particularization laws

(T35) �(�A→ B)→ (�A→ �B),
(T36) �(A→ �B) → (�A→ �B).

Proof of (T35). For arbitrary K and i ∈ N, assume that Ki(�(�A → B)) = tt, i.e.,
Kj (�A → B) = tt for every j ≥ i . To prove Ki(�A → �B) = tt, assume also
that Ki(�A) = tt. This means Kk (A) = tt for every k ≥ i ; hence Kk (A) = tt for
every k ≥ j and every j ≥ i and therefore Kj (�A) = tt for every j ≥ i . With
Lemma 2.1.1 we obtain Kj (B) = tt for every j ≥ i , which means Ki(�B) = tt and
proves the claim. �

In Theorem 2.1.6 we stated the fundamental relationship between implication
and consequence in LTL. In the presence of this theorem, laws of the form

�A→ B

can also be written as a consequence relationship in the form

A �B ,

for example:

(T22) A→ B � �A→ �B ,
(T30) A→ B � �A→ �B ,
(T32) A � �B → �(A ∧ B),
(T35) �A→ B � �A→ �B ,
(T36) A→ �B � �A→ �B .

This notation also explains why (T30) and (T31) are called monotonicity laws: they
express a kind of monotonicity of �and � with respect to → (viewed as an order
relation). The same property of � is noted as a weak distributivity law in (T22) but
could also occur here.
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The reformulations of (T35) and (T36) show their correspondence to the general-
ization and particularization rules of classical first-order logic (cf. Sect. 1.2) accord-
ing to the informal meaning of � and � as a kind of “for all” and “for some” relating
these temporal operators to the classical quantifiers ∀ and ∃, respectively. According
to this relationship we call – following the notion of universal closure – a formula
�A the temporal closure of A.

We end this section with some examples of how to use this collection of temporal
logical laws. Firstly, assume that two formulas A and B are logically equivalent.
Then so are �A and �B , in symbols:

A ∼= B ⇒ �A ∼= �B .

The detailed arguments for this fact could be as follows: assume � A ↔ B . Both
A → B and B → A are tautological consequences of A ↔ B , and so we obtain
both � A→ B and � B → A by the Theorems 2.2.2 and 2.1.8. Applying (T30)
and again Theorem 2.1.8, we conclude � �A→ �B and � �B → �A. Finally, the
formula �A ↔ �B is a tautological consequence of �A → �B and �B → �A,
and another application of Theorems 2.2.2 and 2.1.8 yields � �A↔ �B .

In analogous ways we could use (T22) and (T31) to show

A ∼= B ⇒ �A ∼= �B

and

A ∼= B ⇒ �A ∼= �B

which altogether mean a kind of substitutivity of logically equivalent formulas under
the temporal operators �, �, and �.

As another application of the logical laws we finally show a remarkable conse-
quence and generalization of the idempotency laws (T10) and (T11). These seem to
imply that, e.g., the formula

�������A

is logically equivalent to

����A,

informally: the �-�-prefix ������� can be reduced to the shorter ����. In
fact, we will show that the formula is actually logically equivalent to

��A.

and, more generally, any �-�-prefix is reducible to one of the four cases �, �, ��,
or ��. In preparation, we state two more laws of temporal logic.

Absorption laws

(T37) ���A↔ ��A,
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(T38) ���A↔ ��A.

These laws assert that in a series of three alternating operators � and �, the first is
“absorbed” by the remaining two operators.

Proof. First, � ��A → ���A is just an instance of (T5). On the other hand, (T9)
yields � ���A→ ���A, and � ���A→ ��A then follows from (T11) and
the substitutivity principle mentioned above. Taken together, we obtain (T37).

For the proof of (T38) we observe the following chain of logical equivalences:

���A ≡ �¬�¬�A (by definition of �)
∼= ¬���¬A (by substitutivity from (T2) and (T3))
∼= ¬��¬A (by substitutivity from (T37))
∼= ��A (by substitutivity from (T2) and (T3)). �

Theorem 2.2.3. Let A ≡ �1 �2 . . .�n B , n ≥ 1, be a formula of LLTL where every
�i , 1 ≤ i ≤ n , is either � or �. Then

A ∼= pref B

where pref is one of the four �-�-prefixes �, �, ��, or ��.

Proof. The theorem is proved by induction on n . The case n = 1 is trivial since then
A ≡ �B or A ≡ �B . If n > 1 then we have by induction hypothesis that

�1 . . .�n−1 �n B ∼= pref ′ �n B

with pref ′ being as described. If pref ′ is � or � then pref ′ �n B ∼= pref B , for
some �-�-prefix pref of admissible form, can be established with the help of (T10)
and (T11). Otherwise, we distinguish four different combinations of pref ′, which
can be �� or ��, and �n , which can be � or �. Any of these combinations can be
reduced to an admissible prefix with the help of (T10), (T11), (T37), and (T38), and
the substitutivity principle. �

2.3 Axiomatization

We now give a formal system ΣLTL for the formal derivation of consequence rela-
tionships between formulas:

Axioms

(taut) All tautologically valid formulas,
(ltl1) ¬ �A ↔ �¬A,
(ltl2) �(A→ B) → ( �A→ �B),
(ltl3) �A → A ∧ ��A.
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Rules

(mp) A,A→ B � B ,
(nex) A � �A,
(ind) A→ B ,A→ �A � A→ �B .

The “axiom” (taut) may seem somewhat strange. We could instead have taken some
axioms for classical propositional logic such as those shown in Sect. 1.1. We are,
however, not interested here in how tautologically valid formulas can be derived
(which would proceed completely within the “classical part” of the formal system).
In order to abbreviate derivations we simply take all such formulas (the set of which
is decidable) as axioms. In fact, we will use (taut) extensively without really verifying
the tautological validity of the formula in question explicitly. In the axioms (ltl2)
and (ltl3) one should notice that these are only implications and not equivalences
although the latter are also valid according to the laws (T14) and (T28) proven in the
previous section. The rule (ind) is the proof-theoretical counterpart to Theorem 2.1.4;
it is an induction rule informally stating:

“If A (always) implies B and A is invariant from any state to the next then A
implies B forever”.

Let us now show the soundness of ΣLTL with respect to the semantics of LTL.

Theorem 2.3.1 (Soundness Theorem for ΣLTL). Let A be a formula and F a set of
formulas. If F �A then F �A. In particular: if �A then �A.

Proof. The proof runs by induction on the assumed derivation of A from F which is
inductively defined as explained in Sect. 1.1.

1. A is an axiom of ΣLTL: All axioms (taut), (ltl1), (ltl2), (ltl3) are valid according
to Theorem 2.2.1 and the laws (T1), (T14), and (T28) which were proved in
Sect. 2.2. Of course, then also F �A.

2. A ∈ F : In this case F �A holds trivially.
3. The rule applied last is (mp) with premises B and B → A: This means that
F �B as well as F �B → A. By the induction hypothesis we get F � B and
F � B → A and hence F � A by Theorem 2.1.2.

4. The rule applied last is (nex) with premise B : Therefore, A ≡ �B such that
F �B . By the induction hypothesis we get F � B , and F � �B then follows
by Theorem 2.1.3.

5. The rule applied last is (ind) with premises B → C and B → �B : Therefore,
A ≡ B → �C , and we have F �B → C and F �B → �B . By the induction
hypothesis we get F � B → C and F � B → �B , and hence F � B → �C ;
so F �A follows by Theorem 2.1.4. �

We argued above that in derivations within ΣLTL we do not want to bother with
how to derive tautologically valid formulas; we will simply use them as axioms.
Nevertheless, there will still occur purely classical derivation parts where only (taut)
and (mp) are used. We will abbreviate such parts by using – often again without
really proving the respective presupposition – the following derived rule:
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(prop) A1, . . . ,An �B if B is a tautological consequence of A1, . . . ,An .

As an example we note again the chaining rule

A→ B ,B → C �A→ C

which we will apply from now on in derivations, together with many others, as a rule
of the kind (prop). This shortcut is justified by the following theorem.

Theorem 2.3.2. A1, . . . ,An � B whenever B is a tautological consequence of
A1, . . . ,An .

Proof. We prove only the case n = 2. The general case is analogous. If B is a
tautological consequence of A1 and A2 then the formula A1 → (A2 → B) is tauto-
logically valid and we can give the following derivation of B from A1 and A2:

(1) A1 assumption
(2) A2 assumption
(3) A1 → (A2 → B) (taut)
(4) A2 → B (mp),(1),(3)
(5) B (mp),(2),(4) �

In the following we give some examples of derivations of proper temporal for-
mulas and rules. We begin with the “opposite directions” of the axioms (ltl2) and
(ltl3):

(ltl2’) ( �A→ �B)→ �(A→ B),
(ltl3’) A ∧ ��A→ �A.

Derivation of (ltl2’).

(1) ¬(A→ B) → A (taut)
(2) �(¬(A→ B) → A) (nex),(1)
(3) �(¬(A→ B) → A)→ ( �¬(A→ B) → �A) (ltl2)
(4) �¬(A→ B) → �A (mp),(2),(3)
(5) ¬ �(A→ B) ↔ �¬(A→ B) (ltl1)
(6) ¬ �(A→ B) → �A (prop),(4),(5)
(7) ¬(A→ B) → ¬B (taut)
(8) ¬ �(A→ B) → �¬B from (7) in the same

way as (6) from (1)
(9) �¬B → ¬ �B (prop),(ltl1)
(10) ¬ �(A→ B) → ¬ �B (prop),(8),(9)
(11) ¬ �(A→ B) → ¬( �A→ �B) (prop),(6),(10)
(12) ( �A→ �B)→ �(A→ B) (prop),(11) �

Derivation of (ltl3’).

(1) A ∧ ��A→ A (taut)
(2) �A→ A ∧ ��A (ltl3)
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(3) �(�A→ A ∧ ��A) (nex),(2)
(4) ��A→ �(A ∧ ��A) (mp),(ltl2),(3)
(5) A ∧ ��A→ �(A ∧ ��A) (prop),(4)
(6) A ∧ ��A→ �A (ind),(1),(5) �

The following two rules are simple but useful variants of the induction rule (ind):

(ind1) A→ �A � A→ �A,
(ind2) A→ B ,B → �B � A→ �B .

Derivation of (ind1).

(1) A→ �A assumption
(2) A→ A (taut)
(3) A→ �A (ind),(1),(2) �

Derivation of (ind2).

(1) A→ B assumption
(2) B → �B assumption
(3) B → �B (ind1),(1)
(4) A→ �B (prop),(1),(3) �

Next we show two rules the first of which is the analogy of (nex) for �:

(alw) A � �A,
(som) A→ �B � A→ �B .

Derivation of (alw).

(1) A assumption
(2) �A (nex),(1)
(3) A→ �A (prop),(2)
(4) A→ �A (ind1),(3)
(5) �A (mp),(1),(4) �

Derivation of (som).

(1) A→ �B assumption
(2) �¬B → ¬B ∧ ��¬B (ltl3)
(3) �¬B → ��¬B (prop),(2)
(4) �¬B → ¬B (prop),(2)
(5) �(�¬B → ¬B) (nex),(4)
(6) �(�¬B → ¬B) → ( ��¬B → �¬B) (ltl2)
(7) ��¬B → �¬B (mp),(5),(6)
(8) �¬B → �¬B (prop),(3),(7)
(9) ¬ �B ↔ �¬B (ltl1)
(10) �¬B → ¬ �B (prop),(8),(9)
(11) �B → ¬�¬B (prop),(10)
(12) A→ �B (prop),(1),(11) �
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We finish these exercises with a derivation of one direction of the law (T15)
which will be needed subsequently:

(T15’) �A ∧ �B → �(A ∧ B).

Derivation of (T15’). We derive ¬( �A → ¬ �B) → �¬(A → ¬B) which is
(T15’) in its strict syntactical form:

(1) �(A→ ¬B) → ( �A→ �¬B) (ltl2)
(2) �(A→ ¬B) → ( �A→ ¬ �B) (prop),(ltl1),(1)
(3) ¬( �A→ ¬ �B)→ ¬ �(A→ ¬B) (prop),(2)
(4) ¬( �A→ ¬ �B)→ �¬(A→ ¬B) (prop),(ltl1),(3) �

In Theorem 2.1.6 we observed a connection between implication and the conse-
quence relation. There is an analogous relationship between implication and deriv-
ability.

Theorem 2.3.3 (Deduction Theorem of LTL). Let A,B be formulas, F a set of
formulas. If F ∪ {A} �B then F � �A→ B .

Proof. The proof runs by induction on the assumed derivation of B from F ∪ {A}.
1. B is an axiom of ΣLTL or B ∈ F : Then F �B , and F � �A→ B follows with

(prop).
2. B ≡ A: Then F � �A → A ∧ ��A by (ltl3), and F � �A → A follows with

(prop).
3. B is a conclusion of (mp) with premises C and C → B : We then have both
F ∪ {A} � C and F ∪ {A} � C → B . Applying the induction hypothesis, we
get F � �A → C and F � �A → (C → B), from which F � �A → B
follows with (prop).

4. B ≡ �C is a conclusion of (nex) with premise C : Then F ∪ {A} � C , and
therefore F � �A→ C by induction hypothesis. We continue the derivation of
�A→ C to a derivation of �A→ �C :

(1) �A→ C derivable
(2) �(�A→ C ) (nex),(1)
(3) �(�A→ C ) → ( ��A→ �C ) (ltl2)
(4) ��A→ �C (mp),(2),(3)
(5) �A→ A ∧ ��A (ltl3)
(6) �A→ ��A (prop),(5)
(7) �A→ �C (prop),(4),(6)

5. B ≡ C → �D is a conclusion of (ind) with premises C → D and C → �C :
As above we get with the induction hypothesis that �A → (C → D) and
�A→ (C → �C ) are derivable from F , and their derivations can be continued
to derive �A→ (C → �D) as follows (using (T15’) derived above):

(1) �A→ (C → D) derivable
(2) �A→ (C → �C ) derivable
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(3) �A ∧ C → D (prop),(1)
(4) �A ∧ C → �C (prop),(2)
(5) �A→ ��A (prop),(ltl3)
(6) �A ∧ C → ��A ∧ �C (prop),(4),(5)
(7) ��A ∧ �C → �(�A ∧ C ) (T15’)
(8) �A ∧ C → �(�A ∧ C ) (prop),(6),(7)
(9) �A ∧ C → �D (ind),(3),(8)
(10) �A→ (C → �D) (prop),(9) �

The Deduction Theorem can be used to abbreviate derivations, as illustrated by
the following example: in order to derive the valid formula

(T22) �(A→ B)→ (�A→ �B)

it suffices, according to the theorem (with F = ∅), to show A → B � �A → �B .
Applying the theorem once more, it suffices to prove A → B ,A � �B , which is
very easy using the derived rule (alw):

(1) A→ B assumption
(2) A assumption
(3) B (mp),(1),(2)
(4) �B (alw),(3)

According to the semantical considerations in Sect. 2.1 and the soundness of
ΣLTL, the Deduction Theorem of classical propositional logic

If F ∪ {A} �B then F �A→ B

does not hold generally in LTL. The converse direction of this relationship, however,
holds trivially because it is nothing but an application of (mp), and the converse of
Theorem 2.3.3 can be shown in a similar way:

Theorem 2.3.4. Let A,B be formulas, and let F be a set of formulas. If F � �A→
B then F ∪ {A} �B .

Proof. If F � �A → B then also F ∪ {A} � �A → B . With F ∪ {A} �A we
get F ∪ {A} � �A by (alw) and finally F ∪ {A} � B by applying (mp). �

Second Reading

Temporal logic is a branch of modal logic. In its basic (propositional) form, modal logic
extends classical PL by one modal operator � which allows for building formulas of the
form �A and, as an abbreviation, �A ≡ ¬�¬A as in LTL. In modal logic these formulas
are read necessarilyA and possiblyA, respectively.

A Kripke structure K = ({ηι}ι∈K , �) for a set V of propositional constants underlying
a modal logic language consists of

• a set K �= ∅,
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• a binary accessibility relation � on K ,
• a valuation ηι : V → {ff, tt} for every ι ∈ K .

The ηι (or sometimes only the elements of the index set K ) are called possible worlds in
this context, and truth values Kι(F ) can be defined for all formulas F in an analogous way
to that in LTL. For the classical part the inductive formation rules are just the same:

1. Kι(v) = ηι(v) for v ∈ V,
2. Kι(false) = ff,
3. Kι(A → B) = tt ⇔ Kι(A) = ff or Kι(B) = tt,

and for formulas �A the definition reads:

4. Kι(�A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ.

For �A this clearly provides:

5. Kι(�A) = tt ⇔ Kκ(A) = tt for some κ with ι � κ.

A modal logic formula A is called valid in the Kripke structure K if Kι(A) = tt for every
ι ∈ K . Consequence and (universal) validity are defined according to the usual pattern.

It is easy to see how LTL fits into this general modal framework. The language of LTL
contains two operators � and � (instead of one) with corresponding accessibility relations
�◦ and �� . (In a more general setting of multimodal logic with n ≥ 1 modal operators
�1, . . . , �n , LTL would be a bimodal logic.) Temporal structures for LTL can be under-
stood as a special case of Kripke structures where K = N and, for i , j ∈ N,

i �◦ j ⇔ i + 1 = j ,
i �� j ⇔ i ≤ j .

Taking these definitions in clause 4 above (with �◦ and �� , respectively) we indeed get
back the LTL definitions for Ki( �A) and Ki(�A).

As long as no restrictions are put on the relation � ⊆ K × K , modal logic can be
axiomatized by a sound and complete formal system with the axioms

• all tautologically valid formulas (defined as in LTL),
• �(A → B) → (�A → �B)

and the rules

• A,A → B � B ,
• A � �A.

A large variety of modal logics is obtained by requiring particular properties of accessi-
bility. Many of these can be characterized by (additional) axioms. For example, reflexivity
of � can be described by adding

�A → A

to the basic system, and transitivity of � is characterized by

�A → ��A.

The modal logic with both additional axioms is usually denoted by S4. An extension of S4,
often denoted by S4.3Dum, is obtained by adding the Lemmon formula

�(�A → B) ∨ �(�B → A)
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and the Dummett formula

�(�(A → �A) → A) → (��A → �A)

to the axioms of S4. These additional axioms force � to be linear and discrete, respectively.
This logic is “very close” to LTL: a formula A is derivable in the resulting formal system if
and only if A is valid in all Kripke structures ({ηi}i∈N,≤). However, formulas of S4.3Dum
do not contain the “nexttime” operator, and in particular it is impossible to formulate an
induction rule in that logic.

2.4 Completeness

We want to address now the question of whether the formal system ΣLTL is complete.
This has to be treated quite carefully. Consider the infinite set

F = {A→ B ,A→ �B ,A→ ��B ,A→ ���B , . . .}

of formulas. It is easy to calculate that

F � A→ �B .

Within a (sound and) complete formal system, A → �B would then be derivable
fromF . This, however, cannot be the case in general. Any derivation in such a system
can only use finitely many of the assumptions of F . So, assuming a derivation of
A → �B from F , the soundness of the system would imply that A → �B is a
consequence of a finite subset of F (the subset of assumptions from F used in the
derivation). Again it is easy to see that this is not the case. This consideration shows
that

F � A ⇒ F �A

does not hold for the formal system ΣLTL (for arbitrary F and A) and, moreover,
that no sound formal system can achieve this kind of completeness at all. The above
example shows in particular that in LTL, one may have F � A but not F ′ � A for
any finite subset F ′ ⊆ F . In other words, the consequence relation of LTL is not
compact, unlike that of classical propositional or first-order logic.

The above incompleteness argument mainly relied on the set F being infinite.
This leads us to consider a weaker notion of completeness: we call a formal system
weakly complete if

F � A ⇒ F �A for finite F .

In this section we will show that ΣLTL is indeed weakly complete. Our proof will
roughly follow the proof idea in the classical logic case, often called the Henkin-
Hasenjäger method, modified in many details for the present situation. Because we
have already restricted ourselves to finite sets F of assumptions, Theorems 2.1.6
and 2.3.4 can be seen to imply that it suffices to consider the case where F = ∅ and
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to prove that �A implies �A or, equivalently, that A is not valid whenever it is not
derivable. Since A ∼= ¬¬A, we may assume without loss of generality that A is
of the form ¬B , and we will show that A is satisfiable (by constructing a suitable
temporal structure) whenever ¬A cannot be derived in ΣLTL.

Let us begin with introducing some notation. A positive-negative pair (shortly:
PNP) is a pair P = (F+,F−) of two finite sets F+ and F− of formulas. We denote
the set F+∪F− by FP . Furthermore, we will sometimes denote F+ by pos(P) and
F− by neg(P). Finally, the formula P̂ will be the abbreviation

P̂ ≡
∧

A∈F+

A ∧
∧

B∈F−

¬B

where empty conjunctions are identified with the formula true. PNPs will be used
to represent (possibly incomplete) information about the temporal structure under
construction; the intuition is that the formulas in F+ should be true and those in F−

should be false at the current state.
A PNP P is called inconsistent if �¬P̂ . Otherwise, P is called consistent.

Lemma 2.4.1. Let P = (F+,F−) be a consistent PNP and A a formula.

a) F+ and F− are disjoint.
b) (F+ ∪ {A},F−) or (F+,F− ∪ {A}) is a consistent PNP.

Proof. a) Assume that F+ and F− are not disjoint and pick some A ∈ F+ ∩ F−.
Then P̂ is of the form . . .∧A∧. . .∧¬A∧. . . which implies that ¬P̂ is tautologically
valid. So �¬P̂ , which means that P is inconsistent and a contradiction is reached.
Hence, F+ and F− must be disjoint.

b) If A ∈ F+ or A ∈ F− then we have (F+ ∪ {A},F−) = (F+,F−) or
(F+,F− ∪ {A}) = (F+,F−), respectively, and the assertion follows by the as-
sumed consistency of (F+,F−). Otherwise, assuming both pairs under considera-
tion are inconsistent implies �¬(P̂ ∧ A) and �¬(P̂ ∧ ¬A). With (prop) we obtain
�¬P̂ , which again contradicts the consistency of P . Hence, (at least) one of the pairs
must be consistent. �

Lemma 2.4.2. Let P = (F+,F−) be a consistent PNP and A and B formulas.

a) false /∈ F+.
b) If A,B ,A→ B ∈ FP then A→ B ∈ F+ ⇔ A ∈ F− or B ∈ F+.
c) If �A→ B ,A ∈ F+,B ∈ FP then B ∈ F+.

Proof. a) Assume false ∈ F+. Then �P̂ → false by (taut) which is just �¬P̂ , and
a contradiction is reached. This proves false /∈ F+.

b) Assume that A → B ∈ F+ but A /∈ F− and B /∈ F+. Since A,B ∈ FP we
get A ∈ F+ and B ∈ F−. Then � P̂ → (A → B) ∧ A ∧ ¬B and this yields �¬P̂
with (prop) which is a contradiction. Hence A ∈ F− or B ∈ F+. On the other hand,
assume that A ∈ F− or B ∈ F+. If A → B /∈ F+ we must have A → B ∈ F−,
and we get � P̂ → ¬(A → B) ∧ ¬A or � P̂ → ¬(A → B) ∧ B . In both cases we
again obtain the contradiction �¬P̂; hence A→ B ∈ F+.
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c) Assume that B /∈ F+. Then B ∈ F− because of B ∈ FP , and with A ∈ F+

we get � P̂ → A ∧ ¬B , and furthermore �¬P̂ with �A → B and (prop). This is
in contradiction to the consistency of P; hence B ∈ F+. �

Let F be a formula. With F we associate a set τ(F ) of formulas, inductively
defined as follows:

1. τ(v) = {v} for v ∈ V.
2. τ(false) = {false}.
3. τ(A→ B) = {A→ B} ∪ τ(A) ∪ τ(B).
4. τ( �A) = { �A}.
5. τ(�A) = {�A} ∪ τ(A).

Informally, τ(F ) is the set of “subformulas” of F where, however, formulas �A are
treated as “indivisible”. For a set F of formulas we let

τ(F) = {A | A ∈ τ(F ),F ∈ F}.

Obviously, τ(τ(F)) = τ(F) and τ(FP) is finite for every PNP P (since FP is
finite). We call a PNP P complete if τ(FP) = FP .

Lemma 2.4.3. Let P be a consistent PNP. There is a consistent and complete PNP
P∗ with pos(P) ⊆ pos(P∗) and neg(P) ⊆ neg(P∗).

Proof. Starting from P , P∗ is constructed by successively adding A to pos(P) or to
neg(P) for every A ∈ τ(FP) depending on which of these extensions is consistent.
By Lemma 2.4.1 b) this is always possible and it evidently yields some consistent
and complete PNP P∗. �

Given a consistent PNP P , we call any PNP P∗ that satisfies the conditions of
Lemma 2.4.3 a completion of P . In general, different completions of a given P are
possible, but obviously only finitely many.

Lemma 2.4.4. Let P∗
1 , . . . ,P∗

n be all different completions of a consistent PNP P .
Then � P̂ → P̂∗

1 ∨ . . . ∨ P̂∗
n .

Proof. We first prove an auxiliary assertion: let F be some finite set of formulas and
let Q1, . . . ,Qm be all the different PNP Q with FQ = τ(F) and such that pos(Q)
and neg(Q) are disjoint. Because τ(FQ) = τ(τ(F)) = τ(F) = FQ holds for any
such Q, all Q1, . . . ,Qm are complete and we show by induction on the number of
formulas in τ(F) that

(∗) �
m∨

i=1

Q̂i .

If τ(F) = ∅ then m = 1, Q1 = (∅, ∅), and Q̂1 ≡ true, so (∗) holds by (taut).
Assume now that τ(F) = {A1, . . . ,Ak} for some k ≥ 1. Clearly there must be
some j (where 1 ≤ j ≤ k ) such that Aj /∈ τ({A1, . . . ,Aj−1,Aj+1, . . . ,Ak}),
i.e., Aj is a “most complex” formula in τ(F); let F ′ = τ(F) \ {Aj }. In particular, it
follows that τ(F ′) = F ′. LetQ′

1, . . . ,Q′
l be all PNP constructed forF ′ as described.

Then m = 2l and the PNP Q1, . . . ,Qm are obtained from Q′
1, . . . ,Q′

l as follows:
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Q1 = (pos(Q′
1) ∪ {Aj},neg(Q′

1)),
...
Ql = (pos(Q′

l) ∪ {Aj },neg(Q′
l )),

Ql+1 = (pos(Q′
1),neg(Q′

1) ∪ {Aj}),
...
Qm = (pos(Q′

l),neg(Q′
l ) ∪ {Aj}).

By the induction hypothesis we have �
∨l

i=1 Q̂′
i which yields

�
l∨

i=1

(Q̂′
i ∧Aj ) ∨

l∨

i=1

(Q̂′
i ∧ ¬Aj ),

i.e., (∗) by (prop).
Let now P be a consistent PNP, and let P ′

1, . . . ,P ′
m be all different PNP P ′ with

FP′ = τ(FP) and such that pos(P ′) and neg(P ′) are disjoint. The completions
P∗

1 , . . . ,P∗
n are just those P ′

i which are consistent and for which pos(P) ⊆ pos(P ′
i)

and neg(P) ⊆ neg(P ′
i). Without loss of generality, we may suppose that these are

P ′
1, . . . ,P ′

n , which means that for i > n ,

(i) P ′
i is inconsistent

or

(ii) pos(P) �⊆ pos(P ′
i) or neg(P) �⊆ neg(P ′

i).

We obtain �¬P̂i in case (i) and pos(P) ∩ neg(P ′
i) �= ∅ or neg(P) ∩ pos(P ′

i) �= ∅
and therefore � ¬(P̂ ∧ P̂ ′

i) by (taut) in case (ii). In either case, we may conclude

� P̂ → ¬P̂ ′
i with (prop), and this holds for every i > n . With (∗) we obtain

�
∨m

i=1 P̂ ′
i and with (prop) we then get � P̂ →

∨n
i=1 P̂ ′

i which is just the desired
assertion. �

The informal meaning of a completion P∗ of a consistent PNP P is that those
subformulas of formulas appearing in FP that should be true or false in some state
are collected in pos(P∗) and neg(P∗), respectively, ensuring that all formulas of
pos(P) are true and all formulas of neg(P) false in that state. Let us illustrate this
idea with a little example. Suppose A ≡ (v1 → v2) → �v3, B ≡ v3 → �v2 (with
v1, v2, v3 ∈ V), and P = ({A}, {B}). One possible completion of P is

P∗ = ({A, v1 → v2,�v3, v2, v3}, {B , v1,
�v2}).

If all the (proper) parts of A and B in pos(P∗) evaluate to tt and those in neg(P∗)
to ff then A becomes tt and B becomes ff and, moreover, such a valuation is in
fact possible because of the consistency of P∗. However, some of this information
focussed on one state may also have implications for other states. In our example,
�v3 becomes true in a state only if v3 is true in that state which is already noted by
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v3 belonging to pos(P∗) and v3 is also true in every future state or, equivalently, �v3

is true in the next state. To make �v2 false requires v2 to be false in the next state.
The “transfer” of such information from one state to the next is the purpose of our
next construction.

For a PNP P = (F+,F−) we define the following four sets of formulas

σ1(P) = {A | �A ∈ F+},
σ2(P) = {�A | �A ∈ F+},
σ3(P) = {A | �A ∈ F−},
σ4(P) = {�A | �A ∈ F− and A ∈ F+}

and the PNP

σ(P) =
(
σ1(P) ∪ σ2(P), σ3(P) ∪ σ4(P)

)
.

For the example above we have

σ(P∗) = ({�v3}, {v2})

comprehending the information about what has to become true or false in the next
state to “fulfill” P∗ in the way described above.

Lemma 2.4.5. Let P be a PNP.

a) � P̂ → �σ̂(P).
b) If P is consistent then σ(P) is consistent.

Proof. a) We show that � P̂ → �C if C ∈ σ1(P) ∪ σ2(P) and that � P̂ → �¬C
if C ∈ σ3(P) ∪ σ4(P). The assertion a) then follows immediately with (prop) and
(T15’), which was formally derived in the previous section. We distinguish the four
cases of C ∈ σi , i = 1, . . . , 4:

1. If C ∈ σ1(P) then �C ∈ pos(P) and therefore � P̂ → �C by (prop).
2. If C ≡ �A ∈ σ2(P) then �A ∈ pos(P) and therefore � P̂ → �A by (prop),

from which we get � P̂ → ��A with (ltl3) and (prop).
3. If C ∈ σ3(P) then �C ∈ neg(P) and therefore � P̂ → ¬ �C by (prop) from

which we get � P̂ → �¬C with (ltl1) and (prop).
4. If C ≡ �A ∈ σ4(P) then �A ∈ neg(P) and A ∈ pos(P) and therefore
� P̂ → A ∧ ¬�A by (prop) from which we get � P̂ → ¬ ��A with (ltl3’) and
(prop) and finally � P̂ → �¬�A with (ltl1) and (prop).

b) Assume that σ(P) is inconsistent, i.e., � ¬σ̂(P). Using (nex) it follows that

� �¬σ̂(P); hence also � ¬ �̂σ(P) with (ltl1) and (prop). Together with a) we infer
�¬P̂ by (prop), implying that P would be inconsistent. �

According to our explanation of the proof idea above, in order to satisfy the
formulas of pos(P) and falsify those of neg(P) of a given consistent PNP P , re-
spectively, in a state, the infinite sequence
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P∗, σ(P∗)∗, σ(σ(P∗)∗)∗, . . .

should now carry the complete information about how the parts of those formulas
should evaluate in that state and all subsequent ones. There is, however, one remain-
ing problem: for some element Pi of this sequence there could be �A ∈ neg(Pi)
which means that A should become false in the corresponding state or in a subse-
quent state. But, either forced by the consistency constraint or just by having chosen
a “bad” completion, A ∈ pos(Pj ) could hold for all elements Pj , j ≥ i , of the se-
quence. In order to overcome this last difficulty we consider all possible completions
in every step “from one state to the next”.

Formally, let P be a consistent and complete PNP. We define an infinite tree KP :

• The root of KP is P .
• If Q is a node of KP then the successor nodes of Q are all different completions

of σ(Q).

According to our remarks and results above, every node of KP is a consistent and
complete PNP. If Q is a node then the subtree of KP with root Q is just KQ.

Lemma 2.4.6. Let P be a consistent and complete PNP.

a) KP has only finitely many different nodes Q1, . . . ,Qn .

b) �
n∨

i=1

Q̂i → �
n∨

i=1

Q̂i .

Proof. a) From the definitions of the σ and τ operations it follows immediately that
all formulas that occur in some node of KP are subformulas of the formulas con-
tained in FP , of which there are only finitely many. This implies that there can be
only finitely many different nodes in KP .

b) Lemma 2.4.5 a) shows that we have � Q̂i → �̂σ(Qi) for every i = 1, . . . ,n .
Let Q′

i1
, . . . ,Q′

im
be all different completions of σ(Qi); then Lemma 2.4.4 proves

� σ̂(Qi) →
∨m

j=1 Q̂′
ij

. The definition of KP implies Q′
ij
∈ {Q1, . . . ,Qn}; hence

� Q̂′
ij
→
∨n

k=1 Q̂k , for every j = 1, . . . ,m . So we get � σ̂(Qi) →
∨n

k=1 Q̂k

with (prop); furthermore � �σ̂(Qi) → �
∨n

k=1 Q̂k with (nex) and (ltl2) and hence

� Q̂i → �
∨n

k=1 Q̂k for i = 1, . . . ,n . From this, assertion b) follows with (prop).
�

A finite path (from P1 to Pk ) in KP is a sequence P1, . . . ,Pk of nodes such that
Pi+1 is a successor node of Pi for every i = 1, . . . , k −1. An infinite path is defined
analogously.

Lemma 2.4.7. Let P be a consistent and complete PNP, P0,P1,P2, . . . an infinite
path in KP , i ∈ N, and A a formula.

a) If �A ∈ FPi
then: �A ∈ pos(Pi) ⇔ A ∈ pos(Pi+1).

b) �A ∈ pos(Pi) ⇒ A ∈ pos(Pj ) for every j ≥ i .



46 2 Basic Propositional Linear Temporal Logic

Proof. a) Assume that �A ∈ FPi
. If �A ∈ pos(Pi) then A ∈ pos(σ(Pi)); hence

A ∈ pos(Pi+1). If �A /∈ pos(Pi) then �A ∈ neg(Pi); hence A ∈ neg(σ(Pi)), and
therefore A ∈ neg(Pi+1) and A /∈ pos(Pi+1) with Lemma 2.4.1 a).

b) Assume that �A ∈ pos(Pi). Then A ∈ FPi
because of A ∈ τ(�A) and the

completeness of Pi . We get A ∈ pos(Pi) with Lemma 2.4.2 c) and � �A → A,
which follows from (ltl3). Moreover, �A ∈ pos(σ(Pi)); hence �A ∈ pos(Pi+1).
By induction we may conclude that A ∈ pos(Pj ) for every j ≥ i . �

An infinite path in KP is just a sequence of PNPs as in our informal explanation
above. However, as explained there, we have to find such a path where every (“nega-
tive”) occurrence of some formula �A in some neg(Pi) is eventually followed by a
negative occurrence of A. Formally, let us call an infinite path P0,P1,P2, . . . in KP
complete if P0 = P and the following condition holds for every i ∈ N:

If �A ∈ neg(Pi) then A ∈ neg(Pj ) for some j ≥ i .

Lemma 2.4.7 and this definition will be seen to ensure the existence of a tempo-
ral structure satisfying P̂ . It remains to guarantee that a complete path really exists
whenever P is consistent and complete.

Lemma 2.4.8. Let P be a consistent and complete PNP. There is a complete path in
KP .

Proof. We first show:

(∗) If Q is some node of KP and A is some formula such that �A ∈ neg(Q) then
there is a node Q′ of KQ such that A ∈ neg(Q′).

Assume that A /∈ neg(Q′) for every node Q′ of KQ. Because of A ∈ τ(�A) we
then have A ∈ pos(Q) and therefore �A ∈ neg(Q′) for all successor nodesQ′ ofQ
according to the construction σ. Continuing inductively, we find that �A ∈ neg(Q′),
A ∈ pos(Q′), and hence � Q̂′ → A for every node Q′ of KQ. Let Q′

1, . . . ,Q′
n be

all nodes of KQ. Then �
∨n

i=1 Q̂′
i → A. Furthermore, by Lemma 2.4.6 b) we have

�
∨n

i=1 Q̂′
i → �

∨n
i=1 Q̂′

i ; so with (ind) we obtain �
∨n

i=1 Q̂′
i → �A. Because of

Q ∈ {Q′
1, . . . ,Q′

n} we also have � Q̂ →
∨n

i=1 Q̂′
i and so we get � Q̂ → �A by

(prop). Because of �A ∈ neg(Q), i.e., � Q̂ → ¬�A, this implies �¬Q̂ by (prop)
which means that Q is inconsistent. This is a contradiction; thus (∗) is proved.

From Lemma 2.4.6 a) we know that KP contains only finitely many different
nodes. Since neg(Q) is a finite set of formulas for every node Q, there can only be
finitely many formulas A such that �A ∈ neg(Q) for some node Q of KP . Choose
some fixed enumeration A0, . . . ,Am−1 of all such formulas. In order to construct a
complete path in KP we now define a succession π0, π1, . . . of finite and non-empty
paths in KP such that πi is a proper prefix of πi+1:

• Let π0 = P consist only of the root P of KP .
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• Inductively, assume that πi = Q0,Q1, . . . ,Qk has already been defined. We
distinguish two cases: if �Ai mod m /∈ neg(Qk ) or Ai mod m ∈ neg(Qk ) then
πi+1 is obtained from πi by appending some successor node Q′ of Qk in KP .
(Lemmas 2.4.5 and 2.4.3 imply that Qk has at least one successor node.)
If �Ai mod m ∈ neg(Qk ) and Ai mod m /∈ neg(Qk ) then, by (∗), KQk

contains
some node Q′ such that Ai mod m ∈ neg(Q′). Choose such a Q′ (which must
obviously be different fromQk ), and let πi+1 be obtained by appending the path
from Qk to Q′ to the path πi .

The succession π0, π1, . . . uniquely determines an infinite path π = Q0,Q1, . . .
with Q0 = P in KP . To see that π is complete, assume that �A ∈ neg(Qi) for
some i but that A /∈ neg(Qi′) for all i ′ ≥ i . As in the proof of (∗), it follows
that �A ∈ neg(Qi′) for every i ′ ≥ i . The formula A occurs in the enumeration
of all formulas of this kind fixed above, say, as Al . Now choose j ∈ N such that
πj ·m+l = Q0, . . . ,Qk where k ≥ i ; in particular it follows that �Al ∈ neg(Qk ).
But the construction of πi+1 ensures that πi+1, which is a finite prefix of π, ends
with some nodeQ′ such that A ≡ Al ∈ neg(Q′), and a contradiction is reached. We
have thus found a complete path π = Q0,Q1, . . . in KP . �

Now we have in fact all means for proving a theorem which is a rather trivial
transcription of the desired completeness result.

Theorem 2.4.9 (Satisfiability Theorem for ΣLTL). For every consistent PNP P , the
formula P̂ is satisfiable.

Proof. Let P be a consistent PNP, P∗ be a completion of P , and P0,P1,P2, . . . a
complete path in KP∗ according to Lemma 2.4.8. We define a temporal structure
K = (η0, η1, η2, . . .) by:

ηi(v) = tt ⇔ v ∈ pos(Pi) for every v ∈ V, i ∈ N.

We will prove below that for every formula F and every i ∈ N:

(∗) If F ∈ FPi
then: Ki(F ) = tt ⇔ F ∈ pos(Pi).

Before we prove this, let us show that (∗) implies the satisfiability of P̂: because of
pos(P) ⊆ pos(P0), neg(P) ⊆ neg(P0), and pos(P0) ∩ neg(P0) = ∅ we get

K0(P̂) = K0

( ∧

A∈pos(P)

A ∧
∧

B∈neg(P)

¬B
)

= tt

from (∗). In particular, P̂ is satisfiable.
The proof of (∗) runs by structural induction on the formula F .

1. F ≡ v ∈ V: Ki(v) = ηi(v) = tt ⇔ v ∈ pos(Pi) by definition.
2. F ≡ false: We have Ki(false) = ff and false /∈ pos(Pi) by Lemma 2.4.2 a) and

this implies (∗).
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3. F ≡ A → B : If A → B ∈ FPi
then also A ∈ FPi

and B ∈ FPi
because Pi is

a complete PNP, and therefore:

Ki(A→ B) = tt ⇔ Ki(A) = ff or Ki(B) = tt

⇔ A /∈ pos(Pi) or B ∈ pos(Pi) (ind.hyp.)

⇔ A ∈ neg(Pi) or B ∈ pos(Pi) (since A ∈ FPi
)

⇔ A→ B ∈ pos(Pi) (by Lemma 2.4.2 b).

4. F ≡ �A: From �A ∈ FPi
we obtain A ∈ FPi+1 and therefore:

Ki( �A) = tt ⇔ Ki+1(A) = tt

⇔ A ∈ pos(Pi+1) (ind.hyp.)

⇔ �A ∈ pos(Pi) (by Lemma 2.4.7 a).

5. F ≡ �A: If �A ∈ pos(Pi) it follows that A ∈ pos(Pj ) for every j ≥ i by
Lemma 2.4.7 b) and we get A ∈ FPj

and therefore Kj (A) = tt for every j ≥ i
by the induction hypothesis; hence Ki(�A) = tt.
Assume, on the other hand, that �A ∈ FPi

and �A /∈ pos(Pi). Therefore
�A ∈ neg(Pi), and the definition of a complete path and Lemma 2.4.1 a) ensure
A ∈ neg(Pj ) and thus A /∈ pos(Pj ) and A ∈ FPj

for some j ≥ i . By the
induction hypothesis we get Kj (A) = ff for this j , which implies Ki(�A) �= tt.

�

Before we finally deduce our main result from this theorem we still mention that
a close look at its proof provides another interesting corollary called finite model
property (of LTL):

• Every satisfiable formula is satisfiable by a temporal structure which has only
finitely many different states.

To see this fact, assume that a formula A is satisfiable. From the definition it follows
immediately that ¬¬A is satisfiable; hence ¬A is not valid by Theorem 2.1.9 and not
derivable in ΣLTL by Theorem 2.3.1. So, by definition, the PNP ({A}, ∅) is consis-
tent and therefore A is satisfiable by a temporal structure K according to (the proof
of) Theorem 2.4.9. By construction and Lemma 2.4.6 a), K has only finitely many
different states.

Theorem 2.4.10 (Weak Completeness Theorem for ΣLTL). ΣLTL is weakly com-
plete, i.e., for every finite set F of formulas and formula A, if F � A then F �A.
In particular: if �A then �A.

Proof. We prove the claim first for F = ∅: if �A then ¬A is not satisfiable by
Theorem 2.1.9 and hence the PNP (∅, {A}) is inconsistent by Theorem 2.4.9. This
means �¬¬A by definition and implies �A using (prop).

Let now F = {A1, . . . ,An} �= ∅. We then have
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F �A ⇒ A1 . . .An−1 � �An → A (Theorem 2.1.6)
...

⇒ � �A1 → (�A2 → . . .→ (�An → A) . . .) (Theorem 2.1.6)

⇒ � �A1 → (�A2 → . . .→ (�An → A) . . .) (proved above)

⇒ A1 � �A2 → (�A3 → . . .→ (�An → A) . . .) (Theorem 2.3.4)
...

⇒ F �A (Theorem 2.3.4).
�

Let us summarize. We now know from the Soundness and the Weak Complete-
ness Theorems that

F �A ⇔ F �A for finite F ,

in particular that

�A ⇔ �A.

This also means that we can view all logical laws (T1)–(T38) considered in Sect. 2.2
as derivable. For example, the law (T31) can be considered as the derived rule

A→ B � �A→ �B .

We will take advantage of this and freely use the laws in subsequent derivations.

Example. �A → �B ,B → �C � �A → ���C can be derived using (T12),
(T13), (T31), and (T35) as follows:

(1) �A→ �B assumption
(2) B → �C assumption
(3) �B → � �C (T31),(2)
(4) �B → ��C (T13),(prop),(3)
(5) �A→ ��C (prop),(1),(4)
(6) �A→ � ��C (T35),(5)
(7) �A→ ���C (T12),(prop),(6) �
As another example, we derive the rule

(chain) A→ �B ,B → �C � A→ �C

which will be needed later.

Derivation of (chain).

(1) A→ �B assumption
(2) B → �C assumption
(3) �B → �C (T36),(2)
(4) A→ �C (prop),(1),(3) �
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At the beginning of this section we argued that the non-derivability of

F �A→ �B

for F = {A → �iB | i ∈ N} ( �i denotes the sequence �. . . �of i subsequently
applied �-operators) shows that there is no sound formal system which is complete
in the full sense. Another view of this situation together with the proven weak com-
pleteness is given by the fact that full completeness could be achieved by weakening
the concept of formal systems: a semi-formal system is like a formal system but may
contain ω-rules, i.e., rules of the form

A1,A2,A3, . . . �B

with an infinite sequence A1,A2,A3, . . . of premises.
We conclude this section with the remark that the semi-formal system which

results from ΣLTL by replacing the induction rule (ind) by the ω-rule

(ω-ind) A→ �iB , i ∈ N � A→ �B

is indeed (sound and) complete in the full sense that

F � A ⇒ F �A

then holds for arbitrary F and A.
Of course, a derivation in a semi-formal system is no longer a purely “mechan-

ical” process. In order to apply an ω-rule the derivation of their infinitely many
premises needs some argument “outside” the system, typically an inductive one. For
example, a derivation of (ind) with (ω-ind) is given as follows:

(1) A→ B assumption
(2) A→ �A assumption
(3) A→ �iB for all i ∈ N from (1) and (2) by induction on i
(4) A→ �B (ω-ind),(3)

Line (3) is achieved by the fact that for i = 0 it is just the assumption (1) and with

(3a) A→ �iB induction hypothesis
(3b) �(A→ �iB) (nex),(3a)
(3c) �A→ �i+1B (mp),(ltl2),(3b)
(3d) A→ �i+1B (prop),(2),(3c)

we obtain the necessary induction step.

2.5 Decidability

The Weak Completeness Theorem 2.4.10 implies that every valid LTL formula can
be derived in ΣLTL. Coupled with a method to enumerate all instances of classical
tautologies, ΣLTL therefore systematically generates all valid LTL formulas.
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We will now show that the validity of LTL formulas is even decidable. In fact,
we will present a method to decide the satisfiability problem, i.e., whether a formula
is satisfiable or not. Applying Theorem 2.1.9, validity of formula F (the validity
problem) can then be decided by determining whether ¬F is unsatisfiable.

The decision procedure for satisfiability is based on the same ideas as the proof
of the Weak Completeness Theorem 2.4.10; recall that its essence was to construct
a satisfying temporal structure for any finite and consistent set of formulas. In fact,
the definitions of the τ and σ operations were carefully chosen to ensure that the tree
of PNPs contained only finitely many different nodes. The information contained
in the infinite tree can therefore be more succinctly represented in a finite graph if
identical nodes are identified. The resulting graph encodes all temporal structures
that satisfy the initially given consistent set of formulas. On the other hand, if the
given set of formulas is inconsistent, we will see that the construction fails for one of
two possible reasons: first, false ∈ pos(P) or pos(P)∩neg(P) �= ∅may hold for all
leaf nodesP , implying that they are immediately contradictory. Second, the resulting
graph may contain no “appropriate” path because for some nodeP and some formula
�A ∈ neg(P) there is no node Q reachable from P such that A ∈ neg(Q); cf. the
proof of Lemma 2.4.8.

Let us make these ideas more formal. Given a PNP P , we define a tableau for
P to be any rooted directed graph T of pairwise distinct PNPs whose root is P and
such that for every nodeQ = (F+,F−) of T , one of the following conditions hold:

(⊥) false ∈ F+ or F+ ∩ F− �= ∅, and Q has no successor node.
(→+) A → B ∈ F+ for some formulas A,B , and Q has precisely two successor

nodes: the left-hand successor (F+ \ {A → B},F− ∪ {A}) and the right-
hand successor ((F+ \ {A→ B}) ∪ {B},F−).

(→−) A → B ∈ F− for some formulas A,B , and Q has precisely the successor
node (F+ ∪ {A}, (F− \ {A→ B}) ∪ {B}).

(�+) �A ∈ F+ for some formula A, and Q has precisely the successor node
((F+ \ {�A}) ∪ {A, ��A},F−).

(�−) �A ∈ F− for some formula A, andQ has precisely two successor nodes: the
left-hand successor (F+, (F− \ {�A})∪ {A}) and the right-hand successor
(F+, (F− \ {�A}) ∪ { ��A}).

( �) All formulas in FQ are of the form false, v (where v ∈ V), or �A for some
formula A, node Q does not satisfy (⊥), and Q has precisely the successor
node (σ1(Q), σ3(Q)).

(σ1 and σ3 are the functions defined in Sect. 2.4.) The “rules” (→+) through ( �)
propagate information to the successor nodes. In fact, they construct completions
in the sense of Sect. 2.4 in a systematic way. The nodes of the tableau that satisfy
condition ( �) are called tableau states. Paths in T are defined like paths in the tree
KP in Sect. 2.4.

As in that tree construction (cf. Lemma 2.4.6) it follows that the construction of
a tableau T according to the above rules can give rise to only finitely many different
nodes, so any tableau for a given PNP is finite. Moreover, the rules (→+) through
(�−) decompose complex operators and can therefore hold only finitely often until
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Fig. 2.1. Example tableaux

either (⊥) or ( �) must be applied. In particular, any infinite path in the tableau must
contain infinitely many tableau states.

Finally, observe that propositional constants and formulas of the form false or
�A that appear in some node Q that is not a tableau state are copied to all succes-

sor nodes of Q. Therefore, if Q1, . . . ,Qk is a path in a tableau such that none of
Q1, . . . ,Qk−1 is a tableau state then Qk contains all of the formulas of these forms
that Q1 contains.

Figures 2.1(a) and 2.1(b) illustrate the tableau construction at the hand of the
PNPs ({ ��v}, {� �v}) and ({v → �v}, {�v}) where v ∈ V. The nodes (denoting



2.5 Decidability 53

PNPs without surrounding parentheses) are marked by numbers for easy reference.
Those marked 2, 3, 9, and 10 in Fig. 2.1(a) and 4, 5, 6, and 8 in Fig. 2.1(b) are tableau
states. In the other nodes, the formula to which a decomposing rule is applied is
shown underlined.

It remains to define the unsatisfiable nodes or subgraphs of a tableau. Given a
tableau T , the set of closed nodes of T is inductively defined as follows:

(C1) All nodes Q of T that satisfy condition (⊥) are closed.
(C2) Every node Q of T all of whose successors are closed is closed.
(C3) IfQ is a node and A is a formula such that �A ∈ neg(Q) and every path from

Q to nodesQ′ with A ∈ neg(Q′) contains some closed node thenQ is closed.

A tableau is called unsuccessful if its root is closed; otherwise it is called successful.
Let us apply these rules to the tableau shown in Fig. 2.1(a): the node 6 is closed

by condition (C1); therefore node 4, whose only successor node is node 6, is closed
by condition (C2), and nodes 2, 9, and 7 are closed applying (C2) two times more.
Now consider node 5: the formula � �v is contained negatively and the only nodes
in paths from node 5 that contain �v negatively are nodes 7 and 9 which are closed.
Therefore, node 5 is also closed by condition (C3), implying by (C2) that node 3 is
closed and finally, again by (C2), node 1 (the root of the tableau) is closed, so the
tableau is unsuccessful. In fact, the PNP ({ ��v}, {� �v}) represents the unsatisfi-
able formula ��v ∧ ¬� �v .

In the tableau of Fig. 2.1(b) the node 3 is closed by condition (C1), but no other
node is found closed. For example, node 2 is not closed since nodes 4 and 6 are not
closed. So, the root of the tableau is also not closed and the tableau is successful;
observe that the PNP ({v → �v}, {�v}) corresponds to the satisfiable formula
(v → �v) ∧ ¬�v .

We now set out to prove in a series of lemmas that a tableau for a given PNP P
is successful if and only if P̂ is satisfiable.

Lemma 2.5.1. Let T be a tableau andQ some node of T . For all temporal structures
K and all i ∈ N:

a) If Q is not a tableau state of T then Ki(Q̂) = tt if and only if Ki(Q̂′) = tt for
some successor node Q′ of Q in T .

b) If Q is a tableau state of T then Ki(Q̂) = tt implies that Ki+1(Q̂′) = tt for
the unique successor node Q′ of Q in T . Moreover, Q̂′ is satisfiable only if Q̂ is
satisfiable.

Proof. a) It suffices to distinguish the possible conditions (⊥) to (�−) that tableau
nodes which are not tableau states must satisfy. We only give two illustrative cases;
the other ones are equally obvious.

1. Q is a node satisfying (⊥). Then false ∈ pos(Q) or pos(Q) ∩ neg(Q) = ∅;
hence Ki(Q̂) = tt for no K and i , and Q has no successor node.

2. Q is a node according to (�+). Then �A ∈ pos(Q) for some formula A. Now,
Ki(�A) = tt if and only if both Ki(A) = tt and Ki( ��A) = tt by (T28), which
implies the assertion.
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b) Suppose that Q is a tableau state of T , i.e., it satisfies ( �), and that Ki(Q̂) = tt.
In particular, Ki( �A) = tt for every �A ∈ pos(Q) and Ki( �A) = ff for every
�A ∈ neg(Q) and therefore Ki+1(A) = tt for every A ∈ pos(Q′) and Ki+1(A) = ff

for every A ∈ neg(Q′). It follows that Ki+1(Q̂′) = tt.
Furthermore, suppose that Q′ is satisfiable, and choose K = (η0, η1, . . .) and

i ∈ N such that Ki(Q̂′) = tt. For Ki = (ηi , ηi+1, . . .) we have Ki
0(Q̂′) = tt by

Lemma 2.1.5. Now let K′ = (η, ηi , ηi+1, . . .) where η is defined by η(v) = tt if and
only if v ∈ pos(Q). Again by Lemma 2.1.5 it follows that K′

1(Q̂′) = tt. Moreover,
because pos(Q) ∩ neg(Q) = ∅ we have K′

0(A) = tt for all A ∈ pos(Q) ∩V and
K′

0(A) = ff for all A ∈ neg(Q)∩V. Since all formulas inQ are either false, v ∈ V
or of the form �A and because false /∈ pos(Q) it follows, together with the definition
of Q′, that K′

0(Q̂) = tt; hence Q̂ is satisfiable. �

Intuitively, a successful tableau represents all temporal structures that satisfy the
root PNP. Consecutive nodes not of type ( �) in tableau paths gather information
about formulas to be satisfied at the same state of the temporal structure. Formally,
given an infinite path Q0,Q1, . . . in a tableau we define the function cnt : N → N

by letting

cnt(i) = |{j < i | Qj is a tableau state}|

which maps i to the number of nodes of type ( �) in the prefixQ0, . . . ,Qi of the path.
The function cnt is clearly monotonic; it is also surjective because any infinite path
must contain infinitely many tableau states. We may therefore define the following
“inverse” function st : N → N by

st(k) = max{i ∈ N | cnt(i) = k}

which is again monotonic and determines the index of the k th tableau state (count-
ing from 0) along the path Q0,Q1, . . .. Observe that these definitions ensure that
st(cnt(i)) ≥ i , that cnt(st(k)) = k , and that cnt(st(k) + 1) = cnt(k) + 1.

Given some temporal structure K and some node Q in a tableau we inductively
define the (finite or infinite) path πK

Q = Q0,Q1, . . . as follows:

• Q0 = Q.
• If Qi has no successor node in the tableau then πK

Q ends in node Qi .
• If Qi has precisely one successor node Q′ then Qi+1 = Q′.
• IfQi has a left-hand successor nodeQ′ and a right-hand successor nodeQ′′ then
Qi+1 = Q′ if Kcnt(i)(Q̂′) = tt, else Qi+1 = Q′′.

Note that this definition of πK
Q is such that for any formula �A ∈ neg(Qi) the

successor Q′ containing A ∈ neg(Q′) is “preferred” in the sense that this node is
chosen to continue the path “if possible”.

Lemma 2.5.2. Let Q be a node in a tableau and K a temporal structure such that
K0(Q̂) = tt. Then πK

Q = Q0,Q1, . . . is infinite and does not contain any closed

tableau node. Moreover, Kcnt(i)(Q̂i) = tt for all i ∈ N.
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Proof. a) We first prove by induction on the definition of πK
Q that Kcnt(i)(Q̂i) = tt

for all nodes Qi of πK
Q.

1. With cnt(0) = 0 we have Kcnt(0)(Q̂0) = K0(Q̂0) = tt from the assumption.

2. Consider the node Qi+1. By induction hypothesis we have Kcnt(i)(Q̂i) = tt. If
Qi is not a tableau state then cnt(i +1) = cnt(i). According to the definition of
πK
Q we then get Kcnt(i+1)(Q̂i+1) = Kcnt(i)(Q̂i+1) = tt with Lemma 2.5.1 a).

If Qi is a tableau state then cnt(i + 1) = cnt(i) + 1 and Qi+1 is the unique
successor of Qi in T . So we obtain Kcnt(i+1)(Q̂i+1) = Kcnt(i)+1(Q̂i+1) = tt
with Lemma 2.5.1 b).

This observation also implies that πK
Q must be infinite for otherwise condition

(⊥) would have to hold for the final node Qk , contradicting Kcnt(k)(Q̂k ) = tt.
b) It remains to prove that no nodeQi is closed, which is shown by induction on

the definition of the set of closed nodes (simultaneously for all i ∈ N):

1. We have already observed above that condition (⊥) can hold for no nodeQi , so
no Qi is closed because of (C1).

2. Assume that node Qi was closed according to (C2), i.e., because all its succes-
sor nodes had already been established as being closed. This implies that Qi+1

is also closed, which is impossible according to the induction hypothesis.
3. Assume that nodeQi was closed because of a formula �A ∈ neg(Qi) such that

all paths from Qi to nodes Q′ of the tableau with A ∈ neg(Q′) contain a node
that had already been found to be closed. Because of Kcnt(i)(Q̂i) = tt there
is some smallest j ≥ cnt(i) such that Kj (A) = ff. Now consider the subpath
Qi ,Qi+1, . . . ,Qst(j ) from Qi up to (and including) the j th tableau state of the
path. Observe that st(j ) is well defined because the path is known to be infinite;
moreover, st(j ) ≥ st(cnt(i)) ≥ i .
We prove that for all k such that i ≤ k ≤ st(j ), either �A ∈ neg(Qk ) or
��A ∈ neg(Qk ): for k = i , we know by assumption that �A ∈ neg(Qk ).

Following any edge other than according to ( �) or (�−), applied to �A, pre-
serves the assertion. If Qk satisfies condition (�−), applied to �A, it has two
successor nodesQ′ andQ′′ such that A ∈ neg(Q′) and ��A ∈ neg(Q′′). Now,
by assumption we know thatQ′ is closed; thereforeQk+1 must beQ′′, and thus
we have ��A ∈ neg(Qk+1). Finally, if Qk satisfies condition ( �), we cannot
have �A ∈ Qk , so we have ��A ∈ Qk and thus �A ∈ Qk+1.
Now let l denote the least index such that i ≤ l ≤ st(j ) and cnt(l) = j ;
observe that either l = i or Ql is the successor of a tableau state, and therefore
we must have �A ∈ neg(Ql). It follows from the definition of a tableau that at
some node Qm where l ≤ m ≤ st(j ), and thus cnt(m) = j , rule (�−) must
be applied to �A. Moreover, Kj (Q̂m) = tt and Kj (A) = ff, so Qm+1 is the
left-hand successor of node Qm , and A ∈ neg(Qm+1). We have thus found a
path Qi , . . . ,Qm+1 from Qi to a node where A ∈ neg(Qm+1) such that no
node along the path has already been found to be closed, and a contradiction is
reached. Therefore, Qi cannot be closed because of (C3). �
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Lemma 2.5.3. If T is a tableau for a PNP P and P̂ is satisfiable then T is success-
ful.

Proof. Assume that P̂ is satisfiable and let K = (η0, η1, . . .) be a temporal structure
and i ∈ N such that Ki(P̂) = tt. For Ki = (ηi , ηi+1, . . .) Lemma 2.1.5 implies that
Ki

0(P̂) = tt. By Lemma 2.5.2 the path πKi

P through T does not contain any closed
tableau node. In particular, the root P is not closed, i.e., the tableau is successful. �

We will now prove that, conversely, any successful tableau T for P contains
some path that represents a temporal structure satisfying P̂ . As in Sect. 2.4 we say
that an infinite path Q0,Q1, . . . in T is complete if Q0 = P , if it does not contain
any closed node, and if for all formulas A and all i ∈ N such that �A ∈ neg(Qi)
there exists some j ≥ i such that A ∈ neg(Qj ).

Lemma 2.5.4. Every successful tableau for a PNP P contains some complete path.

Proof. The proof is similar to that of Lemma 2.4.8: Assume that T is a successful
tableau for a PNP P . Since T is a finite graph of PNPs there are only finitely many
formulas A such that �A ∈ neg(Q) for some nodeQ of T . Choose some fixed enu-
meration A0, . . . ,Am−1 of all such formulas A. We define a succession π0, π1, . . .
of finite, non-empty paths in T that do not contain any closed nodes and such that πi

is a proper prefix of πi+1 as follows:

• Let π0 = P be the path that contains only the root of T . Since T is successful,
P is not closed.

• Inductively, assume that πi = Q0, . . . ,Qk has already been defined. We distin-
guish two cases: if �Ai mod m /∈ neg(Qk ) or Ai mod m ∈ neg(Qk ) then πi+1 is
obtained from πi by appending some non-closed successor node ofQk . (Observe
that Qk has some such successor since otherwise it were closed by condition
(C2).) If, on the other hand, �Ai mod m ∈ neg(Qk ) and Ai mod m /∈ neg(Qk )
then condition (C3) ensures that there exists some path π′ fromQ to some node
Q′ with Ai mod m ∈ neg(Q′) such that π′ does not contain any closed node (and
obviously, π′ must be non-empty). Let πi+1 be the concatenation of πi and π′.

The succession π0, π1, . . . uniquely determines an infinite path π in T , which is
complete by construction. �

Lemma 2.5.5. If T is a successful tableau for a PNP P then P̂ is satisfiable.

Proof. Assume that T is successful, and choose some complete path Q0,Q1, . . .
in T , which is possible by Lemma 2.5.4. Now let K = (η0, η1, . . .) be any temporal
structure such that, for all v ∈ V and i ∈ N,

v ∈ pos(Qst(i)) ⇒ ηi(v) = tt,
v ∈ neg(Qst(i)) ⇒ ηi(v) = ff.

Such structures exist because no nodeQj is closed, and in particular one cannot have
v ∈ pos(Qst(i)) ∩ neg(Qst(i)) for any v and i . For example, one can define K by
stipulating that ηi(v) = tt if and only if v ∈ pos(Qst(i)), for all v and i .

We will prove that the above condition ensures
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(∗) A ∈ pos(Qi) ⇒ Kcnt(i)(A) = tt,
A ∈ neg(Qi) ⇒ Kcnt(i)(A) = ff

for all formulas A and all i ∈ N. In particular, (∗) implies Kcnt(0)(Q̂0) = tt, that is,

K0(P̂) = tt since Q0 = P and cnt(0) = 0, proving the lemma.
Assertion (∗) is proven by structural induction on A.

1. A ≡ v ∈ V: If v ∈ pos(Qi) then v ∈ pos(Qst(cnt(i))) by the tableau construc-
tion and thus Kcnt(i)(v) = Kcnt(st(cnt(i)))(v) = tt.
If v ∈ neg(Qi) then again we have v ∈ neg(Qst(cnt(i))), and the assertion
Kcnt(i)(v) = ff follows as above from the assumption on K.

2. A ≡ false: Since Qi is not closed, we know that false /∈ pos(Qi); moreover,
Kcnt(i)(false) = ff. This suffices.

3. A ≡ B → C : Assume that B → C ∈ pos(Qi) and consider the path
Qi , . . . ,Qst(cnt(i)). By the tableau construction there exists some j where
i ≤ j < st(cnt(i)) such that rule (→+) is applied to A at nodeQj ; observe that
cnt(j ) = cnt(i). It follows that B ∈ neg(Qj+1) or C ∈ pos(Qj+1), and thus
by induction hypothesis Kcnt(j )(B) = ff or Kcnt(j )(C ) = tt. In either case, we
obtain Kcnt(i)(B → C ) = tt.
If B → C ∈ neg(Qi) the argument is analogous with B ∈ pos(Qj+1) and
C ∈ neg(Qj+1) because of rule (→−).

4. A ≡ �B : If �B ∈ pos(Qi) then �B ∈ pos(Qst(cnt(i))) by the tableau
construction and B ∈ pos(Qst(cnt(i))+1) since rule ( �) is applied at node
Qst(cnt(i)). Applying the induction hypothesis it follows that

Kcnt(i)( �B) = Kcnt(i)+1(B) = Kcnt(st(cnt(i))+1)(B) = tt.

The case �B ∈ neg(Qi) is argued analogously with B ∈ neg(Qst(cnt(i))+1)
because of rule ( �).

5. A ≡ �B : Assume �B ∈ pos(Qi), and consider the path Qi , . . . ,Qst(cnt(i)):
by the tableau construction there exists some j where i ≤ j < st(cnt(i)) such
that rule (�+) is applied to formula �B at node Qj , and therefore we have
{B , ��B} ⊆ pos(Qj+1). Moreover, it follows that ��B ∈ pos(Qst(cnt(i)));
thus �B ∈ pos(Qst(cnt(i))+1). Continuing inductively, for all k ≥ cnt(i) we
find some j such that cnt(j ) = k and B ∈ pos(Qj ). The induction hypothesis
implies that Kk (B) = tt holds for all k ≥ cnt(i), that is, Kcnt(i)(�B) = tt.
Now suppose that �B ∈ neg(Qi). The definition of a complete path ensures
that B ∈ neg(Qj ) for some j ≥ i . By the induction hypothesis it follows that
Kcnt(j )(B) = ff, and the monotonicity of cnt implies Kcnt(i)(�B) = ff. �

The previous results provide now the desired algorithmic decision procedure for
satisfiability. Given a PNP P , a tableau T for P can be constructed by expansion
steps according to the rules (→+) through ( �) and terminating according to rule
(⊥). Rules (C1)–(C3) can be used to remove unsatisfiable nodes or subgraphs in T
(pruning steps) providing the decision whether T is successful or unsuccessful, i.e.,
by the Lemmas 2.5.3 and 2.5.5, whether P̂ is satisfiable or not. We summarize this
investigation in the following theorem.
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Theorem 2.5.6 (Decidability Theorem for LTL). The satisfiability and validity
problems for LLTL are decidable.

Proof. In order to decide the satisfiability problem for a given formula F ofLLTL, the
decision procedure is applied to the PNP ({F}, ∅). Since F is valid if and only if ¬F
is unsatisfiable, the validity problem for F can be decided with the PNP (∅, {F}).�

The given tableau definitions refer to the basic logical operators of LTL. Of
course, for practical use one could add also “direct” rules for the derived operators,
e.g., conditions

(∨+) A ∨ B ∈ F+ for some formulas A,B , and Q has precisely two successor
nodes: the left-hand successor ((F+ \ {A ∨ B}) ∪ {A},F−) and the right-
hand successor ((F+ \ {A ∨ B}) ∪ {B},F−),

(∨−) A ∨ B ∈ F− for some formulas A,B , and Q has precisely the successor
node (F+, (F− \ {A ∨ B}) ∪ {A,B})

for tableau nodes Q = (F+,F−), providing expansion steps with respect to ∨, or

(C4) IfQ is a node and A is a formula such that �A ∈ pos(Q) and every path from
Q to some node Q′ with A ∈ pos(Q′) contains some closed node then Q is
itself closed

as another rule for pruning steps.
Moreover, the description of the decision procedure above seems to suggest that

pruning steps are applied only after all nodes have been fully expanded. However,
actual implementations would be likely to interleave expansion and pruning steps
in order to avoid unnecessary expansions. So, the closure conditions (C1) and (C2)
can be implemented at the time of construction of T . Condition (C3) can be checked
by inspecting the strongly connected components (SCC) of the tableau: an SCC is
said to promise A if �A ∈ neg(Q) holds for some node Q of the SCC. It is said to
fulfill A if A ∈ neg(Q) holds for some node Q of the SCC. Finally, we call an SCC
honest if it fulfills all formulas A that it promises. A tableau T is successful if and
only if it contains some honest SCC that is reachable on a path from the root of T .
The existence of honest SCCs can be decided, for example using Tarjan’s algorithm,
in time linear in the size of T .

Formulas that occur in nodes of a tableau T for a PNPP are either subformulas of
formulas inFP or formulas of the form �A where A is a subformula of some formula
in FP . Because the number of subformulas of a formula is linear in the length of the
formula (measured as the number of symbols), it follows that the number of nodes
of T is at most exponential in the size of P , measured as the sum of the lengths of
the formulas in P . Altogether we find that the tableau method can be implemented
in time exponential in the size of P .

2.6 Initial Validity Semantics

We mentioned in Sect. 2.1 that LTL is sometimes introduced with a notion of validity
different from the “normal” one defined there. Specifically, whereas the concepts of
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a temporal structure and the evaluation of formulas remain unchanged, validity and
consequence are defined as follows.

Definition. A formula A of LLTL(V) is called initially valid in the temporal struc-
ture K for V, denoted by

0�
K
A, if K0(A) = tt. A is called an initial consequence of

a set F of formulas (F 0�A) if
0�
K
A holds for every K such that

0�
K
B for all B ∈ F .

A is called (universally) initially valid (
0�A) if ∅ 0�A.

We denote LTL equipped with this initial validity semantics by LTL0. This se-
mantics and LTL0 are also called anchored semantics and anchored LTL. (In some
presentations of LTL0 the notion of initial validity is defined in a technically some-
what different way. We will come back to this in another context in Sect. 10.2.)

Temporal logic can be used to “specify” temporal structures, as we will see in
Chap. 6, similar to the description of first-order structures by theories in Sect. 1.3.
For such applications, it is often desirable to express that some formula A holds in
the initial state of some temporal structure. This is clearly possible in the framework
of LTL0, just by asserting A, whereas the same effect cannot be achieved in LTL
where A would then have to hold in all states of the structure (we will come back to
this issue, however, in Sects. 3.4 and 3.5). In LTL0 the latter condition can obviously
be expressed by asserting �A.

More technically, the connections between LTL and LTL0 are rendered by the
following lemma.

Lemma 2.6.1. Let A be a formula, and let K be a temporal structure.

a) If �
K
A then

0�
K
A.

b) �
K
A if and only if

0�
K
�A.

Proof. �
K
A means Ki(A) = tt for every i ∈ N, and this implies K0(A) = tt; hence

0�
K
A which proves a), and it is, moreover, equivalent to K0(�A) = tt, i.e.,

0�
K
�A, thus

proving also b). �

With the help of this lemma we are now able to state the precise connections on
the level of the different consequence relations.

Theorem 2.6.2. Let A be a formula, F be a set of formulas, and let �F denote the
set {�B | B ∈ F}.

a) If F 0�A then F �A.
b) F �A if and only if �F 0�A.

Proof. a) Assume that F 0� A, let K be a temporal structure such that �
K
B for all

B ∈ F , and let i ∈ N. For Ki = (ηi , ηi+1, ηi+2, . . .) we have, by Lemma 2.1.5,
Ki

0(B) = Ki(B) = tt, i.e.,
0�
Ki B for all B ∈ F . Because of the assumption that

F 0� A, this implies
0�
KiA; hence again by Lemma 2.1.5, Ki(A) = Ki

0(A) = tt, and
shows that F � A.
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b) Assume that F � A and let K be a temporal structure such that
0�
K

�B for all

B ∈ F . Then �
K
B for all B ∈ F by Lemma 2.6.1 b); hence �

K
A, and therefore

0�
K
A

by Lemma 2.6.1 a). This means that �F 0�A. Conversely, assume that �F 0�A, let
K be a temporal structure such that �

K
B for all B ∈ F , and let i ∈ N. Then, for all

B ∈ F , Kj (B) = tt for every j ∈ N. This implies, for Ki as in a) and again for all
B ∈ F , Ki

j (B) = Ki+j (B) = tt for every j ∈ N by Lemma 2.1.5; hence �
Ki B , and

therefore
0�
Ki �B by Lemma 2.6.1 b). From this we get

0�
Ki A, which shows as in a)

that F �A. �

The converse of part a) of Theorem 2.6.2 does not hold in general. For example,
we have A � �A, but �A is not an initial consequence of A. This is easy to see by
taking A to be some v ∈ V and K = (η0, η1, η2, . . .) with η0(v) = tt and η1(v) = ff.
Then

0�
K
v but not

0�
K

�v . From Theorem 2.6.2 b) we only learn that �A 0� �A
holds.

The relationship between implication and initial consequence also has to be re-
considered. The characteristic (if part of the) equivalence

F ∪ {A} � B ⇔ F � �A→ B

of LTL (cf. Theorem 2.1.6) does not hold in general for LTL0. For example (with
F = ∅), 0� �A → �A since K0(�A) = tt ⇒ K1(A) = K0( �A) = tt, but A 0� �A
does not hold as we just saw. Instead, we get back the relationship of classical logic
for LTL0:

Theorem 2.6.3. F ∪ {A} 0� B if and only if F 0� A→ B .

Proof. Assume that F∪{A} 0� B and let K be a temporal structure such that
0�
K
C for

all C ∈ F . To see that
0�
K
A → B , assume that K0(A) = tt. Then

0�
K
A and therefore

0�
K
B , i.e., K0(B) = tt. This shows that F 0� A → B . If, conversely, the latter holds

and K is a temporal structure with
0�
K
C for all C ∈ F∪{A} then we have K0(A) = tt

and K0(A→ B) = tt, and by Lemma 2.1.1 we obtain K0(B) = tt which shows that
F ∪ {A} 0� B . �

Despite all these differences between LTL and LTL0 it is remarkable, however,
that the two (universal) validity concepts still coincide:

Theorem 2.6.4. �A if and only if
0�A.

Proof. The assertion follows directly from Theorem 2.6.2 b), choosingF = ∅which,
of course, implies �F = ∅. �

This observation generalizes to another connection: a consequence relationship
of LTL like A � �A can be “weakened” to

0�A ⇒ 0� �A

in LTL0. In general, we have:
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Theorem 2.6.5. If F �A and
0�B for all B ∈ F then

0�A.

Proof. From
0�B we get �B for all B ∈ F with Theorem 2.6.4. Using F �A and

Theorem 2.1.8, we obtain �A; hence
0�A again with Theorem 2.6.4. �

To sum up, we realize that LTL and LTL0 coincide with respect to (universal)
validity, but differ in their consequence relations. In particular, all laws (T1), (T2),
etc. (expressed by formulas) also hold in LTL0. Any consequence relationship

F � A

of LTL is changed to

�F 0� A

and can also be “rewritten” as

0�B for all B ∈ F ⇒ 0�A

in LTL0.
These semantical observations carry over to axiomatizations of LTL0. If we

are interested only in deriving valid formulas (without any assumptions) then ΣLTL

would obviously be an adequate formal system for LTL0, too. Rules of ΣLTL (and
derived rules) have then to be understood in a new way, semantically indicated by
Theorem 2.6.5. For example, the rule

A � �A

should be read as asserting

“if A is derivable then �A is derivable”

whereas in LTL it reads

“for any F , if A is derivable from F then �A is derivable from F ”.

If we want, however, to axiomatize LTL0 such that the relation F � A mirrors
the relation F 0� A of initial consequence then ΣLTL is no longer appropriate. For
example, the rule A � �A would not be sound any more with respect to this reading.
One possible formal system ΣLTL0 for LTL0 in this sense is given as follows:

Axioms

(taut0) �A for all tautologically valid formulas,
(ltl10) �(¬ �A ↔ �¬A),
(ltl20) �( �(A→ B) → ( �A→ �B)),
(ltl30) �(�A → A ∧ ��A).
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Rules

(mp) A,A→ B � B ,
(mp0) �A,�(A→ B) � �B ,
(refl0) �A � A,
(nex0) �A � � �A,
(ind0) �(A→ B),�(A→ �A) � �(A→ �B).

The axioms (taut0), (ltl10), (ltl20), and (ltl30) are obvious transcriptions from the
axioms of ΣLTL. Modus ponens occurs in the usual form (mp) and in a transcribed
version (mp0). The rules (nex0) and (ind0) are adjustments of (nex) and (ind) of
ΣLTL. The additional rule (refl0) reminds us of the reflexivity law (T4).

Theorem 2.6.6 (Soundness Theorem for ΣLTL0). Let A be a formula and F a set
of formulas. If F �

ΣLTL0
A then F 0�A. In particular: if �

ΣLTL0
A then

0�A.

Proof. The proof runs by induction on the assumed derivation of A from F .

1. All axioms of ΣLTL0 are of the form �A where A is an axiom of ΣLTL. Together
with rule (alw) we get �

ΣLTL
�A, which implies � �A by Theorem 2.3.1, and

hence
0� �A by Theorem 2.6.4. This implies F 0� �A for all axioms �A of

ΣLTL0 .
2. If A ∈ F then F 0� A holds trivially.
3. If A is concluded by a rule of ΣLTL0 then, by induction hypothesis, we have
F 0� C for the premises C of that rule. So, for a temporal structure K with

0�
K
B

for all B ∈ F we have
0�
K
C , i.e., K0(C ) = tt for these C . It remains to show

that, for each rule, this implies K0(A) = tt. For the rule (mp) the claim follows
directly using Lemma 2.1.1. For (mp0), K0(�B) = K0(�(B → A)) = tt means
Ki(B) = Ki(B → A) = tt for every i ∈ N and yields Ki(A) = tt for every
i ∈ N by Lemma 2.1.1, and therefore we obtain K0(�A) = tt. For (refl0),
K0(�A) = tt clearly implies K0(A) = tt. If A ≡ � �B is the conclusion of
(nex0), the premise C is of the form �B , and K0(�B) = tt implies Ki(B) = tt
for every i ≥ 1, which means K0(� �B) = tt. Finally, in the case of (ind0),
K0(�(D → E )) = tt and K0(�(D → �D)) = tt imply Ki(D → E ) = tt and
Ki(D → �D) = tt for every i ∈ N. Let j ∈ N and assume that Kj (D) = tt.
As in the proof of Theorem 2.3.1 we obtain Kk (E ) = tt for every k ≥ j , hence
Kj (D → �E ) = tt. Since j is arbitrary this implies K0(�(D → �E )) = tt. �

The (weak) completeness of ΣLTL0 can be reduced to that of ΣLTL proved in
Sect. 2.4. (In fact, we have stated ΣLTL0 in just such a form that this reduction is
directly possible.) The crucial step is the following proof-theoretical counterpart of
(the “only if” part of) Theorem 2.6.4:

Lemma 2.6.7. Let A be a formula. If �
ΣLTL

A then �
ΣLTL0

A.

Proof. Assume that �
ΣLTL

A. We show �
ΣLTL0

�A by induction on the presumed deriva-
tion of A in ΣLTL from which the assertion of the lemma follows immediately with
an application of the rule (refl0).
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If A is an axiom of ΣLTL then �A is an axiom of ΣLTL0 and therefore derivable
in the latter. If A is concluded from premises B and B → A by (mp) then we have
�
ΣLTL0

�B and �
ΣLTL0

�(B → A) by induction hypothesis and therefore �
ΣLTL0

�A with
(mp0). If A ≡ �B is concluded from B with (nex) then, by induction hypothesis, �B
is derivable in ΣLTL0 and so is � �B , i.e., �A with (nex0). Finally, if A ≡ B → �C
is the conclusion of applying (ind) to B → C and B → �B then �(B → C ) and
�(B → �B) are derivable in ΣLTL0 by induction hypothesis, and �(B → �C ) is
obtained by (ind0). �

With this lemma we are able to establish the weak completeness of ΣLTL0 :

Theorem 2.6.8 (Weak Completeness Theorem for ΣLTL0 ). ΣLTL0 is weakly com-
plete, i.e., for every finite set F of formulas and formula A, if F 0�A then F �

ΣLTL0
A.

In particular: if
0�A then �

ΣLTL0
A.

Proof. Let F = {A1, . . . ,An} where n ≥ 0. We then have

F 0� A ⇒ 0� A1 → (A2 → . . .→ (An → A) . . .)
(by Theorem 2.6.3, applied n times)

⇒ � A1 → (A2 → . . .→ (An → A) . . .)
(by Theorem 2.6.4)

⇒ �
ΣLTL

A1 → (A2 → . . .→ (An → A) . . .)
(by Theorem 2.4.10)

⇒ �
ΣLTL0

A1 → (A2 → . . .→ (An → A) . . .)
(by Lemma 2.6.7)

⇒ F �
ΣLTL0

A (by (mp), applied n times). �

We do not want to develop the proof theory of LTL0 in further detail. We only
remark that the Deduction Theorem (and its converse) for ΣLTL0 holds in the classical
form

F ∪ {A} �
ΣLTL0

B ⇔ F �
ΣLTL0

A→ B

which obviously corresponds to the semantical considerations above.
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In the framework of a discrete and linearly ordered time structure, v. Wright [156]
developed a logic with the operators “always” and “next” which was axiomatized by
Prior [126] who also suggested using the logical formalism for proofs of the “work-
ing of digital computers”. Prior attributes the axiomatization to Lemmon. Proba-
bly it should appear in [90] but Lemmon died before finishing this book. Other
similar formal systems were given by Scott (reported in [126]), Clifford [36], and
Segerberg [136].

A first concrete mention of how the modal operators “always” and “sometime”
could be used in program verification was given by Burstall [25]. This idea was elab-
orated by Pnueli [120]. Kröger [77, 78] developed logics with “next” and used the
operators “next”, “always”, and “sometime” in the field of verification of (sequen-
tial) programs in [79]. Pnueli [121] introduced the (normal) semantical apparatus for
this logic as described in this book and applied it to concurrent programs.

From that time on, a large number of investigations arose. We will cite extracts
from the relevant literature in the following chapters. Here we only add some remarks
with respect to the contents of Sects. 2.4–2.6. The completeness proof presented in
Sect. 2.4 is based on proofs given in [79] and [132]. The tableau method is a very
general approach to show the decidability of logics. A survey of its application in the
area of temporal logics is given in [160]. Initial validity semantics was introduced in
[100], some other semantical aspects are discussed in [44].
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Extensions of LTL

We have so far considered the temporal operators � and �, which are the basic
equipment of (propositional) linear temporal logic. In this chapter we present some
extensions by additional propositional operators that have been found useful for dif-
ferent applications. These extensions are introduced as separate “modules” on top
of the basic logic LTL. Of course, appropriate combinations of the extensions are
possible as we will indicate in Sect. 3.6.

The following discussions will show that some of the results that have been devel-
oped for LTL have to be modified for certain extensions. Important changes (mainly
concerning the Deduction Theorem, which already had to be modified for LTL0 in
Sect. 2.6) will be mentioned explicitly. However, most of the previous results – par-
ticularly the validity of the temporal logic laws (T1)–(T38) – carry over to the ex-
tensions as well and will be used without justifying them anew. In fact, their proofs
would go through unmodified except for the obvious extensions.

3.1 Binary Temporal Operators

As a first extension of LTL we introduce binary temporal operators. In contrast to the
unary operators �and � that can be used to express that the argument formula holds
in states somehow related to the present state, binary operators have two arguments
A and B and express statements about truth or falsity of these argument formulas in
states related to each other as well as to the present state. Some popular examples of
such statements are informally given by the following phrases:

“A will hold in all subsequent states until B holds”,
“A will hold in the next state in which B holds”,
“A will hold before B holds”.

These informal statements leave some choices on how to interpret them precisely,
as we will illustrate with the first of the phrases. We know already from the always
operator that “in all subsequent” states may include the present state, but we can
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interpret it also more strictly counting only states after the present one. Furthermore,
the informal wording does not state whether B will actually hold in the future. In a
“strong” version this is the case; in a “weak” version B need not become true, and A
should therefore hold “forever”.

We thus get four possible readings that are represented by four different binary
operators denoted by until, unt, unless, and unl with the following informal inter-
pretations:

A until B : “There is a (strictly) subsequent state in which B holds,
and A holds until that state”,

A unt B : “There is a subsequent state (possibly the present one) in
which B holds, and A holds until that state”,

A unless B : “If there is a (strictly) subsequent state in which B holds
then A holds until that state or else A holds permanently”,

A unl B : “If there is a subsequent state (possibly the present one) in
which B holds then A holds until that state or else A holds
permanently”.

The operators until and unt are called strict and non-strict (or reflexive) until oper-
ator, respectively. They are strong operators because they demand that B will hold
sometime. In contrast, unless and unl are the weak versions of until and unt and are
called strict and non-strict (reflexive) unless or waiting-for operators.

Actually, there are still some more choices when interpreting the informal phrase
“A holds until that state”. Clearly, A should hold over an interval of states, deter-
mined by the present state and “that state”, but the formulation is ambiguous about
whether the end points of this interval are included or not. Instead of introducing even
more operators to distinguish these possibilities, we choose to include the present
state in the non-strict versions and to exclude it in the strict ones; the other end point
is not included in either case.

To make these considerations precise, we define the semantics of the four op-
erators in the framework introduced in Sect. 2.1. Given a temporal structure K and
i ∈ N, these definitions are as follows.

• Ki(A until B) = tt ⇔ Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j .

• Ki(A unt B) = tt ⇔ Kj (B) = tt for some j ≥ i and
Kk (A) = tt for every k , i ≤ k < j .

• Ki(A unless B) = tt ⇔ Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j
or
Kk (A) = tt for every k > i .

• Ki(A unl B) = tt ⇔ Kj (B) = tt for some j ≥ i and
Kk (A) = tt for every k , i ≤ k < j
or
Kk (A) = tt for every k ≥ i .



3.1 Binary Temporal Operators 67

(We should remark that the designations of the binary operators of temporal logic
are not universally agreed upon, and this can be a source of confusion. For example,
many authors write until for the operator that we denote by unt.)

Example. Consider, for v1, v2 ∈ V, the four formulas A1 ≡ v1 until �v2,
A2 ≡ v1 unt �v2, B1 ≡ v2 unless �v1, B2 ≡ v2 unl �v1, and let K be given
by:

η0 η1 η2 η3 η4 . . .
v1 ff tt tt ff ff . . . (ff forever) . . .
v2 tt tt ff tt tt . . . (tt forever) . . .

Then Ki(�v2) = ff for i < 3 and Ki(�v2) = tt for i ≥ 3 and therefore:

K0(A1) = tt,K0(A2) = ff,

K1(A1) = K1(A2) = tt,

Ki(A1) = tt for i ≥ 2
(since Ki+1(�v2) = tt and there is no k with i < k < i + 1),

K2(A2) = tt,

Ki(A2) = tt for i ≥ 3
(since Ki(�v2) = tt and there is no k with i ≤ k < i ).

Furthermore, because of Kj (�v1) = ff for every j ∈ N we have:

Ki(B1) = Ki(B2) = ff for i ≤ 1,

K2(B1) = tt,K2(B2) = ff,

Ki(B1) = Ki(B2) = tt for i ≥ 3. �

From the formal definitions, it should be clear that there are simple relationships
between the operators. We note some of them as valid formulas:

(Tb1) A until B ↔ ��B ∧A unless B ,
(Tb2) A unless B ↔ �(A unl B),
(Tb3) A unl B ↔ A unt B ∨�A,
(Tb4) A unt B ↔ B ∨ (A ∧A until B).

(We save parentheses by assigning all binary temporal operators introduced in this
section higher priority than the classical binary operators.) These laws show in fact
that all the versions can be expressed by each other (and �and �). The validity
proofs are easy calculations:

Proof of (Tb1)–(Tb4). For any temporal structure K and i ∈ N we have:

Ki(A until B) = tt ⇔ Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j

⇔ Ki+1(�B) = tt and Ki(A unless B) = tt

⇔ Ki( ��B ∧A unless B) = tt.
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Ki(A unless B) = tt ⇔ Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j
or
Kk (A) = tt for every k > i

⇔ Ki(B) = tt for some j ≥ i + 1 and
Kk (A) = tt for every k , i + 1 < k < j
or
Kk (A) = tt for every k ≥ i + 1

⇔ Ki+1(A unl B) = tt

⇔ Ki( �(A unl B)) = tt.

Ki(A unl B) = tt ⇔ Kj (B) = tt for some j ≥ i and
Kk (A) = tt for every k , i ≤ k < j
or
Kk (A) = tt for every k ≥ i

⇔ Ki(A unt B) = tt or Ki(�A) = tt

⇔ Ki(A unt B ∨�A) = tt.

Ki(A unt B) = tt ⇔ Kj (B) = tt for some j ≥ i and
Kk (A) = tt for every k , i ≤ k < j

⇔ Ki(B) = tt
or
Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i ≤ k < j

⇔ Ki(B) = tt
or
Ki(A) = tt and Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j

⇔ Ki(B ∨ (A ∧A until B)) = tt. �

Similarly, we could introduce various versions of binary operators as formal
counterparts to the two other informal phrases at the beginning of this section. We
restrict ourselves, however, to defining only the strict and weak operators atnext
(atnext or first time operator) and before (before or precedence operator) with the
semantical definitions

• Ki(A atnext B) = tt ⇔ Kj (B) = ff for every j > i or
Kk (A) = tt for the smallest k > i with Kk (B) = tt,

• Ki(A before B) = tt ⇔ for every j > i with Kj (B) = tt
there is some k , i < k < j , with Kk (A) = tt.

Definitions for the reflexive and/or strong versions of these operators would be ob-
vious and as above, the different versions would be mutually expressible. It is more
interesting to observe that all binary operators introduced so far can be expressed
by each other. Having already established the mutual expressibility of the different
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“until” operators as laws (Tb1)–(Tb4), this fact follows from the validity of the fol-
lowing laws.

(Tb5) A unless B ↔ B atnext (A→ B),
(Tb6) A atnext B ↔ B before (¬A ∧ B),
(Tb7) A before B ↔ ¬(A ∨ B) unless (A ∧ ¬B).

Again the proofs are simple calculations; we only give one example.

Proof of (Tb5). For any temporal structure K and i ∈ N we have:

Ki(A unless B) = tt ⇔ Kj (B) = tt for some j > i and
Kk (A) = tt for every k , i < k < j
or
Kk (A) = tt for every k > i

⇔ there is a smallest j > i with Kj (B) = tt and
Kk (A) = tt for every k , i < k < j
or
Kk (A) = tt and Kk (B) = ff for every k > i

⇔ Kj (B) = tt for the smallest j > i with
Kj (A→ B) = tt
or
Kk (A→ B) = ff for every k > i

⇔ Ki(B atnext (A→ B)) = tt. �
To conclude the discussion about the linguistic power of all these operators we

still note that the basic operators �and � can also be expressed by each of the strict
operators (using no other operator), e.g.:

(Tb8) �A↔ A atnext true,
(Tb9) �A↔ A ∧A unless false.

For � (but not for �) similar equivalences hold for the non-strict operators, e.g.:

(Tb10) �A↔ A unl false.

The proofs are quite trivial, e.g.:

Proof of (Tb9). For any temporal structure K and i ∈ N we have:

Ki(�A) = tt ⇔ Kj (A) = tt for every j ≥ i
⇔ Ki(A) = tt and Kk (A) = tt for every k > i
⇔ Ki(A) = tt

and
Kj (false) = tt for some j > i and
Kk (A) = tt for every k , i < k < j
or
Kk (A) = tt for every k > i

⇔ Ki(A ∧A unless false) = tt. �
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On the other hand, we will prove in Sect. 4.1 that none of the binary operators
can be defined just from �and �.

In Sect. 2.2 we mentioned fixpoint characterizations for � and �. Such charac-
terizations also exist for the new operators and are given by the following laws:

(Tb11) A until B ↔ �B ∨ �(A ∧A until B),
(Tb12) A unless B ↔ �B ∨ �(A ∧A unless B),
(Tb13) A unt B ↔ B ∨ (A ∧ �(A unt B)),
(Tb14) A unl B ↔ B ∨ (A ∧ �(A unl B)),
(Tb15) A atnext B ↔ �(B → A) ∧ �(¬B → A atnext B),
(Tb16) A before B ↔ �¬B ∧ �(A ∨A before B).

It is worth noting that the recursive equivalences for the strong and weak versions of
an operator are of the same shape. The strict and non-strict versions differ only by
the scope of operators �. Again we show only one proof, the others being analogous.

Proof of (Tb15). For any temporal structure K and i ∈ N we have:

Ki(A atnext B) = tt ⇔ Kj (B) = ff for every j > i or
Kk (A) = tt for the smallest k > i with Kk (B) = tt

⇔ Ki+1(A) = Ki+1(B) = tt
or
Kj (B) = ff for every j > i
or
Ki+1(B) = ff and Kk (A) = tt
for the smallest k > i + 1 with Kk (B) = tt

⇔ Ki+1(A) = Ki+1(B) = tt
or
Ki+1(B) = ff and Ki+1(A atnext B) = tt

⇔ if Ki+1(B) = tt then Ki+1(A) = tt
and
if Ki+1(B) = ff then Ki+1(A atnext B) = tt

⇔ Ki( �(B → A) ∧ �(¬B → A atnext B)) = tt. �
Let us now summarize our discussion for the extension of the basic language

LLTL with binary operators. We call the extended language Lb
LTL and define it to be

obtained from LLTL by adding the symbol op, among the above binary operators, to
the alphabet and the formation rule

• If A and B are formulas then (A op B) is a formula

to its syntax (with the notational convention that op has higher priority than the
binary operators of propositional logic).

We leave it at this “parametric” definition instead of fixing an actual choice for
op. As we have seen, any one of the operators can be taken for op, and all the others
can then be introduced as abbreviations. If op is a strict binary operator, it could
even serve as the sole basic temporal operator of Lb

LTL because �and � are then
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expressible. If op is non-strict, �still needs to be present but � could be introduced
as an abbreviation.

The semantics of the new operators of Lb
LTL has already been defined above, and

the proof theory for the extended logic (which we will denote by LTL+b) can be given
quite uniformly. For any choice of the operator op, the formal system ΣLTL needs to
be extended by two additional axioms to obtain a sound and weakly complete formal
system Σb

LTL for LTL+b. One of these axioms is the fixpoint characterization of the
operator op and the other one indicates whether op is strong or weak (remember that
the fixpoint characterizations of the strong and weak versions of the operators are
“equal”). So, e.g., if we choose until as the basic operator, the additional axioms are

(until1) A until B ↔ �B ∨ �(A ∧A until B),
(until2) A until B → ��B .

The axiom (until1) is just (Tb11), whereas (until2) expresses that until is a strong
operator because the formula A until B implies that B must hold sometime in the
(strict) future.

In the case of unless we take

(unless1) A unless B ↔ �B ∨ �(A ∧A unless B),
(unless2) ��A→ A unless B .

The axiom (unless2) expresses that unless is a weak operator because the formula
A unless B holds if A will always hold in the (strict) future, irrespective of B .

For the non-strict operators unt and unl, we have to replace the axioms (until1)
and (unless1) by (Tb13) or (Tb14) and the axioms (until2) and (unless2) by the ob-
vious versions

(unt2) A unt B → �B

or

(unl2) �A→ A unl B ,

respectively. If we choose the atnext operator then

(atnext1) A atnext B ↔ �(B → A) ∧ �(¬B → A atnext B),
(atnext2) ��¬B → A atnext B

are appropriate and, finally, for the before operator the axioms are

(before1) A before B ↔ �¬B ∧ �(A ∨A before B),
(before2) ��¬B → A before B .

Again we give a formal validity proof only for one of these cases:

Proof of (before2). For any temporal structure K and i ∈ N we have:

Ki( ��¬B) = tt ⇔ Kj (B) = ff for every j > i
⇒ for every j > i with Kj (B) = tt

there is some k , i < k < j with Kk (A) = tt

⇔ Ki(A before B) = tt. �
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As a simple example of application, we derive a formula within Σb
LTL (with

(unless1) and (unless2)) that can be considered as a fixpoint characterization of
¬(A unless B):

(Tb17) ¬(A unless B) ↔ �¬B ∧ �(¬A ∨ ¬(A unless B)).

Derivation of (Tb17).

(1) A unless B ↔ �B ∨ �(A ∧A unless B) (unless1)
(2) ¬(A unless B)↔ ¬ �B ∧ ¬ �(A ∧A unless B) (prop),(1)
(3) ¬(A unless B)↔ �¬B ∧ �¬(A ∧A unless B) (prop),(ltl1),(2)
(4) �¬(A ∧A unless B) ↔ �(¬A ∨ ¬(A unless B)) (taut),(T30)
(5) ¬(A unless B)↔ �¬B ∧ �(¬A ∨ ¬(A unless B)) (prop),(3),(4) �

We have seen the importance of the fixpoint characterizations for these binary
operators to express their interplay with the nexttime operator �. Whereas (T28)
provides a similar characterization for the unary always operator �, its axiomatic
characterization required one more fundamental principle, namely the induction rule
(ind). Analogous induction principles can also be formulated for the weak binary
operators:

(indunless) A→ �C ∨ �(A ∧ B) � A→ B unless C ,
(indunl) A→ C ∨ (B ∧ �A) � A→ B unl C ,
(indatnext) A→ �(C → B) ∧ �(¬C → A) � A→ B atnext C ,
(indbefore) A→ �¬C ∧ �(A ∨ B) � A→ B before C .

These rules need not be included in Σb
LTL because they can already be derived with

the help of rule (ind), as we show for one of them:

Derivation of (indunless).

(1) A→ �C ∨ �(A ∧ B) assumption
(2) ¬(B unless C ) → ¬ �C ∧ �(¬B ∨ ¬(B unless C )) (prop),(Tb17),(ltl1)
(3) A ∧ ¬(B unless C ) → �B (prop),(T15),(1),(2)
(4) ¬(B unless C ) → ¬ �B ∨ �¬(B unless C ) (prop),(T16),(ltl1),(2)
(5) A ∧ ¬(B unless C ) → �(A ∧ ¬(B unless C )) (prop),(T15),(1),(4)
(6) A ∧ ¬(B unless C ) → � �B (ind),(3),(5)
(7) ��B → B unless C (unless2)
(8) A ∧ ¬(B unless C ) → B unless C (prop),(T12),(6),(7)
(9) A→ B unless C (prop),(8) �

The common characteristic feature of the above rules (including the induction
rules for �) is that they all express some form of computational induction over state
sequences. There is no such induction principle for the operator � or for the strong
binary operators like until or unt, which imply a formula of the form �B . Only in
Chap. 5 will we become able to formulate induction principles of a different nature
for this kind of assertion.
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We still remark that each of the above induction rules could be used for an al-
ternative axiomatization of LTL+b. The systematic pattern of the axiomatization de-
scribed above was to take as axioms the fixpoint characterization of a binary operator
and a formula expressing whether it is chosen in its strong or weak version, respec-
tively. Another possibility would be to take the fixpoint characterization or, what is
actually sufficient, even only “one direction” of it together with the respective rule.
For example, with the operator unless this would be the axiom

(unless1’) A unless B → �B ∨ �(A ∧A unless B)

and the rule (indunless). In the next section we will see that there is also an intuitive
pattern which underlies this form of axiomatization.

We conclude this section by illustrating the new operators with the help of some
more logical laws. We restrict ourselves to formulas involving the non-strict unless
and the strict atnext operator. Analogous laws can easily be stated for the other oper-
ators.

(Tb18) �(¬B → A) → A unl B ,
(Tb19) �(A unl B) ↔ �A unl �B ,
(Tb20) (A ∧ B) unl C ↔ A unl C ∧ B unl C ,
(Tb21) A unl (B ∨ C ) ↔ A unl B ∨A unl C ,
(Tb22) A unl (B ∧ C ) → A unl B ∧A unl C ,
(Tb23) A unl (A unl B) ↔ A unl B ,
(Tb24) (A unl B) unl B ↔ A unl B ,
(Tb25) �(B → A) → A atnext B ,
(Tb26) �(A atnext B)↔ �A atnext �B ,
(Tb27) (A ∧ B) atnext C ↔ A atnext C ∧ B atnext C ,
(Tb28) (A ∨ B) atnext C ↔ A atnext C ∨ B atnext C ,
(Tb29) A atnext (B ∨ C ) → A atnext B ∨A atnext C .

Note that “idempotency” laws like (Tb23) and (Tb24) hold only for non-strict oper-
ators but not for the strict ones.

The laws can easily be verified semantically or by a derivation within Σb
LTL. As

an example, we show how to derive (Tb25):

Derivation of (Tb25).

(1) �(B → A) → �(B → A) (T6)
(2) �(B → A) → ��(B → A) (prop),(ltl3)
(3) �(B → A) → �(¬B → �(B → A)) (prop),(T14),(2)
(4) �(B → A) → �(B → A) ∧ �(¬B → �(B → A)) (prop),(1),(3)
(5) �(B → A) → A atnext B (indatnext),(4) �

3.2 Fixpoint Operators

The operators � and �, as well as the binary operators discussed in the previous
section, all satisfy some fixpoint laws. Consider, e.g., the law (T28) concerning the
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always operator:

�A↔ A ∧ ��A.

This logical equivalence means, in a sense which will be made more precise shortly,
that the formula �A can be viewed as a “solution” of the “equality”

(i) u ↔ A ∧ �u

with the “unknown” u . In the same way, �A and A unless B can be viewed as
“solutions” of

(ii) u ↔ A ∨ �u ,
(iii) u ↔ �B ∨ �(A ∧ u),

and similarly for the other connectives. However, given such an equivalence, the
corresponding temporal operator may not be determined uniquely. For example, (iii)
is also solved by u ≡ A until B , while (ii) admits the solution u ≡ true.

In order to analyse the situation more formally, let us provisionally extend the
underlying alphabet by a set V of (propositional) variables and allow formulas
to contain such variables. For example, the equivalences (i)–(iii) are then formu-
las containing the variable u . The semantical notions are extended by valuations
Ξ = (ξ0, ξ1, ξ2, . . .) which are infinite sequences of mappings

ξi : V → {ff, tt},

and the value K
(Ξ)
i (F ) ∈ {tt, ff} is inductively defined as Ki(F ) before, with the

provision that

K
(Ξ)
i (u) = ξi(u) for u ∈ V .

We also write �F �Ξ
K to denote the set of (indexes of) states of K in which formula F

“is true”:

�F �Ξ
K = {i ∈ N | K(Ξ)

i (F ) = tt}.

�F �Ξ
K is a subset of N, i.e., an element of the powerset 2N of N.
Consider now, e.g., the equivalence (ii), assume that A does not contain the vari-

able u , and fix some arbitrary K and Ξ . With the “right-hand side” A ∨ �u we
associate the mapping ΥA∨ �u : 2N → 2N with

ΥA∨ �u : M �→ �A ∨ �u�
Ξ[u:M]
K

where Ξ[u :M] denotes the valuation (ξ′0, ξ
′
1, ξ

′
2, . . .) that agrees with Ξ for all

variables except for u , for which it is given by ξ′i(u) = tt ⇔ i ∈ M. The formulas
true and �A are solutions of the equivalence. For true we have

�true�Ξ
K = N.
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With Ξ[u :M] = (ξ′0, ξ
′
1, ξ

′
2, . . .) such that ξ′i(u) = tt ⇔ i ∈ �true�Ξ

K , i.e.,

ξ′i(u) = tt for every i ∈ N, we obtain K
(Ξ[u:M])
i (A ∨ �u) = tt for every i ∈ N

and therefore

�A ∨ �u�
Ξ[u:M]
K = N.

This means that

ΥA∨ �u(�true�Ξ
K ) = �true�Ξ

K

and similarly one can find that

ΥA∨ �u(��A�Ξ
K ) = ��A�Ξ

K .

Generally, for a solution C of the equivalence, �C �Ξ
K is a fixpoint of ΥA∨ �u , i.e.,

a set M ⊆ N such that ΥA∨ �u(M) = M. Moreover, the representations �C �Ξ
K of

solutions can be compared by set inclusion. For example, ��A�Ξ
K ⊆ �true�Ξ

K holds
for any K and Ξ , and we summarize all this by simply saying that true and �A are
fixpoints of (ii) and �A is a smaller fixpoint than true.

An equivalence may have many fixpoints, and extremal (least or greatest) fix-
points among them are usually of particular interest. In case of (ii), �true�Ξ

K = N, so
true is obviously the greatest fixpoint (for any K and Ξ) and, in fact, �A is the least
one. To see this, assume that M ⊆ N is some set such that

(∗) �A ∨ �u�
Ξ[u:M]
K = M

holds. It then suffices to prove that ��A�Ξ
K ⊆ M. To this end, assume that i /∈ M for

some i ∈ N. Inductively, we show that j /∈ M holds for all j ≥ i : the base case holds
by assumption, and if j /∈ M then equation (∗) implies that K

(Ξ[u:M])
j (A∨ �u) = ff,

which means ξ′j+1(u) = K
(Ξ[u:M])
j ( �u) = ff; hence j /∈ � �u�

Ξ[u:M]
K and therefore

j + 1 /∈ M. Moreover, equation (∗) analogously implies that, for every j /∈ M,
K

(Ξ)
j (A) = K

(Ξ[u:M])
j (A) = ff; hence j /∈ �A�Ξ

K . Together we obtain that j /∈ �A�Ξ
K

for all j ≥ i , which means K
(Ξ)
i (�A) = ff, i.e., i /∈ ��A�Ξ

K and so concludes the
proof of ��A�Ξ

K ⊆ M.
Similarly, it can be shown that false and �A are the least and greatest fixpoints

of the equivalence (i) above, and that A until B and A unless B are the least and
greatest fixpoints of (iii).

We now generalize these considerations to an extension of LTL. We want to in-
troduce new (unary) logical operators which, applied to a formula F (generally con-
taining a variable u), provide formulas which are the least and the greatest fixpoints
of the equivalence

u ↔ F ;

more precisely: the semantical evaluation K
(Ξ)
i of the formulas is determined by the

least and greatest fixpoints of the mapping ΥF : 2N → 2N (i.e., the least and greatest
subsets M ⊆ N with ΥF (M) = M) where
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ΥF : M �→ �F �
Ξ[u:M]
K ,

as exemplified above for F ≡ A ∨ �u .
However, we must take some care: not all equivalences need have solutions. A

simple example is the equivalence u ↔ ¬u which obviously does not admit any
solutions. But, as shown by the following example, even if fixpoints exist there need
not be least and greatest ones.

Example. For a propositional constant v ∈ V, consider the formula

F ≡ v ↔ �u

and let K = (η0, η1, η2, . . .) be a temporal structure such that ηi(v) = tt if and
only if i is even. We will show that the function ΥF has precisely two incomparable
fixpoints with respect to K. In fact, M is a fixpoint if and only if, for arbitrary Ξ ,

M = ΥF (M)
= �v ↔ �u�

Ξ[u:M]
K

= {i ∈ N | ηi(v) = tt ⇔ i + 1 ∈ M}
= {2j | 2j + 1 ∈ M} ∪ {2j + 1 | 2j + 2 /∈ M}.

This means that, for every j ∈ N,

2j ∈ M ⇔ 2j + 1 ∈ M and 2j + 1 ∈ M ⇔ 2j + 2 /∈ M

which is obviously the case if and only if either

M = {0, 1, 4, 5, 8, 9, . . .} = {n ∈ N | n mod 4 ∈ {0, 1}}

or

M = {2, 3, 6, 7, 10, 11, . . .} = {n ∈ N | n mod 4 ∈ {2, 3}}.

So these two sets are the only fixpoints of ΥF . One is the complement of the other;
in particular, they are incomparable. �

To pursue our approach, let us now first note the trivial fact that, if a least fixpoint
exists then it is unique, and the same holds for the greatest fixpoint. Furthermore, a
well-known sufficient condition that least and greatest fixpoints exist at all in sit-
uations like the one given here is that of monotonicity: for any set D, a function
Υ : 2D → 2D is called monotone if Υ (E1) ⊆ Υ (E2) holds whenever E1 ⊆ E2, for
arbitrary E1, E2 ⊆ D. It is called anti-monotone if E1 ⊆ E2 implies Υ (E1) ⊇ Υ (E2).

Theorem 3.2.1 (Fixpoint Theorem of Tarski). Assume that D is some set and that
Υ : 2D → 2D is a monotone function. Then

a) μΥ =
⋂
{E ⊆ D | Υ (E) ⊆ E} is the least fixpoint of Υ .

b) νΥ =
⋃
{E ⊆ D | E ⊆ Υ (E)} is the greatest fixpoint of Υ .
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Proof. a) We write Υ for the set {E ⊆ D | Υ (E) ⊆ E}. Let E ∈ Υ . Because
μΥ =

⋂
Υ , we certainly have μΥ ⊆ E, and by monotonicity of Υ it follows that

Υ (μΥ ) ⊆ Υ (E). By definition of Υ , we know that Υ (E) ⊆ E. Thus, Υ (μΥ ) ⊆ E

holds for all E ∈ Υ , which implies that Υ (μΥ ) ⊆
⋂

Υ = μΥ .
Again by monotonicity of Υ , we obtain that Υ (Υ (μΥ )) ⊆ Υ (μΥ ), and therefore

Υ (μΥ ) ∈ Υ . This implies μΥ =
⋂

Υ ⊆ Υ (μΥ ), so altogether we have shown that
Υ (μΥ ) = μΥ , and thus μΥ is a fixpoint of Υ .

To see that μΥ is the least fixpoint of Υ , assume that E ⊆ D is some arbitrary
fixpoint, i.e., Υ (E) = E. In particular, Υ (E) ⊆ E, and thus E ∈ Υ . By definition of
μΥ , it follows that μΥ ⊆ E, which completes the proof.

b) The proof of this part is dual, exchanging ⊆ and
⋂

by ⊇ and
⋃

. �

In the present context, we can apply Theorem 3.2.1 to functions ΥF , and it is
easy to see that the polarity of (the occurrences of) the variable u in the formula F
helps us determine the monotonicity of ΥF . Roughly speaking, u occurs with positive
or negative polarity depending on which side of an implication u occurs. Formally,
polarity is inductively defined as follows:

• u occurs with positive polarity in the formula u .
• An occurrence of u in a formula A→ B is of positive polarity if it is of positive

polarity in B or of negative polarity in A; otherwise it is an occurrence of negative
polarity.

• The operators �and � preserve the polarity of variable occurrences.

For the derived operators, it follows that ∧, ∨, and �preserve the polarity, whereas
¬ reverses the polarity of occurrences. As for formulas A↔ B , every occurrence
of u is both of positive and negative polarity because it appears on both sides of
an implication. For example, the variable u has a positive polarity in the formula
v → �u , a negative polarity in v → ¬ �u and occurrences of both positive and
negative polarity in the formula v ↔ �u of the above example (v ∈ V in each
case).

Lemma 3.2.2. Let F be a formula, u ∈ V be a propositional variable, and the func-
tion ΥF : 2N → 2N be given by

ΥF (M) = �F �
Ξ[u:M]
K .

a) ΥF is monotone if every occurrence of u in F has positive polarity.
b) ΥF is anti-monotone if every occurrence of u in F has negative polarity.

Proof. Both parts a) and b) are proved simultaneously by structural induction on the
formula F .

1. F ≡ v ∈ V, F ≡ false or F ≡ ū ∈ V , ū �≡ u: Then u does not occur in F . This
implies ΥF (M) = ΥF (M′) for arbitrary M and M

′; so ΥF is both monotone and
anti-monotone.

2. F ≡ u: Then the only occurrence of u in F is of positive polarity. So, part b) is
trivial, and part a) follows since we have
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ΥF (M) = {i ∈ N | K(Ξ[u:M])
i (u) = tt} = M

for every M; so ΥF is monotone.
3. F ≡ A→ B : Then

ΥF (M) = �A→ B�
Ξ[u:M]
K

= {i ∈ N | K(Ξ[u:M])
i (A→ B) = tt}

= {i ∈ N | K(Ξ[u:M])
i (A) = ff} ∪ {i ∈ N | K(Ξ[u:M])

i (B) = tt}
= (N \ ΥA(M)) ∪ ΥB (M)

for every M. Let now M1 ⊆ M2. If every occurrence of u in F is of posi-
tive polarity then every occurrence of u in A is of negative polarity and every
occurrence of u in B is of positive polarity. By induction hypothesis, ΥA is
anti-monotone and ΥB is monotone; thus we have ΥA(M1) ⊇ ΥA(M2) and
ΥB (M1) ⊆ ΥB (M2) and therefore obtain ΥF (M1) ⊆ ΥF (M2) which proves
part a). If every occurrence of u in F is of negative polarity then we con-
clude analogously that ΥA is monotone and ΥB is anti-monotone which provides
part b).

4. F ≡ �A: Then

ΥF (M) = � �A�
Ξ[u:M]
K = {i ∈ N | i + 1 ∈ ΥA(M)}

for every M. Let M1 ⊆ M2. If every occurrence of u in F is of positive polarity
then so it is in A. By induction hypothesis, ΥB (M1) ⊆ ΥB (M2); so we obtain
part a) because of

{i ∈ N | i + 1 ∈ ΥA(M1)} ⊆ {i ∈ N | i + 1 ∈ ΥA(M2)},

and the argument for part b) is analogous.
5. F ≡ �A: Then

ΥF (M) = {i ∈ N | j ∈ ΥA(M) for every j ≥ i}

for every M, and the assertions a) and b) are found analogously as in the previous
case. �

These observations now suggest how to define the extension of LTL announced
above: we introduce a new operator μ with the informal meaning that μuA denotes
the least fixpoint of the equivalence u ↔ A. (A second operator ν for the greatest
fixpoint can be derived from μ.) In order to ensure the existence of the fixpoints, we
restrict the application of μ to A by requiring that all occurrences of u in A must be
of positive polarity.

The propositional variable u becomes bound by the new (fixpoint) operator, just
as quantifiers bind variables of first-order logic: an occurrence of a propositional
variable u in a formula A is called bound if it appears in some subformula μuB
of A; otherwise it is called free. A formula is closed if it does not contain any free
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propositional variables. The formula Au(B) results from A by substituting the for-
mula B for all free occurrences of the propositional variable u . When carrying out
this substitution, we tacitly assume that no free occurrences of propositional vari-
ables in B become bound by this substitution. (As in first-order logic, this can be
achieved by renaming the bound propositional variables of A if necessary.)

We denote this extension of LTL by LTL+μ. Its language Lμ
LTL is formally ob-

tained from LLTL by adding a denumerable set V of propositional variables to the
alphabet, extending the syntax rules of LLTL by the two clauses

• Every propositional variable of V is a formula,
• If A is a formula and u ∈ V is a propositional variable all of whose free occur-

rences in A are of positive polarity then μuA is a formula,

and extending the polarity definition by fixing that the polarity of every free occur-
rence of a propositional variable in μuA is the same as the polarity of the occurrence
in A.

The ν operator is introduced as the abbreviation

νuA ≡ ¬μu¬Au(¬u);

we will see below that νuA denotes the greatest fixpoint of the equivalence u ↔ A.
The substitution of ¬u for the free occurrences of u ensures that all occurrences of
u are of positive polarity in the formula to which the fixpoint operator is applied.
Clearly, the polarities of all free occurrences of propositional variables in νuA are as
in A.

The semantics of LTL+μ has to take into account the valuation of proposi-
tional variables. As indicated already, the earlier Ki(F ) therefore takes now the form
K

(Ξ)
i (F ) where Ξ = (ξ0, ξ1, ξ2, . . .) is a sequence of valuations ξi : V → {ff, tt} of

the propositional variables. The clauses of the inductive definition for K
(Ξ)
i (F ) are

as for Ki(F ) before, extended by

• K
(Ξ)
i (u) = ξi(u) for u ∈ V ,

• K
(Ξ)
i (μuA) = tt ⇔ i ∈ μΥA

and the definition of validity in K is adapted accordingly: �
K
F if K

(Ξ)
i (F ) = tt for

every i and Ξ . Expanding the representation of μΥA given in Theorem 3.2.1 and the
definition of ΥA, the semantic clause for μuA can be restated more explicitly as

• K
(Ξ)
i (μuA) = tt ⇔ i ∈ M for all M ⊆ N such that �A�

Ξ[u:M]
K ⊆ M.

In order to be sure that this definition really corresponds to our intention of defin-
ing the least fixpoint of the mapping ΥA, even for nested fixpoints, we have to extend
the proof of Lemma 3.2.2 for the case where F ≡ μūA. If u ≡ ū then u has no
free occurrence in F , and therefore ΥF is both monotone and anti-monotone. So let
u �≡ ū , assume for part a) that every free occurrence of u in F , hence in A, is of posi-
tive polarity, and let M1, M2, M ⊆ N where M1 ⊆ M2. The assertions of the lemma
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are to be understood for arbitrary K and Ξ . So the induction hypothesis, applied for
the valuation Ξ[ū :M], implies that

�A�
Ξ[ū:M][u:M1]
K ⊆ �A�

Ξ[ū:M][u:M2]
K .

We have to show that ΥF (M1) ⊆ ΥF (M2) where

ΥF (Mi) =
⋂
{M ⊆ N | �A�

Ξ[u:M i ][ū:M]
K ⊆ M}.

Assume that i /∈ ΥF (M2) for some i ∈ N; then there exists some M ⊆ N such
that �A�

Ξ[u:M2][ū:M]
K ⊆ M and i /∈ M. Because u and ū are different propositional

variables, Ξ[u:M2][ū :M] = Ξ[ū :M][u:M2], and the induction hypothesis yields
�A�

Ξ[ū:M][u:M1]
K ⊆ �A�

Ξ[ū:M][u:M2]
K ⊆ M, and therefore we find i /∈ ΥF (M1). Be-

cause i was chosen arbitrarily, this proves ΥF (M1) ⊆ ΥF (M2), completing the proof
of part a) of the lemma. The arguments for part b) are similar.

From this completed proof of Lemma 3.2.2 and Theorem 3.2.1 we have shown
that �μuA�Ξ

K defines the least fixpoint of the mapping ΥA as intended.

For the derived ν operator, the semantics is given by

• K
(Ξ)
i (νuA) = tt ⇔ i ∈ νΥA

or, again somewhat more explicitly, by

• K
(Ξ)
i (νuA) = tt ⇔ M ⊆ �A�

Ξ[u:M]
K for some M ⊆ N such that i ∈ M.

This can be seen by observing that with M
′ = N \M we obviously have

�¬Au(¬u)�Ξ[u:M]
K = N \ �A�

Ξ[u:M′]
K

and therefore

�¬Au(¬u)�Ξ[u:M]
K ⊆ M and i /∈ M ⇔ M

′ ⊆ �A�
Ξ[u:M′]
K and i ∈ M

′.

So we obtain in fact

K
(Ξ)
i (νuA) = tt ⇔ K

(Ξ)
i (¬μu¬Au(¬u)) = tt

⇔ �¬Au(¬u)�Ξ[u:M]
K ⊆ M and i /∈ M for some M ⊆ N

⇔ M
′ ⊆ �A�

Ξ[u:M′]
K for some M

′ ⊆ N such that i ∈ M
′.

Example. Assuming that u does not occur in A, let us verify that the formula
�A↔ νu(A ∧ �u) is valid. This claim can obviously be proved by showing that

��A�Ξ
K = �νu(A ∧ �u)�Ξ

K

holds for any K and Ξ . For the direction “⊆” of this set equation, assume that
i ∈ ��A�Ξ

K . Writing M for ��A�Ξ
K , we will prove M ⊆ �A ∧ �u�

Ξ[u:M]
K in or-

der to obtain i ∈ �νu(A ∧ �u)�Ξ
K by the above semantic clause. Indeed, for any
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j ∈ M, we find that j ∈ �A�Ξ
K and that j + 1 ∈ M. Because u does not occur in A,

we may conclude that j ∈ �A�
Ξ[u:M]
K ∩ � �u�

Ξ[u:M]
K , and thus j ∈ �A ∧ �u�

Ξ[u:M]
K .

For “⊇” we show that M ⊆ ��A�Ξ
K holds for any M with M ⊆ �A∧ �u�

Ξ[u:M]
K .

Since �νu(A ∧ �u)�Ξ
K is defined as the union of all such sets M, the assertion then

follows. So assume that M ⊆ �A ∧ �u�
Ξ[u:M]
K and that i ∈ M. Clearly, we obtain

that i ∈ �A�
Ξ[u:M]
K ; hence also i ∈ �A�Ξ

K , because u does not occur in A. Moreover,
we have i +1 ∈ M. Continuing inductively, we find that j ∈ �A�Ξ

K for all j ≥ i , that
is, i ∈ ��A�Ξ

K . �

Similarly, we find that the other temporal operators of LTL+b can be expressed in
LTL+μ by noting the following equivalences, where the propositional variable u is
again assumed not to occur in A or B . (Writing down these formulas we presuppose
a suitable language which results from extending LTL by both “b” and “μ”.)

(Tμ1) �A ↔ νu(A ∧ �u),
(Tμ2) �A ↔ μu(A ∨ �u),
(Tμ3) A until B ↔ μu( �B ∨ �(A ∧ u)),
(Tμ4) A unless B ↔ νu( �B ∨ �(A ∧ u)),
(Tμ5) A unt B ↔ μu(B ∨ (A ∧ �u)),
(Tμ6) A unl B ↔ νu(B ∨ (A ∧ �u)),
(Tμ7) A atnext B ↔ νu( �(B → A) ∧ �(¬B → u)),
(Tμ8) A before B ↔ νu( �¬B ∧ �(A ∨ u)).

The shape of these laws follows the fixpoint characterizations (T28), (T29), and
(Tb11)–(Tb16). The difference between strong and weak binary operators is pre-
cisely reflected by the choice of the least or greatest fixpoint.

We thus find that the logic LTL+μ provides uniform syntactic means for the
definition of all the temporal operators that we have encountered so far, although
formulas written in that language may quickly become difficult to read: compare the
formulas �(A→ �B) and

νu1((A→ μu2(B ∨ �u2)) ∧ �u1).

We will study in more depth the expressiveness of LTL+μ in Chap. 4 where we show
that LTL+μ can express many more temporal relations than the logics LTL or LTL+b.

The uniform definition of the language Lμ
LTL is mirrored by a simple and uniform

axiomatization of LTL+μ. A sound and weakly complete formal system Σμ
LTL is

obtained as an extension of ΣLTL by the following axiom and rule:

(μ-rec) Au(μuA) → μuA,
(μ-ind) Au(B) → B � μuA→ B if there is no free occurrence of u in B .

The axiom (μ-rec) is “one direction” of the equivalence μuA ↔ Au(μuA) which
asserts that μuA is a fixpoint. The rule (μ-ind) expresses that μuA is smaller than any
other fixpoint B . For formulas involving greatest fixpoints, the following formula and
rule can be derived:



82 3 Extensions of LTL

(ν-rec) νuA→ Au(νuA),
(ν-ind) B → Au(B) � B → νuA if there is no free occurrence of u in B .

As in first-order logic, the formulation of the deduction theorem requires some
care. Still, we have

F ∪ {A} � B ⇒ F � �A→ B

if A is a closed formula.
We illustrate the use of Σμ

LTL (together with laws from LTL+b) by deriving (Tμ8):

Derivation of (Tμ8). Let F ≡ νu( �¬B ∧ �(A ∨ u)) and u not be free in A,B .

(1) A before B → �¬B ∧ �(A ∨A before B) (prop), (Tb16)
(2) A before B → F (ν-ind),(1)
(3) F → �¬B ∧ �(A ∨ F ) (ν-rec)
(4) F → �¬B ∧ �(F ∨A) (prop),(3)
(5) F → A before B (indbefore),(4)
(6) A before B ↔ νu( �¬B ∧ �(A ∨ u)) (prop),(2),(5) �

It is instructive to observe the special cases of the axioms and rules for the �

operator: by law (Tμ1), �A is just νu(A ∧ �u), and therefore (ν-rec) and (ν-ind)
can be rewritten as

�A→ A ∧ ��A and B → A ∧ �B � B → �A,

the first of which is (ltl3) whereas the second one is just a reformulation of the in-
duction rule (ind) of ΣLTL. We could therefore drop (ltl3) and (ind) from the system
Σμ

LTL if � were understood as a derived operator in Lμ
LTL.

Similarly, the special cases for the binary operators show that the systematic
pattern of the alternative axiomatization of LTL+b indicated at the end of the previous
section is just the pattern described here. For example, (Tμ4) shows that A unless B
is ν( �B ∨ �(A ∧ u)); so (ν-rec) becomes the axiom

(unless1’) A unless B → �B ∨ �(A ∧A unless B)

of Sect. 3.1, and (ν-ind) becomes the rule

C → �B ∨ �(A ∧ C ) � C → A unless B

which is a reformulation of (indunless). So this latter rule determines A unless B to
be a greatest fixpoint.

Second Reading

In a Second Reading paragraph in Sect. 2.3 we mentioned some relationships between tem-
poral and modal logic. The idea of introducing fixpoint operators may also be applied to
“normal” modal logic; the result is known as modal μ-calculus MμC.
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This logic contains a (unary) modal operator � together with the fixpoint operator μ.
Formulas are built analogously as in LTL+μ, including the constraint concerning polarity.
The operators � and ν are introduced as before. As indicated in Sect. 2.3, a Kripke structure
K = ({ηι}ι∈K , �) for an underlying set V of propositional constants consists of a non-
empty set K , valuations ηι : V → {ff, tt} for all ι ∈ K , and a binary accessibility relation
�. Using an analogous notation as in the above main text with a valuation Ξ = (ξι)ι∈K

(where ξι : V → {ff, tt} for ι ∈ K ), the semantics of the operator � is given by

Kι(�A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ

which provides

Kι(�A) = tt ⇔ Kκ(A) = tt for some κ with ι � κ

for the dual operator �. For the semantics of μ one defines, for any formula F , the mapping

ΥF : 2K → 2K ,

ΥF : E �→ �F �
Ξ[u:E]
K

where �F �Ξ
K = {ι ∈ K | K

(Ξ)
ι (F ) = tt} and Ξ[u :E] denotes the valuation (ξ′ι)ι∈K with

ξ′ι(u) = tt ⇔ ι ∈ E and ξ′ι(u
′) = ξι(u

′) for all variables u ′ other than u . Then

K
(Ξ)
ι (μuA) = tt ⇔ ι ∈ μΥA

and

K
(Ξ)
ι (νuA) = tt ⇔ ι ∈ νΥA

where μΥA and νΥA are the least and greatest fixpoints of ΥA, respectively (which can be
shown to exist as in the case of LTL+μ).

From these definitions, the fixpoint characterization (Tμ1) for the temporal always oper-
ator, and recalling the discussion in the above-mentioned Second Reading paragraph, it is
evident that LTL+μ can be viewed as a special instant of MμC based on the operator �(with
distinguished Kripke structures). However, there is also another more general relationship
between MμC and temporal logics (including even others outside the “LTL family”) that
can all be “embedded” into MμC. This makes MμC a simple common “framework” for all
such logics. We will briefly come back to this aspect in Sect. 10.4.

3.3 Propositional Quantification

The language Lμ
LTL of the “fixpoint logic” studied in Sect. 3.2 introduced proposi-

tional variables and “binders”. Alternatively, LTL can be extended by standard ex-
istential or universal quantification over propositional variables to obtain the logic
LTL+q. Its language Lq

LTL is formally obtained from LLTL by adding a denumerable
set V of propositional variables to the alphabet and by extending the syntax rules of
LLTL by the following clauses:

• Every propositional variable of V is a formula.
• If A is a formula and u is a propositional variable then ∃uA is a formula.
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The notions of free and bound occurrences of variables, closed formula, substi-
tution of formulas for free variables, etc. carry over from Lμ

LTL to Lq
LTL in the obvious

way. We write

∀uA ≡ ¬∃u¬A

for the dual, universally quantified formula.
As in Sect. 3.2, the semantics of LTL+q is defined with respect to a valuation

Ξ = (ξ0, ξ1, ξ2, . . .), ξi : V → {ff, tt} of the propositional variables. K
(Ξ)
i replaces

Ki again (with validity in K being defined as for LTL+μ), and the semantic clauses
corresponding to the extended syntax are

• K
(Ξ)
i (u) = ξi(u) for u ∈ V .

• K
(Ξ)
i (∃uA) = tt ⇔ there is a Ξ ′ such that Ξ ∼u Ξ ′ and K

(Ξ′)
i (A) = tt.

The relation ∼u between valuations Ξ = (ξ0, ξ1, ξ2, . . .) and Ξ ′ = (ξ′0, ξ
′
1, ξ

′
2, . . .)

is adapted from classical FOL:

Ξ ∼u Ξ ′ ⇔ ξi(ū) = ξ′i(ū) for all ū ∈ V other than u and all i ∈ N.

For ∀uA we clearly obtain

• K
(Ξ)
i (∀uA) = tt ⇔ K

(Ξ′)
i (A) = tt for all Ξ ′ with Ξ ∼u Ξ ′.

Intuitively, the formula ∃uA asserts that one can find a sequence of truth values
for u satisfying the formula A, and not just a single truth value. This is why quan-
tification over propositional variables cannot simply be reduced to ordinary propo-
sitional LTL (which is the case in classical propositional logic PL). Indeed, the fol-
lowing example shows that in Lq

LTL, as in Lμ
LTL, one can define the binary temporal

operators.

Example. Consider, for v1, v2 ∈ V, the formula

F ≡ ∃u(u ∧�(u → v2 ∨ (v1 ∧ �u)))

of Lq
LTL. We claim that the following formula is valid:

F ↔ v1 unl v2.

(As in the similar situation in the previous section, we presuppose a corresponding
language for which the semantical clause defining Ki(v1 unl v2) in LTL+b is trans-
ferred to K

(Ξ)
i (v1 unlv2) for every temporal structure K, i ∈ N, and arbitrary Ξ).

To show the “→” part, let K
(Ξ)
i (F ) = tt, and Ξ ′ = (ξ′0, ξ

′
1, ξ

′
2, . . .) such that

Ξ ′ ∼u Ξ and

(∗) K
(Ξ′)
i (u ∧�(u → v2 ∨ (v1 ∧ �u))) = tt.
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For a contradiction, assume moreover that K
(Ξ)
i (v1 unl v2) = ff. Using the law

(Tb14), it follows that K
(Ξ′)
i (v2) = K

(Ξ)
i (v2) = ff; therefore we must have

K
(Ξ′)
i (v1 ∧ �u) = tt by (∗), hence K

(Ξ)
i (v1) = K

(Ξ′)
i (v1) = tt. Again law

(Tb14) then implies that K
(Ξ)
i+1(v1 unl v2) = ff. Continuing inductively, we find that

K
(Ξ)
j (v1) = tt and K

(Ξ)
j (v1 unl v2) = ff for all j ≥ i . In particular, we obtain

K
(Ξ)
i (�v1) = tt. This implies K

(Ξ)
i (v1 unl v2) = tt by (Tb3), and a contradiction is

reached.
For the opposite direction, let K

(Ξ)
i (v1 unl v2) = tt and Ξ ′ = (ξ′0, ξ

′
1, ξ

′
2, . . .)

such that ξ′k (u) = K
(Ξ)
k (v1 unl v2) for every k ∈ N and Ξ ′ ∼u Ξ . Then we have

K
(Ξ′)
i (u) = tt and K

(Ξ′)
j (v1 unl v2) = tt for every j ≥ i with K

(Ξ′)
j (u) = tt. By law

(Tb14) it follows that K
(Ξ′)
j (v2 ∨ (v1 ∧ �(v1 unl v2))) = tt which, by the definition

of Ξ ′, implies that K
(Ξ′)
j (v2 ∨ (v1 ∧ �u)) = tt for every j ≥ i . Together we thus

have K
(Ξ)
i (F ) = tt. �

The semantic definitions for LTL+μ and LTL+q have a “global” flavor in the
sense that the valuation Ξ is used in its entirety for the definition of K

(Ξ)
i (A),

and not just its suffix Ξi = (ξi , ξi+1, . . .). Nevertheless, a natural generalization
of Lemma 2.1.5 holds for these logics, as we now show for the logic LTL+q. (An
analogous proof holds for LTL+μ.)

Lemma 3.3.1. Let K be a temporal structure and Ξ be a propositional valuation.

Then (Ki)(Ξ
i )

j (A) = K
(Ξ)
i+j (A) for every j ∈ N and every formula A of Lq

LTL.

Proof. Adapting the proof of Lemma 2.1.5, we only need to prove the case of a

quantified formula ∃uA. From the definition we see that (Ki)(Ξ
i )

j (∃uA) = tt if and

only if (Ki)(Ξ
′)

j (A) = tt for some valuation Ξ ′ ∼u Ξi . Now, any such valuation
Ξ ′ can be extended to a valuation Ξ ′′ ∼u Ξ such that Ξ ′ = (Ξ ′′)i , and vice versa.

The preceding condition is therefore equivalent to requiring that (Ki)(Ξ
′′)i

j (A) = tt
holds for some Ξ ′′ ∼u Ξ , and by the induction hypothesis (applied to the valuation

Ξ ′′), the latter is equivalent to K
(Ξ′′)
i+j (A) = tt for some Ξ ′′ ∼u Ξ , which just means

K
(Ξ)
i+j (∃uA) = tt. �

As a particular consequence of Lemma 3.3.1 it follows that the two notions of
validity that we have considered in Chap. 2 also coincide for LTL+q (and LTL+μ),
that is, we again have �A if and only if

0�A for these logics. This equivalence is
implied by Lemma 3.3.1 in the same way that Theorems 2.6.2 and 2.6.4 follow from
Lemma 2.1.5.

A sound and weakly complete formal system Σq
LTL for LTL+q is obtained by ex-

tending ΣLTL by the following axioms and rules. For the formulation of rule (qltl-ind)
we introduce some short notation: if u = (u1, u2, . . . , un) is a tuple of propositional
variables then ∃uF denotes ∃u1∃u2 . . . ∃unF . The notation Ξ ′ ∼u Ξ is extended to
tuples of variables in the obvious way. Furthermore, for two such tuples u1 and u2
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of equal length, Fu1(u2) denotes the result of simultaneously substituting the vari-
ables of u2 for the free occurrences of the variables (with the same index) of u1 in
F . If u1 = (u1

1 , . . . , un
1 ) and u2 = (u1

2 , . . . , un
2 ) are two such tuples, we also write

u2 ↔ u1 as an abbreviation for (u1
2 ↔ u1

1 ) ∧ . . . ∧ (un
2 ↔ un

1 ).

Additional axioms

(qltl1) Au(B) → ∃uA,
(qltl2) ∃u �A↔ �∃uA,
(qltl3) ∃u(u ∧ ��¬u).

Additional rules

(qltl-part) A→ B � ∃uA→ B if there is no free occurrence of u in B ,
(qltl-ind) F → ∃u2

�((u2 ↔ u1) ∧ Fu1(u2))
� F → ∃u2((u2 ↔ u1) ∧�Fu1(u2))

if every occurrence of variables ui
1 in F is in the scope of at

most one �operator and no other temporal operator.

The axiom (qltl1) and the rule (qltl-part) are rather obvious counterparts of the stan-
dard quantifier axiom and the particularization rule of classical first-order logic as
introduced in Sect. 1.2. The generalization rule of FOL can also be adapted provid-
ing the derived rule

(qltl-gen) A→ B � A→ ∀uB if there is no free occurrence of u in A.

Similarly, we obtain the derived law

(Tq1) ∀uA→ Au(B).

The axiom (qltl2) asserts that existential quantification and the next-time operator
commute. Its validity is easy to see:

K
(Ξ)
i (∃u �A) = tt ⇔ there is a Ξ ′ such that Ξ ∼u Ξ ′ and K

(Ξ′)
i ( �A) = tt

⇔ there is a Ξ ′ such that Ξ ∼u Ξ ′ and K
(Ξ′)
i+1 (A) = tt

⇔ K
(Ξ)
i+1(∃uA) = tt

⇔ K
(Ξ)
i ( �∃uA) = tt.

Axiom (qltl3) can be used to introduce a fresh propositional variable that marks the
current state; its validity is obvious.

The rule (qltl-ind) formalizes a principle for defining a proposition by induc-
tion. By the assumption that the variables in u1 occur in F under the scope of at
most one operator �and no other temporal operator, the value of K

(Ξ)
i (F ), where

Ξ = (ξ0, ξ1, ξ2, . . .), does not depend on any ξj (uk
1 ) for j ≥ i + 2. To understand

the “correctness” of the rule, assume now that

(∗) �
K

F → ∃u2
�((u2 ↔ u1) ∧ Fu1(u2))
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and that K
(Ξ)
i (F ) = tt where Ξ = (ξ0, ξ1, ξ2, . . .). By assumption (∗), there exists

Ξ ′ = (ξ′0, ξ
′
1, ξ

′
2, . . .) where Ξ ′ ∼u2 Ξ such that ξ′i+1(u

k
2 ) = ξi+1(uk

1 ) for all k , and

K
(Ξ′)
i+1 (Fu1(u2)) = tt. Defining the valuation Ξ ′′ = (ξ′′0 , ξ′′1 , ξ′′2 , . . .) by

ξ′′j (u) =
{

ξ′j (u
k
2 ) if u ≡ uk

2 and j ≥ i + 2,
ξj (u) otherwise,

the above remark implies that K
(Ξ′′)
i+1 (F ) = tt. Continuing in the same way, we find

a valuation Ξ̂ = (ξ̂0, ξ̂1, ξ̂2, . . .) such that K
(Ξ̂)
i (F ) = tt and ξ̂j = ξj for all j ≤ i .

This is just a transcription of the conclusion of the rule (qltl-ind).
The statement of a Deduction Theorem for the formal system Σq

LTL again requires
some care. The restricted version mentioned in the previous section is also correct
for Σq

LTL.

Example. We will demonstrate the use of Σq
LTL by deriving the existence of an “os-

cillating” sequence of truth values beginning with “true” and changing at every in-
stant. More precisely, we derive the formula

∃u(u ∧�( �u ↔ ¬u))

in Σq
LTL. In this derivation we sometimes write (ltl) to denote valid LTL formulas,

without deriving them formally.

(1) ∃u1(u1 ∧ ��¬u1) (qltl3)
(2) u1 ∧ ��¬u1 → ¬¬u1 ∧ ��¬u1 (taut)
(3) ¬¬u1 ∧ ��¬u1 → ∃u2(¬u2 ∧ ��u2) (qltl1)
(4) u1 ∧ ��¬u1 → ∃u2(¬u2 ∧ ��u2) (prop),(2),(3)
(5) ∃u1(u1 ∧ ��¬u1) → ∃u2(¬u2 ∧ ��u2) (qltl-part),(4)
(6) ∃u2(¬u2 ∧ ��u2) (mp),(1),(5)
(7) �∃u2(¬u2 ∧ ��u2) (nex),(6)
(8) ∃u2

�(¬u2 ∧ ��u2) (prop),(7),(qltl2)
(9) �(¬u2 ∧ ��u2) → �¬u2 ∧ ���u2 (prop),(T15)
(10) �(¬u2 ∧ ��u2) → ∃u2( �¬u2 ∧ ���u2) (qltl1)
(11) ∃u2

�(¬u2 ∧ ��u2) → ∃u2
�¬u2 ∧ ���u2 (qltl-part),(10)

(12) ∃u2
�¬u2 ∧ ���u2 (mp),(8),(11)

(13) �¬u2 ∧ ���u2 →
(ū ∧ ( �ū ↔ ¬ū) → �((u2 ↔ ū) ∧ ( �u2 ↔ ¬u2))) (ltl)

(14) �((u2 ↔ ū) ∧ ( �u2 ↔ ¬u2)) →
∃u �((u ↔ ū) ∧ ( �u ↔ ¬u)) (qltl1)

(15) �¬u2 ∧ ���u2 →
(ū ∧ ( �ū ↔ ¬ū) → ∃u �((u ↔ ū) ∧ ( �u ↔ ¬u))) (prop),(13,(14)

(16) ∃u2( �¬u2 ∧ ���u2) →
(ū ∧ ( �ū ↔ ¬ū) → ∃u �((u ↔ ū) ∧ ( �u ↔ ¬u))) (qltl-part),(15)

(17) ū ∧ ( �ū ↔ ¬ū) → ∃u �((u ↔ ū) ∧ ( �u ↔ ¬u)) (mp),(12),(16)
(18) �∃u1(u1 ∧ ��¬u1) (nex),(1)
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(19) ∃u1
�(u1 ∧ ��¬u1) (prop),(18),(qltl2)

(20) �(u1 ∧ ��¬u1) → �u1 ∧ ���¬u1 (prop),(T15)
(21) �u1 ∧ ���¬u1 → ∃u1( �u1 ∧ ���¬u1) (qltl1)
(22) �(u1 ∧ ��¬u1) → ∃u1( �u1 ∧ ���¬u1) (prop),(20),(21)
(23) ∃u1

�(u1 ∧ ��¬u1) → ∃u1( �u1 ∧ ���¬u1) (qltl-part),(22)
(24) ∃u1( �u1 ∧ ���¬u1) (mp),(19),(23)
(25) �u1 ∧ ���¬u1 →

(¬ū ∧ ( �ū ↔ ¬ū) → �((u1 ↔ ū)∧ ( �u1 ↔ ¬u1))) (ltl)
(26) ¬ū ∧ ( �ū ↔ ¬ū) → ∃u �((u ↔ ū) ∧ ( �u ↔ ¬u)) from (24),(25) in the

same way as (17) from (12),(13)
(27) ( �ū ↔ ¬ū) → ∃u �((u ↔ ū) ∧ ( �u ↔ ¬u)) (prop),(17),(26)
(28) ( �ū ↔ ¬ū) → ∃u((u ↔ ū) ∧�( �u ↔ ¬u)) (qltl-ind),(27)
(29) ∀ū(( �ū ↔ ¬ū) → ∃u((u ↔ ū) ∧�( �u ↔ ¬u))) (qltl-gen),(28)
(30) u1 ∧ ��¬u1 → ( �u1 ↔ ¬u1) (ltl)
(31) u1 ∧ ��¬u1 → ∃u((u ↔ u1) ∧�( �u ↔ ¬u)) (prop),(29),(Tq1)
(32) (u ↔ u1)∧�( �u ↔ ¬u) → (u1 → u ∧�( �u ↔ ¬u)) (taut)
(33) u ∧�( �u ↔ ¬u) → ∃u(u ∧�( �u ↔ ¬u)) (qltl1)
(34) (u ↔ u1) ∧�( �u ↔ ¬u) →

(u1 → ∃u(u ∧�( �u ↔ ¬u))) (prop),(32),(33)
(35) ∃u((u ↔ u1) ∧�( �u ↔ ¬u)) →

(u1 → ∃u(u ∧�( �u ↔ ¬u))) (qltl-part),(34)
(36) u1 ∧ ��¬u1 → ∃u(u ∧�( �u ↔ ¬u)) (prop),(31),(35)
(37) ∃u1(u1 ∧ ��¬u1) → ∃u(u ∧�( �u ↔ ¬u)) (qltl-part),(36)
(38) ∃u(u ∧�( �u ↔ ¬u)) (mp),(1),(37) �

We conclude by listing some further laws that are not hard to derive in Σq
LTL.

We will revisit this extension of LTL in Chap. 4 where its expressive power will be
related with the fixpoint logic LTL+μ considered in Sect. 3.2.

(Tq2) ∀u �A↔ �∀uA,
(Tq3) ∀u�A↔ �∀uA,
(Tq4) ∃u�A↔ �∃uA,
(Tq5) �(A ∨ B)→ ∃u�((A ∧ u) ∨ (B ∧ ¬u)).

3.4 Past Operators

Our next extension starts from the observation that in LTL and its versions investi-
gated so far it is only possible to “speak about the future”. The temporal operators �,
�, until, etc. (in this context also called future operators) relate assertions on future
states (including possibly the present one) to the reference state. It is very natural to
extend the general idea of temporal logic by past operators which allow for “looking
into the past”.

To do this, starting again from LTL, we introduce the “symmetrical” versions of
the basic operators �and �. The new operators are denoted by �and � and called
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weak previous operator and has-always-been operator, respectively. Their informal
meaning is as follows.

�A: “A held in the previous state”,
�A: “A held in all past states (including the present one)”.

More formally, we obtain an extended logic LTL+p the language Lp
LTL of which

results from LLTL by adding the symbols �and � to the alphabet and the clause

• If A is a formula then �A and �A are formulas

to the inductive definition of formulas. The semantics is given by extending the in-
ductive definition of Ki(F ) for a temporal structure K, i ∈ N, and formula F given
in Sect. 2.1 by

• Ki( �A) = tt ⇔ if i > 0 then Ki−1(A) = tt.
• Ki(�A) = tt ⇔ Kj (A) = tt for every j ≤ i .

Example. Let v ∈ V, A ≡ � �v , B ≡ � �¬v , and K be given by:

η0 η1 η2 η3 . . .
v ff ff tt tt . . . (tt forever) . . .

Then we get K0( �v) = tt, K1( �v) = K2( �v) = ff, Ki( �v) = tt for i ≥ 3,
K0( �¬v) = tt, K1( �¬v) = ff, and therefore

Ki(A) = ff for i ≤ 2,

Ki(A) = tt for i ≥ 3,

K0(B) = tt,

Ki(B) = ff for i ≥ 1. �

The symmetry between the pairs of operators �and � on the one hand and �

and � on the other hand is not “exact” since in any state, there are infinitely many
future states but the past is limited by the initial state. The particularity of this state
is expressed by the fact that, for any temporal structure K,

K0( �A) = tt,
K0(�A) = K0(A)

hold for arbitrary A. The first of these equalities comes from the “weak” semantical
definition for �. A dual (“strong”) version is obtained by introducing the strong
previous operator �through the abbreviation

�A ≡ ¬ �¬A

which obviously provides

Ki( �A) = tt ⇔ i > 0 and Ki−1(A) = tt

and
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K0( �A) = ff,
Ki( �A) = Ki( �A) for i > 0

for arbitrary A.
Finally we may introduce a counterpart �−, called once operator, of � by the

abbreviation

�−A ≡ ¬�¬A

which implies

Ki(�−A) = tt ⇔ Kj (A) = tt for some j ≤ i

and

K0(�−A) = K0(A)

for every formula A.
For more illustration, we give again a short list of valid formulas of LTL+p and

prove some few of them.

(Tp1) �A→ ¬ �false,
(Tp2) �¬A→ ¬ �A,
(Tp3) ¬ �A↔ �¬A,
(Tp4) A→ ��A,
(Tp5) A→ ��A,
(Tp6) �(A→ B) ↔ �A→ �B ,
(Tp7) �(A ∧ B) ↔ �A ∧ �B ,
(Tp8) �(A ∧ B) ↔ �A ∧ �B .

Proof of (Tp2), (Tp4), and (Tp8). For any temporal structure K and i ∈ N we have:

Ki( �¬A) = tt ⇒ i > 0 and Ki−1(A) = ff
⇒ Ki( �A) = ff
⇒ Ki(¬ �A) = tt.

Ki(A) = tt ⇒ if i > 0 then Ki(A) = tt
⇒ if i > 0 then Ki−1( �A) = tt
⇒ Ki( ��A) = tt.

Ki( �(A ∧ B)) = tt ⇔ i > 0 and Ki−1(A ∧ B) = tt
⇔ i > 0 and Ki−1(A) = Ki−1(B) = tt
⇔ Ki( �A ∧ �B) = tt. �

LTL+p is more expressive than LTL. Consider the formula �false. According to
the arguments from above we have

K0( �false) = tt
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and since

Ki( �false) = ff for i > 0

is obvious, we obtain

Ki( �false) = tt ⇔ i > 0.

We will see in the next section that this has some connections to initial validity dis-
cussed in Sect. 2.6 and indeed, like in the logic LTL0 introduced there, we have to
face the fact that the typical LTL relationship

F ∪ {A} � B ⇔ F � �A→ B

between implication and consequence does not hold in general in LTL+p but has to
be modified in the following manner.

Theorem 3.4.1. In LTL+p, F ∪ {A} �B if and only if F � �A ∧ �A→ B .

Proof. We first note that for every temporal structure K and i ∈ N we have

�
K
A ⇔ Kj (A) = tt for every j ∈ N

⇔ Kj (A) = tt for every j ≤ i and Kj (A) = tt for every j ≥ i
⇔ Ki(�A ∧ �A) = tt.

So, if F ∪ {A} � B , let K be a temporal structure with �
K
F for every F ∈ F and

i ∈ N. Then Ki(�A ∧ �A) = tt implies �
K
A from which we get �

K
B and, hence,

Ki(B) = tt. This proves the only if part of the theorem.
For the converse, let F � �A ∧ �A → B , K be a temporal structure with �

K
F

for every F ∈ F ∪ {A}, and i ∈ N. Then �
K
A and therefore Ki(�A ∧ �A) = tt.

From the presupposition we get Ki(�A ∧ �A → B) = tt and, by Lemma 2.1.1,
Ki(B) = tt which proves the assertion. �

(A close look at this proof shows that the if part of the LTL relationship still holds
in LTL+p.)

Finally, LTL+p can be axiomatized by a sound and weakly complete formal sys-
tem Σp

LTL which results from ΣLTL by the following extensions.

Additional axioms

(pltl1) �¬A→ ¬ �A,
(pltl2) �(A→ B) → ( �A→ �B),
(pltl3) �A→ A ∧ ��A,
(pltl4) �− �false,
(pltl5) A→ ��A,
(pltl6) A→ ��A.
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Additional rules

(prev) A � �A,
(indpast) A→ B ,A→ �A � A→ �B .

The axioms (pltl1), (pltl2), (pltl3), and both rules are counterparts of the (“proper
temporal”) axioms and rules of ΣLTL. Axiom (pltl4) expresses the existence of an
initial state. Finally, axioms (pltl5) and (pltl6) connect past and future.

As an example of application, we show how to derive the law (Tp1) noted above.

Derivation of (Tp1).

(1) false → ¬A (taut)
(2) �(false → ¬A) (prev),(1)
(3) �false → �¬A (prop),(pltl2),(2)
(4) �A→ ¬ �false (prop),(3) �

We conclude with the obvious remark that the Deduction Theorem does not hold
in LTL+p in the form of Theorem 2.3.3 but has to be modified to

F ∪ {A} �
Σp

LTL
B ⇒ F �

Σp
LTL

�A ∧ �A→ B

which directly mirrors the semantical considerations above. The converse of this
relationship holds as well as the LTL version formulated in Theorem 2.3.4.

3.5 Syntactic Anchoring

In the previous section we already indicated a connection between the expressibility
of past operators and initial validity semantics discussed in Sect. 2.6. If we want
to describe that a formula A holds in the initial state of some temporal structure
this can be achieved by taking LTL with that semantics, i.e., LTL0, or, alternatively,
by choosing LTL+p. As we have seen in Sect. 3.4, a particular feature of the latter
extension is that

Ki( �false) = tt ⇔ i = 0

for every temporal structure K. For the formula

B ≡ �false → A

we then obviously obtain

K0(B) = K0(A),
Ki(B) = tt for every i > 0

and therefore
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�
K
B ⇔ K0(A) = tt.

So, �false → A in fact describes that “A holds in the initial state (of K)”.
We may take this observation to introduce a simpler extension of LTL than by

past operators which allows this “syntactic anchoring” as well. We only enrich the
alphabet of LLTL by an additional symbol init and extend the inductive definition of
formulas of LLTL by the clause

• init is a formula.

We denote the resulting logic by LTL+i and its language by Li
LTL.

The informal meaning of init is to behave like �false in LTL+p, i.e., to hold
exactly in the initial state of a temporal structure. This is formalized by extending
the inductive definition of Ki(F ) for a temporal structure K, i ∈ N, and formula F
to the new formula in the following evident way:

• Ki(init) = tt ⇔ i = 0.

Then, as above, the formula

init → A

describes the initial validity of A (in some K).
There are two characteristic laws for the new formula. The first one is given by

the formula

�¬init

which expresses that init does not hold in non-initial states. Its validity is clear be-
cause of

Ki( �¬init) = Ki+1(¬init) = tt

for every temporal structure K and i ∈ N. The second law is the consequence rela-
tionship

init → �A � A

which captures the property that init holds in initial states. For its proof, let K be a
temporal structure with �

K
init → �A and i ∈ N. Then K0(init → �A) = tt which

means Kj (A) = tt for all j ≥ 0. This implies Ki(A) = tt and shows that �
K
A.

The expressibility of initial validity in LTL+i induces the same remarkable fact
about the relationship between implication and consequence as in LTL0 and in
LTL+p: the equivalence

F ∪ {A} � B ⇔ F � �A→ B

does not hold in general in LTL+i. A simple counterexample (with F = ∅) is given
by
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init → �init � init

which is an instance of the general law just mentioned. However, the formula

�(init → �init) → init

is not valid. Otherwise we would get, e.g.,

K1(�(init → �init) → init) = tt.

As in the example at the beginning of the section we have Ki(init → �init) = tt for
every i > 0 and therefore

K1(�(init → �init)) = tt.

Lemma 2.1.1 may be applied here as in LTL, so together we would get K1(init) = tt
which is an obvious contradiction.

The general relationship above can be saved in LTL+i only with some restric-
tions. One possible modification is

F ∪ {A} � B ⇔ F � �A→ B if A,B and all formulas ofF do not
contain the formula init.

With this restriction, the proof of Theorem 2.1.6 can be transferred verbally. The
crucial point is that Lemma 2.1.5 still holds for formulas without init (but is violated
by init) which can easily be seen from its proof. Clearly, the proof of Theorem 2.1.6
also shows that the “if” part of the relationship still holds without any restriction.

An axiomatization of LTL+i is given by extending the formal system ΣLTL by the
two characteristic laws introduced above, i.e., the additional axiom

(iltl) �¬init

and the additional rule

(init) init → �A � A.

We denote the extended system by Σi
LTL. It is sound as proved by the semantical

arguments above, and it can also be shown to be weakly complete.
A useful derived rule of Σi

LTL is the following additional version of the basic
induction rule (ind) of ΣLTL:

(indinit) init → A,A→ �A � A.

Derivation of (indinit).

(1) init → A assumption
(2) A→ �A assumption
(3) init → �A (ind2),(1),(2)
(4) A (init),(3) �
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As in Sects. 2.6 and 3.4 we conclude with a remark on the Deduction Theorem.
According to the semantical considerations above this no longer holds in LTL+i in
the general form of LTL. A possible modification could be formulated with the re-
striction as in the semantical case. Another, more precise one is given as follows:

F ∪ {A} �B ⇒ F � �A→ B if the derivation of B fromF∪{A}
contains no application of the rule
(init).

Its justification can be taken verbally from the proof of Theorem 2.3.3. The converse
of the general form (i.e., without any restriction) still holds in LTL+i.

3.6 Combinations of Extensions

As indicated already in Sects. 3.2 and 3.3, the extensions presented separately in
the preceding sections can also be combined, and various of such combinations are
quite reasonable. For example, the extension by the formula init can be combined
with binary or fixpoint operators. Propositional quantification could be added to an
extension with binary or past operators. A combination of init with past operators,
on the other hand, would not make much sense, since init is expressible in LTL+p.

In any such combination, a proper formal system is given by adding the respec-
tive axioms and rules introduced in the preceding sections to ΣLTL. For example, the
logic LTL+b+i obtained by extending LTL by the extensions “b” and “i” has the fol-
lowing sound and weakly complete formal system Σbi

LTL (based, e.g., on the operator
atnext).

Axioms

(taut) All tautologically valid formulas,
(ltl1) ¬ �A ↔ �¬A,
(ltl2) �(A→ B) → ( �A→ �B),
(ltl3) �A → A ∧ ��A,
(atnext1) A atnext B ↔ �(B → A) ∧ �(¬B → A atnext B),
(atnext2) ��¬B → A atnext B ,
(iltl) �¬init.

Rules

(mp) A,A→ B � B ,
(nex) A � �A,
(ind) A→ B ,A→ �A �A→ �B ,
(init) init → �A �A.

Furthermore, all temporal logic laws and derived rules of LTL and the respective
extensions hold in the combination. For example, in LTL+b+i the laws (T1)–(T38),
(Tb1)–(Tb29) and the derived rules (prop), (ind1), (ind2), (alw), (som), and (indinit)
are available.
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If past operators are combined with binary or fixpoint operators it would be rea-
sonable to extend the “past aspect” to these operators. For example, enriching LTL+b
by past operators (yielding a logic LTL+b+p) should not only introduce �and � as
discussed in Sect. 3.4 but also the “past analogies” of the binary operators. Such
binary past operators can be introduced, e.g., for the informal phrase

“A held in all preceding states since the last state in which B held”.

Again strict or non-strict, strong or weak interpretations are possible. We consider
only strict versions and fix the following formal definitions.

• Ki(A since B) = tt ⇔ Kj (B) = tt for some j < i and
Kk (A) = tt for every k , j < k < i .

• Ki(A backto B) = tt ⇔ Kj (B) = tt for some j < i and
Kk (A) = tt for every k , j < k < i
or
Kk (A) = tt for every k < i .

The operators since and backto are obvious past analogies of until and unless. In
the same way operators atlast (“A held in the last state in which B held”) and after
(“A held after B held”) reflecting atnext and before can be defined as follows.

• Ki(A atlast B) = tt ⇔ Kj (B) = ff for every j < i or
Kk (A) = tt for the greatest k < i with Kk (B) = tt.

• Ki(A after B) = tt ⇔ for every j < i with Kj (B) = tt
there is some k , j < k < i , with Kk (A) = tt.

The various relationships between the (future) binary operators and their connec-
tions to �, �, and � can be systematically transferred to these new operators and �,
�, �, and �−. We give only a few examples which should be compared with (Tb1)

and (Tb5)–(Tb9).

• A since B ↔ ��−B ∧A backto B ,
• A backto B ↔ B atlast (A→ B),
• A atlast B ↔ B after (¬A ∧ B),
• A after B ↔ ¬(A ∨ B) backto (A ∧ ¬B),
• �A↔ A atlast true,
• �A↔ A ∧A backto false.

A sound and weakly complete axiomatization could be based on one of the op-
erators. Depending on this choice, one of the axioms

(since) A since B ↔ �B ∨ �(A ∧A since B),
(backto) A backto B ↔ �B ∨ �(A ∧A backto B),
(atlast) A atlast B ↔ �(B → A) ∧ �(¬B → A atlast B),
(after) A after B ↔ �¬B ∧ �(A ∨A after B)

being the analogies of (until1), (unless1), (atnext1), and (before1), respectively,
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should be added to the other extending axioms. These are again fixpoint character-
izations and it should be noted that the strong and weak versions since and backto
of “since” now have different characterizations with respect to the involved previous
operators.

Another remarkable fact is that none of the analogies of the respective axioms
(until2), (unless2), (atnext2), and (before2) needs to be taken as a further axiom
here. They can be derived in the formal system Σp

LTL augmented with one of the
above axioms. Observe that for the binary future operators those additional axioms
characterized strong and weak operator versions, i.e., as mentioned in Sect. 3.2, least
or greatest fixpoints, of certain corresponding equivalences. So the derivability of
their analogies also indicates that, in fact, the least and greatest fixpoints in the case
of past operators coincide.

As an example we derive the formula

��¬B → A atlast B

which corresponds to (atnext2). The derivation also makes use of the laws (Tp1),
(Tp7), and (Tp8) listed in Sect. 3.4:

(1) ¬(A atlast B) →
¬ �(B → A) ∨ ¬ �(¬B → A atlast B) (prop),(atlast)

(2) ¬(A atlast B) →
�(B ∧ ¬A) ∨ �(¬B ∧ ¬(A atlast B)) (prop),(prev),(pltl2),(1)

(3) ¬(A atlast B) → ¬ �false (prop),(Tp1),(2)
(4) ¬(A atlast B) ∧ ��¬B → ¬ �false (prop),(3)
(5) ¬(A atlast B) →

( �B ∧ �¬A) ∨ ( �¬B ∧ �¬(A atlast B)) (prop),(Tp8),(2)
(6) �¬B → ¬B ∧ ��¬B (pltl3)
(7) �(�¬B → ¬B ∧ ��¬B) (prev),(6)
(8) ��¬B → �(¬B ∧ ��¬B) (prop),(pltl2),(7)
(9) ��¬B → ¬ �B ∧ ���¬B (prop),(Tp7),(8)
(10) ¬(A atlast B) ∧ ��¬B →

�¬(A atlast B) ∧ ���¬B (prop),(5),(9)
(11) �¬(A atlast B)→ �¬(A atlast B) (prop),(pltl1)
(12) ¬(A atlast B) ∧ ��¬B →

�(¬(A atlast B) ∧ ��¬B) (prop),(Tp7),(10),(11)
(13) ¬(A atlast B) ∧ ��¬B → �¬ �false (indpast),(4),(12)
(14) �− �false → ( ��¬B → A atlast B) (prop),(13)
(15) ��¬B → A atlast B (mp),(pltl4),(14) �

Finally we note that the extensions may also be combined with initial validity
semantics. In this case the axiomatizations have to be adjusted in a similar way to
the one in which ΣLTL0 results from ΣLTL.
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Second Reading

As sketched out in the Second Reading paragraph in Sect. 2.3, temporal logic is a special
branch of modal logic. Its intention is to formalize reasoning about statements “in the flow
of time” and it is particularly designed for applications in computer science.

Capturing aspects of time is quite generally of interest in logics, and another field of pos-
sible applications is encountered by the relationship between logic and (natural) languages.
In fact, there is also a “modal approach” to this topic, called tense logic, which is very close
to temporal logic as described here.

“Basic” tense logic is an extension of classical propositional logic by unary tense opera-
tors for building formulas of the form

�A (“It will always be the case that A”),
�A (“It has always been the case that A”)

(we use, because of the close relationship, the operator symbols of temporal logic) and

�A (“It will be the case that A”),
�−A (“It has been the case that A”)

with the duality relationship that �A can be identified as ¬�¬A and �−A as ¬�¬A.
An extended version adds the binary tense operators until and since, i.e., formulas of the

kind

A until B (“It will be the case that B , and A up to then”),
A since B (“It has been the case that B , and A since then”)

to the basic equipment.
As to the language, this tense logic is “LTL+b+p without nexttime and previous opera-

tors”. The semantics, however, is a “most general one” in the lines of modal logic (and many
investigations then again address the questions of whether and how particular restrictions
can be characterized by formulas of the logic). Adopting the notion of a Kripke structure
K = ({ηι}ι∈K , �) as defined for modal logic in the Second Reading paragraph of Sect. 2.3
(and informally understanding now K as a set of “time points” and � as the relation “earlier
than”) the semantics of the tense operators is given by the clauses

Kι(�A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ,

Kι(�A) = tt ⇔ Kκ(A) = tt for every κ with κ � ι,

Kι(A until B) = tt ⇔ Kκ(B) = tt for some κ with ι � κ and
Kk (A) = tt for every k with ι � k and k � κ

and analogously for the other operators.
The definition for �A is just as in modal logic and taken together, the clauses show that

the semantical difference to temporal logic (as introduced so far) is given by the fact that in
the latter K is fixed to be the set N of natural numbers and � is < (which also means that
� and � are here defined in a “non-reflexive” version).
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4

Expressiveness
of Propositional Linear Temporal Logics

As for every logical language, it is interesting to investigate the “expressive power”
of temporal logic(s). There are various aspects of this notion raising different ques-
tions about, e.g, which temporal operators are expressible by others, how the various
temporal logics compare with each other in their expressive power, how temporal
logic descriptions compare with descriptions in other formalisms, and the like.

In some previous sections we already argued rather casually about “expressibil-
ities”. In this chapter we want to address these questions more systematically. In
particular, we want to compare temporal logics with classical predicate logic and
with certain automata. Both formalisms can serve as “yardsticks” for measuring the
expressiveness of temporal logics.

4.1 LTL and Its Extensions

Temporal logic formulas describe assertions about temporal relationships in state
sequences like the phrase

“If A holds then B holds in all forthcoming states including the present one”

that is formally mirrored by the semantics of the formula A → �B . The basis for
this kind of description is given by the temporal operators, and which relationships
can be described depends on the “expressive power” of the operators. In Chap. 3 we
already noted, among others, the following simple facts concerning this aspect:

• the binary operators of LTL+b are mutually expressible by each other,
• the operator � is expressible by each of these binary operators,
• the operator �is expressible by each of the strict binary operators,
• The operators of LTL+b are expressible by fixpoint operators and by proposi-

tional quantification.

We will, throughout this book, compare the expressiveness of formalisms in var-
ious ways. Actually, the notion of “being expressible by” is not defined in a uni-
form way; it will be determined by different concrete relationships between the
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formalisms. Assertions of the kind recalled here compare various temporal logical
operators and refer to the same “logical framework”. In this particular case we will
define in the following a first adequate formal setting of expressivity notions for such
comparisons. Later we will extend or modify the notions or even use them for other
“similar” relationships.

Let TL1 and TL2 be two temporal logics (with normal semantics) as discussed in
Chaps. 2 und 3. We write TL1 ⊆ TL2, if every formula of TL1 (more precisely: of
any language of TL1) is also a formula of TL2, i.e., if TL2 is an extension of TL1 in
the sense in which this notion was introduced in Sect. 1.4.

A formula A of a temporal logic TL1 is called expressible in the logic TL2 if
there is a formula B in TL2 such that

� A↔ B

holds in a logic TL which is a common extension of both TL1 and TL2 (so A ↔ B
is a formula of TL); in other words, A and B are logically equivalent (in TL). In
general this means that

K
(Ξ)
i (A) = K

(Ξ)
i (B)

holds for every temporal structure K, valuation Ξ , and i ∈ N, and reduces to

Ki(A) = Ki(B)

in the case that TL does not contain propositional variables. We now write

TL1 ≤ TL2

if every formula A of TL1 is expressible in TL2. Obviously we have TL1 ≤ TL2 if
TL1 ⊆ TL2. TL1 and TL2 are called equally expressive, denoted by

TL1 = TL2

if TL1 ≤ TL2 and TL2 ≤ TL1. TL1 is called less expressive than TL2 (or TL2 more
expressive than TL1), denoted by

TL1 < TL2,

if TL1 ≤ TL2 and not TL1 = TL2.
In this terminology the facts from Chap. 3 repeated above can be stated as fol-

lows. For any versions LTL+b and LTL+b′ extending LTL by different binary oper-
ators we have

LTL+b = LTL+b′.

If we denote the sublogic of LTL+b not containing the operator � by LTL+b− then

LTL+b− = LTL+b,
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and analogously in the case of a logic with a strict binary operator and without �and
�. Moreover, we have

LTL+b ≤ LTL+μ and LTL+b ≤ LTL+q.

Additionally, we note that these relationships can be transferred to LTL+b+p. For
example we have

LTLbp = LTL+b+p

where LTLbp denotes the temporal logic with one strict binary future and one strict
binary past operator, but without �and �.

We now will show some more expressiveness results of this kind about the var-
ious extensions of LTL. For some of the proofs, we recall a notation introduced in
Sect. 2.1: for any temporal structure K = (η0, η1, η2, . . . ), the “suffix structure”
(ηi , ηi+1, ηi+2, . . . ) is denoted by Ki .

In Sect. 3.1 we remarked already that the binary operators of LTL+b cannot be ex-
pressed in LTL. To show this formally, let V be some set of propositional constants.
We define, for three arbitrary states η, η′, η′′ (with respect to V) and m,n ∈ N, the
two temporal structures

K(m,n,1) = (η, . . . , η
︸ ︷︷ ︸

m+1

, η′, η, . . . , η
︸ ︷︷ ︸

n

, η′′, η, . . . , η
︸ ︷︷ ︸

n

, η′, η, . . . , η
︸ ︷︷ ︸

n

, η′′, . . .),

K(m,n,2) = (η, . . . , η
︸ ︷︷ ︸

m+1

, η′′, η, . . . , η
︸ ︷︷ ︸

n

, η′, η, . . . , η
︸ ︷︷ ︸

n

, η′′, η, . . . , η
︸ ︷︷ ︸

n

, η′, . . .)

for V. Observe in particular that if n ≥ m + 1 then

(K(m,n,1))i = (K(m,n,2))i+n+1 and (K(m,n,2))i = (K(m,n,1))i+n+1

hold for every i ∈ N.

Lemma 4.1.1. Let m,n ∈ N with n ≥ m + 1 and let A be formula of LLTL(V) con-

taining at most m occurrences of the operator �. Then K
(m,n,1)
0 (A) = K

(m,n,2)
0 (A).

Proof. Let m , n , and A be as described. The proof runs by structural induction on
A. (We write K(1) for K(m,n,1) and K(2) for K(m,n,2).)

1. A ≡ v ∈ V: K
(1)
0 (v) = η(v) = K

(2)
0 (v).

2. A ≡ false: K
(1)
0 (false) = ff = K

(2)
0 (false).

3. A ≡ B → C : Applying the induction hypothesis we have

K
(1)
0 (B → C ) = tt ⇔ K

(1)
0 (B) = ff or K

(1)
0 (C ) = tt

⇔ K
(2)
0 (B) = ff or K

(2)
0 (C ) = tt

⇔ K
(2)
0 (B → C ) = tt.
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4. A ≡ �B : Then m ≥ 1, and the induction hypothesis can be applied to (K(1))1,
(K(2))1, and B . With Lemma 2.1.5 we obtain

K
(1)
0 ( �B) = K

(1)
1 (B)

= (K(1))10(B)

= (K(2))10(B)

= K
(2)
1 (B)

= K
(2)
0 ( �B).

5. A ≡ �B : Using the above remark and applying again Lemma 2.1.5 we have

K
(1)
0 (�B) = ff ⇒ K

(1)
i (B) = ff for some i ∈ N

⇒ (K(1))i0(B) = ff for some i ∈ N

⇒ (K(2))i+n+1
0 (B) = ff for some i ∈ N

⇒ K
(2)
0 (�B) = ff

and the opposite direction is obtained analogously. �

Lemma 4.1.1 informally means that an LTL formula cannot “distinguish” two suit-
ably chosen temporal structures of the above shape. Binary operators can do this; so
we obtain the desired result.

Theorem 4.1.2. LTL < LTL+b.

Proof. Since LTL ≤ LTL+b is trivial it suffices to show that there is no LTL formula
A over some V with v1, v2 ∈ V such that Ki(A) = Ki(v1 atnext v2) for every
temporal structure K for V and i ∈ N. Assume, on the contrary, that such an A
exists and let m be the number of occurrences of the operator �in A. Consider the
temporal structures K(1) = K(m,m+1,1) and K(2) = K(m,m+1,2) with states η, η′, η′′

such that

η(v2) = ff,
η′(v1) = η′(v2) = tt,
η′′(v1) = ff, η′′(v2) = tt.

Then we have

K
(1)
0 (v1 atnext v2) = tt and K

(2)
0 (v1 atnext v2) = ff,

and since K
(1)
0 (A) = K

(2)
0 (A) by Lemma 4.1.1, we obtain the contradiction that

K
(i)
0 (A) �= K

(i)
0 (v1 atnext v2)

for one of the temporal structures K(i), i = 1, 2. �
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In another remark in Sect. 3.2 we announced that we will prove that LTL+μ is
more expressive than LTL+b (and, hence, LTL). To show this consider the formula

νu(A ∧ ��u)

of LTL+μ (where u does not occur in A). We abbreviate this formula by

even A

using a new temporal operator even with the informal meaning “at all states with
even distance”. In fact, an immediate transfer of the proof of the equality ��A�Ξ

K =
�νu(A ∧ �u)�Ξ

K in an example in Sect. 3.2 shows that

�νu(A ∧ ��u)�Ξ
K = {i ∈ N | K(Ξ)

i+2k (A) = tt for every k ∈ N}

for any K and Ξ , and this means

K
(Ξ)
i (even A) = tt ⇔ K

(Ξ)
i+2k (A) = tt for every k ∈ N.

At a first glance the formula even A might appear to be expressible in LTL (if A
is an LTL formula), e.g., by

A ∧�(A↔ �¬A).

This formula, however, asserts that A is true precisely at the states with even distance,
and is false at the remaining states; it is therefore stronger than even A. Another
candidate could be

A ∧�(A→ ��A)

asserting that A is true at all states with even distance. However, if A also happens
to be true at some state with odd distance, it will have to be true at all future states
with odd distance, too, which is again stronger than what even A asserts.

In fact, even cannot be expressed in LTL+b. To show this, let V be a set of
propositional constants and v ∈ V. For every k ∈ N we define the temporal structure
K(k) = (η(k)

0 , η
(k)
1 , η

(k)
2 , . . .) for V by

η
(k)
i (v) = ff ⇔ i = k ,

η
(k)
i (v ′) = ff for all v ′ ∈ V other than v

(for every i ∈ N).

Lemma 4.1.3. For every formula A of Lb
LTL(V) there is some l ∈ N such that

K
(k)
0 (A) = K

(l)
0 (A) for every k ≥ l .

Proof. Observe first that for all n ∈ N, we have K(n) = (K(n+1))1 by definition of
the structure K. Using Lemma 2.1.5 it follows that
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K
(n+1)
1 (A) = (K(n+1))10(A) = K

(n)
0 (A)

for every formula A of Lb
LTL(V).

The proof of the lemma proceeds by structural induction on A. We adopt unless
as binary operator; since the operators � and �can be expressed in this logic, we
need not include them in the inductive proof.

1. A ∈ V: If A ≡ v then K
(k)
0 (A) = tt for every k ≥ 1 and if A �≡ v then

K
(k)
0 (A) = ff for every k ∈ N. Thus, with l = 1 we have in both cases that

K
(k)
0 (A) = K

(l)
0 (A) for k ≥ l .

2. A ≡ false: Because of K
(k)
0 (false) = ff for every k ∈ N, we may choose l = 0.

3. A ≡ B → C : By the induction hypothesis the property to be proved holds for
B and C with numbers lB and lC , respectively. Let l = max(lB , lC ). For every
k ≥ l we then have

K
(k)
0 (B → C ) = tt ⇔ K

(k)
0 (B) = ff or K

(k)
0 (C ) = tt

⇔ K
(l)
0 (B) = ff or K

(l)
0 (C ) = tt

⇔ K
(l)
0 (B → C ) = tt.

4. A ≡ B unless C : Let l = max(lB , lC ) where lB and lC are given by the induc-
tion hypothesis for B and C , respectively. We show that K

(k)
0 (A) = K

(l)
0 (A) for

every k ≥ l + 1 by induction on k .
The case k = l + 1 is trivial. For the inductive step, we observe the following
chain equivalences:

K
(k+1)
0 (B unless C ) = tt

⇔ K
(k+1)
1 (C ) = tt or

K
(k+1)
1 (B) = K

(k+1)
1 (B unless C ) = tt (law (Tb14))

⇔ K
(k)
0 (C ) = tt or

K
(k)
0 (B) = K

(k)
0 (B unless C ) = tt (above observation)

⇔ K
(l)
0 (C ) = tt or

K
(l)
0 (B) = K

(k)
0 (B unless C ) = tt (major ind. hyp.)

⇔ K
(l)
0 (C ) = tt or

K
(l)
0 (B) = K

(l)
0 (B unless C ) = tt (minor ind. hyp.)

⇔ K
(l+1)
1 (C ) = tt or

K
(l+1)
1 (B) = K

(l+1)
1 (B unless C ) = tt (above observation)

⇔ K
(l)
0 (B unless C ) = tt (law (Tb14)) �

Lemma 4.1.3 informally means that any formula of Lb
LTL(V) can distinguish only

finitely many of the temporal structures K(k) and this is the key argument for the
desired non-expressibility result.

Theorem 4.1.4. LTL+b < LTL+μ.
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Proof. Assume that there is a formula A of Lb
LTL(V) (for some V with v ∈ V)

such that Ki(A) = Ki(even v) for every temporal structure K for V and i ∈ N.
(We understand LTL+b as a sublogic of LTL+μ and write Ki instead of K

(Ξ)
i since

neither A nor even v contain free propositional variables.) This assumption implies
K

(k)
0 (A) = K

(k)
0 (even v) for every k ∈ N. Then by Lemma 4.1.3 there is an l ∈ N

such that

K
(k)
0 (even v) = K

(k)
0 (A) = K

(l)
0 (A)

holds for every k ≥ l . This means

K
(k)
0 (even v) = K

(k ′)
0 (even v)

for all k , k ′ ≥ l and is a contradiction to the fact that, according to the definition of
the temporal structures K(k), we have

K
(k)
0 (even v) = tt ⇔ k is an odd number.

Thus, even v is not expressible in LTL+b; together with the trivial observation that
LTL+b ≤ LTL+μ we obtain LTL+b < LTL+μ. �

The operator even is also expressible in LTL+q: it is easy to see that the formula
even A can be expressed by

∃u(u ∧�(u ↔ �¬u) ∧�(u → A))

(where u is a propositional variable that does not occur free in A). In this formulation,
the “auxiliary” propositional variable u is constrained to hold precisely at the instants
with even distance from the point of evaluation; hence A has to be true at all these
instants. Another, more concise but perhaps less intuitive expression of even A in
LTL+q is given by the formula

∃u(u ∧�(u → A ∧ ��u)).

More generally, the extensions LTL+μ and LTL+q are equally expressive. We
now show that LTL+μ ≤ LTL+q and leave the proof of the other direction for
Sect. 4.4. As in previous proofs of this kind, we show that the μ operator can be
expressed by a formula of LTL+q.

Lemma 4.1.5. Assume that A is a formula of Lq
LTL and u ∈ V a propositional vari-

able all of whose occurrences in A are of positive polarity. Then

μuA↔ ∀u(�(A→ u) → u)

is valid in LTL+q+μ.
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Proof. For an arbitrary temporal structure K and valuation Ξ , recall from Sect. 3.2
that �μuA�Ξ

K = μΥA for the mapping

ΥA :
{

2N → 2N

M �→ �A�
Ξ[u:M]
K .

It is therefore enough to prove that

�∀u(�(A→ u) → u)�Ξ
K = μΥA.

For the inclusion “⊆”, assume that i ∈ �∀u(�(A → u) → u)�Ξ
K . Considering the

valuation Ξ ′ = Ξ[u:μΥA], we have in particular i ∈ ��(A → u) → u�Ξ′

K . We
claim that i ∈ ��(A → u)�Ξ′

K ; hence i ∈ �u�Ξ′

K = Ξ ′(u) = μΥA, and the inclusion
follows.

To prove the claim, assume that j ∈ �A�Ξ′

K for some j ≥ i . By definition of ΥA

and of Ξ ′, this means that j ∈ ΥA(μΥA). From the assumptions on the polarity of
the occurrences of u in A, Lemma 3.2.2 and Theorem 3.2.1 imply ΥA(μΥA) = μΥA;
hence j ∈ μΥA = �u�Ξ′

K , which completes the proof.

For the proof of the inclusion “⊇”, assume that

i ∈ μΥA =
⋂
{M ⊆ N | ΥA(M) ⊆ M}.

We must show that i ∈ �∀u(�(A → u) → u)�Ξ
K , i.e., i ∈ ��(A → u) → u�

Ξ[u:M]
K

for all M ⊆ N. Assume therefore that M ⊆ N is such that i ∈ ��(A → u)�Ξ[u:M]
K ;

we need to prove that i ∈ �u�
Ξ[u:M]
K = M. From the assumption, we know that

(∗) for all j ≥ i , if j ∈ �A�
Ξ[u:M]
K then j ∈ M.

Consider now the set M
′ = M ∪ {0, . . . , i − 1}. Because of Lemma 3.2.2 (which

naturally extends to Lq
LTL) and the assumption that all occurrences of u in A are of

positive polarity, it follows that �A�
Ξ[u:M]
K ⊆ �A�

Ξ[u:M′]
K . Also, for all j ≥ i we find

that

j ∈ �A�
Ξ[u:M′]
K

⇔ K
(Ξ[u:M′])
j (A) = tt

⇔ (Kj )((Ξ[u:M′])j )
0 (A) = tt (by Lemma 3.3.1)

⇔ (Kj )((Ξ[u:M])j )
0 (A) = tt (because (Ξ[u : M

′])j = (Ξ[u : M])j )

⇔ K
(Ξ[u:M])
j (A) = tt (by Lemma 3.3.1)

⇔ j ∈ �A�
Ξ[u:M]
K .

Now, it is easy to see that ΥA(M′) ⊆ M
′: for j < i , we have j ∈ M

′ anyway, and

for j ≥ i , if j ∈ ΥA(M′) = �A�
Ξ[u:M′]
K then we have just shown that j ∈ �A�

Ξ[u:M]
K ,

and (∗) yields that j ∈ M ⊆ M
′.

From the definition of μΥA it now follows immediately that μΥA ⊆ M
′, and the

assumption i ∈ μΥA shows that i ∈ M
′; hence also i ∈ M by definition of M

′,
which completes the proof. �



4.1 LTL and Its Extensions 109

Theorem 4.1.6. LTL+μ ≤ LTL+q.

Proof. By Lemma 4.1.5, μuA can be considered as an abbreviation for a formula of
LTL+q whenever it is a legal formula of LTL+μ. �

Summarizing the above results we have so far established the following chain
comparing the expressiveness of various propositional linear temporal logics:

LTL < LTL+b < LTL+μ ≤ LTL+q.

The logics in this chain do not contain past operators. Comparing past and future
operators we have the following basic relationship.

Theorem 4.1.7. LTL < LTL+p.

Proof. Let V be a set of propositional constants, v ∈ V. For the temporal struc-
tures K = (η0, η1, η2, . . .) and K′ = (η′

0, η
′
1, η

′
2, . . .) for V where η0(v) �= η′

0(v),
ηi(v) = η′

i(v) for i > 0, and ηi(v ′) = η′
i(v

′) for i ∈ N and all other v ′ ∈ V
we have K1( �v) �= K′

1( �v); but K1(A) = K′
1(A) for every formula A of LLTL(V)

by Lemma 2.1.5. No such formula can therefore be logically equivalent to �v , and
together with the trivial LTL ≤ LTL+p this proves the claim. �

It is easy to see from the proof that this result extends also to LTL+b < LTL+b+p.
We said already at the beginning of this section that we will compare the ex-

pressiveness of formalisms in various ways. The expressibility notions defined there
refer to normal semantics. Alternative measures are provided if the notions are based
on initial validity semantics: for logics TL1 and TL2, a formula A of TL1 is called
initially expressible in TL2 if there is a formula B in TL2 such that

0� A↔ B

holds in a logic TL which is a common extension of both TL1 and TL2. Because of
Theorem 2.6.4 which we proved in Sect. 2.6 for LTL and which carries over to the
extensions “b”, “μ”, and “q” as well, the new notions and the corresponding results
for these logics are the same as before. For logics with past operators, however,
Theorem 2.6.4 does not hold in general and different results may arise for “initial
expressiveness”. In fact, writing =0 instead of = to indicate the underlying initial
validity semantics, we have

LTL+b =0 LTL+b+p

which will follow immediately from considerations in the subsequent section. Many
verification tools that implement temporal logic are based on initial validity, and
the equal expressive power of LTL+b and LTL+b+p under this semantics has been
considered as a justification for the omission of past operators from the temporal
logics that these tools implement. On the other hand, past operators may still be
useful because they often help to make formulas more readable and concise.



110 4 Expressiveness of Propositional Linear Temporal Logics

The expressiveness notions considered so far are based on logical equivalence.
One particular aspect of logically equivalent (“mutually expressible”) formulas is
that they “describe the same temporal structures”. (We used this phrase already a
few times in previous discussions.) We call this relationship between formulas A
and B model equivalence, defined by

�
K
A ⇔ �

K
B or

0�
K
A ⇔ 0�

K
B

for every temporal structure K, depending on the underlying semantics. In the case of
initial validity semantics, logical and model equivalence are actually the same. With
normal semantics, however, model equivalence is weaker than logical equivalence
which can trivially be seen by means of the formulas A and �A: we have

�
K
A ⇔ �

K
�A

for every K, but A and �A are clearly not logically equivalent.
So, in general, model equivalence is another notion for capturing the expressive

power of temporal logics. It will be of special interest for our intended applications
and we will come back to it in Sect. 6.1.

4.2 Temporal Logic and Classical First-Order Logic

Relationships between the truth of assertions along the “flow of time” can also be
stated in a language of first-order logic. In such a representation, the present state (or
“point in time”) is expressed as a “time parameter”. The propositional constants of
temporal logic therefore become monadic predicate symbols, and time points can be
compared using a “less-than” relation. For example, the formulas

∀x (x0 ≤ x → v(x )),
∀x (x0 < x → v1(x ) ∨ ∃y(x0 < y ∧ y ≤ x ∧ v2(y)))

assert respectively that v holds at all states from the present state x0 onwards and
that v1 holds in all future states unless v2 becomes true; they intuitively correspond
to the temporal logic formulas

�v and v1 unless v2.

We will now make this correspondence more precise for the logic LTLbp that
contains one strict binary future and one strict binary past operator, say until and
since, but that does not contain �, �, or their past-time counterparts as primitive op-
erators; recall from Sect. 4.1 that this logic is as expressive as LTL+b+p. Thereafter,
we will consider the fragment without past operators.

For a set V of propositional constants, we define the signature SIGV = (S,F,P)
where

• S = {TIME},
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• F = ∅,
• P = {<(TIME TIME)} ∪ {v (TIME) |v ∈ V}.
With a given temporal structure K = (η0, η1, η2, . . .) for V we associate a (first-
order) structure SK for SIGV where |SK| = |SK|TIME = N, the predicate symbol
< is interpreted as the “less than” relation on N, and the interpretations of the unary
predicate symbols v are obtained from the states ηi of K:

vSK(i) = ηi(v) for i ∈ N.

It is straightforward to define a translation

FOL : LLTLbp(V) → LFOL(SIGV)

that associates a formula in the first-order language LFOL(SIGV) induced by the
signature SIGV with every formula of the language LLTLbp(V) of LTLbp. (For sim-
plicity, we occasionally “abuse” in this chapter the denotations of languages to de-
note their sets of formulas.) The translation is defined by induction on the structure
of temporal formulas as follows; it ensures that FOL(A) contains at most one free
variable x0 that represents the current state:

FOL(v) = v(x0) for v ∈ V,
FOL(false) = false,
FOL(A→ B) = FOL(A) → FOL(B),
FOL(A until B) = ∃x (x0 < x ∧ (FOL(B))x0(x )

∧ ∀y(x0 < y ∧ y < x → (FOL(A))x0(y))),
FOL(A since B) = ∃x (x < x0 ∧ (FOL(B))x0(x )

∧ ∀y(x < y ∧ y < x0 → (FOL(A))x0(y))).

The structure of this translation resembles the semantic definition of the temporal
connectives. It preserves the meaning of formulas in the following sense.

Theorem 4.2.1. Let K be a temporal structure for V and let SK be the first-order
structure corresponding to K. For any formula A of LLTLbp(V), any i ∈ N, and any
variable valuation ξ such that ξ(x0) = i :

Ki(A) = S
(ξ)
K (FOL(A)).

Proof. The assertion is proved by structural induction on the formula A.

1. A ≡ v ∈ V: Ki(v) = ηi(v) = vSK(i) = S
(ξ)
K (v(x0)) = S

(ξ)
K (FOL(v)).

2. A ≡ false: Ki(false) = ff = S
(ξ)
K (false) = S

(ξ)
K (FOL(false)).

3. A ≡ B → C : Using the induction hypothesis we obtain

Ki(B → C ) = tt ⇔ Ki(B) = ff or Ki(C ) = tt

⇔ S
(ξ)
K (FOL(B)) = ff or S

(ξ)
K (FOL(C )) = tt

⇔ S
(ξ)
K (FOL(B → C )) = tt.
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4. A ≡ B until C : Assume that Ki(B until C ) = tt and choose some j > i such
that Kj (C ) = tt and Kk (B) = tt for all k where i < k < j . By the induction

hypothesis we know that S
(ξ̄)
K (FOL(C )) = tt for every variable valuation ξ̄ such

that ξ̄(x0) = j , and since x0 is the only free variable in FOL(C ), it also follows

that S
(ξ′)
K ((FOL(C ))x0(x )) = tt for every valuation ξ′ such that ξ′(x ) = j .

Similarly, it follows that S
(ξ′′)
K ((FOL(B))x0(y)) = tt for every valuation ξ′′

where i < ξ′′(y) < j .
Thus, if ξ is a variable valuation such that ξ(x0) = i , we may choose ξ′ ∼x ξ
where ξ′(x ) = j . We then clearly have ξ′(x0) = i < j = ξ′(x ), and the above

arguments show that S(ξ′)
K ((FOL(C ))x0(x )) = tt and that for all ξ′′ ∼y ξ′ where

i = ξ′′(x0) < ξ′′(y) < ξ′′(x ) = j , it holds that S
(ξ′′)
K ((FOL(B))x0(y)) = tt.

Together we obtain S
(ξ)
K (FOL(B until C )) = tt.

Conversely, assume that S
(ξ)
K (FOL(B until C )) = tt, and so it follows that

S
(ξ′)
K (x0 < x ∧ (FOL(C ))x0(x ) ∧

∀y(x0 < y ∧ y < x → (FOL(B))x0(x ))) = tt

for some ξ′ such that ξ′ ∼x ξ. Again using the induction hypothesis and the fact
that FOL(B) and FOL(C ) contain at most the free variable x0, we obtain that
Kξ′(x)(C ) = tt, where ξ′(x ) > ξ′(x0) = i , and that Kk (B) = tt for every k
where ξ′(x0) < k < ξ′(x ). This argument establishes Ki(B until C ) = tt.

5. A ≡ B since C : This case runs “symmetrically” as for B until C . �

Adapting the notions from Sect 4.1 in an obvious way, Theorem 4.2.1 asserts that
FOL (based on the signature SIGV) is at least as expressive as LTLbp, and a fortiori
at least as expressive as LTL. On the other hand, it turns out that every formula of
LFOL(SIGV) with a single free variable can be expressed in temporal logic. Because
of this result, temporal logic is often said to be expressively complete (with respect
to first-order logic).

For the proof of expressive completeness, we introduce some additional con-
cepts. A formula A of LTLbp is said to be

• a pure future formula if A is of the form B until C where neither B nor C contain
an occurrence of since,

• a pure past formula if A is of the form B since C where neither B nor C contain
an occurrence of until,

• a present formula if A contains no temporal operator,
• separated if A is a combination of pure future, pure past, and present formulas

by the operator→.

As the key result it turns out that LTLbp is separable: every formula is logically
equivalent to some separated formula.

Example. We claim the equivalence

� ��(A ∧ ��B) ↔ ��B ∧ B ∧ (B until A).
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The right hand side of this equivalence is (the abbreviation of) a separated formula:
its first conjunct is a pure past formula, its second conjunct is a present formula, and
its third conjunct is a pure future formula. For the proof of the equivalence, consider
an arbitrary temporal structure K and i ∈ N. We then have

Ki( ��(A ∧ ��B)) = tt
⇔ there is j > i such that Kj (A) = tt and Kk (B) = tt for all k < j
⇔ there is j > i such that Kj (A) = tt

and Kk (B) = tt for all k ≤ i and Kk (B) = tt for all k where i < k < j
⇔ Kk (B) = tt for all k < i and Ki(B) = tt and there is j > i such that

Kj (A) = tt and Kk (B) = tt for all k where i < k < j
⇔ Ki( ��B) = tt and Ki(B) = tt and Ki(B until A) = tt
⇔ Ki( ��B ∧ B ∧ (B until A)) = tt. �

A rather tedious enumeration of all possible cases establishes the general result.

Lemma 4.2.2. For every formula A of LLTLbp(V) there is a separated formula B
such that � A↔ B .

Proof. Let us first consider a formula F ≡ A until B where A or B contain a
subformula F ′ ≡ C since D that is not in the scope of a temporal operator. Let A⊥

and A� denote the formula that results from A by replacing all such occurrences of
F ′ by false and true, respectively, and similarly define B⊥ and B�. By propositional
reasoning we have the valid equivalences

A↔ ((F ′ ∨A⊥) ∧ (¬F ′ ∨A�)) and B ↔ ((F ′ ∧ B�) ∨ (¬F ′ ∧ B⊥)).

Substituting in F , we find that

F ↔ ((F ′ ∨A⊥) ∧ (¬F ′ ∨A�)) until ((F ′ ∧ B�) ∨ (¬F ′ ∧ B⊥)),

is valid and applying distribution laws for the until operator we finally obtain the
validity of

F ↔ ((F ′ ∨A⊥) until (F ′ ∧ B�) ∨ (F ′ ∨A⊥) until (¬F ′ ∧ B⊥)) ∧
((¬F ′ ∨A�) until (F ′ ∧ B�) ∨ (¬F ′ ∨A�) until (¬F ′ ∧ B⊥)).

For each of the four main subformulas of the right-hand side, Fig. 4.1 gives an
equivalent formula where F ′ no longer occurs in the scope of an until operator, and
no additional nestings of until and since have been introduced. (To understand the
long formulas in Fig. 4.1, recall that until and since bind stronger than ∧ and ∨.)

An analogous transformation can be applied when until occurs in the scope of
since. Indeed, the equivalences of Fig. 4.1 remain valid when until and since are
exchanged.

Carrying out a single replacement along these lines eliminates one degree of
nesting of since inside until or vice versa, and repeated transformations therefore
produce an equivalent separated formula. �
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(C since D ∨ A) until (C since D ∧ B) ↔
(C until B ∧ (D ∨ (C ∧ C since D))) ∨
((C ∨ D ∨ ¬(¬D until ¬A)) until (D ∧ C until B) ∧

(¬(¬D until ¬A) ∨ D ∨ (C ∧ C since D)))

(C since D ∨ A) until (¬(C since D) ∧ B) ↔
((A ∧ ¬D) until B ∧ ¬D ∧ (¬C ∨ ¬(C since D))) ∨
((C ∨ D ∨ A until (B ∨ (A ∧ D))) until (¬C ∧ ¬D ∧ (A ∧ ¬D) until B) ∧

(A until (A ∧ D) ∨ D ∨ (C ∧ C since D)))

(¬(C since D) ∨ A) until (C since D ∧ B) ↔
((A ∧ C ) until B ∧ (D ∨ (C ∧ C since D))) ∨
((¬D ∨ A until (B ∨ (A ∧ ¬C ∧ ¬D))) until (D ∧ (A ∧ C ) until B) ∧

(A until (A ∧ ¬C ∧ ¬D) ∨ (¬D ∧ (¬C ∨ ¬(C since D)))))

(¬(C since D) ∨ A) until (¬(C since D) ∧ B) ↔
(¬(C until ¬A) ∨ (¬D ∧ (¬C ∨ ¬(C since D)))) ∧
(¬((C ∨ D ∨ ¬(¬D until B)) until (D ∧ C until ¬A)) ∨

(¬D until B ∧ ¬D ∧ ¬D ∧ (¬C ∨ ¬(C since D)))) ∧
(true until (¬C ∧ ¬D ∧ (¬D until B)) ∨

(¬D until B ∧ ¬D ∧ (¬C ∨ ¬(C since D))))

Fig. 4.1. Separating until and since

Based on the separability of LTLbp, we can now show the announced expressive
completeness result.

Theorem 4.2.3. For every formula A of LFOL(SIGV) with at most one free vari-
able x0 there is a formula B of LLTLbp(V) such that for any temporal structure K
and i ∈ N,

Ki(B) = S
(ξ)
K (A)

where SK is the first-order structure corresponding to K and ξ(x0) = i .

Proof. The theorem is proved by structural induction on the formula A. For A and
x0 we define a formula LTL(A, x0) of LLTLbp(V) that satisfies the assertion of the
theorem.

1. A is an atomic formula: If A ≡ v(x0) where v is a monadic predicate symbol
corresponding to v ∈ V, then the definition LTL(A, x0) = v clearly suffices.
For A ≡ x0 = x0 we take LTL(A, x0) = true, and if A ≡ x0 < x0 then we let
LTL(A, x0) = false. The first-order language LFOL(SIGV) does not admit any
other atomic formulas with the single free variable x0.

2. For A ≡ false, we take LTL(A, x0) = false.
3. If A ≡ B → C , we define LTL(A, x0) = LTL(B , x0) → LTL(C , x0), and the

assertion follows with the help of the induction hypothesis.
4. For A ≡ ∃xB , we may assume without loss of generality that x0 �≡ x , that

B does not contain subformulas of the form x0 = x0 or x0 < x0 (these can
equivalently be replaced by true or false), and that x0 does not occur in B as
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a bound variable. We may further assume that B does not contain any atomic
subformulas v(x0), for some v ∈ V, because such formulas can be moved out
of the scope of the quantifier using equivalences such as

∃x (C ∧ v(x0)) ↔ v(x0) ∧ ∃xC .

Therefore, the only occurrences of x0 in B are of the forms x0 < y , x0 = y
or y < x0 where y is some variable (either x or a variable bound in some subfor-
mula of B ). We temporarily introduce auxiliary unary predicate symbols FUx0 ,
NOx0 , and PAx0 (for “future”, “now”, and “past”), and replace every occurrence
of x0 < y by FUx0(y), of x0 = y by NOx0(y), and of y < x0 by PAx0(y).
The resulting formula B contains the single free variable x , and by the induction
hypothesis we find a formula LTL(B , x ) of LLTLbp(V ∪ {FUx0 ,NOx0 ,PAx0})
such that for any temporal structure K′ and any j ∈ N,

K′
j (LTL(B , x )) = S

(ξ′)
K′ (B)

where ξ′(x ) = j . In particular, consider K′ = (η′
0, η

′
1, η

′
2, . . .) where

η′
j (FUx0) = tt ⇔ i < j

η′
j (NOx0) = tt ⇔ i = j

η′
j (PAx0) = tt ⇔ j < i

and η′
j (v) = ηj (v) for all v ∈ V. Obviously, this choice of K′ then ensures that

S
(ξ′)
K (B) = S

(ξ′)
K′ (B) = K′

j (LTL(B , x ))

whenever ξ′(x ) = j . Observing moreover that ∃xB can equivalently be replaced
by

∃x (x < x0 ∧ B) ∨ Bx (x0) ∨ ∃x (x0 < x ∧ B),

it follows that

S
(ξ)
K (∃xB) = K′

i(C )

where

C ≡ ��−LTL(B , x ) ∨ LTL(B , x ) ∨ ��LTL(B , x ).

Since LTLbp is separable by Lemma 4.2.2, there exists a separated formula C
of LTLbp such that � C ↔ C ; hence also

S
(ξ)
K (∃xB) = K′

i(C ).

C still contains the auxiliary propositional constants FUx0 , NOx0 , and PAx0 .
We define LTL(A, x0) to be the formula that results from C by replacing
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• FUx0 by true in all pure future subformulas of C ,
• NOx0 by true in all present subformulas of C ,
• PAx0 by true in all pure past subformulas of C ,
and all other occurrences of FUx0 , NOx0 , and PAx0 by false. With these replace-
ments, we obtain that

Ki(LTL(A, x0)) = K′
i(C ) = S

(ξ)
K (∃xB)

which completes the proof. �

Example. We illustrate the construction of the above proof at the hand of the FOL
formula

∃x (x0 < x ∧ v2(x ) ∧ ¬∃y(x0 < y ∧ y < x ∧ ¬v1(y))).

The first replacements of x0 < x result in the formula

∃x (FUx0(x ) ∧ v2(x ) ∧ ¬∃y(B))

where

B ≡ FUx0(y) ∧ y < x ∧ ¬v1(y)

and we continue with the construction of LTL(∃yB , x ). We first have to replace the
subformula y < x , resulting in

∃y(FUx0(y) ∧ PAx (y) ∧ ¬v1(y))

where the predicate symbol PAx corresponds to the variable x . This formula can
now be translated to temporal logic, yielding

��−(FUx0 ∧ PAx ∧ ¬v1) ∨ (FUx0 ∧ PAx ∧ ¬v1) ∨ ��(FUx0 ∧ PAx ∧ ¬v1)

which is already in separated form. It remains to eliminate the auxiliary propositional
constant PAx , from which we obtain

��−(FUx0 ∧ true ∧ ¬v1) ∨ (FUx0 ∧ false ∧ ¬v1) ∨ ��(FUx0 ∧ false ∧ ¬v1)

which can be further simplified to

��−(FUx0 ∧ ¬v1).

Continuing with the translation of the main formula, we obtain

��−(FUx0 ∧ v2 ∧ ¬ ��−(FUx0 ∧ ¬v1)) ∨
(FUx0 ∧ v2 ∧ ¬ ��−(FUx0 ∧ ¬v1)) ∨
��(FUx0 ∧ v2 ∧ ¬ ��−(FUx0 ∧ ¬v1)).

The first disjunct is a pure past formula, and the second disjunct is a combination of
present and pure past formulas. It remains to separate the third disjunct, which (up
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to trivial transformations) is just of the shape of the left-hand side of the equivalence
considered in a previous example. We thus obtain the separated form

��−(FUx0 ∧ v2 ∧ ¬ ��−(FUx0 ∧ ¬v1)) ∨
(FUx0 ∧ v2 ∧ ¬ ��−(FUx0 ∧ ¬v1)) ∨
��(FUx0 → v1) ∧ (FUx0 → v1) ∧ ((FUx0 → v1) until (FUx0 ∧ v2))

in which we now replace FUx0 by true and false as appropriate, obtaining

��−(false ∧ v2 ∧ ¬ ��−(false ∧ ¬v1)) ∨
(false ∧ v2 ∧ ¬ ��−(false ∧ ¬v1)) ∨
��(false → v1) ∧ (false → v1) ∧ ((true → v1) until (true ∧ v2))

which can be finally simplified to the formula v1 until v2. �

In the preceding example, we obtained a temporal formula that was noticeably
smaller than the original first-order formula. In general, however, the separation step
that is part of the construction of Theorem 4.2.3 requires subformulas to be dupli-
cated, and the resulting formula may in fact be nonelementarily larger than the orig-
inal FOL formula.

Taken together, the Theorems 4.2.1 and 4.2.3 imply that first-order logic FOL1

(over the signature SIGV and over the class of interpretations where “time” is in-
terpreted as natural numbers and where < denotes “less than”) with a single free
variable and LTLbp are equally expressive. Adopting the notation of Sect. 4, this can
be stated succinctly as

FOL1 = LTLbp.

As a simple corollary, we obtain a similar result for the logic LTL+b without past
operators: every FOL1 formula A can be translated to a formula B of LTL+b such
that the two formulas evaluate to the same truth value “with respect to initial validity
semantics”.

Theorem 4.2.4. For every formula A of LFOL(SIGV) with at most one free vari-
able x0 there is a formula B of Lb

LTL(V) such that for any temporal structure K,

K0(B) = S
(ξ)
K (A)

where SK is the first-order structure corresponding to K and ξ(x0) = 0.

Proof. By Theorem 4.2.3, we may find a formula B of LLTLbp(V) such that A and
B evaluate to the same value at all points. By Lemma 4.2.2, we may moreover as-
sume that B is separated. The formula B results from B by replacing all pure past
subformulas of B by false. �

Applying the argument used in the proof of Theorem 4.2.4, we may also observe
that every formula of LTLbp is initially expressible in LTL+b. Since we trivially
have LTLbp =0 LTL+b+p and LTL+b ≤0 LTL+b+p (where ≤0 denotes the “initial
validity variant” of ≤), we obtain the result
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LTL+b =0 LTL+b+p

which was already noted at the end of Sect. 4.1.
Expressive completeness of temporal logic refers to the first-order logic FOL1

with a fixed interpretation of “time” by the set of natural numbers. Of course, this
corresponds to the choice of N as the underlying “time model” in the semantics
of LTL and its variants. In Sect. 10.1 we will briefly discuss other sets such as the
integers Z or the reals R which could be chosen instead of N. Remarkably, expressive
completeness of temporal logic carries over (in an analogously defined way) to a
number of such time domains including Dedekind-complete structures such as R,
but not for example the rational numbers Q.

4.3 Non-deterministic ω-Automata

The expressiveness of temporal logics can also be measured with respect to for-
malisms other than logics. In this section, we will begin to examine a very fruitful
connection that exists between temporal logics and automata theory. This connection
has not only yielded another “yardstick” with which to measure the expressiveness
of different temporal logics, explored in more detail in the subsequent sections, but
it has also found applications in verification that will be discussed in Chap. 11. We
begin by introducing elements of the theory of finite non-deterministic automata over
ω-words.

A (finite) ω-automaton Ω is a mathematical device equipped with bounded mem-
ory that, in a run ρ, scans a temporal structure K and produces a verdict whether ρ
is accepting or not. If there exists some accepting run of Ω over K, we say that Ω
accepts K or that K belongs to the language of Ω. This description leaves open the
precise details of the structure of Ω, of what constitutes a run, and when a run is
accepting, and in fact there exist different kinds of ω-automata some of which we
will study in this chapter. A remarkable fact about the theory of ω-automata is that
quite different ways to fill in the details of the above description yield the same class
of definable languages.

We will begin by studying Büchi automata, which are a straightforward variant
of non-deterministic finite automata.

Definition. A Büchi automaton Ω = (V,Q ,Q0, δ,Qf ) for a finite set V of propo-
sitional constants is given by

• a finite set Q of locations,
• a finite set Q0 ⊆ Q of initial locations,
• a mapping δ : Q×Q → LPL(V) that associates a propositional formula δ(q , q ′)

with any pair of locations q , q ′ ∈ Q ,
• and a finite set Qf ⊆ Q of accepting locations.

A run of Ω over a temporal structure K = (η0, η1, η2, . . .) for V is an infinite se-
quence � = (q0, q1, q2 . . .) of locations qi ∈ Q such that
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Fig. 4.2. Three Büchi automata

• q0 ∈ Q0 is an initial location and
• �

ηi
δ(qi , qi+1) holds for all i ∈ N (in the sense of Sect. 1.1).

The run � is accepting and K is accepted if qi ∈Qf holds for infinitely many i ∈ N.
The language L(Ω) of Ω is the set of temporal structures for V which are accepted
by Ω.

The structure of a Büchi automaton is that of an ordinary non-deterministic finite
automaton (NFA). Locations of automata are often called (automaton) states, but
we prefer to use a different word in order to distinguish them from the states of a
temporal structure. The acceptance condition of a Büchi automaton adapts that of an
NFA to ω-runs: a run is accepting if it visits an accepting location infinitely often. In
the above definition, we have replaced the conventional notion of the alphabet over
which the automaton operates by a set V of propositional constants, because we will
use automata as acceptors of temporal structures.

Example. Figure 4.2 shows three Büchi automata Ω1, Ω2, and Ω3, where we as-
sume V = {v}. When drawing Büchi automata, we indicate initial locations by
incoming arrows without a source location. Accepting locations are marked by dou-
ble circles. We omit transitions labeled by false from the diagrams: for example, we
have δ(q1, q1) = false for the middle automaton.

Automaton Ω1 visits location q1 upon reading a state satisfying v , and visits
location q0 otherwise. Since q1 is accepting, the automaton accepts precisely those
temporal structures that contain infinitely many states satisfying v . Observe also that
Ω1 is deterministic: it has only one initial location and for any location q and state η
there is precisely one location q ′ such that �

η
δ(q , q ′). In particular, there is only one

possible run over any temporal structure for V.
Starting from location q0, automaton Ω2 may always choose to remain at q0.

However, when reading a state satisfying v it may choose to move to q1; it then ver-
ifies that the following state satisfies ¬v (otherwise, the run cannot be completed).
The acceptance condition ensures that any structure accepted by Ω2 contains in-
finitely many states satisfying v followed by a state satisfying ¬v . In other words,
L(Ω2) consists of those temporal structures satisfying the formula ��(v ∧ �¬v).
Observe that this formula is equivalent to ��v ∧ ��¬v . It is not hard to find a
deterministic Büchi automaton defining the same language.

Automaton Ω3 may similarly decide to move to location q1 upon reading a state
satisfying v . It can complete the run only if all subsequent states satisfy v : the lan-
guage L(Ω3) consists of those structures that satisfy ��v . This language cannot be
defined by a deterministic Büchi automaton. In fact, it can be shown that determin-
istic Büchi automata are strictly weaker than non-deterministic ones. �
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In analogy to regular languages, which are accepted by non-deterministic finite
automata, we say that a language L, understood as a set of temporal structures, over
some set V of propositional constants, is ω-regular (over V) if it is definable by a
Büchi automaton, that is, if L = L(Ω) for some Büchi automaton Ω over V.

The class of ω-regular languages enjoys many of the closure properties known
from regular languages. These are interesting in their own right, but are also at the
basis of the characterizations of the expressiveness of the logics LTL+q and LTL+μ
in Sect. 4.4, and they are related to decidability results that will be useful in Chap. 11.

Theorem 4.3.1. If L1 and L2 are ω-regular over V then so are L1∪L2 and L1∩L2.

Proof. Let Ω1 = (V,Q (1),Q (1)
0 , δ(1),Q (1)

f ) and Ω2 = (V,Q (2),Q (2)
0 , δ(2),Q (2)

f )
be Büchi automata characterizing L1 = L(Ω1) and L2 = L(Ω2). We will construct
Büchi automata Ω∪ and Ω∩ such that L(Ω∪) = L1 ∪ L2 and L(Ω∩) = L1 ∩ L2.

For Ω∪, we simply take the disjoint union of Ω1 and Ω2. More precisely, define
Ω∪ = (V,Q∪,Q∪

0 , δ∪,Q∪
f ) where

• Q∪ = (Q (1) × {1}) ∪ (Q (2) × {2}),
• Q∪

0 = (Q (1)
0 × {1}) ∪ (Q (2)

0 × {2}),

• δ∪((q , i), (q ′, i ′)) =
{

δ(i)(q , q ′) if i = i ′,
false otherwise,

• Q∪
f = (Q (1)

f × {1}) ∪ (Q (2)
f × {2}).

It follows immediately from this definition that, for i ∈ {1, 2}, Ω∪ has a run
� = ((q0, i), (q1, i), (q2, i), . . .) over a temporal structure K for V if and only if
Ωi has a corresponding run �i = (q0, q1, q2, . . .) over K. Moreover, � is accepting
for Ω∪ if and only if �i is accepting for Ωi , and all runs of Ω∪ are of this form.
Hence, Ω∪ characterizes L1 ∪ L2.

The automaton Ω∩ is essentially defined as the product of Ω1 and Ω2, but we
have to be a little careful about the definition of the acceptance condition: the product
automaton has to visit accepting locations of both Ω1 and Ω2 infinitely often, and it is
easy to find examples for which the naive definitions of the set of accepting locations
as Q (1)

f ×Q (2)
f , or as (Q (1)

f ×Q (2))∪(Q (1)×Q (2)
f ), produce wrong results. Instead,

we observe that requiring infinitely many visits to both Q(1)
f and Q (2)

f is equivalent

to requiring that infinitely often the run visits Q(1)
f , eventually followed by a visit of

a location in Q (2)
f .

Technically, the locations of Ω∩ contain an extra component l ∈ {1, 2} that
indicates whether we are waiting for a visit of an accepting location of Ω1 or of Ω2.
The automaton is defined as Ω∩ = (V,Q∩,Q∩

0 , δ∩,Q∩
f ) where

• Q∩ = Q (1) ×Q (2) × {1, 2},
• Q∩

0 = Q (1)
0 ×Q (2)

0 × {1},
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Fig. 4.3. Construction of a product

• δ∩((q(1), q(2), l), (q̄(1), q̄(2), l̄)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(1)(q(1), q̄(1)) ∧ δ(2)(q(2), q̄(2))
if q(l) /∈ Q (l)

f and l̄ = l
or q(l) ∈ Q (l)

f and l̄ �= l ,
false otherwise,

• Q∩
f = Q (1)

f ×Q (2) × {1}.
Figure 4.3 illustrates this construction (locations that are only reachable via unsatis-
fiable transition labels have been omitted).

Assume that Ω∩ has an accepting run � = ((q(1)
0 , q(2)

0 , l0), (q
(1)
1 , q(2)

1 , l1), . . .)
over the temporal structure K. By the definitions of Q∩

0 and δ∩, it follows immedi-
ately that �1 = (q(1)

0 , q(1)
1 , . . .) and �2 = (q(2)

0 , q(2)
1 , . . .) are runs of Ω1 and Ω2,

respectively. Moreover, � is accepting, and therefore we must have q(1)
k ∈ Q (1)

f and
lk = 1 for infinitely many k ∈ N. In particular, �1 is an accepting run of Ω1 over K.
We now show that for every k such that q(1)

k ∈ Q (1)
f and lk = 1 there exists some

j > k such that q(2)
j ∈ Q (2)

f . Since we already know that there are infinitely many

positions such that q(1)
k ∈ Q (1)

f and lk = 1, it follows that q(2)
j ∈ Q (2)

f also holds

infinitely often; hence �2 is an accepting run of Ω2. Indeed, assume that q(1)
k ∈ Q (1)

f

and lk = 1. By the definition of δ∩, we have lk+1 = 2. Now, if q(2)
j /∈ Q (2)

f for all
j > k , it would follow that lj = 2 for all j > k , contradicting the fact that li = 1 for
infinitely many i ∈ N.

Conversely, given runs �1 and �2 of Ω1 and Ω2 over K, it is straightforward to
construct an accepting run of Ω∩ over K. �

The ω-regular languages are also closed under projection: for a temporal struc-
ture K = (η0, η1, η2, . . .) for a set V of propositional constants and v ∈ V, we write
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V−v for the set V \ {v} and define K−v as the temporal structure

K−v = (η0|V−v
, η1|V−v

, η2|V−v
, . . .)

over V−v where ηi |V−v
is the restriction of the valuation ηi to the set V−v . If L is

a language over V then

L−v = {K−v | K ∈ L}

is the projection of L to V−v .

Theorem 4.3.2. If L is ω-regular over V then L−v is ω-regular over V−v .

Proof. The idea of the proof is to have the automaton for L−v guess a suitable value
for v at every transition. More formally, assume that L is defined by the Büchi au-
tomaton Ω = (V,Q ,Q0, δ,Qf ). We will show that L−v is recognized by the au-
tomaton Ω−v = (V−v ,Q ,Q0, δ−v ,Qf ) where

δ−v (q , q ′) = (δ(q , q ′))v (true) ∨ (δ(q , q ′))v (false)

(δ(q , q ′)v (true) and δ(q , q ′)v (false) are obtained from δ(q , q ′) by replacing all oc-
currences of v by true or false, respectively). This definition ensures that

�
η

δ(q , q ′) ⇔ �
η|V−v

δ−v (q , q ′)

for any locations q , q ′ and any valuation η. Therefore, any run � of Ω over some
temporal structure K is also a run of Ω−v over K−v . Conversely, given a run � of
Ω−v over a temporal structure K− for V−v , one can find a structure K for V such
that K− = K−v and � is a run of Ω over K. Because any run is accepting for Ω if
and only if it is accepting for Ω−v , this suffices to establish the assertion. �

Finally, we now set out to prove that ω-regular languages are closed under com-
plement. For a regular language L (of finite words), the proof of the analogous result
relies on determinization: one first constructs a deterministic finite automaton (DFA)
that recognizes L, and then obtains a DFA that accepts the complement of L by ex-
changing accepting and non-accepting locations. This proof idea does not carry over
to Büchi automata: as we remarked earlier, one cannot always determinize a given
Büchi automaton. Besides, exchanging accepting and non-accepting locations in a
deterministic Büchi automaton does not necessarily result in an automaton accepting
the complement language. For example, consider the leftmost automaton of Fig. 4.2,
which is deterministic and recognizes those structures that satisfy ��v . Making q0

the accepting location instead of q1, we obtain an automaton that corresponds to the
class of temporal structures satisfying ��¬v , which is not the complement of those
that satisfy ��v .

In the present case the result will be proved in several steps as follows. Firstly,
we represent all possible runs of a Büchi automaton in a directed acyclic graph (dag):
the run dag of a Büchi automaton Ω = (V,Q ,Q0, δ,Qf ) and a temporal structure
K = (η0, η1, η2 . . .) for V, denoted dag(Ω,K), is the rooted directed acyclic graph
(with multiple roots) with elements from Q × N as nodes given by the following
inductive definition.
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Fig. 4.5. Rankings of run dags

• The roots of dag(Ω,K) are the nodes (q , 0) for every initial location q of Ω.
• The successor nodes of any node (q , i) are the possible successors (q ′, i + 1) in

a run of Ω over K. Formally, if (q , i) is a node of dag(Ω,K) and q ′ ∈ Q is a
location of Ω such that �

ηi
δ(q , q ′) then dag(Ω,K) contains a node (q ′, i + 1)

and an edge ((q , i), (q ′, i + 1)).

Clearly, (q0, q1, q2, . . .) is a run of Ω over K if and only if dag(Ω,K) contains a
path ((q0, 0), (q1, 1), (q2, 2), . . .). Let us call a node (q , i) accepting if q ∈ Qf is an
accepting location of Ω.

Figure 4.4 shows (prefixes of) run dags for the automaton Ω2 from Fig. 4.2 and
the two temporal structures K1 = (η, η, η̄, η̄, . . .) and K2 = (η, η, η̄, η, η, . . .) where
η (respectively, η̄) is a state that satisfies (respectively, does not satisfy) v : K1 alter-
nates between two states satisfying v and two states that do not satisfy v whereas K2

eventually always satisfies v . For conciseness, the figure only indicates the structure
of the dag (together with the corresponding temporal structure) but does not show
the precise designations of the nodes. Observe that K1 is accepted by Ω2 whereas K2

is not.
Our next proof step is to define a labeling of any dag(Ω,K) by which the (non-)

acceptance of K by Ω can be characterized. A ranking rk of dag(Ω,K) assigns a
rank rk(d) to every node d such that the two following conditions are satisfied:

• rk(d ′) ≤ rk(d) whenever d ′ is a successor node of d ,
• ranks of accepting nodes are even.

Consider any infinite path π = (d0, d1, d2, . . .) in the dag. The ranks of the nodes
along π are non-increasing; hence they must eventually stabilize: there exists some
n such that rk(dm) = rk(dn) for all m ≥ n , and we call rk(dn) the stable rank of
path π (for the ranking rk ). We say that the ranking rk is odd if the stable rank of all
infinite paths is odd. Otherwise, i.e., if the run dag contains some infinite path whose
stable rank is even, rk is even.

Possible rankings for the prefixes of the run dags of Fig.4.4 are shown in Fig. 4.5.
Continuing the rankings in a similar manner, it is easy to see that the ranking for the
left-hand dag is even, whereas the ranking for the right-hand dag is odd. In fact, one
cannot find an odd ranking for the left-hand run dag, and we will now show that a
Büchi automaton Ω does not accept the temporal structure K if and only if dag(Ω,K)
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Fig. 4.6. A dag sequence

admits an odd ranking. (Observe in passing that any run dag trivially admits an even
ranking, for example by assigning rank 0 to each node.) The “if” part of this theorem
is quite obvious.

Lemma 4.3.3. If rk is an odd ranking of dag(Ω,K) then K /∈ L(Ω).

Proof. We must show that no run of Ω over K is accepting. So let � = (q0, q1, q2, . . .)
be some run of Ω over K. Then π = ((q0, 0), (q1, 1), (q2, 2), . . .) is a path of
dag(Ω,K). Because rk is an odd ranking for dag(Ω,K), the stable rank srkπ of
π for rk must be odd; hence there exists some n such that rk((qm ,m)) = srkπ

for all m ≥ n . Since rk must assign even ranks to accepting nodes, it follows that
qm /∈ Qf holds for all m ≥ n; so � is not accepting, as we intended to prove. �

The proof of the “only if” part is more difficult: given some structure K /∈ L(Ω),
we must construct an odd ranking for dag(Ω,K). Let us call a node d useless in
dag(Ω,K) if either no accepting node is reachable from d or only finitely many
nodes are reachable from d . Obviously, if (q ,n) is useless then q cannot occur at
the nth position of any accepting run of Ω over K. Successively eliminating useless
nodes will help us to construct an odd ranking. Given a (finite or infinite) dag D and
some set U of nodes of D, we write D \U for the dag from which all nodes in U and
all edges adjacent to these nodes have been removed. The width of a dag D at level
k is the number of nodes of D of the form (q , k).

Given the run dag dag(Ω,K) of Ω over K, we inductively define a sequence
D0,D1,D2, . . . of dags as follows:

• D0 = dag(Ω,K),
• D2i+1 = D2i \ {d | only finitely many nodes are reachable from d in D2i},
• D2i+2 = D2i+1 \ {d | no node reachable from d in D2i+1 is accepting}.

Figure 4.6 illustrates this construction for the right-hand dag of Fig. 4.4 (we know
that the temporal structure underlying this run dag is not accepted by the automaton).
The dags D3,D4, . . . are all empty.

We say that node d is useless at stage i if it is eliminated in the construction of
Di+1. That is, d is useless at stage i if it is a node of dag Di and either i is even
and only finitely many nodes are reachable from d in Di , or i is odd and no node
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reachable from d in Di is accepting. Observe that if node d is useless at stage i
and node d ′ is reachable from d in dag Di then d ′ is also useless at stage i . Since
all nodes of D0 are reachable from some root node by definition of dag(Ω,K), this
continues to hold for all Di . The following lemma shows that if Ω does not accept K
then each node of dag(Ω,K) becomes useless at some stage.

Lemma 4.3.4. If K /∈ L(Ω) where Ω is a Büchi automaton with n locations then
each node of dag(Ω,K) is useless at some stage i ≤ 2n .

Proof. We will show inductively that for every i ∈ N there exists some level li such
that the width of dag D2i at any level l ≥ li is at most n − i . It then follows that the
width of dag D2n at all levels beyond ln is 0, i.e., D2n does not contain any nodes
beyond level ln . Therefore, all nodes of dag D2n are useless at stage 2n .

For i = 0, we may choose l0 = 0 because the width of dag D0 = dag(Ω,K) at
any level is bounded by the number n of locations of Ω.

For the induction step, assume that the assertion holds for i . We first observe that
for each node d , the dag D2i+1 contains an infinite path starting at d : since d was
already a node of D2i and was not useless at stage 2i , infinitely many nodes must
have been reachable from d inD2i . Furthermore, each level ofD2i is of finite width,
because D2i is a subdag of dag(Ω,K). Therefore, by a general graph-theoretical
argument, known as König’s lemma, there must be an infinite path from d in D2i ,
none of whose nodes is useless at stage 2i , and which therefore continues to exist in
D2i+1. In particular, infinitely many nodes are reachable from any node d of D2i+1.

We now consider two cases. Either D2i+1 is empty; then so is D2i+2, and the as-
sertion holds trivially. Otherwise, we now show that D2i+1 contains some node that
is useless at stage 2i +1: assume that this were not the case and pick some root node
d0 of D2i+1 (recall that all nodes in D2i+1 are reachable from some root so D2i+1

must contain a root node if it is non-empty). By assumption, d0 is not useless at stage
2i +1, and therefore there must be some accepting node d ′

0 that is reachable from d0.
Moreover, infinitely many nodes are reachable from d ′

0 in D2i+1, by the observation
above. In particular, d ′

0 has some successor node d1. By our assumption, d1 is not
useless at stage 2i+1; hence there is some accepting node d ′

1 reachable from d1. Con-
tinuing inductively, we find an infinite path (d0, . . . , d ′

0, d1, . . . , d ′
1, d2, . . . , d ′

2, . . .)
in D2i+1 that contains infinitely many accepting nodes. However, this path must al-
ready have existed in D0 = dag(Ω,K), and it corresponds to an accepting run of Ω
over K, contradicting the assumption that K /∈ L(Ω).

Hence,D2i+1 contains some node, say, (q , l) that is useless at stage 2i+1. Recall
that D2i+1 contains an infinite path from node (q , l). By definition, all nodes along
this path are useless at stage 2i +1 and will therefore be removed in the construction
of D2i+2. In particular, the width at all levels beyond l in D2i+2 must be strictly
smaller than that of the corresponding levels in D2i+1, which is at most the width at
these levels in D2i . Therefore, we may choose li+1 = max(li , l) and conclude that
the width at any level beyond li+1 in dag D2i+1 is bounded by n − (i + 1), which
completes the proof. �
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We now define the (partial) function rkul that assigns to each node d of dag(Ω,K)
the number i if d is useless at stage i . If K /∈ L(Ω), then Lemma 4.3.4 shows that
rkul is a total function, and we now prove that rkul is indeed an odd ranking.

Lemma 4.3.5. If K /∈ L(Ω) then rkul is an odd ranking of dag(Ω,K).

Proof. Let d be any node of dag(Ω,K) and d ′ a successor node of d . If rkul(d) = i
then d is useless at stage i . If d ′ has already been eliminated at an earlier stage, we
have rkul(d ′) < i by definition. Otherwise, d ′ is still a successor node of d in dag
Di and is therefore also useless at stage i ; hence rkul(d ′) = i . In either case we have
rkul(d ′) ≤ rkul(d).

If d is an accepting node of dag(Ω,K) then rkul(d) cannot be odd by definition.
Since rkul is a total function, rkul(d) must be even and, hence, rkul is a ranking of
dag(Ω,K).

Finally, let (d0, d1, d2, . . .) be an infinite path in dag(Ω,K), and assume that its
stable rank i is even. Then we find some n ∈ N such that all dm for m ≥ n are
useless at stage i , which is impossible if i is even and proves the claim. �

Taking the preceding lemmas together, the non-acceptance of Büchi automata
can be characterized as follows.

Theorem 4.3.6. If Ω is a Büchi automaton with n locations and K is a temporal
structure, then K /∈ L(Ω) if and only if there exists an odd ranking rk of dag(Ω,K)
that assigns to each node d a rank rk(d) ≤ 2n .

Proof. The claim follows immediately from the Lemmas 4.3.3, 4.3.4, and 4.3.5. �

We turn now to the final step of our proof of the claimed closure property. Given
a Büchi automaton Ω = (V,Q ,Q0, δ,Qf ) with n locations, we construct the com-
plement automaton Ω that accepts a temporal structure K if and only if there exists
an odd ranking of range {0, . . . , 2n} for dag(Ω,K). The idea is that Ω “guesses” an
odd ranking while it reads the temporal structure. We identify a ranking rk with an
infinite sequence (rk0, rk1, rk2, . . .) of assignments rki : Q → {0, . . . , 2n} ∪ {⊥}
where rki(q) = rk(q , i) if the node (q , i) appears in dag(Ω,K), and rki(q) = ⊥
otherwise. For example, the ranking shown in the left-hand side of Fig. 4.5 is identi-
fied with the sequence
([

2
⊥

]

,

[
2
2

]

,

[
1
2

]

,

[
1
⊥

]

,

[
1
⊥

]

,

[
1
0

]

, . . .

)

.

Let us denote by Z the set of assignments ψ : Q →
(
{0, . . . , 2n} ∪ {⊥}

)
such

that ψ(q) is even if q ∈ Q ′
f . The transition relation of Ω ensures that ranks do not

increase along any path of the run dag. Formally, ψ′ ∈ Z is a successor assignment
of ψ ∈ Z for a state η if for all q ∈ Q with ψ(q) �= ⊥ and all q ′ ∈ Q with �

η
δ(q , q ′),

we have ψ′(q ′) �= ⊥ and ψ′(q ′) ≤ ψ(q). The automaton Ω verifies that the guessed
ranking is odd by ensuring that each even-ranked node along any path is eventually
followed by an odd-ranked node. For this reason, the locations of Ω are pairs (ψ,Y )
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where ψ ∈ Z and Y ⊆ Q is a set of locations of Ω that, intuitively, need to traverse
an odd-ranked node.

Formally, the automaton Ω = (V,Q ,Q0, δ,Q f ) is defined by

• Q = Z × 2Q ,
• Q0 = {(ψ, ∅) | ψ(q) �= ⊥ for all q ∈ Q0},

• δ((ψ,Y ), (ψ′,Y ′)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨
{charη

V | ψ′ is a successor assignment of ψ for η}
if Y = ∅ and Y ′ = {q ′ ∈ Q | ψ′(q ′) even}
or Y �= ∅ and Y ′ = {q ′ ∈ Q | ψ′(q ′) even and

�
η
δ(q , q ′) for some q ∈ Y },

false otherwise,
• Q f = Z × {∅}.
In this definition, the characteristic formula charη

V of a valuation η : V → {ff, tt} is
defined as

charη
V ≡

∧
{v | v ∈ V and η(v) = tt} ∧

∧
{¬v | v ∈ V and η(v) = ff}.

Because V is a finite set, there are only finitely many valuations to consider for the
definition of the formulas δ((ψ,Y ), (ψ′,Y ′)).

Theorem 4.3.7. If L is ω-regular over V then so is L.

Proof. Let Ω be a Büchi automaton such that L = L(Ω) and K be any temporal
structure. We show that K ∈ L(Ω) if and only if dag(Ω,K) admits an odd ranking
with ranks in {0, . . . , 2n}. The assertion of the theorem then follows immediately by
Theorem 4.3.6.

To show the “if” part, assume that rk is an odd ranking of dag(Ω,K) and define
rki and Yi , for i ∈ N as follows:

rki(q) =
{

rk(q , i) if (q , i) is a node of dag(Ω,K),
⊥ otherwise,

Y0 = ∅,

Yi+1 =

⎧
⎨

⎩

{q ′ ∈ Q | rki+1(q ′) even} if Yi = ∅,
{q ′ ∈ Q | rki+1(q ′) even and

�
ηi

δ(q , q ′) for some q ∈ Yi} otherwise.

It is not hard to see that � = ((rk0,Y0), (rk1,Y1), . . .) is a run of Ω over K: the
initial assignment rk0 satisfies rk0(q) �= ⊥ for all q ∈ Q0 because (q , 0) is clearly
a node of dag(Ω,K) for every location q ∈ Q0; hence (rk0, ∅) ∈ Q0. Because rk
is a ranking, the ranks along any path are non-increasing, and rki+1 is a successor
assignment of rki . Moreover, the definition of Yi+1 mirrors the transition relation δ.
It remains to show that � is an accepting run of Ω, that is, Yi = ∅ for infinitely many
i ∈ N. Assume to the contrary that there is some n ∈ N such that Ym �= ∅ holds for
all m ≥ n . We claim that there exists a path in dag(Ω,K) whose stable rank is even;
this contradicts the assumption that rk is an odd ranking.
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To show this claim, we observe that for all i ∈ N, rki(q) is even for all locations
q ∈ Yi ; in particular, the run dag dag(Ω,K) contains the nodes (q , i). Moreover,
from any location qk ∈ Yn+k we can find a finite path (q0, q1, . . . , qk ) such that
qi ∈ Yn+i and �

ηi
δ(qi , qi+1) for all i . Applying again König’s lemma, it follows

that there exists an infinite path ((q0, 0), (q1, 1), . . . , (qn ,n), (qn+1,n + 1), . . .) in
dag(Ω,K) that contains only nodes that correspond to locations in Yi for i ≥ n , and
the stable rank of this path is even.

For the “only if” part, assume that � = ((ψ0,Y0), (ψ1,Y1), . . .) is an accepting
run of Ω over K, and define the function rk by

rk(q , i) = ψi(q) for all nodes (q , i) of dag(Ω,K).

Observe that rk(q , i) �= ⊥ for all nodes (q , i) of dag(Ω,K): for the initial nodes
this follows from the definition of Q0, and the definition of a successor assignment
ensures the induction step. Also, ranks are non-increasing along paths. Therefore,
rk is a ranking of dag(Ω,K); it remains to show that it is an odd ranking. Assume,
to the contrary, that ((q0, 0), (q1, 1), . . .) is a path in dag(Ω,K) whose stable rank
under rk is even, and let ((qm ,m), (qm+1,m + 1), . . .) be a suffix of this path such
that rk(qi , i) = r equals the stable rank for all i ≥ m . Because � is an accepting
run of Ω, we know that Yi = ∅ for infinitely many i ∈ N. Let n ≥ m be such that
Yn = ∅, so by definition of the transition relation δ we must have qn+1 ∈ Yn+1,
and by the definition of δ it follows indeed that qi ∈ Yi holds for all i ≥ n + 1, and
a contradiction is reached, which completes the proof. �

Automata are especially useful to resolve decision problems on languages.
Again, many of the standard results known from the theory of finite automata carry
over to Büchi automata. We introduce some additional notation. Given two locations
q and q ′ of a Büchi automaton Ω, we say that q ′ is a one-step successor of q , written
q →Ω q ′, if �

η
δ(q , q ′) holds for some state η. The reflexive transitive closure of the

one-step successor relation →Ω is denoted by →∗
Ω , and we say that q ′ is reachable

from q if q →∗
Ω q ′. The transitive closure of →Ω is denoted by →+

Ω . The follow-
ing theorem gives a criterion to decide the emptiness problem about whether the
language accepted by a Büchi automaton is empty or not.

Theorem 4.3.8. Given a Büchi automaton Ω = (V,Q ,Q0, δ,Qf ), the language
L(Ω) is non-empty if and only if there exist locations q ∈ Q0 and q ′ ∈ Qf such that
q →∗

Ω q ′ and q ′ →+
Ω q ′.

Proof. Assume that there exist q and q ′ as indicated. Since q →∗
Ω q ′, we can find

a finite (possibly empty) sequence (η0, . . . , ηk−1) of states and a corresponding se-
quence (q0, . . . , qk ) of automata locations such that q0 = q , qk = q ′, and where
�
ηi

δ(qi , qi+1) holds for all i , 0 ≤ i < k . Similarly, from the assumption q ′ →+
Ω q ′

we obtain finite and non-empty sequences (ηk , . . . , ηl−1) of states and (qk , . . . , ql)
of locations where qk = ql = q ′ and �

ηi
δ(qi , qi+1) for k ≤ i < l . Now consider the

temporal structure K and sequence � defined by



4.3 Non-deterministic ω-Automata 129

K = (η0, . . . , ηk−1, ηk , . . . , ηl−1
︸ ︷︷ ︸
repeating forever

, . . .), � = (q0, . . . , qk−1, qk , . . . , ql−1
︸ ︷︷ ︸
repeating forever

, . . .).

The conditions above ensure that � is a run of Ω over K, which contains infinitely
many occurrences of location q ′ and is therefore accepting. In particular, L(Ω) �= ∅.

Conversely, assume that L(Ω) �= ∅, and let � = (q0, q1, q2, . . .) be an accepting
run of Ω over some structure K ∈ L(Ω). Thus, q0 ∈ Q0 is an initial location of Ω,
and there is some accepting location q ′ ∈ Qf that appears infinitely often. Choose
some i < j such that qi = qj = q ′, and it follows that q0 →∗

Ω q ′ and q ′ →+
Ω q ′,

which completes the proof. �

Theorem 4.3.8 reduces the problem of deciding whether the language of a Büchi
automaton is empty or not to that of searching cycles in a graph. Assuming that the
satisfiability of edge labels has been precomputed, this search can be performed in
time linear in the size of the automaton.

Other decision problems can be reduced to the emptiness problem. In particular,
a Büchi Ω automaton is universal, that is, accepts every temporal structure, if and
only if its complement Ω defines the empty language. Similarly, given two Büchi
automata Ω1 and Ω2 we can decide the inclusion problem whether L(Ω1) ⊆ L(Ω2)
by checking if L(Ω1) ∩ L(Ω2) = ∅. Observe, however, that the solutions to the uni-
versality and the inclusion problems both rely on complementation, and are therefore
of exponential complexity.

Büchi automata can naturally express the requirement that some state occurs in-
finitely often in a temporal structure. Because “infinitely often A and infinitely often
B” is not the same as “infinitely often A and B”, the construction of a Büchi au-
tomaton accepting the intersection of two languages is a little more complicated than
the standard product construction, as could already be observed in the proof of The-
orem 4.3.1. A generalization of Büchi automata overcomes this problem by allowing
for several acceptance sets.

Definition. A generalized Büchi automaton Ω = (V,Q ,Q0, δ,Acc) for a finite set
V of propositional constants has the same structure as a Büchi automaton, except
that the acceptance condition is given by a finite set Acc = {Q(1)

f , . . . ,Q (m)
f } of

sets Q (i)
f ⊆ Q of accepting locations.

Runs of generalized Büchi automata are defined as for standard Büchi automata.
A run � = (q0, q1, q2, . . .) is accepting if for every Q (k)

f ∈ Acc, there exist infinitely

many i ∈ N such that qi ∈ Q (k)
f . The language of a generalized Büchi automaton Ω

is again the set of temporal structures for V for which Ω has some accepting run.

Clearly, every Büchi automaton can be viewed as a generalized Büchi automaton
with a single set of accepting locations. The closure of ω-regular languages under
intersection, proven in Theorem 4.3.1, lets us expect that generalized Büchi automata
are just as expressive as ordinary Büchi automata, an expectation that is confirmed
by the following theorem.
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Theorem 4.3.9. For every generalized Büchi automaton Ω there is a Büchi automa-
ton Ω∗ such that L(Ω∗) = L(Ω).

Proof. Let Ω = (V,Q ,Q0, δ,Acc) where Acc = {Q (1)
f , . . . ,Q (m)

f }. If m = 0,
i.e., if Acc = ∅, then Ω imposes no acceptance condition and Ω∗ can be defined
as (V,Q ,Q0, δ,Q). Otherwise, the construction is similar to the proof of Theo-
rem 4.3.1 and uses an additional counter that indicates the accepting set that should
be visited next. Formally, we define Ω∗ = (V,Q∗,Q∗

0 , δ∗,Q∗
f ) where

• Q∗ = Q × {1, . . . ,m},
• Q∗

0 = Q0 × {1},

• δ((q , k), (q ′, k ′)) =

⎧
⎪⎨

⎪⎩

δ(q , q ′) if either q ∈ Q (k)
f and k ′ = (k mod m) + 1

or q /∈ Q (k)
f and k ′ = k ,

false otherwise,

• Q∗
f = Q (1)

f × {1}.
The proof that L(Ω∗) = L(Ω) runs analogously to the proof of Theorem 4.3.1. �

Generalized Büchi automata are defined in precisely such a way that they ad-
mit a simpler product construction: given two generalized Büchi automata Ω1 and
Ω2 where Ωi = (V,Q (i),Q (i)

0 , δ(i), {Q (i,1)
f , . . . ,Q (i,mi )

f }) for i = 1, 2, the inter-
section of L(Ω1) and L(Ω2) is characterized by the generalized Büchi automaton
Ω∩ = (V,Q (1) ×Q (2),Q (1)

0 ×Q (2)
0 , δ∩,Acc∩) where

δ∩((q0, q1), (q ′
0, q

′
1)) = δ(1)(q0, q ′

0) ∧ δ(2)(q1, q ′
1),

Acc∩ = {Q (1,1)
f ×Q (2), . . . ,Q (1,m1)

f ×Q (2),

Q (1) ×Q (2,1)
f , . . . ,Q (1) ×Q (2,m2)

f }.

The ability of generalized Büchi automata to represent several acceptance condi-
tions will also be helpful for the construction of Büchi automata that correspond to
LTL formulas in the next section.

4.4 LTL and Büchi Automata

Temporal logic and automata provide different means to describe sets of temporal
structures: LTL formulas are more “declarative” whereas automata are more “oper-
ational” in nature. We will now characterize their expressiveness, and in particular
describe a construction that associates a generalized Büchi automaton ΩF with any
given LTL formula F such that ΩF accepts precisely those temporal structures K
for which K0(F ) = tt. Based on this construction and Theorem 4.3.8, we obtain
a second decision algorithm for the satisfiability of LTL formulas, after the tableau
construction described in Sect. 2.5. In fact, ΩF can quite easily be obtained from a
tableau T for the PNP ({F}, ∅). The idea is that the locations of ΩF are the (tableau)
states of T , the initial locations are the states reachable from the root of T , and the
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transitions of ΩF are determined from the successor relation of T and the literals
that appear in the tableau states. The acceptance condition of ΩF reflects the honest
SCCs of T .

More formally, for a PNP P , we define the corresponding generalized Büchi
automaton ΩP = (V,Q ,Q0, δ,Acc) as follows.

• V is the set of propositional constants that appear in the formulas of P .
• Q is the set of states of the tableau T for P that are not closed.
• Q0 ⊆ Q is the set of states reachable from the root of T without crossing an

application of rule ( �).
• If Q and Q′ are states of T such that Q′ is reachable from Q in T by crossing

precisely one application of rule ( �) then

δ(Q,Q′) ≡
∧

v∈pos(Q)

v ∧
∧

v∈neg(Q)

¬v ,

otherwise δ(Q,Q′) ≡ false.
• Let �A1, . . . , �An be all formulas of this form that occur in neg(N ), for some

tableau node N ; then the acceptance condition Acc = {Q (1)
f , . . . ,Q (n)

f } of

Ω contains n sets Q (i)
f where Q ∈ Q (i)

f if for every node N of T for which
�Ai ∈ neg(N ) and from which Q can be reached without crossing any appli-
cation of rule ( �), we have Ai ∈ neg(N ′) for some node N ′ along every path
from N to Q.

This construction is illustrated in Fig. 4.7 for the PNP P = ({��v ,��¬v}, ∅).
Figure 4.7(a) contains a tableau for P: applications of the rule ( �) are explicitly
indicated; for the other transitions the formulas to which tableau rules are applied
are underlined; we sometimes apply rules to several formulas at once and also use a
derived rule for the �-operator such that a formula �A ∈ pos(N ) is expanded like
a formula �¬A ∈ neg(N ). Node 5 is a closed tableau state; the remaining tableau
states 6, 7, and 8 are the locations of the generalized Büchi automaton ΩP , shown in
Fig. 4.7(b). Because all three states are reachable from the root of the tableau with-
out crossing an application of rule ( �), they are initial locations of the automaton.
Similarly, each state in this example is reachable from every other state, and itself,
by crossing a single edge corresponding to rule ( �). The transition formulas are de-
termined by the propositional constants in the source PNPs: for example, all edges
leaving location 6 are labeled by v . It remains to determine the acceptance conditions
of ΩP . The “eventualities” promised by tableau nodes are �v and �¬v ; so ΩP has
two acceptance sets Q (1)

f and Q (2)
f . Both eventualities occur in the tableau node 2,

from which all three states are reachable without crossing an edge of type ( �). The
paths from node 2 to states 6 and 7 fulfill the promise v and ¬v , respectively, and
therefore Q (1)

f = {6}, whereas Q (2)
f = {7}. In particular, any accepting run of ΩP

must pass infinitely often through both locations, and the underlying temporal struc-
ture must therefore satisfy infinitely often v and infinitely often ¬v , which is just
what the original PNP asserts.
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(b) Corresponding generalized Büchi automaton

Fig. 4.7. Construction of a Büchi automaton from a tableau

More generally, the correctness proof of the construction of ΩP is based on (the
proofs of) the lemmas about the tableau construction in Sect. 2.5.

Theorem 4.4.1. For any PNP P , the generalized Büchi automaton ΩP accepts pre-
cisely the temporal structures K such that K0(P̂) = tt.

Proof. Assume that ΩP accepts the temporal structure K = (η0, η1, η2, . . .), via
an accepting run � = (q0, q1, q2, . . .). To this run corresponds an infinite path
(N0,N1,N2, . . .) through the tableau such that qi = Nst(i) for all i ∈ N, that
is, the qi are precisely the tableau states that appear among the Nj (see Sect. 2.5
for the definition of this notation). The definition of the acceptance condition of ΩP
ensures that this path is complete. Moreover, the transition relation of ΩP is defined
such that ηi(v) = tt if v ∈ pos(qi) and ηi(v) = ff if v ∈ neg(qi). Now, (the proof
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Fig. 4.8. Büchi automaton characterizing even v

of) Lemma 2.5.5 ensures that K0(A) = tt for all A ∈ pos(N0) and K0(A) = ff for
all A ∈ neg(N0), which just means K0(P̂) = tt.

Conversely, assume that K0(P̂) = tt. Then Lemma 2.5.2 ensures that the path
πK
Q = (Q0,Q1,Q2, . . .) is infinite and that Kcnt(i)(Q̂i) = tt for all i ∈ N. In

fact, the subsequence � = (Qst(0),Qst(1),Qst(2), . . .) of πK
Q is an accepting run

of the automaton ΩP over K. Indeed, Qst(0) is reachable from the root P with-
out crossing an application of rule ( �) and (Qst(i),Qst(i+1)) ∈ δ holds by defi-

nition of δ and because of Ki(Q̂st(i)) = tt. As for the acceptance condition, the
proof of Lemma 2.5.2 shows that whenever �A ∈ neg(Qi) for some i ∈ N then
A ∈ neg(Qj ) for some j ≥ i , and this implies that � contains infinitely many ac-
cepting locations for each of the acceptance conditions of ΩP . �

Because tableau nodes are labeled with sets of subformulas (possibly prefixed by
an additional �-operator) of the original PNP, the size of the tableau, and therefore
also of the resulting generalized Büchi automaton, may in general be exponential in
the size of the PNP. The translation into a (standard) Büchi automaton according to
Theorem 4.3.9 is polynomial, so we can construct a Büchi automaton of exponential
size for a PNP (or an LTL formula). Because deciding language emptiness is of linear
complexity for Büchi automata, we again find an overall exponential complexity for
deciding satisfiability or validity of LTL formulas, as observed in Sect. 2.5. The
translation into Büchi automata will be useful for other purposes, and we will take
this up again in Chap. 11.

Theorem 4.4.1 shows that Büchi automata are at least as expressive as LTL (with
respect to initial validity semantics), and this result can easily be extended to LTL+b.
The converse is not true: a simple counterexample is provided by the temporal oper-
ator even introduced in Sect. 4.1. We already showed in the proof of Theorem 4.1.4
that LTL cannot express the formula even v of LTL+μ. However, the temporal struc-
tures K with K0(even v) = tt are clearly characterized by the Büchi automaton
shown in Fig. 4.8.

Section 4.2 has shown that LTL+b with respect to initial validity semantics cor-
responds precisely to a monadic first-order logic. In order to classify the expres-
sive power of Büchi automata more precisely we now show that, in the same spirit,
ω-regular languages correspond to monadic second-order logic.

For a set V of propositional constants, we consider the second-order language
over the signature SIGV = (S,F,P) defined in Sect. 4.2, i.e., where S = {TIME},
F = ∅, and P = {<(TIME TIME)} ∪ {v (TIME) |v ∈ V}. Because we are interested
in a monadic language, we only consider unary predicate variables u ∈ RTIME
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corresponding to the propositional variables u ∈ V of a language Lq
LTL. As in the

corresponding first-order language of Sect. 4.2, the only terms of the second-order
language defined by this signature are individual variables x ∈ X .

As in Sect. 4.2, we associate with a temporal structure K the first-order structure
SK for SIGV described there. A sequence Ξ = (ξo , ξ1, ξ2) of valuations of the
propositional variables V determines the valuation of the predicate variables

ξ(u)(j ) = ξj (u) for j ∈ N.

In the same spirit as that of the translation FOL of Sect. 4.2, we define the trans-
lation SOL : Lq

LTL(V) → LSOL(SIGV):

SOL(v) = v(x0) for v ∈ V,
SOL(u) = u(x0) for u ∈ V ,
SOL(false) = false,
SOL(A→ B) = SOL(A) → SOL(B),
SOL( �A) = ∃y1(x0 < y1 ∧ ¬∃y2(x0 < y2 ∧ y2 < y1) ∧ (SOL(A))x0(y1)),
SOL(�A) = ∀y(x0 = y ∨ x0 < y → (SOL(A))x0(y)),
SOL(∃uA) = ∃u SOL(A)

Again, SOL(A) contains at most one free variable x0 that represents the current state.
Observe also that free and bound occurrences of predicate variables in SOL(A) cor-
respond precisely to free and bound occurrences of the corresponding propositional
variables in A. The structure of this translation reflects the semantic definition of the
connectives of Lq

LTL(V). As in Sect. 4.2 we therefore obtain the correctness of the
translation.

Theorem 4.4.2. Let K be a temporal structure for V, Ξ = (ξ0, ξ1, ξ2, . . .) be a
propositional valuation for V , SK be the structure corresponding to K, and ξ be a
valuation such that ξ(u)(j ) = ξj (u) for all u ∈ V and j ∈ N. For any formula A of
Lq

LTL(V):

K
(Ξ)
ξ(x0)

(A) = S
(ξ)
K (SOL(A)).

Proof. The proof parallels the one of Theorem 4.2.1 and runs by structural induction
on the formula A, simultaneously for all valuations Ξ and ξ. The clauses corre-
sponding to the temporal connectives �and � in the definition of SOL reflect their
semantics in the same sense as the clauses for until and since in the definition of
FOL, and their correctness proof is completely analogous. This leaves us with the
two clauses concerning propositional variables and quantification:

• A ≡ u ∈ V: K
(Ξ)
ξ(x0)

(u) = ξξ(x0)(u) = ξ(u)(ξ(x0)) = S
(ξ)
K (SOL(u)).

• A ≡ ∃uB : Using the induction hypothesis we obtain

K
(Ξ)
ξ(x0)

(∃uB) = tt ⇔ K
(Ξ′)
ξ(x0)

(B) = tt for some Ξ ′ such that Ξ ′ ∼u Ξ

⇔ S
(ξ′)
K (SOL(B)) = tt for some ξ′ such that ξ′ ∼u ξ

⇔ S
(ξ)
K (SOL(∃uB)) = tt. �
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In the sense of Sections 4.1 and 4.2, Theorem 4.4.2 asserts that monadic second-
order logic (based on the signature SIGV) is at least as expressive as LTL+q. We will
now set out to show that monadic second-order logic, Büchi automata, and the logics
LTL+q and LTL+μ are actually of the same expressive power in the sense that they
define the same classes of temporal structures. In the terms of the discussion at the
end of Sect. 4.1, our measure of expressiveness is model equivalence with respect to
initial validity semantics, which is clearly the appropriate “yardstick” for definability
by Büchi automata, but also (cf. Theorem 4.2.4) for comparing predicate logic and
temporal logics without past operators.

We will base that proof on an intermediate first-order language over a signature
with a single sort representing sets of time points. Instead of using (quantifiers over)
variables representing time points as in the language considered so far, we will use
(quantifiers over) singleton sets, and the signature contains a predicate to characterize
such sets. More precisely, given a set V of propositional constants, we define the
signature SIG−

V = (S−,F−,P−) where

• S− = {SET},
• F− = {v (ε,SET) | v ∈ V},
• P− = {⊆(SET SET),SING(SET),SUCS (SET SET)}.
We will interpret the formulas of LFOL(SIG−

V) over structures S where |S| =
|S|SET = 2N, ⊆ is interpreted as the subset relation over sets of natural numbers,
SINGS as the predicate that holds precisely of singleton sets, and SUCSS(M1, M2)
holds if and only if M1 = {n} and M2 = {m} are two singleton sets with
m = n +1. We will call any such structure a SIG−

V-structure, and we call a structure
S for LFOL(SIGV) where |S| = N and that interprets < as the “less than” relation
over N a SIGV-structure.

The language LSOL(SIGV) has both (individual) variables x (of sort TIME ) and
predicate variables u . In LFOL(SIG−

V), both types of variables will be represented
by (individual) variables of sort SET . Formally, we say that a SIG−

V-structure S−

and valuation ξ− and a SIGV-structure S and valuation ξ correspond to each other,
written (S−, ξ−) � (S, ξ), if all of the following conditions hold:

• vS−
= {i ∈ N | vS(i) = tt},

• ξ−(u) = {i ∈ N | ξ(u)(i) = tt} for predicate variables u of LSOL(SIGV),
• ξ−(x ) = {ξ(x )} for (individual) variables x of LSOL(SIGV).

Lemma 4.4.3. For every formula A of LFOL(SIG−
V) there exists a formula A+ of

LSOL(SIGV) such that

S(ξ)(A+) = (S−)(ξ
−)(A)

whenever (S−, ξ−) � (S, ξ).

Proof. The proof runs by structural induction on the formula A.

1. A ≡ false: The assertion obviously holds for A+ ≡ false.
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2. A ≡ B → C or A ≡ ∃uB : Then the assertion follows from the induction
hypothesis for A+ ≡ B+ → C+ or A+ ≡ ∃uB+ (in the latter case, u is a
predicate variable in A+).

3. A ≡ t ⊆ t ′ for terms t and t ′ of LFOL(SIG−
V): Then t and t ′ are either con-

stants v or variables u , and we distinguish the different cases. For example,
the formula (u ⊆ v)+ is defined as ∀x (u(x ) → v(x )), and the remaining
cases are similar. With a slight abuse of notation, we will from now on write
(t ⊆ t ′)+ ≡ ∀x (t(x ) → t ′(x )), and analogously for similar formulas.

4. A ≡ t = t ′: Then A+ ≡ ∀x (t(x ) ↔ t ′(x )).
5. A ≡ SING(t) for a term t : Then we define

A+ ≡ ∃x t(x ) ∧ ∀x∀y(t(x ) ∧ t(y) → x = y),

and this obviously proves the assertion.
6. A ≡ SUCS (t , t ′): Then

A+ ≡ ∃x∃y1(t(x ) ∧ t ′(y1) ∧ ¬∃y2(x < y2 ∧ y2 < y1)) ∧
∀x∀y(t(x ) ∧ t(y) → x = y) ∧
∀x∀y(t ′(x ) ∧ t ′(y) → x = y).

The first conjunct ensures that t and t ′ hold for some values i and j such that
j = i + 1, and the second and third conjuncts ensure that t and t ′ hold for a
single value. �

Similarly, for every formula of LSOL(SIGV) we can find a corresponding for-
mula of LFOL(SIG−

V). In this translation, the third condition in the definition of �
becomes important, and we will ensure that quantifiers over (individual) variables in
the second-order language are translated into quantifiers over singleton sets in the
first-order language.

Lemma 4.4.4. For every formula A of LSOL(SIGV) there exists a formula A− of
LFOL(SIG−

V) such that

(S−)(ξ
−)(A−) = S(ξ)(A)

whenever (S−, ξ−) � (S, ξ).

Proof. Performing again an inductive proof, the cases of A ≡ false, A ≡ B → C ,
and A ≡ ∃uB (for a predicate variable u) are trivial or follow immediately from the
induction hypothesis. For the remainder of the proof, remember that the only terms
of LSOL(SIGV) are (individual) variables x .

1. A ≡ x = y : Then the assertion clearly holds for A− ≡ x = y .
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2. A ≡ v(x ): Then A− ≡ x ⊆ v . Now, using the definition of �, we find that

Sξ(A) = tt ⇔ vS(ξ(x )) = tt
⇔ ξ(x ) ∈ vS−

⇔ {ξ(x )} ⊆ vS−

⇔ ξ−(x ) ⊆ vS−

⇔ (S−)(ξ
−)(A−) = tt.

3. A ≡ u(x ) for a predicate variable u: Then we similarly prove the assertion for
A− ≡ x ⊆ u .

4. A ≡ x < y : Then we define

A− ≡ ¬(x = y) ∧ ∀u(x ⊆ u ∧
∀y1∀y2(y1 ⊆ u ∧ SUCS (y1, y2) → y2 ⊆ u) →
y ⊆ u).

Assume that Sξ(A) = tt, that is, ξ(x ) < ξ(y), and that (S−, ξ−) � (S, ξ).
Clearly, we find that ξ−(x ) = {ξ(x )} �= {ξ(y)} = ξ−(y). Let now ξ′ ∼u ξ−

and assume that ξ′(x ) ⊆ ξ′(u) and that for all singleton sets {n}, {n ′} such
that n = n ′ + 1, if {n} ⊆ ξ′(u) then {n ′} ⊆ ξ′(u). Inductively, the latter
assumption ensures that whenever n ∈ ξ′(u) for some n ∈ N then m ∈ ξ′(u)
for all m ≥ n . Together with the assumptions that ξ′(x ) = {ξ(x )} ⊆ ξ′(u) and
that ξ(x ) < ξ(y) this ensures that ξ(y) ∈ ξ′(u), which completes the proof.
Conversely, assume that (S−)(ξ

−)(A−) = tt. This implies {ξ(x )} �= {ξ(y)},
and therefore ξ(x ) �= ξ(y). Moreover, let the valuation ξ′ ∼u ξ− be defined by
ξ′(u) = {n ∈ N | ξ(x ) ≤ n}. Obviously, ξ′(x ) = {ξ(x )} ⊆ ξ′(u). Moreover,
{i + 1} ⊆ ξ′(u) holds whenever {i} ⊆ ξ′(u). Because (S−)(ξ

−)(A−) = tt,
it follows that ξ′(y) = {ξ(y)} ⊆ ξ′(u) and therefore ξ(x ) ≤ ξ(y), and the
assertion follows.

5. A ≡ ∃xB for an (individual) variable x : Then we let A− ≡ ∃x (SING(x )∧B−),
and the assertion follows using the induction hypothesis and the definition of �.

�

Lemmas 4.4.3 and 4.4.4 show that the second-order monadic logic LSOL(SIGV)
and the first-order logic LFOL(SIG−

V) are equally expressive, over the intended in-
terpretations. Pursuing our goal of establishing a correspondence between Büchi au-
tomata and LFOL(SIG−

V), we now define a SIG−
V-structure SK for a temporal struc-

ture K, similar to the corresponding definition in Sect. 4.2 for LFOL(SIGV). Given
K = (η0, η1, η2, . . .), the structure SK has |SK| = |SK|Set = 2N, the predicate sym-
bols ⊆, SING , and SUCS are interpreted as the subset relation, the characteristic
predicate of singleton sets, and the set-theoretic version of the successor relation,
as required for SIG−

V-structures. The interpretations of the constant symbols v are
obtained from the states ηi of K:

vSK = {i ∈ N | ηi(v) = tt}.
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Fig. 4.9. Automata for the proof of Theorem 4.4.5

The following theorem, originally established by Büchi, associates a Büchi au-
tomaton ΩA with every closed formula A of LFOL(SIG−

V) such that ΩA accepts K

if and only if S
(ξ)
K (A) = tt, for an arbitrary variable valuation ξ. In this sense, it

demonstrates that Büchi automata and LFOL(SIG−
V) are equally expressive.

Theorem 4.4.5 (Büchi). For every closed formula A ofLFOL(SIG−
V) there is a Büchi

automaton ΩA such that ΩA accepts temporal structure K if and only if S
(ξ)
K (A) = tt.

Proof. For the inductive proof, the assertion has to be generalized for formulas of
LFOL(SIG−

V) that may contain variables x (of sort SET ). The automata ΩA will
operate over temporal structures K for the set of propositional constants

VA = V ∪ {vx | x has a free occurrence in A},

i.e., V augmented by new propositional constants vx corresponding to the vari-
ables that are free in A. Recall from the definition of SIG−

V that the only terms
of LFOL(SIG−

V) are either constants v ∈ V or variables x , which are represented in
VA by either v or vx . In the following, we write vt for the propositional constant
that represents the term t of LFOL(SIG−

V). We prove that ΩA accepts K if and only

if S
(ξ)
K (A) = tt for any variable valuation ξ such that

ξ(x ) = {i ∈ N | ηi(vx ) = tt}.

1. A ≡ t ⊆ t ′ for terms t and t ′: The automaton accepts K if and only if for all
i ∈ N, if ηi(vt) = tt then ηi(t ′) = tt. Formally,

Ωt⊆t′ = (Vt⊆t′ , {q0}, {q0}, δ, {q0})

where δ(q0, q0) = vt → vt′ (cf. Fig. 4.9(a)), and the assertion obviously holds.
2. A ≡ t = t ′: The automaton is similar, except that δ(q0, q0) = vt ↔ vt′ .
3. A ≡ SING(t): The automaton checks that the propositional constant vt is true

at precisely one state. Formally,

ΩSING(t) = (VSING(t), {q0, q1}, {q0}, δ, {q1})

where δ(q0, q0) = δ(q1, q1) = ¬vt , δ(q0, q1) = vt , and δ(q1, q0) = false; cf.
Fig. 4.9(b).
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4. A ≡ SUCS (t , t ′): The automaton verifies that the propositional constants vt and
vt′ are true precisely once, and that the state where vt′ is true is the successor
position of the one where vt is true. Formally,

ΩSUCS(t,t′) = (VSUCS(t,t′), {q0, q1, q2}, {q0}, δ, {q2})

where δ(q0, q0) = δ(q2, q2) = ¬vt ∧ ¬vt′ , δ(q0, q1) = vt ∧ ¬vt′ , δ(q1, q2) =
¬vt ∧ vt′ , and δ(q , q ′) = false otherwise; cf. Fig. 4.9(c).

5. A ≡ B → C : Then S
(ξ)
K (A) = tt if and only if S

(ξ)
K (B) = ff or S

(ξ)
K (C ) = tt.

By the induction hypothesis there exist automata ΩB and ΩC for VB and VC

corresponding to B and C . Both automata can also be understood as automata
for VA, and by Theorems 4.3.7 and 4.3.1 the automaton ΩA can be constructed
such that it accepts a structure K if and only if K is not accepted by ΩB or
accepted by ΩC .

6. A ≡ ∃xB : Without loss of generality, we assume that x has no free occurrences
in A. By the induction hypothesis there exists ΩB for VB = VA ∪ {vx} that
corresponds to B . The automaton ΩA for VA is defined so that it accepts the
projection (L(ΩB ))−vx

; see Theorem 4.3.2. �

The final step in proving the expressiveness results announced previously is to
show that the fixpoint logic LTL+μ of Sect. 3.2 is expressive enough to represent
definability of temporal structures by Büchi automata. The proof idea is to encode
the structure and the acceptance condition of a Büchi automaton Ω as a (closed)
formula AΩ which is initially true if and only if Ω accepts K. In order to define
AΩ we need some preparation and assume that Ω = (V,Q ,Q0, δ,Qf ) where Q =
{q0, q1, . . . , qnloc}. We define two formula transformers

Φij , Φ
+
ij : Lμ

LTL(V) → Lμ
LTL(V) (for i , j ∈ {0, . . . ,nloc})

inductively with the help of auxiliary functions kΦ
(+)
ij for k ∈ {−1, 0, . . . ,nloc}, as

follows:

• For k = −1:

−1Φii(F ) = F ∨ (δ(qi , qi) ∧ �F ),

−1Φij (F ) = δ(qi , qj ) ∧ �F for i �= j ,

−1Φ
+
ij (F ) = δ(qi , qj ) ∧ �F .

• For k = 0, . . . ,nloc:

kΦkk (F ) = μu(F ∨ k−1Φ
+
kk (u))

where u is chosen such that it has no free occurrences in F ,

kΦ
+
kk (F ) = k−1Φ

+
kk (kΦkk (F )),

kΦ
(+)
ij (F ) = k−1Φ

(+)
ij (F ) ∨ k−1Φik (kΦkk (k−1Φkj (F )))

for i �= k or j �= k .
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• Finally:

Φij (F ) = nlocΦij (F ),
Φ+

ij (F ) = nlocΦ
+
ij (F ).

Observe that the propositional variables free in kΦ
(+)
ij (F ) are just those that are

free in F . The idea is that Φij (F ) and Φ+
ij (F ) characterize those temporal structures

where F becomes true “after following a path (respectively, non-empty path) from
qi to qj ”. The following lemma makes this intuition precise.

Lemma 4.4.6. Let K = (η0, η1, η2 . . .) be a temporal structure, Ξ be a valuation of
the propositional variables, F be a formula of Lμ

LTL(V), and m ∈ N.

a) K
(Ξ)
m (Φij (F )) = tt if and only if there exists a finite sequence (q̄0, . . . , q̄n) ∈ Q∗

where n ≥ 0 such that q̄0 = qi , q̄n = qj , �
ηm+l

δ(q̄l , q̄l+1) holds for 0 ≤ l < n ,

and K
(Ξ)
m+n(F ) = tt.

b) The assertion holds similarly for Φ+
ij (F ), but with n > 0.

Proof. The two assertions are proved simultaneously for kΦ
(+)
ij (F ) by induction on

k , for arbitrary F , Ξ , and m ∈ N, with the restriction that the sequence of in-
termediate locations contains only locations between q0 and qk . We call a finite
sequence (q̄0, . . . , q̄n) with q̄0 = qi , q̄n = qj , (q̄1, . . . , q̄n−1) ∈ {q0, . . . , qk}∗,

�
ηm+l

δ(q̄l , q̄l+1) for 0 ≤ l < n , and K
(Ξ)
m+n(F ) = tt an (i , j , k ,F , Ξ)-path from state

m (of length n), and an (i , j , k ,F , Ξ)+-path if n > 0.
For k = −1, the only (i , j ,−1,F , Ξ)+-paths from state m are of the form

(qi , qj ), and such a path exists if and only if �
ηm

δ(qi , qj ) and K
(Ξ)
m+1(F ) = tt. For

i = j , the additional (i , i ,−1,F , Ξ)-path (qi) exists in case K
(Ξ)
m (F ) = tt. The

definitions of −1Φ
(+)
ij (F ) clearly correspond to these situations.

For the induction step (k = 0, . . . ,nloc) we first consider (i , j , k ,F , Ξ)-paths
where i = j = k . Assume that there exists a (k , k , k ,F , Ξ)-path from state m of
length n ≥ 0, we will show that K

(Ξ)
m (kΦkk (F )) = tt, by induction on n .

1. Case n = 0: By definition we have K
(Ξ)
m (F ) = tt. This trivially implies that

K
(Ξ)
m (F ∨ k−1Φkk (kΦkk (F ))) = tt and therefore K

(Ξ)
m (kΦkk (F )) = tt by defi-

nition of kΦkk (F ) as fixpoint.
2. Case n > 0: Because q̄0 = q̄n = qk and n > 0 there exists some small-

est 0 < l ≤ n such that q̄l = qk , and (q̄l , q̄l+1, . . . , q̄n) is a (k , k , k ,F , Ξ)-
path from state m + l of shorter length. By induction hypothesis it follows that
K

(Ξ)
m+l(kΦkk (F )) = tt. Since l was chosen minimally, we find that (q̄0, . . . , q̄l) is

a (k , k , k − 1, kΦkk (F ), Ξ)+-path from state m , and we may invoke the (main)
induction hypothesis to infer K

(Ξ)
m (k−1Φkk (kΦkk (F ))) = tt, from which the

assertion K
(Ξ)
m (kΦkk (F )) = tt follows as in the preceding case.

Conversely, assume that K
(Ξ)
m (kΦkk (F )) = tt; we have to show that there exists

a (k , k , k ,F , Ξ)-path from state m . Defining
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M = {i ∈ N | there exists a (k , k , k ,F , Ξ)-path from state i},

we will prove that

(∗) �F ∨ k−1Φ
+
kk (u)�Ξ[u:M]

K ⊆ M.

The definition of kΦkk (F ) as the smallest fixpoint implies that �kΦkk (F )�K ⊆ M,
and in particular m ∈ M, from which the assertion follows by the definition of M.

For the proof of (∗), assume that i ∈ �F ∨ k−1Φ
+
kk (u)�Ξ[u:M]

K .

• If i ∈ �F �
Ξ[u:M]
K then we also have i ∈ �F �Ξ

K because u has no free occurrences
in F , and (qk ) is a (k , k , k ,F , Ξ)-path from state i ; hence i ∈ M.

• If i ∈ �k−1Φ
+
kk (u)�Ξ[u:M]

K then by the induction hypothesis there exists a
(k , k , k − 1, u, Ξ[u : M])+-path (q̄0, . . . , q̄n) from state i , and in particular
K

(Ξ[u:M])
i+n (u) = tt; hence i + n ∈ M. By definition of M, there exists a

(k , k , k ,F , Ξ)-path (q̄ ′
0, . . . , q̄

′
n′) from state i + n , and therefore the sequence

(q̄0, . . . , q̄n , q̄ ′
1, . . . , q̄

′
n′) is a (k , k , k ,F , Ξ)-path from state i , which proves that

i ∈ M.

We have now shown that kΦkk (F ) characterizes (k , k , k ,F , Ξ)-paths. Clearly,
(k , k , k ,F , Ξ)+-paths are just those sequences (q̄0, . . . , q̄n) that can be decomposed
into a (k , k , k −1, kΦkk (F ))+-path (q̄0, . . . , q̄l) and a (k , k , k ,F )-path (q̄l , . . . , q̄n),
for some 0 < l ≤ n . With the help of the induction hypothesis and the assertion that
we have just proved, this shows that kΦ

+
kk (F ) characterizes those paths.

Finally, if i �= k or j �= k , then an (i , j , k ,F , Ξ)(+)-path exists from state m if
and only if either there exists an (i , j , k − 1,F , Ξ)(+)-path, or if there exist paths
(qi , . . . , qk ) and (qk , . . . , qj ) (with intermediate locations among q0, . . . , qk−1) and
(qk , . . . , qk ) (with intermediate locations among q0, . . . , qk ) that can be concatenated
to form an (i , j , k ,F , Ξ)+-path. (Observe that at least one of these constituent paths
has to be of non-zero length.) These two cases are precisely reflected in the definition
of kΦ

(+)
kk (F ), and the assertion follows with the help of the respective induction

hypotheses. �
From the encoding of finite paths by formulas of LTL+μ it is not hard to prove

the desired characterization of Büchi-definable languages by fixpoint temporal logic.

Theorem 4.4.7. Let Ω be a Büchi automaton over V. There is a closed formula
AΩ of Lμ

LTL(V) such that for any temporal structure K for V and valuation Ξ ,

K
(Ξ)
0 (AΩ) = tt if and only if the automaton Ω accepts K.

Proof. Let Ω = (V,Q ,Q0, δ,Qf ) as above and define

AΩ =
∨

qi ∈ Q0

qj ∈ Qf

Φij (νū Φ+
jj (ū)).

Assume that K0(AΩ) = tt where K = (η0, η1, η2, . . .). (For simplicity, we write
K0 instead of K

(Ξ)
0 since the evaluation does not depend on Ξ for closed formu-

las.) There exist qi ∈ Q0 and qj ∈ Qf such that K0(Φij (νū Φ+
jj (ū))) = tt. By
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k i j kΦij (F ) simplified kΦ+
ij (F )

−1 0 0 F ∨ (true ∧ �F ) F ∨ �F �F

0 1 v ∧ �F v ∧ �F v ∧ �F

1 0 false ∧ �F false false
1 1 F ∨ (v ∧ �F ) F ∨ (v ∧ �F ) v ∧ �F

0 0 0 μu(F ∨ �u) �F ��F

0 1 (v ∧ �F ) ∨ �(v ∧ �F ) ∨ ��(v ∧ �F ) �(v ∧ �F ) �(v ∧ �F )

1 0 false ∨ false false false
1 1 F ∨ (v ∧ �F ) ∨ false F ∨ (v ∧ �F ) v ∧ �F

1 1 1 μu(F ∨ (v ∧ �u)) v unt F v ∧ �(v unt F )

0 0 �F ∨ �(v ∧ �(v unt false)) �F ��F

0 1 �(v ∧ �F ) ∨ �(v ∧ �(v unt (v ∧ �F ))) �(v ∧ �F ) �(v ∧ �F )

1 0 false ∨ v unt false ∨ (v ∧ �(v unt false)) false false

Table 4.1. Construction of kΦij (F ) for Ω3 (see Fig. 4.2)

Lemma 4.4.6 a) there exists a sequence (q̄0, . . . , q̄n) ∈ Q∗ such that q̄0 = qi ,
q̄n = qj , �

ηl
δ(q̄l , q̄l+1) for all 0 ≤ l < n , and Kn(νū Φ+

jj (ū)) = tt. Applying the

fixpoint law (ν-rec), it follows that Kn(Φ+
jj (νū Φ+

jj (ū))) = tt, and Lemma 4.4.6 b)
ensures that there exists a sequence (q̄ ′

0, . . . , q̄
′
n′) ∈ Q+ with q̄ ′

0 = q̄ ′
n′ = qj ,

�
ηn+l

δ(q̄ ′
l , q̄

′
l+1) for all 0 ≤ l < n ′, and again Kn+n′(νū Φ+

jj (ū)) = tt. Continu-

ing inductively, we obtain an accepting run of Ω over K.
Conversely, assume that Ω accepts K, via an accepting run � = (q̄0, q̄1, q̄2, . . .)

where q̄0 ∈ Q0. By definition, q̄k ∈ Qf holds for infinitely many k ∈ N, and because
Qf is finite there exists some qj ∈ Qf such that q̄k = qj for infinitely many k ∈ N.
Defining

M = {k ∈ N | q̄k = qj},

it is easy to show from the corresponding segments of � and Lemma 4.4.6 b) that

(∗) M ⊆ �Φ+
jj (ū)�Ξ[ū:M]

K

for an arbitrary valuation Ξ . This entails M ⊆ �νū Φ+
jj (ū)�K. Choosing some k ∈ M

(among the infinitely many elements of that set), we have Kk (νū Φ+
jj (ū)) = tt, and

the desired conclusion K0(AΩ) = tt follows using Lemma 4.4.6 a), taking the prefix
(q̄0, q̄1, . . . , q̄k ) of the run � as the finite sequence of automaton locations. �

We illustrate the construction of the formula AΩ for the Büchi automaton Ω3

of Fig. 4.2. Table 4.1 shows the different formulas kΦ
(+)
ij (F ). The column kΦij (F )

contains the formulas according to the inductive definition. The column to the right
contains an equivalent formula after simplification by laws of propositional and tem-
poral logic; this simplified version is used for the construction of subsequent formu-
las. Similarly simplified versions of the formulas kΦ

+
ij (F ) appear in the rightmost

column.
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The locations q0 and q1 are respectively the only initial and accepting locations
of Ω3. The encoding of the Büchi automaton in LTL+μ is therefore given by the
formula

Φ01(νū Φ+
11(ū)) = �(v ∧ �(νū(v ∧ �(v unt ū)))),

which in this case is equivalent to the LTL formula ��v .

Summing up the preceding expressiveness results, we have established the fol-
lowing chain, adapting the notation introduced in Sects. 4.1 and 4.2:

LSOL(SIGV) ≤ LFOL(SIG−
V) ≤0 BA(V)

≤0 Lμ
LTL(V) ≤ Lq

LTL(V) ≤ LSOL(SIGV)

where BA(V) represents the class of temporal structures that are accepted by Büchi
automata over V. (The relation between LTL+μ and LTL+q was already established
by Theorem 4.1.6.) It follows that all these formalisms are actually equally expres-
sive with respect to model equivalence, based on initial validity semantics. In partic-
ular, this holds for LTL+μ and LTL+q and means that LTL+μ =0 LTL+q. Because
of Theorem 2.6.4, which we have already remarked to also hold for these two logics,
this actually implies that LTL+μ = LTL+q, as was already announced in Sect. 4.1.

Second Reading

A simple consequence of the results described in this section is that Büchi automata can
also be encoded in the logic LTL+q. In fact, the following direct encoding yields a more
succinct formula characterizing the existence of a successful run of a Büchi automaton over
a temporal structure:

AΩ = ∃u0 · · · ∃unloc

(
nloc∧

i, j = 0

i �= j

�¬(ui ∧ uj ) ∧

∨

qi∈Q0

ui ∧

�

nloc∨

i,j=0

(ui ∧ δ(ui , uj ) ∧ �uj ) ∧

∨

qj∈Qf

��uj

)

with a propositional variable ui per automaton location qi . This formula AΩ asserts that
there exists a valuation of the propositional variables u0, . . . , unloc that simulates a run:
no two variables are simultaneously true; initially a variable corresponding to an initial
location is true, the transition formulas of the automaton are consistent with the variables
true before and after the transition, and some variable representing an accepting location is
true infinitely often.

Because we also know that every formula of LTL+q can be represented by a Büchi au-
tomaton, it follows that the “pure existential fragment” of Lq

LTL(V) in which a series of
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outermost existential quantifiers is applied to a quantifier-free formula is as expressive as
the full logic. A similar remark holds for LSOL(SIGV) in the sense that every formula of
that logic can effectively be transformed into one where a series of existential second-order
quantifiers are applied to a first-order formula.

4.5 Weak Alternating Automata

Büchi automata and their variants are non-deterministic: every automaton location q
may admit several possible successor locations for a given state η, as there may exist
several locations q ′ such that �

η
δ(q , q ′). A temporal structure is accepted if, starting

from an initial location, at every state some successor can be chosen in such a way
that the resulting run (a sequence of locations) satisfies the acceptance condition.

We conclude these considerations by sketching another class of ω-automata,
called alternating automata, where every location admits a non-deterministic choice
between sets of successor locations, which will then be active simultaneously. Con-
sequently, a run of an alternating automaton over a temporal structure is no longer
a sequence, but a tree or a dag of locations. The acceptance condition is defined in
terms of the sets of paths through this tree or dag. Alternating automata thus combine
the familiar “disjunctive” branching mode of non-deterministic automata with a dual
“conjunctive” branching mode, empowering the automaton to verify several condi-
tions in parallel. This does not necessarily make alternating automata more powerful
with respect to expressiveness: with suitable acceptance conditions, they again accept
precisely the class of ω-regular languages. However, they can be exponentially more
succinct than non-deterministic automata, and this succinctness can yield interesting
trade-offs. In particular, the translation from LTL formulas to alternating automata
is of linear complexity, whereas checking emptiness of alternating automata is an
exponentially hard problem.

As in the definition of Büchi automata, we represent the transition relation of an
alternating automaton via propositional formulas. However, these formulas are now
formed from propositional constants as well as from automaton locations, with the
restriction that all occurrences of the latter are of positive polarity; this property is
defined in the same way as for propositional variables in Sect. 3.2. For example, for
v1, v2 ∈ V, q0, q1, q2 ∈ Q , V and Q as before,

δ(q0) = (v1 ∧ v2 ∧ q1 ∧ q2) ∨ ((¬v1 ∨ v2) ∧ (q0 ∨ q1)) ∨ v2

defines the possible transitions from an automaton location q0: the automaton can
simultaneously activate locations q1 and q2 upon reading a state satisfying v1 ∧ v2.
It can choose between activating q0 or q1 upon reading a state satisfying ¬v1 ∨ v2,
and need not activate any location for a state satisfying v2. Implicitly, no transition is
possible for a state satisfying v1 ∧ ¬v2. For a valuation η of V and a set Y ⊆ Q of
automaton locations, we define the joint valuation ηY of V ∪ Q by ηY (v) = η(v)
for v ∈ V and ηY (q) = tt if and only if q ∈ Y . A location q that is active at some
point in a run of the automaton may thus activate a set Y of successor locations upon
reading a state η of a temporal structure if and only if �

ηY δ(q) holds.
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(b) Prefix of a run dag

Fig. 4.10. Alternating automata: transitions and run dag

Transitions of alternating automata can be visualized using hyperedges, as shown
in Fig. 4.10(a) for the example.

We will represent automaton runs as dags labeled with automaton locations. For
example, Fig. 4.10(b) illustrates an initial prefix of a hypothetical run dag: initially,
just location q0 is active, and it is reactivated by the first transition of the automaton.
The state η1 triggers a transition that activates the locations q1 and q2, which then
both react to state η2. In our example, q1 activates locations q0 and q2, while q2

activates just q2. Observe that since we record only which locations are active at a
given instant, we obtain a single successor node labeled by q2. Also, a run dag may
contain finite paths; for example, we have assumed that q0 activates no successor
locations in the transition for η3.

It remains to define when a run dag is accepting. This condition is given in terms
of the infinite paths through the run dag. For example, an alternating Büchi automa-
ton would require each infinite path to contain infinitely many accepting locations.
We consider here weak alternating automata whose acceptance condition is defined
in terms of a ranking of locations with natural numbers. This ranking is required to
stratify the set of automaton locations in the sense that if q ′ occurs in δ(q) then the
rank of q ′ is at most the rank of q . Therefore, if run dags are drawn as in Fig. 4.10(b),
but such that locations are topologically ordered according to their rank, the dag does
not contain any rising edges, and ranks along any path can never increase. Conse-
quently, every (infinite) path in a run dag defines a stable rank such that after some
finite prefix, all locations along the path are of the same rank. A run dag is accepting
if and only if the stable rank of every infinite path is even.

Because locations may occur only positively in transition formulas, it is easy to
see that taking more successor locations cannot invalidate a transition formula: if
�
ηY δ(q) holds, then so does �

ηY ′ δ(q) for every superset Y ′ of Y . However, taking
more successors increases the number of paths through the dag, making the accep-
tance condition harder to satisfy. We therefore assume that for every active location q ,
the set of successors is chosen minimally such that δ(q) is satisfied.

Definition. A weak alternating automaton Ω = (V,Q , q0, rk , δ) for a finite set V
of propositional constants is given by

• a finite set Q of locations (where V ∩Q = ∅),
• an initial location q0 ∈ Q ,
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Fig. 4.11. A weak alternating automaton and a prefix of a run dag

• a mapping rk : Q → N that assigns a rank to every location,
• a mapping δ : Q → LPL(V ∪ Q) that associates a propositional formula δ(q)

with any location q ∈ Q , where locations q ′ ∈ Q occur only positively in δ(q)
and such that rk(q ′) ≤ rk(q) whenever q ′ appears in δ(q).

A run of Ω over a temporal structure K = (η0, η1, η2, . . .) for V is a dag
� = (Y0, �Y0,Y1, �Y1,Y2, �Y2, . . .) consisting of configurations Yi ⊆ Q and sets
�Yi ⊆ Yi ×Yi+1 of edges leading from locations of Yi to those of Yi+1 where

• Y0 = {q0},
• for every i ∈ N and all q ∈ Yi , the set Y = {q ′ | (q , q ′) ∈ �Yi} is minimal such

that �
ηY
i
δ(q) holds,

• Yi+1 = {q ′ | (q , q ′) ∈ �Yi for some q ∈ Yi} is the range of �Yi .

The run � is accepting and K is accepted if for every infinite path (q0, q1, q2, . . .)
through � (i.e., every infinite sequence such that q0 ∈ Y0 and (qi , qi+1) ∈ �Yi for all
i ∈ N) the minimum rank assumed along that path,

rkmin = min{rk(qi) | i ∈ N},

is even. The language L(Ω) of Ω is the set of temporal structures for V which are
accepted by Ω.

Figure 4.11 shows an example of a weak alternating automaton over V = {v}
and a prefix of a run dag belonging to it, where the states η and η̄ satisfy v and ¬v ,
respectively. The automaton accepts precisely those temporal structures that contain
infinitely many states satisfying v and infinitely many states satisfying ¬v . For better
readability, we have labeled every automaton location with the temporal formula it
is intended to enforce. (The relationship between temporal logic and weak alternat-
ing automata will be made more precise subsequently.) Thus, the initial location q0

is labeled with the formula ��v ∧ ��¬v . Upon reading a state satisfying v , the
automaton reactivates the initial location because the original formula also has to be
true in the remainder of the temporal structure. Moreover, it activates the location q1

labeled by �¬v ; this can intuitively be understood as starting a new thread waiting
for v to become false. In fact, the automaton loops at q1 as long as v is true, and
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the thread “dies” (by activating the empty set of successors) as soon as v is false.
Similarly, the initial location activates itself and the location q2 labeled by �v upon
reading a state satisfying ¬v , and location q2 waits for v to become true. The num-
bers written in parentheses indicate the rank assigned to the respective location. In
particular, the locations q1 and q2 have odd rank, enforcing that no accepting run dag
contains a path that remains in those locations forever. However, the initial location
has rank 2 because that location is allowed to remain active.

For the analysis of alternating automata and their languages, it is useful to intro-
duce elementary notions of the theory of logical games. The paths through a run dag
of a weak alternating automaton Ω over a temporal structure K can be understood
as the outcomes of the following game G(Ω,K), played by two players that are tra-
ditionally called AUTOMATON and PATHFINDER. Intuitively, AUTOMATON tries to
demonstrate that K is accepted by Ω; it makes use of the disjunctive non-determinism
of the transition relation. Dually, PATHFINDER challenges the acceptance of K by Ω
and tries to exhibit a path whose stable rank is odd; it chooses some location among
those proposed by AUTOMATON. Continuing in this way, both players construct a se-
quence of “positions”. Either one of the players has no move and therefore loses after
a finite number of moves, or the winner is determined by the parity of the minimal
rank of locations that appear in the sequence.

Formally, the positions of G(Ω,K) are of the form (i , q) when AUTOMATON

draws where i ∈ N and q ∈ Q . They are of the form (i , q ,Y ) when PATHFINDER

has to draw where i and q are as before and Y ⊆ Q is a set of locations. The
initial position is (0, q0) where q0 is the initial location of Ω; therefore, player AU-
TOMATON makes the first move. Whenever AUTOMATON draws from some position
(i , q), it chooses some minimal set Y ⊆ Q such that �

ηY
i
δ(q) holds for the joint val-

uation ηY
i , provided some such set exists, producing the position (i , q ,Y ). A move

of PATHFINDER from any such position consists in choosing some q ′ ∈ Y , provided
Y �= ∅, and yields the position (i + 1, q ′), and the play continues from there. Let us
remark that from any position in G(Ω,K), the player who has to make a move has
only finitely many moves because the set Q of automaton locations is assumed to be
finite.

Any infinite play determines a sequence (q0, q1, q2, . . .), called the outcome of
the play, of locations determined from AUTOMATON’s positions (0, q0), (1, q1), . . .
encountered during the play. A play is won by AUTOMATON if either some position
(i , q , ∅) is reached from where PATHFINDER has no move, or if it is infinite and the
minimal rank of the locations in the outcome is even. Otherwise, the play is won by
PATHFINDER.

We are now interested in the question of whether one of the players can force a
win, assuming optimal play. For the games considered here, it suffices to consider
particularly simple strategies that determine the next move from the current position
alone, without regard to the history of the play. A memoryless strategy (for either
player AUTOMATON or PATHFINDER) is a partial function that, given a position for
that player, determines the next draw, respecting the rules of the game. It is a winning
strategy for the player from a game position if for any play starting from that position
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such that his moves are determined by the strategy is won by him (for arbitrary moves
of his opponent); in particular, the strategy must always be defined in such a play.
It is a winning strategy for the game G(Ω,K) if it is a winning strategy from the
initial position. Because the rules of the game mirror the definition of a run, player
AUTOMATON has a winning strategy if and only if K is accepted by Ω.

Lemma 4.5.1. A temporal structure K is accepted by the weak alternating automa-
ton Ω if and only if player AUTOMATON has a memoryless winning strategy for the
game G(Ω,K).

Proof. Assume first that K ∈ L(Ω), and let � = (Y0, �Y0,Y1, �Y1, . . .) be an accept-
ing run dag of Ω over K. Define a strategy str for player AUTOMATON that, given a
position (i , q), returns the successors of the node labeled q at the i th configuration
of the dag, i.e.,

str(i , q) = {q ′ | (q , q ′) ∈ �Yi}

so that (i , q , str(i , q)) will be the next position in the play. By applying this strategy
starting at the initial position (0, q0), AUTOMATON thus forces the play to follow a
path through the run dag �, i.e., q ∈ Yi holds whenever the strategy str is applied
to position (i , q). Because � is a run dag, Y = str(i , q) is therefore a minimal set
such that �

ηY
i

δ(q) holds, and thus str determines a valid move for AUTOMATON.

Either the strategy computes the empty set at some point, and PATHFINDER loses
immediately, or the outcome of the play is an infinite path through �, and therefore
the minimal rank assumed along that path must be even; hence AUTOMATON wins
in this case, too.

Conversely, assume that AUTOMATON has a memoryless winning strategy str
for G(Ω,K), and inductively construct a dag � = (Y0, �Y0,Y1, �Y1, . . .) as follows:

• Y0 = {q0}.
• If Yi has been constructed, define �Yi = {(q , q ′) | q ∈ Yi and q ′ ∈ str(i , q)}

and let Yi+1 = {q ′ | (q , q ′) ∈ �Yi for some q ∈ Yi} be the range of �Yi .

As before, the paths in the resulting dag correspond exactly to the plays in G(Ω,K),
and therefore � is an accepting run dag of Ω over K. �

We will now define a translation that associates a weak alternating automaton
ΩF to any formula F of LTL such that L(ΩF ) = {K | K0(F ) = tt}. It follows that
weak alternating automata are at least as expressive as LTL.

The basic idea of the translation is to have locations of ΩF enforce the truth of
subformulas of F , as was already indicated in the example automaton of Fig. 4.11
corresponding to the formula ��v ∧ ��¬v . The transition formulas of ΩF are de-
fined by induction on the structure of the temporal formulas: propositional connec-
tives are directly provided by the combinational structure of alternating automata,
and temporal connectives are decomposed according to their recursive characteriza-
tions.
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location q δ(q) rk(q)

qtrue true 0

qfalse false 0

qv (v ∈ V) v 0

q¬v (v ∈ V) ¬v 0

qA∧B δ(qA) ∧ δ(qB ) max{rk(qA), rk(qB )}
qA∨B δ(qA) ∨ δ(qB ) max{rk(qA), rk(qB )}
q◦A qA rk(qA)

q�A q�A ∧ δ(qA) �rk(qA)�even

q�A q�A ∨ δ(qA) �rk(qA)�odd

Fig. 4.12. Transition and ranking functions for automaton ΩF

More formally, we assume F to be given in positive normal form, that is, built
from propositional constants or their negations by applying the connectives ∧, ∨, �,
�, and �. Every formula of LTL can be rewritten in this form by eliminating im-
plication and negation (other than applied to propositional constants) using standard
laws of propositional logic and the laws (T1), (T2), and (T3). The weak alternating
automaton ΩF contains a location qA for every subformula A of F , with qF being
the initial location. The transition formulas δ(qA) and the ranks rk(qA) are induc-
tively defined as shown in Fig. 4.12 where �n�odd and �n�even denote respectively
the smallest odd and even number greater or equal than n . Observe that the ranks of
successors are non-increasing, so ΩF is a well-formed weak alternating automaton.

Theorem 4.5.2. For any formula F of LTL, the weak alternating automaton ΩF ac-
cepts precisely the temporal structures K such that K0(F ) = tt.

Proof. Let ΩF = (V,Q , qF , δ, rk) be the weak alternating automaton associated
with F and K be some temporal structure for V. We show by induction on the sub-
formula A of F that for any qA ∈ Q and any i ∈ N, player AUTOMATON has a
(memoryless) winning strategy from the position (i , qA) in the game G(ΩF ,K) if
and only if Ki(A) = tt. From this, the claim follows with Lemma 4.5.1.

1. A ∈ {true, false} or A ∈ {v ,¬v} for some v ∈ V: In these cases, δ(qA) = A.
If Ki(A) = tt, the trivial strategy that returns ∅ for the position (i , qA) and is
undefined otherwise determines a valid move in G(ΩF ,K), and AUTOMATON

wins at the successor position (i , qA, ∅) because PATHFINDER has no move. If
Ki(A) = ff, player AUTOMATON has no move in G(ΩF ,K), so PATHFINDER

wins immediately. In particular, AUTOMATON does not have a winning strategy.
2. A ≡ B ∧ C : Then δ(qA) ≡ δ(qB ) ∧ δ(qC ). Assume that Ki(A) = tt; thus

Ki(B) = Ki(C ) = tt. By the induction hypothesis, AUTOMATON has winning
strategies strB and strC from the positions (i , qB ) and (i , qC ). Then the strategy
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str(j , q) =

⎧
⎨

⎩

strB (i , qB ) ∪ strC (i , qC ) if (j , q) = (i , qA),
strB (j , q) else if strB is defined for (j , q),
strC (j , q) otherwise

obviously defines a winning strategy for AUTOMATON from position (i , qA).
Conversely, a winning strategy str for position (i , qA) gives rise to strategies
strB and strC for positions (i , qB ) and (i , qC ) since all minimal sets Y such
that �

ηY δ(qA) are of the form YB ∪YC where �
ηYB

δ(qB ) and �
ηYC

δ(qC ). There-

fore, say, strB is defined to produce a minimal set Y1 ⊆ str(qA, i) such that
�
ηY1 δ(qB ), and equals strA on all other positions, and similarly for strC . In

this way, strB and strC become winning strategies for positions (i , qB ) and
(i , qC ), so by the induction hypothesis we have Ki(B) = Ki(C ) = tt, implying
Ki(A) = tt.

3. The case A ≡ B ∨ C is analogous.
4. A ≡ �B : Then AUTOMATON has no choice but to move to (i , qA, {qB}), from

where PATHFINDER must move to position (i +1, qB ). By induction hypothesis,
AUTOMATON has a winning strategy for (i +1, qB ) if and only if Ki+1(B) = tt,
which implies the assertion for position (i , qA).

5. A ≡ �B : Then δ(qA) = qA ∧ δ(qB ). Assume that Ki(A) = tt, and therefore
Kj (B) = tt for all j ≥ i , and by induction hypothesis AUTOMATON has winning
strategies str j

B for (j , qB ), for all j ≥ i . Define the strategy

str(j , q) =

⎧
⎨

⎩

{qA} ∪ str j
B (j , qB ) if q = qA,

strk
B (j , q) otherwise, where k ≥ i is the largest

index of a position (k , qA).

A straighforward induction on the positions of the game shows that str produces
legal moves for player AUTOMATON from position (i , qA) onwards. If player
PATHFINDER chooses positions (j , qA) for all j ≥ i then AUTOMATON wins
because the rank of qA is even. Otherwise, AUTOMATON follows the strategy
strk

B from the last position (k , qA) of that form onwards, which by induction
hypothesis is a winning strategy for AUTOMATON.
Conversely, assume that Ki(A) = ff, that is, Kj (B) = ff for some j ≥ i . By in-
duction hypothesis, AUTOMATON has no winning strategy from position (j , qB ).
Now, PATHFINDER can force the play to reach position (j , qA) by choosing po-
sitions (k , qA) for all i ≤ k ≤ j , since any (minimal) model of δ(qA) must ob-
viously contain qA. At position (j , qA), AUTOMATON must produce the position
(j , qA, {qA} ∪ Y ) where Y is a (minimal) non-empty set such that �

ηY
j

δ(qB ),

and PATHFINDER will choose some q ∈ Y to reach the position (j + 1, q).
Clearly, any winning strategy from that position would determine a winning
strategy from (j , qB ), so we find that AUTOMATON does not have a winning
strategy from (i , qA).

6. The case of A ≡ �B is similar. �
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location q δ(q) rk(q)

qAuntilB qB ∨ (qA ∧ qAuntilB ) �max{rk(qA), rk(qB )}�odd

qAunlessB qB ∨ (qA ∧ qAunlessB ) �max{rk(qA), rk(qB )}�even

Fig. 4.13. Automaton construction for LTL+b

The construction of ΩF ensures that its size is linear in the size of F . The con-
struction extends in the canonical way to LTL+b. For example, Fig. 4.13 shows the
definitions of δ(q) and rk(q) for the binary operators until and unless.

In order to decide emptiness of a weak alternating automaton Ω, one can con-
struct a Büchi automaton that accepts the same language. Because this conversion
relies on a subset construction, the Büchi automaton will in general be exponentially
larger than Ω. However, minimizations can be performed on Ω as well as during
the construction of the Büchi automaton, and this approach to computing Büchi au-
tomata in practice outperforms direct techniques based on the tableau construction
as described in Sect. 4.4.
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dags was introduced by Kupferman and Vardi [84]; it was shown in [85] to extend
across a wide range of ω-automata. That proof is related to constructions for weak
alternating automata, which were first studied in connection with temporal logics by
Muller et al. [112]; see also [149, 153].

Gerth et al. [55] gave an efficient algorithm to construct a generalized Büchi
automaton corresponding to a formula of LTL+b, related to our construction in
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Sect. 4.4. An alternative method, using weak alternating automata as an intermediate
representation, was proposed by Gastin and Oddoux [54].



5

First-Order Linear Temporal Logic

Temporal logic – studied so far in its propositional form – can be developed to a
predicate logic in a way analogous to how this is performed in classical logic.

We present temporal predicate logic only in a first-order version and in a first
step with the basic temporal concepts of LTL (as an extension of both LTL and
FOL). This basic first-order linear temporal logic FOLTL can easily be augmented
with the propositional extensions introduced in Chap. 3, and we will also discuss in
Sects. 5.4–5.6 some more predicate logic additions.

When passing from propositional to first-order logic in the classical framework,
decidability gets lost. As the main theoretical result of this chapter we will show
that this “gap” is even more essential in temporal logics: FOLTL turns out to be
incomplete.

5.1 Basic Language and Semantics

In propositional temporal logic the propositional constants (which are the only basic
building blocks) are “time-dependent”. In a predicate logic, formulas are built from
function and predicate symbols (and variables), and there is a free choice of which
of these basic atoms are to be interpreted differently in different states. The symbols
which are chosen for this to establish the temporal aspect are called flexible; the
others are interpreted “time-independently” and are called rigid.

The most widely used choice is to take particular individual and propositional
constants as the flexible symbols called flexible individual constants and flexible
propositional constants, respectively. (Alternatives will be sketched in Sect. 10.1.)
To put it formally, a temporal signature TSIG = (SIG ,X,V) is given by

• a signature SIG = (S,F,P),
• X =

⋃
s∈S Xs where Xs , for every s ∈ S, is a set of flexible individual con-

stants,
• a set V of flexible propositional constants.
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For TSIG = (SIG ,X,V) let SIG+ be the (classical) signature resulting from
SIG = (S,F,P) by joining Xs to F(ε,s) for every s ∈ S and V to P(ε). In SIG+ the
view of the flexible symbols of X and V as individual and propositional constants
is established. As we will see shortly from the semantical definitions, the flexible
propositional constants will play the role of the propositional constants of LTL while
rigid propositional constants in the sense of classical PL are, as in FOL, available as
elements of P(ε). Note moreover, that TSIG is just another form of SIG+ displaying
X and V explicitly.

Given a temporal signature TSIG = (SIG ,X,V), SIG = (S,F,P), let
LFOL(SIG+) be a first-order language in the sense of Sect. 1.2 (over the signature
SIG+ defined above) withX =

⋃
s∈S Xs being its set of variables. The alphabet of a

(basic) language LFOLTL(TSIG) (also shortly: LFOLTL) of first-order linear temporal
logic is given by

• all symbols of LFOL(SIG+),
• the symbols �and �.

Terms (with their sorts) and atomic formulas of LFOLTL(TSIG) are the terms and
atomic formulas of LFOL(SIG+). In particular this means that every a ∈ X is a term
and every v ∈ V is an atomic formula.

Inductive Definition of formulas (of LFOLTL(TSIG)).

1. Every atomic formula is a formula.
2. false is a formula, and if A and B are formulas then (A→ B), �A, and �A are

formulas.
3. If A is a formula and x is a variable then ∃xA is a formula.

It is obvious that every formula of the classical language LFOL(SIG+) is a formula
of LFOLTL(TSIG) as well. These formulas contain no temporal operators and are
called non-temporal. Terms and formulas containing no flexible symbols are called
rigid. The rigid and non-temporal formulas are just the formulas of LFOL(SIG).

All abbreviations, the notions of free and bound variables and of closed formulas,
and the conventions about notation introduced in Sects. 1.2 and 2.1 are carried over
to LFOLTL. For better readability we will additionally bracket atomic formulas in
formulas of the form �(a < b), ∃x (x = a) and the like.

For the definition of semantics for LFOLTL, the notion of temporal structures
(serving again as interpretations) has to be adjusted to the first-order situation. A
temporal structure K = (S,W) for a temporal signature TSIG = (SIG ,X,V) con-
sists of

• a structure S for SIG (in the sense of Sect. 1.2), called the data component of K,
• an infinite sequence W = (η0, η1, η2, . . .) of mappings

ηi : X ∪V → |S| ∪ {ff, tt}

with ηi(a) ∈ |S|s for a ∈ Xs , s ∈ S, and ηi(v) ∈ {ff, tt} for v ∈ V for every
i ∈ N. (The ηi are again called states; η0 is the initial state of K.)
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A temporal structure K = (S,W) together with a variable valuation ξ with respect
to S (which is a mapping ξ : X → |S| as in Sect. 1.2) defines, for every state ηi

of W, mappings S(ξ,ηi ) which associate values S(ξ,ηi )(t) ∈ |S| for every term t and
S(ξ,ηi )(A) ∈ {ff, tt} for every atomic formula A. The inductive definition runs quite
analogously as in FOL:

1. S(ξ,ηi )(x ) = ξ(x ) for x ∈ X .
2. S(ξ,ηi )(a) = ηi(a) for a ∈ X.
3. S(ξ,ηi )(v) = ηi(v) for v ∈ V.
4. S(ξ,ηi )(f (t1, . . . , tn)) = f S(S(ξ,ηi )(t1), . . . ,S(ξ,ηi )(tn)) for f ∈ F.
5. S(ξ,ηi )(p(t1, . . . , tn)) = pS(S(ξ,ηi )(t1), . . . ,S(ξ,ηi )(tn)) for p ∈ P.
6. S(ξ,ηi )(t1 = t2) = tt ⇔ S(ξ,ηi )(t1) and S(ξ,ηi )(t2) are equal values in |S|.

S(ξ,ηi ) plays the combined role of S(ξ) in FOL and ηi in LTL and can now be induc-
tively extended to the definition of K

(ξ)
i (F ) ∈ {ff, tt} for every formula F (the “truth

value of F in ηi under ξ”) transferring the according clauses from FOL and LTL:

1. K
(ξ)
i (A) = S(ξ,ηi )(A) for every atomic formula A.

2. K
(ξ)
i (false) = ff.

3. K
(ξ)
i (A→ B) = tt ⇔ K

(ξ)
i (A) = ff or K

(ξ)
i (B) = tt.

4. K
(ξ)
i ( �A) = K

(ξ)
i+1(A).

5. K
(ξ)
i (�A) = tt ⇔ K

(ξ)
j (A) = tt for every j ≥ i .

6. K
(ξ)
i (∃xA) = tt ⇔ there is a ξ′ with ξ ∼x ξ′ and K

(ξ′)
i (A) = tt.

For the other logical operators (in particular � and ∀) the definitions carry over as in
FOL and LTL, i.e.,

7. K
(ξ)
i (�A) = tt ⇔ K

(ξ)
j (A) = tt for some j ≥ i .

8. K
(ξ)
i (∀xA) = tt ⇔ K

(ξ′)
i (A) = tt for all ξ′ with ξ ∼x ξ′.

Note that for rigid terms t and rigid formulas A these evaluations do not depend
on ηi , so we have in such cases S(ξ,ηi )(t) = S(ξ,ηj )(t) and K

(ξ)
i (A) = K

(ξ)
j (A) for

arbitrary i , j ∈ N. If A is a rigid and non-temporal formula then, viewing A as a
formula of LFOL(SIG), we can also evaluate S(ξ)(A) in the sense of classical FOL,
and comparing the respective clauses in Sect. 1.2 with those for K

(ξ)
i (A) above, it

follows immediately that K
(ξ)
i (A) = S(ξ)(A) then holds for every K = (S,W), ξ,

and i ∈ N.

Example. Let TSIG = (SIGNat , {a, b}, {v}) be a temporal signature with SIGNat

being a natural number signature and let x , y be variables (of sort NAT ). Then

A ≡ ∃x (a = x + y) ∧ �v → �(b ≤ 7)

is a formula of LFOLTL(TSIG). Furthermore, let K = (N,W) be a temporal structure
with the standard model N of natural numbers and W given by
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η0 η1 η2 η3 η4 . . .
a 2 8 5 7 3 . . . (arbitrary) . . .
b 4 7 9 5 5 . . . (5 forever) . . .
v tt tt ff tt tt . . . (arbitrary) . . .

and let ξ be a variable valuation with ξ(y) = 3. Then

K
(ξ)
i (∃x (a = x + y)) = tt ⇔ there is a ξ′ with ξ ∼x ξ′ and

ηi(a) = ξ′(x ) + 3.

This means K
(ξ)
0 (∃x (a = x + y)) = ff and K

(ξ)
2 (∃x (a = x + y)) = tt (with

ξ′(x ) = 2). So we get

K
(ξ)
0 (A) = tt,

K
(ξ)
1 ( �v) = η2(v) = ff ⇒ K

(ξ)
1 (A) = tt,

K
(ξ)
2 ( �v) = η3(v) = tt,K(ξ)

2 (b ≤ 7) = ff,K(ξ)
2 (�(b ≤ 7)) = ff

⇒ K
(ξ)
2 (A) = ff,

K
(ξ)
i (�(b ≤ 7)) = tt ⇒ K

(ξ)
i (A) = tt for i ≥ 3. �

Definition. A formula A of LFOLTL(TSIG) is called valid in the temporal structure

K for TSIG (or K satisfies A), denoted by �
K
A, if K

(ξ)
i (A) = tt for every i ∈ N and

every variable valuation ξ. A is called a consequence of a set F of formulas (F �A)
if �

K
A holds for every K with �

K
B for all B ∈ F . A is called (universally) valid (�A)

if ∅ �A.

These definitions are the obvious adaptations from FOL and the (normal) validity
concept of LTL. Clearly, FOLTL can alternatively be equipped with initial validity
semantics as well by modifying the notion of validity in a temporal structure accord-
ing to Sect. 2.6.

Example. The formula ∃x �A↔ �∃xA is valid since for every K, i ∈ N and ξ we
have

K
(ξ)
i (∃x �A) = tt ⇔ there is a ξ′ with ξ ∼x ξ′ and K

(ξ′)
i ( �A) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and K
(ξ′)
i+1(A) = tt

⇔ K
(ξ)
i+1(∃xA) = tt

⇔ K
(ξ)
i ( �∃xA) = tt.

(Observe that in this calculation we have just rephrased the validity proof of the
axiom (qltl2) of LTL+q in Sect. 3.3.) �

Formulas A and B with � A ↔ B (like ∃x �A and �∃xA in the example) are
again called logically equivalent, denoted by A ∼= B .

Validity of a formula A means that A “holds for all data interpretations and all
state sequences”. We still introduce as a weaker notion that A “holds for all state
sequences for a fixed data component”.
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Definition. Let TSIG = (SIG ,X,V) be a temporal signature, S a structure for
SIG . A formula A ofLFOLTL(TSIG) is called S-valid if �

K
A holds for every temporal

structure K for TSIG with data component S.

Example. The formula A ≡ �(a + x = a) → x = 0 over a natural number
signature with a ∈ XNAT and x ∈ XNAT is N-valid (N being the standard model of
natural numbers) since, for every K = (N, (η0, η1, η2, . . .)), ξ, and i ∈ N, we have

K
(ξ)
i ( �(a + x = a)) = tt ⇒ ηi+1(a) + ξ(x ) = ηi+1(a)

⇒ ξ(x ) = 0

⇒ K
(ξ)
i (x = 0) = tt

which means �
K
A. �

In case A is a rigid and non-temporal formula, S-validity is already given by
validity in a single temporal structure with data component S. Moreover, such a for-
mula is a classical first-order formula over the underlying signature SIG . So, for A
we have also the notion of being valid in S as defined in Sect. 1.2, and it is quite
trivial to compare this classical validity with S-validity in the present context.

Lemma 5.1.1. Let TSIG = (SIG ,X,V) be a temporal signature, S be a structure
for SIG , K = (S,W) be a temporal structure for TSIG , and A be a rigid and
non-temporal formula of LFOLTL(TSIG). Then

�
K
A ⇔ A is S-valid ⇔ A is valid in S (in the classical first-order sense).

Proof. As already noted above, K
(ξ)
i (A) = S(ξ)(A) holds for every ξ and arbitrary

K = (S,W) and i ∈ N if A is rigid and non-temporal. So we have

�
K
A ⇔ K

(ξ)
i (A) = tt for every ξ, i

⇔ S(ξ)(A) = tt for every ξ

and from this we obtain

�
K
A ⇔ A is valid in S

and

�
K
A ⇔ �

K′A for every temporal structure K′ = (S,W′) for TSIG

⇔ A is S-valid.

Together, this proves the claim. �

The formula Ax (t) → ∃xA is a typical classically valid formula as seen in
Sect. 1.2. In general, it is no longer valid in FOLTL. Consider, e.g., the formula

A ≡ x = a ∧ �(x �= a)
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with a ∈ X. Let b ∈ X and K be such that η0(a) = η0(b) = η1(a) �= η1(b). Then
Ax (b) ≡ b = a ∧ �(b �= a) and, for arbitrary ξ,

K
(ξ)
0 (Ax (b)) = tt

but

K
(ξ)
0 (∃xA) = ff

since otherwise there would be a ξ′ with ξ′(x ) = η0(a) and ξ′(x ) �= η1(a) which
contradicts η0(a) = η1(a).

The problem illustrated here arises from the too liberal substitution of the flexible
constant b for the rigid variable x in A. In order to avoid it, a reasonable restriction
could be formulated as follows.

Definition. Let A be a formula of LFOLTL. A term t is called substitutable for x in
A if Ax (t) has no new occurrences of flexible individual constants in the scope of a
temporal operator as compared with A.

Example. In the situation above, the term b is not substitutable for x in A since in
Ax (b) there is a new occurrence of b in the scope of �. However, for

B ≡ x = a ∧ �(y �= a)

we get

Bx (b) ≡ b = a ∧ �(y �= a),

so b is substitutable for x in B . It is easy to compute that Bx (b) → ∃xB is valid.
More generally, if a term t is substitutable for x in a formula A of LFOLTL then the
formula

Ax (t) → ∃xA

is valid. In fact we have for arbitrary K, i ∈ N, and ξ:

K
(ξ)
i (Ax (t)) = tt ⇒ K

(ξ′)
i (A) = K

(ξ)
i (Ax (t)) = tt

for ξ′ ∼x ξ, ξ′(x ) = S(ξ,ηi )(t)

⇒ K
(ξ)
i (∃xA) = tt. �

We still note that the LTL relationship

F ∪ {A} � B ⇔ F � �A→ B

has to be modified as in Sect. 1.2 (it holds if A does not contain free variables),
and extend the list of laws (T1)–(T38) carried over from LTL by some more valid
formulas as “typical” laws of FOLTL (also repeating the one proved in an example
above).
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(T39) ∃x �A↔ �∃xA,
(T40) ∀x �A↔ �∀xA,
(T41) ∃x�A↔ �∃xA,
(T42) ∀x�A↔ �∀xA.

We mentioned already that FOLTL can be augmented with the propositional ex-
tensions of Chap. 3 in the same way as LTL. For example, the logic FOLTL+b is
FOLTL with the addition of binary operators described in Sect. 3.1 and contains
formulas like

∃x (A unless B), A atnext (∀xB).

With such extensions, new temporal logical laws arise. We only give some examples
in the line of (T39)–(T42) and conclude this section by proving one of them.

(Tb30) ∃x (A unl B) ↔ A unl (∃xB)
if there is no free occurrence of x in A,

(Tb31) ∀x (A unl B) ↔ (∀xA) unl B
if there is no free occurrence of x in B ,

(Tb32) ∃x (A atnext B)↔ (∃xA) atnext B
if there is no free occurrence of x in B ,

(Tb33) ∀x (A atnext B)↔ (∀xA) atnext B
if there is no free occurrence of x in B .

Proof of (Tb32). If there is no free occurrence of x in B then for any temporal struc-
ture K, i ∈ N, and variable valuation ξ we have:

K
(ξ)
i (∃x (A atnext B)) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and K
(ξ′)
i (A atnext B) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and

K
(ξ′)
j (B) = ff for every j > i or

K
(ξ′)
k (A) = tt for the smallest k > i with K

(ξ′)
k (B) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and

K
(ξ)
j (B) = ff for every j > i or

K
(ξ′)
k (A) = tt for the smallest k > i with K

(ξ)
k (B) = tt

⇔ K
(ξ)
j (B) = ff for every j > i or

there is a ξ′ with ξ ∼x ξ′ and

K
(ξ′)
k (A) = tt for the smallest k > i with K

(ξ)
k (B) = tt

⇔ K
(ξ)
j (B) = ff for every j > i or

K
(ξ)
k (∃xA) = tt for the smallest k > i with K

(ξ)
k (B) = tt

⇔ K
(ξ)
i ((∃xA) atnext B) = tt. �
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5.2 A Formal System

A reasonable formal system ΣFOLTL for FOLTL can be given as an extension of ΣLTL

in the following way.

Axioms

(taut) All tautologically valid formulas,
(ltl1) ¬ �A ↔ �¬A,
(ltl2) �(A→ B) → ( �A→ �B),
(ltl3) �A → A ∧ ��A,
(ltl4) Ax (t) → ∃xA if t is substitutable for x in A,
(ltl5) �∃xA → ∃x �A,
(ltl6) A→ �A if A is rigid,
(eq1) x = x ,
(eq2) x = y → (A→ Ax (y)) if A is non-temporal.

Rules

(mp) A,A→ B � B ,
(nex) A � �A,
(ind) A→ B ,A→ �A � A→ �B ,
(par) A→ B � ∃xA→ B if there is no free occurrence of x in B .

ΣFOLTL is essentially a conglomeration of ΣLTL and the classical first-order system
ΣFOL shown in Sect. 1.2. The only new items are (ltl5), combining temporal and first-
order operators, and (ltl6), expressing the fact that all symbols except the flexible
ones are equally interpreted in all states.

Theorem 5.2.1 (Soundness Theorem for ΣFOLTL). Let A be a formula and F a set
of formulas. If F �

ΣFOLTL
A then F � A.

Proof. The proof runs again by induction on the assumed derivation of A from F .

1. A is an axiom of ΣFOLTL: It suffices to show that A is valid. For the axioms
(taut), (ltl1), (ltl2), (ltl3) of ΣLTL this can be taken from Sect. 2.2 and for (ltl4)
and (ltl5) this was shown in Sect. 5.1. For (ltl6) it is clear since if A is rigid then
K

(ξ)
i (A) = K

(ξ)
i+1(A) = K

(ξ)
i ( �A). The validity of the equality axioms (eq1) and

(eq2) is also obvious according to the semantical definition for =.
2. A ∈ F : In this case F � A holds trivially.
3. A is a conclusion of a rule of ΣFOLTL: The rules (mp), (nex), and (ind) of ΣLTL

are treated exactly as in the proof of Theorem 2.3.1. For the rule (par) we may
assume the induction hypothesis F � A → B . To show F � ∃xA → B ,
let K be a temporal structure, �

K
C for all C ∈ F . Then �

K
A → B . Assume

K
(ξ)
i (∃xA → B) = ff, i.e., K

(ξ)
i (∃xA) = tt and K

(ξ)
i (B) = ff for some i ∈ N

and variable valuation ξ. Then there is some ξ′ with ξ ∼x ξ′ and K
(ξ′)
i (A) = tt.

Since B does not contain free occurrences of x we get K
(ξ′)
i (B) = K

(ξ)
i (B) = ff

and therefore K
(ξ′)
i (A → B) = ff, which is a contradiction to �

K
A → B .
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Thus, K
(ξ)
i (∃xA → B) = tt for every i and ξ, i.e., �

K
∃xA → B and hence

F � ∃xA→ B . �

We can transfer all logical laws and derived rules from LTL to ΣFOLTL since ΣLTL

is a part of ΣFOLTL. Moreover, we may incorporate classical first-order reasoning into
derivations within ΣFOLTL because of the first-order axioms and the rule (par). So,
analogously to the derived rule (prop) we may use an additional rule

(pred) A1, . . . ,An � B if B is a “first-order consequence” of A1, . . . ,An .

A formal definition of the notion “first-order consequence”, however, is not as easy
as it was for the “tautological consequence” in (prop). In particular, due to the restric-
tion in (ltl4) we have to be somewhat careful in the case when flexible symbols are
involved. The simplest precise meaning of (pred) is taking its application as a short-
cut of a derivation of B within ΣFOLTL, which uses the assumptions A1, . . . ,An and
only (taut), (ltl4), (eq1), (eq2), (mp), and (par). Examples for (pred) are the following
rules, which can easily be verified in this sense:

• A→ B � A→ ∀xB if there is no free occurrence of x in A,
• A � ∀xA,
• t1 = t2 � t2 = t1,
• t1 = t2, t2 = t3 � t1 = t3.

The laws (T39)–(T42) introduced in the previous section (and others of this kind)
can also be derived in ΣFOLTL. As a sample derivation we show this for (T42).

Derivation of (T42).

(1) ¬�A→ ∃x¬�A (ltl4)
(2) �A→ ��A (prop),(ltl3)
(3) ∀x�A→ ��A (prop),(1),(2)
(4) ∀x�A→ ∀x ��A (pred),(3)
(5) �∃x¬�A→ ∃x �¬�A (ltl5)
(6) �∃x¬�A→ ∃x¬ ��A (pred),(ltl1),(5)
(7) ∀x ��A→ �∀x�A (prop),(ltl1),(6)
(8) ∀x�A→ �∀x�A (prop),(4),(7)
(9) ∀x�A→ A (prop),(ltl3),(1)
(10) ∀x�A→ ∀xA (pred),(9)
(11) ∀x�A→ �∀xA (ind),(8),(10)
(12) ¬A→ ∃x¬A (ltl4)
(13) �∀xA→ �A (prop),(T19),(12)
(14) �∀xA→ ∀x�A (pred),(13)
(15) ∀x�A↔ �∀xA (prop),(11),(14) �

The Deduction Theorem 2.3.3 of LTL can be transferred to ΣFOLTL with some
restriction, as discussed in Sect. 1.2.
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Theorem 5.2.2. Let A,B be formulas, F a set of formulas. If F ∪{A} �B and this
derivation of B contains no application of the rule (par) for a variable occurring
free in A, then F � �A→ B .

Proof. Performing an induction on the presupposed derivation of B from F ∪ {A},
the cases that B is an axiom or B ∈ F ∪ {A} or B is the conclusion of (mp), (nex),
or (ind) can be taken word for word from the proof of Theorem 2.3.3. It remains to
consider rule (par). Let F ∪ {A} � C → D , x not free in D , such that ∃xC → D
is derived by (par) and there is no free occurrence of x in A. By the induction hy-
pothesis we know that F � �A → (C → D); hence F � C → (�A → D)
by (prop). From this we obtain F � ∃xC → (�A → D) by (par) and finally
F � �A→ (∃xC → D) by (prop). �

As before, the variable condition in this theorem is trivially fulfilled if A is closed
and, of course, the converse assertion

F � �A→ B ⇒ F ∪ {A} �B

holds again without any restrictions and can be proved exactly as in Theorem 2.3.4.

5.3 Incompleteness

Propositional linear temporal logic LTL and classical propositional logic PL are both
decidable. PL can be completely axiomatized and for LTL this is possible at least in
the weak form described in Sect. 2.4. Comparing linear temporal and classical logics
in their first-order versions, FOL is undecidable and hence FOLTL is undecidable
as well. The main difference appears with respect to axiomatizations. In contrast to
FOL, FOLTL can not be completely axiomatized, not even in the weak form. More
precisely: FOLTL is incomplete in the sense defined in Sect. 1.4. We may show this
following the pattern given there by proving that, roughly speaking, the standard
model of natural numbers can be “characterized” in FOLTL.

To make this argument precise, let SIGNat be the natural number signature with
the function symbols 0,SUCC ,+, ∗ and TSIGNat = (SIGNat , {num}, ∅) with the
flexible individual constant num (of sort NAT ). We consider the following formulas
of LFOLTL(TSIGNat):

P1 ≡ SUCC (x ) �= 0,
P2 ≡ SUCC (x ) = SUCC (y) → x = y ,
P3 ≡ x + 0 = x ,
P4 ≡ x + SUCC (y) = SUCC (x + y),
P5 ≡ x ∗ 0 = 0,
P6 ≡ x ∗ SUCC (y) = (x ∗ y) + x ,
P7 ≡ �(num = x ),
P8 ≡ num = x → �(num = 0 ∨ num = SUCC (x )).
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Note that P1–P6 are axioms of the first-order theory Nat considered in Sect. 1.3 and
are (as classical FOL formulas) valid in the standard model N of natural numbers.

Furthermore, let ij = j (j + 1)/2 for every j ∈ N and P = (N,WNat ) be the
temporal structure for TSIGNat with WNat = (η0, η1, η2, . . .) such that

ηij (num) = 0 for every j ,
ηij +k (num) = k for ij < ij + k < ij+1.

More intuitively, i0 = 0, i1 = 1, i2 = 3, i3 = 6, . . ., so WNat may be depicted by

η0 η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 . . .
num 0 0 1 0 1 2 0 1 2 3 0 . . .

Lemma 5.3.1. The formulas P1–P8 are valid in P.

Proof. P1–P6 are rigid and non-temporal, valid in N and hence in P by Lemma 5.1.1.
The validity of P7 and P8 in P follows from the definition of WNat : if ξ(x ) = n then
ηin+1+n(num) = n and if ηi(num) = n and ηi+1(num) �= 0 then i = ij + n for
some j and i + 1 = ij + n + 1 �= ij+1; hence ηi+1(num) = n + 1. So we get

P
(ξ)
i (P7) = tt and P

(ξ)
i (P8) = tt for every i and ξ. �

The temporal structure P has N as its data component. Let now K = (S,W) be
any temporal structure for TSIGNat . We define the mapping χ : |N| → |S| by

χ(0) = 0S,
χ(n + 1) = SUCC S(χ(n)).

Lemma 5.3.2. If the formulas P7 and P8 are valid in K then there is k ∈ N such that

a) ηk (num) = 0S,
b) for every i ≥ k , ηi(num) = χ(n) for some n ∈ N.

Proof. Let P7 and P8 be valid in K. Then Kξ
0(P7) = tt for ξ with ξ(x ) = 0 and

this implies ηk (num) = 0S for some k ∈ N. So this k has the property a), and b) is
shown by induction on i .

1. For i = k we have ηi(num) = ηk (num) = 0S = χ(0) from a).
2. For i > k we have ηi−1(num) = χ(m) for some m ∈ N by the induction

hypothesis. Since �
K
P8, we have Kξ

i−1(P8) = tt for ξ with ξ(x ) = χ(m); so
ηi(num) = 0S = χ(0) or ηi(num) = SUCC S(χ(m)) = χ(m + 1). �

Lemma 5.3.3. If the formulas P1, P2, P7, and P8 are valid in K then:

a) m �= n ⇒ χ(m) �= χ(n) for every m,n ∈ N.
b) For every d ∈ |S| there is an m ∈ N with χ(m) = d .

Proof. a) Let n �= m . We show χ(n) �= χ(m) by induction on n + m .

1. If n = 0, m �= 0, and P1 is valid in K then χ(n) = 0S �= SUCC S(χ(m − 1)) =
χ(m). The case m = 0, n �= 0 is symmetrical.
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2. If n �= 0 and m �= 0 then χ(n−1) �= χ(m−1) by the induction hypothesis and if
P2 is valid in K then we get χ(n) = SUCC S(χ(n−1)) �= SUCC S(χ(m−1)) =
χ(m).

b) Assume that there is some d ∈ |S| such that χ(m) �= d for every m ∈ N.
If P7 and P8 are valid in K then by Lemma 5.3.2 b) there are k ,n ∈ N such that
ηi(num) = η(n) for i ≥ k . This means that ηi(num) �= d for i ≥ k . Moreover,
because of P7, K

(ξ)
k (�(num = x )) = tt for ξ with ξ(x ) = d ; hence ηi(num) = d

for some i ≥ k and this is a contradiction. �

Lemma 5.3.3 says that χ is a bijective mapping and by the next lemma it is, in the
terminology of classical logic, even an “isomorphism” (if K satisfies the respective
formulas).

Lemma 5.3.4. If the formulas P3–P6 are valid in K then for every m,n ∈ N:

a) χ(m + n) = χ(m) +S χ(n).
b) χ(m ∗ n) = χ(m) ∗S χ(n).

Proof. a) The assertion is proved by induction on n .

1. If P3 is valid in K then we have d +S 0S = d for arbitrary d ∈ |S|; so we get
χ(m + 0) = χ(m) = χ(m) +S 0S = χ(m) +S χ(n).

2. Utilizing the validity of P4 and the induction hypothesis we get

χ(m + (n + 1)) = χ((m + n) + 1)
= SUCC S(χ(m + n))
= SUCC S(χ(m) +S χ(n))
= χ(m) +S SUCC S(χ(m))
= χ(m) +S χ(m + 1).

b) The proof of this part runs analogously, using the validity of P5 and P6. �

In isomorphic structures the same (closed) formulas are valid (in the FOL sense).
We transfer this property to the present situation.

Lemma 5.3.5. Let K = (S,W) be a temporal structure for TSIGNat in which the
formulas P1–P8 are valid and A a closed formula of LFOL(SIGNat). Then

�
N
A ⇔ �

S
A.

Proof. For any variable valuation ξ with respect to N let χ◦ξ be the variable valuation
χ◦ξ(x ) = χ(ξ(x )) with respect to S. (Note that all notations in the assertion of the
lemma and in the following proof are from classical first-order logic.)

a) We first show by induction on t that

χ(N(ξ)(t)) = S(χ◦ξ)(t)

holds for every term of LFOL(SIGNat) and for every ξ.
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1. If t is a variable x then χ(N(ξ)(t)) = χ(ξ(x )) = S(χ◦ξ)(t).
2. t ≡ 0: χ(N(ξ)(t)) = χ(0) = 0S = S(χ◦ξ)(t) by definition of χ.

3. t ≡ SUCC (t1): Then by definition of χ and the induction hypothesis we have

χ(N(ξ)(t)) = χ(N(ξ)(t1) + 1)

= SUCC S(χ(N(ξ)(t1)))

= SUCC S(S(χ◦ξ)(t1))

= S(χ◦ξ)(t).

4. t ≡ t1 + t2 or t ≡ t1 ∗ t2: Then, in the first case,

χ(N(ξ)(t)) = χ(N(ξ)(t1) + N(ξ)(t2))

= χ(N(ξ)(t1)) +S χ(N(ξ)(t2))

= S(χ◦ξ)(t1) +S S(χ◦ξ)(t2)

= S(χ◦ξ)(t)

with Lemma 5.3.4 a) and the induction hypothesis. The second case runs analo-
gously with Lemma 5.3.4 b).

b) Let now A be a formula of LFOL(SIGNat). We show by induction on A that

N(ξ)(A) = S(χ◦ξ)(A)

holds for every ξ.

1. A ≡ t1 = t2: Then with Lemma 5.3.3 a) and a) we have

N(ξ)(A) = tt ⇔ N(ξ)(t1) = N(ξ)(t2)

⇔ χ(N(ξ)(t1)) = χ(N(ξ)(t2))

⇔ S(χ◦ξ)(t1) = S(χ◦ξ)(t2)

⇔ S(χ◦ξ)(A) = tt.

2. A ≡ false: N(ξ)(A) = ff = S(χ◦ξ)(A).
3. A ≡ B → C : Then with the induction hypothesis we have

N(ξ)(A) = tt ⇔ N(ξ)(B) = ff or N(ξ)(C ) = tt

⇔ S(χ◦ξ)(B) = ff or S(χ◦ξ)(C ) = tt

⇔ S(χ◦ξ)(A) = tt.

4. A ≡ ∃xB : If ξ ∼x ξ′ then χ◦ξ(y) = χ(ξ(y)) = χ(ξ′(y)) = χ◦ξ′(y) for every
variable y other than x ; so χ◦ξ ∼x χ◦ξ′. On the other hand, for any variable
valuation ξ′′ with respect to S, let ξ′ be the variable valuation with respect to N
with χ(ξ′(y)) = ξ′′(y) for every y , i.e., ξ′′ = χ◦ξ′. ξ′ is well defined because
of Lemma 5.3.3 b). Then, for χ ◦ ξ ∼x ξ′′ and y different from x , we have
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χ(ξ′(x )) = χ(ξ(y)) which implies ξ(y) = ξ′(y) by Lemma 5.3.3 a); hence
ξ ∼x ξ′. Altogether we get with the induction hypothesis

N(ξ)(A) = tt ⇔ there is a ξ′ with ξ ∼x ξ′ and N(ξ′)(B) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and S(χ◦ξ′)(B) = tt

⇔ there is a ξ′′ with χ◦ξ ∼x ξ′′ and S(ξ′′)(B) = tt

⇔ S(χ◦ξ)(A) = tt.

c) With b) we finally get the assertion of the lemma: if A is closed then N(ξ)(A)
and S(χ◦ξ)(A) do not depend on ξ and χ◦ξ, respectively; so we have

�
N
A ⇔ N(ξ)(A) = tt for every ξ

⇔ S(χ◦ξ)(A) = tt for every ξ

⇔ �
S
A. �

Recalling the discussion in Sect. 1.3, Lemma 5.3.5 informally says that the for-
mulas P1–P8 “characterize” the standard model N of natural numbers (up to isomor-
phism). This provides the key argument to the desired incompleteness result which
can now easily be formalized.

Theorem 5.3.6 (Incompleteness Theorem for FOLTL). The logic FOLTL is in-
complete.

Proof. The result follows from the Gödel Incompleteness Principle pointed out in
Sect. 1.4 if we can find a (decidable) set F of formulas of LFOLTL(TSIGNat) such
that

F �A ⇔ �
N
A

holds for every closed formula A of LFOL(SIGNat). In fact this works with F being
the set of formulas P1–P8: A is a rigid and non-temporal formula of the language
LFOLTL(TSIGNAT ); so if F � A then �

P
A by Lemma 5.3.1 which implies �

N
A by

Lemma 5.1.1. If, on the other hand, �
N
A and K = (S,W) is a temporal structure for

TSIGNat which satisfies the formulas of F then �
S
A by Lemma 5.3.5; hence �

K
A by

Lemma 5.1.1, and this means F �A. �

The preceding discussion shows that FOLTL is a bit comparable with classical
second-order logic. We remark, however, that FOLTL is still “weaker” than SOL:
there are properties of structures which can be characterized in SOL but not in
FOLTL.

A proof-theoretical indication of the difference between FOLTL and SOL is the
following observation. In Sect. 2.4 we remarked that weakening the concept of for-
mal systems to semi-formal ones may bridge the gap between weak and full com-
pleteness in LTL. In fact, the “much bigger” step from incompleteness to (full) com-
pleteness in FOLTL (but not in SOL) can be achieved in the same way. Interestingly,
it is even the same ω-rule
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(ω-ind) A→ �iB , i ∈ N � A→ �B

(appropriate in the LTL case) which works here. Replacing (ind) by (ω-ind) in
ΣFOLTL provides a (sound) semi-formal system which is complete in the sense that

F � A ⇒ F �A

then holds for arbitrary F and A.

Second Reading

Besides the consideration of semi-formal systems, there is another concept of weakening
completeness called relative completeness. Originally introduced for Hoare logic, this mod-
ification can also be defined in the present context.

Focusing on weak completeness, the question of whether some formal system Σ is
weakly complete can be reduced to the question of whether any valid formula A is derivable
in Σ (cf. the proof of Theorem 2.4.10). The basic idea of relative completeness is induced
by the observation that in applications one often does not want to derive universally valid
formulas, but formulas which hold in the context of concrete data types. For example, if
A is a formula expressing some property of temporal structures with the natural numbers
as underlying data, i.e., a formula of some language LFOLTL(TSIGNat), then the relative
completeness question for Σ is as follows:

• Provided A is valid in every temporal structure for TSIGNat which has the standard
model N of natural numbers as its data component, is A derivable in Σ if every non-
temporal formula of this kind may be taken as assumption?

In other (informal) words: can we derive any formula which holds for arbitrary state se-
quences and data from N if we need not care about how to derive classical first-order for-
mulas valid in N, but may use these just as assumptions in the derivation?

In general, and using the terminology introduced in Sect. 5.1, let TSIG = (SIG,X,V)
be a temporal signature and C be a class of structures for SIG . For S ∈ C we denote the set
of all non-temporal S-valid formulas of LFOLTL(TSIG) by Th(S). Then a formal system Σ
for FOLTL is called relatively complete with respect to C if

Th(S) �Σ A

holds for every S-valid formula A and every S ∈ C.
In Hoare logic it turns out that (an analogously defined) relative completeness can be

achieved – apart from other trivial cases – for the class of arithmetical structures. Such a
structure presupposes that the signature SIG contains the sort NAT and the usual symbols
0,SUCC , +, ∗ of SIGNat , and S restricted to this part of SIG is the standard model N.
For FOLTL we call a formal system arithmetically complete if it is relatively complete with
respect to the class of arithmetical structures.

In fact it is possible to give a sound and arithmetically complete axiomatization for
FOLTL. Informally this means that an axiomatization with the property

A is S-valid ⇒ Th(S) �A

is possible if the temporal logic language is rich enough to contain formulas which express
statements about natural numbers and the interpretation of these formulas by S is the “stan-
dard” one.
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As in the case of a semi-formal axiomatization briefly mentioned in the main text above,
the induction rule (ind) of temporal logic plays the crucial role in an approach to an arith-
metically complete formal system. One essential part of the modification of ΣFOLTL could
be to replace (ind) by the rule

(ar-ind) Ay(0) → B ,Ay(SUCC (y)) → �A � ∀yA → �B

in which y is a variable from XNat and B does not contain y . This rule describes just an-
other inductive argumentation (“over the natural numbers”) which is easy to understand
informally. It obviously corresponds to the basic semantical fact that the states in a state
sequence W = (η0, η1, η2, . . .) are indexed by the natural numbers. (Examining the con-
siderations of this section, it is easy to see that this fact is, on the other hand, essentially
responsible for the incompleteness of FOLTL.) Interestingly, we will encounter a similar
line of argumentation (for another purpose) in Sect. 5.5.

Observe finally that the rule (ind) is just a trivial case of (ar-ind): if A does not contain
the variable y then (ar-ind) reduces to

A → B ,A → �A � A → �B

which is in fact (ind).

5.4 Primed Individual Constants

We now want to introduce some (predicate logic) extensions of FOLTL and we begin
in this section with the observation that there is a special difference between the two
kinds of flexible constants of FOLTL. A flexible propositional constant v ∈ V allows
a direct access to “its value in the next state”. Since v is a formula we may write

�v

to describe this. A simple (but typical) application is a formula like

�v ↔ ¬v

expressing that

“moving from the present to the next state the value of v will be negated”.

For a flexible individual constant a ∈ X such a direct denotation of a’s next state
value is not possible, its usage has to be encoded into an appropriate formula with �.
For example, a phrase like

“moving from the present to the next state will increase the value of a by 1”

can be expressed by

∃x ( �(a = x ) ∧ x = a + 1).

Assertions of this kind occur frequently in applications and in order to make their
formal description more convenient we extend FOLTL by a linguistic feature allow-
ing the direct application of the next time operator to flexible individual constants.
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We write a ′ (instead of the direct transcription �a) for such new syntactic entities
and call them primed (flexible) individual constants. With this extension the sample
phrase is simply expressible by

a ′ = a + 1.

Note that the next time operator is not really transferred in its full power. We allow
only “one priming”, so there is no analogy to ��v . Our approach will be sufficient
for the usual applications.

Formally we extend FOLTL to a logic FOLTL′ the language LFOLTL′ of which
results from LFOLTL by adding the prime symbol ′ to the alphabet and the clause

• If a ∈ X then a ′ is a term of the same sort as a

to the syntactical definition of terms.
For defining the semantics ofLFOLTL′ we slightly modify our technical apparatus.

Up to now terms and atomic formulas were evaluated in states (and with respect
to some variable valuation ξ) whereas general formulas were interpreted over state
sequences. This conceptual difference is emphasized by the different “interpretation
functions” S(ξ,ηi ) and K

(ξ)
i , respectively. Primed individual constants and, hence,

terms and atomic formulas of LFOLTL′ contain a temporal aspect as well referring
not only to one but also to the next state in a state sequence. Accordingly, we omit
here the separate mapping S(ξ,ηi ) and use K

(ξ)
i instead from the very beginning of

the inductive definition.
So, given a temporal structure K = (S,W) for the underlying temporal signature

TSIG = ((S,F,P),X,V), a variable valuation ξ for the set X of variables, and
i ∈ N, we define K

(ξ)
i (t) ∈ |S| for terms t inductively by the clauses

1. K
(ξ)
i (x ) = ξ(x ) for x ∈ X .

2. K
(ξ)
i (a) = ηi(a) for a ∈ X.

3. K
(ξ)
i (a ′) = ηi+1(a) for a ∈ X.

4. K
(ξ)
i (f (t1, . . . , tn)) = f S(K(ξ)

i (t1), . . . ,K
(ξ)
i (tn)) for f ∈ F.

For atomic formulas A, K
(ξ)
i (A) ∈ {ff, tt} is defined by

1. K
(ξ)
i (v) = ηi(v) for v ∈ V.

2. K
(ξ)
i (p(t1, . . . , tn)) = pS(K(ξ)

i (t1), . . . ,K
(ξ)
i (tn)) for p ∈ P.

3. K
(ξ)
i (t1 = t2) = tt ⇔ K

(ξ)
i (t1) and K

(ξ)
i (t2) are equal values in |S|.

Finally, the additional clauses defining K
(ξ)
i (F ) for general formulas F and the no-

tions of validity and consequence are adopted from FOLTL.
It is evident that for formulas F without primed individual constants, K

(ξ)
i (F )

according to this definition coincides with K
(ξ)
i (F ) when F is viewed as a formula

of FOLTL and evaluated as before.
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Example. For a ∈ X and x ∈ X , A ≡ a ′ = a + 1 and B ≡ x ∗ a < a + a ′ are
formulas of LFOLTL′ (with an obvious signature). Assuming N to be the underlying
structure, we get

K
(ξ)
i (A) = tt ⇔ ηi+1(a) = ηi(a) + 1,

K
(ξ)
i (B) = tt ⇔ ξ(x ) ∗ ηi(a) < ηi(a) + ηi+1(a).

So, if ξ(x ) = 3 and K is given by

η0 η1 η2 η3 . . .
a 2 5 6 3 . . .

then we obtain

K
(ξ)
0 (A) = ff, K

(ξ)
1 (A) = tt, K

(ξ)
2 (A) = ff,

K
(ξ)
0 (B) = tt, K

(ξ)
1 (B) = ff, K

(ξ)
2 (B) = ff. �

Above we discussed already that the new formula a ′ = a + 1 can also be ex-
pressed in FOLTL by ∃x ( �(a = x )∧x = a+1). Actually it turns out quite generally
that FOLTL′ does not really produce more expressibility than FOLTL.

Theorem 5.4.1. In any LFOLTL′ , for every formula A there is a formula A∗ such
that A and A∗ are logically equivalent and A∗ does not contain primed individual
constants.

Proof. a) We define A∗ inductively according to the syntactic structure of A.

1. A is atomic: Then A ≡ p(t1, . . . , tn) or A ≡ t1 = t2. If A does not contain
primed individual constants then A∗ ≡ A. Otherwise, let a ′

1, . . . , a
′
m , m ≥ 1, be

the primed individual constants occurring in t1, . . . , tn (or t1, t2, respectively)
and x1, . . . , xm be variables not occurring in A. Then

A∗ ≡ ∃x1 . . . ∃xm( �(a1 = x1 ∧ . . . ∧ am = xm) ∧A)

where A results from A by replacing a ′
i by xi for 1 ≤ i ≤ m .

2. A ≡ false: Then A∗ ≡ false.
3. A ≡ B → C or A ≡ �B or A ≡ �B : Then A∗ ≡ B∗ → C ∗ or A∗ ≡ �B∗ or

A∗ ≡ �B∗, respectively, where B∗ and C ∗ are the results of this construction
for B and C .

4. A ≡ ∃xB : Then A∗ ≡ ∃xB∗ where B∗ is the constructed formula for B (and
this construction does not use the variable x in step 1).

Obviously, A∗ does not contain primed individual constants.
b) Let now K = (S,W), W = (η0, η1, η2, . . .), be a temporal structure, ξ a

variable valuation, and i ∈ N. For the formula A∗ defined in a) we show by the same
induction that

K
(ξ)
i (A∗) = K

(ξ)
i (A)

from which the assertion of the theorem follows immediately.
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1. A is atomic: We treat only the case A ≡ p(t1, . . . , tn). The case A ≡ t1 = t2
runs in quite the same way. If A does not contain primed individual constants
then the assertion is trivial. Otherwise, A in the above construction is of the
form p(t∗1 , . . . , t∗n) where, for 1 ≤ i ≤ n , ti results from ti by the replacement
of the a ′

1, . . . , a
′
m by x1, . . . , xm . So, abbreviating B ≡ a1 = x1∧. . .∧am = xm

we have

K
(ξ)
i (A∗) = tt ⇔ there is a ξ′ with ξ ∼x1 ξ′ and

K
(ξ′)
i (∃x2 . . . ∃xm( �B ∧A)) = tt

⇔ there are ξ′, ξ′′ with ξ ∼x1 ξ′, ξ′ ∼x2 ξ′′ and

K
(ξ′′)
i (∃x3 . . . ∃xm( �B ∧A)) = tt

...
⇔ there are ξ′, ξ′′, . . . , ξ(m) with

ξ ∼x1 ξ′, ξ′ ∼x2 ξ′′, . . ., ξ(m−1) ∼xm
ξ(m) and

K
(ξ(m))
i ( �B ∧A) = tt

⇔ there are ξ′, ξ′′, . . . , ξ(m) with
ξ ∼x1 ξ′, ξ′ ∼x2 ξ′′, . . ., ξ(m−1) ∼xm

ξ(m) and

K
(ξ(m))
i (p(t∗1 , . . . , t∗n)) = tt and

ξ(m)(xj ) = ηi+1(aj ) = ηi(a ′
j ) for 1 ≤ j ≤ m

⇔ there are ξ′, ξ′′, . . . , ξ(m) with
ξ ∼x1 ξ′, ξ′ ∼x2 ξ′′, . . ., ξ(m−1) ∼xm

ξ(m) and

pS(K(ξ)
i (t1), . . . ,K

(ξ)
i (tn)) = tt

⇔ K
(ξ)
i (A) = tt.

2. A ≡ false: In this case the assertion is trivial.
3. A ≡ B → C , A ≡ �B , or A ≡ �B : Using the respective induction hypothesis

in each case, we have

K
(ξ)
i (A∗) = tt ⇔ K

(ξ)
i (B∗) = ff or K

(ξ)
i (C ∗) = tt

⇔ K
(ξ)
i (B) = ff or K

(ξ)
i (C ) = tt

⇔ K
(ξ)
i (A) = tt

for A ≡ B → C ,

K
(ξ)
i (A∗) = K

(ξ)
i+1(B

∗) = K
(ξ)
i+1(B) = K

(ξ)
i (A)

for A ≡ �B , and

K
(ξ)
i (A∗) = tt ⇔ K

(ξ)
j (B∗) = tt for every j ≥ i

⇔ K
(ξ)
j (B) = tt for every j ≥ i

⇔ K
(ξ)
i (A) = tt



172 5 First-Order Linear Temporal Logic

for A ≡ �B .
4. A ≡ ∃xB : Using the induction hypothesis, we have:

K
(ξ)
i (A∗) = tt ⇔ there is a ξ′ with ξ ∼x ξ′ and K

(ξ′)
i (B∗) = tt

⇔ there is a ξ′ with ξ ∼x ξ′ and K
(ξ′)
i (B) = tt

⇔ K
(ξ)
i (A) = tt. �

Example. Let A ≡ a ′ = a + 1 and B ≡ y ∗ a < a + a ′ be the formulas from the
previous example. The construction of Theorem 5.4.1 yields

A∗ ≡ ∃x ( �(a = x ) ∧ x = a + 1)

which is just the formula from the beginning of our discussion and

B∗ ≡ ∃x ( �(a = x ) ∧ y ∗ a < a + x ).

Note that the result of the general construction can often be simplified. For example,
for C ≡ �(a ′ > 1) we obtain

C ∗ ≡ ∃x ( �(a = x ) ∧�(x > 1)),

and this is logically equivalent to � �(a > 1). �

If we now transfer the expressivity notions from Sect. 4.1 to the present logics
then an immediate corollary of Theorem 5.4.1 is that FOLTL′ is not really more
expressive than FOLTL.

Theorem 5.4.2. FOLTL and FOLTL′ are equally expressive.

Proof. FOLTL ≤ FOLTL′ is trivial since FOLTL ⊆ FOLTL′ (defined analogously
as in Sect 4.1). Theorem 5.4.1 shows that FOLTL′ ≤ FOLTL; so together we obtain
FOLTL = FOLTL′. �

This fact means that we can view FOLTL′ as “the same” as FOLTL and formu-
las A with primed individual constants as abbreviations for the corresponding A∗.
Formal derivations with such “primed” formulas can use

A↔ A∗

as an additional axiom. Consider, for example, the formula

A ≡ a = y ∧ a ′ = a → a ′ = y .

Forgetting for a moment that we deal with temporal logic, A looks like a simple
FOL formula (with variables or individual constants y , a , and a ′) which should be
derivable within ΣFOL. Now

A∗ ≡ a = y ∧ ∃x ( �(x = a) ∧ x = a)→ ∃x ( �(x = a) ∧ x = y)
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and therefore a derivation of A as a FOLTL′ formula could consist of the two steps

(1) a = y ∧ ∃x ( �(x = a) ∧ x = a) →
∃x ( �(x = a) ∧ x = y) (pred)

(2) a = y ∧ a ′ = a → a ′ = y axiom A↔ A∗,(prop),(1)

To summarize, we will freely use in the following primed individual constants
within FOLTL without explicitly considering this as a change of the logic (from
FOLTL to FOLTL′) and we will directly use formulas like the above-derived A in
derivations as applications of (pred). Clearly, non-temporal formulas of a respective
language do not contain primed individual constants.

Furthermore, for sake of uniformity we will frequently extend the priming nota-
tion to flexible propositional constants v ∈ V using v ′ as a synonym for �v :

v ′ ≡ �v .

5.5 Well-Founded Relations

In certain applications one is interested in proving formulas of the form

A→ �B .

Looking into the repertory developed so far we find only rules like

(som) A→ �B � A→ �B ,
(chain) A→ �B ,B → �C � A→ �C

(see Sects. 2.3 and 2.4) which are rather weak, and we mentioned already in Sect. 3.1
that in propositional temporal logic there is no induction rule like the ones for for-
mulas A→ �B , A→ B unless C , etc. A vague informal argument for this fact is
that the formula A→�B is logically equivalent to �¬B→¬A and therefore, by the
Deduction Theorem and its converse, the problem of deriving A → �B amounts to
the problem of proving ¬B � ¬A or, say,

C �D .

We cannot expect to be able to formulate a single proof principle as a rule (within
one of the propositional temporal logics) for deriving D from C for arbitrary C and
D .

However, there is a general device for proofs of A→�B which lies “outside”
the propositional proof systems but can be formulated within the linguistic means
of FOLTL by a special extension. In order to illustrate the intention of this proof
method let A be a formula of the particular form

A ≡ A1 ∧ a = y

where a ∈ XNAT and y ∈ XNAT . Suppose we know that
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A1 ∧ a = y ∧ y �= 0 → �(A1 ∧ a = y − 1)

and

A1 ∧ a = 0 → B

hold in every state. Then it is intuitively clear that whenever A holds in some state ηi

(with ξ(y) = n) then the formulas A1∧a = y−1, A1∧a = y−2, . . . , A1∧a = 0
hold in the states ηi+1, ηi+2, . . . , ηi+n , respectively, and therefore B holds in ηi+n .
This means that A→ �B holds indeed in every state.

The main principle in this argumentation is a sort of induction “over the value of
the variable y” expressed by arguing that successively decreasing an arbitrary natural
number will sometimes lead to the number 0. (Note that there is some similarity with
the situation in the Second Reading paragraph of Sect. 5.3.) We formally develop this
basic idea now in a very general setting.

Definition. Let D be a set. A binary relation R on D is called well-founded if there
is no infinite subset {d0, d1, d2, . . .} ⊆ D such that (di+1, di) ∈ R for every i ∈ N.

As an example, the order relation < on N is well-founded. The usual mathematical
induction on natural numbers (with respect to <) is generalized for well-founded
relations as follows.

General Induction Principle. Let R be a well-founded relation on a set D and
D

′ ⊆ D. If, for every d ∈ D, d ∈ D
′ can be concluded from the assumption

that d ′ ∈ D
′ for every d ′ with (d ′, d) ∈ R then D

′ = D.

Proof. Assume D
′ �= D, i.e., there is some d0 ∈ D with d0 /∈ D

′. Then there must
be some d1 with (d1, d0) ∈ R and d1 /∈ D

′ since otherwise d0 ∈ D
′ could be

concluded. This argument can be applied infinitely often yielding infinitely many
elements d0, d1, d2, . . . of D with (di+1, di) ∈ R for every i ∈ N and contradicting
the well-foundedness of R. �

Let now Lw
FOLTL(TSIG) be an FOLTL language such that the signature SIG

of TSIG contains a particular sort WF and a predicate symbol ≺(WF WF). The
logic FOLTL+w is defined by such a language and the additional condition that in
every temporal structure K = (S,W) for TSIG , ≺S is a well-founded relation on
|S|WF . Note that, given some LFOLTL, this language may already contain WF and
≺ with the requested interpretation and is then (without any extension) already an
FOLTL+w language, or it has really to be extended to obtain an Lw

FOLTL by adding
some appropriate sort and predicate symbol.

In FOLTL+w we can postulate an additional axiom reflecting the semantical re-
quirements. The consideration above implies that the formula

(gip) ∀y(∀ȳ(ȳ ≺ y → Ay(ȳ)) → A) → A for y , ȳ ∈ XWF

which formalizes the general induction principle is sound. The extension of the for-
mal system ΣFOLTL by the axiom (gip) will be denoted by Σw

FOLTL.
In a logic FOLTL+w we are now able to formalize and prove the announced

proof principle as a derived rule in the following general form:
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(wfr) A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) � ∃yA→ �B
if B does not contain y ,
for y , ȳ ∈ XWF .

Derivation of (wfr).

(1) A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) assumption
(2) �A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) (T36),(1)
(3) �A→ �B ∨ ∃ȳ(�(ȳ ≺ y) ∧�Ay(ȳ)) (T19),(T25),(T41),(2)
(4) ¬(ȳ ≺ y) → �¬(ȳ ≺ y) (ltl6)
(5) ¬(ȳ ≺ y) → �¬(ȳ ≺ y) (ind1),(4)
(6) �(ȳ ≺ y) → ȳ ≺ y (prop),(T2),(5)
(7) �A→ �B ∨ ∃ȳ(ȳ ≺ y ∧�Ay(ȳ)) (pred),(3),(6)
(8) ∃ȳ(ȳ ≺ y ∧�Ay(ȳ)) ∧

∀ȳ(ȳ ≺ y → (�Ay(ȳ) → �B)) → �B (pred)
(9) �A ∧ ∀ȳ(ȳ ≺ y → (�Ay(ȳ) → �B)) → �B (prop),(7),(8)
(10) ∀ȳ(ȳ ≺ y → (�Ay(ȳ) → �B)) → (�A→ �B) (prop),(9)
(11) �A→ �B (mp),(gip),(10)
(12) A→ �B (prop),(T5),(11)
(13) ∃yA→ �B (par),(12) �

It should be noted that the premise in (wfr) is a formula of the form C→�D itself;
so this rule still needs other means like (som) or (chain) for its application. In line
(12) of the derivation of (wfr) the conclusion A → �B is achieved which was the
starting point of our discussion. We prefer to take ∃yA → �B as the conclusion of
the rule since in this latter formula the “auxiliary technical variable” y is “hidden”
by the existential quantification, i.e., there is no free occurrence of y in it.

As a simple application we want to show that repeated application of the rule
(chain) can be encoded into one application of (wfr). Suppose we are able to prove

B0 → �B1,B1 → �B2, . . . ,Bk−1 → �Bk

for formulas B0, . . . ,Bk , k ≥ 1, of some language LFOLTL. Applying (chain) k − 1
times we get B0 → �Bk . Let now Lw

FOLTL be the language LFOLTL extended (if
necessary) by NAT as the sort WF and by < which is taken for ≺. Consider the
formula

A ≡ (y = k ∧ B0) ∨ . . . ∨ (y = 1 ∧ Bk−1)

(y ∈ XWF ). Obviously, Ay(i) is logically equivalent to Bk−i for 1 ≤ i ≤ k ; the
assumptions Bj → �Bj+1, 0 ≤ j ≤ k − 1, translate to

Ay(i) → �Ay(i − 1)

for 2 ≤ i ≤ k and

Ay(1) → �Bk



176 5 First-Order Linear Temporal Logic

and the conclusion B0 → �Bk becomes Ay(k) → �Bk . This formula can be
derived with (wfr) as follows:

(1) Ay(i) → �Ay(i − 1) for 2 ≤ i ≤ k assumption
(2) Ay(1) → �Bk assumption
(3) A→ y = k ∨ . . . ∨ y = 1 (taut)
(4) A→ Ay(k) ∨ . . . ∨Ay(1) (pred),(3)
(5) A→ �(Bk ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (pred),(1),(2),(4)
(6) ∃yA→ �Bk (wfr),(5)
(7) Ay(k) → ∃yA (ltl4)
(8) Ay(k) → �Bk (prop),(6),(7)

As can be seen, (wfr) is in fact the only proper temporal logic rule occurring in this
derivation.

5.6 Flexible Quantification

In Sect. 3.3 we described quantification over (“flexible”) propositional variables.
This extension can be transferred to FOLTL providing a logic FOLTL+q. Conse-
quently, however, quantification should then also be allowed over “flexible” individ-
ual variables. We do not repeat the details of Sect. 3.3 but describe only this latter
extension.

Let TSIG = (SIG ,X,V) be some temporal signature, where SIG = (S,F,P).
A language Lq

FOLTL(TSIG) of FOLTL+q extends LFOLTL(TSIG) by additional sets
Xfl

s of flexible individual variables for every s ∈ S and two additional syntax clauses
(with Xfl =

⋃
s∈S Xfl

s ):

• Every flexible individual variable of Xfl is a term.
• If A is a formula and z is a flexible individual variable then ∃zA is a formula.

Again we write ∀zA for ¬∃z¬A and adopt notions like free and bound (flexible)
variables and notations like Az (t) from FOLTL.

Given a temporal structure K = (S,W) for TSIG , we define (analogously to the
notions in Sect. 3.3) a flexible (individual) variable valuation (with respect to S) to
be an infinite sequence Ξ = (ξ0, ξ1, ξ2, . . .) of mappings

ξi : Xfl → |S|

with ξi(z ) ∈ |S|s for z ∈ Xfl
s , i ∈ N. For two such valuations Ξ = (ξ0, ξ1, ξ2, . . .)

and Ξ ′ = (ξ′0, ξ
′
1, ξ

′
2, . . .) and z ∈ Xfl let

Ξ ∼z Ξ ′ ⇔ ξi(z̄ ) = ξ′i(z̄ ) for all z̄ ∈ Xfl other than z and all i ∈ N.

With a given Ξ = (ξ0, ξ1, ξ2, . . .), the evaluation mappings S(ξ,ηi ) and K
(ξ)
i of

FOLTL are now replaced by mappings S(ξ,ξi ,ηi ) and K
(ξ,Ξ)
i with, adapting the earlier

definitions and the additional clauses,
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• S(ξ,ξi ,ηi )(z ) = ξi(z ) for z ∈ Xfl ,

• K
(ξ,Ξ)
i (∃zA) = tt ⇔ there is a Ξ ′ such that Ξ ∼z Ξ ′ and K

(ξ,Ξ′)
i (A) = tt.

For ∀zA we clearly obtain

• K
(ξ,Ξ)
i (∀zA) = tt ⇔ K

(ξ,Ξ′)
i (A) = tt for all Ξ ′ with Ξ ∼z Ξ ′.

The definition of validity in K is adapted accordingly: �
K
A if K

(ξ,Ξ)
i (A) = tt for

every i , ξ, and Ξ .
Analogously to the propositional quantification described in Sect. 3.3, a formula

∃zA informally means a quantification over a sequence of values (from |S|) instead
of the “normal” quantification ∃xA over single values.

Example. For z ∈ Xfl , x ∈ X , and a ∈ X, A ≡ ∃z (z > x ∧ �(z < a)) is a
formula of Lq

FOLTL (with some natural number signature). Let K be such that

η0 η1 η2 η3 η4 . . .
a 8 3 9 7 7 . . . (7 forever) . . .

and ξ(x ) = 3. Then (for arbitrary Ξ)

K
(ξ,Ξ)
0 (A) = K

(ξ,Ξ)
1 (A) = ff

since for Ξ ′ with Ξ ∼z Ξ ′ and i = 1, 2, ξ′i(z ) > ξ(x ) = 3 implies ξ′i(z ) > η1(a);
hence K

(ξ,Ξ′)
i (z > x ∧�(z < a)) = ff. For i ≥ 2 we get

K
(ξ,Ξ)
i (A) = tt

since, for such i , K
(ξ,Ξ′)
i (z > x ∧�(z < a)) = tt for Ξ ′ with 3 < ξ′(z ) < 7. �

In many respects this form of quantification behaves like “normal” quantification
in FOLTL. In particular, the formulas

• Az (t) → ∃zA
• ∃z �A↔ �∃zA

(z ∈ Xfl ) are valid in FOLTL+q (we even need here no restriction on t in the first
formula), and the particularization rule holds as consequence relationship in the form

• A→ B � ∃zA→ B (z ∈ Xfl , z not free in B ).

So, a (necessarily incomplete) axiomatization of FOLTL+q could contain these for-
mulas as axioms and (“flexible”) particularization as a rule. We do not pursue this
aspect in more detail; instead we want to illustrate the expressive power of flexible
quantification by an example which continues the observations made in Sect. 5.3.

We found there that the (standard model N of) natural numbers can be character-
ized in FOLTL. Recall, e.g., that the formulas P3–P6 described laws about addition
and multiplication. Let now Fadd be the FOLTL+q formula
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Fadd ≡ ∃z1∃z2(z1 = x1 ∧ z2 = 0 ∧
�((z2 = x2 → z1 = x3) ∧

(z2 �= x2 → ∀y1∀y2(z1 = y1 ∧ z2 = y2 →
�(z1 = SUCC (y1) ∧

z2 = SUCC (y2)))))).

This formula “defines” addition within a language based on a signature containing
only 0 and SUCC in the sense that

Fadd “expresses” x1 + x2 = x3,

or, formally:

K
(ξ,Ξ)
i (Fadd) = tt ⇔ ξ(x1) + ξ(x2) = ξ(x3)

for arbitrary K = (N,W), ξ, Ξ , and i ∈ N. In fact, it is easy to see that with
ξ(x1) = m and ξ(x2) = n we have

K
(ξ,Ξ)
i (Fadd) = tt ⇔ there is a Ξ ′ = (ξ′0, ξ

′
1, ξ

′
2, . . .) such that

ξ′i(z1) = m , ξ′i(z2) = 0,
ξ′i+1(z1) = m + 1, ξ′i+1(z2) = 1,
...
ξ′i+n(z1) = m + n , ξ′i+n(z2) = n , ξ′i+n(z1) = ξ(x3)

⇔ ξ(x1) + ξ(x2) = ξ(x3).

The “satisfying” Ξ ′ can be depicted by

. . . ξ′i ξ′i+1 ξ′i+2 . . . ξ′i+n . . .
z1 . . . m m + 1 m + 2 . . . m + n . . .
z2 . . . 0 1 2 . . . n . . .

and the analogous matrix

. . . ξ′i ξ′i+1 ξ′i+2 . . . ξ′i+n . . .
z1 . . . 0 m m + m . . . m ∗ n . . .
z2 . . . 0 1 2 . . . n . . .

shows that multiplication can obviously be defined according to the same pattern by
the formula

Fadd ≡ ∃z1∃z2(z1 = 0 ∧ z2 = 0 ∧
�((z2 = x2 → z1 = x3) ∧

(z2 �= x2 → ∀y1∀y2(z1 = y1 ∧ z2 = y2 →
�(Fadd(y1, x1, z1) ∧

z2 = SUCC (y2)))))).

Actually, even 0 and SUCC can be expressed (even by FOLTL formulas) which
results in the fact that in FOLTL+q the natural numbers (with 0, SUCC , +, ∗) can
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be (uniquely) characterized in a language Lq
FOLTL(TSIG) where TSIG is based on

the “empty” signature SIG = ({NAT}, ∅, ∅).
In applications mainly pursued in this book, this result is only a side remark and

quantification over flexible (individual or propositional) variables does not play an
important role in the form described here. However, we will come back to it in a
modified version in Sect. 9.5 where it will turn out to be a very useful tool.

Bibliographical Notes

From the very beginning, temporal logic was also given in first-order versions and at-
tempts were made for their axiomatizations, starting even with semi-formal systems
in [78, 79]. A formal system analogous to ΣFOLTL can be found in [99].

First-order temporal logic was proved incomplete in [141, 146]. The result was
sharpened in [107]: FOLTL is decidable over a signature that contains no function
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proposed [63].

Well-founded relations have been used in program verification for a long time.
The first formulations of temporal proof principles embodying induction based on
well-founded relations appear in [80, 97].

The use of flexible quantification for the specification of reactive systems in com-
puter science was first proposed by Lamport [88] who also popularized the use of
primed individual constants. The characterization of natural numbers in FOLTL+q is
due to [81]. This result can be generalized to obtain precise specifications of induc-
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State Systems

Temporal logic languages as described in the preceding chapters provide general
linguistic and deductive frameworks for state systems in the same manner as clas-
sical logics do for mathematical systems. The notion of state systems – or state-
based systems – is used here not as a technical term but only informally, referring
to “systems” which characteristically involve “states” and exhibit “behaviours” by
“running” through sequences of such states. Many computer science systems such as
software modules, transmission protocols, database systems, circuits, and comput-
ing machines are of this kind, and we could also call them dynamic or imperative
systems, contrasting them with the more static or functional mathematical systems.

We represent state systems formally by (state) transition systems and address in
this chapter their specification with temporal logic.

6.1 Temporal Theories and Models

Following the patterns of classical logic outlined in Sect. 1.3, the concrete temporal
logic language for dealing with a particular state system is obtained by (choosing
an appropriate language version and) fixing its linguistic parameters. In the case
of a (possibly extended) propositional language LLTL(V) these parameters are the
propositional constant of V, and in a first-order language LFOLTL(TSIG) they are
comprehended in the temporal signature TSIG .

Consider, e.g., the Towers of Hanoi system mentioned already in Sect. 2.1. An ap-
propriate temporal logic language for this system could be some (possibly extended)
LFOLTL(TSIGToH ) with

TSIGToH = (SIGToH ,X, ∅),
SIGToH = ({STONE ,PILE},F, {<(STONE STONE),DECR(PILE)}),
F = {TOWER(ε,PILE),EMPTY (ε,PILE),

PUSH (PILE STONE ,PILE),POP (PILE ,PILE),TOP (PILE ,STONE)},
X = XPILE = {pl1, pl2, pl3}.
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The flexible individual constants pl1, pl2, pl3 represent the three places. Their possi-
ble values during a sequence of moves are piles – represented by the sort PILE – of
stones of sort STONE . The “less than” symbol < is taken for the size comparison
of stones; DECR stands for the property of piles to be decreasing in the size of the
stones from bottom to top. TOWER is for the pile which stands on one of the places
at the beginning and has to be moved to another place, EMPTY is for the empty
pile, and PUSH , POP , and TOP stand for the obvious operations of placing a new
stone on the top of a pile, taking away the top stone of a pile, and selecting a top
stone, respectively. The latter operations are the same as the usual operations of a
stack.

These informal interpretations are formalized by giving a structure H for the first-
order signature SIGToH . Let n be the number of stones. Representing them by the
natural numbers 1, 2, . . . ,n − 1,n and piles by finite sequences of such numbers we
could fix

|H|STONE = {1, . . . ,n},
|H|PILE = {1, . . . ,n}∗,
TOWERH = (n,n − 1, . . . , 2, 1),
EMPTY H = ε,
PUSH H = push ,
POPH = pop,
TOPH = top,
<H (i , j ) = tt ⇔ i < j ,
DECRH(i1, . . . , im) = tt ⇔ im < im−1 < . . . < i1

where ε ∈ {1, . . . ,n}∗ is the empty sequence and push , pop, and top are defined as
usual (as for a stack), e.g.,

push((i1, . . . , im), l) = (i1, . . . , im , l).

(Note that the symbol < on the right-hand sides of the last two clauses denotes the
usual “less than” relation on the natural numbers 1, . . . ,n .)

Any first-order structure S for SIGToH (e.g., H) extends to a temporal structure
K = (S,W) for TSIGToH with W being an infinite sequence (η0, η1, η2, . . .) of
mappings

ηi : {pl1, pl2, pl3} → {1, . . . ,n}∗.

Each ηi (being a state in the technical sense of the formal definitions) obviously
formalizes the informal notion of “state of the puzzle” determined by what piles are
standing on the three places. The sequence W represents a “run” of the system. (Note
that these runs are infinite, i.e., we consider the system as “never ending”. We do not
pay regard at this moment to the proper goal of the puzzle and the fact that a run can
be ended when this goal is reached. We will come back to this aspect later.)

Within LFOLTL(TSIGToH ) we are able to formulate assertions about such runs.
For example, the formulas
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pli �= EMPTY ∧ plj �= EMPTY ∧ TOP(pli) < TOP(plj ) →
(pl ′i �= EMPTY → TOP(pl ′i ) �= TOP(plj ))

for i , j ∈ {1, 2, 3}, i �= j , (using the priming notation introduced in Sect. 5.4)
formalize the phrase

“if the top stone ts on some (non-empty) place is bigger than the top stone on
another (non-empty) place then in the next state ts cannot be the top stone (if this
exists) on this latter place”

mentioned in the introduction of Sect. 2.1. The phrase

“in all states, on each of the three places the stones will be piled up with decreas-
ing size”

from there is formally described by

�(DECR(pl1) ∧DECR(pl2) ∧DECR(pl3)).

Not every temporal structure K = (S,W) for TSIGToH is a proper interpretation
of the Towers of Hanoi system: of course, the data component S has to be a “correct
data type” for the stones and piles and, moreover, W has to represent a run according
to the rules of the puzzle. The desired distinction, i.e., the specification of the system,
is performed – as in classical logic theories – by particular non-logical axioms. Typ-
ically, one part of such axioms would deal with the data types involving no temporal
aspects, e.g., axioms like

DECR(TOWER),
POP(PUSH (x , y)) = x ,
etc.

which can be formulated in classical FOL. The second part of the axioms should
distinguish the possible state sequences W and really use the proper temporal logic
means.

Before we treat this in more detail, let us first generalize the discussion. We
write LTL for any language LFOLTL with or without one or more of the extensions
discussed in the preceding chapters. If not stated differently, we always assume LTL

to be equipped with normal semantics. Theorems, logical laws, etc. which hold for
all the respective logics (or for particular ones in restricted contexts) will freely be
used as required.

Definition. An FOLTL-theory Th = (LTL(TSIG),A) is given by a language
LTL(TSIG) and a set A of formulas of LTL(TSIG) called non-logical axioms. A
temporal structure K for TSIG is called a model of Th if every formula ofA is valid
in K.

If C is a class of temporal structures for some TSIG (such as H together with
“all possible runs” in the Towers of Hanoi example) then we are interested in a
specification of this class (making up the state system in question), i.e., in a the-
ory Th = (LTL(TSIG),A) such that every temporal structure of C is a model of
Th . Such a theory is called a C-FOLTL-theory.
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Example. Let TSIG = (SIGNat , {a}, ∅) and C = {K1,K2} with

K1 = (N,W1 = (η(1)
0 , η

(1)
1 , η

(1)
2 , . . .)), η

(1)
j (a) = 2 ∗ j for every j ∈ N,

K2 = (N,W2 = (η(2)
0 , η

(2)
1 , η

(2)
2 , . . .)), η

(2)
j (a) = 2 ∗ j + 1 for every j ∈ N.

Informally, W1 and W2 look like

η
(1)
0 η

(1)
1 η

(1)
2 η

(1)
3 . . .

a 0 2 4 6 . . .

and

η
(2)
0 η

(2)
1 η

(2)
2 η

(2)
3 . . .

a 1 3 5 7 . . .

i.e., a runs through all even or odd numbers, respectively. An appropriate C-FOLTL-
theory could take a language Li

FOLTL(TSIG) and contain the following non-logical
axioms:

• Axioms for N,
• init → a = 0 ∨ a = 1,
• �(a ′ = a + 2).

The axioms for N are left open at the moment, we will come back to this issue
more generally in the subsequent section. The two latter axioms describe the state
sequences W1 and W2. It is obvious that K1 and K2 are models of this theory. �

As discussed in Sect. 1.3, axioms of first-order theories may contain free vari-
ables or – equivalently – one can take their universal closures instead, providing
closed formulas as axioms. It is obvious that the same holds for axioms in FOLTL-
theories, but even more, there is a direct analogy to this concerning temporal closures.
For every formula A and every temporal structure K, we have

�
K
A ⇔ �

K
�A

by Theorem 2.1.3 and (T4) and this means that A and its temporal closure �A are
valid in the same temporal structures. So axioms may always be given in one of the
two forms A or �A.

In the example above, the axiom in the second line could be given as

�(init → a = 0 ∨ a = 1).

The last axiom is the temporal closure of

a ′ = a + 2

which could be taken itself as an axiom. Subsequently, when writing axioms, we will
throughout prefer the “non-closed” formulation.
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The relationship between A and �A discussed here may be put into a more gen-
eral setting indicated already in Sect. 4.1. We say that two formulas A and B of the
underlying language LTL(TSIG) are model equivalent, written

A � B ,

if

�
K
A ⇔ �

K
B

holds for every temporal structure K for TSIG , which means that A and B are valid
in the same temporal structures and is obviously the same as saying that

A �B and B �A.

So, if we replace an axiom A of a theory Th by a formula B with A � B then the
resulting theory has the same models as Th .

Model equivalence is a slight generalization of logical equivalence. It is obvious
that it is an equivalence relation and that logically equivalent formulas are model
equivalent. The case of A and �A shows that the converse does not necessarily
hold. Moreover, the model equivalence of the latter two formulas is just a special
case of the more general fact that for formulas A and B to be model equivalent it
suffices that �A and �B are logically equivalent. This is easy to see by applying
(T4), Theorem 2.1.2, and the “if” part of Theorem 2.1.6:

� �A↔ �B ⇒ � �A→ �B and � �B → �A
⇒ A � �B and B � �A
⇒ A �B and B �A.

(It should be noted that if we take LTL with initial validity semantics then the two
notions of model and logical equivalence are the same (for closed formulas). On the
other hand, if some A is to hold in every state of a temporal structure we then have
to express this by �A. Another formula �B (A and B closed) expresses the same if
and only if �A and �B are logically equivalent.)

FOLTL-theories are first-order temporal theories. Of course, we can carry the
definition over to the propositional case: an LTL-theory Th = (LTL(V),A) is given
by a language LTL(V) (denoting some possibly extended LLTL(V)) and a set A of
formulas of LTL(V) as non-logical axioms. A model of Th is a temporal structure
for V in which all formulas ofA are valid. A C-LTL-theory for a class C of temporal
structures for V is a theory which has all elements of C as models. Such propositional
temporal theories are of great interest in computer science since they are tractable
by algorithmic means. They arise by encoding “appropriate” first-order theories (cf.
Sect. 1.3 for a first hint and Sect. 11.1) or even “directly” by the state system under
investigation.

A typical example for the latter case is given by circuits. Consider the simple
synchronous circuit in Fig. 6.1 which continuously oscillates between a 3-bit binary
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Fig. 6.1. An oscillator circuit

number and its two’s complement. The “circuit variables” b0, b1, b2 (representing the
binary number b2b1b0) are boolean valued, so an appropriate temporal logic language
for this system is some LLTL(V) with V = {b0, b1, b2}.

A specification of the circuit (more precisely: a C-LTL-theory for the class C of
the temporal structures for V representing all possible runs of the circuit) is given by
the non-logical axioms

• b′0 ↔ b0,
• b′1 ↔ (b0 ∨ b1) ∧ ¬(b0 ∧ b1),
• b′2 ↔ (b0 ∨ b1 ∨ b2) ∧ ¬((b0 ∨ b1) ∧ b2)

which describe the change of b0, b1, b2 in “one step” and may be shortened to

• b′0 ↔ b0,
• b′1 ↔ ¬(b0 ↔ b1),
• b′2 ↔ ¬(b0 ∨ b1 ↔ b2).

Of course, the above definition and the meaning of model equivalence of formu-
las can be literally transferred to the propositional case.

Second Reading

The intention of the usage of temporal logic is to specify state systems and the basic formal
notion for this is that of an (FOLTL- or LTL-) theory: the non-logical axioms describe the
“behaviour” of the system, formally given by the state sequences of temporal structures K.
If FOLTL is to be applied then K = (S, W), and the data component S of K describes
the underlying data type of the system, the specification of which is the typical realm of
classical logic as sketched out in Sect. 1.3.
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In Sects. 5.3 and 5.6 we have indicated by means of the natural numbers that temporal
logic could be used for such data type specifications as well (possibly achieving results
which cannot be obtained by classical logic specifications). In fact, the considerations car-
ried out there precisely fit into the concept of FOLTL-theories. For example, the set AN

consisting of the formulas P1–P8 given in Sect. 5.3 constitute, together with an appropri-
ate language LFOLTL, an FOLTL-theory ThN = (LFOLTL,AN). According to the results of
Sect. 5.3, ThN specifies the standard model N of natural numbers in the sense that there
exists a model (N, W) of ThN, and even more: for any model (S, W′) of ThN, S and N are
“isomorphic”.

So, while the FOLTL-specification of state systems mainly intends to describe the com-
ponents W of models K = (S, W), temporal logic specifications of data types would allow
us also to address the data component S. For example, in the “even and odd number” system
in the above main text the axioms for N could be given just by the formulas P1–P8.

The general notions for this approach are easy to define in the framework of this section.
Let TSIG = (SIG,X,V) be a temporal signature, S be a structure for SIG , and Th be an
FOLTL-theory. S is called a model structure of Th if there exists a model of Th which has
S as its data component. (Observe that this definition includes the classical specifications of
Sect. 1.3 since the non-logical axioms of Th could be only non-temporal formulas.)

Let us illustrate this method by a further example. In Sect. 1.3 we have specified stacks
within classical FOL by the axioms

PUSH (x , y) �= EMPTY ,
POP(PUSH (x , y)) = x ,
TOP(PUSH (x , y)) = y

formulated in a language LFOL(SIGst) where SIGst contains the sorts OBJ and STACK .
As with natural numbers, this specification has “non-standard” models. Using temporal
logic, it is possible to specify stacks uniquely (up to isomorphism). Actually, there are
several approaches to achieve this. One simple way is to choose the temporal signature
TSIGst(SIGst , ∅, ∅) and a language Lq

FOLTL(TSIGst) of the logic FOLTL+q with flexible
quantification. Let then Thst be the FOLTL-theory with the three axioms above and the
additional axiom

∃z (z = EMPTY ∧ �(z = x ) ∧ (z �= x → ∃y(z ′ = PUSH (z , y))))

(where z ∈ X fl
STACK , x ∈ XSTACK , y ∈ XOBJ and the priming notation of Sect. 5.4 is

extended to flexible variables in an obvious way). The “standard model” S of stacks (where
elements of |S|STACK are finite sequences of elements of |S|OBJ ) is a model structure of
Thst and, in fact, all other model structures of Thst are isomorphic to it. The idea of the
additional axiom is quite simple: it says that every stack x is “generated” by subsequently
“pushing” some finitely many elements from |S|OBJ to the “empty stack”.

6.2 State Transition Systems

The discussions in the previous section indicate a first main application area for
temporal logic in computer science: the specification of state systems by temporal
theories for (mainly) the class of all runs of such systems. A (possibly informally
given) state system is formally described by such a specification. For a systematic
approach to this application (and for applying particular techniques, cf. Chap. 11) it



188 6 State Systems

is helpful to represent state systems – besides the “descriptive” definitions through
specifications (and other possible formal representations like the circuit example in
the previous section) – also in a separate uniform formal way.

A very general and powerful concept for formally representing state systems is
that of a (state) transition system which, roughly speaking, is a “generating mech-
anism” for the runs of a state system. Transition systems are used widely and in
various different versions. We adjust the definition here in a way such that their rela-
tionship to temporal logic specifications becomes very close.

Definition. Let SIG = (S,F,P) be a signature and S a structure for SIG . A first-
order (state) transition system (briefly: STS) Γ = (X ,V ,W ,T ) over SIG and S is
given by

• X =
⋃

s∈S Xs with sets Xs for every s ∈ S,
• a set V ,
• a set W of (system) states

η : X ∪V → |S| ∪ {ff, tt}

with η(a) ∈ |S|s for a ∈ Xs , s ∈ S and η(v) ∈ {ff, tt} for v ∈ V ,
• a total binary relation T ⊆W ×W , called transition relation.

(A binary relation R over some set D is called total if for every d1 ∈ D there is a d2 ∈
D with (d1, d2) ∈ R.) Elements of X and V are called (individual or propositional,
respectively) system (or state) variables. An execution sequence of Γ is an infinite
sequence W = (η0, η1, η2, . . .) of system states such that (ηi , ηi+1) ∈ T for every
i ∈ N. For any (η, η′) ∈ T , η′ is called a successor state of η.

To indicate the basis of an STS Γ we will also write Γ (SIG ,S). Furthermore, we
will often write SIGΓ ,SΓ ,FΓ ,PΓ ,SΓ ,XΓ ,VΓ ,WΓ ,TΓ ,WΓ for the single con-
stituents of a given Γ (SIG ,S) and depict an execution sequence (η0, η1, η2, . . .) by

η0
� η1

� η2
� . . . .

Basing Γ on a signature and a structure informally means that Γ uses a fixed
underlying data type. Notice, however, that in the definition of an STS Γ the sets FΓ

and PΓ of SIGΓ and the interpretations of their elements in SΓ are not (yet) rele-
vant. They will come into play subsequently and are included already here in order to
provide a common framework. One first trivial outcome can be noted immediately:
following patterns given in Sect. 5.1, the signature SIGΓ induces a (classical) first-
order languageLFOL(SIG+) where SIG+ results from SIGΓ by adding the elements
of X and V to the individual and propositional constants, respectively. In order to
meet our general assumption about countable languages in this definition we will
assume throughout that the sets X and V are at most denumerable. (Actually, in ap-
plications X and V will usually even be finite, but we leave it with the more general
assumption in order to maintain the close correspondence to the logical framework.
This will particularly be used in the subsequent Theorem 6.2.1.)
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We call LFOL(SIG+) a first-order language of Γ and denote it by LΓ . Formulas
of LΓ are called state formulas (of Γ ). Given a variable valuation ξ for the variables
of LΓ , the structure SΓ together with ξ and any state η ∈ WΓ defines a mapping
S

(ξ,η)
Γ which associates a truth value S

(ξ,η)
Γ (A) ∈ {ff, tt} with every atomic formula

A of LΓ as in Sect. 5.1. As usual (cf. Sect. 1.2), S
(ξ,η)
Γ can be extended to all state

formulas of LΓ . If A is a closed formula then S
(ξ,η)
Γ (A) does not depend on ξ and

we will sometimes write S
(η)
Γ (A) instead.

An STS is called first-order in our definition because of the set X of individ-
ual system variables ranging over arbitrary sorts. If X = ∅ then the STS is called
propositional. In this case, of course, SIG and S are completely irrelevant and can
be omitted from the definition. We will also write Γ (V ) for a propositional STS Γ to
indicate the underlying set V of state variables. For Γ (V ) the language LΓ reduces
to a language LPL(V ) of (classical) propositional logic in an obvious way.

An STS Γ represents a state system in a formal way, the execution sequences
of Γ are the runs of the state system. As a first simple example consider a natural
number counter which can be switched on and off. As long as it is on its value
increases by 1 in each step. Switching it off “freezes” the value which then remains
unchanged until it is switched on again in which case the value is reset to 0. This
informal description is formalized by the STS Γcount(SIGNat ,N) consisting of

X = XNAT = {c},
V = {on},
W = {η : X ∪V → N ∪ {ff, tt} | η(c) ∈ N, η(on) ∈ {ff, tt}},
T = {([tt,n], [tt,n + 1]), ([tt,n], [ff,n]), ([ff,n], [ff,n]), ([ff,n], [tt, 0]) | n ∈ N}

where we represent in T a state η by the pair [η(on), η(c)] so that, e.g., [tt,n] de-
notes the state η with η(on) = tt and η(c) = n . W comprises all possible values
of c and on , and the four kinds of pairs of states (for every n ∈ N) listed in T de-
scribe all possible transitions (one-step changes) of the system variables on and c:
counting, switching off, pausing, and switching on, respectively. A possible execu-
tion sequence of Γcount is

[ff, 7] � [tt, 0] � [tt, 1] � [tt, 2] � [tt, 3] � [ff, 3] � [ff, 3] � . . .

expressing that the counter starts switched off and with value 7, is switched on,
counts up to 3, is switched off, remains off, and so on.

By definition, execution sequences of STSs are infinite (and for generating them,
transition relations are total). In fact, many real systems, often called reactive sys-
tems, are intended for “running forever” (“reacting” with the environment). Other
systems (usually calculating some input-output relation and called transformational
systems) like the Towers of Hanoi, for which we indicated this discussion already
in Sect. 6.1, are intended to terminate. They provide finite runs and seem, at a first
glance, not to be covered by our formalization. However, such systems may be “en-
coded” very easily in the given framework: a finite run terminating with some state
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η is represented by the infinite one which is obtained by repeating η forever when it
is reached.

Consider, as a simple example, a modified counter Γtcount which terminates
whenever it reaches some value, say, 100. (If it never reaches this value it still runs
forever.) Reasonably, the states η are then restricted to those with η(c) ≤ 100. A
finite run could (informally) look like, e.g.,

[ff, 32] � [tt, 0] � [tt, 1] � . . . � [tt, 99] � [tt, 100]

where the counter, after being switched on, counts from 0 to 100 and then terminates.
Such runs are generated by the (non-total) transition relation

T ′ = {([tt,n], [tt,n + 1]), ([tt,n], [ff,n]),
([ff,n], [ff,n]), ([ff,n], [tt, 0]) | n ∈ N,n ≤ 99}.

In order to cause infinite repetitions of the state in which the counter value 100 is
reached, T ′ has to be enriched by the pair ([tt, 100], [tt, 100]), and in order to make
T ′ total, ([ff, 100], [ff, 100]) has to be added as well. For subsequent, more general
use we define the total closure tot(R) of a binary relation R over a set D by

tot(R) = R ∪ {(d , d) ∈ D× D | there is no d ′ ∈ D such that (d , d ′) ∈ R}.

Then

WΓtcount
= {η ∈WΓcount

| η(c) ≤ 100},
TΓtcount

= tot(T ′)

(with X and V as in Γcount ) obviously define Γtcount in the desired way. The above
sample run is formally represented by the execution sequence

[ff, 32] � [tt, 0] � [tt, 1] � . . . �

[tt, 99] � [tt, 100] � [tt, 100] � [tt, 100] � . . .

generated by TΓtcount
.

It should be clear that the examples of Sect. 6.1 can also be formulated as STSs.
While the Towers of Hanoi and the system with the even and odd number sequences
have additional properties which will be addressed in the next section, the oscillator
circuit can be reasonably represented in the uniform STS framework and according
to the present definitions by a propositional STS Γosc(V ), V = {b0, b1, b2}, with

W = {η : V → {ff, tt}}

and

T = {(η, η′) ∈W ×W |
η′(b0) = η(b0),
η′(b1) = tt ⇔ η(b0) �= η(b1),
η′(b2) = tt ⇔ η(b2) = tt if and only if η(b0) = η(b1) = ff}.
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A possible execution sequence of Γosc is

011 � 101 � 011 � 101 � 011 � . . .

where, with regard to the concrete background, we represent states by binary num-
bers: e.g., the entry 011 for η0 means η0(b0) = tt, η0(b1) = tt, η0(b2) = ff.

In preceding sections we have stressed several times a certain contrast between
state systems and mathematical systems which are just data types in a functional
setting. However, data types in computer science can be viewed and handled both
in a functional and in an imperative way. In fact, the counters above are simple
data types which could also be viewed (and algebraically specified) in a functional
framework. The other way round, consider, e.g., the algebraic stack specification in
Sect. 1.3 given by the (classical) first-order theory Stack with the characteristic sig-
nature SIGst . Taking this data type in an imperative view as a “pushdown storing
device” the “contents” of which may “change in time” by executing the typical stack
operations we obtain a state system.

An STS Γst describing a stack in such a way is based on the signature SIGst and
some structure for SIGst . To make it concrete here, let this structure U be given by

|U|OBJ = N,
|U|STACK = N

∗,
EMPTY U = ε,
PUSH U = push ,
POPU = pop,
TOPU = top,

where ε ∈ N
∗ is the empty sequence of natural numbers and push , pop, top are the

usual stack operations on N
∗. Then we let Γst(SIGst ,U) consist of

X = XSTACK = {pd},
V = ∅,
W = {η : X → N

∗},
T = {(η, η′) ∈W ×W | η′(pd) = push(η(pd),m),m ∈ N} ∪

{(η, η′) ∈W ×W | η′(pd) �= ε and η′(pd) = pop(η(pd))}.

The system variable pd represents the pushdown store which carries stacks of natural
numbers as its value. The states of W map all such values to pd . T comprises all
possible transitions: in a single step, some natural number m can be “pushed” on pd ,
or pd can be “popped”.

An example of an execution sequence of Γst is

(7, 13) � (7, 13, 5) � (7, 13, 5, 21) � (7, 13, 5) � . . .

where states are represented by their values of pd . In the initial state pd contains the
numbers 7 and 13, then 5 and after that 21 are pushed to pd , then pd is popped, and
so on.
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As indicated already, the definition of STSs perfectly fits the temporal logic
notions. Let Γ = (X ,V ,W ,T ) be an STS over some SIG and S. A language
LTL(TSIGΓ ) where TSIGΓ = (SIG ,X ,V ) and LTL denotes a language as intro-
duced in Sect. 6.1 is called language of linear temporal logic of Γ and denoted by
LTLΓ . Thus, LTLΓ takes over the signature SIG from Γ and identifies the flexible
individual and propositional constants with the individual and propositional system
variables from X and V , respectively. Clearly, the state formulas of Γ are just the
non-temporal formulas of LTLΓ .

It is obvious that, for every execution sequence WΓ of Γ , K = (SΓ ,WΓ ) is a
temporal structure for TSIGΓ : SΓ is a structure for the underlying SIG and WΓ

is just an infinite sequence of states in the sense of the semantical definitions in
Sect. 5.1. The class

CΓ = {K = (SΓ ,WΓ ) | WΓ is an execution sequence of Γ}

then represents “all possible runs” of the state system formalized by Γ . Note that in
CΓ , as in Γ itself, SΓ is fixed.

As mentioned already, any state formula A of Γ can be evaluated by SΓ , a vari-
able valuation ξ, and η ∈WΓ (denoted by S

(ξ,η)
Γ (A)). So, if K ∈ CΓ , this evaluation

is possible for a state ηi of WΓ and obviously coincides with evaluating “in K”, i.e.,

K
(ξ)
i (A) = S

(ξ,ηi )
Γ (A)

holds for every ξ.

Definition. Let Γ be an STS. A formula A of LTLΓ is called Γ -valid (denoted by
�
Γ
A) if A is valid in every K ∈ CΓ .

Of course, all these notions can be transferred to the case that Γ is propositional.
ThenLTLΓ reduces to someLLTL(V ) taking the system variables of Γ as the proposi-
tional constants of the language, LΓ is the “sublanguage” of LTLΓ without temporal
operators, every WΓ is a temporal structure for V , and CΓ is just the class of all such
WΓ .

A CΓ -FOLTL-theory (or CΓ -LTL-theory in the case of a propositional Γ ) will
be briefly called a Γ -theory and denoted by Th(Γ ) = (LTLΓ ,AΓ ). As mentioned
already, it can be understood as a temporal logic specification of (the state system
represented by) Γ .

If we want to specify a state system given by an STS Γ in this sense we have
to find an adequate language version LTLΓ and, more essential, appropriate non-
logical axioms. We remark again (cf. Sect. 1.3) that a Γ -theory does not necessarily
“characterize” Γ . The only requirement for AΓ is that its formulas are Γ -valid, so
even AΓ = ∅ would be a sound choice. It is clear, however, that we should try to
make AΓ as “powerful” and “close to distinguish” the system Γ as possible.

Looking for appropriate axioms, a first observation is that AΓ should contain
axioms for the data involved in Γ through the structure SΓ (provided Γ is not propo-
sitional). Since the specification of (functional) data types is not the subject of this
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book and we therefore do not care (except for some remarks already made) about
how this is possible, we help ourselves by simply taking every state formula of Γ
which is SΓ -valid as an axiom of AΓ without any regard to how this formula could
really be derived. So, any AΓ will contain the axioms

(dataΓ ) All SΓ -valid state formulas of Γ

and we will freely use these axioms without explicitly justifying them. For example,
if SΓ = N as in the counters above then (dataΓ ) contains formulas like

x1 + x2 = x2 + x1,
x1 ∗ (x2 + x3) = x1 ∗ x2 + x1 ∗ x3,
etc.

Clearly, in the case of a propositional STS there is no need of such axioms.
The axioms in the proper focus of our investigations are those which specify

the execution sequences WΓ of Γ . We call them temporal axioms (of Γ ), and they
should reflect the sets WΓ and TΓ of states and transitions of Γ . We illustrate this
for the four examples introduced in this section.

For the counter Γcount the two obviously Γcount -valid formulas

on → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
¬on → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0)

could be taken as temporal axioms. They reflect the possible counting and switch-
ing off transitions if the counter is on and the possible pausing and switching on
transitions if it is off.

For the terminating counter Γtcount these axioms can be easily modified and
extended to

c ≤ 100,
on ∧ c < 100 → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
¬on ∧ c < 100 → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0),
c = 100 → (on ′ ↔ on) ∧ c′ = c.

Note that the first axiom reflects the restriction of the state set WΓtcount
.

Appropriate temporal axioms for the oscillator Γosc could be just the three for-
mulas

b′0 ↔ b0 ,
b′1 ↔ ¬(b0 ↔ b1),
b′2 ↔ ¬(b0 ∨ b1 ↔ b2)

already shown in Sect. 6.1. Their Γosc-validity is clear.
For the stack Γst a reasonable specification could be given by the single Γst -valid

axiom

∃y(pd ′ = PUSH (pd , y)) ∨ (pd �= EMPTY ∧ pd ′ = POP(pd))
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describing the disjunction of the two possible kinds of transitions: pushing some y
to pd or popping the (non-empty) pd .

Note that in the counter systems as well as in Γst the temporal axioms do not
need all elements of the respective signatures. So for the exclusive use as a specifica-
tion language, a less extensive signature would suffice for LTLΓ . The full language,
however, could be necessary for additional purposes such as the formal description
of further “properties” (actually pursued in the following chapters). Instead of basing
transition systems and their specification on a “minimal” signature which will then
have to be enriched for other applications, we always will assume for simplicity that
the signatures SIGΓ are suitable for all intended investigations of Γ .

We conclude this section with a general discussion about the concept of transition
systems. In fact, these could directly serve as the basic semantical vehicle for tempo-
ral logic insofar as the validity notions could be equivalently based on them instead of
using the concept of temporal structures developed in our approach in the preceding
chapters. To put this formally, consider a temporal signature TSIG = (SIG ,X,V)
and a language LTL(TSIG) of first-order linear temporal logic. We call any STS
Γ = (X,V,W ,T ) over SIG and some structure S for SIG (which takes X and
V as its sets of individual and propositional system variables) a TSIG-STS. For ev-
ery such STS, the language LTLΓ obviously coincides with LTL(TSIG) and every
K ∈ CΓ is a temporal structure for TSIG .

Theorem 6.2.1. Let TSIG = (SIG ,X,V) be a temporal signature. A formula A of
LTL(TSIG) is valid if and only if A, viewed as a formula of LTLΓ , is Γ -valid for
every TSIG-STS Γ .

Proof. Let A be valid and Γ be a TSIG-STS. Then �
K
A for every temporal structure

K = (S,W) for TSIG ; hence �
K
A for every K ∈ CΓ which means that A is Γ -valid.

Let, conversely, A be Γ -valid for every TSIG-STS Γ and K = (S,W) be a temporal
structure for TSIG . We have to show that �

K
A. To this end, we define the TSIG-

STS Γ ∗ = (X,V,W ,T ) over SIG and S with W being the set of all possible states
(with respect to X and V) and T = W ×W . Then K ∈ CΓ∗ since W is obviously
an execution sequence of Γ ∗. From the assumption we get �

Γ∗A which means �
K∗A

for every K∗∈ CΓ∗ and implies �
K
A. �

According to this theorem, validity of formulas of LTL(TSIG) (defined with
respect to all possible temporal structures) is equivalent to Γ -validity for all STSs
with fixed X , V , SIG taken from TSIG . Moreover, the proof shows that this could
also be modified to the assertion that validity is equivalent to Γ ∗-validity for all
STSs Γ ∗ as defined in the proof (with “full” state set and transition relation and
ranging over all structures S for SIG). In fact, T = W ×W generates all possible
state sequences W for temporal structures. Note that every Γ ∗ is specified only by
(dataΓ∗) but no temporal axioms.

Of course, Theorem 6.2.1 can be transferred to the propositional case in an ob-
vious way: a formula A of some propositional temporal logic language LTL(V) is
valid if and only if A is Γ -valid for every propositional STS Γ = (∅,V,W ,T ) or,
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alternatively, if and only if A is Γ ∗-valid for Γ ∗ = (∅,V,W ,T ) where W is the set
of all states η : V → {ff, tt} and T = W ×W .

6.3 Rooted Transition Systems

Transition systems as defined in the previous section are our basic representations of
state systems. In the following we investigate some variants and extensions of STSs
which will enable us to model typical additional features of state systems.

A first very simple extension can be motivated by the Towers of Hanoi example.
An execution sequence of an STS so far can start with an arbitrary initial state. In the
puzzle, however, any sequence of moves is to start in a state where the full tower is
piled up on one place and the other two places are empty.

Such restrictions on particular initial states occur very frequently in state systems
and can be treated by the following version of STSs.

Definition. A rooted (state) transition system (briefly: rSTS)

Γ = (X ,V ,W ,T , start)

(over some SIG and S) is an STS Γ ′(SIG ,S) = (X ,V ,W ,T ) together with a
closed state formula start of Γ ′ called initial condition. An execution sequence of Γ
is an execution sequence (η0, η1, η2, . . .) of Γ ′ with S(η0)(start) = tt.

Observe that an rSTS could also very easily (and maybe “more naturally”) be
defined to consist of an STS (X ,V ,W ,T ) together with a distinguished subset W0

of W the elements of which are to be understood as the initial states. For a reasonable
specification of the system, W0 should then be “describable” by a formula. We have
chosen here to provide the desired restriction directly by a (for simplicity: closed)
state formula which must be “satisfied” by the initial state of any execution sequence.

Of course, the definition can easily be adjusted for propositional systems. We
adopt all notational conventions introduced for STSs and extend them by fixing that
we will write startΓ for the initial condition of some Γ and LΓ for LΓ ′ .

The Towers of Hanoi puzzle can be represented as an rSTS ΓToH (SIGToH ,H)
where we take SIGToH and H as defined in Sect. 6.1. The system variables (follow-
ing the discussion in Sect. 6.1) and the initial condition of ΓToH are obvious:

X = XPILE = {pl1, pl2, pl3},
V = ∅,
start ≡ pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY

(assuming that at the beginning the tower is standing on place pl1). For the set of
states the choice is not so clear since we could think of restricting W somehow to
those states which will really occur in playing the puzzle. The easiest way, however,
is to let W contain again all possible mappings from X to |H|PILE , i.e.,

W = {η : X → {1, . . . ,n}∗},
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and treat the non-accessible states appropriately in the transition relation T . A first
approach to the latter is

T ′ = {(η, η′) ∈W ×W |
η �= ηfin ,
η(pli) �= ε, top(η(pli)) < top(η(plj )) if η(plj ) �= ε,
η′(pli) = pop(η(pli)), η′(plj ) = push(η(plj ), top(η(pli))),
η′(plk ) = η(plk ),
i , j , k ∈ {1, 2, 3} pairwise distinct}.

where ηfin is the “final” state in which the tower is standing on the desired destina-
tion, say, place pl2:

ηfin(pl2) = (n,n − 1, . . . , 2, 1), ηfin(pl1) = ηfin(pl3) = ε.

Every (η, η′) ∈ T ′ represents a possible move according to the rules of the puzzle:
the non-empty pile on some place pli is popped, its top stone is put on the pile of
plj provided it is smaller than the top stone there, and the pile on the third place plk
remains unchanged. By excluding pairs (ηfin , η) we express that when reaching ηfin

no more moves are to be done. As illustrated in Sect. 6.2 the termination in ηfin is
represented by adding the pair (ηfin , ηfin) to T ′ with the effect that whenever ηfin is
reached in an execution sequence it has to be repeated forever. However, even with
this addition, T ′ is not yet total because of the definition of W . For example, the
state ηε ∈ W with ηε(pl1) = ηε(pl2) = ηε(pl3) = ε has no successor state. This is
a state which will obviously never occur in an execution sequence, so we solve this
(purely technical) problem by simply adding the pair (ηε, ηε) to the relation to make
it total. Summarizing, T is built as the total closure of T ′, i.e.,

T = tot(T ′)

(and contains then also many other elements (η, η) with states (with “incorrect”
piles) which will never be reached).

The execution sequences of this rSTS represent the possible runs and contain the
reachable states of the system. An example of a (successful) execution sequence for
n = 3 is

[321, ε, ε] � [32, 1, ε] � [3, 1, 2] � [3, ε, 21] �

[ε, 3, 21] � [1, 3, 2] � [1, 32, ε] � [ε, 321, ε] � [ε, 321, ε] � . . .

where, e.g., the shorthand [3, ε, 21] denotes the state η with η(pl1) = (3), η(pl2) = ε,
η(pl3) = (2, 1).

Briefly examining the examples of Sect. 6.2, modified counter and stack systems
with distinguished initial states could also be reasonable. In both counters one could
require that at the beginning the counter is off and has value 0. This would be for-
malized by an rSTS which extends Γcount (or Γtcount ) by the initial condition

start ≡ ¬on ∧ c = 0.
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For a stack, an analogous requirement could be that the stack is empty initially, ex-
pressed by

start ≡ pd = EMPTY .

Specifying an rSTS Γ , the additional initial condition startΓ restricts the set of
execution sequences of the underlying STS. This restriction can be captured by a
particular axiom uniformly given by

(rootΓ ) init → startΓ .

Note that for this purpose LTLΓ has to contain at least the extension “i” and that
startΓ , as a formula of LΓ , is also a formula of LTLΓ ; hence, (rootΓ ) is really a
formula of LTLΓ .

Theorem 6.3.1. For every rSTS Γ the axiom (rootΓ ) is Γ -valid.

Proof. Let K ∈ CΓ , ξ be a variable valuation, i ∈ N. startΓ is a state formula; so,
according to the remark about evaluation “in K” and “in SΓ ” in Sect. 6.2, we have
K

(ξ)
0 (startΓ ) = S

(ξ,η0)
Γ (startΓ ) = tt. Thus, K

(ξ)
0 (init → startΓ ) = tt and, for i > 0,

K
(ξ)
i (init → startΓ ) = tt because of K

(ξ)
i (init) = ff. This shows that (rootΓ ) is valid

in K and proves the theorem. �

This theorem (the proof of which could easily be adjusted if Γ is propositional)
means that (rootΓ ) can be added to the set AΓ of non-logical axioms of a specifica-
tion of any rSTS Γ . For example, in the counter and stack rSTSs the specification
given in the previous section could be enriched by the axioms

init → ¬on ∧ c = 0

and

init → pd = EMPTY ,

respectively.

The Towers of Hanoi system can now be specified as follows: besides the ax-
ioms (dataΓToH

), the axiom (rootΓToH
) is taken to specify the initial condition. For

describing the possible transitions let

Aijk ≡ pli �= EMPTY ∧ (plj �= EMPTY → TOP(pli) < TOP(plj )) ∧
pl ′i = POP(pli) ∧ pl ′j = PUSH (plj ,TOP(pli)) ∧ pl ′k = plk

and

Afin ≡ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY .

For pairwise distinct i , j , k ∈ {1, 2, 3}, Aijk describes the move of putting a stone
from pli to plj and Afin describes the final state with the goal of the game. Together,
therefore the axioms
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init → pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY ,
¬Afin → A123 ∨A132 ∨A213 ∨A231 ∨A312 ∨A321,
Afin → �Afin

are appropriate temporal axioms for ΓToH . The second formula describes all possible
moves of the puzzle which can be performed when the goal is not yet reached. By
the third formula, the repetition of the final state is expressed.

These axioms are directly drawn from the definition of the transition relation
TΓToH

. Note that, translating TΓToH
completely, one would expect additional axioms

like

B → �B

with (e.g.) B ≡ pl1 = EMPTY ∧pl2 = EMPTY ∧pl3 = EMPTY , expressing the
full effect of the total closure operation in the construction of TΓToH

. These formulas,
however, have no influence on the execution sequences and can therefore be omitted
in the specification.

6.4 Labeled Transition Systems

An execution sequence

η0
� η1

� η2
� . . .

of an (r)STS “records” the states which are visited during a run of the system. (The
notation (r)STS means an STS which may be rooted or not.) In many applications
the single transitions from ηi to ηi+1 are caused by distinguished “actions” and it
might be desirable to record the information about which actions are carried out in
each step as well. This can informally be depicted by

η0
λ0� η1

λ1� η2
λ2� . . .

where the labels λi denote the actions leading from ηi to ηi+1.
Again the Towers of Hanoi system is a good example: a single action is a move

λij putting a stone from pli to plj (i ∈ {1, 2, 3}). The execution sequence

[321, ε, ε] � [32, 1, ε] � [3, 1, 2] � [3, ε, 21] � . . .

exemplifying the rSTS ΓToH in the previous section is caused by the sequence of
moves λ12, λ13, λ23, λ12, . . ., depicted by

[321, ε, ε]
λ12� [32, 1, ε]

λ13� [3, 1, 2]
λ23� [3, ε, 21]

λ12� . . .

and, in fact, the information about the moves might be even more interesting than the
intermediate states.
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A formalization of this concept of including actions into the execution sequences
is usually performed by labeled transition systems. We investigate two slightly dif-
ferent variants of such systems and again we adjust their definition here such that
they can easily be translated into the temporal logical framework. The discussion is
carried out for first-order systems but, as before, everything can easily be transferred
also to propositional systems.

Definition. A simple labeled (state) transition system (briefly: lsSTS)

Γ = (X ,V ,W ,T ,Act)

is given by a finite set Act of actions and an STS Γ ′ = (X ,V ,W ,T ) with V
containing elements exec λ for every λ ∈ Act and such that, if (η, η′) ∈ T and
η(execλ) = ff for every λ ∈ Act , then η′ = η. An execution sequence of Γ is an
execution sequence of Γ ′.

The idea of this definition is that with every action λ of the system a particular
propositional system variable execλ is associated and a transition

η
λ� η′

is formalized by (η, η′) ∈ T (as before) and η(execλ) = tt. So the informal reading
of execλ is

“the action λ is executed (in the present state)”.

Having this in mind one would expect the additional requirement that, in every state,
η(exec λ) = tt should hold for exactly one λ ∈ Act . For capturing terminating
system runs, however, we allow that η(exec λ) = ff for every λ ∈ Act (i.e., no
action is carried out) and, as before, the state η has to be repeated then forever. More
interestingly, we also allow that η(execλ) = tt may hold for more than one λ, i.e.,
that more than one action may be executed in a state η. (In the usual concept of
transition systems one would have to distinguish such joint executions of actions as
additional actions of their own.)

Obviously, this definition can be transferred to rooted transition systems provid-
ing systems denoted by rlsSTS, and all notational conventions from before (including
optional notations like (r)lsSTS or r(ls)STS) can be reused.

Considering the Towers of Hanoi example we can model this as an rlsSTS Γ l
ToH

by taking SIGToH , H, and

X = XPILE = {pl1, pl2, pl3},
start ≡ pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY

as in the rSTS ΓToH of the previous section and defining the set of actions by

Act = {λ12, λ13, λ21, λ23, λ31, λ32}

where every λij has the informal meaning introduced above. Furthermore, we let
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V = {execλij | λij ∈ Act},
W = {η : X ∪V → {1, . . . ,n}∗ ∪ {ff, tt} |

η(pli) ∈ {1, . . . ,n}∗ for pli ∈ X ,
η(execλij ) ∈ {ff, tt} for λij ∈ Act ,
η(execλij ) = tt for at most one λij ∈ Act ,
if η(execλij ) = ff for all λij ∈ Act then η = ηfin ,
if η(execλij ) = tt then

η(pli) �= ε, top(η(pli)) < top(η(plj )) if η(plj ) �= ε
for λij ∈ Act}

where ηfin is now defined by

ηfin(pl2) = (n,n − 1, . . . , 2, 1), ηfin(pl1) = ηfin(pl3) = ε,
ηfin(execλij ) = ff for every λij ∈ Act .

Finally, for the definition of the transition relation T , consider the relation

T ′ = {(η, η′) ∈W ×W |
η �= ηfin ,
if η(execλij ) = tt then

η′(pli) = pop(η(pli)), η′(plj ) = push(η(plj ), top(η(pli))),
η′(plk ) = η(plk ) for k �= i , k �= j}.

Together with the restrictions on states in W , the pairs of T ′ describe again all
possible moves and as before we can define then

T = tot(T ′).

The successful sequence of moves for the tower of three stones shown in the previous
section is now formalized by the execution sequence

[321, ε, ε, λ12] � [32, 1, ε, λ13] � [3, 1, 2, λ23] �

[3, ε, 21, λ12] � [ε, 3, 21, λ31] � [1, 3, 2, λ32] �

[1, 32, ε, λ12] � [ε, 321, ε,−] � [ε, 321, ε,−] � . . .

where the λij in a state η denotes the action with η(execλij ) = tt and the notation
[ε, 321, ε,−] describes that η(execλij ) = ff for every λij ∈ Act .

In the above definition of Γ l
ToH , W is not the “full state space”, but restricted

according to the intuition of the system variables of V in an evident way. One of
these restrictions, expressed in the clause

if η(execλij ) = tt then η(pli) �= ε, top(η(pli)) < top(η(plj )) if η(plj ) �= ε,

states that any λij is only “enabled” to be executed if the pile on pli is not empty
and its top stone is smaller than the top stone of the pile on plj (if this is not empty).
The existence of such “enabling conditions” for the actions is characteristic for many
systems and leads to a second version of labeled transition systems where such con-
ditions are explicitly displayed.
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Definition. For an lsSTS Γ ′ = (X ,V ,W ,T ,Act) let E = {enabledλ | λ ∈ Act}
be a set of closed state formulas of Γ ′. A state η ∈W is called admissible (with
respect to Γ ′ and E) if S

(η)
Γ ′ (execλ→ enabledλ) = tt for every λ ∈ Act . Γ ′ together

with E defines an extended labeled (state) transition system (briefly: leSTS)

Γ = (X ,V ,W ,T ,Act , E)

if every η ∈W is admissible. Each formula enabledλ is called enabling condition
(of λ).

According to this definition the states of an leSTS are (at least) restricted such that, in
every state, only “enabled actions” may be executed and the requirements for an ac-
tion for being enabled are expressed by special formulas of LΓ ′ (which will then also
be denoted by LΓ ). Like initial conditions in the case of rSTSs, these enabling con-
ditions are directly suited for specifications. Of course, an leSTS could alternatively
also be defined by displaying, for every action λ, a subset Wλ of W comprising
those states in which λ is enabled.

The formalization of the Towers of Hanoi system as an leSTS is very similar to
the lsSTS Γ l

ToH considered before; we only add the set

E = {enabledλij
| λij ∈ Act}

where the enabling conditions are defined by

enabledλij
≡ pli �= EMPTY ∧ (plj �= EMPTY → TOP(pli) < TOP(plj ))

for λij ∈ Act . The execution sequences are obviously the same in both formaliza-
tions.

(Of course, we could also define further variants of such systems distinguishing
other restrictions on states, e.g., the “single action” condition that in every state at
most one action may be executed. We leave it here with the restriction installed in
leSTSs which will play a useful role in subsequent considerations.)

It should be clear that the other preceding examples could also be modeled as
lSTSs (i.e., either lsSTSs or leSTSs). We still show this for the (non-terminating)
counter and define an leSTS Γ l

count(SIGNat ,N) with the set

Act = {λon , λoff , λc , λp}

of four actions which represent switching on, switching off, counting, and pausing,
respectively, and the enabling conditions

enabledλon
≡ ¬on ,

enabledλoff
≡ on ,

enabledλc
≡ on ,

enabledλp
≡ ¬on

expressing for which truth values of on the actions may be executed. The proper STS
is then given by
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X = XNAT = {c},
V = {on, execλon , execλoff , execλc , execλp},
W = {η : X ∪V → N ∪ {ff, tt} |

η(c) ∈ N, η(v) ∈ {ff, tt} for v ∈ V ,
η admissible,
η(execλ) = tt for exactly one λ ∈ Act},

T = {(η, η′) ∈W ×W |
if η(execλon) = tt then η′(c) = 0, η′(on) = tt,
if η(execλoff ) = tt then η′(c) = η(c), η′(on) = ff,
if η(execλc) = tt then η′(c) = η(c) + 1, η′(on) = tt,
if η(execλp) = tt then η′(c) = η(c), η′(on) = ff}.

Note that in the definition of W we simply wrote “η admissible” instead of the
respective explicit restrictions on the states. T collects the effects of the four actions
in c and on . In a notation analogous to that above the execution sequence of Γcount

shown in Sect. 6.2 is represented by the execution sequence

[ff, 7, λon ] � [tt, 0, λc ] � [tt, 1, λc ] �

[tt, 2, λc ] � [tt, 3, λoff ] � [ff, 3, λp ] � [ff, 3, . . .] � . . .

of Γ l
count or

[ff, 7]
λon� [tt, 0]

λc� [tt, 1]
λc� [tt, 2]

λc� [tt, 3]
λoff� [ff, 3]

λp� [ff, 3] ...� . . .

in another notation.

Let us turn now again generally to the specification of labeled transition systems.
For any (r)lSTS Γ with ActΓ = {λ1, . . . , λn} we introduce the abbreviation

nilΓ ≡ ¬execλ1 ∧ . . . ∧ ¬execλn

informally expressing that “no action is executed”. Intuitively it should be clear that
whenever nilΓ holds in some state η then η is the only possible successor state of η.
So every state formula of Γ which holds in η will also hold in “the next state”. This
characteristic feature is captured by the following axiom.

(nilΓ ) nilΓ ∧A→ �A if A is a state formula of Γ .

Theorem 6.4.1. For every (r)lSTS Γ the axiom (nilΓ ) is Γ -valid.

Proof. Let K = (SΓ ,WΓ ) ∈ CΓ , WΓ = (η0, η1, η2, . . .), ξ be a variable valuation,
i ∈ N, and K

(ξ)
i (nilΓ ∧ A) = tt. Since nilΓ and A are state formulas we obtain

ηi(execλ) = S
(ξ,ηi )
Γ (execλ) = ff for every λ ∈ ActΓ and S

(ξ,ηi )
Γ (A) = tt. Because

of (ηi , ηi+1) ∈ TΓ we have ηi+1 = ηi from the definition of lSTSs and this implies

K
(ξ)
i+1(A) = S

(ξ,ηi+1)
Γ (A) = S

(ξ,ηi )
Γ (A) = tt. Thus, (nilΓ ) is valid in K which proves

the theorem. �
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The theorem implies that (nilΓ ) can be added to the set AΓ of non-logical ax-
ioms of a specification of any (r)lSTS. It should be noted that (nilΓ ) could even be
strengthened. It is Γ -valid not only for state formulas but for many other formulas
A of LTLΓ . A counterexample, however, is given by A ≡ init. If η0(nilΓ ) = tt then
nilΓ ∧ A → �A would get the value ff in η0 because of η0( �init) = ff. We have
chosen the above simple form of (nilΓ ) since it will be sufficient for our applications.

If Γ is an leSTS then we get the further evident axiom

(actionΓ ) execλ→ enabledλ for every λ ∈ ActΓ .

It can be added to a specification of any (r)leSTS according to the following quite
trivial justification.

Theorem 6.4.2. For every (r)leSTS Γ the axiom (actionΓ ) is Γ -valid.

Proof. For every K = (SΓ ,WΓ ) ∈ CΓ , WΓ = (η0, η1, η2, . . .), variable valuation ξ,
and i ∈ N we have K

(ξ)
i (execλ→ enabledλ) = S

(ξ,ηi )
Γ (execλ→ enabledλ) = tt for

every λ ∈ ActΓ , which proves the assertion. �

We briefly show now specifications of the examples Γ l
ToH and Γ l

count . The tem-
poral axioms for the (rooted) labeled Towers of Hanoi system could be

init → pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY ,
nilΓ l

ToH
∧A→ �A if A is a state formula of Γ l

ToH ,
nilΓ l

ToH
↔ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY ,

execλij → pli �= EMPTY ∧ (plj �= EMPTY → TOP(pli) < TOP(plj ))
for λij ∈ ActΓ l

ToH
,

execλij → pl ′i = POP(pli) ∧ pl ′j = PUSH (plj ,TOP(pli)) ∧ pl ′k = plk
for λij ∈ ActΓ l

ToH
, k �= i , k �= j .

The first two axioms are (rootΓ l
ToH

) and (nilΓ l
ToH

), the next two (sets of) axioms reflect
restrictions on WΓ l

ToH
, and the last one is translated from TΓ l

ToH
. The fourth axiom is

just (actionΓ l
ToH

) if we consider Γ l
ToH as an leSTS. One might miss axioms

execλij → ¬execλkl

for λij , λkl ∈ ActΓ l
ToH

, λij �= λkl , expressing that in every state at most one action
is executed (which is included as a restriction in WΓ l

ToH
). It is evident, however, that

these formulas can be derived from the other axioms. Moreover, it is not necessary
to include

Afin → �Afin

for Afin ≡ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY as an axiom
since this formula can now be easily derived as well: Afin → nilΓ l

ToH
∧Afin follows

with (prop) from the third axiom and this implies Afin → �Afin with (nilΓ l
ToH

) and
(prop).
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The counter Γ l
count is specified by

execλon → ¬on ,
execλoff → on ,
execλc → on ,
execλp → ¬on ,
¬nilΓ l

count
,

execλon → on ′ ∧ c′ = 0,
execλoff → ¬on ′ ∧ c′ = c,
execλc → on ′ ∧ c′ = c + 1,
execλp → ¬on ′ ∧ c′ = c.

The first four axioms explicitly write out (actionΓ l
count

). The axiom (nilΓ l
count

) is not
necessary since it follows from the fifth axiom which reflects that in every state at
least one action is executed, and the last four axioms are translated from TΓ l

count
.

Again, formulas of the form execλ→ ¬execλ for λ �= λ can be derived.

Second Reading

State transition systems are formal representations of state systems. There are other for-
malizations of such systems; prominent examples are all kinds of automata (machines) and
(Petri) nets. Although technically defined quite differently, these formal “systems” can be
viewed as particular transition systems as well. They pursue, however, different goals (in
contrast to what we do here) and possess their own powerful repertories of special methods
for dealing with them so that we do not want to advocate their temporal logic treatment. But
it is at least interesting to see how they fit into our general framework.

In Chap. 4 we have already discussed some relationship between temporal logic and a
special version of finite automata. Let us now consider “ordinary” (non-deterministic) finite
automata (NFA) as state systems.

Such an NFA Aut = (A,Q , q0, δ,Qf ) is given by a finite alphabet A, a finite, non-
empty set Q of locations, an initial location q0 ∈ Q , an (automaton) transition relation
δ ⊆ Q × A × Q , and a set Qf ⊆ Q of accepting locations.

The figure
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shows an NFA with

A = {a, b},
Q = {q0, q1, q2},
δ = {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, a, q2), (q2, a, q1), (q2, b, q2)},
Qf = {q2}

in its usual graphical representation.
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For any q ∈ Q and a ∈ A, the set a(q) of successor locations of q reading the symbol
a consists of all locations q ′ such that (q , a, q ′) ∈ δ. A run of Aut for a given input word
a1 . . . ak ∈ A∗ is a finite sequence (q0, . . . , ql) of locations such that qi+1 ∈ ai+1(qi) for
0 ≤ i ≤ k − 1 and either l = k or al+1(ql) = ∅. The word is accepted by Aut if there is a
run (q0, . . . , qk ) with qk ∈ Qf .

Let now Aut = (A,Q , q0, δ,Qf ) be an NFA. Let SIG = (S,F, ∅) be the signature with

S = {SYMB ,LOC ,WORD},
F = {a(ε,SYMB), q(ε,LOC),

EMPTY (ε,WORD),PREFIX (SYMB WORD,WORD) | a ∈ A, q ∈ Q}
and S be the structure for SIG with

|S|SYMB = A, |S|LOC = Q , |S|WORD = A∗,
aS = a for a ∈ A,
qS = q for q ∈ Q ,
EMPTY S = ε,
PREFIX S(a, b1 . . . bl) = prefix(a, b1 . . . bl)

where prefix(a, b1 . . . bl) = ab1 . . . bl . Aut (together with an input word a1 . . . ak ∈ A∗)
can be viewed as an rlsSTS ΓAut = (X ,V ,W ,T , start ,Act) over SIG and S with

Act = A,

XSYMB = ∅, XLOC = {cs}, XWORD = {rw},

V = {execa | a ∈ A},

W = {η : X ∪ V → Q ∪ A∗ ∪ {ff, tt} |
η(cs) ∈ Q , η(rw) ∈ A∗, η(execa) ∈ {ff, tt} for a ∈ A,
η(execa) = tt if and only if

η(rw) = prefix(a, x ) for some x ∈ A∗ and a(η(cs)) �= ∅},

T = {(η, η′) ∈ W × W |
η(execa) = tt for a ∈ A and

η(rw) = prefix(a, η′(rw)) and η′(cs) ∈ a(η(cs))
or
η(execa) = ff for every a ∈ A and η′ = η},

start ≡ cs = q0 ∧ rw = PREFIX (a1, . . .PREFIX (ak ,EMPTY ) . . .).

The system variables cs and rw carry the current automaton location and the rest of the
input word (still to be read), respectively. Note that, as in preceding examples, the finite
runs of the automaton are represented as infinite execution sequences repeating the “last
state” forever.

It is easy to translate these definitions into a general form of temporal logic specifica-
tions. We only show appropriate temporal axioms (besides (rootΓAut ) and (nilΓAut )) for the
example:

execa ↔ ∃x (rw = PREFIX (a, x )),

execa → (cs = q0 → cs ′ = q0) ∧ (cs = q1 → cs ′ = q1) ∧ (cs = q2 → cs ′ = q1),

execb ↔ ∃x (rw = PREFIX (b, x )) ∧ cs �= q1,

execb → (cs = q0 → cs ′ = q0 ∨ cs ′ = q1) ∧ (cs = q2 → cs ′ = q2).

The acceptance of the input word w by Aut can be expressed by a formula of LTLΓAut ,
in the example by

start → �(cs = q2 ∧ rw = EMPTY ).
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Petri nets exist in various versions. We consider place-transition nets (briefly: PTNs)
Net = (Pl ,Tr , δ) which are usually defined to consist of a finite, non-empty set Pl
of places, a finite, non-empty set Tr of net transitions, and a (net) transition relation
δ ⊆ (Pl × Tr) ∪ (Tr × Pl). A marking of Net is a mapping M : Pl → N.

The figure

��a1

β1

β2

�

a2

�
�
�

�

a3

β4 β3

� �

�
�

�

�

�

� �

shows a typical graphical representation of a PTN with

Pl = {a1, a2, a3},
Tr = {β1, β2, β3, β4},
δ = {(a1, β1), (a1, β2), (a2, β3), (a3, β4), (β1, a2), (β2, a3), (β3, a2),

(β3, a3), (β4, a2)}
together with a marking M (indicated by the bullets associated with the places) with

M (a1) = 1,M (a2) = 3,M (a3) = 0.

For β ∈ Tr , the sets •β = {a ∈ Pl | (a, β) ∈ δ} and β• = {a ∈ Pl | (β, a) ∈ δ} are
the pre-set and post-set of β, respectively. For a marking M , β is called fireable under M if
M (a) > 0 for every a ∈ •β. If β is fireable under M then the firing of β transforms M to
its successor marking β(M ) defined by

β(M )(a) =

⎧
⎨

⎩

M (a) − 1 if a ∈ •β \ β•
M (a) + 1 if a ∈ β• \ •β
M (a) otherwise.

In the example, β1, β2, and β3, but not β4 are fireable (under the given M ). Firing of β3

transforms M to M ′ with M ′(a1) = 1, M ′(a2) = 3, M ′(a3) = 1.
A run of a PTN Net is a sequence (M0,M1,M2, . . .) of markings such that for every

i ∈ N, Mi+1 is a successor marking of Mi if there is a fireable net transition under Mi , and
Mi+1 = Mi otherwise.

Let now SIG = (S,F,P) be the signature with

S = {NAT},
F = {0(ε,NAT),SUCC (NAT ,NAT),PRED(NAT ,NAT)},
P = {POS (NAT)}

and S be the structure for SIG with

|S| = |S|NAT = N,
0S = 0,
SUCC S(n) = n + 1,
PREDS(n) = n − 1 if n > 0, PREDS(0) = 0,
POS S(n) = tt ⇔ n > 0.
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A PTN Net = (Pl ,Tr , δ) can be viewed as an leSTS ΓNet = (X ,V ,W ,T ,Act , E) over
SIG and S with

Act = Tr ,

X = XNAT = Pl ,

V = {execβ | β ∈ Tr},

enabledβ ≡ POS(a1) ∧ . . . ∧ POS(ak ) for every β ∈ Tr , •β = {a1, . . . , ak},

W = {η : X ∪ V → N ∪ {ff, tt} |
η(a) ∈ N for a ∈ Pl , η(execβ) ∈ {ff, tt} for β ∈ Tr ,
η admissible,
η(execβ) = tt for at most one β ∈ Tr ,
if η(execβ) = ff for every β ∈ Tr then

for every β ∈ Tr there is some a ∈ •β with η(a) = 0},

T = {(η, η′) ∈ W × W |
η(execβ) = tt for β ∈ Tr and η′(a) = β(η |Pl)(a) for every a ∈ Pl
or
η(execβ) = ff for every β ∈ Tr and η′ = η}.

(η |Pl denotes the restriction of η on Pl and is just a marking of Net .)
Again it is easy to translate these definitions into a general form of temporal logic speci-

fications of such systems. Appropriate temporal axioms (besides (nilΓNet ) and (actionΓNet ))
for the example could be:

execβ1 → a ′
1 = PRED(a1) ∧ a ′

2 = SUCC (a2) ∧ a ′
3 = a3,

execβ2 → a ′
1 = PRED(a1) ∧ a ′

2 = a2 ∧ a ′
3 = SUCC (a3),

execβ3 → a ′
1 = a1 ∧ a ′

2 = a2 ∧ a ′
3 = SUCC (a3),

execβ4 → a ′
1 = a1 ∧ a ′

2 = SUCC (a2) ∧ a ′
3 = PRED(a3).

6.5 Fairness

The definition of (all the variants of) state transition systems accomodates non-
determinism: in general, any state of the system may have more than one possible
successor state according to the transition relation and runs may “branch” in such
states following different successors. In fact, most of the examples of state systems
so far are of this nature.

In a non-deterministic system the choice of the “next step” is free by definition.
Sometimes the particular real-world application, however, imposes some restrictions
upon this freedom. For example, in the Towers of Hanoi system most of the possible
runs do not lead to the proper goal of the puzzle, so the choice of a real player would
be goal-oriented in every step, trying to leave all useless transitions aside.

An important kind of restriction in many state systems is subsumed under the
notion of fairness. Consider, as a simple example, the following propositional leSTS
Γprinter formalizing a printer which, requested from two “users” U1 and U2, period-
ically executes printing jobs for U1 and U2. Γprinter is given by

Act = {α1, α2, β1, β2, γ},
X = ∅,
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V = {execλ | λ ∈ Act} ∪ {req1, req2},
enabledα1 ≡ ¬req1,
enabledα2 ≡ ¬req2,
enabledβ1 ≡ req1,
enabledβ2 ≡ req2,
enabledγ ≡ true,
W = {η : V → {ff, tt} | η admissible,

η(execλ) = tt for exactly one λ ∈ Act},
T = {(η, η′) ∈W ×W |

if η(execα1) = tt then η′(req1) = tt, η′(req2) = η(req2),
if η(execα2) = tt then η′(req1) = η(req1), η′(req2) = tt,
if η(execβ1) = tt then η′(req1) = ff, η′(req2) = η(req2),
if η(execβ2) = tt then η′(req1) = η(req1), η′(req2) = ff,
if η(execγ) = tt then η′(req1) = η(req1), η′(req2) = η(req2)}.

The actions αi (i = 1, 2) have the informal meaning “the printer is requested by
user Ui”, the βi stand for “the printer is printing for Ui”, and γ means “the printer
does nothing”. The system variables reqi informally read “there is a request from
Ui”. With this in mind, the other definitions can easily be understood. Note that the
definition of enabledγ means that there is no restriction for the execution of γ.

Γprinter is non-deterministic since in T it is not fixed which action is executed
in a next state. A possible execution sequence could be

∅ γ� ∅ α1� {1} α2� {1, 2} β1� {2} α1� {1, 2} β2� {1} β1� . . .

where the states η0, η1, η2, . . . are represented by sets containing those i ∈ {1, 2}
with ηj (reqi) = tt. At the beginning of this run there is no request and the printer is
not printing. Then U1 and U2 request the printer successively, the printer prints for
U1, another request from U1 arrives, the printer prints for U2, then for U1, and so on.
This is a quite reasonable behaviour of the printer. Consider, however, the execution
sequence

∅ γ� ∅ α1� {1} α2� {1, 2} β1�

{2} α1� {1, 2} β1� {2} α1� {1, 2} β1� {2} α1� . . .

where U2 has requested the printer but only the permanently arriving requests of U1

are served forever. This execution sequence describes an “unfair” behaviour of the
printer since U2 will never be served. An even “worse” behaviour would be given by

∅ γ� ∅ α1� {1} α2� {1, 2} γ� {1, 2} γ� {1, 2} γ� . . .

never executing the requested jobs of U1 and U2 at all. Of course, it might be desir-
able to exclude such behaviours.

In general, restrictions in this sense are called fairness requirements and are ex-
pressed by connections between the enabledness of actions and their actual execu-
tion. They can be treated easily in the framework of labeled transition systems (in
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the extended version) since there the enabledness of actions is explicitly given by
the enabling conditions. Among the several possibilities of how to reasonably fix the
requirement we choose the following. (Again everything is treated in the first-order
framework and can easily be adjusted for the propositional case.)

Definition. Let Γ be an (r)leSTS. An execution sequence WΓ = (η0, η1, η2, . . .) of

Γ is called fair if it has the property that, for every λ ∈ ActΓ , if S
(ηj )
Γ (enabledλ) = tt

for infinitely many j then ηk (exec λ) = tt for infinitely many k . A fair (r)leSTS
(briefly: f(r)leSTS) is an (r)leSTS Γ where the execution sequences are restricted to
the fair execution sequences of Γ .

Informally this fairness definition requires that, in every run, actions which are
enabled infinitely often will be executed infinitely often, and it is easy to see that it
excludes in fact the undesired execution sequences of the printer we showed above:
in both runs, β2 is enabled infinitely often but never executed.

The restriction of the set of execution sequences of an f(r)leSTS Γ can be cap-
tured by the particular axiom

(fairΓ ) ��enabledλ → �execλ for every λ ∈ ActΓ

which informally reads (for every λ ∈ ActΓ )

“if λ is enabled infinitely often then it will eventually be executed”.

This is not the direct transliteration of the above definition which would be given by
the seemingly stronger

��enabledλ → ��execλ for every λ ∈ ActΓ

but these formulas can trivially be derived from (fairΓ ) with (T35), and are therefore
model equivalent to those in (fairΓ ).

Theorem 6.5.1. For every f(r)leSTS Γ the axiom (fairΓ ) is Γ -valid.

Proof. For every K = (SΓ ,WΓ ) ∈ CΓ , WΓ = (η0, η1, η2, . . .), variable valuation ξ,
i ∈ N, and λ ∈ ActΓ we have:

K
(ξ)
i (��enabledλ) = tt ⇒ K

(ξ)
j (enabledλ) = tt for infinitely many j ≥ i

⇒ S
(ηj )
Γ (enabledλ) = tt for infinitely many j

⇒ K
(ξ)
k (execλ) = ηk (execλ) = tt

for infinitely many k

⇒ K
(ξ)
k (execλ) = tt for some k ≥ i

⇒ K
(ξ)
i (�execλ) = tt. �

According to this theorem, (fairΓ ) can be added to the specification of Γ . As an
example, the specification of the above printer as a fair system could contain the
following temporal axioms:
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execα1 → ¬req1,
execα2 → ¬req2,
execβ1 → req1,
execβ2 → req2,
��enabledλ → �execλ for λ ∈ {α1, α2, β1, β2, γ},
execα1 → req ′

1 ∧ (req ′
2 ↔ req2),

execα2 → (req ′
1 ↔ req1) ∧ req ′

2,
execβ1 → ¬req ′

1 ∧ (req ′
2 ↔ req2),

execβ2 → (req ′
1 ↔ req1) ∧ ¬req ′

2,
execγ → (req ′

1 ↔ req1) ∧ (req ′
2 ↔ req2).

The first four axioms are (actionΓprinter
) for α1, α2, β1, β2. (actionΓprinter

) for γ reads
enabledγ → true and can be omitted since this is tautologically valid. The next ax-
iom is (fairΓprinter

) and the remaining ones are directly translated from the definition
of TΓprinter

. As in the examples in Sect. 6.4, formulas exec λ → ¬exec λ can be
derived. One would still expect the axiom

(∗) ¬nilΓprinter

to describe that at least one action is executed in every state (which also implies
(nilΓprinter

)). However, (∗) can be omitted if fairness is presupposed: it can be derived
from (fairΓprinter

). More generally, and for further usage we derive the formula

(progressΓ ) enabledλ → ¬nilΓ for every λ ∈ ActΓ

from (fairΓ ). This formula expresses that the system “may not stop executing actions
if there are still enabled actions”. In the printer example, (∗) follows immediately
applying (progressΓprinter

) with λ = γ.

Derivation of (progressΓ ).

(1) nilΓ ∧ enabledλ → �(nilΓ ∧ enabledλ) (prop),(nilΓ )
(2) nilΓ ∧ enabledλ → �(nilΓ ∧ enabledλ) (ind1),(1)
(3) �(nilΓ ∧ enabledλ) → �nilΓ ∧�enabledλ (prop),(T18)
(4) �enabledλ → ��enabledλ (T5),(T22)
(5) �enabledλ → �execλ (prop),(fairΓ ),(4)
(6) nilΓ ∧ enabledλ → �nilΓ ∧�execλ (prop),(2),(3),(5)
(7) �nilΓ ∧�execλ→ �(nilΓ ∧ execλ) (prop),(T34)
(8) �¬(nilΓ ∧ execλ) → (enabledλ → ¬nilΓ ) (prop),(T2),(6),(7)
(9) ¬(nilΓ ∧ execλ) (taut)
(10) �¬(nilΓ ∧ execλ) (alw),(9)
(11) enabledλ → ¬nilΓ (prop),(8),(10) �

The fairness restriction defined above and axiomatized by (fairΓ ) is also called
strong fairness. As remarked already, other notions of fairness might be chosen in
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particular applications. We briefly indicate one different approach called weak fair-
ness.

An execution sequence WΓ = (η0, η1, η2, . . .) of an (r)leSTS Γ is called weakly
fair if it has the property that, for every λ ∈ ActΓ , if there is a j0 ∈ N such that
S

(ηj )
Γ (enabledλ) = tt for every j ≥ j0 then ηk (execλ) = tt for infinitely many k .

A weakly fair (r)leSTS is an (r)leSTS Γ restricting the execution sequences to the
weakly fair ones.

This fairness notion can be captured by the axiom

(wfairΓ ) �enabledλ → �execλ for every λ ∈ ActΓ

(these formulas and the more direct formalizations ��enabledλ → �exec λ are
model equivalent) the correctness of which is shown as follows:

K
(ξ)
i (�enabledλ) = tt ⇒ K

(ξ)
j (enabledλ) = tt for j ≥ i

⇒ S
(ηj )
Γ (enabledλ) = tt for j ≥ i

⇒ K
(ξ)
k (execλ) = ηk (execλ) = tt

for infinitely many k

⇒ K
(ξ)
k (execλ) = tt for some k ≥ i

⇒ K
(ξ)
i (�execλ) = tt.

Every (strongly) fair system is weakly fair, which may easily be seen from the
definition or, alternatively, by deriving (wfairΓ ) from (fairΓ ):

(1) ��enabledλ → �execλ (fairΓ )
(2) �enabledλ → ��enabledλ (T5),(T22)
(3) �enabledλ → �execλ (prop),(1),(2)

It should also be clear that weak fairness is really weaker than strong fairness. A
trivial example to show this is a system with a system variable a ∈ X of sort NAT ,
and two actions α and β with enabledα ≡ true and enabledβ ≡ EVEN (a) such
that the effect of α is increasing a by 1 (the predicate symbol EVEN means “to be
an even number”). In any execution sequence

η0
α� η1

α� η2
α� η3

α� . . .

where η0(a) is an even number, β is enabled in states ηi with even i (and no others),
so these execution sequences are obviously weakly fair but not (strongly) fair.

In the printer system, however, weak fairness would be sufficient to exclude un-
desired execution sequences as those noted above. Furthermore, a close look to the
derivation of (progressΓ ) shows that weak fairness is also sufficient to derive this for-
mula. Line (6) in the derivation is directly found from lines (2) and (3) by applying
(prop) and (wfairΓ ). The lines (4) and (5) can be omitted.

The two concepts of fairness considered here are uniform in the sense that the
axioms (fairΓ ) and (wfairΓ ) apply to all actions λ ∈ ActΓ . For the printer example,
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they imply that the printer idles (i.e., executes the action γ) infinitely often because
idling is always enabled. It is a natural generalization to indicate for each action
whether weak or strong fairness is assumed for it. We will consider an example in
Sect. 9.2.
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Verification of State Systems

The non-logical axioms of a system specification as studied in the preceding chapter
describe distinguished “characteristic” assertions about the “behaviour” of the runs
of the system, i.e., “properties” of state sequences which hold for every run. As men-
tioned already several times it is one of the very aims of temporal logic to express,
quite generally, such properties in a formal way.

Together with the logical (“reasoning”) means this leads immediately to a next
major area of application: the verification of state systems, i.e., the formal proof that
certain (further) properties hold for (every run of) the system. One natural approach
to perform this is to use the proof-theoretical means of the logic and derive the for-
mula which describes the property from the specification axioms within the available
axiomatization.

We study in the present chapter this kind of deductive verification for some typi-
cal classes of system properties. Another approach will be treated in Chap. 11.

7.1 System Properties

Some examples of system properties (beyond specification axioms) were already
given in Sects. 2.1 and 6.1 for the Towers of Hanoi system; we only repeat the phrase

“in all states, on each of the three places the stones will be piled up with decreas-
ing size”

expressed by the formula

�(DECR(pl1) ∧DECR(pl2) ∧DECR(pl3)).

Another property is

“proceeding from a state in which the tower is on place 1, it will eventually be
moved to place 2”
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describing that the proper goal of the puzzle is reached sometime. This can be ex-
pressed by

startΓToH
→ �Afin

(with Afin ≡ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY ) but, as opposed
to the former one, it does not hold for every run of the system but only for the
“successful” ones leading to the desired state.

In general, given (a state system represented by) a transition system Γ (with
or without extensions), a system property describes a behaviour of Γ satisfied by
certain (possibly not all) of its runs. More formally, the property can be identified
with the subset of the set of all execution sequences of Γ for which it is satisfied.
Every formula F of LTLΓ specifies such a property: the property identified with the
set of those execution sequences WΓ of Γ for which F is valid in K = (SΓ ,WΓ ).

A property specified by the formula F (briefly: the property F ) is a valid property
of Γ (or: Γ has the property F ) if it comprehends all execution sequences of Γ ,
i.e., if F is Γ -valid. In this general setting the non-logical axioms of Γ are valid
properties of Γ . Note that, by the definition given in Sect. 6.1, model equivalent
formulas specify the same property.

In this formal wording the Towers of Hanoi system ΓToH has the property

�(DECR(pl1) ∧DECR(pl2) ∧DECR(pl3))

but it does not have the property

startΓToH
→ �Afin .

Every formula of LTLΓ specifies some property for a system Γ , but in general –
if Γ has infinitely many execution sequences – the number of properties (i.e., sets of
execution sequences) is uncountable and not all of them are expressed by formulas
the number of which is denumerable. Besides this trivial fact, the amount of prop-
erties specifiable by formulas clearly depends on the actual choice of the language
LTLΓ , i.e., the linguistic equipment of extensions added to the basic temporal logic
language and thus achieving different expressiveness of LTLΓ .

The different “description languages” LTLΓ also provide a first very rough clas-
sification of properties given by their syntactic membership to these languages. For a
systematic treatment of properties it is useful to classify them with respect to the syn-
tactic form of the formulas in a more detailed manner. We briefly describe (a part of)
such a frequently used classification within the language LTLΓ = Lbp

FOLTL(TSIGΓ )
(or LTLΓ = Lbp

LTL(VΓ ) if Γ is propositional), i.e., the basic language extended by
binary and past operators (including binary past operators as discussed in Sect. 3.6).
For illustration we supplement the cases with a very simple lSTS example Γαβ con-
taining two actions α and β such that execα and execβ cannot become true in the
same state.

The classification differentiates properties expressible by formulas of the form

pref A
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where pref is one of the four “significant” �-�-prefixes �, �, ��, and �� accord-
ing to Theorem 2.2.3 and A is a past formula, i.e., a formula containing no future
operators.

• A property specifiable by a formula

�A

(or just by A since �A � A) with a past formula A is called safety property. An
example in Γαβ is

�(execβ → �−execα)

reading

“whenever β is executed, α was executed before that”.

• A property specifiable by a formula

�A

with a past formula A is called response property. An example in Γαβ is

�(�−execα→ execβ)

reading

“eventually a former execution of α will be responded to by executing β”.

• A property specifiable by a formula

��A

with a past formula A is called persistence property. An example in Γαβ is

��¬execα

reading

“eventually α will never more be executed”.

The fourth �-�-prefix �� does not provide a new class since ��A � �A. So the
properties ��A (with past formulas A) are just the response properties.

These three classes of properties are not disjoint. Every safety property is in fact
a response property and a persistence property as well since we have

�A � ��A

and

�A � ���A.

These model equivalences are easily proved, e.g., the first one:
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�
K
��A ⇔ K

(ξ)
i (��A) = tt for every ξ and i

⇔ K
(ξ)
j (�A) = tt for some j ≥ i and every ξ and i

⇔ K
(ξ)
k (A) = tt for every k ≤ i and every ξ and i

⇔ K
(ξ)
k (A) = tt for every ξ and k

⇔ �
K
�A.

The classification given here can be refined and extended. We do not follow this
line but rather pick out now some simple cases of the classes for further treatment in
the subsequent sections. A first kind are properties given by formulas

A→ �B

where A and B are state formulas of the system Γ . They are called invariance prop-
erties and form a subclass of the safety properties. This follows from

K
(ξ)
i (A→ �B) = ff for some i

⇔ K
(ξ)
i (A) = tt and K

(ξ)
i (�B) = ff for some i

⇔ K
(ξ)
i (A) = tt and K

(ξ)
j (B) = ff for some i and some j ≥ i

⇔ K
(ξ)
j (�−A) = tt and K

(ξ)
j (B) = ff for some j

⇔ K
(ξ)
j (�−A→ B) = ff for some j

which shows that A→ �B � �−A→ B and therefore

A→ �B � �(�−A→ B)

because of �−A→ B � �(�−A→ B).
Note that invariance properties are expressible in the basic temporal logic without

any extensions. A special case is given by formulas true → �B which can simply
be written in the form of the logically equivalent

�B

and then are directly in the original form of safety properties. The specification with
the model equivalent formula B would be even simpler but, unlike when writing
axioms, here we mostly will prefer the notation with the temporal closure since it
makes the temporal character a bit more apparent. If a system Γ has such a property
�B then B is also called a global invariant of Γ . As an example, the Towers of
Hanoi property

�(DECR(pl1) ∧DECR(pl2) ∧DECR(pl3))

describes a global invariant of ΓToH .
Using the extension “b” by binary operators, formulas

A→ B op C
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where op is a weak binary operator (unless, unl, atnext, etc.) and A, B , and C are
state formulas of Γ specify another kind of property called precedence properties.
All of them are again safety properties: for example,

A→ B before C � �(C → B after A)

because of

K
(ξ)
i (A→ B before C ) = ff for some i

⇔ K
(ξ)
i (A) = tt and K

(ξ)
i (B before C ) = ff for some i

⇔ K
(ξ)
i (A) = tt and K

(ξ)
j (C ) = tt for some i and some j > i

and K
(ξ)
k (B) = ff for i < k < j

⇔ K
(ξ)
j (C ) = tt and K

(ξ)
j (B after A) = ff for some j

⇔ K
(ξ)
j (C → B after A) = ff for some j

which shows that A→ B before C � C → B after A and proves the assertion.
According to the results of Sect. 3.1 this model equivalence can immediately be

extended to the other strict binary operators. For the reflexive operators the argument
runs analogously.

A simple example is

startΓ l
ΓToH

→ ¬nilΓ l
ΓToH

unl Afin

(with Afin as before) specifying for the labeled Towers of Hanoi system Γ l
ToH that

“when starting to play the puzzle, in each step a move has to be made until the
tower is on its destination place”

which is in fact a valid property of the system.
Note that the formula

init → ¬nilΓ l
ΓToH

unl Afin

would be another formalization of the informal phrase. It does, however, not fit into
our syntactical framework since init is no state formula. So we choose here and in
all analogous cases in the following (also with the other kinds of properties) the
formulation with the initial condition start instead of init. Observe that in the case
of invariance properties of this form it is easy to see (with the axiom (root) and the
logical rules (init) and (alw)) that

init → �B � �B � start → �B � init → �B

which means that start → �B and init → �B are model equivalent and, moreover,
both are model equivalent with �B .
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Properties of the third kind we will consider are of the form

A→ �B

with state formulas A and B of Γ . They are called eventuality properties and are ex-
pressible again without any extensions of the basic temporal language. The property

startΓToH
→ �Afin

describing the goal of the Towers of Hanoi system is an example. Properties

�B

which are logically equivalent to true → �B are special cases and are of the form
of a response property. In fact, all eventuality properties belong to this class because
of

A→ �B � �(¬A backto B)

which is proved by

K
(ξ)
i (A→ �B) = ff ⇒ K

(ξ)
i (A) = tt and K

(ξ)
j (B) = ff for every j ≥ i

⇒ K
(ξ)
j (¬A backto B) = ff for every j ≥ i + 1

⇒ K
(ξ)
j+1(�(¬A backto B)) = ff

and

K
(ξ)
i (�(¬A backto B)) = ff

⇒ K
(ξ)
j (¬A backto B) = ff for every j ≥ i

⇒ for every j ≥ i there is some k < j such that

K
(ξ)
k (A) = tt and K

(ξ)
l (B) = ff for k ≤ l ≤ j

⇒ K
(ξ)
k (A) = tt and K

(ξ)
l (B) = ff for some k and every l ≥ k

⇒ K
(ξ)
k (A→ �B) = ff for some k .

Summarizing, invariance, precedence, and eventuality properties are particular
cases of safety and response properties. Although rather simple, these three kinds
of properties have many interesting applications some of which will be investigated
subsequently.

We recall at this point our decision to perform all these investigations in the
framework of normal semantics. Of course, they could be transformed appropriately
if initial validity semantics is used. For example, invariance properties would then
have the general form

�(A→ �B)

(with state formulas A and B ) and a similar adaption has to be performed for the
other properties and all the other preceding and still following discussions.
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Second Reading

We have classified system properties with respect to the syntactical form of their speci-
fying formulas. There is another widely used semantical distinction of just two classes of
properties. We consider this classification again only for the case of properties specified by
formulas F of the language Lbp

FOLTL. Such a property for a given transition system Γ is called
safety property if, for every K = (SΓ , W), W = (η0, η1, η2, . . .), ξ, and i ∈ N,

K
(ξ)
i (F ) = tt ⇔ for every k > i there are infinitely many system states

ηk , ηk+1, ηk+2, . . . such that K
(ξ)
i (F ) = tt for K = (SΓ , W)

with W = (η0, . . . , ηk−1, ηk , ηk+1, ηk+2, . . .).

Informally this means that every run (η0, η1, η2, . . .) of the system for which F does not
hold in some ηi has a finite prefix (η0, . . . , ηi , . . . , ηk−1) which cannot be “extended” to a
run which has the property, even more intuitively: after some finite number of steps some-
thing “bad” must have happened in such a run which cannot be remedied by any further
behaviour. Turning it around, a safety property means that “nothing bad ever happens”.

The property is called liveness property if, for every K = (SΓ , W), W = (η0, η1, η2, . . .),
ξ, and i ∈ N, it is the case that

there are infinitely many system states ηk , ηk+1, ηk+2, . . . such that

K
(ξ)
i (F ) = tt for K = (SΓ , W) with W = (η0, . . . , ηk−1, ηk , ηk+1, ηk+2, . . .).

This means informally that every finite prefix of a run can be extended such that it has the
property, intuitively: “something good will happen”.

Some interesting facts about these classes of properties can be proved. Some examples
are:

• F is valid if and only if F is both a safety and a liveness property.
• There are properties which are neither safety nor liveness properties.
• If F1 and F2 are safety properties then so are F1 ∧ F2 and F1 ∨ F2.

Referring to the system Γαβ in the main text of this section for some simple examples,
the formula

execα unless execβ

is a safety property, while

�execβ

is a liveness property. The formula

execα until execβ

is neither a safety nor a liveness property.
In general, the safety properties of this classification are exactly the safety properties of

the syntactical classification. Liveness properties, however, are “not comparable” with the
classes of that classification. Actually, every response or persistence property is logically
equivalent to the conjunction of a safety and a liveness property. For example, the above
formula exec α until exec β specifies a response property and is logically equivalent to
execα unless execβ ∧ �execβ.
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7.2 Invariance Properties

Let (LTL,A) be a C-FOLTL- (or C-LTL-)theory for a class C of temporal structures.
If ΣTL is the formal system for the temporal logic with language LTL and F is a
formula of LTL then A �

ΣTL
F implies A � F because of the soundness of ΣTL, and

the latter implies �
K
F for every K ∈ C by definition. So we have

A �
ΣTL

F ⇒ �
K
F for every K ∈ C

which means that a sound way to prove a formula F to be valid in every temporal
structure of C is to derive F within ΣTL from A.

This general observation can be directly applied to the verification of state sys-
tems. To show that such a system Γ has a property F means to prove that F is valid
in every K ∈ CΓ . Thus, a possible method for doing this is to show that

AΓ �F

within the formal system for the chosen temporal logic of Γ .
In the following we want to introduce and discuss some basic verification meth-

ods for such derivations for the three kinds of properties picked out at the end of the
previous section. We begin with invariance properties.

Verification methods for state systems depend (for all kinds of properties) on
how the system is to be understood in the sense of the distinctions made in Chap. 6,
formally: on the kind of the formal transition system representing it. To derive an
invariance property

A→ �B

for a (non-labeled) STS Γ the main proof method is to apply one of the induction
rules

(ind) A→ B ,A→ �A �A→ �B ,
(ind1) A→ �A �A→ �A,
(ind2) A→ B ,B → �B �A→ �B

introduced in Sect. 2.3. The particular rule (ind1) can be applied to the frequently
occurring case of safety properties of the form

A→ �A

expressing that whenever A holds in some state it will then hold permanently.

Example. The terminating counter Γtcount specified in Sect. 6.2 by (dataΓtcount
) and

by the temporal axioms

(TC1) c ≤ 100,
(TC2) on ∧ c < 100 → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
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(TC3) ¬on ∧ c < 100 → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0),
(TC4) c = 100 → (on ′ ↔ on) ∧ c′ = c

has the property

c = 100 → �(c = 100)

which is almost trivially derived with (ind1):

(1) c = 100 → c′ = 100 (pred),(TC4)
(2) c = 100 → �(c = 100) (pred),(1)
(3) c = 100 → �(c = 100) (ind1),(2)

Note that line (2) only describes the obvious transformation from the priming nota-
tion of line (1) into a formula with the operator �as required in (ind1). �

In the general case of properties

A→ �B

one of the rules (ind) or (ind2) is adequate, but in most applications these rules cannot
be directly applied with A or B taken from the given property: usually, the premises
A → �A or B → �B will not be derivable. In fact, the crucial point of a derivation
mostly will be to find an appropriate formula C for which A → C and C → B and
(as the main task)

C → �C

can be derived. Applying (ind) we then get C → �B from which the desired formula
A→ �B is trivially obtained with (prop).

Example. The terminating counter above also has the property

c < 100 → �(c = 100 → on)

expressing that if c < 100 in some state then whenever c will (subsequently) have
the value 100 the counter will be on. To derive this let

C ≡ c < 100 ∨ (on ∧ c = 100).

We clearly have

(1) c < 100 → C (taut)
(2) C → (c = 100 → on) (taut)

The main part of the proof is to derive C → �C :

(3) on ∧ c < 100 → (on ′ ∧ c′ = c + 1) ∨ c′ < 100 (pred),(TC2)
(4) on ∧ c < 100 → (on ′ ∧ (c′ < 100 ∨ c′ = 100)) ∨ c′ < 100 (pred),(data),(3)
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(5) on ∧ c < 100 → c′ < 100 ∨ (on ′ ∧ c′ = 100) (prop),(4)
(6) ¬on ∧ c < 100 → c′ = c ∨ c′ = 0 (prop),(TC3)
(7) ¬on ∧ c < 100 → c′ < 100 (pred),(data),(6)
(8) ¬on ∧ c < 100 → c′ < 100 ∨ (on ′ ∧ c′ = 100) (prop),(7)
(9) c < 100 → c′ < 100 ∨ (on ′ ∧ c′ = 100) (prop),(5),(8)
(10) on ∧ c = 100 → (on ′ ∧ c′ = 100) (pred),(TC4)
(11) C → c′ < 100 ∨ (on ′ ∧ c′ = 100) (prop),(9),(10)

(Note that for brevity we write only (data) to indicate the usage of (dataΓtcount
).)

Again the derivation is performed in a notation with primed constants. The formula
c′ < 100 ∨ (on ′ ∧ c′ = 100), however, is logically equivalent to �C , so we finally
obtain

(12) C → �C (pred),(11)
(13) C → �(c = 100 → on) (ind),(2),(12)
(14) c < 100 → �(c = 100 → on) (prop),(1),(13)

(In subsequent derivations we will not explicitly note a “translation” step as in line
(12) but apply a rule like (ind) directly to the primed constant notation.) �

Turning now to the question how to derive global invariants, i.e., properties of
the form

�A

we remark once more that such a property is specified by A as well, and this fact
immediately indicates that the above induction rules are of no use in this case. For
example, trying to apply (ind) for proving true → �A we had to prove the premises
true → A, which is equivalent to A, and the trivial true → �true. For (ind2) the
premises would be true → A and A → �A. So in both cases we had to prove A
from which (if wanted) �A is derived directly with the rule (alw).

In fact there is no general temporal logic device for deriving such a property
�A (or A) in an STS Γ if this is not rooted. Being a state formula, A will usually
express some valid assertion about the involved data in this case and be an instance
of (dataΓ ).

The situation changes, however, if Γ is rooted with an initial condition startΓ .
In this case we obtain another useful induction rule

(indstartΓ ) startΓ → A,A→ �A � �A

which can easily be derived with the axiom (rootΓ ) and the rule (indinit) shown in
Sect. 3.5.

Derivation of (indstartΓ ).

(1) startΓ → A assumption
(2) A→ �A assumption
(3) init → startΓ (rootΓ )
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(4) init → A (prop),(1),(3)
(5) A (indinit),(2),(4)
(6) �A (alw),(5) �

Example. We now prove the property �A where

A ≡ DECR(pl1) ∧DECR(pl2) ∧DECR(pl3)

for the rooted Towers of Hanoi system ΓToH of Sect. 6.3 with

startΓToH
≡ pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY

and the axioms

¬Afin → A123 ∨A132 ∨A213 ∨A231 ∨A312 ∨A321,
Afin → �Afin

where

Aijk ≡ pli �= EMPTY ∧ (plj �= EMPTY → TOP(pli) < TOP(plj )) ∧
pl ′i = POP(pli) ∧ pl ′j = PUSH (plj ,TOP(pli)) ∧ pl ′k = plk ,

Afin ≡ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY .

The derivation runs as follows:

(1) startΓToH
→ A (data)

(2) Afin → A (data)
(3) �Afin → �A (T30),(2)
(4) Afin → �Afin (Γ )
(5) Afin ∧A→ �A (prop),(3),(4)
(6) ¬Afin ∧A→ �A (data),(Γ )
(7) A→ �A (prop),(5),(6)
(8) �A (indstart),(1),(7)

Note again that the references to (dataΓToH
) and (indstartΓToH

) are not written out in
their full detail. Moreover, in the justifications of lines (4) and (6) we do not note the
respective axioms of ΓToH but indicate their use only by (Γ ). We will continue in
this way, particularly using the comment (Γ ) “as can be seen from the specification
axioms of the system” without justifying it in more detail. �

The induction rules discussed so far are generally applicable in (r)STSs. For la-
beled systems they can be still modified in a significant way. The main part in all the
rules is to show a formula of the form

A→ �A

and in the case of a labeled system Γ this can be established in a particular way using
the rule
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(transΓ ) execλ ∧A→ �B for every λ ∈ ActΓ ,
nilΓ ∧A→ B

� A→ �B if B is a state formula of Γ

which can easily be derived with the axiom (nilΓ ) from Sect. 6.4 and can therefore
be used in every (r)lSTS.

Derivation of (transΓ ). Let ActΓ = {λ1, . . . , λn}.

(1) execλ ∧A→ �B for every λ ∈ ActΓ assumption
(2) nilΓ ∧A→ B assumption
(3) nilΓ ∨ execλ1 ∨ . . . ∨ execλn (taut)
(4) nilΓ ∧A→ nilΓ ∧ B (prop),(2)
(5) nilΓ ∧ B → �B (nilΓ )
(6) nilΓ ∧A→ �B (prop),(4),(5)
(7) A→ �B (prop),(1),(3),(6) �

The informal meaning of this rule is that in order to prove that “A implies that B in
the next state” it is sufficient to show that A is “transformed” to B by each action
and A implies B in case no action is executed.

For notational convenience we now introduce the abbreviations

A invof λ ≡ execλ ∧A→ �A

reading “A is an invariant of λ” and

A invof ActΓ ≡
∧

λ∈ActΓ

(A invof λ)

meaning “A is an invariant of every λ ∈ ActΓ ”. So if A ≡ B in (transΓ ) then the first
premise of this rule can be written as A invof ActΓ and the second premise becomes
the tautology nilΓ ∧A→ A. Together this leads to the rule

A invof ActΓ � A→ �A if A is a state formula of Γ

as a special case of (transΓ ). Combining this rule with the induction rules we imme-
diately obtain new ones which we call invariant rules. We note

(invΓ ) A→ B ,A invof ActΓ � A→ �B if A is a state formula of Γ ,
(inv1Γ ) A invof ActΓ � A→ �A if A is a state formula of Γ ,
(invstartΓ ) startΓ → A,A invof ActΓ � �A if A is a state formula of Γ

which are transferred from the induction rules (ind), (ind1), and (indstartΓ ).

Examples. We consider two of the examples above in the setting of labeled systems.
The terminating counter was not specified in its labeled version Γ l

tcount in Chap. 6
but it should be evident that ActΓ l

tcount
= {λon , λoff , λc , λp} and such a specification

would contain axioms like
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(1) execλ→ c < 100 for every λ ∈ ActΓ l
tcount

(“the counter is only executing an action if c < 100”) or at least axioms from which
this could be derived. The further derivation of the property

c = 100 → �(c = 100)

is similarly trivial as before:

(2) execλ ∧ c = 100 → �(c = 100) for every λ ∈ ActΓ l
tcount

(pred),(data),(1)
(3) c = 100 invof ActΓ l

tcount
(prop),(2)

(4) c = 100 → �(c = 100) (inv1),(3)

The labeled Towers of Hanoi system Γ l
ToH was specified in Sect. 6.4. We only

note that again

startΓ l
ToH

≡ pl1 = TOWER ∧ pl2 = EMPTY ∧ pl3 = EMPTY

and repeat the axioms

execλij → pli �= EMPTY ∧ (plj �= EMPTY → TOP(pli) < TOP(plj )),
execλij → pl ′i = POP(pli) ∧ pl ′j = PUSH (plj ,TOP(pli)) ∧ pl ′k = plk ,

each for λij ∈ ActΓ l
ToH

and with k �= i , k �= j . Using these axioms (indicated again
simply by (Γ )) we can derive the property �A where

A ≡ DECR(pl1) ∧DECR(pl2) ∧DECR(pl3)

for Γ l
ToH as follows:

(1) startΓ l
ToH

→ A (data)
(2) execλij ∧A→ �A for every λij ∈ ActΓ l

ToH
(data),(Γ )

(3) A invof ActΓ l
ToH

(prop),(2)
(4) �A (invstart),(1),(3)

Comparing this derivation with the proof for ΓToH above we observe that now we
have no corresponding part to the line Afin ∧ A → �A there. Informally this line
showed the “invariance” of A under the assumption that the goal Afin is reached. In
the labeled system nilΓ l

ToH
↔Afin is an axiom, so this case is implicitly dispatched

by the axiom (nilΓ l
ToH

) which is the basis of rule (transΓ l
ToH

). �

Note finally that in the invariant rules formulas are partially restricted to state
formulas of the respective Γ induced by the corresponding restriction in the axiom
(nilΓ ) and, hence, in the rule (transΓ ). (There are no restrictions at all in the basic
induction rules.) So, as remarked in Sect. 6.4, they could be strengthened but, as
also announced there, the present form of the rules is obviously sufficient for the
application to invariance properties A → �B in which A and B are state formulas
of the system.
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7.3 Precedence Properties

As in the case of safety properties, the basic proof methods for the derivation of a
precedence property

A→ B op C

for an STS are again immediately provided by the induction rules for the weak binary
operators op developed in the corresponding logic FOLTL+b or LTL+b. We recall
those introduced in Sect. 3.1:

(indunless) A→ �C ∨ �(A ∧ B) � A→ B unless C ,
(indunl) A→ C ∨ (B ∧ �A) � A → B unl C ,
(indatnext) A→ �(C → B) ∧ �(¬C → A) � A→ B atnext C ,
(indbefore) A→ �¬C ∧ �(A ∨ B) � A→ B before C .

In each case the formula A plays a similar role as in the rule (ind). It “carries
the induction”: if holding in some state it has to hold – now under some particular
circumstances – in the next state. Again it will often not be possible to apply the
rules directly since for the formula A from the given property A → B op C this
will not be derivable. A better-suited formula D has then to be found for which
A → D is derivable and which, taken instead of A, allows us to derive the premise
of the corresponding rule. With the latter, D → B op C is concluded which is then
sufficient to obtain A→ B op C .

Example. The (non-terminating) counter Γcount specified in Sect. 6.2 with the tem-
poral axioms

on → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
¬on → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0)

has the property

¬on → c = 0 atnext on

expressing that a switched off counter will get the value 0 when switched on next
time. The derivation is very easy in this case by direct application of rule (indatnext):

(1) ¬on → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0) (Γ )
(2) ¬on → (on ′ → c′ = 0) (1)
(3) ¬on → �(on → c = 0) ∧ �(¬on → ¬on) (2)
(4) ¬on → c = 0 atnext on (indatnext),(3)

Observe that we continue shortening our comments in such derivations not only us-
ing again the shorthand (Γ ) but now also leaving out the additional purely logical
rules like (prop) or (pred) involved in steps (2) and (3). We will follow this line more
and more, even omitting to note temporal logical laws like (T1),(T2),. . . , or data
reasoning included in the axioms (dataΓ ). This is to increase the understanding of a
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formal verification in content. Getting used to simple logical and data arguments we
rely on them more implicitly and can thus better emphasize the substantial underly-
ing proof ideas.

Another property of Γcount is that whatever the value of the counter is it will not
be decreased subsequently unless it is reset to 0. This is expressed by the formula

c = x → c ≥ x unl c = 0

where x is a variable of sort NAT . Here the formula c = x is not suitable for the
induction but with

D ≡ c ≥ x ∨ c = 0

we can derive:

(1) c = x → D (data)
(2) on ∧ c ≥ x → c′ = c + 1 ∨ c′ = c (Γ )
(3) on ∧ c ≥ x → �(c ≥ x ) (2)
(4) on ∧D → c = 0 ∨ (c ≥ x ∧ �D) (3)
(5) ¬on ∧ c ≥ x → c′ = c ∨ c′ = 0 (Γ )
(6) ¬on ∧ c ≥ x → �D (5)
(7) ¬on ∧D → c = 0 ∨ (c ≥ x ∧ �D) (3)
(8) D → c = 0 ∨ (c ≥ x ∧ �D) (4),(7)
(9) D → c ≥ x unl c = 0 (indunl),(8)
(10) c = x → c ≥ x unl c = 0 (1),(9) �

Turning to labeled systems Γ we can again modify the above induction rules
relating the state transitions to the actions of Γ . We get the new rules

(invunlessΓ ) execλ ∧A→ �C ∨ �(A ∧ B) for every λ ∈ ActΓ ,
nilΓ ∧A→ B ∨ C

� A→ B unless C if A, B , and C are state formulas of Γ ,

(invunlΓ ) execλ ∧A→ C ∨ (B ∧ �A) for every λ ∈ ActΓ ,
nilΓ ∧A→ B ∨ C

� A→ B unl C if A, B , and C are state formulas of Γ ,

(invatnextΓ ) execλ ∧A→ �(C → B) ∧ �(¬C → A) for every λ ∈ ActΓ ,
nilΓ ∧A→ (C → B)

� A→ B atnext C if A, B , and C are state formulas of Γ ,

(invbeforeΓ ) execλ ∧A→ �¬C ∧ �(A ∨ B) for every λ ∈ ActΓ ,
nilΓ ∧A→ ¬C

� A→ B before C if A, B , and C are state formulas of Γ .

We call these rules again invariant rules. In each case the formula A is similar to an
invariant in the sense of the previous section. The derivations of the rules run along
the same pattern using the derived rule (transΓ ). We show only one of them:
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Derivation of (invatnextΓ ).

(1) execλ ∧A→ �(C → B) ∧ �(¬C → A)
for every λ ∈ ActΓ assumption

(2) nilΓ ∧A→ (C → B) assumption
(3) nilΓ ∧A→ (C → B) ∧ (¬C → A) (prop),(2)
(4) A→ �(C → B) ∧ �(¬C → A) (transΓ ),(T15),(1),(3)
(5) A→ B atnext C (indatnext),(4) �

It should be clear that the remark about the restrictions to state formulas of Γ
carry over from the invariant rules in the previous section.

Example. We want to derive the properties of the previous example for the counter
given by the leSTS Γ l

count specified in Sect. 6.4. The actions are λon , λoff , λc ,λp ,
and the axioms include

execλ→ on for λ ∈ {λoff , λc},
execλ→ ¬on for λ ∈ {λon , λp},
execλon → on ′ ∧ c′ = 0,
execλoff → ¬on ′ ∧ c′ = c,
execλc → on ′ ∧ c′ = c + 1,
execλp → ¬on ′ ∧ c′ = c.

The property

¬on → c = 0 atnext on

is then derived again very easily by direct application of (invatnextΓ l
count

). We abbre-
viate E ≡ �(on → c = 0) ∧ �(¬on → ¬on) and have:

(1) execλon ∧ ¬on → E (Γ )
(2) execλoff ∧ ¬on → E (Γ )
(3) execλc ∧ ¬on → E (Γ )
(4) execλp ∧ ¬on → E (Γ )
(5) nilΓ l

count
∧ ¬on → (on → c = 0) (taut)

(6) ¬on → c = 0 atnext on (invatnext),(1)–(5)

For the property

c = x → c ≥ x unl c = 0

we need again the formula D ≡ c ≥ x ∨ c = 0 and have:

(1) c = x → D (data)
(2) execλon ∧D → c = 0 ∨ (c ≥ x ∧ c′ = 0) (Γ )
(3) execλoff ∧D → c = 0 ∨ (c ≥ x ∧ c′ = c) (Γ )
(4) execλc ∧D → c = 0 ∨ (c ≥ x ∧ c′ = c + 1) (Γ )
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(5) execλp ∧D → c = 0 ∨ (c ≥ x ∧ c′ = c) (Γ )
(6) execλ ∧D → c = 0 ∨ (c ≥ x ∧ �(c ≥ x ∨ c = 0))

for every λ ∈ ActΓ l
count

(2)–(5)
(7) nilΓ l

count
∧D → (c ≥ x ∨ c = 0) (taut)

(8) D → c ≥ x unl c = 0 (invunl),(6),(7)
(9) c = x → c ≥ x unl c = 0 (1),(8) �

7.4 Eventuality Properties

As mentioned earlier, the only proof rules for eventuality properties

A→ �B

in the framework of propositional temporal logic developed so far are rules like

(som) A→ �B �A→ �B ,
(chain) A→ �B ,B → �C �A→ �C

providing a very simple finite chain reasoning method: in order to prove A → �B
according to (chain) we have to prove two – or in general finitely many – “smaller
steps” of the same kind. (som) is one simple way for establishing these steps.

Although often applicable, these rules are rather weak. A universal method is
given by the rule

(wfr) A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) � ∃yA→ �B
if B does not contain y ,
for y , ȳ ∈ XWF .

introduced in Sect. 5.5. It is again an induction rule but induction is running over
“objects” here instead of “computations” in the case of the propositional rules for
invariance and precedence properties. Its formulation needs a linguistic first-order
framework equipped with the special extension “w” providing some well-founded
relation on distinguished objects.

Example. Consider a “bounded” counter system Γbcount by modifying the terminat-
ing counter Γtcount discussed in Sect. 6.2 in the following way: reaching the value
100 the counter does not terminate but is switched off. Furthermore, at most N paus-
ing steps may be performed consecutively where N is some natural number constant.
We do not write up an exact formalization as an STS but give immediately the tem-
poral axioms specifying Γbcount :

c ≤ 100 ∧ b ≤ N ,
on ∧ c < 100 → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c ∧ b′ = 0),
on ∧ c = 100 → ¬on ′ ∧ c′ = c ∧ b′ = 0,
¬on ∧ b < N → (¬on ′ ∧ c′ = c ∧ b′ = b + 1) ∨ (on ′ ∧ c′ = 0),
¬on ∧ b = N → on ′ ∧ c′ = 0.
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The additional system variable b (of sort NAT ) counts the numbers of pausing steps.
Note that for simplicity we do not exclude that at the very beginning the system might
be forced to be switched on after less than N pausing steps if initially b > 0.

Γbcount has the property

�(c = 0)

expressing that a state where the counter has the value 0 will eventually be reached
from any other state. To derive this property we first note that the underlying lan-
guage LTL is based on the signature SIGNat containing the sort NAT and the pred-
icate symbol <, which we take as the sort WF and the symbol ≺, thus viewing the
language as being a language Lw

TL. We then begin to show that c > 0 ∧ ¬on implies
that sometime c = 0 will hold. We want to apply the rule (wfr) and have to find an
appropriate formula A which carries the induction. Taking

A ≡ y + b = N ∧ c > 0 ∧ ¬on

we obtain

(1) A ∧ b < N → c′ = 0 ∨ (¬on ′ ∧ c′ = c ∧ b′ = b + 1) (Γ )
(2) A ∧ b < N → c′ = 0 ∨ (y + b′ − 1 = N ∧ c′ > 0 ∧ ¬on ′) (1)
(3) A ∧ b < N → �(c = 0 ∨Ay(y − 1)) (2)
(4) A ∧ b = N → c′ = 0 (Γ )
(5) b ≤ N (Γ )
(6) A→ �(c = 0 ∨Ay(y − 1)) (3),(4),(5)
(7) A→ �(c = 0 ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (som),(6)
(8) ∃yA→ �(c = 0) (wfr),(7)
(9) ∃y(y + b = N ) (data),(5)
(10) c > 0 ∧ ¬on → ∃yA (9)
(11) c > 0 ∧ ¬on → �(c = 0) (8),(10)

Next we show in a very similar way that if c > 0 ∧ on then c > 0 ∧ ¬on will
eventually hold. With

B ≡ y + c = 100 ∧ c > 0 ∧ on

we get

(12) B ∧ c < 100 → (c′ = c ∧ ¬on) ∨ (on ′ ∧ c′ = c + 1) (Γ )
(13) B ∧ c < 100 →

(c′ > 0 ∧ ¬on) ∨ (y + c′ − 1 = 100 ∧ c′ > 0 ∧ on ′) (12)
(14) B ∧ c < 100 → �((c > 0 ∧ ¬on) ∨ By(y − 1)) (13)
(15) B ∧ c = 100 → c′ > 0 ∧ ¬on ′ (Γ )
(16) c ≤ 100 (Γ )
(17) B → �((c > 0 ∧ ¬on) ∨ By(y − 1)) (14),(15),(16)
(18) B → �((c > 0 ∧ ¬on) ∨ ∃ȳ(ȳ < y ∧ By(y − 1))) (som),(17)
(19) ∃yB → �(c > 0 ∧ ¬on) (wfr),(18)



7.4 Eventuality Properties 231

(20) ∃y(y + c = 100) (data),(16)
(21) c > 0 ∧ on → ∃yB (20)
(22) c > 0 ∧ on → �(c > 0 ∧ ¬on) (19),(21)

Putting these results together we obtain

(23) c > 0 ∧ on → �(c = 0) (chain),(11),(22)
(24) c > 0 → �(c = 0) (11),(23)

This shows that c = 0 is eventually reached in the case of c > 0. If c = 0 this is
trivial, so we can conclude the derivation by

(25) c = 0 → �(c = 0) (T5)
(26) �(c = 0) (24),(25) �

As purely logical rules, (wfr) as well as (som) and (chain) can be applied in all
kinds of transition systems. Turning to labeled systems Γ , the only direct starting
point to gain new rules is to utilize the rule (transΓ ) derived in Sect 7.2 and translate
the rule (som) to

(som1Γ ) execλ ∧A→ �B for every λ ∈ ActΓ ,
nilΓ ∧A→ B

� A→ �B if B is a state formula of Γ .

This rule may be combined with (wfr) and then provides the (trivially derivable)
version

(labwfrΓ ) execλ ∧A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) for every λ ∈ ActΓ ,
nilΓ ∧A→ B

� ∃yA→ �B if A and B are state formulas of Γ
and B does not contain y ,
for y , ȳ ∈ XWF .

of (wfr).
Another consideration deals with the first premise of (som1Γ ) requiring that the

execution of every λ ∈ Act leads from A to B . This is rather strong and it be-
comes weaker if the requirement has to be established only for some particular ac-
tions which cannot be delayed forever and if all the other actions, if not leading to B
as well, leave A invariant. This idea is captured by the rule

(som2Γ ) execλ ∧A→ �B for every λ ∈ Acth ⊆ ActΓ ,
execλ ∧A→ �(B ∨A) for every λ ∈ ActΓ \Acth ,
�A→ �

∨
λ∈Acth

execλ
� A→ �B if A is a state formula of Γ

which is formulated again in the purely propositional framework. The elements of
the subset Acth of ActΓ are called helpful actions. The third premise of the rule guar-
antees that, if A holds, then one of them is executed sometime (which also implies
that the premise nilΓ ∧A→ B of the rule above is no longer needed): otherwise, �A
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would hold because of the invariance of A under λ ∈ ActΓ \ Acth and this implies
that some λ ∈ Acth is executed sometime which then would be a contradiction. The
following derivation formalizes this idea.

Derivation of (som2Γ ). Let C ≡
∨

λ∈Acth
execλ.

(1) execλ ∧A→ �B for every λ ∈ Acth assumption
(2) execλ ∧A→ �(B ∨A) for every λ ∈ ActΓ \Acth assumption
(3) �A→ �C assumption
(4) execλ ∧ ¬C ∧A ∧�¬B → �A

for every λ ∈ ActΓ \Acth (2)
(5) execλ ∧ ¬C ∧A ∧�¬B → �A for every λ ∈ Acth (taut)
(6) nilΓ ∧ ¬C ∧A ∧�¬B → A (taut)
(7) ¬C ∧A ∧�¬B → �A (transΓ ),(4),(5),(6)
(8) �¬(C ∧A)→ ¬(C ∧A) ∧ ��¬(C ∧A) (ltl3)
(9) A ∧�¬(C ∧A) → A ∧ ¬C ∧ ��¬(C ∧A) (8)
(10) A ∧�¬(C ∧A) ∧�¬B → �(A ∧�¬(C ∧A) ∧�¬B) (7),(9)
(11) A ∧�¬(C ∧A) ∧�¬B → �(A ∧�¬(C ∧A) ∧�¬B) (ind1),(10)
(12) A ∧�¬(C ∧A) ∧�¬B → �A ∧�¬C (11)
(13) A ∧�¬B → ¬�¬(C ∧A) (3),(12)
(14) A ∧�¬B → � �B (1),(13)
(15) A→ �B (14) �

Still the rule (som2Γ ) is not very useful in practice. It puts almost all of the proof
problem on showing the third premise

�A→ �
∨

λ∈Acth

execλ

which contains again the sometime operator. In many cases like those discussed in
Sect. 6.5 this is in fact not possible without the additional requirement that the system
is fair. Typically, �A implies the eventual enabledness of some of the helpful actions
and only the fairness assumption then guarantees that one of them will in fact be
executed. Modifying (som2Γ ) along this line we obtain the rule

(fairsomΓ ) execλ ∧A→ �B for every λ ∈ Acth ⊆ ActΓ ,
execλ ∧A→ �(B ∨A) for every λ ∈ ActΓ \Acth ,
�A→ �

∨
λ∈Acth

enabledλ

� A→ �B if A is a state formula of Γ

which holds for any f(r)leSTS Γ and is in this form applicable in many cases. The
formal derivation of (fairsomΓ ) uses the fairness axiom

(fairΓ ) ��enabledλ → �execλ for every λ ∈ ActΓ

given in Sect. 6.5.
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Derivation of (fairsomΓ ).

(1) execλ ∧A→ �B for every λ ∈ Acth assumption
(2) execλ ∧A→ �(B ∨A) for every λ ∈ ActΓ \Acth assumption
(3) �A→ �

∨
λ∈Acth

enabledλ assumption

(4) �A→ ��
∨

λ∈Acth
enabledλ (T35),(3)

(5) �A→
∨

λ∈Acth
��enabledλ (T20),(4)

(6) �A→
∨

λ∈Acth
�execλ (fairΓ ),(5)

(7) �A→ �
∨

λ∈Acth
execλ (T19),(6)

(8) A→ �B (som2Γ ),(1), (2),(7) �

Example. The (original) counter system discussed in Chap. 6 does not have the
property

�(c = 0)

since “unfair” execution sequences might never execute a switch on action. However,
if we add (to the leSTS Γ l

count ) the fairness requirement then the property becomes
derivable. We need not note the corresponding fairness axiom explicitly; its use is
hidden in the rule (fairsomΓ ). Besides that we apply temporal axioms of Γ l

count ,
comprehended to

execλon → ¬on ∧ on ′ ∧ c′ = 0,
execλoff → on ∧ ¬on ′ ∧ c′ = c,
execλc → on ∧ on ′ ∧ c′ = c + 1,
execλp → ¬on ∧ ¬on ′ ∧ c′ = c

and we recall that enabledλon
≡ ¬on and enabledλoff

≡ on .
We first show that c > 0 implies that eventually the counter will be switched off.

With Acth = {λoff } we get

(1) execλoff ∧ on → �¬on (Γ )
(2) execλ ∧ on → �(¬on ∨ on) for λ ∈ {λon , λc , λp} (taut),(nex)
(3) �on → �on (T8)
(4) �on → �enabledλoff

(Γ ),(3)
(5) on → �¬on (fairsom),(1),(2),(4)
(6) c > 0 ∧ on → �¬on (5)
(7) c > 0 ∧ ¬on → �¬on (T5)
(8) c > 0 → �¬on (6),(7)

Next we show ¬on → �(c = 0) with Acth = {λon}:

(9) execλon ∧ ¬on → �(c = 0) (Γ )
(10) execλ ∧ ¬on → �¬on for λ ∈ {λoff , λc , λp} (Γ )
(11) execλ ∧ ¬on → �(c = 0 ∨ ¬on)

for λ ∈ {λoff , λc , λp} (10)
(12) �¬on → �¬on (T8)
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(13) �¬on → �enabledλon
(Γ ),(12)

(14) ¬on → �(c = 0) (fairsom),(9),(11),(13)

Together we get

(15) c > 0 → �(c = 0) (chain),(8),(14)
(16) c = 0 → �(c = 0) (T5)
(17) �(c = 0) (data),(15),16) �

The rule (fairsomΓ ) was developed from (som) in the context of fair labeled state
systems. Similar modifications may be performed for the universal rule (wfr). The
premise

A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ)))

of (wfr) could be established with (som) by showing

A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ)))

and in the presence of (transΓ ) this essentially amounts to showing

execλ ∧A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) for every λ ∈ ActΓ

(if A and B are state formulas of the system). Again a weaker requirement is that
this holds at least for “helpful” actions while for the others, if not leading to B , it is
also sufficient to leave A invariant, i.e., to guarantee that their execution leads to a
state in which A holds with the same value of y as before this execution. The choice
of the helpful actions is again arbitrary and may even depend on y . We formalize this
by introducing, for any f(r)leSTS Γ and λ ∈ ActΓ , the notation

Hλ

for an arbitrary rigid formula of LTLΓ and the abbreviations

EΓ ≡
∨

λ∈ActΓ

(Hλ ∧ enabledλ),

ȳ � y ≡ ȳ ≺ y ∨ ȳ = y .

Informally, the formula Hλ describes those “circumstances” (particularly values of
y) under which λ is helpful. Eλ expresses that some helpful λ is enabled. The rule

(fairwfrΓ ) execλ ∧Hλ ∧A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ)))
for every λ ∈ ActΓ ,

execλ ∧ ¬Hλ ∧A→ �(B ∨ ∃ȳ(ȳ � y ∧Ay(ȳ)))
for every λ ∈ ActΓ ,

�A→ �(B ∨ EΓ )
� ∃yA→ �B if A and B are state formulas of Γ

and B does not contain y ,
for y , ȳ ∈ XWF .
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then holds for Γ .

Derivation of (fairwfrΓ ). Let C1, C2, and D be the following abbreviations:
C1 ≡ ∃ȳ(ȳ ≺ y ∧Ay(ȳ)), C2 ≡ ∃ȳ(ȳ � y ∧Ay(ȳ)), D ≡

∨
λ∈ActΓ

(Hλ ∧ execλ).

(1) execλ ∧Hλ ∧A→ �(B ∨ C1) for every λ ∈ ActΓ assumption
(2) execλ ∧ ¬Hλ ∧A→ �(B ∨ C2) for every λ ∈ ActΓ assumption
(3) �A→ �(B ∨ EΓ ) assumption
(4) A→ C2 (pred)
(5) execλ ∧ C2 ∧�¬B → �C2 for every λ ∈ ActΓ (1),(2)
(6) (C2 ∧�¬B) invof ActΓ (ltl3),(T15),(5)
(7) C2 ∧�¬B → �(C2 ∧�¬B) (inv1Γ ),(6)
(8) A ∧�¬B → �C2 (T18),(4),(7)
(9) A ∧�¬B ∧�¬C1 → �A ∧�¬B (8)
(10) �A→ ��(B ∨ EΓ ) (T35),(3)
(11) �A→ ��B ∨��EΓ (T20),(10)
(12) A ∧�¬B ∧�¬C1 → �A ∧��EΓ (ltl3),(9),(11)
(13) ��(Hλ ∧ enabledλ) → ��Hλ ∧��enabledλ

for every λ ∈ ActΓ (T26)
(14) ¬Hλ → �¬Hλ for every λ ∈ ActΓ (ltl6)
(15) ¬Hλ → �¬Hλ for every λ ∈ ActΓ (ind1),(14)
(16) �Hλ → Hλ for every λ ∈ ActΓ (15)
(17) ��Hλ → Hλ for every λ ∈ ActΓ (ltl3),(16)
(18) Hλ → �Hλ for every λ ∈ ActΓ (ltl6)
(19) ��Hλ → �Hλ for every λ ∈ ActΓ (ind2),(17),(18)
(20) ��(Hλ ∧ enabledλ) → �Hλ ∧�execλ

for every λ ∈ ActΓ (fairΓ ),(13),(19)
(21) ��(Hλ ∧ enabledλ) → �(Hλ ∧ execλ)

for every λ ∈ ActΓ (T34),(20)
(22) ��EΓ → �D (T19),(T20),(21)
(23) A ∧�¬B ∧�¬C1 → �A ∧�D ∧�¬B (12),(22)
(24) �A ∧�¬B → (�D → �(D ∧A ∧�¬B)) (T10),(T18),(T34)
(25) A ∧�¬B ∧�¬C1 → �(D ∧A ∧�¬B) (23),(24)
(26) execλ ∧Hλ ∧A ∧�¬B → �C1 for every λ ∈ ActΓ (som),(T32),(1)
(27) A ∧�¬B ∧�¬C1 → �C1 (chain),(25),(26)
(28) A→ �(B ∨ C1) (27)
(29) ∃yA→ �B (wfr),(28) �

Example. Consider another modification Γwrcount of the original counter system,
a “counter without reset”, which is to mean that the effect of the action λon is not
resetting c to 0 but leaving c unchanged. In the specifying formulas in the above
example we then have to change the first one to

execλon → ¬on ∧ on ′ ∧ c′ = c.

If we assume this system to be fair then it has the property
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c = 0 → �(c = x )

stating that any value (of the variable x of sort NAT ) will eventually be reached from
c = 0. For the proof we fix – as in the first example of this section – WF and ≺ to
be NAT and <, respectively (which means that � becomes ≤). We first show �on
by applying (fairsomΓwrcount

) with Acth = {λon}:

(1) execλon ∧ on → �on (Γ )
(2) execλ ∧ ¬on → �(¬on ∨ on) for λ ∈ {λoff , λc , λp} (nex),(taut)
(3) �¬on → �enabledλon

(T8)
(4) ¬on → �on (fairsom),(1),(2),(3)
(5) on → �on (T5)
(6) �on (4),(5)

Let now

A ≡ y + c = x ∧ c < x

and

Hλc
≡ true,

Hλ ≡ false for λ ∈ {λon , λoff , λp},

the latter expressing that λc is helpful and the other actions are not helpful (in any
case). We then get

(7) execλc → c′ = c + 1 (Γ )
(8) execλc ∧A ∧ c < x − 1 → �Ay(y − 1) (7)
(9) execλc ∧A ∧ c = x − 1 → �(c = x ) (7)
(10) execλc ∧Hλc

∧A→ �(c = x ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (8),(9)
(11) execλc ∧ ¬Hλc

∧A→ �(c = x ∨ ∃ȳ(ȳ ≤ y ∧Ay(ȳ))) (taut)
(12) execλ ∧Hλ ∧A→ �(c = x ∨ ∃ȳ(ȳ < y ∧Ay(ȳ)))

for λ ∈ {λon , λoff , λp} (taut)
(13) execλ ∧A→ �A for λ ∈ {λon , λoff , λp} (Γ )
(14) execλ ∧ ¬Hλ ∧A→ �(c = x ∨ ∃ȳ(ȳ ≤ y ∧Ay(ȳ)))

for λ ∈ {λon , λoff , λp} (13)
(15) �A→ �on (6)
(16) EΓ ↔ enabledλc

(taut)
(17) �A→ �(c = x ∨ EΓ ) (15),(16)
(18) ∃yA→ �(c = x ) (fairwfr),(10),(11)

(12),(14),(17)
(19) c = 0 ∧ x �= 0 → ∃yA (data)
(20) c = 0 ∧ x = 0 → �(c = x ) (T5)
(20) c = 0 → �(c = x ) (18),(19),(20) �

As mentioned already, the rule (wfr) and hence (fairwfrΓ ) as well formalize in-
ductions over well-founded data sets, in our example the set of natural numbers.
Proofs with the other purely propositional rules do not involve data at all but they
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can always be “encoded” into proofs with the universal rules. We conclude this sec-
tion with a trivial example which makes the crucial idea of this fact evident.

Example. Consider a propositional frleSTS Γsw modeling a system of two switches
S1 and S2 represented by the set V = {on1, on2} of system variables which show
whether S1 and S2 are on or not. Three actions α1, α2, β may be continuously exe-
cuted: α1 switches S1 on if it is off and leaves it on otherwise, α2 does the same for
S2, and β does not change the switches at all. Fixing that both S1 and S2 are off at
the beginning, Γsw is specified by

startΓsw
≡ ¬on1 ∧ ¬on2,

enabledλ ≡ true for λ ∈ {α1, α2, β}

and the temporal axioms

execα1 → on ′
1 ∧ (on ′

2 ↔ on2),
execα2 → (on ′

1 ↔ on1) ∧ on ′
2,

execβ → (on ′
1 ↔ on1) ∧ (on ′

2 ↔ on2).

Assuming fairness both α1 and α2 will be executed and, hence, will switch on S1

and S2 sometime. So Γsw has the property

startΓsw
→ �(on1 ∧ on2)

which is easily derived with (fairsomΓsw
) and (chain): with Acth = {α1, α2} we get

(1) execαi ∧ startΓsw
→ �(on1 ∨ on2) for i ∈ {1, 2} (Γ )

(2) execβ ∧ startΓsw
→ �(on1 ∨ on2 ∨ startΓsw

) (Γ )
(3) �startΓsw

→ �(enabledα1 ∨ enabledα2) (taut),(T5)
(4) startΓsw

→ �(on1 ∨ on2) (fairsom),(1),(2),(3)

In the same way we immediately get (with Acth = {α2})

(5) on1 ∧ ¬on2 → �(on1 ∧ on2) (fairsom),(Γ )

and (with Acth = {α1})

(6) ¬on1 ∧ on2 → �(on1 ∧ on2) (fairsom),(Γ )

which then yields

(7) startΓsw
→ �(on1 ∧ on2) (chain),(4),(5),(6)

There are no “inductive objects” in this system; the proof argues along the flow
of any execution sequence through states in which startΓsw

, on1∧¬on2, ¬on1∧on2,
and finally on1 ∧ on2 hold. This can easily be described, however, by a decreasing
sequence of natural numbers. Extending the underlying language LTLΓ to a first-
order one based on SIGNat , and taking again NAT as WF and < as ≺ we let
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A ≡ (¬on1 ∧¬on2 ∧ y = 2)∨ (on1 ∧¬on2 ∧ y = 1)∨ (¬on1 ∧ on2 ∧ y = 0),
Hα1 ≡ ¬on1,
Hα2 ≡ ¬on2,
Hβ ≡ false.

Then we may apply (fairwfrΓsw
) in the following alternative derivation. First we get

(1) Hα1 ∧A→ y = 2 ∨ y = 0 (prop)
(2) execα1 ∧A ∧ y = 2 → �Ay(1) (Γ )
(3) execα1 ∧A ∧ y = 0 → �(on1 ∧ on2) (Γ )
(4) execα1 ∧Hα1 ∧A→

�((on1 ∧ on2) ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (1),(2),(3)
(5) execα1 ∧ ¬Hα1 ∧A→ �A (Γ )

In the same way we obtain

(6) execα2 ∧Hα2 ∧A→
�((on1 ∧ on2) ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (Γ )

(7) execα2 ∧ ¬Hα2 ∧A→ �A (Γ )

For β the corresponding formulas are trivial:

(8) execβ ∧Hβ ∧A→
�((on1 ∧ on2) ∨ ∃ȳ(ȳ < y ∧Ay(ȳ))) (taut)

(9) execβ ∧ ¬Hβ ∧A→ �A (Γ )

Finally we have

(10) �A→ �EΓsw
(T8)

since EΓsw
↔ ¬on1 ∨ ¬on2 is tautologically valid, and so we get

(11) ∃yA→ �(on1 ∧ on2) (fairwfr),(4)–(10)
(12) startΓsw

→ ∃yA (data)
(13) startΓsw

→ �(on1 ∧ on2) (11),(12) �

Although this second proof looks somewhat cumbersome it is actually more con-
cise than the first one with the rule (fairsom). Its main part is to show the two first
premises of rule (wfr) in lines (1)–(9), and the key idea for this is given by the defi-
nition of Hλ: the action α1 is helpful when ¬on holds, i.e., for the values 2 and 0 for
y in A, α2 is helpful for y = 2 and y = 1, and β is not helpful at all.

The derivation in lines (1)–(9) may more transparently be represented in a dia-
gram as shown in Fig. 7.1. The nodes in this diagram – except the one labeled with
on1 ∧ on2 – represent all possible values of y if A holds, together with the respec-
tive information encoded in A. Arrows � are labeled with helpful actions and
point to those nodes representing what may hold after executing these actions in the
corresponding states. Simple arrows � show the same for non-helpful actions.
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� �

� �

y = 2 ¬on1 ∧ ¬on2

� �

� �

y = 1 on1 ∧ ¬on2

� �

� �

y = 0 ¬on1 ∧ on2

�

�

�

	 β

�

�

�

	 α1, β
�

�

�

	 α2, β

� �

� �

on1 ∧ on2

� �

� �

α1 α2

α2 α1

Fig. 7.1. A diagram representing a derivation

As mentioned already, the assumption of fairness is often needed for proving
eventuality properties of systems. In fact, the rules (fairsomΓ ) and (fairwfrΓ ) are
essentially based on the fairness axiom

(fairΓ ) ��enabledλ → �execλ for every λ ∈ ActΓ .

We still note that in some applications this axiom may even be used directly (instead
of its indirect usage in the rules).

Example. The fair printer system Γprinter specified in Sect. 6.5 has the property

req1 → �execβ1

describing that, if the printer is requested by user U1, then sometime it will execute
the job for U1. Recalling that enabledα1 ≡ ¬req1, enabledβ1 ≡ req1, and

execλ→ (req ′
1 ↔ req1) for λ ∈ ActΓprinter

\ {α1, β1}

can be extracted from the specification axioms of Γprinter , we obtain

(1) (req1 ∧�¬execβ1) invof ActΓprinter
(Γ ),(ltl3)

(2) req1 ∧�¬execβ1 → �(req1 ∧�¬execβ1) (inv1),(1)
(3) req1 ∧�¬execβ1 → �req1 (2)
(4) �req1 → ��req1 (T5)
(5) ��req1 → �execβ1 (fair)
(6) req1 → �execβ1 (3),(4),(5) �

7.5 A Self-stabilizing Network

Summarizing the considerations of Chap. 6 and the preceding sections of this chapter
we realize a bunch of linguistic features and formal methods which is at our disposal
when facing the task of formally specifying and verifying a state system.



240 7 Verification of State Systems
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(a) A state of the system (b) State after three steps

Fig. 7.2. A network with 8 nodes

First of all, the system, in its formal representation as an STS, may be with or
without initial condition, labeled or not, with or without fairness assumption. The
appropriate temporal logic languages for specifying the system depend only slightly
on this choice. Whenever the STS is rooted, the language should contain the feature
of syntactic (or semantical) anchoring, i.e, the extension “p” by past operators or
at least “i” by the particular formula init (or, alternatively, it should use the initial
validity semantics). For non-rooted STSs any temporal logic language version is
well suited.

The verification task has more influence on which language should be chosen.
For describing invariance and eventuality properties there are no particular require-
ments while precedence properties need some extension, e.g., binary operators. For
proving such properties there is a repertory of methods, and in the case of eventuality
properties a further linguistic extension by well-founded relations could be neces-
sary. (For dealing with other properties as indicated in Sect. 7.1, further extensions
might be needed.)

In this and the next section we want to conclude the discussion with elaborating
two more complicated examples of systems and their verification. Consider, firstly,
a network system consisting of n ≥ 2 nodes, enumerated by 1, . . . ,n . Every node
owns a register which is able to store values from the set M = {0, 1, . . . ,N } of
natural numbers where N ≥ n − 1 and which can be accessed (reading and writing)
by the node. The nodes are arranged in a ring and every node is also allowed to read
the register of its left neighbour. A state of the system is given by the valuation of
the registers with values from M. Fig. 7.2(a) depicts such a system with eight nodes
using different hatchings to indicate three different register values.

The system starts running from some initial state. In every step one of the nodes
may change the actual values l1, . . . , ln of the registers according to the following
protocol:

• Node 1 may only execute a step if l1 = ln ; by this step, l1 is increased by 1
modulo N + 1; all other registers remain unchanged.
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• Node i , 2 ≤ i ≤ n , may only execute a step if li �= li−1; by this step, the value
li−1 is copied into the own register of i replacing the present value li ; all other
registers remain unchanged.

Fig. 7.2(b) shows the system state resulting from (a) after executing three consecutive
steps by nodes 2,3, and 5.

In general, several nodes are ready to execute a step in a state. For example, in
state (a) of Fig. 7.2 node 2, 4, 5, 7, or 8 may execute. A state is called stable if there is
one and only one node which may execute a step according to the protocol. Remark-
ably, such a system is self-stabilizing, which means that, starting from an arbitrary
initial state and proceeding arbitrarily according to the protocol, it will eventually
reach a stable state after finitely many steps and the states will remain stable from
then on.

We want to prove this property formally and begin with specifying the system
(for fixed n) understanding it as an leSTS Γring = (X ,V ,W ,T ,Act , E). For the
moment we base Γring on a signature SIGNat particularly containing N as an in-
dividual constant and a function symbol ⊕(NAT NAT ,NAT) and supplied with its
standard model N where ⊕N is addition modulo N + 1. We do not write out all
constituents of Γring and note only

Act = {β1, . . . , βn},
X = XNAT = {rg1, . . . , rgn},
V = {execλ | λ ∈ Act},
enabledβ1 ≡ rg1 = rgn ,
enabledβi

≡ rgi �= rgi−1 for 2 ≤ i ≤ n .

For 1 ≤ i ≤ n , βi and rgi represent the action of node i and the value of its register,
respectively.

Choosing LFOLTL as the underlying language LTL, a specification of Γring is
given by the temporal axioms (nilΓring

), (actionΓring
), and

∧n
i=1 rgi ≤ N ,

enabledβi
→ ¬nilΓring

for 1 ≤ i ≤ n ,
execβ1 → rg ′

1 = rg1 ⊕ 1,
execβi → rg ′

i = rgi−1 for 2 ≤ i ≤ n ,
execβi → rg ′

j = rgj for 1 ≤ i , j ≤ n, i �= j

which are evident from the informal description of the system. Note that the axioms
in the second line mean that the system has to execute a node as long as this is
possible.

Let now stable be the formula defined by

stable ≡
n∨

i=1

enabledβi
∧

n∧

i,j=1
i �=j

(enabledβi
→ ¬enabledβj

)
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expressing that one and only one β ∈ Act is enabled which just formalizes the
“stability of a state”. Then the self-stabilizing property of Γring can be formalized
by the two assertions

(a) stable → �stable.
(b) � stable.

(b) expresses that a stable state will eventually be reached and (a) describes that
whenever this is the case, the states will remain stable from then on.

We begin to prove the invariance property (a). To this end we derive the following
“lemmas”:

(a1)
∨n

i=1 enabledβi
.

(“In every state at least one node may execute”.)

(a2)
∧n

i=1(execβi → ¬ �enabledβi
).

(“Immediately after the execution of some node this is not able to execute
again”.)

(a3) execβ1 → (enabledβj
↔ �enabledβj

) for 3 ≤ j ≤ n ,
execβi → (enabledβ1 ↔ �enabledβ1) for 2 ≤ i ≤ n − 1,
execβi → (enabledβj

↔ �enabledβj
) for 2 ≤ i , j ≤ n, j �= i , j �= i + 1.

(“After execution of a node i , for every node j except i and its right neighbour:
j may execute if and only if it could do so before the execution of i as well”.)

The informal proof idea for (a1) is simple: either rgi �= rgi−1 holds for at least one
i > 1 or all rgi are equal which particularly means that rg1 = rgn . Formally this
runs as follows.

Derivation of (a1).

(1)
∧n

i=2 ¬enabledβi
→
∧n

i=2 rgi = rgi−1 (taut)

(2)
∧n

i=2 rgi = rgi−1 → rg1 = rgn (pred)

(3) rg1 = rgn → enabledβ1 (taut)

(4)
∧n

i=2 ¬enabledβi
→ enabledβ1 (1),(2),(3)

(5)
∨n

i=1 enabledβi
(4) �

(a2) is evident for i > 0. Furthermore, (k + 1) mod (N + 1) �= k for arbitrary k
because of N + 1 ≥ n ≥ 2, and this implies (a2) also for i = 0.

Derivation of (a2).

(1) execβi → rg ′
i = rgi−1 ∧ rg ′

i−1 = rgi−1 for 2 ≤ i ≤ n (Γ )
(2) execβi → ¬ �enabledβi

for 2 ≤ i ≤ n (1)
(3) execβ1 → rg1 = rgn ∧ rg ′

1 = rg1 ⊕ 1 ∧ rg ′
n = rgn (Γ )

(4) rg1 ⊕ 1 �= rg1 (data)
(5) execβ1 → ¬ �enabledβ1 (3),(4)

(6)
∧n

i=1(execβi → ¬ �enabledβi
) (2),(5) �
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The main idea for proving (a3) is that the formula enabledβj
depends only on the

register values of node j and its left neighbour, while the action βi changes only the
register value of node i .

Derivation of (a3).

(1) execβ1 → rg ′
j−1 = rgj−1 ∧ rg ′

j = rgj for 3 ≤ j ≤ n (Γ )
(2) execβ1 → (rgj �= rgj−1 ↔ rg ′

j �= rg ′
j−1) for 3 ≤ j ≤ n (1)

(3) execβi → rg ′
1 = rg1 ∧ rg ′

n = rgn for 2 ≤ i ≤ n − 1 (Γ )
(4) execβi → (rg1 = rgn ↔ rg ′

1 = rg ′
n) for 2 ≤ i ≤ n − 1 (3)

(5) execβi → rg ′
j−1 = rgj−1 ∧ rg ′

j = rgj
for 2 ≤ i , j ≤ n, j �= i , j �= i + 1 (Γ )

(6) execβi → (rgj �= rgj−1 ↔ rg ′
j �= rg ′

j−1)
for 2 ≤ i , j ≤ n, j �= i , j �= i + 1 (5)

(7) execβ1 → (enabledβj
↔ �enabledβj

) for 3 ≤ j ≤ n (2)
(8) execβi → (enabledβ1 ↔ �enabledβ1) for 2 ≤ i ≤ n − 1 (4)
(9) execβi → (enabledβj

↔ �enabledβj
)

for 2 ≤ i , j ≤ n, j �= i , j �= i + 1 (6) �
After these preparations we are able to derive assertion (a). In a stable state there

is exactly one enabled action βi and after executing βi , according to (a2) and (a3)
no node except the right neighbour of i may execute. With (a1) it follows that the
resulting state is again stable. So the formula stable is an invariant under every action
of the system which then shows (a).

Derivation of (a).

(1)
∧n

i=1(execβi → enabledβi
) (Γ )

(2) enabledβi
∧ stable → ¬enabledβj

for 1 ≤ i , j ≤ n, i �= j (taut)

(3)
∨n

i=1
�enabledβi

(a1),(nex)

(4) execβ1 ∧ stable →
∧n

j=3 ¬ �enabledβj
(a3),(1),(2)

(5) execβ1 ∧ stable → �stable (a2),(3),(4)
(6) execβi ∧ stable → ¬ �enabledβ1 for 2 ≤ i ≤ n − 1 (a3),(1),(2)
(7) execβi ∧ stable → ¬ �enabledβj

for 2 ≤ i ≤ n − 1, 2 ≤ j ≤ n, j �= i , j �= i + 1 (a3),(1),(2)
(8) execβi ∧ stable → �stable for 2 ≤ i ≤ n − 1 (a2),(3),(6),(7)
(9) execβn ∧ stable → ¬ �enabledβj

for 2 ≤ j ≤ n − 1 (a3),(1),(2)
(10) execβn ∧ stable → �stable (a2),(3),(9)
(11) stable invof Act (5),(8),(10)
(12) stable → �stable (inv1),(11) �

For the proof of the eventuality property (b) we now introduce some abbrevia-
tions for particular formulas:

Ci ≡
∧i

j=1 rgj = rg1 for 1 ≤ i ≤ n ,

Dfrv ≡
∨n

i=2(x = rgi ∧ ¬Ci),
Dmin ≡ ¬Dfrv (rg1 ⊕ x ) ∧ ∀y(y < x → Dfrv (rg1 ⊕ y)).
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In these formulas x is a variable of sort NAT and Dfrv (t) is used as a shorthand for
(Dfrv )x (t) (t being a term). An analogous notation will be used for Dmin .

Let us illustrate these notions by an example. Suppose n = 6, N = 8, and

rg1 = rg2 = rg3 = 4,
rg4 = 0,
rg5 = 4,
rg6 = 5

in some state. For 1 ≤ i ≤ n , Ci expresses that the values of the first i registers
rg1, . . . , rgi are equal. So, in the sample state, Ci holds for i = 1, 2, 3 and no other i .
Note that C1 holds in any case. Dfrv expresses that x = rgj for some j for which Cj

does not hold. So, Dfrv holds exactly for those values x of registers (briefly called
free values) which do not belong to the “first registers with equal values”. In the
example, these are 0, 4, and 5. Note that a register value may be free even if it is the
value of some first equally valued registers. Finally, Dmin expresses that the value of
x is the smallest l (briefly called minimal addition) such that l added to rg1 (modulo
N + 1) is not a free value. Because of 4 ⊕ 0 = 4, 4 ⊕ 1 = 5, 4 ⊕ 2 = 6 we obtain
that Dmin(2) holds in the example (and Dmin(t) does not hold if t �= 2).

In the subsequent derivations we will use instances of (dataΓring
) axioms involv-

ing these formulas, in particular:

(b1) ∃x (x ≤ N ∧Dmin)

stating that the minimal addition really exists (under the numbers of M). In order to
see the validity of this axiom it suffices to note that (in any state) ¬Dfrv (rg1 ⊕ k)
holds for some k ∈ M, because then there is also a smallest such k . By definition,
Dfrv may hold only for n − 1 different values for x , but the values of rg1 ⊕ k for
k ∈ M are all N + 1 values of M. Because of N + 1 > n − 1, Dfrv (rg1 ⊕ k) must
therefore evaluate to false for at least one k ∈ M.

Let us now prove the following list of further assertions:

(b2) execβi ∧ Cj → �Cj for 2 ≤ i ≤ n, 1 ≤ j ≤ n .

(“Every Cj is invariant under every β �= β1”.)

(b3) execβi ∧ �Dfrv → Dfrv for 2 ≤ i ≤ n .

(“Any free value after execution of β �= β1 was a free value already before
that”.)

(b4) execβ1 ∧ �Dfrv → Dfrv ∨ x = rg1.

(“After execution of β1 at most the value of rg1 might be added to the free
values”.)

(b5) Dmin(0) ∧ enabledβj
→ ¬enabledβ1 for 2 ≤ j ≤ n .

(“If 0 is the minimal addition and node j > 1 may execute then node 1 is not
able to execute”.)
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As in the proof of (a), these lemmas are quite straightforward consequences of the
specification of Γring and the above definitions. Again we give some short informal
arguments explaining the respective formal derivations.

(b2) follows from the fact that if βi is executed and Cj holds then j must be less
than i because otherwise rgi−1 = rgi = rg1 and node i could not execute. Then
rg ′

k = rgk for k < i and therefore rg ′
k = rg ′

1 for k ≤ j which implies �Cj .

Derivation of (b2). Let 2 ≤ i ≤ n and 1 ≤ j ≤ n .

(1) execβi → rgi−1 �= rgi (Γ )
(2) execβi → ¬Ci (1)

(3) execβi ∧ ¬Ci ∧ Cj →
∧j

k=1 rg ′
k = rgk (Γ )

(4)
∧j

k=1 rg ′
k = rgk → (

∧j
k=1 rgk = rg1 ↔

∧j
k=1 rg ′

k = rg ′
1) (pred)

(5) execβi ∧ Cj → �Cj (2),(3),(4) �
For the proof of (b3) we observe that if βi is executed and �Dfrv holds then there is
a j , 2 ≤ j ≤ n such that x = rg ′

j and ¬ �Cj . With (b2) we get ¬Cj ; hence Dfrv (rgj ).
The assertion then follows from rgj = rg ′

j = x in the case of j �= i . If j = i then
rg ′

j = rgi−1 and ¬Ci−1 and this also implies Dfrv .

Derivation of (b3). Let 2 ≤ i ≤ n .

(1) �Dfrv →
∨n

j=2(x = rg ′
j ∧ �¬Cj ) (pred)

(2) execβi ∧ �¬Cj → ¬Cj for 2 ≤ j ≤ n (b2)
(3) execβi → rg ′

j = rgj for 2 ≤ j ≤ n, j �= i (Γ )
(4) rg ′

j = rgj ∧ x = rg ′
j ∧ ¬Cj → Dfrv for 2 ≤ j ≤ n (pred)

(5) execβi ∧ �¬Cj ∧ x = rg ′
j → Dfrv for 2 ≤ j ≤ n, j �= i (2),(3),(4)

(6) execβi → rg ′
i = rgi−1 ∧ rg ′

i−1 = rgi−1 (Γ )
(7) execβi ∧ Ci−1 → �Ci−1 (b2)
(8) �Ci−1 ∧ rg ′

i = rg ′
i−1 → �Ci (pred)

(9) execβi ∧ ¬ �Ci → ¬Ci−1 (6),(7),(8)
(10) x = rg ′

i ∧ rg ′
i = rgi−1 ∧ ¬Ci−1 → Dfrv (pred)

(11) execβi ∧ x = rg ′
i ∧ ¬ �Ci → Dfrv (6),(9),(10)

(12) execβi ∧ �Dfrv → Dfrv (1),(5),(11) �
(b4) is a modification of (b3) for β1 and follows from the fact that �Dfrv implies
x = rg ′

j for some j > 1 for which �¬Cj holds and β1 does not change rgj . So if
x = rgj = rg1 then we obtain (b4) immediately and otherwise ¬Cj and hence Dfrv

are implied.

Derivation of (b4).

(1) �Dfrv →
∨n

j=2 x = rg ′
j (pred)

(2) execβ1 → rg ′
j = rgj for 2 ≤ j ≤ n (Γ )

(3) rgj �= rg1 → ¬Cj for 2 ≤ j ≤ n (pred)
(4) rgj = x ∧ ¬Cj → Dfrv for 2 ≤ j ≤ n (pred)
(5) execβ1 ∧ x = rg ′

j → Dfrv ∨ x = rg1 for 2 ≤ j ≤ n (2),(3),(4)
(6) execβ1 ∧ �Dfrv → Dfrv ∨ x = rg1 (1),(5) �
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(b5) follows directly from the definitions: enabledβj
for 2 ≤ j ≤ n implies

Dfrv (rgn) and Dmin(0) implies ¬Dfrv (rg1). So rg1 and rgn have different values.

Derivation of (b5). Let 2 ≤ j ≤ n .

(1) rgj �= rgj−1 → ¬Cn (pred)
(2) ¬Cn → Dfrv (rgn) (pred)
(3) Dmin(0) → ¬Dfrv (rg1) (pred)
(4) Dmin(0) ∧ enabledβj

→ rg1 �= rgn (1),(2),(3)
(5) Dmin(0) ∧ enabledβj

→ ¬enabledβ1 (4) �

Let us now approach the main proof of assertion (b). We want to apply the rule
(labwfrΓ ) and have to find some appropriate well-founded set of data which decrease
during execution of the system until a stable state is reached. A first starting point is
the fact that the execution of β1 decreases the minimal addition value (as long as this
is not 0):

(b6) execβ1 ∧Dmin ∧ x > 0 → �∃y(y < x ∧Dmin(y)).

For the proof of (b6) it suffices to show that for x > 0 the value of rg1 in a state is
different from the value of rg1 ⊕ (x − 1) in the state after execution of β1. Then the
latter value is not a free value after this execution by (b4) and the assertion follows
from the fact that �Dmin(y) means that y is the least number with this property.

Derivation of (b6).

(1) execβ1 → rg ′
1 = rg1 ⊕ 1 (Γ )

(2) Dmin → ¬Dfrv (rg1 ⊕ x ) (pred)
(3) x > 0 → rg1 ⊕ x = (rg1 ⊕ 1)⊕ (x − 1) (data)
(4) x > 0 ∧ x ≤ N → rg1 ⊕ x �= rg1 (data)
(5) execβ1 ∧ x > 0 ∧ ¬Dfrv (rg ′

1 ⊕ (x − 1)) ∧ rg ′
1 ⊕ (x − 1) �= rg1 →

¬ �Dfrv (rg1 ⊕ (x − 1)) (b4)
(6) x > 0 ∧ ¬Dfrv (rg1 ⊕ (x − 1)) → ∃y(y < x ∧Dmin(y)) (data)
(7) x > 0 ∧ ¬ �Dfrv (rg1 ⊕ (x − 1)) → �∃y(y < x ∧Dmin(y)) (6)
(8) Dmin → x ≤ N (b1),(data)
(9) execβ1 ∧Dmin ∧ x > 0 → �∃y(y < x ∧Dmin(y)) (1)–(5),

(7),(8) �

Unfortunately the same assertion does not hold for actions β �= β1. We can only
prove that these actions at least do not increase the minimal addition value:

(b7) execβi ∧Dmin → �∃y(y ≤ x ∧Dmin(y)) for 2 ≤ i ≤ n .

Executions of nodes i �= 1 do not change the value of rg1 and do not increase the
set of new register values according to (b3). From this (b7) follows because of the
minimality property of y in Dmin(y).
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Derivation of (b7). Let 2 ≤ i ≤ n .

(1) Dmin → ¬Dfrv (rg1 ⊕ x ) (pred)
(2) Dmin ∧ rg ′

1 = rg1 ∧ ∀x ( �Dfrv → Dfrv ) → ¬ �Dfrv (rg1 ⊕ x ) (1),(data)
(3) ¬Dfrv (rg1 ⊕ x ) → ∃y(y ≤ x ∧Dmin(y)) (data)
(4) ¬ �Dfrv (rg1 ⊕ x )→ �∃y(y ≤ x ∧Dmin(y)) (3)
(5) execβi → rg ′

1 = rg1 (Γ )
(6) execβi → ( �Dfrv → Dfrv ) (b3)
(7) execβi ∧Dmin → �∃y(y ≤ x ∧Dmin(y)) (2),(4),

(5),(6) �

(b7) will help us at once but at the moment we still need values which are prop-
erly decreased by β2, . . . , βn . From (a2) and (a3) we know that if one of these actions
βi is executed then its enabling condition enabledβi

is changing from true to false
and all enabledβj

remain unchanged for 2 ≤ j < i . We may encode this considering
the tuples

d = (d2, . . . , dn) ∈ N
n−1

with

di =
{

1 if node i is enabled,
0 otherwise

for 2 ≤ i ≤ n . Execution of any βi , i �= 1, then decreases the value of these tuples
with respect to the lexicographical order on N

n−1.
Together this discussion shows that the tuple

(d1, d2, . . . , dn) ∈ N
n

where d1 is the minimal addition and d2, . . . , dn are as described is decreased with
respect to the lexicographical order on N

n by every execution step of the system as
long as this is possible. This is the case at least as long as no stable state is reached
since in non-stable states not all entries d1, . . . , dn can be 0 because of (a1).

To formalize this idea we now assume that the signature of Γring extends SIGNat

by a new sort TUPLE , n additional function symbols SEL(TUPLE ,NAT)
1 , . . . ,

SEL(TUPLE ,NAT)
n , and a predicate symbol ≺(TUPLE TUPLE). The corresponding

structure N is extended by

TUPLEN = N
n ,

SELN
i (m1, . . . ,mn) = mi for 1 ≤ i ≤ n

and ≺N, the (strict) lexicographical order on N
n . Of course, this is a well-founded

relation. The underlying language LTL can then be viewed as an Lw
FOLTL if we take

the sort TUPLE as WF .
To derive now assertion (b), let y be a variable of sort TUPLE ,
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A ≡ Dmin(SEL1(y)) ∧
n∧

i=2

((enabledβi
→ SELi(y) = 1) ∧ (¬enabledβi

→ SELi(y) = 0))

which formalizes the above coding, and

B ≡ �¬stable ∧A.

Derivation of (b).

(1) execβi → enabledβi
∧ �¬enabledβi

for 2 ≤ i ≤ n (Γ ),(a2)

(2) execβi →
∧i−1

j=2(enabledβj
↔ �enabledβj

) for 2 ≤ i ≤ n (a3)
(3) execβi ∧A→ �∃ȳ(ȳ ≺ y ∧Ay(ȳ)) for 2 ≤ i ≤ n (1),(2),(b7)

(4) ¬stable →
∨n

i=2 enabledβi
(a1)

(5) execβ1 → enabledβ1 (Γ )
(6) execβ1 ∧ ¬stable → (Dmin → x > 0) (4),(5),(b5)
(7) execβ1 ∧ ¬stable ∧A→ �∃ȳ(ȳ ≺ y ∧Ay(ȳ)) (b6),(6)
(8) execλ ∧ B → �(stable ∨ ∃ȳ(ȳ ≺ y ∧ By(ȳ)))

for every β ∈ Act (3),(7)
(9) nilΓring

∧ B → stable (Γ ),(a1)
(10) ∃yB → �stable (labwfr),(8),(9)
(11) ∃yA→ �stable (10)
(12) ∃yA (b1),(ltl4)
(13) �stable (11),(12) �

7.6 The Alternating Bit Protocol

Our second verification example deals with a protocol coordinating the data trans-
mission between a sender and a receiver. The sender continuously gets messages
as input and transmits them to the receiver which outputs them and sends back ac-
knowledgements to the sender. Transmissions in both directions may be corrupted
by the unreliable transmission medium. Nevertheless, the receiver should output the
correct messages in the same order as they were input to the sender. A key for the
solution of this problem is to send messages together with a control bit the value of
which serves as the acknowledgement and has to alternate in an appropriate way.

We represent this alternating bit protocol by an frleSTS ΓABP with

Act = {α0, α1, β0, β1},
X = XNAT ∪XMSG ,
XNAT = {sb, rb,wb, ack},
XMSG = {sm, rm},
V = {execλ | λ ∈ Act},
enabledλ ≡ true for λ ∈ Act ,
startΓABP

≡ sb = 0 ∧ rb = 1 ∧ wb = 0 ∧ ack = 1 ∧ sm = FIRSTMSG .
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The actions α0 and α1 constitute the sender (which we will refer to as system part
Γsend in the following); β0 and β1 are the actions of the receiver (Γrec). α0 sends a
package consisting of a message sm (of some sort MSG) and a bit sb to Γrec where
it arrives on the “receive” variables rm and rb. α1 checks acknowledgement ack and
composes a new package consisting of the next message sm and sb with an alternated
value if ack equals sb. (This also means that a package correctly arrived at Γrec may
be corrupted again before being “realized” there.) β0 and β1 work analogously. β0

checks the received bit rb and if this equals wb containing the value waited for then
rm is output (and wb is alternated). β1 sends the respective bit value back to Γsend

where it arrives on the variable ack . Note that we impose no “internal” order of
the actions in Γsend and Γrec , respectively, and that different (“non-contradictory”)
actions may even execute simultaneously. Fairness ensures that all actions happen
continuously.

The initial condition describes the appropriate start of the system. The individual
constant FIRSTMSG (of sort MSG) represents the first message to be transmitted.

Again, we do not write out the definition of the states and the transition relation
of ΓABP but proceed immediately to the specification of the system which is given
by the temporal axioms (rootΓABP

) and

execα0 → ((rm ′ = sm ∧ rb′ = sb) ∨ (rm ′ = ERR ∧ rb′ = ERR)) ∧
unchanged(sb,wb, ack , sm),

execα1 ∧ sb = ack → sm ′ = NEXTMSG(sm) ∧ sb′ = sb ⊕ 1 ∧
unchanged(rb,wb, ack , rm),

execα1 ∧ sb �= ack → unchanged(sb, rb,wb, ack , sm, rm),
execβ0 ∧ rb = wb → wb′ = wb ⊕ 1 ∧ unchanged(sb, rb, ack , sm, rm),
execβ0 ∧ rb �= wb → unchanged(sb, rb,wb, ack , sm, rm),
execβ1 → (ack ′ = wb ⊕ 1 ∨ ack ′ = ERR) ∧ unchanged(sb, rb,wb, sm, rm).

(The axioms (nilΓABP
) and (actionΓABP

) are derivable.) In these formulas we use the
abbreviation

unchanged(a1, . . . , an) ≡
n∧

i=1

a ′
i = ai

for system variables a1, . . . , an . The function symbol ⊕ is interpreted as addition
modulo 2. The axioms for α0 and β1 describe the two possibilities of a correct or a
corrupted transmission, the latter resulting in some (recognizable) value represented
by the individual constant ERR for both NAT and MSG . The acknowledgement
value sent back by β1 is wb ⊕ 1 since wb is alternated by β1 if this is executed with
rb = wb. The axioms for α1 and β0 are evident, noting that NEXTMSG(MSG MSG)

is a function symbol for fixing the order in which the messages are to be transmitted:
for any message msg , NEXTMSG(msg) is to follow msg .

The proper output performed by β0 in case rb = wb is not modeled in the axioms
since it does not involve the system variables of ΓABP . Nevertheless, the formula

output ≡ execβ0 ∧ rb = wb
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represents the fact that the message contained in rm is output by Γrec .
The assertion that the messages are output in the right order cannot directly be

expressed by a temporal formula. It is easy to see, however, that the two formulas

(a) startΓABP
→ rm = FIRSTMSG atnext output ,

(b) output ∧ rm = x → rm = NEXTMSG(x ) atnext output

provide an adequate formal representation of this claim. (a) says that the very
first output message will be FIRSTMSG . (b) uses a variable x of sort MSG
and states that after the output of any message x the next output message will be
NEXTMSG(x ). Note that this does not include that the outputs will be performed
at all. This aspect will be treated subsequently.

The derivations of (a) and (b) use the same main ideas. We first note three global
invariants of ΓABP .

(c1) �¬nilΓABP
.

(c2) �((sb = 0 ∨ sb = 1) ∧ (wb = 0 ∨ wb = 1)).
(c3) �((rb = wb → wb = sb ∧ rm = sm) ∧ (sb = ack → wb �= sb)).

(c1) follows from the formula (progressΓABP
) generally derived in Sect. 6.5, and (c2)

is trivially derived with (invstartΓABP
). The proof of (c3) runs as follows.

Derivation of (c3). Let

A ≡ (rb = wb → wb = sb ∧ rm = sm) ∧ (sb = ack → wb �= sb).

(1) startΓABP
→ A (pred)

(2) execα0 ∧A→ �((rm = sm ∧ rb = sb) ∨
(rm = ERR ∧ rb = ERR)) ∧

�(sb = ack → wb �= sb) (Γ )
(3) rm = sm ∧ rb = sb →

(rb = wb → wb = sb ∧ rm = sm) (pred)
(4) rb = ERR → rb �= wb (c2)
(5) A invof α0 (2),(3),(4)
(6) execα1 ∧ sb = ack →

sb′ = sb ⊕ 1 ∧ rb′ = rb ∧ wb′ = wb ∧ ack ′ = ack (Γ )
(7) sb = ack ∧A→ wb �= sb ∧ rb �= wb (pred)
(8) execα1 ∧ sb = ack ∧A→ �(rb �= wb ∧ sb �= ack) (6),(7)
(9) execα1 ∧ sb = ack ∧A→ �A (8)
(10) execα1 ∧ sb �= ack ∧A→ �A (Γ )
(11) execβ0 ∧ rb = wb →

wb′ = wb ⊕ 1 ∧ sb′ = sb ∧ rb′ = rb ∧ ack ′ = ack (Γ )
(12) rb = wb ∧A→ wb = sb ∧ sb �= ack (pred)
(13) execβ0 ∧ rb = wb ∧A→ �(rb �= wb ∧ sb �= ack) (11),(12)
(14) execβ0 ∧ rb = wb ∧A→ �A (13)
(15) execβ0 ∧ rb �= wb ∧A→ �A (Γ )
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(16) execβ1 ∧A→ �(ack = wb ⊕ 1 ∨ ack = ERR) ∧
�(rb = wb → wb = sb ∧ rm = sm) (Γ )

(17) ack = wb ⊕ 1 → (sb = ack → wb �= sb) (pred)
(18) ack = ERR → sb �= ack (c2)
(19) A invof β1 (16),(17),(18)
(20) A invof ActΓABP

(5),(9),(10)
(14),(15),(19)

(21) �A (invstart),(1),(20) �

Let now

Bfirst ≡ wb = sb ∧ sm = FIRSTMSG ,
Bnext ≡ (wb = sb → sm = NEXTMSG(x )) ∧ (wb �= sb → sm = x ).

For these formulas we prove the following facts.

(c4) �(rb = wb ∧ Bfirst → rm = FIRSTMSG).
(c5) �(rb = wb ∧ Bnext → rm = NEXTMSG(x )).
(c6) B invof λ for B ∈ {Bfirst ,Bnext} and λ ∈ {α0, α1, β1}.

(c4) and (c5) are immediate consequences of (c3), and (c6) is derived as follows.

Derivation of (c6). Let B ∈ {Bfirst ,Bnext}.

(1) B invof λ for λ ∈ {α0, β1} (Γ )
(2) execα1 ∧ sb �= ack ∧ B → �B (Γ )
(3) Bfirst → sb �= ack (c3)
(4) execα1 ∧ sb = ack ∧ Bfirst → �Bfirst (3)
(5) sb = ack ∧ Bnext → wb �= sb ∧ sm = x (c3)
(6) execα1 ∧ sb = ack ∧ Bnext →

�(sm = NEXTMSG(x ) ∧ sb = wb) (5),(Γ ),(c2)
(7) execα1 ∧ sb = ack ∧ Bnext → �Bnext (6)
(8) B invof λ for λ ∈ {α0, α1, β1} (1),(2),(4),(7) �

Let finally

Cfirst ≡ Bfirst ∧ ¬output ,
Cnext ≡ (output → rm = x ) ∧ (¬output → Bnext).

The crucial step for the proof of (a) and (b) is to show

(c7) C → C rm atnext output

for C ∈ {Cfirst ,Cnext} where

C rm ≡
{

rm = FIRSTMSG if C ≡ Cfirst ,
rm = NEXTMSG(x ) if C ≡ Cnext .

The derivation of (c7) applies the rule (invatnextΓABP
).
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Derivation of (c7). Let C ∈ {Cfirst ,Cnext}.

(1) execλ ∧ C → �(output → C rm) ∧ �(¬output → C )
for λ ∈ {α0, α1, β1} (c4),(c5),(c6)

(2) execβ0 ∧ rb �= wb ∧ C → �(rb �= wb ∧ C ) (Γ )
(3) execβ0 ∧ rb �= wb ∧ C →

�(output → C rm) ∧ �(¬output → C ) (2)
(4) execβ0 ∧ rb = wb → ¬Cfirst (taut)
(5) execβ0 ∧ rb = wb ∧ Cfirst →

�(output → C rm) ∧ �(¬output → Cfirst) (4)
(6) execβ0 ∧ rb = wb ∧ Cnext → wb = sb ∧ sm = x (c3)
(7) execβ0 ∧ rb = wb ∧ Cnext →

�(rb �= wb ∧ wb �= sb ∧ sm = x ) (Γ ),(6)
(8) execβ0 ∧ rb = wb ∧ Cnext →

�(output → C rm) ∧ �(¬output → Cnext) (7)
(9) execλ ∧ C → �(output → C rm) ∧ �(¬output → C )

for every λ ∈ ActΓABP
(1),(3),(5),(8)

(10) nilΓABP
∧ C → (output → C rm) (c1)

(11) C → C rm atnext output (invatnext),
(9),(10) �

The assertions (a) and (b) follow now immediately from (c7).

Derivation of (a).

(1) startΓABP
→ Cfirst (pred)

(2) Cfirst → rm = FIRSTMSG atnext output (c7)
(3) startΓABP

→ rm = FIRSTMSG atnext output (1),(2) �

Derivation of (b).

(1) output ∧ rm = x → Cnext (taut)
(2) Cnext → rm = NEXTMSG(x ) atnext output (c7)
(3) output ∧ rm = x → rm = NEXTMSG(x ) atnext output (1),(2) �

The assertions (a) and (b) guarantee that, if messages are output by Γrec at all, the
output will be in the correct order. We now want to show that in fact infinitely many
messages are output. Together this states then that all input messages are transmitted
and output correctly.

A first approach to what has to be proved is the formula

�output

stating that at every time there will be some subsequent output by Γrec and hence
inducing infinitely many outputs. It is quite obvious, however, that this formula is
not ΓABP -valid without additional assumptions. If the sending operation α0 always
fails then the variable rb will always receive the value ERR and no output will be
performed. If sending the acknowledgement in β1 always fails then Γsend will not
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send new messages and Γrec will again perform no more outputs. So, continuous
output is only guaranteed if, at every time, some eventual sending operation α0 and
β1 will provide uncorrupted values. Moreover, these values must be read in α1 and
β0, respectively, before a next corrupted transmission arrives.

These conditions can be described by the formulas

Cs ≡ �(execα1 ∧ ack �= ERR),
Cr ≡ �(execβ0 ∧ rb �= ERR)

and our goal is to show the assertion under the additional assumptions Cs and Cr ,
i.e.,

(d) Cs ,Cr � �output .

A proof of (d) may be viewed as an assumption-commitment verification: the
desired behaviour expressed by �output is a commitment of ΓABP under the as-
sumption that the “environment” (the transmission medium in this case) behaves
such that Cs and Cr hold.

For the proof we proceed again with a series of lemmas. Firstly we note

(d1) � �execα0,
(d2) � �execβ1

which result directly from the fairness axiom (fairΓABP
). Let now

D1 ≡ ack = wb ⊕ 1 ∨ ack = ERR,
D2 ≡ wb = sb ∧ (rb = sb ∨ rb = ERR),
D3 ≡ rb = wb ∨ rb = ERR.

We show the following assertions.

(d3) �¬output ∧D1 → �D1.
(d4) �¬output ∧ wb = sb → �(wb = sb).
(d5) �¬output ∧D2 → �D3 .

These three formulas are not of the restricted syntactical form of invariance proper-
ties, but it is easy to overcome this technical problem here by recalling that, according
to the Deduction Theorem, in order to prove (d3), (d4), (d5) it suffices to show

(d3’) ¬output � D1 → �D1,
(d4’) ¬output � wb = sb → �(wb = sb),
(d5’) ¬output � D2 → �D3

for which we can use the invariance rules of Sect. 7.2. (The applicability of the
Deduction Theorem is ensured by results in earlier chapters.)
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Derivation of (d3’).

(1) ¬output assumption
(2) D1 invof λ for λ ∈ {α0, α1, β1} (Γ )
(3) execβ0 → rb �= wb (1)
(4) execβ0 ∧ rb �= wb ∧D1 → �D1 (Γ )
(5) D1 invof β0 (3),(4)
(6) D1 → �D1 (inv1),(2),(5) �

Derivation of (d4’).

(1) ¬output assumption
(2) wb = sb invof λ for λ ∈ {α0, β1} (Γ )
(3) execα1 ∧ wb = sb → sb = ack (c3)
(4) execα1 ∧ sb = ack ∧ wb = sb → �(wb = sb) (Γ )
(5) wb = sb invof α1 (3),(4)
(6) wb = sb invof β0 (1),(Γ )
(7) wb = sb → �(wb = sb) (inv1),(2),(5),(6) �

Note that step (6) in this derivation comprehends the steps (3), (4), and (5) in the
derivation of (d3’) which are identical here and occur also in the following derivation.

Derivation of (d5’).

(1) ¬output assumption
(2) D2 → D3 (pred)
(3) D2 invof λ for λ ∈ {α0, β1} (Γ )
(4) execα1 ∧ wb = sb → sb = ack (c3)
(5) execα1 ∧ sb = ack ∧D2 → �D2 (Γ )
(6) D2 invof α1 (4),(5)
(7) D2 invof β0 (1),(Γ )
(8) D2 → �D3 (inv),(2),(3),(6),(7) �

To approach now the proof of the eventual output stated in assertion (d) we split
this into the following two steps.

(d6) Cs � �¬output → �(wb = sb).
(d7) Cr � wb = sb → �output .

(d6) expresses that if Γrec never outputs a message then the bit sb sent by Γsend will
sometime be the expected one. Again, (d6) is not fitting into our simple property
classes. It can be derived, however, directly by some purely logical arguments (and
axioms of ΓABP ) from the preceding lemmas. Roughly speaking, (d2) guarantees
that sometime β1 will be executed resulting in a state in which D1 holds. From this
it follows with the assumption Cs and (d3) that subsequently Γsend will execute α1

with sb = ack and wb �= sb which will provide wb = sb. The formal derivation runs
as follows.
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Derivation of (d6).

(1) Cs assumption
(2) execβ1 → �D1 (Γ )
(3) �D1 (d2),(2)
(4) D1 ∧ wb �= sb → sb = ack ∨ ack = ERR (c2)
(5) �(sb = ack ∨ ack = ERR) → �(execα1 ∧ sb = ack) (1)
(6) �¬output ∧D1 ∧�(wb �= sb) →

�(execα1 ∧ sb = ack ∧ wb �= sb) (d3),(4),(5)
(7) execα1 ∧ sb = ack ∧ wb �= sb → �(wb = sb) (Γ ),(c2)
(8) �¬output ∧D1 → �(wb = sb) (6),(7)
(9) �¬output → �(wb = sb) (3),(8) �

The second step (d7) states that if wb = sb in some state then there will be some
eventual output. The proof runs similarly as for (d6), mainly using (d1) which some-
time provides rb = sb ∨ rb = ERR and Cr which implies then with (d4) and (d5)
that β0 is executed eventually in a state where rb = wb which is just the desired
output action of Γrec .

Derivation of (d7).

(1) Cr assumption
(2) execα0 → �(rb = sb ∨ rb = ERR) (Γ )
(3) �(rb = sb ∨ rb = ERR) (d1),(2)
(4) �¬output ∧ wb = sb → �(�¬output ∧D2) (3),(d4)
(5) �¬output ∧D2 → �output (d5),(1)
(6) �¬output ∧ wb = sb → �output (4),(5)
(7) wb = sb → �output (6) �

Finally it is easy to combine (d6) and (d7) for the proof of (d).

Derivation of (d).

(1) Cs assumption
(2) Cr assumption
(3) �¬output → �output (d6),(d7)
(4) �output (3) �
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Verification of Concurrent Programs

Programs are formal descriptions of algorithms the operational meaning of which
can be viewed as state systems. In other words, a program is a formal (algorithmic)
representation of such a state system, and a corresponding transition system – as
another (operational) representation – may be understood as a formal definition of a
semantics of the program. A temporal logic specification of the state system is then
just a third (axiomatic) representation, often called temporal logic semantics of the
program.

Verification of a program Π means verification of properties – now called pro-
gram properties – of the state system (given by) Π . Temporal logic can be used for
it along the general lines shown in Chap. 7: the verification is performed by for-
mal derivations of the properties from the axiomatic specification within the logical
framework. Actually, it was just this particular application which – historically – was
the first aim of the development of temporal logic.

In general, program verification is a well-established important field in computer
science and temporal logic is not the sole formal approach to it. In fact, for sequential
(imperative) programs (which typically are transformational in the sense described
in Sect. 6.2) there exist well-known proof methods like the Hoare calculus which are
specially tailored and therefore most suited to these kinds of programs. The temporal
logic treatment is universal in the sense that it is possible for all kinds of programs,
but it shows its real power mainly in concurrent, particularly reactive programs on
which we will therefore concentrate our subsequent considerations.

Concurrent programs with “interfering processes” usually involve communica-
tion between and synchronization of their components. For these tasks there exist
algorithmic concepts following two different basic paradigms of shared (program)
variables and message passing, respectively. We will treat both programming styles.

8.1 Programs as State Transition Systems

In order to work out the essentials of temporal logic program verification we fix the
following simple framework. A concurrent program Π consists of a number np of
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(sequential) processes Π1, . . . , Πnp which are thought to be executed “in parallel”
(concurrently) and each of which is a “sequential loop”. The basic syntactical struc-
ture for this concept will be denoted by

cobegin Π1 ‖ . . . ‖ Πnp coend

and called parallel statement. As a formalization of concurrent execution we choose
the interleaving model which means that

• every process in the parallel statement is to execute a sequence of distinguished
atomic steps,

• a run of the parallel statement is created by sequentially (i.e., one after the other)
executing single atomic steps of the processes such that steps belonging to dif-
ferent processes occur in arbitrary order but steps of the same process Πi are
executed in the order given by Πi .

Consider, as an example, the parallel statement

PS ≡ cobegin Π1 ‖ Π2 coend

with the two loops

Π1 ≡ loop α0 : a := 2 ∗ a;
α1 : b := b + 1

endloop,

Π2 ≡ loop β0 : a := a + 1;
β1 : b := a

endloop

where α0, α1, β0, β1 are “names” for the four assignment statements in Π1 and Π2.
Syntax and semantics of the loop construct will be defined precisely in the next sec-
tion, but it should be clear already that Π1 and Π2 describe processes which continu-
ously execute α0 and α1 (β0 and β1, respectively) in the order α0, α1, α0, α1, α0, . . .
(β0, β1, β0, β1, β0, . . .).

Assuming that the four assignment statements are the atomic steps (and have
the usual meaning which will be formalized shortly), a possible run of the parallel
statement PS according to the interleaving model (starting with, say, a = 0 and
b = 0) is depicted by

[0, 0]
β0� [1, 0]

α0� [2, 0]
α1� [2, 1]

α0� [4, 1]
β1� [4, 4]

β0� [5, 4] ...� . . .

where the pairs [. . . , . . .] denote the values of a and b.
Viewing the parallel statement together with the initialization a = 0 and b = 0

as (another representation of) an rleSTS Π it should be clear that

ActΠ = {α0, α1, β0, β1},
XΠ = {a, b},
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and that VΠ contains execλ for λ ∈ ActΠ . Any λ ∈ ActΠ may only be executed if

“control in Π1 or Π2, respectively, is at λ”.

For these enabling conditions which ensure the correct order of executions of the
atomic steps within Π1 and Π2, respectively, we introduce additional propositional
system variables

atλ

for λ ∈ ActΠ with just this informal meaning. So the further definitions

VΠ = {execλ, atλ | λ ∈ ActΠ},
enabledλ ≡ atλ for λ ∈ ActΠ ,
startΠ ≡ atα0 ∧ atβ0 ∧ a = 0 ∧ b = 0,
WΠ = {η : XΠ ∪VΠ → N ∪ {ff, tt} |

η(a), η(b) ∈ N, η(v) ∈ {ff, tt} for v ∈ VΠ ,
η admissible,
η(execλ) = tt for exactly one λ ∈ ActΠ ,
η(atλ) = tt for exactly one λ ∈ {α0, α1}

and exactly one λ ∈ {β0, β1}}

for Π are evident. The transition relation can be read directly from Π1 and Π2:

TΠ = {(η, η′) ∈W ×W |
if η(execα0) = tt then η′(a) = 2 ∗ η(a), η′(b) = η(b),

η′(atα1) = tt,
η′(atλ) = η(atλ) for λ ∈ {β0, β1}

if η(execα1) = tt then η′(a) = η(a), η′(b) = η(b) + 1,
η′(atα0) = tt,
η′(atλ) = η(atλ) for λ ∈ {β0, β1}

if η(execβ0) = tt then η′(a) = η(a) + 1, η′(b) = η(b),
η′(atλ) = η(atλ) for λ ∈ {α0, α1}
η′(atβ1) = tt,

if η(execβ1) = tt then η′(a) = η(a), η′(b) = η(a),
η′(atλ) = η(atλ) for λ ∈ {α0, α1}
η′(atβ0) = tt}.

Of course, the pairs (η, η′) of TΠ do not only describe the change of the values of
the “program variables” a and b but also the “flow of control” through the values of
the additional system variables atλ. Note that in the clauses

if η(execλ) = tt then . . .

(for λ = α0, α1, β0, β1) it is not necessary to include that η′(atλ) = ff since this is
implied in each case by the definition of WΠ .
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The above sample run is formally represented by the execution sequence

[0, 0, atα0, atβ0, β0] � [1, 0, atα0, atβ1, α0] �

[2, 0, atα1, atβ1, α1] � [2, 1, atα0, atβ1, α0] �

[4, 1, atα1, atβ1, β1] � [4, 4, atα1, atβ0, β0] �

[5, 4, atα1, atβ1, . . .] � . . .

where the first two entries in a state η = [. . .] denote the values of a and b, the
next two show those at λ with η(at λ) = tt, and the last entry displays the λ with
η(execλ) = tt.

So far we consider Π as an rleSTS. Note, however, that because of the interleav-
ing model of computation of Π , we face the typical situation which motivated the
introduction of fairness into state transition systems in Sect. 6.5. For example, an
execution sequence of Π like

[0, 0, atα0, atβ0, α0] � [0, 0, atα1, atβ0, α1] �

[0, 1, atα0, atβ0, α0] � [0, 1, atα1, atβ0, α1] � . . .

never executing the statements of Π2 distorts the intuitive meaning of “executing
Π1 and Π2 in parallel”. The additional fairness requirement obviously avoids such
sequences and we make our approach more precise now by fixing that, in general,
we will view concurrent programs as fair rooted (extended labeled) state transition
systems.

Note also that after addition of fairness the clause

η(execλ) = tt for exactly one λ ∈ ActΠ

in the above definition of WΠ for the example may be weakened to

η(execλ) = tt for at most one λ ∈ ActΠ

since the stronger one follows from this and the fairness requirement (cf. Sect. 6.5).
In fact, the latter clause will be more appropriate in subsequent cases since it includes
situations in which the system “terminates” by executing no action any more.

There seems to be still another source for some adulteration of concurrent exe-
cution by the interleaving model. Consider the two actions

α : a := a + 1

and

β : a := a − 1.

In reality, “parallel” execution of α and β on a computer with two processors sharing
a common memory could produce different results on a depending on the different
“speeds” of the single machine instructions involved by α and β. In the interleaving
model α and β (viewed as atomic steps) are executed one after the other so that after
their execution a will always have the same value as it had before.
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In general, the problem arises if we view actions as indivisible in the interleaving
computation which consist of more atomic steps in reality. But then interleaving with
respect to these “smaller” actions, i.e., on a “finer” level of granularity of atomic
steps, would adequately model the concurrent execution. Thus, at an appropriate
“level of abstraction”, interleaving can still be viewed as faithfully representing also
this aspect of concurrency.

Although in many cases statements like a := a + 1 might not be an appropriate
level of abstraction we will use such assignments or even more complex statements
as atomic steps in subsequent programs. This is justified by the fact that any co-
herent block of statements (which might “implement” a complex one) can be made
indivisible by means which will be shown in Sect. 8.3.

8.2 Shared-Variables Programs

We now want to make the cursory indications of the previous section more precise.
As mentioned already, there are two main paradigms in concurrent programming and
we begin here with programs in the shared variables style. To obtain a well-defined
vehicle for our discussions we introduce a very simple programming language SVP
for such programs. For any program Π of SVP (briefly: SVP program) we assume
being given a signature SIGΠ and a structure SΠ for SIGΠ . Π has the syntactical
form

var Δ
start J
cobegin Π1 ‖ . . . ‖ Πnp coend

where np ≥ 1. The case np = 1 which makes Π a sequential program is included
for sake of generality. In fact, our treatment covers such programs without any partic-
ularities. As mentioned earlier, however, our real interest is focussed on concurrent
programs with np > 1.

Δ is a list Δ1; . . . ;Δnd of variable declarations of the form

PV1, . . . ,PVnv : s

where s is a sort of SIGΠ and PV1, . . . ,PVnv are called the program variables of
sort s of Π . The initialization J is a formula of the language LFOL(SIG0

Π), shortly
denoted by L0

Π , where SIG0
Π results from SIGΠ by adding the program variables

(of each sort s) of Π to the individual constants (of the same sort) of SIGΠ .
Every Πi , i = 1, . . . ,np, is a process formed according to the following syntac-

tical rules.

process ::= loop statement list endloop

statement list ::= labeled statement | labeled statement ; statement list
labeled statement ::= label : statement
statement ::= simple statement | conditional statement
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simple statement ::= elementary statement | synchronization statement
conditional statement ::=

if condition then statement list else statement list endif

synchronization statement ::=
await condition then elementary statement

with additionally fixing that

• a label is an element of some given set of labels, serving for identifying the
statements,

• all labels occurring in Π are pairwise distinct,
• a condition is a closed formula of L0

Π .

The form of elementary statements is left open. A standard case will be that they are
assignments written in the general form

a1, . . . , am := t1, . . . , tm

(m ≥ 1) where a1, . . . , am are program variables of Π and t1, . . . , tm are terms
(of corresponding sorts) of L0

Π not containing (logical) variables. For forthcoming
application examples, however, we want to leave our options open to use also other
forms.

The informal meaning of an SVP program Π is that its execution runs by inter-
leaving the processes Π1, . . . ,Πnp . The “flow of control” in each Πi is defined as
usual: statements of a statement list are executed sequentially in the order of the list.
(This also fixes that we require elementary statements not to “leave” this normal flow
of control by jumping somewhere else.) The execution of a conditional statement

if B then SL1 else SL2 endif

evaluates in a first step the condition B and then continues with the statement list
SL1 if B is true and with SL2 otherwise. The statement list in loop . . . endloop is to
be repeated continuously.

The atomic steps of Π with respect to interleaving are

• executions of simple statements; these steps can be identified by the labels of the
statements,

• the evaluation of the condition of a conditional statement together with the selec-
tion of the respective continuation; such a step can be referred to by the label of
the conditional statement.

The effect of assignments is as usual: the (simultaneously determined) values of
the right-hand terms are assigned to the corresponding left-hand program variables.
The execution of a synchronization statement

await B then ES

consists of executing the elementary statement ES if B is true. If B is false then the
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Πexmp ≡ var a, b : NAT
start a = 0 ∧ b = 1
cobegin loop α0 : a := 2 ∗ b;

α1 : if a < b then α2 : a := a + b
else α3 : b := a + 1

endif;
α4 : a, b := a + 4, b + 1

endloop
‖
loop β0 : await a > 0 then a := a − 1;

β1 : b := b + 1
endloop

coend

Fig. 8.1. A simple program example

step after the step: value of a b control at

initially: 0 1 α0 β0

1 α0 : a := 2 ∗ b 2 1 α1 β0

2 α1 : determination of continuation 2 1 α3 β0

3 β0 : await a > 0 then a := a − 1 1 1 α3 β1

4 α3 : b := a + 1 1 2 α4 β1

5 β1 : b := b + 1 1 3 α4 β0

6 β0 : await a > 0 then a := a − 1 0 3 α4 β1

7 α4 : a, b := a + 4, b + 1 4 4 α0 β1

8 α0 : a := 2 ∗ b 8 4 α1 β1

Fig. 8.2. First steps of a possible run of Πexmp

whole statement is not enabled to execute which means that it cannot be the next step
in the interleaving computation of Π .

Fig. 8.1 shows an SVP program Πexmp over SIGNat and N which illustrates the
concepts of SVP. A possible prefix of a sequence of atomic steps executed according
to the interleaving model is described by the table in Fig. 8.2. The run starts with
a = 0, b = 1 and control being at α0 and β0. The first step can only be α0 since the
condition a > 0 in the synchronization statement β0 is false. In the second step α1

and β0 are enabled and α1, i.e., the evaluation of the condition a < b together with
the selection of continuation at α3 is executed. β0 is taken as the third step and so
on.

Every statement list SL built according to the SVP syntax has the form

λ1 : ST1; . . . ;λl : STl

(l ≥ 1) with labels λ1, . . . , λl and statements ST1, . . . ,STl . The label λ1 will be
denoted by entry(SL). Moreover, any label λ in an SVP program occurs as some



264 8 Verification of Concurrent Programs

λj , 1 ≤ j ≤ l , in such an SL and we may associate with λ the label λseq in the
following way. If λ = λj , 1 ≤ j ≤ l − 1, then λseq = λj+1. For λ = λl we let
λseq = λ̄seq if SL is one of the statement lists in a conditional statement labeled by
λ̄, and λseq = λ1 if SL is the statement list in a process Πi ≡ loop SL endloop. In
the latter case, λ1 is also denoted by λ

(i)
start .

For the first process of the program Πexmp in Fig. 8.1, we have

λ
(i)
start = α0,

αseq
0 = α1,

αseq
1 = αseq

2 = αseq
3 = α4,

αseq
4 = α0.

The labels λseq keep track of the sequential “concatenation” structure of the state-
ments in a process disregarding possible branching by conditional statements. The
latter is additionally captured by associating two labels λthen and λelse with every la-
bel λ of a conditional statement if B then SL1 else SL2 endif: λthen = entry(SL1)
and λelse = entry(SL2). Obviously, λthen and λelse are the labels where to continue
if B is true or false, respectively. In Πexmp , we have αthen

1 = α2 and αelse
1 = α3.

Let now Π be an SVP program over some SIGΠ and SΠ with processes
Π1, . . . ,Πnp and initialization J . Let LabΠ be the set of all labels occurring in Π
and for every sort s of SIGΠ , let X prog

s be the set of program variables of sort s of
Π . According to the discussion in the previous section we view Π as an frleSTS

Π = (X ,V ,W ,T ,Act , start , E)

over SIGΠ and SΠ defined as follows.
Every label of LabΠ uniquely denotes an atomic step in the interleaving compu-

tation of Π and these steps are the actions which cause the transitions of the system.
So LabΠ may be taken as the set of actions:

Act = LabΠ .

By ActΠi
we will denote the set of labels occurring in Πi . Moreover, we will from

now on freely use the wording “statement λ” instead of “statement labeled by λ”. In
X and V we collect the program variables and the additional constructs for λ ∈ Act :

Xs = X prog
s for every sort s of SIGΠ ,

V = {execλ, atλ | λ ∈ Act}.

(Note that this also means that L0
Π is a sublanguage of LΠ which is defined as in

Sect. 6.2. Formulas of L0
Π are formulas of LΠ without propositional constants from

V .) The initial condition is

start ≡
np∧

i=1

atλ(i)
start ∧ J
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expressing that at the beginning the control is at the “start labels” of Π1, . . . , Πnp

and the initialization J holds. The enabling conditions are

enabledλ ≡
{

atλ ∧ B if λ is a synchronization statement with condition B ,
atλ otherwise

for every λ ∈ Act . The set of states is defined by

W = {η : X ∪V → |S| ∪ {ff, tt} |
η(a) ∈ |S|s for a ∈ Xs and every sort s of SIGΠ ,
η(v) ∈ {ff, tt} for v ∈ V ,
η admissible,
η(execλ) = tt for at most one λ ∈ Act ,
η(atλ) = tt for exactly one λ ∈ ActΠi

(i = 1, . . . ,np)}.

Finally,

T = tot(T ′),
T ′ = {(η, η′) ∈W ×W | “description of transitions”}

and “description of transitions” is a list of clauses

if η(execλ) = tt then . . .

for every λ ∈ Act (as exemplified in the previous section). If λ is an elementary
statement ES or a synchronization statement await B then ES in Πi then this clause
is of the form

if η(execλ) = tt then “description of changes of program variables”,
η′(atλseq) = tt,
η′(at λ̄) = η(at λ̄) for every λ̄ ∈ Act \ActΠi

.

The “description of changes of program variables” depends on the form of the ele-
mentary statement ES . For ES being an assignment

a1, . . . , am := t1, . . . , tm

we take

η′(ai) = S
(η)
Π (ti) for i = 1, . . . ,m,

η′(b) = η(b) for b ∈ X \ {a1, . . . , am}.

(Note that we write S
(η)
Π (ti) omitting a variable valuation since ti contains no vari-

ables.) If λ is a conditional statement with condition B in Πi then the above clause
is

if η(execλ) = tt then η′(a) = η(a) for every a ∈ X ,
η′(at λ̄) = η(at λ̄) for every λ̄ ∈ Act \ActΠi

,

if S
(η)
Π (B) = tt then η′(atλthen) = tt

otherwise η′(atλelse) = tt.
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Πexp ≡ var a, b, result : NAT
start a = 2 ∧ b = N ∧ result = 1
cobegin loop α1 : await b �= 0 then skip ;

α2 : if EVEN (b) then α3 : a, b := a ∗ a, b/2
else α4 : b, result := b − 1, result ∗ a

endif
endloop

coend

Fig. 8.3. A transformational program

This schematic definition draws the state transition system directly from the syn-
tactical form of the program. For the example Πexmp in Fig. 8.1 we would get

Act = {α0, α1, α2, α3, α4, β0, β1},
X = XNat = {a, b},
V = {execλ, atλ | λ ∈ Act},
start ≡ atα0 ∧ atβ0 ∧ a = 0 ∧ b = 1,
enabledβ0 ≡ atβ0 ∧ a > 0,
enabledλ ≡ atλ for λ ∈ Act \ {β0}.

The state set W for Πexmp is trivially taken from the general definition and the
entries in the transition relation T amount to clauses like

if η(execα0) = tt then η′(a) = 2 ∗ η(b),
η′(b) = η(b),
η′(atα1) = tt,
η′(atλ) = η(atλ) for λ ∈ Act \ {β0, β1}

and so on for the other actions.
Programs sometimes contain boolean program variables, i.e., program variables

of a sort BOOLEAN associated with operations like not , and , or , and the like and
a two-element set of truth values as its domain. We include such program variables
into the set X of the state system. Alternatively we could join them to the set V and
then use ¬, ∧, ∨ instead of not , and , or , etc. This approach would avoid the “du-
plication” of propositional logic and would be closer to system examples in Chap. 6:
for example, the system variable on in the counter Γcounter was introduced as an
element of VΓcounter

(and not of XΓcounter
). The only reason for our decision for the

present approach is the simplicity and uniformity of its general presentation.
We still note that (sequential or concurrent) SVP programs can also be transfor-

mational in the way that termination – represented as before – can be obtained by
synchronization statements. A simple example is given by the (sequential) program
Πexp in Fig. 8.3 (containing a special elementary statement skip which does not
change any program variable). It is easy to see that Πexp computes the power 2N for
the natural number constant N in the sense that after some transition steps a state is
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reached in which control is at α1, the program variable result has the value 2N , and
which is then repeated forever since b has the value 0.

In concurrent reactive programs the “blocking” effect of the await concept is
used for synchronization. Termination is just not the goal then but may happen unin-
tentionally by “unfortunately” reaching a state in which the control in each process
of the program is at some synchronization statement the enabling condition of which
is false, so no action can be executed any more. Such an undesirable termination is
called deadlock.

In the same way as the representation of an SVP program Π as a state system
the temporal logic semantics Th(Π) of Π can directly be drawn from the syntactical
structure of Π without referring to the rather cumbersome rfleSTS view.

Let again Π be an SVP program over some SIGΠ and SΠ with processes
Π1, . . . ,Πnp and the same denotations as above, and let startΠ , ActΠ , and enabledλ

for λ ∈ ActΠ be defined as before. The temporal signature TSIG for the underlying
language LTLΠ(TSIG) of Th(Π) is

TSIG = (SIGΠ ,X,V)

with

Xs = X prog
s for every sort s of SIGΠ ,

V = {execλ, atλ | λ ∈ ActΠ}.

The set A of axioms of Th(Π) consists of (dataΠ ), (rootΠ ), (nilΠ ), (actionΠ ),
(fairΠ ) originating from our general investigations of Chap. 6 and the following ad-
ditional axioms which describe the general requirements of the state set of Π and the
possible transitions. Firstly, the axioms

(IΠ ) execλ1 → ¬execλ2 for λ1, λ2 ∈ ActΠ , λ1 �= λ2,
(PCΠ ) atλ1 → ¬atλ2 for λ1, λ2 ∈ ActΠi

, i = 1, . . . ,np, λ1 �= λ2

express the interleaving principle and the “uniqueness of the program counters” in
each Πi . Note that (PCΠ ) only describes “η(atλ) = tt for at most one λ ∈ ActΠi

”.
The “exactly one” in this clause is derivable from the subsequent axioms. These
“transition axioms” may be divided as follows: the axioms

(C1Π ) execλ→ �atλseq for every simple statement λ,
(C2Π ) execλ→ (B ∧ �atλthen) ∨ (¬B ∧ �atλelse)

for every conditional statement λ : if B then . . .,
(C3Π ) execλ ∧ at λ̄→ �at λ̄ for every λ ∈ ActΠi

, λ̄ ∈ ActΠ \ActΠi
,

i = 1, . . . ,np

describe the flow of control. (For better readability, we use the nexttime operator
instead of the priming notation for propositional constants atλ.) The change of pro-
gram variable values is expressed by

(PV1Π ) execλ→
∧

a∈X

a ′ = a for every conditional statement λ
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and by an axiom of the general form

(PV2Π ) execλ→ F

with an appropriate formula F for every simple statement. For the standard case of
an assignment

λ : a1, . . . , am := t1, . . . , tm

or a synchronization statement

λ : await B then a1, . . . , am := t1, . . . , tm

(PV2Π ) becomes

(ASSIGNΠ ) execλ →
m∧

i=1

a ′
i = ti ∧

∧

b∈X\{a1,...,am}
b′ = b.

For illustration we give the complete list of temporal axioms for the sample pro-
gram Πexmp of Fig. 8.1.

(rootΠexmp
): init → atα0 ∧ atβ0 ∧ a = 0 ∧ b = 1,

(nilΠexmp
):

∧
λ∈ActΠexmp

¬execλ ∧A→ �A if A is a state formula
of Πexmp ,

(actionΠexmp
): execλ→ atλ for λ ∈ ActΠexmp

\ {β0},
execβ0 → atβ0 ∧ a > 0,

(fairΠexmp
): ��atλ→ �execλ for λ ∈ ActΠexmp

\ {β0},
��(atβ0 ∧ a > 0) → �execβ0,

(IΠexmp
): execλ1 → ¬execλ2 for λ1, λ2 ∈ ActΠexmp

, λ1 �= λ2,
(PCΠexmp

): atαi → ¬atαj for i , j ∈ {0, 1, 2, 3, 4}, i �= j ,
atβi → ¬atβj for i , j ∈ {0, 1}, i �= j ,

(C1Πexmp
): execα0 → �atα1,

execα2 → �atα4,
execα3 → �atα4,
execα4 → �atα0,
execβ0 → �atβ1,
execβ1 → �atβ0,

(C2Πexmp
): execα1 → (a < b ∧ �atα2) ∨ (a ≥ b ∧ �atα3),

(C3Πexmp
): execαi ∧ atβj → �atβj for i ∈ {0, 1, 2, 3, 4}, j ∈ {0, 1},

execβj ∧ atαi → �atαi for i ∈ {0, 1, 2, 3, 4}, j ∈ {0, 1},
(PV 1Πexmp

): execα1 → a ′ = a ∧ b′ = b,
(PV 2Πexmp

): execα0 → a ′ = 2 ∗ b ∧ b′ = b,
execα2 → a ′ = a + b ∧ b′ = b,
execα3 → a ′ = a ∧ b′ = a + 1,
execα4 → a ′ = a + 4 ∧ b′ = b + 1,
execβ0 → a ′ = a − 1 ∧ b′ = b,
execβ1 → a ′ = a ∧ b′ = b + 1.
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The list is rather long but it should be evident that it is almost trivial to “read it
from the program text”. The axioms (IΠexmp

) are included according to the general
“translation”. As in earlier examples in the previous chapters they are derivable here
from the other axioms and could be omitted.

8.3 Program Properties

Synchronization and communication in concurrent programs induce a lot of program
properties which arise naturally from typical requirements posed on the desired inter-
action of the involved processes. We give now a cursory overview of some of them
in the framework of shared variables programs of SVP adding sporadically some
examples of formal derivations. We follow again our simple classification given in
Sect. 7.1 and begin with invariance properties.

A basic synchronization pattern of concurrent programming is induced by exclu-
sion requirements. Assume, as the simplest case, a program Π with two processes
Π1 and Π2 each of which contains a statement list SL1 and SL2, respectively, which
are critical sections with the requirement that control of Π1 and Π2 should never be
in these sections at the same time. If α1, . . . , αk and β1, . . . , βl are the statements of
SL1 and SL2, respectively, then this mutual exclusion property can be specified by
the formula

startΠ ∧A→ �¬
(

k∨

i=1

atαi ∧
l∨

j=1

atβj

)

where A might be some precondition holding (additionally to startΠ ) at the begin-
ning of every execution sequence of Π . If A ≡ true then this description may be
shortened to the global invariant

�¬
(

k∨

i=1

atαi ∧
l∨

j=1

atβj

)

(according to the remarks in Sect. 7.1 where we also explained the use of startΠ
instead of init in such formulas).

A second basic synchronization pattern arises from the possible situation that the
execution of some statement λ will generate a fault if some associated condition Cλ

is violated. Synchronization should guarantee fault freedom by assuring that Cλ is
true whenever control is at λ. The general form (with a possible precondition) of this
property is

startΠ ∧A→ �(atλ→ Cλ).

Example. Consider the well-known producer-consumer scheme given by the pro-
gram Πpc in Fig. 8.4. The first process Πp of Πpc – the producer – continuously
produces in α0 an object represented by the program variable obj of a sort OBJECT
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Πpc ≡ var ex , bf , be : NAT ;
obj , out : OBJECT ;
b : BUFFER

start ex = 1 ∧ bf = 0 ∧ be = CAP
cobegin loop α0 : produce obj ;

α1 : await be > 0 then be := be − 1;
α2 : await ex = 1 then ex := 0;
α3 : store obj in b;
α4 : ex , bf := 1, bf + 1

endloop
‖
loop β0 : await bf > 0 then bf := bf − 1;

β1 : await ex = 1 then ex := 0;
β2 : remove out from b;
β3 : ex , be := 1, be + 1;
β4 : consume out

endloop
coend

Fig. 8.4. The producer-consumer scheme

and stores it into a buffer b in α3. b is of a sort BUFFER which is endowed with
two unary predicates ISEMPTY and ISFULL (with obvious interpretations) and
a natural number CAP for the buffer capacity, i.e., the number of objects which
can be stored in a buffer. b is shared with the second component Πc of Πpc , called
consumer. This process continuously takes an object, represented by the program
variable out , from b in β2 and uses (“consumes”) it in some internal computation in
β4. For simplicity these activities of the two processes are represented by elementary
statements, thus fixing a level of abstraction which might be not realistic. As dis-
cussed in Sect. 8.1, the effects of the two concurrent accesses α3 and β2 to the buffer
depend on how indivisible they are. In fact, they are critical sections in the present
wording and it is just one particular purpose of the synchronization – organized by
the remaining statements – to exclude them (at least) mutually, i.e., to guarantee the
mutual exclusion property

�¬(atα3 ∧ atβ2).

This does not make α3 and β2 “completely indivisible” but the interference of
other actions of the processes with α3 and β2 is not critical. α0 and β4 are not critical
at all in this sense, so the given abstraction does not really distort the analysis of the
program.

Another requirement is that storing into the buffer is only possible if it is not full
and for getting something from b it must not be empty. So the formulas

�(atα3 → ¬ISFULL(b)),
�(atβ2 → ¬ISEMPTY (b))



8.3 Program Properties 271

describe two properties of fault freedom. �

Synchronization of processes according to exclusion or fault freedom require-
ments may cause, if not performed carefully, new undesirable effects like deadlocks
mentioned already in the previous section. Consider again a program with two pro-
cesses Π1 and Π2. A deadlock is given by a state in which control is at some syn-
chronization statement α in Π1 and at another synchronization statement β in Π2

and the enabling conditions of both α and β are false. So, the property of deadlock
freedom that this cannot happen is generally specified by formulas

startΠ ∧A→ �(atα ∧ atβ → enabledα ∨ enabledβ)

for every pair α and β as described.

Example. In the producer-consumer program Πpc of Fig. 8.4 deadlock freedom is
guaranteed if CAP is not 0. This is described by the four formulas

startΠpc
∧ CAP > 0 → �(atα1 ∧ atβ0 → be > 0 ∨ bf > 0),

startΠpc
∧ CAP > 0 → �(atα1 ∧ atβ1 → be > 0 ∨ ex = 1),

startΠpc
∧ CAP > 0 → �(atα2 ∧ atβ0 → ex = 1 ∨ bf > 0),

startΠpc
∧ CAP > 0 → �(atα2 ∧ atβ1 → ex = 1)

which are easily drawn from the general form. �

The properties so far may be relevant in both reactive and transformational pro-
grams. For the latter case the property of partial correctness is additionally impor-
tant. Assume that the goal of the computation of a transformational program Π is
expressed by a formula B of L0

Π , often called a postcondition of Π . Partial correct-
ness then means that

“whenever Π terminates, B will hold in the terminal state”.

According to our former remarks a terminal state of an execution sequence of Π is
characterized by the fact that no action is executed any more. So, partial correctness
of Π may be expressed by a formula

startΠ ∧A→ �(nilΠ → B).

Example. Consider the program Πexp shown in Fig. 8.3 in the previous section. Its
postcondition describing the result of its execution is

result = 2N

and since there is no precondition for this result, the partial correctness may be stated
by the formula

startΠexp
→ �(nilΠexp

→ result = 2N )

or in an even shorter way by formulating the postcondition as a global invariant. �
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The verification of such properties, i.e., their derivation from the axioms of the
corresponding temporal semantics, may use the complete repertory developed in
Sect. 7.2. More particularly, since programs are labeled state systems, the invariant
rules are applicable. Note that the fairness assumption introduced for compensating
the interleaving model is not needed for proofs with these rules. The program spec-
ification axioms directly reflect the program text as we have seen in the previous
section. We will not write them down explicitly in subsequent derivation examples
but have them implicitly “in mind”, and when using them in single derivation steps
we will indicate this by (Π).

Example. We consider the producer-consumer program Πpc in Fig. 8.4 and first
verify the mutual exclusion property

�¬(atα3 ∧ atβ2).

To this end we now have to specify the statements produce obj , store obj in b,
remove out from b, and consume out a bit more precisely. We do not need to know
too much about them but at least we fix that they have no particular enabling con-
ditions and do not change the program variables ex , bf , and be the only purpose of
which is to realize the synchronization. So we may assume that

enabledλ ≡ atλ for λ ∈ {α0, α3, β2, β4}

and that

(1) execλ→ ex ′ = ex ∧ bf ′ = bf ∧ be ′ = be for λ ∈ {α0, α3, β2, β4}

is a part of (or derivable from) the specification of these statements. Let now

A ≡ atα3 ∨ atα4,
B ≡ atβ2 ∨ atβ3,
C ≡ (A ∧ ¬B ∧ ex = 0) ∨ (¬A ∧ B ∧ ex = 0) ∨ (¬A ∧ ¬B ∧ ex = 1).

With startΠpc
≡ atα0 ∧ at β0 ∧ ex = 1 ∧ bf = 0 ∧ be = CAP it is clear that C

holds at the beginning of Πpc :

(2) startΠpc
→ C (pred)

Moreover, C is an invariant of every action of Πpc . First we have trivially

(3) C invof λ for every λ ∈ ActΠpc
\ {α2, α4, β1, β3} (Π),(1)

For α2 we get

(4) execα2 → ex = 1 ∧ ex ′ = 0 (Π)
(5) execα2 ∧ C → ¬B ∧ �A ∧ �¬B (4),(Π)
(6) C invof α2 (4),(5)

and for α4 the invariance is derived by
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(7) execα4 → A ∧ �¬A (Π)
(8) execα4 ∧ C → ¬B ∧ ex = 0 ∧ �¬B ∧ ex ′ = 1 (7),(Π)
(9) C invof α4 (7),(8)

In the same obvious way we obtain

(10) C invof β1

(11) C invof β3

and finally

(12) C invof ActΠpc
(3),(6),(9),(10),(11)

Now we apply the rule (invstartΠpc
) and get the desired property:

(13) �C (invstart),(2),(12)
(14) C → ¬(atα3 ∧ atβ2) (taut)
(15) �¬(atα3 ∧ atβ2) (13),(14)

Turning to the four formulas given above for expressing the deadlock freedom of
Πpc , the second, third, and fourth of them follow immediately from line (13) of this
derivation:

(16) startΠpc
∧ CAP > 0→

�(atα1 ∧ atβ1 → be > 0 ∨ ex = 1) (prop),(13)
(17) startΠpc

∧ CAP > 0→
�(atα2 ∧ atβ0 → ex = 1 ∨ bf > 0) (prop),(13)

(18) startΠpc
∧ CAP > 0→ �(atα2 ∧ atβ1 → ex = 1) (prop),(13)

For deriving the first one of the four formulas we let

D ≡ (atα0 ∨ atα1) ∧ (atβ0 ∨ atβ4) → be > 0 ∨ bf > 0

and obtain

(19) startΠpc
∧ CAP > 0→ D (pred)

(20) D → (atα1 ∧ atβ0 → be > 0 ∨ bf > 0) (taut)
(21) execα1 → �¬(atα0 ∨ atα1) (Π)
(22) D invof α1 (21)
(23) execα4 → bf ′ > 0 (data),(Π)
(24) D invof α4 (23)
(25) execβ0 → �¬(atβ0 ∨ atβ4) (Π)
(26) D invof β0 (25)
(27) execβ3 → be ′ > 0 (data),(Π)
(28) D invof β3 (27)
(29) D invof λ for every λ ∈ ActΠpc

\ {α1, α4, β0, β3} (Π),(1)
(30) D invof ActΠpc

(22),(24),(26),
(28),(29)

(31) D → �(atα1 ∧ atβ0 → be > 0 ∨ bf > 0) (inv),(20),(30)
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(32) startΠpc
∧ CAP > 0→

�(atα1 ∧ atβ0 → be > 0 ∨ bf > 0) (19),(31)

Note that only for this deadlock freedom formula concerning the statements α1 and
β0 do we really need the precondition CAP > 0. �

Precedence properties of concurrent programs usually state temporal relation-
ships of the occurrence of events. Simplest forms could be specified by formulas
like

A→ execλ1 before execλ2

or

A→ atλ1 before atλ2

expressing that, if A holds in some state, then subsequently λ1 will be executed
before λ2 or control will be at λ1 before it will reach λ2, respectively. More com-
plicated forms, however, naturally arise as well. Examples are given by “output” ac-
tions which should occur in a special order, or when necessary or desired orderings
of events in different processes according to some scheduling are to be described.

Examples. 1) Consider again the producer-consumer program Πpc of Fig. 8.4 and
assume that all objects produced and stored into the buffer b are pairwise distinct. If
some object x is stored and another object y is not (yet) in b then a desirable prop-
erty could be that x will be removed from b by the consumer before this (possibly)
happens with y . Presupposing a predicate symbol ∈ for membership of objects in the
buffer (and /∈ for its negation) we can specify this by the formula

execα3 ∧ obj = x ∧ y /∈ b ∧ x �= y →
(execβ2 ∧ out = x ) before (execβ2 ∧ out = y)

where x and y are variables of sort OBJECT .
2) Consider a modification Πpcs of the program Πpc of Fig. 8.4 containing not

only one but nc > 1 consumers, denoted by Π
(1)
c , . . . , Π

(nc)
c . Whenever more than

one of them is trying to take an object from the buffer, these processes are in a mutual
competition for this and without additional assumptions it is not guaranteed that ev-
ery one of the competitors will eventually be served. So there should be an additional
scheduler process in Πpcs organizing the access to the buffer for the consumers. This
process could look like

loop γ0 : determine j ∈ {1, . . . ,nc};
γ1 : await next = 0 then next := j

endloop

γ0 determines in a not further specified appropriate way the index j of the consumer
Π

(j )
c who will be allowed to compete for the next buffer access with the producer.

As soon as no other consumer is in this position, expressed by next = 0, this j
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is assigned to the program variable next . Every Π
(i)
c has a modified form: besides

additionally resetting next to 0 after its buffer access, it has a new entry statement

β
(i)
0 : await next = i

awaiting to be “the next admitted” consumer. (The statement await B abbreviates
await B then skip where skip is as explained in the previous section.)

A reasonable requirement for the scheduler could be not to determine a next
admitted consumer who is not requesting the access to the buffer. At first glance one
might try to describe this property by

atγ1 ∧ j = i → atβ(i)
0 for i = 1, . . . ,nc

(“if i is the result of the determination of j in γ0 then Π
(i)
c is waiting for being ad-

mitted”), but these formulas do not meet the intention precisely: Π
(i)
i could already

be the admitted consumer from the “previous round” of the scheduler, will use this
grant now, and is then already scheduled to be the next admitted one again.

A more careful description is

¬atβ(i)
0 → ¬(atγ1 ∧ j = i) unl atβ(i)

0

(for i = 1, . . . ,nc). This formula states that if Π
(i)
c is not waiting for being next

admitted then i will not be the result of the determination of j in γ0 until Π
(i)
c

requests to be admitted. Observe that we have used here the non-strict operator unl.
This excludes that γ0 is executed with the result j = i in the present state. Describing
the property with the strict unless would need an additional (invariant) formula for
this purpose:

¬atβ(i)
0 → ¬(atγ1 ∧ j = i) unless atβ(i)

0 ,

�(¬atβ(i)
0 → ¬(execγ1 ∧ j = i)).

Of particular interest is the order in which the consumers are admitted for the
buffer access. One possible strategy is that of first-come-first-served given by

atβ(i)
0 ∧ ¬atβ(k)

0 → ¬(execγ1 ∧ j = k) unl (execγ1 ∧ j = i)

or

atβ(i)
0 ∧ ¬atβ(k)

0 → ¬(execγ1 ∧ j = k) unless (execγ1 ∧ j = i),

�(atβ(i)
0 ∧ ¬atβ(k)

0 → ¬(execγ1 ∧ j = k))

(for i , k = 1, . . . ,nc, i �= k ) stating that if Π
(i)
c is waiting for admittance and Π

(k)
c

is not then this is not granted to Π
(k)
c until Π

(i)
c will be served.

Of course, all such properties may also be specified using other binary operators;
we only give two transcriptions for the latter unless formula:
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atβ(i)
0 ∧ ¬atβ(k)

0 → (execγ1 ∧ j = i) before (execγ1 ∧ j = k),

atβ(i)
0 ∧ ¬atβ(k)

0 → (j = i) atnext (execγ1 ∧ (j = i ∨ j = k)).

The informal interpretation of the first formula is obvious and the second reads “if
Π

(i)
c is waiting for admittance and Π

(k)
c is not then the next grant to Π

(i)
c or Π

(k)
c

goes to Π
(i)
c ”. �

For the derivation of precedence properties the rules collected in Sect. 7.3 are
the appropriate means. As in the case of invariance properties, the invariance rules
developed there for labeled systems may usually be applied most profitably, and
fairness is not needed for performing verifications with these rules.

Example. Let us prove the property of Πpc given in the first example above. To be
able to do this we have to specify the effect of the storing and removing actions α3

and β2 in more detail. We first fix that the formulas

execα3 → b′ = INSERT (b, obj ),
execβ2 → b′ = DELETE (b, out)

are contained in Th(Πpc) where INSERT and DELETE are appropriate function
symbols with obvious interpretations (and the “usual” properties).

We also assume that the buffer is not changed by α0 and β4, and that the program
variable out is not changed by α0, α3, and β4. Hence the formulas

execλ→ b′ = b for λ ∈ {α0, β4},
execλ→ out ′ = out for λ ∈ {α0, α3, β4}

should be contained in (or derivable from) Th(Πpc).
Most important, however, the desired assertion only holds if the buffer b is in fact

organized as a first-in-first-out queue. In order to specify this we assume being given
a predicate symbol AHEAD (BUFFER OBJECT OBJECT) with the interpretation that

AHEAD(xb, x , y)

means that the (different) objects x and y are contained in the buffer xb and x “is
ahead of” y . The queuing mechanism of b can then be specified by formulas at least
containing

execα3 ∧ obj = y ∧ x ∈ b → AHEAD(b′, x , y),
execα3 ∧AHEAD(b, x , y) → AHEAD(b′, x , y),
execβ2 ∧AHEAD(b, x , y) → out �= y

the informal meaning of which is evident. Let now

D ≡ execβ2 ∧ out = x .

For better readability we will write D(x ) for D and D(y) for Dx (y). D(x ) and D(y)
express that an object x (y , respectively) is removed from the buffer by the consumer
process. With the given assumptions we want to prove the assertion
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execα3 ∧ obj = x ∧ y /∈ b ∧ x �= y → D(x ) before D(y).

To this end we let

A1 ≡ execα3 ∧ obj = x ∧ y /∈ b ∧ x �= y ,
A2 ≡ x ∈ b ∧ y /∈ b,
A3 ≡ AHEAD(b, x , y),
A ≡ (A1 ∨A2 ∨A3) ∧ ¬D(x )

and begin with showing that A1 ∨ A2 ∨ A3 is an invariant of every action of Πpc

other than β2.

(1) (A1 ∨A2 ∨A3) invof λ for λ ∈ ActΠpc
\ {α3, β2} (Π)

(2) execα3 ∧A1 → �A2 (Π)
(3) execα3 ∧A2 → �(A2 ∨A3) (Π)
(4) A3 invof α3 (Π)
(5) (A1 ∨A2 ∨A3) invof α3 (2),(3),(4)

For β2 we have

(6) A1 invof β2 (Π)
(7) execβ2 ∧A2 ∧ out �= x → �A2 (Π)
(8) execβ2 ∧A3 ∧ out �= x → �A3 (Π)
(9) execβ2 ∧A→ �(A1 ∨A2 ∨A3) (6),(7),(8)

We aim at using the rule (invbeforeΠpc
) for showing

A→ D(x ) before D(y)

and derive now the essential premise for this.

(10) A1 ∨A2 ∨A3 → x �= y (pred)
(11) A→ �(x �= y) (10),(ltl6)
(12) execλ ∧A→ �((A1 ∨A2 ∨A3) ∧ x �= y)

for every λ ∈ ActΠpc
(1),(5),(9),(11)

(13) execλ ∧A→ �(A ∨ (D(x ) ∧ x �= y))
for every λ ∈ ActΠpc

(12)
(14) A ∨ (D(x ) ∧ x �= y) → ¬D(y) (Π)
(15) execλ ∧A→ �¬D(y) ∧ �(A ∨D(x ))

for every λ ∈ ActΠpc
(13),(14)

With (15) we easily obtain

(16) nilΠpc
∧A→ ¬D(y) (taut)

(17) A→ D(x ) before D(y) (invbefore),
(15),(16)

and finally
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(18) execα3 ∧ obj = x ∧ y /∈ b ∧ x �= y → A (Π)
(19) execα3 ∧ obj = x ∧ y /∈ b ∧ x �= y → D(x ) before D(y) (17),(18) �

Turning finally to eventuality properties, consider again a program with pro-
cesses which are synchronized for some purposes. The synchronization might be
“too strong” causing deadlocks, i.e., situations in which no action can be executed
any more. But even if this is excluded, “local blocking” could occur in a single pro-
cess. Assume a statement λ in some of the processes. If control is at λ it should be
guaranteed that λ is eventually executed. This property is specified by

atλ→ �execλ

and called freedom of starvation at λ. Related to this are accessibility properties of
the form

atλ1 → �atλ2

expressing that the process in question is not stuck at λ1 but will sometime reach λ2

from there. A more general form is

atλ1 ∧A→ �(atλ2 ∧ B)

in which the formulas A and B are called intermittent assertions.

Example. In the producer-consumer program Πpc of Fig. 8.4 relevant starvation
formulas are

atα1 → �execα1

and the same for the other synchronization statements α2, β0, and β1. (For the re-
maining actions starvation freedom is trivial because of the fairness assumption.)
These properties can also be expressed by accessibility formulas, e.g.,

atα1 → �atα2.

More general accessibilities in Πpc concern the storing and removing actions α3 and
β2. They are preceded by synchronization statements. If, say, the producer process
“tries” to store, i.e., reaches α1, it might be forced to wait, but after some time it
should really reach the storing action:

atα1 → �atα3.

For the consumer the analogous requirement is

atβ0 → �atβ2. �

For transformational programs Π essential eventuality properties are termination
and total correctness. The general form of the former is

startΠ ∧A→ �nilΠ
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where A is again some precondition. Total correctness combines termination and
partial correctness (with postcondition B ) and is described by

startΠ ∧A→ �(nilΠ ∧ B)

expressing that, provided A holds initially, Π will terminate and B will hold in the
terminal state.

Example. Termination of program Πexp in Fig. 8.3 of Sect. 7.1 is stated by

startΠexp
→ �nilΠexp

and total correctness by

startΠexp
→ �(nilΠexp

∧ result = 2N ). �

For the formal verification of eventuality properties all the material of Sect. 7.4
may be used. Particularly this includes the rules (fairsomΓ ) and (fairwfrΓ ) for fair
systems. In fact, the Π-validity of many eventuality properties of reactive programs
Π is only assured by the fairness assumption for Π , so these rules are often inher-
ently needed.

Example. We show the accessibility property

atα1 → �atα3

for the producer-consumer program Πpc of Fig. 8.4. First of all, however, we have
to note that the validity of this property depends on the fact that the capacity CAP
of the buffer is not 0. Hence, more precisely we could show

atα1 ∧ CAP > 0 → �atα3.

Another possibility is to take CAP > 0 as a “global” assumption and derive the
accessibility formula from it:

CAP > 0 � atα1 → �atα3.

(Noting that CAP > 0 ↔ �(CAP > 0) is derivable for Πpc and applying the
Deduction Theorem and its converse, the two approaches can easily be seen to be
equivalent.)

We follow the second idea and begin our derivation with

(1) CAP > 0 assumption

From (1) and the four deadlock freedom formulas proved already in a preceding
example we get by simple propositional reasoning:

(2) �(atα1 ∧ atβ0 → be > 0 ∨ bf > 0)
(3) �(atα1 ∧ atβ1 → be > 0 ∨ ex = 1)
(4) �(atα2 ∧ atβ0 → ex = 1 ∨ bf > 0)
(5) �(atα2 ∧ atβ1 → ex = 1)
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Furthermore we note the invariance property

(6) �(atβ0 ∨ atβ1 ∨ atβ2 ∨ atβ3 ∨ atβ4)

which is trivially proved with (invstartΠpc
). For the main proof we first want to show

atα1 → �atα2

with the rule (fairsomΠpc
). Taking Acth = {α1} we immediately have

(7) execα1 ∧ atα1 → �atα2 (Π)
(8) execλ ∧ atα1 → �(atα2 ∧ atα1)

for every λ ∈ ActΠpc
\ {α1} (Π)

The essential part is to show the third premise of (fairsomΠpc
) which reads

�atα1 → �(atα1 ∧ be > 0)

here. We have

(9) �atα1 ∧ be = 0 ∧ atλ→ enabledλ

for λ ∈ {β0, β1, β2, β3, β4} (2),(3)
(10) �atα1 ∧ be = 0 ∧ atλ→ execλ

for λ ∈ {β0, β1, β2, β3, β4} (9),(Π)
(11) �atα1 ∧ be = 0 ∧ atβ0 → �(�atα1 ∧ be = 0 ∧ atβ1) (10),(Π)
(12) �atα1 ∧ be = 0 ∧ atβ1 → �(�atα1 ∧ be = 0 ∧ atβ2) (10),(Π)
(13) �atα1 ∧ be = 0 ∧ atβ2 → �(�atα1 ∧ be = 0 ∧ atβ3) (10),(Π)
(14) �atα1 ∧ be = 0 ∧ atβ3 → �(be > 0) (10),(Π)
(15) �atα1 ∧ be = 0 ∧ atβ4 → �(�atα1 ∧ be = 0 ∧ atβ0) (10),(Π)
(16) �atα1 ∧ be = 0 ∧ atλ→ �(be > 0)

for λ ∈ {β0, β1, β2, β3, β4} (11)–(15)
(17) �atα1 ∧ be = 0 → �(be > 0) (6),(16)
(18) �atα1 ∧ be > 0 → �(be > 0) (T5)
(19) �atα1 → �(be > 0) (17),(18)

With (19) we now get our first goal:

(20) �atα1 → �(atα1 ∧ be > 0) (19)
(21) atα1 → �atα2 (fairsom),

(7),(8),(20)

Taking now Acth = {α2} we have

(22) execα2 ∧ atα2 → �atα3 (Π)
(23) execλ ∧ atα2 → �atα2 for every λ ∈ ActΠpc

\ {α2} (Π)

It is evident that

�atα2 → �(ex = 1)
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can be shown in steps completely analogous to (9)–(19); so we get

(24) atα1 → �(atα2 ∧ ex = 1)

as above and hence

(25) atα2 → �atα3 (fairsom),
(22),(23),(24)

which then yields the desired result:

(26) atα1 → �atα3 (21),(25) �

8.4 A Mutual Exclusion Program

In this section we want to elaborate the verification of a program example in full
detail. Fig. 8.5 shows the program ΠPet , called Peterson’s algorithm, which is an-
other realization of mutual exclusion (for two processes). The critical sections of the
processes Π1 and Π2 of ΠPet are represented by the statements α3 and β3. The
statements α1, α2, α4 and β1, β2, β4 organize the synchronization and α0 and β0

represent the remaining parts of the processes which are not critical with respect to
interference. (Observe again the notation await B for await B then skip.) A pro-
cess Πi , i ∈ {1, 2}, intending to enter its critical section, signals this by setting ai to
1. After leaving the critical section ai is reset to 0. The program variable c is used to
resolve conflicts when both processes try to enter their critical sections.

For α0, α3, β0, β3 we only fix that they have no particular enabling conditions
and that they do not change the program variables a1, a2, and c:

ΠPet ≡ var a1, a2, c : NAT
start a1 = 0 ∧ a2 = 0 ∧ c = 1
cobegin loop α0 : noncritical;

α1 : a1, c := 1, 1;
α2 : await a2 = 0 ∨ c = 2;
α3 : critical;
α4 : a1 := 0

endloop
‖
loop β0 : noncritical;

β1 : a2, c := 1, 2;
β2 : await a1 = 0 ∨ c = 1;
β3 : critical;
β4 : a2 := 0

endloop
coend

Fig. 8.5. Peterson’s algorithm for mutual exclusion
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enabledλ ≡ atλ for λ ∈ {α0, α3, β0, β3},
execλ→ a ′

1 = a1 ∧ a ′
2 = a2 ∧ c′ = c for λ ∈ {α0, α3, β0, β3}.

Note, moreover, that

startΠPet
≡ atα0 ∧ atβ0 ∧ a1 = 0 ∧ a2 = 0 ∧ c = 1.

Our first assertion is

(a) �¬(atα3 ∧ atβ3)

stating the mutual exclusion property of ΠPet . To derive this we introduce the ab-
breviation

atL ≡
∨

λ∈L

atλ

for any L ⊆ ActΠPet
and let

A1 ≡ (at {α0, α1} ↔ a1 = 0) ∧ (at {α2, α3, α4} ↔ a1 = 1),
A2 ≡ (at {β0, β1} ↔ a2 = 0) ∧ (at {β2, β3, β4} ↔ a2 = 1),
A3 ≡ atα3 → a2 = 0 ∨ c = 2,
A4 ≡ atβ3 → a1 = 0 ∨ c = 1,
A ≡ A1 ∧A2 ∧A3 ∧A4 .

We show the following properties for A:

(a1) A invof λ for every λ ∈ ActΠ1 .
(a2) A invof λ for every λ ∈ ActΠ2 .
(a3) �A.

Derivation of (a1).

(1) A2 invof λ for λ ∈ {α0, α1, α4} (Π)
(2) A4 invof λ for λ ∈ {α2, α3} (Π)
(3) execα0 ∧A→ atα0 ∧ a1 = 0 ∧ �(atα1 ∧ a1 = 0) (Π)
(4) A invof α0 (1),(3)
(5) execα1 ∧A→ �(atα2 ∧ a1 = 1 ∧ c = 1) (Π)
(6) A invof α1 (1),(5)
(7) execα2 ∧A→ atα2 ∧ a1 = 1 ∧ (a2 = 0 ∨ c = 2) (Π)
(8) execα2 ∧A→ �(atα3 ∧ a1 = 1 ∧ (a2 = 0 ∨ c = 2)) (7),(Π)
(9) A invof α2 (2),(8)
(10) execα3 ∧A→ atα3 ∧ a1 = 1 ∧ �(atα4 ∧ a1 = 1) (Π)
(11) A invof α3 (2),(10)
(12) execα4 ∧A→ �(atα0 ∧ a1 = 0) (Π)
(13) A invof α4 (1),(12)
(14) A invof λ for every λ ∈ ActΠ1 (4),(6),(9)

(11),(13) �
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The derivation of (a2) is “symmetrical” and evident.

Derivation of (a3).

(1) startΠPet
→ A (Π)

(2) A invof ActΠPet
(a1),(a2)

(3) �A (invstart),(1),(2) �

With (a3) we are able now to prove (a) by showing that A implies that atα3 and atβ3

cannot both be true at the same time.

Derivation of (a).

(1) A ∧ atα3 → a2 = 0 ∨ c = 2 (taut)
(2) A ∧ a2 = 0 → ¬atβ3 (taut)
(3) A ∧ atα3 ∧ atβ3 → c = 2 (1),(2),(Π)
(4) A ∧ atβ3 → a1 = 0 ∨ c = 1 (taut)
(5) A ∧ a1 = 0 → ¬atα3 (taut)
(6) A ∧ atα3 ∧ atβ3 → c = 1 (4),(5),(Π)
(7) A→ ¬(atα3 ∧ atβ3) (3),(6)
(8) �¬(atα3 ∧ atβ3) (a3),(7) �

Next we consider the relevant accessibility properties of ΠPet . They are given
by the assertions

(b) atα1 → �atα3,
(c) atβ1 → �atβ3

expressing for each of the two processes of ΠPet that if it leaves its non-critical
section and indicates its intention to enter the critical one then it will eventually
proceed there.

We first derive (b) with the rule (fairsomΠPet
) in a similar way to how we showed

the accessibility property for the producer-consumer program Πpc in the previous
section. To this end we need the following two invariance properties as lemmas.

(b1) �(
∨4

i=0 atβi).
(b2) �(c = 1 ∨ c = 2).

Both assertions can trivially be proved with the rule (invstartΠPet
). Note, by the way,

that deadlock freedom, expressed by

�(atα2 ∧ atβ2 → a2 = 0 ∨ c = 2 ∨ a1 = 0 ∨ c = 1)

is an immediate consequence of (b2).
The first step for now deriving (b) is to show

(b3) atα1 → �atα2

which is easy since α1 is no synchronization statement. We use the rule (fairsomΠPet
)

with Acth = {α1} (and enabledα1 ≡ atα1).
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Derivation of (b3).

(1) execα1 ∧ atα1 → �atα2 (Π)
(2) execλ ∧ atα1 → �(atα2 ∨ atα1)

for every λ ∈ ActΠPet
\ {α1} (Π)

(3) �atα1 → �atα1 (T8)
(4) atα1 → �atα2 (fairsom),(1),(2),(3) �

The main part of the remaining task is to show

(b4) �atα2 → �(atα2 ∧ (a2 = 0 ∨ c = 2)).

Derivation of (b4). Let B ≡ atα2 ∧ (a2 = 0 ∨ c = 2).

(1) �atα2 ∧ atβ0 → execβ0 ∧ �(�atα2 ∧ atβ1) (Π)
(2) �atα2 ∧ atβ1 → execβ1 ∧ �(�atα2 ∧ atβ2) (Π)
(3) �atα2 ∧ atβ2 ∧ c = 1 → execβ2 ∧ �(�atα2 ∧ atβ3) (Π)
(4) �atα2 ∧ atβ2 ∧ c = 2 → B (ltl3),(T5)
(5) �atα2 ∧ atβ2 → �(�atα2 ∧ atβ3) ∨ B (3),(4),(b2)
(6) �atα2 ∧ atβ3 → execβ3 ∧ �(�atα2 ∧ atβ4) (Π)
(7) �atα2 ∧ atβ4 → execβ4 ∧ �(a2 = 0) (Π)
(8) �atα2 ∧ atβ4 → �B (7)
(9) �atα2 ∧ atλ→ �B for λ ∈ {β0, β1, β2, β3, β4} (1),(2),(5),(6),(8)
(10) �atα2 → �B (9),(b1) �

With (b3) and (b4) we now obtain (b) applying (fairsomΠPet
) with Acth = {α2}

(and enabledα2 ≡ atα2 ∧ (a2 = 0 ∨ c = 2)).

Derivation of (b).

(1) execα2 ∧ atα2 → �atα3 (Π)
(2) execλ ∧ atα2 → �(atα3 ∨ atα2)

for every λ ∈ ActΠPet
\ {α2} (Π)

(3) atα2 → �atα3 (fairsom),(1),(2),(b4)
(4) atα1 → �atα3 (b3),(3) �

It should be clear that the derivation of (c) runs quite symmetrically and need not
be repeated. We rather want to show once more how such a proof can be carried out
with the well-founded relation method as illustrated in a previous (trivial) example in
Sect. 7.4: the flow of control leading from α1 to α3 (for assertion (b)) can be encoded
by a decreasing sequence of natural numbers.

More concretely, the sort NAT is already present in ΠPet and we assume that it
is endowed with the relation ≤. Let

C ≡ (atα1 ∧ y = 3) ∨
(atα2 ∧ atβ2 ∧ c = 1 ∧ y = 2) ∨
(atα2 ∧ (atβ3 ∨ atβ4 ∨ atβ0 ∨ atβ1) ∧ y = 1) ∨
(atα2 ∧ atβ2 ∧ c = 2 ∧ y = 0),
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Hαi
≡ true for i = 0, 1, 2, 3, 4,

Hβ1 ≡ y = 1,
Hβ2 ≡ y = 2,
Hβj

≡ false for j = 0, 3, 4.

For these formulas we show the following assertions.

(b5) execλ ∧Hλ ∧ C → �(atα3 ∨ ∃ȳ(ȳ < y ∧ Cy(ȳ)))
for every λ ∈ ActΠPet

.
(b6) execλ ∧ ¬Hλ ∧ C → �(atα3 ∨ ∃ȳ(ȳ ≤ y ∧ Cy(ȳ)))

for every λ ∈ ActΠPet
.

(b7) �C → �(atα3 ∨
∨

λ∈ActΠPet
(Hλ ∧ enabledλ)).

Recalling the discussion in Sect. 7.4, (b5) and (b6) informally mean that

“helpful actions lead from a state where C holds with some value of y to α3 or
to a state where C holds with a smaller value of y”

and

“non-helpful actions lead from a state where C holds with some value of y to α3

or to a state where C holds with a value of y not greater than before”.

According to the definition of Hλ, the actions α0, α1, α2, α3, α4 are helpful in any
case, β1 and β2 are helpful for y = 1 and y = 2, respectively, and β0, β3, β4 are not
helpful at all.

We do not write out the full derivations of (b5) and (b6) but depict these proofs in
Fig. 8.6 by a diagram as introduced in Sect. 7.4. In this diagram those (helpful or non-
helpful) actions which may not be executed according to their enabling conditions do
not occur as arrow labels. For them the respective formulas (b5) and (b6) are trivial
in the formal derivations. Note that in the state encoded by y = 0, the action β2

cannot be executed because of atα2 → a1 = 1 which follows from (a3).
For the proof of (b7) we show

(b7’) C � �(atα3 ∨
∨

λ∈ActΠPet
(Hλ ∧ enabledλ))

from which (b7) follows with the Deduction Theorem 5.2.2. The derivation of (b7′)
runs by checking all the cases given by the alternatives in C and uses the derived
formula (progressΠPet

).

Derivation of (b7’).

(1) C assumption
(2) y = 3 ∨ y = 2 ∨ y = 0 →

∨
λ∈ActΠPet

(Hλ ∧ enabledλ) (1)

(3) atα2 ∧ atβ3 → �(atα3 ∨ (atα2 ∧ atβ4)) (progress),(Π)
(4) atα2 ∧ atβ4 → �(atα3 ∨ (atα2 ∧ atβ0)) (progress),(Π)
(5) atα2 ∧ atβ0 → �(atα3 ∨ (atα2 ∧ atβ1)) (progress),(Π)
(6) atα2 ∧ atβ1 ∧ C → Hβ1 ∧ enabledβ1 (Π)
(7) y = 1 → �(atα3 ∨

∨
λ∈ActΠPet

(Hλ ∧ enabledλ)) (1),(3)–(6)

(8) �(atα3 ∨
∨

λ∈ActΠPet
(Hλ ∧ enabledλ)) (1),(2),(7) �
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� �

� �

y = 3 atα1

�

�

�

	 β0, β1, β2, β3, β4

� �

� �

y = 2 atα2 ∧ atβ2 ∧ c = 1

� �

� �

y = 1 atα2 ∧ (atβ3 ∨ atβ4 ∨ atβ0 ∨ atβ1)

�

�

�

	 β0, β3, β4

� �

� �

y = 0 atα2 ∧ atβ2 ∧ c = 2

� �

� �

atα3

�

�

�

�

α1

α2

α2, β1

α2, β2

Fig. 8.6. Diagram for the proof of (b5) and (b6)

With (b5), (b6), and (b7) we now easily obtain (b).

Derivation of (b).

(1) ∃yC → �atα3 (fairwfr),(b5),(b6),(b7)
(2) atα1 → Cy(3) (pred)
(3) atα1 → ∃yC (2)
(4) atα1 → �atα3 (1),(3) �

Finally we analyse the “scheduling strategy” of ΠPet which is controlled by the
program variable c. Consider a situation where Π1 is at α2 trying to enter its critical
section. If, at this time, Π2 is not at β2 or c’s value is 2 then Π1 will enter its critical
section before Π2 will do this next. If, on the other hand, Π2 is at β2 and c = 1 then
Π2 will enter its critical section ahead of Π1 (and Π1 will still be at α2 at that time).
These properties are specified by

(d) atα2 ∧ (¬atβ2 ∨ c = 2) → atα3 before atβ3.
(e) atα2 ∧ atβ2 ∧ c = 1 → (atα2 ∧ atβ3) before atα3.

For the proof of (d) we use the lemma (a3) and the mutual exclusion property (a) and
apply the derived formula (progressΠPet

) and the rule (invbeforeΠPet
).
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Derivation of (d). Let D ≡ atα2 ∧ (¬atβ2 ∨ c = 2).

(1) execλ→ ¬D for λ ∈ {α0, α1, α3, α4} (Π)
(2) execα2 → �(atα3 ∧ ¬atβ3) (Π),(a)
(3) execλ ∧D → c = 2 ∧ �(atα2 ∧ ¬atβ3 ∧ c = 2)

for λ ∈ {β0, β1, β3, β4} (Π)
(4) execβ2 → atβ2 ∧ (a1 = 0 ∨ c = 1) (Π)
(5) a1 = 0 → ¬atα2 (a3)
(6) execβ2 → ¬D (4),(5)
(7) execλ ∧D → �¬atβ3 ∧ �(D ∨ atα3)

for λ ∈ ActΠPet
(1),(2),(3),(6)

(8) atβ3 → ¬nilΠPet
(progress)

(9) nilΠPet
∧D → ¬atβ3 (8)

(10) D → atα3 before atβ3 (invbefore),(7),(9) �

The proof of (e) runs quite similarly.

Derivation of (e). Let D1 ≡ atα2 ∧ atβ2 ∧ c = 1, D2 ≡ atα2 ∧ atβ3.

(1) execλ→ ¬D1 for λ ∈ ActΠPet
\ {α2, β2} (Π)

(2) execα2 → a2 = 0 ∨ c = 2 (Π)
(3) a2 = 0 → ¬atβ2 (a3)
(4) execα2 → ¬D1 (2),(3)
(5) execβ2 ∧D1 → �(D2 ∧ ¬atα3) (Π)
(6) execλ ∧D1 → �¬atα3 ∧ �(D1 ∨D2)

for λ ∈ ActΠPet
(1),(4),(5)

(7) atα3 → ¬nilΠPet
(progress)

(8) nilΠPet
∧D1 → ¬atα3 (7)

(9) D1 → D2 before atα3 (invbefore),(6),(8) �

This analysis may be summarized as follows: if Π1 is trying to enter its critical
section at α2 then, in the case of (d), Π1 will proceed to its critical section before
Π2 or, in the case of (e), Π2 will do this before Π1, but in the state this happens the
situation of case (d) is given and Π1 will enter its critical section before Π2 may do
this next time. I.e., if Π1 is trying to enter its critical section then the entry of Π2

into its critical section may be ahead of that of Π1 at most once. This property, called
1-bounded overtaking, can be specified in LTLΠPet

in several ways. One possible
formula is

(f) atα2 → ¬atβ3 unl (atβ3 unl (¬atβ3 unl atα3))

expressing that if Π1 is at α2 then before Π1 will be in its critical section there will
be three subsequent intervals in which Π2 is not at β3, is at β3, and is not at β3,
respectively. (Each of these intervals may be empty.) Another formulation is

(f’) atα2 → atα3 before atβ3 ∨ (atα3 before atβ3) atnext atβ3
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which reads that if Π1 is at α2 then Π1 will be at α3 before Π2 will be at β3 or this
will be the case at least when Π2 will be at β3 next time.

Note that (f) and (f’) (and possible further formulations of this property) are
no longer of the syntactical form of our simple precedence properties defined in
Sect. 7.3. Nevertheless they can rather simply be derived from (d) and (e). We show
this for (f’) applying the general rule (indatnext) which is not restricted to particular
formulas.

Derivation of (f’). Let D ≡ (atα2 ∧ atβ3) before atα3.

(1) atα2 ∧ atβ3 → atα3 before atβ3 (d),(Π)
(2) D → �¬atα3 ∧ �((atα2 ∧ atβ3) ∨D) (Tb16)
(3) atα2 → �(atα2 ∨ atα3) (Π)
(4) D ∧ atα2 → �atα2 (2),(3)
(5) D ∧ atα2 → �(atβ3 → atα3 before atβ3) ∧

�(¬atβ3 → D ∧ atα2) (1),(2),(4)
(6) D ∧ atα2 → (atα3 before atβ3) atnext atβ3 (indatnext),(5)
(7) atα2 ∧ atβ2 ∧ c = 1 → D ∧ atα2 (e)
(8) atα2 ∧ ¬(atβ2 ∧ c = 1) → atα3 before atβ3 (d)
(9) atα2 → atα3 before atβ3 ∨

(atα3 before atβ3) atnext atβ3 (6),(7),(8),(b2) �

It should be clear that the symmetrical relationship described by

(g) atβ2 → ¬atα3 unl (atα3 unl (¬atα3 unl atβ3))

or

(g’) atβ2 → atβ3 before atα3 ∨ (atβ3 before atα3) atnext atα3

and expressing “if Π2 is trying to enter its critical section then it may be overtaken
by Π1 at most once” holds as well and could be derived analogously.

8.5 Message Passing Programs

The second basic paradigm for realizing communication and synchronization of pro-
cesses besides shared program variables is message passing. Concurrent programs
following this concept are also called distributed programs. Message passing takes
place between sending and receiving processes and can be organized in two different
ways: Asynchronous message passing means that the sending process may send a
message independently of whether the receiving process is ready to receive it. Sent
messages are kept in some buffer until they are collected by the receiver. Using syn-
chronous message passing the sender of a message can deliver it only when the re-
ceiving process is ready to accept it at the same moment. Symmetrically, a receiver
can perform such an accepting action only when the sender is ready to send a mes-
sage at the same moment. If a process is ready to send or to receive a message and
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the corresponding other process is not ready for the complementary operation then it
has to wait until this will be the case.

On the abstract level of our investigations, asynchronous message passing does
not show essentially new phenomena compared with the shared variables concept.
In fact, an SVP example like the producer-consumer scheme in Sect. 8.3 could
be viewed as organizing asynchronous communication between its processes. Syn-
chronous communication is, however, a primitive concept with some new aspects not
yet encountered in the previous sections. So we will concentrate only on the latter
and as in the shared variables case we do this by defining a language for programs of
this kind.

The language, briefly called MPP, is a very simple and somewhat modified ver-
sion of the well-known prototype language CSP (“Communicating Sequential Pro-
cesses”). For presentation, we adopt most of the syntactical definitions and notions
from SVP. So, a program Π of MPP (briefly: MPP-program) is again based on a
signature SIGΠ and a structure SΠ for SIGΠ and has the same form

var Δ
start J
cobegin Π1 ‖ . . . ‖ Πnp coend

as an SVP program. The program variables listed in Δ, however, are no longer
“global”, i.e., (possibly) shared by all processes Π1, . . . , Πnp . Each of them is “lo-
cal” for one of the processes and may not be accessed in the other processes.

The syntax for statement list, (labeled) statement, simple statement, and condi-
tional statement is taken from SVP. Synchronization statements are now defined by

synchronization statement ::=
await condition then communication statement

communication statement ::=
channel ! term | channel ? program variable

where channel is an element of some given set of channels, the common use of
which identifies those processes which are passing messages one to another. term is
a term of the underlying language L0

Π . So, synchronization statements have the form

await B1 then ch1! t

or

await B2 then ch2?a

with conditions (i.e., closed formulas of L0
Π ) B1 and B2. We will use the abbrevia-

tions

ch1! t and ch2?a

for await true then ch1! t and await true then ch2?a .
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We say that two synchronization statements of a program Π match if they oc-
cur in different processes of Π , are of the two different forms above such that the
channels ch1 and ch2 are identical, and the term t and the program variable a are
of the same sort. Such statements represent sending (the value of) t from one pro-
cess to another along a communication channel, represented by ch1 (≡ ch2), and the
assignment of the received value to the local program variable a . Their enabledness
is influenced twofold: each of them is only ready to execute if the respective condi-
tions B1 and B2 are true. Furthermore, characterizing synchronous message passing,
both operations are possibly delayed until they can be performed together. The syn-
chronous execution of two matching synchronization statements is an atomic step
with respect to the interleaving computation of Π .

We restrict MPP to a one-to-one communication concept by requiring that for
any communication statement with channel ch occurring in a process Πi there is at
most one other process Πj containing communication statements which refer to the
same channel ch .

Finally we generalize the syntactical definition of processes as follows.

process ::= loop statement list selection endloop

statement list selection ::= statement list |
statement list or statement list selection

A process has now the general form

loop SL1 or . . . or SLn endloop

with n ≥ 1 and statement lists SL1, . . . ,SLn . For n = 1 we get back the previous
form in SVP. The first (atomic) execution step of such a loop consists of selecting
one of those statement lists, say SLi , whose first statement is currently enabled,
and executing the first step of SLi . In subsequent steps the process proceeds with
executing the rest of SLi and then returns to the beginning. The selection of SLi in
case more than one of the first statements are enabled is nondeterministic. If none of
them is enabled then the whole loop is not enabled as well.

Figure 8.7 shows an MPP-program Πmex realizing mutual exclusion for (the
first) two processes Π1 and Π2. It is based on a sort SIGNAL with an individual
constant HELLO the interpretation of which is some “signal” hello. Whenever Π1

or Π2 wants to enter its critical section, it sends this signal on the channel ch1 or
ch2, respectively, to the third process which coordinates the requests. It accepts the
signal from one of the competitors and then waits for the next signal of the selected
process indicating that its critical section is finished. After this both Π1 and Π2 may
compete again in the same way. The program variable a is of no relevance and only
needed for syntactical reasons.

Fig. 8.8 shows the first steps of a possible run of Πmex . After step 2 both Π1 and
Π2 intend to enter their critical section. In step 3 Π2’s signal is accepted by Π3 which
is represented by the simultaneous execution of the statements β1 and γ2. In step 5
the exit signal β3 of Π2 and the corresponding acceptance γ3 are executed together.
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Πmex ≡ var a : SIGNAL
start true
cobegin loop α0 : noncritical;

α1 : ch1!HELLO ;
α2 : critical;
α3 : ch1!HELLO

endloop
‖
loop β0 : noncritical;

β1 : ch2!HELLO ;
β2 : critical;
β3 : ch2!HELLO

endloop
‖
loop γ0 : ch1? a;

γ1 : ch1? a
or
γ2 : ch2? a;
γ3 : ch2? a

endloop
coend

Fig. 8.7. An MPP-program for mutual exclusion

step after the step: control at

initially: α0 β0 γ0, γ2

1 α0 α1 β0 γ0, γ2

2 β0 α1 β1 γ0, γ2

3 β1, γ2 α1 β2 γ3

4 β2 α1 β3 γ3

5 β3, γ3 α1 β0 γ0, γ2

6 α1, γ0 α2 β0 γ1

7 α2 α3 β0 γ1

8 α3, γ1 α0 β0 γ0, γ2

Fig. 8.8. First steps of a possible run of Πmex

After that the analogous steps for Π1 are performed. Note that for Π3, being at the
beginning of the loop is represented by being both at γ0 and at γ2.

We now adopt the definitions of entry(SL) for a statement list SL and of λthen

and λelse from Sect. 8.2 and modify the definitions of λ
(i)
start and λseq as follows.

λ
(i)
start denotes the set

{entry(SLi) | i = 1, . . . ,n}
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for a process Πi ≡ loop SL1 or . . . or SLn endloop, and λseq is now a set of
labels as well. If λ occurs in the context

. . . λ : ST1 ; λ̄ : ST2 . . .

then λseq = {λ̄} and if it labels the last statement of one of the statement lists in a
conditional statement λ̄ then λseq = λ̄seq . If, finally, it labels the last statement of a
statement list of process Πi then λseq = λ

(i)
start .

Additionally, for every synchronization statement λ we let the set λmatch consist
of all labels λ̄ such that λ and λ̄ label matching synchronization statements. For other
statements λ we let λmatch = ∅.

Example. In Πmex we have

λ
(3)
start = {γ0, γ2},

γseq
0 = {γ1},

γseq
2 = {γ3},

γseq
1 = γseq

3 = {γ0, γ3},
γmatch
0 = γmatch

1 = {α1, α3},
γmatch
2 = γmatch

3 = {β1, β3},
αmatch

0 = ∅. �

Let now Π be an MPP-program over some SIGΠ and SΠ with processes
Π1, . . . ,Πnp and initialization J . Again we may view Π as an frleSTS

Π = (X ,V ,W ,T ,Act , start , E)

over SIGΠ and SΠ . X , V , and Act are defined as for SVP programs in Sect. 8.2.
The initial condition is

start ≡
np∧

i=1

∧

λ∈λ
(i)
start

atλ ∧ J .

The enabling condition for a statement λ which is not a synchronization statement is

enabledλ ≡ atλ

as before. If λ is a synchronization statement containing the condition B with
λmatch = {λ1, . . . , λm}, and Bi are the conditions contained in λi , i = 1, . . . ,m ,
then we let

enabledλ ≡ atλ ∧ B ∧
m∨

i=1

(at λi
∧ Bi)

which formalizes the informal explanations given for these statements. Note that
m = 0 is not excluded in which case enabledλ is logically equivalent to false.
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For defining the state set W and the transition relation T we observe from our
example Πmex that now the actions of Act (which are still represented by the labels
occurring in Π) are not identical with the atomic steps in the interleaving compu-
tation of Π and some of them have to be executed together with another one in the
same state. As remarked already in Sect. 6.4, however, the formalization of this is
covered by the concept of the system variables execλ more than one of which may
be true in a state.

We define the set W of states as for SVP programs in Sect. 8.2, only replacing
the clauses

η(execλ) = tt for at most one λ ∈ Act

and

η(atλ) = tt for exactly one λ ∈ ActΠi
(i = 1, . . . ,np)

by the three clauses

if η(execλ1) = tt then η(execλ2) = ff
for every λ1, λ2 ∈ Act , λ1 �= λ2, λ2 /∈ λmatch

1 ,

if η(execλ1) = tt for a synchronization statement λ1

then η(execλ2) = tt for some λ2 ∈ λmatch
1 ,

for i = 1, . . . ,np, either
η(atλ) = tt for every λ ∈ λ

(i)
start and

η(atλ) = ff for every λ ∈ ActΠi
\ λ

(i)
start

or
η(atλ) = ff for every λ ∈ λ

(i)
start and

η(atλ) = tt for exactly one λ ∈ ActΠi
\ λ

(i)
start .

These new clauses fix which execλ are true exclusively or together with another one
and how the atλ can be true if control is either at the beginning of a process or not.

T is also defined as for SVP programs; we only delete the clauses given there for
synchronization statements. Instead, we include for every matching statement pair
λ1 : await B1 then ch!t in process Πi and λ2 : await B2 then ch?a in process Πj ,
i �= j , a clause

if η(execλ1) = η(execλ2) = tt then
η′(a) = η(t),
η′(b) = η(b) for every b ∈ X \ {a},
η′(atλ) = tt for every λ ∈ λseq

1 ∪ λseq
2 ,

η′(atλ) = η(atλ) for every λ ∈ Act \ (ActΠi
∪ActΠj

).

Example. For the program Πmex of Fig. 8.7 we have

Act = {α0, α1, α2, α3, β0, β1, β2, β3, γ0, γ1, γ2, γ3},
X = XSIGNAL = {a},
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V = {execλ, atλ | λ ∈ Act},
start ≡ atα0 ∧ atβ0 ∧ atγ0 ∧ atγ2 ∧ true,
enabledλ ≡ atλ for λ ∈ {α0, α2, β0, β2},
enabledλ ≡ atλ ∧ (atγ0 ∨ atγ1) for λ ∈ {α1, α3},
enabledλ ≡ atλ ∧ (atγ2 ∨ atγ3) for λ ∈ {β1, β3},
enabledλ ≡ atλ ∧ (atα1 ∨ atα3) for λ ∈ {γ0, γ1},
enabledλ ≡ atλ ∧ (atβ1 ∨ atβ3) for λ ∈ {γ2, γ3}.

The transition relation T for Πmex contains pairs (η, η′) with, e.g.,

η(execα3) = η(execγ1) = tt,
η′(a) = hello,
η′(atα0) = η′(atγ0) = η′(atγ2) = tt,
η′(atλ) = η(atλ) for λ ∈ {β0, β1, β2, β3}. �

The definition of an MPP-program Π as a state system also indicates how the
temporal logic semantics Th(Π) of Π has to be defined. Again we reuse the patterns
from the SVP case. More precisely, the language LTLΠ(TSIG) of Th(Π) and the
axioms (dataΠ ), (rootΠ ), (nilΠ ), (actionΠ ), (fairΠ ) are taken as before. (IΠ ) and
(PCΠ ) are replaced by

(I1mp
Π ) execλ1 → ¬execλ2 for λ1, λ2 ∈ ActΠ , λ1 �= λ2, λ2 /∈ λmatch

1 ,

(I2mp
Π ) execλ1 →

∨

λ2∈λmatch

execλ2 for every synchronization statement λ1,

(PC1mp
Π )

(
∧

λ∈Li

atλ ∧
∧

λ∈L′
i

¬atλ

)

∨
(
∧

λ∈Li

¬atλ ∧
∨

λ∈L′
i

atλ

)

for i = 1, . . . ,np,

(PC2mp
Π ) atλ1 → ¬atλ2 for λ1, λ2 ∈ L′

i , i = 1, . . . ,np, λ1 �= λ2

(with Li = λ
(i)
start and L′

i = ActΠ \λ(i)
start ) reflecting the new clauses for the state set

definition. (C1Π ) and (C3Π ) are modified, (C2Π ) is taken as before, and one more
“control axiom” is added:

(C1mp
Π ) execλ1 → �

∧

λ2∈λseq
1

atλ2 for every simple statement λ1,

(C2mp
Π ) execλ→ (B ∧ �atλthen) ∨ (¬B ∧ �atλelse)

for every conditional statement λ : if B then . . .,
(C3mp

Π ) execλ ∧ at λ̄→ �at λ̄ for every λ ∈ ActΠi
,

λ not a synchronization statement,
λ̄ ∈ ActΠ \ActΠi

, i = 1, . . . ,np,

(C4mp
Π ) execλ1 ∧ execλ2 ∧ at λ̄→ �at λ̄

for every λ1 ∈ ActΠi
, λ2 ∈ ActΠj

,
λ1, λ2 matching synchronization statements,
λ̄ ∈ ActΠ \ (ActΠi

∪ActΠj
), i , j = 1, . . . ,np.
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Finally, the axiom (PV1Π ) is now stated as

(PV1mp
Π ) execλ→

∧

a∈X

a ′ = a for every conditional statement λ

and

(COMMΠ ) execλ1 ∧ execλ2 → a ′ = t ∧
∧

b∈X\{a}
b′ = b

for every matching pair λ1 : await B1 then ch!t
and λ2 : await B2 then ch?a

is added. The general form (PV2Π ) is still taken for other statements and this be-
comes again (ASSIGNΠ ) in the standard case of assignments.

Example. We list a few typical instances of the axioms for program Πmex of
Fig. 8.7.

(I1mp
Πmex

): execα1 → ¬execλ for λ ∈ ActΠmex
\ {γ0, γ1}, α1 �= λ,

(I2mp
Πmex

): execβ1 → execγ2 ∨ execγ3,
execγ0 → execα1 ∨ execα3,

(PC1mp
Πmex

): (atγ0 ∧ atγ2 ∧ ¬atγ1 ∧ ¬atγ3) ∨
(¬atγ0 ∧ ¬atγ2 ∧ (atγ1 ∨ atγ3)),

(PC2mp
Πmex

): atγi → ¬atγj for i , j ∈ {1, 3}, i �= j ,

(C1mp
Πmex

): execγ0 → �atγ1,
execγ1 → �(atγ0 ∧ atγ2),

(C3mp
Πmex

): execα0 ∧ atγ2 → �atγ2,

(C4mp
Πmex

): execα1 ∧ execγ0 ∧ atβ0 → �atβ0,

(COMMΠexp
): execα1 ∧ execγ0 → a ′ = HELLO . �

Program properties like exclusions, fault freedom, deadlock and starvation free-
dom, partial or total correctness, termination, and the various accessibility and prece-
dence properties discussed in Sect. 8.3 are also relevant for MPP-programs. Their
specification is similar to as before if not identical. For their verification the same
proof methods as for SVP programs can be used; the only difference is that they are
applied to the modified temporal program axioms.

Example. The mutual exclusion property for the program Πmex in Fig. 8.7 is spec-
ified by the formula

�¬(atα2 ∧ atβ2)

which may be derived as follows. We let

A ≡ (atα2 ∨ atα3 ↔ atγ1) ∧ (atβ2 ∨ atβ3 ↔ atγ3)

and obtain
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(1) execα1 → (execγ0 ∨ execγ1) (Π)
(2) execγ0 → (execα1 ∨ execα3) (Π)
(3) execγ1 ∧A→ ¬atα1 (Π)
(4) execα3 ∧A→ ¬atγ0 (Π)
(5) A→ (execα1 ↔ execγ0) (1)–(4)
(6) execα1 ∧ execγ0 → ¬atγ3 ∧ �(atα2 ∧ atγ1 ∧ ¬atγ3) (Π)
(7) A invof λ for λ ∈ {α1, γ0} (5),(6),(Π)

In an analogous way we obtain

(8) A invof λ for λ ∈ {α3, γ1}
(9) A invof λ for λ ∈ {β1, γ2}
(10) A invof λ for λ ∈ {β3, γ3}

and

(11) A invof λ for λ ∈ {α0, α2, β0, β2}

is trivial. Together we then have

(12) A invof ActΠmex
(7)–(11)

(13) startΠmex
→ A (Π)

(14) �A (invstart),(12),(13)
(15) ¬(atγ1 ∧ atγ3) (Π)
(16) A→ ¬(atα2 ∧ atβ2) (15)
(17) �¬(atα2 ∧ atβ2) (14),(16) �

8.6 A Producer-Consumer Program

We conclude this chapter with one more example. The program Πmpc shown in
Fig. 8.9 is an MPP version of the producer-consumer scheme discussed in Sect. 8.3.
The first process Πp of Πmpc continuously produces an object obj and sends it to
a third process Πb which “manages” the buffer b. The second process Πc , as the
consumer continuously receives an object from Πb , stores it locally on a , and then
consumes it. Πb uses a program variable bo counting the number of objects currently
stored in b. It may receive an object from the producer on the program variable in
– provided bo < CAP where CAP is again the capacity of b – store it into b, and
increase bo by 1. Alternatively – provided bo > 0 – it may send an object from b,
represented by the program variable out , to the consumer, remove it from b, and
decrease bo by 1.

Mutual exclusion of the buffer accesses is trivially guaranteed in Πmpc since they
are no longer performed by Πp and Πc but only by Πb . The same holds for deadlock
freedom. A deadlock could only occur when both Πp and Πc want to communicate
with Πb , control of the latter is at γ0 and γ3, and bo < CAP and bo > 0 are both
false. The formula
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Πmpc ≡ var bo : NAT ;
obj , a, in, out : OBJECT ;
b : BUFFER

start bo = 0
cobegin loop α0 : produce obj ;

α1 : ch1! obj
endloop
‖
loop β0 : ch2? a;

β1 : consume a
endloop
‖
loop γ0 : await bo < CAP then ch1? in;

γ1 : store in in b;
γ2 : bo := bo + 1
or
γ3 : await bo > 0 then ch2! out ;
γ4 : remove out from b;
γ5 : bo := bo − 1

endloop
coend

Fig. 8.9. An MPP-program for the producer-consumer scheme

startΠmpc
∧ CAP > 0 →

�(atα1 ∧ atβ0 ∧ atγ0 ∧ atγ3 → bo < CAP ∨ bo > 0)

states that this will never happen (provided CAP > 0) and is trivial since, in any
state, bo < CAP or bo ≥ CAP > 0.

The relevant eventuality properties of Πmpc are not that trivial. If the producer
wants to send obj to Πb at α1 then this will eventually be performed. This property
can be specified by

atα1 → �execα1.

Of course, its Πmpc-validity depends again on the fact that CAP > 0 which we take
as an assumption, i.e., we assert

(a) CAP > 0 � atα1 → �execα1.

The analogous property for the consumer is

(b) CAP > 0 � atβ0 → �execβ0.

The proofs of both assertions are very similar; we show only (a). Note firstly that

enabledα1 ≡ atα1 ∧ true ∧ atγ0 ∧ bo < CAP ,
enabledβ0 ≡ atβ0 ∧ true ∧ atγ3 ∧ bo > 0,
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enabledγ0 ≡ atγ0 ∧ bo < CAP ∧ atα1 ∧ true,
enabledγ3 ≡ atγ3 ∧ bo > 0 ∧ atβ0 ∧ true,
enabledλ ≡ atλ for λ ∈ {α0, β1, γ1, γ2, γ4, γ5}

and that the invariance properties

(a1) �(atβ0 ∨ atβ1),
(a2) �((atγ0 ∧ atγ3) ∨ atγ1 ∨ atγ2 ∨ atγ4 ∨ atγ5),
(a3) atα1 ∧�¬execα1 → �atα1

can easily be proved by direct application of (invstartΠmpc
) in the case of (a1) and

(a2) and of (invΠmpc
) in the case of (a3). Furthermore,

�(atγ1 ∨ atγ2 → bo < CAP) ∧ (¬atγ1 ∧ ¬atγ2 → bo ≤ CAP)

is easily proved as well with (invstartΠmpc
) and this obviously implies

(a4) �(bo ≤ CAP).

The essential part of proving (a) is to show

(a5) CAP > 0 � �(atγ0 ∧ bo < CAP).

This can be derived with several applications of (fairsomΠmpc
), but we choose the

more compact proof with rule (fairwfrΠmpc
) encoding the (helpful) flow of control

into a decreasing sequence of natural numbers. So, taking NAT with ≤ as the well-
founded relation framework, we let

A ≡ (atγ1 ∧ y = 5) ∨ (atγ2 ∧ y = 4) ∨
(atγ0 ∧ atγ3 ∧ atβ1 ∧ bo = CAP ∧ y = 3) ∨
(atγ0 ∧ atγ3 ∧ atβ0 ∧ bo = CAP ∧ y = 2) ∨
(atγ4 ∧ y = 1) ∨ (atγ5 ∧ y = 0),

Hα0 ≡ Hα1 ≡ false,
Hβ0 ≡ Hβ1 ≡ y = 2 ∨ y = 3,
Hγi

≡ y = 0 ∨ y = 1 ∨ y = 2 ∨ y = 4 ∨ y = 5 for every i = 0, . . . , 5

and show

(a6) execλ ∧Hλ ∧A→ �((atγ0 ∧ bo < CAP) ∨ ∃ȳ(ȳ < y ∧Ay(ȳ)))
for every λ ∈ ActΠmpc

.
(a7) execλ ∧ ¬Hλ ∧A→ �((atγ0 ∧ bo < CAP) ∨ ∃ȳ(ȳ ≤ y ∧Ay(ȳ)))

for every λ ∈ ActΠmpc
.

(a8) CAP > 0 � �A→ �((atγ0∧bo < CAP)∨
∨

λ∈ActΠmpc
(Hλ∧enabledλ)).

Again we do not write out the derivations for (a6) and (a7) but represent these proofs
by the diagram shown in Fig. 8.10. The arguments depicted there should be clear
according to the explanations in Sect. 8.4. Note that (a4) is used in the step in which
γ5 leads to atγ0 ∧ bo < CAP . For the proof of (a8) we check all cases displayed in
the formula A.
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� �

� �

y = 5 atγ1

�

�

�

	 α0, β1

� �

� �

y = 4 atγ2

�

�

�

	 α0, β1

� �

� �

y = 3 atγ0 ∧ atγ3 ∧ atβ1 ∧ bo = CAP

�

�

�

	 α0

� �

� �

y = 2 atγ0 ∧ atγ3 ∧ atβ0 ∧ bo = CAP

�

�

�

	 α0

� �

� �

y = 1 atγ4

�

�

�

	 α0, β1

� �

� �

y = 0 atγ5

�

�

�

	 α0, β1

� �

� �

atγ0 ∧ bo < CAP

� �

�

�

�

�

γ1

γ2

β1

β0, γ3

γ4

γ5

Fig. 8.10. Diagram for the proof of (a6) and (a7)

Derivation of (a8).

(1) CAP > 0 assumption
(2) atγ1 ∧ y = 5 → Hγ1 ∧ enabledγ1 (taut)
(3) atγ2 ∧ y = 4 → Hγ2 ∧ enabledγ2 (taut)
(4) atβ1 ∧ y = 3 → Hβ1 ∧ enabledβ1 (taut)
(5) atγ3 ∧ atβ0 ∧ bo = CAP ∧ y = 2 → Hβ0 ∧ enabledβ0 (1)
(6) atγ4 ∧ y = 1 → Hγ4 ∧ enabledγ4 (taut)
(7) atγ5 ∧ y = 0 → Hγ5 ∧ enabledγ5 (taut)
(8) A→

∨
λ∈ActΠmpc

(Hλ ∧ enabledλ) (2)–(7)

(9) �A→ �((atγ0 ∧ bo < CAP) ∨
∨

λ∈ActΠmpc
(Hλ ∧ enabledλ)) (8) �

(a5) is now provided by applying (fairwfrΠmpc
) to (a6), (a7), and (a8).
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Derivation of (a5).

(1) CAP > 0 assumption
(2) ∃yA→ �(atγ0 ∧ bo < CAP) (fairwfr),(1),

(a6),(a7),(a8)
(3) atγ0 ∧ atγ3 ∧ bo < CAP → �(atγ0 ∧ bo < CAP) (T5)
(4) (atγ0 ∧ atγ3 ∧ bo < CAP) ∨ ∃yA (a1),(a2),(a4)
(5) �(atγ0 ∧ bo < CAP) (2),(3),(4) �

From (a5) the desired assertion (a) is finally obtained by a simple application of the
fairness axiom (fairΠmpc

).

Derivation of (a).

(1) CAP > 0 assumption
(2) �atα1 → �enabledα1 (a5),(1)
(3) �atα1 → ��enabledα1 (T35),(2)
(4) ��enabledα1 → �execα1 (fair)
(5) �atα1 → �execα1 (3),(4)
(6) atα1 ∧�¬execα1 → �execα1 (a3),(5)
(7) atα1 → �execα1 (6) �

We still note that, at a first glance, one might think that for proving (a) it is
necessary to argue, informally speaking, that whenever Πp waits at α1 then Πb ,
repeatedly being at γ0 and γ3, cannot permanently execute γ3 because sometime
the buffer will be empty; hence bo > 0 will be false. At that moment γ0 together
with α1 would be executed. Remarkably, our proof does not need this but runs with a
fairness argument. Fairness guarantees a “balance” not only between the processes of
a concurrent program but also between the possible choices in the nondeterministic
selection of Πb proceeding with γ0 or with γ3 when reaching these points of control.
This fact provides the eventual execution of α1 without referring to the finite capacity
of the buffer.

Second Reading

The investigations in Chaps. 6–8 were devoted to the temporal logical analysis of state
systems in the following sense: a system is “explicitly” given by the definition of the single
steps of all of its possible runs – in representation formalisms like transition systems or
programs by a transition relation or a concrete program text, respectively. The analysis
consists of

• the description (specification) of (mainly) these steps by temporal logic formulas of a
typical shape like

on ∧ c < 100 → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
execα0 → �atα1,
execα0 → a ′ = 2 ∗ b ∧ b′ = b

(taken from examples in the previous text; cf. Sects. 6.2 and 8.2) in which the nexttime
operator is (explicitly or implicitly) used to express the execution steps,
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• the derivation of properties like

c = 100 → �(c = 100),
¬on → c = 0 atnext on ,
atβ0 → �atβ1

from the specification which hold for all system runs and typically use those temporal
operators which express “behaviours” over “periods” of system states.

Another view is opened if we consider a state system not as explicitly given but take
such “long-term” behaviour properties to specify the system “implicitly” (descriptively)
by describing the requirements which have to be satisfied through ongoing runs when the
system “evolves”.

There are interesting applications connected with this view. One special example is given
in the area of database systems. The entries in a database are permanently updated by trans-
actions which are transition steps in our sense of state systems and which usually have to
observe certain integrity constraints in order to reach consistency of the stored information
with respect to the “real world” which is modeled by the system. Such constraints may be
dynamic (temporal) restricting the long-term evolution of the database contents in some
way. A typical example of such a constraint could be

• If an employee is dismissed then any re-employment of this person in the same year
will be with the former salary.

This informal phrase can be described by a formula of temporal logic like

DISMISS(empl) ∧ YEAR = x ∧ SALARY = y →
�(EMPLOY (empl) ∧ YEAR = x → SALARY = y)

(with an obvious signature) which is then a specifying requirement in the above sense. The
challenge in this application is to find reasonable algorithmic means for monitoring such
constraints during the runtime of the system, i.e., to ensure the correct database behaviour
expressed by the constraints.

Another, more general application is temporal logic programming. Along the lines of
“usual” logic programming, a temporal logic specification of the system requirements (typ-
ically written with some syntactical restrictions) is considered as a “program” itself, and the
system evolves by “executing” this program.

As a simple example, recall the printer system considered in Sect. 6.5, but view it now in
the following way: the system consists of two “parts”, the environment given by the users
U1 and U2 and, on the other hand, the printer “manager” who has to organize the allocations
of the printer to the incoming requests from the users. The printer manager reacts on these
arbitrary requests which are not under its own control. In fact, it is this part of the system
which is to be “programmed” such that it satisfies some long-term requirements, e.g.:

• If the printer is requested by some user then eventually it has to print the job of that
user.

• The printer is not printing for a user without being requested.
• The printer should always be printing for at most one of the users.

Using the system variables req1 and req2 (“there is a request from U1/2”) and the actions
β1 and β2 (“the printer prints for U1/2”) as in Sect. 6.5, these requirements can be written
as temporal logic formulas:

reqi → �execβi for i = 1, 2,
¬reqi → ¬execβi unl reqi for i = 1, 2,
�(execβ1 ∨ execβ2).
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The execution of this “program” is then to be performed by a procedure which causes a
sequence of executions of β1 and β2 reacting on incoming requests and satisfying the three
constraints.

We still remark that in the field of temporal logic programming another class of temporal
logics, called interval temporal logics, is also successfully used. We will give a short outline
of such logics in Sect. 10.2.

Bibliographical Notes

Deductive program verification has a long tradition in the computer science litera-
ture. One main stream originated from the pioneering work of Floyd [48] and Hoare
[62]; a detailed description is given in [8].

The application of temporal logic to the verification of concurrent programs was
just the main goal emphasized in the early papers which developed temporal logic.
So the bibliographical remarks from the previous chapter are relevant here as well.
Schneider’s book [133] gives a detailed exposition of concurrent programming, prop-
erties, and verification.

The special phenomena and problems of concurrent programs are described in
many textbooks, e.g., [7, 14, 28]. Peterson’s algorithm was published in [118].

For applications of temporal logic in the area of data base systems see, e.g.,
[29, 93]. Approaches to temporal logic programming include [2, 12, 108, 110, 114].
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Structured Specification

Formal system specification and verification are fundamental methods for the devel-
opment of reliable software. In the preceding chapters we have shown at great length
basic principles of how these can be performed in the framework of (linear) temporal
logic.

For “real” applications, however, the approaches and means described so far are
not yet polished enough. The development of a “large” system is a complicated task
and in order to make it manageable it has to be structured in an appropriate manner.

In this chapter we address three important structuring concepts: refinement, hid-
ing, and composition, and we study how these specification methods can be covered
within temporal logic. A main key to the problem is the notion of stuttering invari-
ance of temporal logic formulas. We present some special versions of temporal logic,
subsumed under the name TLA (Temporal Logic of Actions), which are particularly
tailored to respect this basic concept and thus may appropriately be used for struc-
tured specifications.

9.1 Refinement and Stuttering Invariance

One of the most important structuring concepts, known asstepwise refinement, is to
consider system development as a process running through several levels of detail.
Starting with the level of the user’s view the development of the system specification
proceeds in several steps, adding more and more details on how the user’s require-
ments are realized. Considering the specifications of the system on the various levels,
we so obtain the picture of a chain

. . . � Specj � Specj+1 � Specj+2 � . . .

of specifications where, with growing index k , Speck contains more and more details
but, of course, still fulfills – as a “correctness” property – the requirements specified
in former levels. Any Speck is called an implementation (or refinement) of a Specl
with l < k .



304 9 Structured Specification

One typical (“behavioural”) item with refinement is that “computations” which
are regarded as one-step state transitions on a more abstract level are realized by
a longer sequence of steps in an implementation. Also, these computations operate
on additional system variables that represent the finer-grained detail of the refined
system. As an example, let us consider again the counter system in its very first
version as the STS Γcount introduced in Sect. 6.2 and specified by the two axioms

C1 ≡ on → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
C2 ≡ ¬on → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0).

Imagine now the following implementation of Γcount : the counting step from any
value n of c to n + 1 is realized by a more refined counting on the “first decimal”,
e.g., the step

17 � 18

on c is realized by counting

17.0 � 17.1 � 17.2 � 17.3 � . . . � 17.9 � 18.0 .

A specification of this implementation Γimplcount of Γcount can be given by intro-
ducing an additional individual system variable dec for the value of the decimal and
then taking the axioms

Cimpl1 ≡ on → (on ′ ∧ dec′ = (dec + 1) mod 10 ∧
(dec = 9 → c′ = c + 1) ∧ (dec �= 9 → c′ = c)) ∨

(¬on ′ ∧ c′ = c ∧ dec′ = dec),
Cimpl2 ≡ ¬on → (¬on ′ ∧ c′ = c ∧ dec′ = dec) ∨

(on ′ ∧ c′ = 0 ∧ dec′ = 0).

The main difference compared to C1 and C2 is that the counting step

c′ = c + 1

of Γcount is refined to

dec′ = (dec + 1) mod 10 ∧ (dec = 9 → c′ = c + 1) ∧ (dec �= 9 → c′ = c)

expressing that now in every step dec is increased by 1 and c remains unchanged
except if dec changes from 9 to 0 in which case c is increased by 1. The other
modifications in Cimpl1 and Cimpl2 are evident.

Γimplcount is more detailed than Γcount and it is correct with respect to Γcount in
the sense that, related to the system variables on and c, the “behaviour” of Γimplcount

agrees with that of Γcount . In another wording used in Sect. 6.1, and disregarding the
restriction to on and c in Cimpl1 and Cimpl2 for a moment, we would expect that

“every model of the specification of Γimplcount is a model of the specification of
Γcount”.
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This expectation can formally be expressed by

�
K
Cimpl1 and �

K
Cimpl2 ⇒ �

K
C1 and �

K
C2 for every “matching”

temporal structure K

which means

Cimpl1,Cimpl2 � C1 and Cimpl1,Cimpl2 � C2.

(We view the formulas occurring here and in subsequent similar cases as belonging
to a common temporal logic language. Note, moreover, that in general one would
have to add relevant data axioms to the premises in these consequence relationships,
but this is not necessary here.)

Let us now examine this formalization of the intended correctness relationship of
the refinement. A typical temporal structure satisfying Cimpl1 and Cimpl2 is of the
form (N,W) where W (representing a run of Γimplcount ) looks like

. . . ηi ηi+1 ηi+2 . . . ηi+9 ηi+10 ηi+11 ηi+12 . . .
on . . . tt tt tt . . . tt tt tt tt . . .
c . . . 17 17 17 . . . 17 18 18 18 . . .
dec . . . 0 1 2 . . . 9 0 1 2 . . .

and obviously does not satisfy C1: for example, in the state ηi , on and on ′ are true
but c′ = c + 1 is not. This means that

Cimpl1,Cimpl2 � C1

does not hold.
The crucial point of this problem comes out if we now really restrict this execu-

tion sequence W to what happens with on and c, i.e., to

. . . � [tt, 17] � [tt, 17] � [tt, 17] � . . . �

[tt, 17] � [tt, 18] � [tt, 18] � [tt, 18] � . . .

(written again in more compact form) and compare it with the corresponding execu-
tion sequence (of counting from 17 to 18)

. . . � [tt, 17] � [tt, 18] � . . .

of Γcount . The first one contains steps of the form

[tt, 17] � [tt, 17]

which do not change the system variables on and c and are called stuttering steps
(with respect to on and c). The specification formula C1 of Γcount satisfies the sec-
ond execution sequence (not containing such steps) but it does not satisfy an execu-
tion sequence with stuttering steps.

In another wording we say that C1 is not stuttering invariant. We will define this
notion formally in Sect. 9.3; informally, a stuttering invariant formula A holds in
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some temporal structure (S,W) only if it holds in any (S,W′) such that the “restric-
tions” of W and W′ to the flexible individual and propositional constants occurring
in A only differ in containing more or less (finitely many) stuttering steps.

The observation pointed out here is the essential key to a possible solution to the
problem. We should specify Γcount in a manner that anticipates future refinements
by allowing stuttering steps in its execution sequences; informally:

“In any state transition of an execution step of Γcount , the system variables on
and c are changing according to C1 or C2, or they remain unchanged”.

Formally this can be done by modifying C1 to

C r
1 ≡ on → (on ′ ∧ (c′ = c + 1 ∨ c′ = c)) ∨ (¬on ′ ∧ c′ = c)

and in fact C r
1 is stuttering invariant and

Cimpl1,Cimpl2 � C r
1

holds as desired. Of course, the same modification can be applied to C2 and it is easy
to see that this does not really alter C2, so with C r

2 ≡ C2 we obtain

Cimpl1,Cimpl2 � C r
2 .

Following up on this idea, it should actually be applied to Γimplcount as well
(which in turn could be refined in a next step). A specification suitable for refinement
of this system according to the same pattern allows execution sequences in whose
state transitions the system variables on , c, and dec are changed as described in
Cimpl1 and Cimpl2 or remain unchanged. This is expressed by the stuttering invariant
formulas

C r
impl1 ≡ on → (on ′ ∧ (dec′ = (dec + 1) mod 10 ∧

(dec = 9 → c′ = c + 1) ∧
(dec �= 9 → c′ = c)) ∨

(c′ = c ∧ dec′ = dec)) ∨
(¬on ′ ∧ c′ = c ∧ dec′ = dec),

C r
impl2 ≡ Cimpl2.

It is obvious that after this modification of Cimpl1 and Cimpl2, the STS Γimplcount is
still a correct refinement of Γcount ; formally:

C r
impl1,C

r
impl2 � C r

1 and C r
impl1,C

r
impl2 � C r

2 .

Indeed, if K = (N,W) is a temporal structure satisfying C r
impl1 and C r

impl2, and ηi

is a state of W with ηi(on) = tt then for ηi+1,

ηi+1(on) = tt and ηi+1(c) = ηi(c) + 1
or
ηi+1(on) = tt and ηi+1(c) = ηi(c)
or
ηi+1(on) = ff and ηi+1(c) = ηi(c)
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holds. If ηi(on) = ff then

ηi+1(on) = ff and ηi+1(c) = ηi(c)
or
ηi+1(on) = tt and ηi+1(c) = 0.

This implies that C r
1 and C r

2 are valid in K.
Specifying state systems in a way as exemplified here enables an adequate tem-

poral logic treatment of stepwise refinement of specifications. It should be observed,
however, that the mere modification of “original” specification formulas to stuttering
invariant ones induces a new undesired effect. For example, the specification by C r

1

above allows that the counter stays on and does not change the value of c forever, a
behaviour which contradicts the intuition of the system and its implementation. But
such adulterations can easily be remedied by adding formulas just excluding this,
e.g.,

�on → �(c′ = c + 1)

in the case of Γcount . This formula clearly does not change the validity of the refine-
ment relationship.

We still remark that a consequence relationship like

C r
impl1,C

r
impl2 � C r

1

which holds after the modification of the specification formulas can be seen in the
sense of Sect. 7.1: the formula C r

1 describes just a particular property which is
Γimplcount -valid. Hence it is evident that the above discussion immediately carries
over to arbitrary system properties of an STS Γ which is specified in a stuttering
invariant way. The properties should be expressed by stuttering invariant formulas F
as well so that their intuitive Γ -validity is formally still implied by a relationship

AΓ � F

as before. A simple example is the property of Γcount informally saying that

“if the counter is on forever then the value of c is increasing in every step”.

The former description

�on → �(c′ > c)

is not stuttering invariant; it should be modified to

�on → �(c′ > c ∨ c′ = c)

which then in fact is a consequence of C r
1 and C r

2 (and appropriate data axioms).
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9.2 Basic TLA

The considerations in the previous section were carried out in the framework of the
temporal logic FOLTL as used in the preceding chapters, and we have pointed out
how formulas of this logic can be modified to stuttering invariant ones. A more rig-
orous way to enforce that specifications and properties are stuttering invariant is to
tailor the temporal logic accordingly and to restrict it syntactically such that it does
not contain formulas any more which are not stuttering invariant. A logic which re-
alizes this idea is TLA (Temporal Logic of Actions).

We introduce TLA in this section in a “basic” form (starting, however, immedi-
ately with a first-order version); the extension to “full” TLA will be motivated and
defined in Sect. 9.5. Following the intention, TLA restricts the syntax of FOLTL
(taken in its FOLTL′ version defined in Sect. 5.4). Traditionally it is equipped with
initial validity semantics. We present it in this form, i.e., as a sublogic of FOLTL0

(“FOLTL with initial validity semantics”).
The discussion in Sect. 9.1 indicates that the nexttime operator is the essential

source for formulas not being stuttering invariant. Therefore the basic idea for TLA
is to restrict the free use of this operator, permitting it only in a way in which it occurs
in formulas specifying transition steps. Let us consider again the counter system
Γcount as studied in Sect. 9.1. An easy calculation shows that the stuttering invariant
specification formula C r

1 used there is logically equivalent to C1 ∨ c′ = c, and
therefore

�(C1 ∨ c′ = c)

which is stuttering invariant as well could be taken as an appropriate specification for-
mula if initial validity semantics is assumed. TLA restricts FOLTL0 just by allowing
the nexttime operator (or the priming notation) only in a form like this (analogously
also for propositional system variables); more precisely: TLA is FOLTL0 with the
restrictions that

• the nexttime operator �is not used explicitly but only in the form of the priming
notation (including primed flexible propositional constants),

• primed flexible constants may only occur in formulas of the form �(A∨a ′ = a)
or �(A ∨ (v ′ ↔ v)) where a and v are flexible individual or propositional
constants, respectively, and A may not contain other temporal operators than the
“priming operator”.

The special formulas in this definition are distinguished by writing them as

�[A]e

(read: “always square A sub e”) for e ≡ a or e ≡ v , respectively. Note that, in
general, the “expression” A itself is not a formula then. It is used to describe “the
proper” transition steps. (In TLA terminology, A is called action which explains the
name of the logic; we will see shortly that this has to do something with an action in
the sense of Sect. 6.4 but it should not be confused with that notion.)
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Let us give also an explicit definition of TLA on its own, taking �[ ] as a sepa-
rate operator. Given a temporal signature TSIG = (SIG ,X,V), SIG = (S,F,P),
the language LFOL(SIG+) with the set X =

⋃
s∈S Xs of variables is defined as in

Sect. 5.1. The alphabet of a (basic first-order) language LTLA(TSIG) (also shortly:
LTLA) of TLA is given by

• all symbols of LFOL(SIG+),
• the symbols � | ′ | [ | ] .

Terms (with their sorts) are those of LFOL(SIG+) with the additional rule

• If a ∈ X then a ′ is a term of the same sort as a .

The formulas of LTLA are defined together with a second syntactical type of pre-
formulas by simultaneous induction. Atomic pre-formulas are the atomic formulas of
LFOL(SIG+); those which contain no primed individual constants are called atomic
formulas.

Inductive Definition of formulas (of LTLA(TSIG)).

1. Every atomic pre-formula is a pre-formula.
2. Every atomic formula is a formula.
3. false is a pre-formula and a formula.
4. If A and B are pre-formulas then (A→ B) is a pre-formula; if they are formulas

then (A→ B) is a formula.
5. If v ∈ V then v ′ is a pre-formula.
6. If A is a pre-formula and e ∈ X ∪V then �[A]e is a formula.
7. If A is a formula then �A is a formula.
8. If A is a pre-formula and x is a variable then ∃xA is a pre-formula; if A is a

formula then ∃xA is a formula.

We adopt all relevant abbreviations, notions and notational conventions from FOLTL.
Furthermore we let, for U = {e1, . . . , en} ⊆ X ∪V,

�[A]U ≡ �[A]e1 ∧ . . . ∧�[A]en

and

�〈A〉U ≡ ¬�[¬A]e1 ∨ . . . ∨ ¬�[¬A]en
.

(We will also write �[A]e1,...,en
for �[A]U and analogously for �〈A〉U.)

The semantics of LTLA is given by defining, for a temporal structure K for TSIG ,
a variable valuation ξ, and i ∈ N, the truth value K

(ξ)
i (F ) for pre-formulas and for-

mulas F just as in Sects. 5.1 and 5.4, viewing v ′ as �v for v ∈ V and understanding
a formula �[A]e as explained above. This means that

K
(ξ)
i (v ′) = K

(ξ)
i+1(v),

K
(ξ)
i (�[A]e) = tt ⇔ K

(ξ)
j (A) = tt or K

(ξ)
j+1(e) = K

(ξ)
j (e) for every j ≥ i .
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For the new abbreviations we then obtain

K
(ξ)
i (�[A]U) = tt ⇔ K

(ξ)
j (A) = tt or K

(ξ)
j+1(e) = K

(ξ)
j (e) for every e ∈ U

for every j ≥ i ,

K
(ξ)
i (�〈A〉U) = tt ⇔ there is j ≥ i such that

K
(ξ)
j (A) = tt and K

(ξ)
j+1(e) �= K

(ξ)
j (e) for some e ∈ U.

For formulas A and formula sets F , the notions of initial validity in K (
0�
K
A), initial

consequence (F 0�A ), and (universal) initial validity (
0�A ) are defined as in Sect. 2.6.

Example. Let TSIG = (SIGNat , {a}, {v}) be a temporal signature with SIGNat

as usual, x a variable of sort NAT . Then

A ≡ a = x ∧ v ∧�[(v → v ′) ∧ a ′ = a + 1]a,v → �(a ≥ x ∧ v)

is a formula of LTLA(TSIG). For any temporal structure K for TSIG with data
component N and variable valuation ξ we have (using notation from Sect. 5.4)

K
(ξ)
0 (a = x ∧ v ∧�[(v → v ′) ∧ a ′ = a + 1]a,v ) = tt

⇒ K
(ξ)
0 (a) = ξ(a) and

K
(ξ)
0 (v) = tt and

K
(ξ)
j ((v → v ′) ∧ a ′ = a + 1) = tt or

K
(ξ)
j+1(a) = K

(ξ)
j (a) and K

(ξ)
j+1(v) = K

(ξ)
j (v)

for every j ≥ 0

⇒ K
(ξ)
1 (a) = ξ(a) or K

(ξ)
1 (a) = ξ(a) + 1

and

K
(ξ)
1 (v) = tt

and

K
(ξ)
j ((v → v ′) ∧ a ′ = a + 1) = tt or

K
(ξ)
j+1(a) = K

(ξ)
j (a) and K

(ξ)
j+1(v) = K

(ξ)
j (v)

for every j ≥ 1
...
⇒ K

(ξ)
j (a) ≥ ξ(a) and K

(ξ)
j (v) for every j ∈ N

⇒ K
(ξ)
0 (�(a ≥ x ∧ v)) = tt

which means that
0�
K
A. �

We will prove in Sect. 9.3 that every formula of TLA is in fact stuttering invariant.
We will also discuss there how to axiomatize TLA.

A specification of an STS Γ can be written in TLA as indicated by our examples.
In general, the description of the possible “state changes” of Γ within the pre-formula
A of specification formulas �[A]U can be carried out in different ways (as it is the
case in FOLTL specifications). It is customary to write TLA system specifications in
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a standard form where the transition relation of Γ together with the possible stutter-
ing steps is described by one single formula

�[AΓ ]U

(instead of several formulas we were used to so far) where AΓ is a disjunction of all
possible transitions of Γ . In our example of the counter system Γcount we obtain this
form with

AΓcount
≡ Aon ∨Aoff ∨Ac ∨Ap

where

Aon ≡ ¬on ∧ on ′ ∧ c′ = 0,
Aoff ≡ on ∧ ¬on ′ ∧ c′ = c,
Ac ≡ on ∧ on ′ ∧ c′ = c + 1,
Ap ≡ ¬on ∧ ¬on ′ ∧ c′ = c.

Ap describes a stuttering transition (with respect to on and c), and can equivalently
be omitted from the definition of AΓcount

. This description is very close to the spec-
ification of Γ l

count in Sect. 6.4 and easy to understand. So the (main part of the)
stuttering invariant specification of Γcount is then given by the formula

�[AΓcount
]on,c .

As mentioned already we should, however, still add a formula excluding infinitely
many stuttering steps with respect to c if the counter is on. An appropriate TLA
formula for such a progress condition is

�(�on → �〈c′ = c + 1〉c).

It is trivial that rooted STSs can be specified by just adding the initial condition
of the STS to the specification formulas. Moreover, TLA can easily be applied to
labeled STSs. One has essentially to change the transition descriptions a bit. For
example, taking the counter in its version Γ l

count of Sect. 6.4, Aon should then read

execλon ∧ on ′ ∧ c′ = 0

and similarly for the other constituents. Fairness can be included in the same way
as in Sect. 6.5. We should mention, however, that typical TLA specifications avoid
the explicit use of action “names” and assume a state system to be represented by
an “unlabeled” STS. The actions in the sense of Sect. 6.4 are implicitly represented
by the disjunction constituents of the pre-formula AΓ in the specification formula
[AΓ ]U and these can also be used for expressing fairness. In Γcount , fairness with
respect to the switching on action expressed by Aon can be expressed by

��¬on → ��〈Aon〉on,c .



312 9 Structured Specification

ΠPet ≡ var a1, a2, c : NAT
start a1 = 0 ∧ a2 = 0 ∧ c = 1
cobegin loop α0 : noncritical;

α1 : a1, c := 1, 1;
α2 : await a2 = 0 ∨ c = 2;
α3 : critical;
α4 : a1 := 0

endloop
‖
loop β0 : noncritical;

β1 : a2, c := 1, 2;
β2 : await a1 = 0 ∨ c = 1;
β3 : critical;
β4 : a2 := 0

endloop
coend

Fig. 9.1. Peterson’s algorithm again

Note that in this context, progress conditions may be viewed as weak fairness condi-
tions as well (cf. Sect. 6.5).

Summarizing, a TLA specification of a system Γ consists of a formula �[AΓ ]U,
possibly further formulas like startΓ and formulas expressing (strong or weak) fair-
ness conditions, and, if Γ is not propositional, data axioms (dataΓ ). Actually, the
temporal axioms of a TLA specification are usually given by one single formula

FΓ ≡ startΓ ∧�[AΓ ]U ∧ fairΓ

where fairΓ is the conjunction of the fairness formulas.
Let us illustrate this discussion by one more example. Figure 9.1 shows again

Peterson’s algorithm studied in Sect. 8.4. A (“standard”) TLA specification of this
program is given by (dataΠPet

) and the formula

FΠPet
≡ startΠPet

∧�[AΠPet
]UPet

∧ fairΠPet

where, with LabPet = {αi , βi | 0 ≤ i ≤ 4},

UPet = {atλ | λ ∈ LabPet} ∪ {a1, a2, c}

and

startΠPet
≡ atα0 ∧ atβ0 ∧ a1 = 0 ∧ a2 = 0 ∧ c = 1,

AΠPet
≡

∨

λ∈LabPet

Aλ,

Aα0 ≡ step(α0, α1) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aα1 ≡ step(α1, α2) ∧ a ′
1 = 1 ∧ a ′

2 = a2 ∧ c′ = 1,
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Aα2 ≡ step(α2, α3) ∧ (a2 = 0 ∨ c = 2) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aα3 ≡ step(α3, α4) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aα4 ≡ step(α4, α0) ∧ a ′
1 = 0 ∧ a ′

2 = a2 ∧ c′ = c,

Aβ0 ≡ step(β0, β1) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aβ1 ≡ step(β1, β2) ∧ a ′
1 = a1 ∧ a ′

2 = 1 ∧ c′ = 2,

Aβ2 ≡ step(β2, β3) ∧ (a1 = 0 ∨ c = 1) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aβ3 ≡ step(β3, β4) ∧ a ′
1 = a1 ∧ a ′

2 = a2 ∧ c′ = c,

Aβ4 ≡ step(β4, β0) ∧ a ′
1 = a1 ∧ a ′

2 = 0 ∧ c′ = c,

fairΠPet
≡

∧

λ∈LabPet\{α0,β0}

(
��enabledλ → ��〈Aλ〉UPet

)
.

We use here formulas enabledλ for λ ∈ LabPet as generally defined in Sect. 8.2,
e.g.,

enabledα0 ≡ atα0,
enabledα2 ≡ atα2 ∧ (a2 = 0 ∨ c = 2),

and so on, and the abbreviations

step(λ1, λ2) ≡ atλ1 ∧ ¬atλ′
1 ∧ atλ′

2 ∧
∧

λ∈LabPet\{λ1,λ2}
(atλ′ ↔ atλ)

for λ1, λ2 ∈ LabPet . (Observe that the elements of LabPet are not handled as actions;
the formulas atλ act as “program counters”.)

In TLA, fairness assumptions are by convention written explicitly as part of the
specification instead of expressing them by a generic axiom. It is therefore natural
to specify fairness “per action”, as briefly indicated at the end of Sect. 6.5. For the
present example, we have assumed weak fairness for all actions except (those rep-
resented by) Aα0 and Aβ0 . This corresponds to the idea that a process may remain
forever in the non-critical section but should not block either in its critical section
or during the entry and exit protocols of Peterson’s algorithm. A close inspection of
the proof of the accessibility properties in Sect. 8.4 (including the derivation of the
rule (fairsomΓ ) in Sect. 7.4) shows that they can still be derived from these weaker
fairness assumptions.

Many relevant system properties, in particular invariance and eventuality proper-
ties, can be described as before since the corresponding formulas

�(A→ �B)

and

�(A→ �B)

are TLA formulas as well. How to (deductively) verify properties from the specifi-
cation will be discussed in Sect. 9.4.
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9.3 Generalized TLA

The temporal logic TLA restricts the free use of the nexttime operator, thereby ensur-
ing that formulas become stuttering invariant. Actually, this restriction is quite strong
and could be weakened to allow for more stuttering invariant formulas. Concerning
application, such a weakening would enable the formulation of more properties of
systems. Consider, e.g., a property of the kind

“Whenever an action α has occurred, only an action β is allowed to change the
value of a”.

A reasonable formalization in the TLA sense would be of a form

�
[
Aα → �[Aβ ]a

]
e

which seems to cause no problems with respect to stuttering but is not a TLA for-
mula.

Besides this application aspect, another annoying effect of the strong syntactical
restriction in TLA concerns the logic itself: it is a severe obstacle to a reasonable
axiomatization of TLA. Consider, e.g., the induction rule (ind) from Sect. 2.3, written
as

(ind0) �(A→ B),�(A→ �A) � �(A→ �B)

in Sect. 2.6 for initial validity semantics. This rule is quite fundamental for all kinds
of deductions of formulas of the shape

�(A→ �B)

but we cannot take it as a rule in TLA because it uses a formula �A which is no
TLA formula (and there is also no admissible “equivalent” for it if the formula A
contains temporal operators). Attempts to solve this problem within TLA are not
very satisfactory.

In view of such observations we extend TLA now by introducing a more lib-
eral syntax, still observing, of course, that formulas remain stuttering invariant. The
extended logic is called GTLA (Generalized TLA) and, in fact, it will particularly
permit a reasonable proof-theoretical treatment.

The main idea of GTLA is to reintroduce the nexttime operator �and to general-
ize the definition of pre-formulas. In particular, �A is a pre-formula for an arbitrary
formula A, whereas TLA allows only the restricted forms a ′ and v ′ to appear in
pre-formulas.

Formally, given a temporal signature TSIG , a language LGTLA(TSIG) (again
shortly: LGTLA) is obtained from LTLA(TSIG) by adding the symbol �to the alpha-
bet and replacing the formation rule

5. If v ∈ V then v ′ is a pre-formula
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of TLA by

5G . If A is a formula then A and �A are pre-formulas.

Note that, for avoiding redundancy, one can then simplify rule 3 to

3G . false is a formula.

As in TLA, �[ ] is considered to be a separate operator and [A]e itself is not a
formula. Indeed, it would not be stuttering invariant. However, we introduce the latter
now as an abbreviation for a special pre-formula:

[A]e ≡ A ∨ e ′ = e.

(For uniformity, here and subsequently e ′ = e denotes e ′ ↔ e for e ∈ V.) Of
course, other abbreviations, notations, etc. are used as before, and it is evident that
every TLA formula, understanding v ′ as �v for flexible propositional constants, is a
GTLA formula as well. The example

�
[
Aα → �[Aβ ]a

]
e

from the beginning of this section is also a GTLA formula.
Given a temporal structure K for the underlying TSIG , the evaluation K

(ξ)
i is

defined as before; in particular we have again

K
(ξ)
i ( �A) = K

(ξ)
i+1(A).

For the abbreviation above we obtain

K
(ξ)
i ([A]e) = tt ⇔ K

(ξ)
i (A) = tt or K

(ξ)
i+1(e) = K

(ξ)
i (e).

As validity in K we define

�
K
A ⇔ K

(ξ)
i (A) = tt for every i and every ξ

which means that, extending this to the notions of consequence (F �A) and (univer-
sal) validity (� A), we obtain a normal semantics of LGTLA as usual. This choice
(which makes GTLA a sublogic of FOLTL if we identify formulas �[A]e with
�(A ∨ e ′ = e)) may appear somewhat strange since TLA was equipped with initial
validity semantics. It will, however, simplify the axiomatization aimed at for GTLA
and the intended application in the TLA sense remains still feasible.

Example. Let TSIG = (SIGNat , {a, b}, ∅) be a temporal signature with SIGNat

as usual. Then

A ≡ �
[
�[a ′ > b]a ∨ ��(a > 0)

]
b

is a formula of LGTLA(TSIG) (but not a TLA formula). Let K = (N,W), W given
by
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η0 η1 η2 η3 η4 . . .
a 3 2 0 5 5 . . . (5 forever) . . .
b 4 7 7 3 8 . . . (arbitrary) . . .

We calculate (for arbitrary ξ):

K
(ξ)
0 (a ′ > b ∨ a ′ = a) = ff, K

(ξ)
0 ( ��(a > 0)) = ff, K

(ξ)
1 (b) �= K

(ξ)
0 (b)

⇒ K
(ξ)
0 (A) = ff.

K
(ξ)
2 (b) = K

(ξ)
1 (b), K

(ξ)
j ( ��(a > 0)) = tt for j ≥ 2

⇒ K
(ξ)
i (A) = tt for i ≥ 1. �

The formulas of GTLA are to be stuttering invariant. We set out now to define this
notion formally. Let TSIG = (SIG ,X,V) be a temporal signature and U ⊆ X∪V.
For two states η and η′ (of some temporal structure(s) for TSIG) let

η =U η′ ⇔ η(e) = η′(e) for every e ∈ U.

Furthermore we define, for W = (η0, η1, η2, . . .), the mapping ϑW
U : N → N induc-

tively by

ϑW
U(0) = 0,

ϑW
U(i + 1) =

{
ϑW
U(i) if ηi+1 =U ηi and ηj �=U ηi for some j > i ,

ϑW
U(i) + 1 otherwise.

Observe that ϑW
U is monotonic and surjective. In particular, given any k ∈ N there is

at least one, but only finitely many j ∈ N such that ϑW
U(j ) = k .

The infinite sequence

ΘU(W) = (ηi0 , ηi1 , ηi2 , . . .)

of states of W where

ik = min{j ∈ N | ϑW
U(j ) = k} (for k ∈ N)

is called U-stuttering free variant of W. It is obtained from W by “cutting out” all
finite subsequences of states which have the same values on all e ∈ U.

Example. Let W be given by

η0 η1 η2 η3 η4 η5 η6 η7 . . .
v tt ff ff ff tt tt ff tt . . .
a 4 4 4 7 6 6 6 6 . . . (6 forever) . . .
b 6 2 3 3 8 1 2 4 . . .

Then we have:

Θ{v}(W) = (η0, η1, η4, η6, η7, . . .),
Θ{a}(W) = (η0, η3, η4, η5, η6, η7, . . .),
Θ{v ,a}(W) = (η0, η1, η3, η4, η6, η7, . . .). �
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It is easy to see that the transformation ΘU is idempotent. The following lemma
slightly generalizes this observation.

Lemma 9.3.1. If U′ ⊆ U then ΘU′(ΘU(W)) =U′ ΘU′(W).

Proof. Let W = (η0, η1, η2, . . .), ΘU(W) = (ηi0 , ηi1 , ηi2 , . . .), and ΘU′(W) =
(ηj0 , ηj1 , ηj2 , . . .). By definition, we know that ηl =U ηl+1 for all l where
ik ≤ l < ik+1, and by the assumption U′ ⊆ U it follows that ηl =U′ ηl+1 for
all such l . Hence, (j0, j1, j2, . . .) must be a subsequence of (i0, i1, i2, . . .) except if
there is some j ∈ N such that ηl =U′ ηl+1 holds for all l ≥ j . In the latter case,
the smallest such j must be one of the ik , and then we have, again by definition,
ηil =U ηj for all l ≥ k . In either case, the assertion of the lemma follows. �

For two state sequences W1 = (η(1)
0 , η

(1)
1 , η

(1)
2 , . . .), W2 = (η(2)

0 , η
(2)
1 , η

(2)
2 , . . .)

we let now

W1 =U W2 ⇔ η
(1)
i =U η

(2)
i for every i ∈ N

and define the relation �U, called U-stuttering equivalence by

W1 �U W2 ⇔ ΘU(W1) =U ΘU(W2).

Clearly, �U is an equivalence relation. The following lemma lists some addi-
tional facts about this relation. Adapting some notation from Sect. 2.1, for W =
(η0, η1, η2, . . .) and i ∈ N, the sequence (ηi , ηi+1, ηi+2, . . .) is denoted by Wi . It is
evident from the definitions that if ϑW

U(i) = k and W = ΘU(W) = (ηi0 , ηi1 , ηi2 , . . .)
then

ΘU(Wi) = (ηik , ηik+1 , ηik+2 , . . .) = W
k
.

Lemma 9.3.2. Let W1 = (η(1)
0 , η

(1)
1 , η

(1)
2 , . . .), W2 = (η(2)

0 , η
(2)
1 , η

(2)
2 , . . .), and

W1 �U W2.

a) η
(1)
0 =U η

(2)
0 .

b) If U′ ⊆ U then W1 �U′ W2.
c) For every i ∈ N there is some j ∈ N such that Wi

1 �U Wj
2 and Wi+1

1 �U Wk
2

where k = j or k = j + 1.

Proof. a) With min{j ∈ N | ϑW1
U (j ) = 0} = 0 we have ΘU(W1) = (η(1)

0 , . . .);
in the same way we obtain ΘU(W2) = (η(2)

0 , . . .), and the assumption then implies

η
(1)
0 =U η

(2)
0 .

b) Observe first that for any W, W′, and U, if W =U W′ then ϑW
U = ϑW′

U .
Now, because W1 �U W2 we have ΘU(W1) =U ΘU(W2) by definition, and the
assumption U′ ⊆ U implies that ΘU(W1) =U′ ΘU(W2). Writing Wi for ΘU(Wi),
the observation above shows that ϑW1

U′ = ϑW2
U′ . Together with W1 =U′ W2 we obtain

ΘU′(W1) =U′ ΘU′(W2), and the assertion follows with the help of Lemma 9.3.1.
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c) Let i ∈ N, k = ϑW1
U (i), and j = max{l ∈ N | ϑW2

U (l) = k}. (Note that j
is well-defined because the set is non-empty and finite.) Then we have ϑW2

U (j ) = k
and for W1 = ΘU(W1) and W2 = ΘU(W2) we obtain by the above remark and

the assumption that ΘU(Wi
1) = W

k

1 =U W
k

2 = ΘU(Wj
2), i.e., Wi

1 �U Wj
2. If

ϑW1
U (i + 1) = ϑW1

U (i) = k then we get Wi+1
1 �U Wj

2 in the same way. Moreover,
we have ϑW2

U (j + 1) �= ϑW2
U (j ) by the definition of j and therefore ϑW2

U (j + 1) =
ϑW2
U (j ) + 1 = k + 1. So, if ϑW1

U (i + 1) = ϑW1
U (i) + 1 = k + 1 then ΘU(Wi+1

1 ) =

W
k+1

1 =U W
k+1

2 = ΘU(Wj+1
2 ) again with the same arguments and this means

Wi+1
1 �U Wj+1

2 . �

Now, following the earlier informal explanations and observing the TLA format
of specifications and properties, stuttering invariance of a formula A (of any first-
order linear temporal logic) is to mean that, if we evaluate A (with some underly-
ing variable valuation) in the initial states of temporal structures with the same data
component and stuttering equivalent state sequences, then these evaluations provide
equal truth values. This is formally defined as follows.

Definition. Let TSIG = (SIG ,X,V) be a temporal signature, LTL(TSIG) be a
(first-order) linear temporal logic language. A formula A of LTL(TSIG) is called
stuttering invariant if

K
(ξ)
0 (A) = K′

0
(ξ)(A)

holds for all variable valuations ξ, and for all temporal structures K = (S,W) and
K′ = (S,W′) for TSIG with W �U(A) W′ where U(A) ⊆ X ∪ V is the set of
flexible individual and propositional constants occurring in A.

We formulate now the desired result. It says that all formulas of GTLA, hence
all formulas of TLA, are stuttering invariant in the sense already used informally in
Sect. 9.2. Proving the theorem we will use an adaption of Lemma 2.1.5 to GTLA; its
proof carries over from Sect. 2.1 and is not repeated here.

Theorem 9.3.3. Every formula of a language LGTLA is stuttering invariant.

Proof. We simultaneously prove for arbitrary temporal structures K = (S,W),
W = (η0, η1, η2, . . .), and K̂ = (S, Ŵ), Ŵ = (η̂0, η̂1, η̂2, . . .), and arbitrary vari-
able valuation ξ the assertions

a) if A is a formula and W �U(A) Ŵ then K
(ξ)
0 (A) = K̂

(ξ)
0 (A),

b) if A is a pre-formula, W �U(A) Ŵ, and W1 �U(A) Ŵ1 then K
(ξ)
0 (A) = K̂

(ξ)
0 (A)

by structural induction on A. Part a) is just the claim of the theorem.
For assertion a) we consider the different cases in the definition of formulas A.

1. A is an atomic formula: By Lemma 9.3.2 a) we have η0(e) = η̂0(e) for every
e ∈ U(A) from the assumption and this implies K

(ξ)
0 (A) = K̂

(ξ)
0 (A).

2. A ≡ false: Then K
(ξ)
0 (A) = ff = K̂

(ξ)
0 (A).
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3. A ≡ B → C with formulas A and B : Then U(B) ⊆ U(A) and U(C ) ⊆ U(A).
The assumption implies W �U(B) Ŵ and W �U(C ) Ŵ by Lemma 9.3.2 b).

The induction hypothesis for assertion a) provides K
(ξ)
0 (B) = K̂

(ξ)
0 (B) and

K
(ξ)
0 (C ) = K̂

(ξ)
0 (C ), which imply the assertion.

4. A ≡ �[B ]e with a pre-formula B : Assume first that K̂
(ξ)
0 (A) = tt; we will

show that K
(ξ)
0 (A) = tt. For an arbitrary i ∈ N, let j be chosen accord-

ing to Lemma 9.3.2 c). We get Wi �U(A) Ŵj ; hence ηi(e) = η̂j (e) by

Lemma 9.3.2 a). If η̂j+1(e) = η̂j (e) or Wi+1 �U(A) Ŵj then ηi+1(e) = ηi(e),
and therefore K

(ξ)
i ([B ]e) = tt. Otherwise, again using Lemma 9.3.2 a), it must be

the case that Wi+1 �U(A) Ŵj+1 and also K̂
(ξ)
j (B) = tt. Since U(B) ⊆ U(A)

we get K
(ξ)
i (B) = K̂

(ξ)
j (B) = tt by Lemma 9.3.2 b), the induction hypothesis

for assertion b) applied to B , and adapting Lemma 2.1.5. Again, this implies
K

(ξ)
i ([B ]e) = tt, and since i was chosen arbitrarily, it follows that K

(ξ)
0 (A) = tt.

Symmetrically we show that K
(ξ)
0 (A) = tt implies K̂

(ξ)
0 (A) = tt, which then

shows the assertion.
5. A ≡ �B with a formula B : Assume first that K̂

(ξ)
0 (A) = tt; we will show

that K
(ξ)
0 (A) = tt. For an arbitrary i ∈ N, let j again be chosen according to

Lemma 9.3.2 c). We have Wi �U(A) Ŵj , and with U(B) = U(A) we obtain

K
(ξ)
i (B) = K̂

(ξ)
j (B) = tt by the induction hypothesis for assertion a), again

adapting Lemma 2.1.5. Since i was chosen arbitrarily, this proves K
(ξ)
0 (A) = tt,

and the assertion is proved with an analogous argument as in the previous case.
6. A ≡ ∃xB with a formula B : Then U(B) = U(A), and the induction hypoth-

esis for assertion a) provides K
(ξ′)
0 (B) = K̂

(ξ′)
0 (B) for any valuation ξ′, which

implies the assertion.

Turning to assertion b) we have to consider the formation rules for pre-formulas.

1. A is an atomic pre-formula: By Lemma 9.3.2 a) we have η0(e) = η̂0(e) and
η1(e) = η̂1(e) for every e ∈ U(A) from the assumptions and this implies
K

(ξ)
0 (A) = K̂

(ξ)
0 (A).

2. A is a formula: Then the assertion follows immediately from the induction hy-
pothesis for assertion a).

3. A ≡ �B with a formula B : Then the assumption W1 �U(A) Ŵ1 and the

induction hypothesis for assumption a) applied to B imply K
(ξ)
1 (B) = K̂

(ξ)
1 (B);

hence K
(ξ)
0 (A) = K̂

(ξ)
0 (A).

4. A ≡ B → C or A ≡ ∃xB with pre-formulas A and B : In these cases the proof
runs as for assertion a). �

Let us now illustrate the “logical contents” of GTLA by noting that the relation-
ship

F ∪ {A} � B ⇔ F � �A→ B if A is closed
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holds as in FOLTL, and by giving some valid formulas including a few proofs. First
of all, it is clear that any valid formula of FOLTL which is a GTLA formula is now
valid as well. Particularly the laws (T1)–(T42) from Sects. 2.2 and 5.1 are also laws
of GTLA whenever they are formulas at all. Some examples are:

(T9) ��A→ ��A,
(T18) �(A ∧ B) ↔ �A ∧�B ,
(T41) ∃x�A↔ �∃xA.

Other laws of FOLTL can be “translated” to valid GTLA formulas in an obvious
way, e.g.:

(T1GTLA) �[¬ �A↔ �¬A]e ,
(T14GTLA) �[ �(A→ B) ↔ �A→ �B ]e ,
(T28GTLA) �[�A↔ A ∧ ��A]e ,
(T39GTLA) �[∃x �A↔ �∃xA]e

as modifications of (T1), (T14), (T28), and (T39).

Proof of (T14GTLA). For arbitrary K, i , ξ, and j ≥ i we have

K
(ξ)
j ( �(A→ B)) = tt ⇔ K

(ξ)
j ( �A→ �B) = tt

as in the proof of (T14) in Sect. 2.2. This implies

K
(ξ)
j ( �(A→ B)) ↔ �A→ �B) = tt;

hence

K
(ξ)
i (�[ �(A→ B) ↔ �A→ �B ]e) = tt. �

The latter laws use the characteristic GTLA operator �[ ]e . The following list shows
some more valid formulas concerning this construction.

(GT1) �
[
[A]e → A

]
e
,

(GT2) �A→ �[ �A]e ,
(GT3) �

[
[A]e
]
e
↔ �[A]e ,

(GT4) �
[
�[A]e1 → [A]e1

]
e2

,

(GT5) �[A]e1 → �
[
[A]e1

]
e2

,

(GT6) �
[
[A]e1

]
e2
↔ �

[
[A]e2

]
e1

.

Proof of (GT4). For arbitrary K, i , ξ, and j ≥ i we have

K
(ξ)
j (�[A]e1) = tt ⇒ K

(ξ)
k (A) = tt or K

(ξ)
k+1(e1) = K

(ξ)
k (e1) for every k ≥ j

⇒ K
(ξ)
j (A) = tt or K

(ξ)
j+1(e1) = K

(ξ)
j (e1)

⇒ K
(ξ)
j ([A]e1) = tt;

thus
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K
(ξ)
j (�[A]e1 → [A]e1) = tt

and therefore

K
(ξ)
i (�

[
�[A]e1 → [A]e1

]
e2

) = tt. �

Finally we turn now to an axiomatization of GTLA. We begin with a formal sys-
tem ΣpGTLA as follows. (Tautologically valid GTLA formulas are defined as earlier
and for pre-formulas this notion can be adopted just as well.)

Axioms

(taut) All tautologically valid formulas,
(tautpf ) �[A]e if A is a tautologically valid pre-formula,
(gtla1) �A→ A,
(gtla2) �A→ �[A]e ,
(gtla3) �A→ �[ ��A]e ,
(gtla4) �[A→ B ]e → (�[A]e → �[B ]e),
(gtla5) �[e ′ �= e]e ,
(gtla6) �[¬ �A↔ �¬A]e ,
(gtla7) �[ �(A→ B)→ ( �A→ �B)]e ,
(gtla8) �

[
�[A]e1 → [A]e1

]
e2

,

(gtla9) �[A]e1 → �
[

��[A]e1

]
e2

,

(gtla10) �
[
[A]e1 ∧ ��[A]e1 → �[A]e1

]
e2

,

(gtla11) �
[

��A→ �[ �A]e1

]
e2

.

Rules

(mp) A,A→ B � B ,
(alw) A � �A,
(indpf ) A→ B ,�[A→ �A]U(A) � A→ �B .

ΣpGTLA is a sound and weakly complete axiomatization of the “propositional frag-
ment” of GTLA. Referring to our introductory discussion of this section we observe
that (indpf ) is now an appropriate adaption of the (normal semantics) induction rule
(ind) of LTL. Some useful derived rules are:

(mppf ) �[A]e ,�[A→ B ]e � �[B ]e ,
(chpf ) �[A→ B ]e ,�[B → C ]e � �[A→ C ]e ,
(alwpf ) A � �[A]e .

We give, as an example, a derivation of (mppf ).

Derivation of (mppf ).

(1) �[A]e assumption
(2) �[A→ B ]e assumption
(3) �[A→ B ]e → (�[A]e → �[B ]e) (gtla4)
(4) �[A]e → �[B ]e (mp),(2),(3)
(5) �[B ]e (mp),(1),(4) �
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As an example for the usage of these additional rules we show a simple derivation of
the law (GT1) given above.

Derivation of (GT1).

(1) �[e ′ �= e]e (gtla5)
(2) �

[
e ′ �= e → ([A]e → A)

]
e

(tautpf )
(3) �

[
[A]e → A

]
e

(mppf ),(1),(2) �

Most of the axioms and rules of ΣpGTLA are appropriate transcriptions from ΣLTL.
An extension of ΣpGTLA to a formal system ΣGTLA for the full first-order GTLA is
obtained by adding analogous adaptions of FOLTL axioms and rules. We give only
the following obvious examples concerning the existential quantifier.

Additional axioms

(gtla12) Ax (t) → ∃xA if t is substitutable for x in A,
(gtla13) �[Ax (t) → ∃xA]e if t is substitutable for x in A,
(gtla14) �[ �∃xA → ∃x �A]e .

Additional rules

(par) A→ B � ∃xA→ B if there is no free occurrence of x in B ,
(parpf ) �[A→ B ]e � �[∃xA→ B ]e if there is no free occurrence of x in B .

This formal system shows that the axiomatization of GTLA can be solved in a
satisfactory way (from the “purely logical” point of view; practical aspects will be
discussed in the next section). According to the introductory comments we should
still remark how it can be applied to TLA. Of course, because of the different seman-
tics, an arbitrary TLA consequence relationship

F 0� A

cannot be proved in general by deriving A from F in ΣGTLA. However, universal
validity of formulas is independent of the chosen semantics as in LTL (cf. Theo-
rem 2.6.4), so we have at least

�
ΣGTLA

A ⇒ 0� A

for every TLA formula A. Furthermore, if F = {A1, . . . ,An} is finite then we have

F 0� A ⇔ 0� A1 ∧ . . . ∧An → A

in TLA (again as in Sect. 2.6, cf. Theorem 2.6.3); so we obtain

�
ΣGTLA

A1 ∧ . . . ∧An → A ⇒ A1, . . . ,An
0� A

for TLA formulas A1, . . . ,An ,A.
A similar use of ΣGTLA with even infinite F will be shown in the following

section. Summarizing, we find that in many applications ΣGTLA is an appropriate
tool for deriving also TLA consequence relationships.
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9.4 System Verification with GTLA

The idea of deductive verification of a property Fprop of an STS Γ , as studied in
Chaps. 7 and 8, is to derive Fprop from the set of specification axiomsAΓ of Γ within
some formal system. Expressed semantically this means to show the consequence
relationship

(∗) AΓ � Fprop

(of normal semantics). If we now use the standard form of TLA (or GTLA) specifi-
cations as introduced in Sect. 9.2 then AΓ consists of the set Adata of the relevant
data axioms (dataΓ ) and the formula

FΓ ≡ startΓ ∧�[AΓ ]U ∧ fairΓ

(in its general form with initial condition and fairness) which is to be understood
with initial validity semantics. This means that FΓ may be assumed to be initially
valid in every K ∈ CΓ where

CΓ = {K = (SΓ ,WΓ ) | WΓ is an execution sequence of Γ}

as in Sect. 6.2.
Modifying the terminology of Sect.7.1, let us now call a property (specified by

a formula) Fiprop a valid initial property of Γ if Fiprop is initially valid in every
K ∈ CΓ . Clearly, any property Fprop of Γ considered with respect to normal seman-
tics can be reformulated as the initial property �Fprop .

Formulating system properties as initial properties the verification task (∗) be-
comes to show

�
K
Adata ,

0�
K
FΓ ⇒ 0�

K
Fiprop

(for arbitrary K). Writing �Adata for the formula set {�A | A ∈ Adata} we have
�
K
Adata ⇔

0�
K
�Adata by Lemma 2.6.1 b); so this amounts to

�Adata ∪ {FΓ }
0� Fiprop

and immediately leads to another verification format which, in fact, is typically used
for (G)TLA verifications: by the Theorems 2.6.3 and 2.6.2 b), the latter initial con-
sequence relationship is equivalent to

Adata � FΓ → Fiprop

which means that FΓ → Fiprop is SΓ -valid in the sense of Sect. 5.1. (Note that the
results from Sect. 2.6 used here can easily be transferred.)

As mentioned already in Sect. 9.1 the verification of implementation correctness
should be just a particular instance of the general verification problem. In fact, if FΓ

is the specification of a refinement of a system Γ ′ specified by FΓ ′ then
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FΓ → FΓ ′

is just the adequate correctness formula.
To summarize, apart from the description of system properties as initial proper-

ties we need not care any more about the different semantics. The verification can be
carried out by deriving

Adata � FΓ → Fiprop

within, e.g., the formal system ΣGTLA.
We illustrate the described method by two examples. Firstly we now formally

verify the implementation correctness of the counter system discussed in Sects. 9.1
and 9.2. Taking the system without an initial condition and ignoring any kind of
fairness, the “high level” specification is given by the formula

Fcount ≡ �[AΓcount
]on,c

(cf. Sect. 9.2) where

AΓcount
≡ Aon ∨Aoff ∨Ac ∨Ap

and

Aon ≡ ¬on ∧ on ′ ∧ c′ = 0,
Aoff ≡ on ∧ ¬on ′ ∧ c′ = c,
Ac ≡ on ∧ on ′ ∧ c′ = c + 1,
Ap ≡ ¬on ∧ ¬on ′ ∧ c′ = c.

The implementation of Γcount is analogously given by

Fimplcount ≡ �[AΓimplcount
]on,c,dec

where

AΓimplcount
≡ Aon ∨Aoff ∨ Bc ∨Ap ,

Bc ≡ on ∧ on ′ ∧ dec′ = (dec + 1) mod 10 ∧
(dec = 9 → c′ = c + 1) ∧
(dec �= 9 → c′ = c).

The implementation correctness is expressed by

Fimplcount → Fcount

and is easily derived as follows:

(1) �[AΓimplcount
→ [AΓcount

]on ]on (tautpf )
(2) �[AΓimplcount

]on → �[[AΓcount
]on ]on (mp),(gtla4),(1)

(3) �[AΓimplcount
]on → �[AΓcount

]on (prop), (GT3),(2)
(4) �[AΓimplcount

→ [AΓcount
]c ]c (tautpf )

(5) �[AΓimplcount
]c → �[[AΓcount

]c ]c (mp),(gtla4),(4)
(6) �[AΓimplcount

]c → �[AΓcount
]c (prop), (GT3),(5)

(7) �[AΓimplcount
]on,c → Fcount (prop),(3),(6)

(8) Fimplcount → Fcount (prop),(7)
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(The rule (prop) is defined and used as in earlier chapters. Its justification by Theo-
rem 2.3.2 carries over as well.)

The substantial point of this proof is the fact that the two pre-formulas

AΓimplcount
→ [AΓcount

]on ,
AΓimplcount

→ [AΓcount
]c

are tautologically valid. They provide the lines (1) and (4) in the derivation and are
then manipulated within formulas of the form �[ ] . This observation holds quite
generally: facts (and arguments) concerned with pre-formulas have to be “encoded”
within formulas since only formulas are handled by the formal system ΣGTLA. Com-
ing back to a remark made already in the previous section we thus find that ΣGTLA

is a satisfactory solution of the axiomatization problem of (G)TLA, but it might be
rather cumbersome to use it in practice. This could particularly be the case if the ar-
guments are really data dependent and not only the axiom (tautpf ) – as in the present
example – but more sophisticated first-order reasoning is needed.

If we are prepared to trade the “logical purism” for a pragmatic approach to
deductive system verification, we can instead carry out the formal proof within full
first-order logic, i.e., within the formal system ΣFOLTL where we can handle both pre-
formulas and formulas of GTLA simply as FOLTL formulas. Of course, we continue
considering [A]e as an abbreviation for A ∨ e ′ = e and, hence, �[A]e simply as
�(A ∨ e ′ = e). The following trivial lemma justifies this method.

Lemma 9.4.1. Let F be a set of GTLA formulas and let A be a GTLA formula. If
F �

ΣFOLTL
A then F �A with respect to the GTLA semantics.

Proof. By Theorem 5.2.1, F �
ΣFOLTL

A implies F � A within FOLTL. According to
the definition of GTLA as a sublogic of FOLTL we can immediately conclude that
F �A holds with respect to the GTLA semantics as well. �

Applying this approach in our example above we could verify the implementation
correctness by deriving Fimplcount → Fcount within ΣFOLTL as follows.

(1) AΓimplcount
→ [AΓcount

]on (taut)
(2) �[AΓimplcount

]on → �[AΓcount
]on (T22),(1)

(3) AΓimplcount
→ [AΓcount

]c (taut)
(4) �[AΓimplcount

]c → �[AΓcount
]c (T22),(3)

(5) �[AΓimplcount
]on,c → Fcount (prop),(2),(4)

(6) Fimplcount → Fcount (prop),(5)

It is easy to see that the “encoded” steps (1)–(3) and (4)–(6) in the former ΣGTLA

derivation are now “directly” performed in steps (1)–(2) and (3)–(4).

Our second verification example deals with Peterson’s algorithm as specified in
Sect. 9.3 by the formula FΠPet

. We prove the mutual exclusion property which was
already formulated as �¬(at α3 ∧ at β3) in Sect. 8.4. This is also a suitable initial
property formula, so we have to derive
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FΠPet
→ �¬(atα3 ∧ atβ3).

We perform this proof now only with the second method and derive the formula
within ΣFOLTL. Actually, we may follow the main proof idea from the corresponding
derivation in Sect. 8.4 and adjust it to the present context. So let

B1 ≡ (at {α0, α1} ↔ a1 = 0) ∧ (at {α2, α3, α4} ↔ a1 = 1),
B2 ≡ (at {β0, β1} ↔ a2 = 0) ∧ (at {β2, β3, β4} ↔ a2 = 1),
B3 ≡ atα3 → a2 = 0 ∨ c = 2,
B4 ≡ atβ3 → a1 = 0 ∨ c = 1,
B ≡ B1 ∧ B2 ∧ B3 ∧ B4

where the notation at L for L ⊆ LabPet is used as before. Structuring the proof
similarly as in Sect. 8.4 (observe only some renaming) we show:

(a1) Aλ ∧ B → �B for every λ ∈ LabPet .
(a2) FΠPet

→ �B .

Derivation of (a1) for λ = α0.

(1) Aα0 ∧ B2 → �B2 (Π)
(2) Aα0 ∧ B → atα0 ∧ a1 = 0 ∧ �(atα1 ∧ a1 = 0) (Π)
(3) Aα0 ∧ B → �B (1),(2) �
(We write again (Π) to indicate the application of the specification formulas.) The
derivation of (a1) for the other cases for λ runs along the same line by transferring
the corresponding steps in the derivation in Sect. 8.4.

Derivation of (a2).

(1) startΠPet
→ B (Π)

(2) FΠPet
→ �[AΠPet

]UPet
∧ B (1)

(3) AΠPet
∧ B → �B (a1)

(4) [AΠPet
]UPet

∧ B → �B (3)
(5) �[AΠPet

]UPet
∧ B → �(�[AΠPet

]UPet
∧ B) (4)

(6) FΠPet
→ �(�[AΠPet

]UPet
∧ B) (ind2),(2),(5)

(7) FΠPet
→ �B (6) �

Now the formula

B → ¬(atα3 ∧ atβ3)

can be derived exactly as in Sect. 8.4 and from this and (a2) the mutual exclusion
property

FΠPet
→ �¬(atα3 ∧ atβ3)

follows immediately.
This derivation is based on the induction rule (ind2) of FOLTL. We still remark

that we could also introduce specially tailored invariant rules like those given in
Sect. 7.2, e.g, a rule
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(invstart′Γ ) startΓ → B ,Aλ ∧ B → �B for every λ ∈ Λ � FΓ → �B

where FΓ ≡ startΓ ∧ �[AΓ ]U ∧ fairΓ with AΓ ≡
∨

λ∈Λ Aλ, and B contains no
temporal operators and no flexible constants not contained in U. With this rule (the
derivation of which is easy to extract from the above proof), the derivation of (a2)
could be given in the form

(1) startΠPet
→ B (Π)

(2) Aλ ∧ B → �B for every λ ∈ LabPet (a1)
(3) FΠPet

→ �B (invstart’),(1),(2)

which then directly reflects the corresponding proof part in Sect. 8.4.

9.5 Hiding of Internal System Variables

We have stated in Sect. 9.2 that TLA system specifications are usually written in the
form

FΓ ≡ startΓ ∧�[AΓ ]U ∧ fairΓ .

The formula FΓ describes all possible executions of a system; the “level of detail” of
this specification is determined by the underlying temporal signature TSIG . From
a computer science perspective, FΓ is likely to “reveal too much information” in
the sense that it does not distinguish between the internal details of a system and
its external interface. Continuing the running example of the counter, imagine that
internally some elementary “tick” events are counted but that only every tenth tick
is to be displayed externally. A specification of such a device (still with the ability
to switch it on or off, and ignoring fairness conditions for a moment) is given by the
formula

Fimplcount

defined in Sect. 9.4 as �[AΓimplcount
]on,c,dec , except that this formula does not make

any difference between the “internal” counter dec and the “external” display c. Tak-
ing into account this distinction, the specification should really express that

“there exists an internal system variable dec behaving as given by Fimplcount”.

Technically this suggests we hide the internal system variable dec by existentially
quantifying “over it”. The specification would therefore be written in the form

Fextimplcount ≡ ∃dec Fimplcount ,

thus restricting the “visible” system variables (that occur “free”in the specification)
to just on and c.

Turning to refinement, we have shown in Sect. 9.4 that the counter with decimals
is a correct refinement of the counter specification Fcount , formally expressed as
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Fimplcount → Fcount .

Because the variable dec does not occur in Fcount , it is easy to see (and confirmed
by proof rules for existential quantification) that the implication

Fextimplcount → Fcount

therefore holds as well. In other words, the specification Fextimplcount with an “in-
visible” decimal is a correct implementation of the high-level counter specification.

For this example, we may indeed expect the two specifications Fcount and
Fextimplcount of the counter to be indistinguishable, and therefore expect that the
implication

Fcount → Fextimplcount

holds as well: the free variables of the formula Fextimplcount are just those of the
formula Fcount , and they can change in the same ways. An external observer should
not be able to tell if the counter display is derived from an invisible tick counter.

But consider now an execution sequence of the form

[tt, 16] � [tt, 17] � . . . � [tt, 17] � [tt, 18] � . . .

with a number k of stuttering steps [tt, 17] � [tt, 17]. For every k , Fcount is true in
the state denoted by [tt, 16]. The formula ∃dec Fimplcount is also true in this state if
k ≥ 9; however, for k < 9 this is not the case. Take, e.g., the sequence

[tt, 16] � [tt, 17] � [tt, 17] � [tt, 18] � . . .

with k = 1. It is not possible to find a sequence of values of dec which make
Fimplcount true: such a sequence must associate dec = 9 with the state [tt, 16],
dec = 0 and dec = 1 with the next two states, and then there is no possible value of
dec in the state [tt, 18].

The essential reason for this fact is again that the formula ∃dec Fimplcount is not
stuttering invariant. In Sect. 9.1, we were able to enforce stuttering invariance by
restricting the temporal logic FOLTL to a syntactically identified subset TLA. In the
present situation, the problem is due to the semantics of quantification, which can
result in ∃xF being stuttering sensitive even if F is stuttering invariant. The solution
is to introduce a new operator of existential quantification whose semantics is defined
in a way that guarantees stuttering invariance.

For this purpose, we assume an additional set Xfl =
⋃

s∈S Xfl
s of flexible indi-

vidual variables, just as in Sect. 5.6 for FOLTL. We also assume a set Vfl of flexible
propositional variables, in analogy to the language Lq

LTL in Sect. 3.3 (where the cor-
responding set was denoted by V). A language Lq

GTLA(TSIG) of the logic GTLA+q
is obtained as the extension of some language LGTLA(TSIG) of GTLA by the sets
Xfl and Vfl , a new existential quantifier denoted by ∃∃∃∃∃∃, and by adding the formation
rule

• If A is a formula and w ∈ Xfl ∪ Vfl is a flexible propositional or individual
variable then ∃∃∃∃∃∃wA is a formula
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to the syntactical definition of GTLA. For defining the semantics of ∃∃∃∃∃∃ we recall
the relation ∼w defined in Sects. 3.3 and 5.6 such that, for two flexible variable
valuations Ξ and Ξ ′, Ξ ∼w Ξ ′ informally means that Ξ and Ξ ′ have “pointwise
equal” values for all flexible variables except possibly w . This relation was used to
define the semantics of the (flexible) quantifier ∃ by

K
(ξ,Ξ)
i (∃wA) = tt ⇔ there is a Ξ ′ such that Ξ ∼w Ξ ′ and K

(ξ,Ξ′)
i (A) = tt.

For the operator ∃∃∃∃∃∃ we modify this definition in the following way. We first extend
the stuttering notions from Sect. 9.3 to the new kind of language. For any temporal
structure K = (S,W) for TSIG , W = (η0, η1, η2, . . .), and any flexible variable
valuation Ξ = (ξ0, ξ1, ξ2, . . .) for Xfl ∪ Vfl , the “union” W ∪ Ξ is the sequence
(η0 ∪ ξ0, η1 ∪ ξ1, η2 ∪ ξ2, . . .) of mappings

ηi ∪ ξi : X ∪V ∪ Xfl ∪ Vfl → |S| ∪ {ff, tt}

where

ηi ∪ ξi(e) = ηi(e) for e ∈ X ∪V,
ηi ∪ ξi(w) = ξi(w) for w ∈ Xfl ∪ Vfl .

We adopt, just by replacing state sequences W by sequences W ∪ Ξ , the definitions
from Sect. 9.3, particularly

ΘU(W ∪Ξ) = (ηi0 ∪ ξi0 , ηi1 ∪ ξi1 , ηi2 ∪ ξi2 , . . .)

for any U ⊆ X ∪V ∪ Xfl ∪ Vfl and

W1 ∪Ξ1 �U W2 ∪Ξ2 ⇔ ΘU(W1 ∪Ξ1) =U ΘU(W2 ∪Ξ2).

Now the semantics of ∃∃∃∃∃∃ is given by

K
(ξ,Ξ)
i (∃∃∃∃∃∃wA) = tt ⇔ there are K′ = (S,W′), Ξ ′, and Ξ ′′ such that

W ∪ Ξ �U(A) W′ ∪ Ξ ′, Ξ ′ ∼w Ξ ′′, and

K′
i
(ξ,Ξ′′)(A) = tt

for K = (S,W). Comparing this clause with the one for ∃, it roughly means that no
longer Ξ itself, but a “stuttering equivalent version” of Ξ has to be “equal up to w”
to an appropriate valuation (now Ξ ′′).

Every formula of the new shape is indeed stuttering invariant again where this
notion is now redefined as follows:

Definition. Let TSIG = (SIG ,X,V) be a temporal signature. A formula A of
Lq

GTLA(TSIG) is called stuttering invariant if

K
(ξ,Ξ)
0 (A) = K′

0
(ξ,Ξ′)(A)

holds for all variable valuations ξ, temporal structures K = (S,W) and K′ = (S,W′)
for TSIG , and flexible variable valuations Ξ and Ξ ′ with W ∪ Ξ �U(A) W′ ∪ Ξ ′

where U(A) ⊆ X∪V ∪Xfl ∪Vfl is the set of flexible individual and propositional
constants and variables occurring free in A.
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Theorem 9.5.1. Every formula of a language Lq
GTLA is stuttering invariant.

Proof. The proof of Theorem 9.3.3 can be adapted to the present situation (with the
assumption W ∪ Ξ �U(A) Ŵ ∪ Ξ̂). We only have to extend it for the additional

case of a formula A ≡ ∃∃∃∃∃∃wB . So, let K
(ξ,Ξ)
0 (A) = tt. Then there are K′ = (S,W′),

Ξ ′, and Ξ ′′ such that W ∪ Ξ �U(A) W′ ∪ Ξ ′, Ξ ′ ∼w Ξ ′′, and K′(ξ,Ξ′′)(B) = tt.
Then we also have Ŵ ∪ Ξ̂ �U(A) W′ ∪ Ξ ′ by the assumption and this immediately

implies K̂
(ξ,Ξ̂)
0 (A) = tt. The opposite direction follows by symmetry, so we obtain

K
(ξ,Ξ)
0 (A) = K̂

(ξ,Ξ̂)
0 (A). �

GTLA+q can be axiomatized, even in a weakly complete way with respect to its
propositional fragment. We do not go into the details, we only list

• Aw (B) → ∃∃∃∃∃∃wA,
• Aw (t) → ∃∃∃∃∃∃wA,
• �∃∃∃∃∃∃wA→ ∃∃∃∃∃∃w�A,
• �〈∃∃∃∃∃∃wA〉e → ∃∃∃∃∃∃w�〈A〉e ,
• �〈A ∧ �∃∃∃∃∃∃wB〉e → ∃∃∃∃∃∃w�〈A ∧ �B〉e if there is no free occurrence of w in A

as some examples of helpful axioms and note that the particularization rule

• A→ B � ∃∃∃∃∃∃wA→ B if there is no free occurrence of w in B

can be taken in its usual form for ∃∃∃∃∃∃ as well.
Coming back to our example, the application of the new operator in the an-

nounced way works as desired: we obtain that

Fcount → ∃∃∃∃∃∃dec Fimplcount

is N-valid. In this formula, dec is now in fact a flexible individual variable and we
assume the priming notation of Sect. 5.4 to be extended to flexible variables in an
obvious way. To see the N-validity of this implication formally, let K = (N,W) be
a temporal structure and ηi be a state of W. Assume K

(ξ,Ξ)
i (Fcount) = tt for some

ξ and Ξ . To find appropriate W′, Ξ ′, and Ξ ′′ such that K′
i
(ξ,Ξ′′)(Fimplcount) = tt

for K′ = (N,W′) we adopt “steps” (. . . , ηj ∪ ξj , ηj+1 ∪ ξj+1, . . .) from W ∪ Ξ to
W′ ∪Ξ ′ (and choose Ξ ′′ accordingly) in all cases except those where

ηj (on) = ηj+1(on) = . . . = ηj+k+2(on) = tt,
ηj (c) = ηj+1(c) = . . . = ηj+k+1(c),
ηj+k+2(c) = ηj+k+1(c) + 1

hold for some k < 9. In this case we “stretch” W ∪ Ξ to W′ ∪ Ξ ′ by introducing a
sufficient number of stuttering steps such that we obtain Ξ ′′ then by evaluating dec
with 0, 1, 2, . . . , 9 from the state with the index j + 1 on. For example, let W∪Ξ be
given by
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j
on . . . tt tt tt tt ff ff tt . . .
c . . . 16 17 17 18 18 18 0 . . .

dec . . . 7 4 5 3 2 6 . . .

(We write simply j for ηj ∪ ξj and omit the other entries in the “header line”.) Then
the first three lines of the matrix

j
on . . . tt tt tt tt tt tt tt tt tt tt tt tt ff ff tt . . .
c . . . 16 17 17 17 17 17 17 17 17 17 17 18 18 18 0 . . .

dec . . . 7 4 4 4 4 4 4 4 4 4 5 3 2 6 . . .
dec . . . 0 1 2 3 4 5 6 7 8 9 0 0 0 0 . . .

show W′ ∪Ξ ′, and Ξ ′′ is obtained by taking the fourth instead of the third line.
The semantic definition of ∃∃∃∃∃∃ in terms of additional “stretching” must be reflected

in the axiomatization of the quantifier. We again omit the details, but only show an
example of an axiom (for the first-order case) useful for introducing a “stuttering
variable” w that enforces certain numbers of stuttering steps between changes of the
externally visible system variable e:

∃∃∃∃∃∃w(w = t1 ∧
�[(w > 0 ∧ w ′ = w − 1 ∧ e ′ = e) ∨ (w = 0 ∧ e ′ �= e ∧ w ′ = t2)]w ,e ∧
��(w = 0)).

In this formula, t1 and t2 are terms of sort NAT that do not contain the “stuttering
variable” w . When the value of w is n for some n ∈ N, it enforces at least n stuttering
steps with respect to e. Initially, w is set to (the value of) t1. There are two types
of transitions: the first decrements w and leaves e unchanged, the second changes
the visible variables and sets w to t2. The latter type of transition is possible only if
w = 0 holds, that is, if no more stuttering transitions are necessary. The final conjunct
��(w = 0) asserts that “counting-down transitions” eventually occur whenever w
is non-zero. In the counter example, t1 and t2 would both be chosen as 9.

In the light of the above discussion we arrive at a somewhat generalized form of
system specifications in (G)TLA: they are typically of the form

FΓ ≡ ∃∃∃∃∃∃w1 . . . ∃∃∃∃∃∃wm(startΓ ∧�[AΓ ]U ∧ fairΓ )

where the variables w1, . . . ,wm ∈ U represent the internal system variables of the
specification. (U is now a subset of X∪V∪Xfl ∪Vfl ). When proving a refinement
relationship

FimplΓ → FΓ

an important step in the proof consists in finding “witnesses” for the hidden variables
wi in FΓ , for example by an application of the axiom
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Aw (t) → ∃∃∃∃∃∃wA.

The “witness term” t is usually called a “refinement mapping”.
We have studied the “hiding operator” ∃∃∃∃∃∃ in the framework of GTLA. Of course,

it could also have been introduced in (basic) TLA. The resulting logic (equipped with
initial validity semantics) is what we announced as “full” TLA in Sect. 9.2.

The syntax of GTLA allows more formulas than can be built in TLA, and there
are GTLA formulas which cannot equivalently be expressed in basic TLA. Interest-
ingly, however, this different expressivity of the two logics disappears when they are
extended by the operator ∃∃∃∃∃∃ (and endowed with the same semantics). More precisely:

• for every GTLA+q formula A there is a formula A∗ of (full) TLA such that
� A↔ A∗.

(This formulation refers to normal semantics; transferring Theorem 2.6.4 shows that
it holds for initial validity semantics as well.) Actually, A∗ can systematically be
constructed from A. We only illustrate this construction by means of an example.
Let

A ≡ �
[
�v1 → �∃∃∃∃∃∃w1�[v2 → ��w1]v2

]
v1

where v1 and v2 are flexible propositional constants and w1 is a flexible proposi-
tional variable. (Observe that A is not a TLA formula.) In a first step the subformula
∃∃∃∃∃∃w1�[v2 → ��w1]v2 of A is “represented” by a (fresh) flexible propositional vari-
able:

A+ ≡ ∃∃∃∃∃∃w2(�(w2 ↔ ∃∃∃∃∃∃w1�[v2 → ��w1]v2) ∧ (�[�v1 → w ′
2]v1).

The second step transforms those subformulas of A+ inside some �[ ] which are
not allowed in TLA, i.e., the formulas v2 → ��w1 and �v1 → w ′

2. Their “inadmis-
sible” parts �w1 and �v1 are again represented by additional flexible variables:

A∗ ≡ ∃∃∃∃∃∃w2(�(w2 ↔ ∃∃∃∃∃∃w1∃∃∃∃∃∃w3(�(w3 ↔ �w1) ∧�[v2 → w ′
3]v2)) ∧

∃∃∃∃∃∃w4(�(w4 ↔ �v1) ∧�[w4 → w ′
2]v1)) .

A∗ is a TLA formula and from the construction it is quite evident that it has the
desired property. Moreover, it is not hard to see how to define a procedure that carries
out the construction for an arbitrary formula of GTLA+q.

9.6 Composition of System Components

Systems are often composed of smaller components. Actually, system composition
occurs in different versions, depending on how the interaction between the compo-
nents is organized. We illustrate how this structuring method can be described within
(G)TLA by the particular case of open systems: any system (component) interacts
with an environment which may be other components. The interaction takes place
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by receiving inputs from the environment and delivering outputs to it. In order to
simplify the discussion we consider only the composition of two components and
we represent the input and output interfaces of each component by system variables
in and out , respectively. Inputs are “arriving” on in and out receives the outputs.
Assuming a1, . . . , an to be the internal system variables, a component Γ of this kind
is in general specified in (G)TLA by a formula

FΓ ≡ startΓ ∧�[AΓ ]UΓ
∧ fairΓ

where

UΓ = {a1, . . . , an , in, out}.

(As described in Sect. 9.5, hiding of the internal variables could be expressed by
quantifying “over them” with ∃∃∃∃∃∃.) The set UΓ contains all relevant variables. The
specification AΓ describes the transitions of Γ , which may occur in reaction to
changes of the input variable.

This concept, however, still needs to be made a bit more precise. In the sense of
Chap. 8, the component and its environment are running concurrently and this con-
currency can be represented by different “computation models” which fix whether
changes of the input variable may or may not occur simultaneously with actions
concerning the other system variables. (G)TLA does not commit to any particular
model of computation: it is encoded in the specification, which has to “synchronize”
actions of different components in an appropriate way. We apply here again a version
of the interleaving model in which changes of the input variable in and the output
variable out do not take place simultaneously. (This notion of interleaving is slightly
different from the one described in Sect. 8.1.) Therefore, AΓ should be given such
that

AΓ → in ′ = in ∨ out ′ = out

is SΓ -valid (as a pre-formula).
Let us give an example. Assume SIGqueue to be a signature for queues (of, say,

natural numbers) containing (at least) the function symbols

EMPTY ,APPEND ,HEAD ,TAIL

which are interpreted by a structure Q with the empty queue ε and the usual queue
operations of appending a number to a queue, returning the head, and returning the
tail of a queue, respectively. Based on SIGqueue we consider the specification

Fqueue ≡ startΓqueue
∧�[AΓqueue

]a,out

(we omit fairness aspects) of a system Γqueue where

startΓqueue
≡ a = EMPTY ,

Aenq ≡ in ′ �= in ∧ a ′ = APPEND(in ′, a) ∧ out ′ = out ,
Adeq ≡ a �= EMPTY ∧ out ′ = HEAD(a) ∧ a ′ = TAIL(a) ∧ in ′ = in ,
AΓqueue

≡ Aenq ∨Adeq .
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�in �out
a : · · ·

Fig. 9.2. A queue

Γ1
�in1 �out1 Γ2

�in2 �out2

(a) Two components Γ1 and Γ2

Γ1
�in1 �c

Γ2
�out2

(b) The composition of Γ1 and Γ2

Fig. 9.3. Composition of system components

Γqueue may be depicted as in Fig. 9.2. It has one internal system variable a which
stores the incoming numbers such that input and output works in a first-in-first-out
manner. Aenq and Adeq describe the “enqueuing” and “dequeuing” actions, respec-
tively: the queue adds the new input value to its queue whenever in changes, and it
may dequeue an element whenever the queue is non-empty. The conjuncts in ′ = in
and out ′ = out in the definitions of these actions ensure the above “interleaving
condition”. An example of an execution sequence is:

[ε, 0, 0] � [(5), 5, 0] � [(3, 5), 3, 0] � [(3), 3, 5] � [(8, 3), 8, 5] � . . .

where a state η is represented by [η(a), η(in), η(out)]. As intended, simultaneous
changes of the input and output “channels” are impossible, and the change of the
input channel is synchronized with the update of the queue.

The kind of composition of (two) components we want to describe now is to link
up the output of one component with the input of the other, as depicted in Fig. 9.3.
The system variable c represents the “connection” of out1 with in2. As an example,
we consider the composition Γcqueues of two queues Γqueue . We hide now the two
internal system variables; so, after some renaming, a straightforward specification of
Γcqueues is given by

Fcqueues ≡ ∃∃∃∃∃∃w1∃∃∃∃∃∃w2(startΓcqueues
∧�[AΓcqueues

]w1,w2,c,out)

where

startΓcqueues
≡ w1 = EMPTY ∧ w2 = EMPTY ∧ c = EMPTY ,

A(1)
enq ≡ in ′ �= in ∧ w ′

1 = APPEND(in,w1) ∧ c′ = c ∧
w ′

2 = w2 ∧ out ′ = out ,
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A(1)
deq ≡ w1 �= EMPTY ∧ c′ = HEAD(w1) ∧ w ′

1 = TAIL(w1) ∧
in ′ = in ∧ w ′

2 = w2 ∧ out ′ = out ,

A(2)
enq ≡ c′ �= c ∧ w ′

2 = APPEND(c,w2) ∧ out ′ = out ∧
in ′ = in ∧ w ′

1 = w1,

A(2)
deq ≡ w2 �= EMPTY ∧ out ′ = HEAD(w2) ∧ w ′

2 = TAIL(w2) ∧
c′ = c ∧ w ′

1 = w1 ∧ in ′ = in ,

AΓcqueues
≡ A(1)

enq ∨A(1)
deq ∨A(2)

enq ∨A(2)
deq .

The “logical composition” of the separate specifications of the two single queues is
expressed in a somehow “interweaved” disjunction in AΓcqueues

which describes all
(interleaving) actions of the components. Actually, there is an equivalent description
which combines the separate specifications in a more “direct” way by (essentially)
building their logical conjunction.

To find this, consider first the two internal system variables represented by the
flexible variables w1 and w2. Their interleaved changes are described by disjunctions
of the form

B ≡ (w ′
1 = t1 ∧ w ′

2 = w2) ∨ (w ′
2 = t2 ∧ w ′

1 = w1)

with terms t1 and t2 not containing w2 and w1, respectively. It is easy to see from the
definition of the operator ∃∃∃∃∃∃ that the formula

∃∃∃∃∃∃w1∃∃∃∃∃∃w2B ↔ ∃∃∃∃∃∃w1(w ′
1 = t1) ∧ ∃∃∃∃∃∃w2(w ′

2 = t2)

is valid. Of course, the same does not hold for the system variables in and out since
they are “free”. However, if we explicitly include the pre-formulas out ′ = out and
in ′ = in in the specifications of the (actions of the) first and second queue, respec-
tively, then the stuttering invariance (with respect to in and out) of these specifica-
tions provide again the possibility to describe the interleaving actions by a conjunc-
tion. Finally, the two queues synchronize on the channel c: a dequeue action of the
first queue occurs simultaneously with an enqueue of the second one. Indeed, using
these arguments it turns out that the specification Fcqueues is logically equivalent to
the formula

∃∃∃∃∃∃w1F (1)
queue ∧ ∃∃∃∃∃∃w2F (2)

queue

where F (1)
queue and F (2)

queue are the specifications of the two single queues, modified
as follows:

F (1)
queue ≡ start (1)

Γqueue
∧�[A(1)

Γqueue
∧ out ′ = out ]in,w1,c,out ,

F (2)
queue ≡ start (2)

Γqueue
∧�[A(2)

Γqueue
∧ in ′ = in]in,c,w2,out ,

and start (1)
Γqueue

and A(1)
Γqueue

are startΓqueue
and AΓqueue

where a and out are replaced

by w1 and c, respectively, and start (2)
Γqueue

and A(2)
Γqueue

result analogously by replacing
a and in by w2 and c.



336 9 Structured Specification

The observation made in this example carries over to the general case. If

FΓ1 ≡ ∃∃∃∃∃∃w (1)
1 . . . ∃∃∃∃∃∃w (1)

n (startΓ1 ∧�[AΓ1 ]UΓ1
)

and

FΓ2 ≡ ∃∃∃∃∃∃w (2)
1 . . . ∃∃∃∃∃∃w (2)

m (startΓ2 ∧�[AΓ2 ]UΓ2
)

are specifications of two components Γ1 and Γ2 (now with hidden internal system
variables) then the behaviour of the composition Γ of Γ1 and Γ2 is given by

FΓ ≡ F ∗
Γ1
∧ F ∗

Γ2

where F ∗
Γ1

results from FΓ1 by replacing out by c and then �[A∗
Γ1

]U∗
Γ1

(which is the
result of this replacement) by

�[A∗
Γ1
∧ out ′ = out ]U∗

Γ1
∪{out},

and F ∗
Γ2

results from FΓ2 by analogously replacing in by c and then �[A∗
Γ2

]U∗
Γ2

by

�[A∗
Γ2
∧ in ′ = in]U∗

Γ1
∪{in}.

So the composition of two components is logically described by the conjunction of
the single specifications. (This holds also if fairness formulas are added.) Besides the
trivial replacements of out and in by c, these specifications have only to be modified
by the additions out ′ = out and c′ = c, respectively. This modification is induced
by the underlying interleaving model.

We finally remark that a composition Γ of Γ1 and Γ2 could also be understood
as an implementation of some other system Γ (extending the usage of this notion in
the previous sections). For example, the composition of the two queues above imple-
ments just a single queue again. Similiarly as in earlier cases this can be expressed
by the “correctness” formula

∃∃∃∃∃∃w1F (1)
queue ∧ ∃∃∃∃∃∃w2F (2)

queue → ∃∃∃∃∃∃wFqueue

where Fqueue is the original queue specification (with w instead of a). This formula
is in fact Q-valid. The opposite “completeness” relationship is obtained by hiding the
internal “connection” variable c. So, taking c now directly as a flexible individual
variable, the formula

∃∃∃∃∃∃wFqueue → ∃∃∃∃∃∃c(∃∃∃∃∃∃w1F (1)
queue ∧ ∃∃∃∃∃∃w2F (2)

queue)

describes this relationship, which intuitively asserts that it is impossible to tell from
looking at the “external interface” provided by in and out whether a queue is inter-
nally implemented as the composition of two queues.
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all system poses interesting problems. Within the context of temporal logic, Pnueli
[122] made an early suggestion that triggered much work on the problem. We only
refer to the excellent overviews [39, 40] of compositional approaches to specification
and verification.



10

Other Temporal Logics

A common feature of all versions of temporal logics investigated so far is that they
are based on the paradigm of linearly ordered time. More precisely, formulas are
evaluated over sequences of “time points”, with N as index set and the linear order
< on N as the basis for the semantics of the temporal operators.

Additionally to the numerous syntactical and semantical variations in previous
chapters we briefly sketch here some more modifications of such logics including
possible generalizations to other linearly ordered time models and spatial-temporal
logics.

The main focus of this chapter, however, is to discuss some important temporal
logics based on “non-linear time models”. The most popular of them, branching time
temporal logic CTL (“computation tree logic”), is widely used in connection with
verification techniques which we will encounter in Chap. 11. We restrict ourselves to
a propositional logic treatment in these cases. Particularly for CTL, this is sufficient
for the intended applications. First-order versions could easily be defined in all cases
along the lines shown for LTL in Chap. 5.

10.1 Further Modifications of Linear Temporal Logic

In the preceding chapters we have extensively studied many variants of propositional
and first-order linear temporal logics. The variations were given by different choices
of the linguistic means (particularly the numerous logical operators), i.e., the syntax
of the respective logical language, or by different semantics. The borderline between
these principal sources of modifications is not unique: an operator like ∃∃∃∃∃∃ introduced
in Sect. 9.5 as a new syntactical element could also be viewed as just the existential
quantifier with a modified semantics.

We want to sketch in this section some more examples of syntactical and semanti-
cal modifications. To begin with another syntactical aspect, we recall our “design de-
cision” in Sect. 5.1 where we chose propositional and individual constants as the flex-
ible symbols in FOLTL. In some presentations of first-order temporal logic one can
find another choice: flexible predicate symbols. A language LFOLTLfp(TSIG) of such
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a logic FOLTLfp can be defined as follows. A temporal signature TSIG = (SIG ,R)
is given in this case by a signature SIG = (S,F,P) and R =

⋃
�s∈S∗ R(�s) where

R(�s), for every�s ∈ S∗, is a set of flexible predicate symbols. Terms and formulas are
built as usual, by handling the new flexible predicate symbols like rigid ones. A tem-
poral structure K = (S,W) for a temporal signature TSIG = (SIG ,R) is defined
as in FOLTL, with the difference that a state ηi of W now associates a mapping

pηi : |S|s1 × . . .× |S|sn → {ff, tt}

with every p ∈ R(s1...sn). Given a variable valuation ξ, the evaluation of terms is as
in FOL and for atomic formulas the clause

S(ξ,ηi )(p(t1, . . . , tn)) = pηi (S(ξ,ηi )(t1), . . . ,S(ξ,ηi )(tn)) for p ∈ R

has to be added. All further semantical definitions are verbally adopted from FOLTL.
We do not want to investigate this logic in detail; we only point out its re-

lationship to the “original” FOLTL. The two logics are not “directly” compara-
ble with respect to the expressibility notions of Sect. 4.1, but we may state, as a
first observation, that FOLTL can be “embedded” into FOLTLfp which means in
a somewhat modified sense that whatever is “describable” in FOLTL can also be
described in FOLTLfp. More formally: given a language LFOLTL(TSIG), there is a
language LFOLTLfp(TSIG∗) (with the same variables) such that for every formula A
of LFOLTL(TSIG) we can construct a formula A∗ of LFOLTLfp(TSIG∗), and for every
temporal structure K for TSIG we can construct a temporal structure K∗ for TSIG∗

such that

K
∗(ξ)
i (A∗) = K

(ξ)
i (A)

holds for every K, ξ, and i . This assertion is quite trivial. The flexible proposi-
tional constants of TSIG are directly included as elements of R(ε) in TSIG∗, and
any flexible individual constant a of sort s in TSIG can be encoded in a way
which is known already from classical FOL (for rigid symbols) and can immedi-
ately be applied in the present situation. TSIG∗ contains a flexible predicate symbol
pa ∈ R(s) for every such a with the informal meaning that, in any state, pa is true
for exactly that element of the domain which is the value of a . A formula like, e.g.,
a < b of LFOLTL(TSIG) is encoded by the formula

pa(x ) ∧ pb(y) → x < y

of LFOLTLfp(TSIG∗) and, in fact, this definition meets the requirement if we for-
malize the idea by defining, for K = (S,W), W = (η0, η1, η2, . . .), the temporal
structure K∗ by K∗ = (S,W∗), W = (η∗

0 , η
∗
1 , η

∗
2 , . . .), with

pη∗
i

a (d) = tt ⇔ ηi(a) = d

for every i ∈ N. It is evident that every occurrence of flexible individual constants
can be eliminated in this way. Furthermore, generalizing this argument a bit, we also
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see that flexible function symbols (with definitions analogous to those above) would
not bring in additional descriptive power. Such a symbol f could be encoded by a
flexible predicate symbol pf with

pη∗
i

f (d1, . . . , dn , dn+1) = tt ⇔ f η∗
i (d1, . . . , dn) = dn+1.

Conversely, FOLTLfp can also be embedded into FOLTL, but this is not entirely
obvious. Consider, as an example, the (atomic) formula

p(t1, t2)

with a flexible predicate symbol p (and t1, t2 rigid). An approach for an encoding is
to describe the truth value of this formula in a state ηi by a formula

isin(t1, t2, ap)

where ap is a flexible individual constant which has the set

{(d1, d2) | “p(d1, d2) is true in ηi”}

as value in ηi , and isin is a (rigid) predicate symbol which, applied as shown, just
asserts that the pair of the values of t1 and t2 is contained in the set (that is the value
of) ap .

To make this idea formally precise, let LFOLTLfp be a language over a temporal
signature TSIG = (SIG ,R). The encoding language LFOLTL is based on the tem-
poral signature TSIG∗ = (SIG∗,X, ∅) where

• SIG∗ extends SIG = (S,F,P) by adding, for every �s = s1 . . . sn ∈ S∗ with
R(�s) �= ∅, a sort [s1, . . . , sn ] to S and defines P(s1...sn [s1,...,sn ]) = {isin�s} with
a new predicate symbol isin�s .

• X = {ap | p ∈ R} where ap is of sort [s1, . . . , sn ] if p ∈ R(s1...sn).

Continuing immediately with the construction of the temporal structure K∗ for
TSIG∗ from a temporal structure K = (S,W) for TSIG , we define K∗ = (S∗,W∗)
where

• S∗ is S extended by the domains

|S[s1,...,sn ]| = 2|Ss1 |×...×|Ssn |

for the new sorts [s1, . . . , sn ] in SIG∗ and by associating the mappings isinS∗

s1...sn
with the new predicate symbols isins1...sn in P which are given by

isinS∗

s1...sn (d1, . . . , dn , dn+1) = tt ⇔ (d1, . . . , dn) ∈ dn+1,

• the states η∗
i : X→ |S[s1,...,sn ]| of W∗ are given by

η∗
i (ap) = {(d1, . . . , dn) ∈ |S[s1,...,sn ]| | pηi (d1, . . . , dn) = tt}

for every ap ∈ X, i ∈ N.
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Observe that these definitions imply that all terms t of LFOLTLfp(TSIG) are terms of
LFOLTL(TSIG∗) as well and S∗(ξ,η∗

i )(t) = S(ξ,ηi )(t) holds for every i and ξ.
Following the idea shown above, finally the formula A∗ of LFOLTL(TSIG∗)

is inductively defined according to the syntactic structure of the formula A of
LFOLTLfp(TSIG).

1. A ≡ p(t1, . . . , tn) with p ∈ R(s1...sn): Then

A∗ ≡ isins1...sn (t1, . . . , tn , ap).

2. A ≡ p(t1, . . . , tn) with p ∈ P or A ≡ t1 = t2 or A ≡ false: Then A∗ ≡ A.
3. A ≡ B → C or A ≡ �B or A ≡ �B or A ≡ ∃xB : Then A∗ ≡ B∗ → C ∗,

A∗ ≡ �B∗, A∗ ≡ �B∗, A∗ ≡ ∃xB∗, respectively, where B∗ and C ∗ are the
results of this construction for B and C .

These definitions provide the desired encoding result.

Theorem 10.1.1. With the constructions defined above,

K
∗(ξ)
i (A∗) = K

(ξ)
i (A)

holds for every formula A of LFOLTLfp(TSIG), temporal structure K for TSIG , vari-
able valuation ξ, and i ∈ N.

Proof. The proof runs by structural induction on A.

1. A ≡ p(t1, . . . , tn) with p ∈ R(s1...sn): Then we have (using the above remark)

K
∗(ξ)
i (A∗) = tt ⇔ K

∗(ξ)
i (isins1...sn (t1, . . . , tn , ap)) = tt

⇔ isinS∗

s1...sn (S∗(ξ,η∗
i )(t1), . . . S∗(ξ,η∗

i )(tn),S∗(ξ,η∗
i )(ap))

= tt
⇔ isinS∗

s1...sn (S(ξ,ηi )(t1), . . . S(ξ,ηi )(tn), η∗
i (ap)) = tt

⇔ (S(ξ,ηi )(t1), . . . S(ξ,ηi )(tn)) ∈ η∗
i (ap)

⇔ pηi (S(ξ,ηi )(t1), . . . S(ξ,ηi )(tn)) = tt

⇔ K
(ξ)
i (A) = tt.

2. A ≡ p(t1, . . . , tn) with p ∈ P or A ≡ t1 = t2 or A ≡ false: Then A does not
contain flexible predicate symbols and by definition of K∗ we have

K
∗(ξ)
i (A∗) = K

∗(ξ)
i (A) = K

(ξ)
i (A).

3. A ≡ B → C or A ≡ �B or A ≡ �B or A ≡ ∃xB : Using the respective
induction hypothesis, we have in the first case

K
∗(ξ)
i (A∗) = tt ⇔ K

∗(ξ)
i (B∗ → C ∗) = tt

⇔ K
∗(ξ)
i (B∗) = ff or K

∗(ξ)
i (C ∗) = tt

⇔ K
(ξ)
i (B) = ff or K

(ξ)
i (C ) = tt

⇔ K
(ξ)
i (A) = tt,
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and the other cases run analogously. �

FOLTLfp appears not very appropriate for the applications (mainly) considered in
this book (with the exception of applications to database systems as briefly sketched
in a Second Reading paragraph in Sect. 8.6). This version of FOLTL may be prof-
itably used, however, in theoretical investigations, even of FOLTL, since results can
be transferred from FOLTLfp to FOLTL by relationships like the one we have just
proved.

For the modification of the semantics of LTL or FOLTL there are manifold pos-
sibilities on different “levels”. For example, one can define, following patterns in
classical logic which we briefly mentioned in Sect. 2.1, semantics which charac-
terize three-valued, probabilistic, intuitionistic and other temporal logics departing
from the usual two-truth-values paradigm. We briefly illustrate the case of a (basic)
intuitionistic propositional temporal logic ILTL. In particular, intuitionistic logics
treat negation in a special way, so we define a language LILTL(V) as in the case of
LTL with the difference that we take the operators ¬, ∨, ∧, and � instead of false as
symbols of the underlying alphabet (in addition to →, �, and �), together with the
corresponding syntactical rule

• If A and B are formulas then ¬A, (A ∨ B), (A ∧ B), and �A are formulas

instead of the rule for false.
For the definition of semantics, a temporal structure Kint = (J ,�) for the set

V of propositional constants is now given by a non-empty set J of state sequences
(η0, η1, η2, . . .) with states ηi as in LTL and a partial order � on J . We require that
whenever (η0, η1, η2, . . .) � (η′

0, η
′
1, η

′
2, . . .) and ηi(v) = tt then also η′

i(v) = tt, for
all i ∈ N and v ∈ V. Given such a temporal structure Kint , a value Ki(A) ∈ {ff, tt}
is inductively defined for every formula A, every K ∈ J , and i ∈ N.

1. Ki(v) = tt ⇔ η′
i(v) for some K′ = (η′

0, η
′
1, η

′
2, . . .) ∈ J with K′ � K

for v ∈ V.
2. Ki(¬A) = tt ⇔ K′

i(A) = ff for every K′ ∈ J with K � K′.
3. Ki(A ∨ B) = tt ⇔ Ki(A) = tt or Ki(B) = tt.
4. Ki(A ∧ B) = tt ⇔ Ki(A) = tt and Ki(B) = tt.
5. Ki(A→ B) = tt ⇔ K′

i(A) = ff or K′
i(B) = tt

for every K′ ∈ J with K � K′.
6. Ki( �A) = Ki+1(A).
7. Ki(�A) = tt ⇔ Kj (A) = tt for every j ≥ i .
8. Ki(�A) = tt ⇔ Kj (A) = tt for some j ≥ i .

A formula A of LILTL(V) is called valid in the temporal structure Kint for V if
Ki(A) = tt for every K ∈ J and every i ∈ N. Consequence and universal validity
are defined as usual.

These definitions transfer the semantical features of “usual” intuitionistic logic
to temporal logic. A temporal structure is now a collection of “LTL state sequences”,
and the order � is informally understood as a possible “growth of knowledge” about
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the truth of formulas in these state sequences (formalized by the compatibility con-
dition for the relation �). The new definitions concern the classical operators and
have only “indirect” influence on the temporal operators. These have the semantics
as before, but some typical laws of LTL no longer hold in ILTL, e.g., the operators �

and � are no longer dual to each other: the implication �A → ¬�¬A is valid, but
the opposite direction

¬�¬A→ �A

is not.
Intuitionistic logic may be applied in systems with “incomplete information”

where the handling of negation is of crucial importance.

All variants of linear temporal logic which we have shown so far exhibit still
one common feature: formulas are evaluated by state sequences (ηi)i∈N. Recalling
the statement in Sect. 2.1 that the characteristic paradigm of linear temporal logic is
to be based on a linearly ordered, discrete time model, we observe that within this
frame the standard index set (“time model”) N of such state sequences may also be
replaced by some other set with a discrete linear order relation.

A simple example of this kind is a semantics where, in the basic propositional
case, a temporal structure K = (η0, η1, η2, . . .) is a finite or infinite sequence of
states. In applications to state systems, the inclusion of finite sequences would enable
us to model finite (e.g.: terminating) system runs in a more direct way than with
the standard semantics. On the other hand, one has to take some care then of the
nexttime operator. Analogously to the previous operators of the logic LTL+p one
should introduce a weak and a strong nexttime operator. Denoting the first again by
�and the second by �� , an appropriate definition would be as follows.

• Ki( �A) = tt ⇔ if ηi+1 exists in K then Ki+1(A) = tt.
• Ki( �� A) = tt ⇔ ηi+1 exists in K and Ki+1(A) = tt.

Of course, the semantics of the always operator could be defined as before.
Going a step further one can restrict temporal structures to be only finite se-

quences. Certain logics of this kind are called interval temporal logics and are of
their own specific importance. Their basic ideas will be given separately in the next
section.

Another modification which is “opposite” to “cutting off” temporal structures is
to take the set Z of integers as a time model, i.e., to define a temporal structure to be
a state sequence

(ηi)i∈Z .

With such a semantics (again based on the natural order <) no initial state would
be distinguished. Furthermore, it is evident that for any logic containing only future
operators, there would be no difference to the former semantics since, informally
speaking, then no formula evaluated in some ηi refers to states ηj with j < i , so the
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shape of the state sequence “behind” ηi is irrelevant. The introduction of past oper-
ators, however, becomes simpler. Like the one nexttime operator �(in the standard
case), one single previous operator �would be enough:

• Ki( �A) = Ki−1(A).

Relating this semantics to state systems, it reflects the general case of systems repre-
sented by not necessarily rooted STSs. Rooted systems could still be handled (with
some technical changes) referring exclusively to the initial condition of a system for
describing the beginnings of its runs.

We still remark that, characterizing linear temporal logic, one can also omit the
requirement of discreteness of time: the set R of real numbers would be an obvious
example. With such a semantics the nexttime operator makes no sense any more. So,
in the basic version, there would be only the operator � (and its dual �) with the
usual semantical definition. Such a logic then rather appears as a particular modal
logic, with past and maybe binary operators as a tense logic (cf. the Second Reading
paragraphs in Sects. 2.3 and 3.6 for some remarks about these kinds of logics). So
we do not pursue this idea here. Arguing from the point of view of applications, we
remark that such a logic would no longer reflect the “discreteness” of state systems
in the sense shown in Chap. 6. Applying temporal logic to real-time systems (which,
at a first glance, could be thought of as an application area) one typically treats times
as special data which may be, e.g., values of “clock variables”.

We conclude this survey by mentioning spatial-temporal logics which open a
new spatial dimension – besides the temporal one – for changeable truth and falsity
of formulas by viewing a state as a somehow structured and changeable collection of
“local” states distributed over different “locations”. (Of course, the locations referred
to in this context are unrelated to locations of automata as in Chap. 4 or in Sect. 6.4.)
Such logics may be applied, e.g., in systems with mobile agents which, in fact, can
be seen to be determined by their local state variables, to be “associated” to some
location, and to be able to change this association during a run.

We illustrate the idea by a simple propositional logic STL which extends LTL by
a spatial aspect. For the definition of a language LSTL(V,L) of STL the alphabet of
LLTL(V) (for some V) is enriched by a non-empty set L of locations which contains
a distinguished reference location r, and the symbols [ and ]. Formulas are built as in
LTL and additionally with the formation rule

• If A is a formula and n is a location then n[A] is a formula.

The special element r of L represents a location which exists in every state and to
which all other existing locations (in a state) are “connected” in the spatial structure.
A formula n[A] informally means

“A holds at location n, provided this location exists”.

By the dualization

n〈A〉 ≡ ¬n[¬A]

one obtains formulas expressing
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“Location n exists and A holds there”.

For defining the semantics, a spatial-temporal structure K = (η0, η1, η2, . . .) for V
and L is now an infinite sequence of states ηi = (Li ,�i , ζi) where, for every i ∈ N,

• Li ⊆ L is a subset of L with r ∈ Li ,
• �i is a binary connection relation on Li such that n �i r for every n ∈ Li ,
• ζi : Li ×V → {ff, tt} associates a truth value with every v ∈ V “at a location

from Li”.

The relations �i formalize the idea that the set of locations existing in a state is
“structured” somehow. In this simple STL this structure is not specified more con-
cretely; it is only required that every existing location is always connected with the
reference location r. A refinement to trees (with root r) could be a natural, more
particular choice.

Given such a K, Ki,m(A) ∈ {ff, tt} (the “truth value of A in the i th state at
location m”) is defined for every formula A, every i ∈ N, and every m ∈ L.

1. Ki,m(v) = tt ⇔ m ∈ Li and ζi(m, v) = tt for v ∈ V.
2. Ki,m(false) = ff.
3. Ki,m(A→ B) = tt ⇔ Ki,m(A) = ff or Ki,m(B) = tt.
4. Ki,m( �A) = tt ⇔ m ∈ Li+1 and Ki+1,m(A) = tt.
5. Ki,m(�A) = tt ⇔ for every j ≥ i :

if m ∈ Li+k for every k ≤ j then Kj ,m(A) = tt.
6. Ki,m(n[A]) = tt ⇔ if n ∈ Li and n �i m then Ki,n(A) = tt.

The last clause formalizes the above informal intention (additionally requesting that
n be connected with m). The semantics of �and � is modified according to the fact
that locations may “disappear”: the truth of �A at m requests that m exists in the
next state and Ki,m(�A) is now defined to mean that �A holds in a state at location
m if

“A holds in all subsequent states at m as long as m exists”.

Finally, a formula A of LSTL(V,L) is called valid in a spatial-temporal structure K
for V and L if Ki,r(A) = tt for every i ∈ N, i.e., if

“A holds in every state at r”.

Consequence and universal validity are defined as usual. For example,

n[A→ B ] → (n[A] → n[B ]),
¬n[A] → n[¬A],
�¬A→ ¬ �A,
�¬n[A] → n[¬ �A],

�n[A] → n[�A]

are some valid formulas of STL.
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10.2 Interval Temporal Logics

As indicated in the previous section, restricting temporal structures to finite se-
quences of states leads to a special class of logics called (finite) interval temporal
logics. The temporal structures define finite state intervals and formulas are inter-
preted in these intervals.

One main application area of such logics is the field of temporal logic program-
ming (cf. our short remarks about this field in the Second Reading paragraph in
Sect. 8.6). We do not enter this topic, as it is beyond the scope of this book, but
we want to give in this section at least a short outline of the basic ideas of interval
temporal logics.

We illustrate the concepts in the style of LTL by means of a basic propositional
interval temporal logic ITL. Given a set V of propositional constants the alphabet of
a language LITL(V) (shortly: LITL) of ITL is given by

• all propositional constants of V,
• the symbols false | → | �| chop | ( | ).
The new (binary) chop operator chop, just enabled by the semantical concept of
finite intervals, is characteristic for ITL and allows us to describe “sequential com-
position”. The operator � is not included in this list since it can be defined by chop.

Inductive Definition of formulas (of LITL(V)).

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.
4. If A and B are formulas then �A and (A chop B) are formulas.

Further useful operators are the usual classical ones and (among others):

�� A ≡ ¬ �¬A,
�A ≡ true chop A,
�A ≡ ¬�¬A,
empty ≡ �false.

Operator priorities are applied as before, including the convention that the binary
operator chop has higher priority than the classical binary operators.

For the semantical machinery we define, as announced, an (interval) temporal
structure for some set V of propositional constants to be a finite non-empty sequence
K = (η0, . . . , η|K|) of mappings (states)

ηi : V → {ff, tt}.

|K| is called the length of K. Furthermore, we let, for 0 ≤ i ≤ |K|,
iK = (η0, . . . , ηi),
Ki = (ηi , . . . , η|K|)
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denote the prefix “up to ηi” and the suffix “from ηi on” of K, respectively, both being
again interval temporal structures (in Sect. 2.1 we introduced the notation Ki already
for infinite K). Observe that

(Ki)k = Ki+k

and

k (Ki) = (i+kK)i

hold for arbitrary i , k with 0 ≤ i ≤ |K| and 0 ≤ k ≤ |Ki |.
ITL is typically endowed with initial validity semantics as discussed in Sect. 2.6.

Quite generally, our standard way of defining validity of formulas was to define the
truth values Ki(F ) of formulas F for “every state ηi in K”, and initial validity of
F in a temporal structure K was determined by the value K0(F ). We briefly men-
tioned already in Sect. 2.6 that this latter notion can also be obtained in a technically
somewhat different way. In fact, this modified definition is often taken for ITL and
it reflects the “interval idea” more obviously. The difference is to define – instead
of the truth value Ki(F ) in a single state – the truth value K(F ) of F “in the state
interval K”. We apply this technique for ITL by the following inductive clauses:

1. K(v) = η0(v) for v ∈ V.
2. K(false) = ff.
3. K(A→ B) = tt ⇔ K(A) = ff or K(B) = tt.
4. K( �A) = tt ⇔ if |K| > 0 then K1(A) = tt.
5. K(A chop B) = tt ⇔ jK(A) = tt and Kj (B) = tt for some j , 0 ≤ j ≤ |K|.

In the informal wording of above, a formula �A holds in an interval if, provided this
interval has length at least 1 (i.e., at least two states), A holds in the interval obtained
by “moving the start” one state into the future. Note that �is again a weak version in
the sense that this next state may not exist; �� is the corresponding strong version. For
the evaluation of the formula A chop B , the interval is divided into two sub-intervals
in which A and B , respectively, are evaluated. Note that these sub-intervals have one
common state: the “end state” of the first and the “start state” of the second one. For
the other operators we get the following additional clauses:

6. K( �� A) = tt ⇔ |K| > 0 and K1(A) = tt
7. K(�A) = tt ⇔ Kj (A) = tt for some j , 0 ≤ j ≤ |K|.
8. K(�A) = tt ⇔ Kj (A) = tt for every j , 0 ≤ j ≤ |K|.
9. K(empty) = tt ⇔ |K| = 0.

So, � and � have the expected meaning and empty expresses that the state sequence
consists of just one state. We prove, as an example, the clause for �A.

K(�A) = tt ⇔ K(¬(true chop ¬A)) = tt

⇔ K(true chop ¬A) = ff

⇔ there is no j , 0 ≤ j ≤ |K| such that
jK(true) = tt and Kj (¬A) = tt

⇔ Kj (A) = tt for every j , 0 ≤ j ≤ |K|.
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To conclude the semantical definitions, the validity of a formula A in some K can
now “directly” be determined by K(A).

Definition. A formula A of LITL(V) is called valid in the temporal structure K for
V (or K satisfies A), denoted by �

K
A, if K(A) = tt. A is called a consequence of a

set F of formulas (F �A) if �
K
A holds for every K such that �

K
B for all B ∈ F . A

is called (universally) valid (�A) if ∅ �A.

Example. Let A ≡ �(v1 → v2), B ≡ �(v1 ∨ v2), C ≡ v1 chop (¬v1 ∧ v2) with
v1, v2 ∈ V, and K with |K| = 6 be given by

η0 η1 η2 η3 η4 η5 η6

v1 tt tt ff tt ff tt tt
v2 ff tt ff tt tt tt ff

We have:

K1(v2) = η1(v2) = tt ⇒ K(A) = tt.

K2(v1) = η2(v1) = ff and K2(v2) = η2(v2) = ff ⇒ K2(v1 ∨ v2) = ff
⇒ K(B) = ff.

4K(v1) = η0(v1) = tt, K4(¬v1) = η4(¬v1) = tt, K4(v2) = η4(v2) = tt
⇒ K(C ) = tt.

Thus, A and C are valid in K, B is not. �

The above semantical definitions reflect the “interval idea” but, as indicated al-
ready, they do have the same results as we would obtain with the standard style given
in Sect. 2.6 for LTL0. In that context, Ki(F ) would be defined for formulas F of the
form v ∈ V, false, and A→ B as usual, for �A by

• Ki( �A) = tt ⇔ if |K| > 0 then Ki+1(A) = tt

as explained in Sect. 10.1, and for A chop B by

• Ki(A chop B) = tt ⇔ jKi(A) = tt and Kj (B) = tt for some j , i ≤ j ≤ |K|.

Denoting (initial) validity in K with
0� as in LTL0 we then would define

0�
K
A ⇔ K0(A) = tt.

Let us prove the equivalence of this validity definition with the above one. For
this we first transfer the assertion of Lemma 2.1.5 to the present situation.

Lemma 10.2.1. Let K be a temporal structure, i , k ∈ N such that i + k ≤ |K|. Then
Kk

i (F ) = Kk+i(F ) for every formula F of LITL.

Proof. The proof runs by structural induction on F and the cases v ∈ V, false, and
A → B for F can be taken from the proof of Lemma 2.1.5 (with some renaming).
Observe now that |Kk | = |K| − k . Applying the induction hypothesis, for F ≡ �A
we then have
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Kk
i ( �A) = tt ⇔ if |Kk | > i then Kk

i+1(A) = tt

⇔ if |K| > k + i then Kk+i+1(A) = tt

⇔ Kk+i( �A) = tt,

and for F ≡ A chop B we have

Kk
i (A chop B) = tt ⇔ j (Kk )i(A) = tt and Kk

j (B) = tt
for some j , i ≤ j ≤ |Kk |

⇔ (k+jK)ki (A) = tt and Kk
j (B) = tt

for some j , i ≤ j ≤ |Kk |
⇔ k+jKk+i(A) = tt and Kk+j (B) = tt

for some k + j , k + i ≤ k + j ≤ |K|
⇔ Kk+i(A chop B) = tt. �

With this lemma the equivalence of the notions of validity in some K and, hence, of
consequence and universal validity given by the two different approaches are easily
proved.

Theorem 10.2.2. Let K be a temporal structure. Then

�
K
F ⇔ 0�

K
F

holds for every formula F of LITL.

Proof. According to the definitions we have to show K(F ) = K0(F ) and this is
proved by structural induction on F . Applying the induction hypothesis in the cases
3–5 and Lemma 10.2.1 in 4 and 5 we have:

1. K(v) = η0(v) = K0(v) for v ∈ N.

2. K(false) = ff = K0(false).
3. K(A→ B) = tt ⇔ K(A) = ff or K(B) = tt

⇔ K0(A) = ff or K0(B) = tt
⇔ K0(A→ B) = tt.

4. K( �A) = tt ⇔ if |K| > 0 then K1(A) = tt
⇔ if |K| > 0 then K1

0(A) = tt
⇔ if |K| > 0 then K1(A) = tt
⇔ K0( �A) = tt.

5. K(A chop B) = tt ⇔ jK(A) = tt and Kj (B) = tt for some j , 0 ≤ j ≤ |K|
⇔ jK0(A) = tt and Kj

0(B) = tt for some j , 0 ≤ j ≤ |K|
⇔ jK0(A) = tt and Kj (B) = tt for some j , 0 ≤ j ≤ |K|
⇔ K0(A chop B) = tt. �

Summarizing this discussion, we may say that ITL is LTL0 “on finite temporal
structures” and extended by the chop operator which inherently relies on the finite-
ness of temporal structures. Observe also that the semantics of the original LTL0
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could indeed be defined in the way chosen here for ITL since it is easy to show anal-
ogously to Theorem 10.2.2 that a formula F of some LLTL(V) is initially valid in
some (infinite) temporal structure K for V if and only if K(F ) = tt where K(F ) is
defined inductively by the clauses 1–3 as for ITL and

• K( �A) = tt ⇔ K1(A) = tt,
• K(�A) = tt ⇔ Kj (A) = tt for every j ∈ N

(where the notation Ki is now used as in Sect. 2.1).
We note that ITL is decidable and can be axiomatized, and list some characteristic

laws of ITL involving the chop operator.

(IT1) empty chop A ↔ A,
(IT2) �� A chop B ↔ �� (A chop B),
(IT3) (A ∨ B) chop C ↔ A chop C ∨ B chop C ,
(IT4) A chop (B ∨ C ) ↔ A chop B ∨A chop C ,
(IT5) A chop (B chop C ) ↔ (A chop B) chop C .

For example, the simple calculation

K( �� A chop B) = tt ⇔ jK( �� A) = tt and Kj (B) = tt
for some j , 0 ≤ j ≤ |K|

⇔ |K| > 0 and (jK)1(A) = tt and Kj (B) = tt
for some j , 1 ≤ j ≤ |K|

⇔ |K| > 0 and j−1(K1)(A) = tt and (K1)j−1(B) = tt
for some j − 1, 0 ≤ j − 1 ≤ |K1|

⇔ |K| > 0 and K1(A chop B) = tt

⇔ K( �� (A chop B)) = tt

proves (IT2).
Like LTL, ITL can be extended or modified in various ways. We only mention

one special extension by a (binary) projection operator proj which is used as another
characteristic feature of interval temporal logics. Its semantics is given by

• K(A proj B) = tt ⇔ there are m, j0, . . . , jm ∈ N such that
0 = j0 < j1 < . . . < jm = |K| and
(jk+1K)jk (A) = tt for every k , 0 ≤ k < m and
K(B) = tt for K = (ηj0 , ηj1 , . . . , ηjm )

(where K = (η0, . . . , η|K|)). So, A proj B informally means that the interval under
consideration can be divided into a series of sub-intervals such that A holds in each
of them and B holds in the interval formed from the end points of these sub-intervals.
An important use of proj is in describing “iteration”. For example, a star operator
could be introduced by

A∗ ≡ A proj true.

A∗ expresses that A “holds repeatedly (some number of times)”.
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10.3 Branching Time Temporal Logics

Formulas of linear temporal logics (or more precisely, linear time temporal logics)
are semantically interpreted over state sequences which may model execution se-
quences of state systems. The formulas are therefore able to express behavioural
properties of such sequences. Consider once more the Towers of Hanoi system re-
peatedly treated in Chap. 6 as one of our first examples of a state system and for-
malized as ΓToH in Sect. 6.3. Taking it with three stones, its possible execution
sequences going through a particular state, e.g., [3, 21, ε] look like

. . . � [3, 21, ε] � [3, 2, 1] � [32, ε, 1] � [321, ε, ε] � . . . ,

. . . � [3, 21, ε] � [ε, 21, 3] � [1, 2, 3] � [1, ε, 32] � . . . ,

. . . � [3, 21, ε] � [ε, 21, 3] � [ε, 2, 31] � [2, ε, 31] � . . . ,

etc.

The set of all these execution sequences may be systematically comprehended in a
computation tree as shown in Fig. 10.1. Every “branch” (i.e., infinite sequence of
states connected by arrows) in this tree represents one execution sequence.

As mentioned in Sect. 7.1, the property

�(DECR(pl1) ∧DECR(pl2) ∧DECR(pl3))

is a valid property of ΓToH which informally means that it holds in every execution
sequence of ΓToH . So, relating this fact to the computation tree of ΓToH we may say
that this property holds on every branch of the tree (with arbitrary “starting point”).
The property

startΓToH
→ �Afin

with Afin ≡ pl1 = EMPTY ∧ pl2 = TOWER ∧ pl3 = EMPTY does not hold on
every branch of the tree: most of the possible execution sequences do not lead to the
goal of the puzzle. We only may assert that there exists some “successful” sequence
of moves or, again related to the computation tree,

“if startΓToH
holds in a state then there is a branch starting from that state on

which �Afin holds”.

It might be desirable to formulate and verify assertions of this kind but linear
time temporal logics evidently provide no means to do this. From the linguistic point
of view we would need some language construct to express the phrase

“there is an execution sequence such that . . .”

and approaching a temporal logic with such a linguistic feature we have to change the
semantical basis used up to now. Following the computation tree idea, formulas are
then to be interpreted over sets of sequences which are given by a tree-like (“branch-
ing”) structure. In other words, the basic concept of a temporal structure should no
longer be defined to be one single sequence
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Fig. 10.1. A computation tree

. . . � ηi
� ηi+1

� ηi+2
� . . .

of states but rather a collection of states connected by a “successor relation” which
does not necessarily induce a linear order and therefore in general contains state
sequences as various different branches of the structure.

As we could view the states of a state sequence as “time points” on a (linear)
time scale, we may then regard the states as reflecting a time structure in which the
“flow of time” is branching at each time point to (possibly) more than one successor
point. This view explains why a temporal logic with this semantical basis is called a
branching time temporal logic.

We develop now – analogously to LTL – a basic propositional logic BTL of
this kind. The operators of this logic combine the expressibility of the existence of
branches in the state structure with the possibility of speaking (as in LTL) about the
“next” state, “all subsequent” states, and “some subsequent” state on the branches.
Formally this is captured by the following definitions.

Given a set V of propositional constants the alphabet of a (basic) language
LBTL(V) (also shortly:LBTL) of propositional branching time temporal logic is given
by

• all propositional constants of V,
• the symbols false | → | E �| E� | E� | ( | ) .

Inductive Definition of formulas (of LBTL(V)).

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.
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4. If A is a formula then E �A, E�A, and E�A are formulas.

Linguistically, the only difference between LLTL and LBTL is that the operators �and
� (and �) are replaced by the new operators E �, E�, and E�. The symbol E in these
notations indicates the existential assertion on branches, so the informal meaning of
the operators is given by the following phrases:

E �A: “There is a successor state in which A holds”,
E�A: “There is a branch (starting from the present state) on which A holds

in all subsequent states”,
E�A: “There is a branch on which A holds in some subsequent state”.

Further operators, including the classical ones (for which we adopt the priority order
from LTL), can again be introduced by abbreviations, in particular the dualizations

A �A ≡ ¬E �¬A (“A holds in all successor states”),
A�A ≡ ¬E�¬A (“A holds on all branches in all subsequent states”),
A�A ≡ ¬E�¬A (“On all branches, A holds in some subsequent state”).

It will come out immediately by the semantical definitions that the duality relation-
ships are not as simple as they are in the case of �, �, and �: the operator E �is not
self-dual and E� and E� are not dual to each other.

As pointed out, the semantics of LBTL is based on a time model in which each
time point may have more than one successor. In order to develop this idea formally,
a pair (I ,�) where I is a non-empty set (of “time points”) and � is a total binary
relation on I is called a branching time structure. � represents the successor relation
on time points. A fullpath in I is an infinite sequence (ι0, ι1, ι2, . . .) of elements of
I with ιk � ιk+1 for k ∈ N.

Let now V be a set of propositional constants. A (branching time) temporal struc-
ture K = ({ηι}ι∈I ,�) for V is given by a branching time structure (I ,�) and a
multiset {ηι}ι∈I of states

ηι : V → {ff, tt}.

Observe that in general there is no distinguished initial state in K and that I (and
therefore {ηι}ι∈I as well) may be finite. Infinite state sequences are provided by the
fact that � is total. Furthermore, it is evident that a “linear time” temporal structure
(η0, η1, η2, . . .) as defined in Sect. 2.1 is just a special case of such a structure with
I = N and i � j ⇔ j = i + 1.

For a temporal structure K = ({ηι}ι∈I ,�) we inductively define the truth value
Kι(F ) of a formula F of LBTL “in state ηι” as follows (ι ∈ I ):

1. Kι(v) = ηι(v) for v ∈ V.
2. Kι(false) = ff.
3. Kι(A→ B) = tt ⇔ Kι(A) = ff or Kι(B) = tt.
4. Kι(E �A) = tt ⇔ Kκ(A) = tt for some κ with ι � κ.
5. Kι(E�A) = tt ⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and

Kιk (A) = tt for every k ∈ N.
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6. Kι(E�A) = tt ⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιk (A) = tt for some k ∈ N.

A fullpath (ι0, ι1, ι2, . . .) in I represents a state sequence (ηι0 , ηι1 , ηι2 , . . .) as a
branch “in K”, so these formal definitions realize the intentions discussed above.
Furthermore, they induce the following additional clauses for the dual operators:

7. Kι(A �A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ.
8. Kι(A�A) = tt ⇔ for every fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι,

Kιk (A) = tt for every k ∈ N.

9. Kι(A�A) = tt ⇔ for every fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι,
Kιk (A) = tt for some k ∈ N.

Example. Let A ≡ E�(v1 ∨ v2) ∧ A �v2 with v1, v2 ∈ V, and let K be given by
I = {1, 2, 3}, � = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 3)} and

η1 η2 η3

v1 tt tt ff
v2 ff tt tt

(1, 2, 1, 3, 3, 3, . . .) is a fullpath in I representing the state sequence

(η1, η2, η1, η3, η3, η3, . . .).

Other fullpaths are (1, 3, 3, 3, . . .), (2, 1, 2, 1, 2, . . .), (3, 3, 3, . . .), and so on. We
compute:

K1(v1 ∨ v2) = K3(v1 ∨ v2) = tt ⇒
K1(E�(v1 ∨ v2)) = tt with the fullpath (1, 3, 3, 3, . . .) and
K3(E�(v1 ∨ v2)) = tt with the fullpath (3, 3, 3, . . .),

K2(v2) = K3(v2) = tt ⇒ K1(A �v2) = K3(A �v2) = tt;

hence together: K1(A) = K3(A) = tt. On the other hand:

K1(v2) = ff ⇒ K2(A �v2) = ff ⇒ K2(A) = ff. �

The definitions of validity and consequence follow the usual pattern.

Definition. A formula A of LBTL(V) is called valid in the temporal structure
K = ({ηι}ι∈I ,�) for V (or K satisfies A), denoted by �

K
A, if Kι(A) = tt for

every ι ∈ I . A is called a consequence of a set F of formulas (F �A) if �
K
A holds

for every K such that �
K
B for all B ∈ F . A is called (universally) valid (�A) if

∅ �A.

Example. The formula

E�A↔ A ∧ E �E�A

describing a fixpoint characterization of the operator E� is valid:
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Kι(E�A) = tt ⇔ there is a fullpath (ι0, ι1, ι2, . . .) with ι0 = ι and
Kιk (A) = tt for every k ∈ N

⇔ Kι(A) = tt and
there is κ with ι � κ and a fullpath
(κ0, κ1, κ2, . . .) = (ι1, ι2, ι3, . . .)
with κ0 = κ and Kκj

(A) = tt for every j ∈ N

⇔ Kι(A) = tt and Kκ(E�A) = tt for some κ with ι � κ

⇔ Kι(A) = tt and Kι(E �E�A) = tt

⇔ Kι(A ∧ E �E�A) = tt. �

There are fixpoint characterizations for the operators E�, A�, and A� as well.
We note the complete list:

(BT1) E�A ↔ A ∧ E �E�A,
(BT2) E�A ↔ A ∨ E �E�A,
(BT3) A�A ↔ A ∧ A �A�A,
(BT4) A�A ↔ A ∨ A �A�A.

Of course, many other logical laws, some of them similar to those in LTL, are also
available. We show only a few examples.

(BT5) A �A → E �A,
(BT6) E�A → E �A,
(BT7) E�E�A ↔ E�A,
(BT8) E �E�A → E�E �A,
(BT9) E �(A ∧ B) → E �A ∧ E �B ,
(BT10) E �(A→ B) ↔ A �A→ E �B ,
(BT11) E�(A ∨ B) ↔ E�A ∨ E�B ,
(BT12) E�(A ∧ B) → E�A ∧ E�B .

BTL is decidable with an exponential time complexity, and the following formal
system ΣBTL provides a sound and weakly complete axiomatization.

Axioms

(taut) All tautologically valid formulas,
(btl1) E �true,
(btl2) E �(A ∨ B) ↔ E �A ∨ E �B ,
(btl3) E�A ↔ A ∧ E �E�A,
(btl4) E�A ↔ A ∨ E �E�A.

Rules

(mp) A,A→ B � B ,
(nexb) A→ B � E �A→ E �B ,
(indb1) A→ B ,A→ E �A � A→ E�B ,
(indb2) A→ ¬B ,A→ A �(A ∨ ¬E�B) � A→ ¬E�B .
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These axioms and rules are easy to interpret. (The notion of tautological validity is
adapted in an obvious way.) Particularly, the axioms include the fixpoint characteri-
zations (BT1) and (BT2). Note that the axiom (btl1) means that each state does have
a successor. To illustrate the use of ΣBTL we give a simple example of a derivation.
(The application of the rule (prop) can be justified as in Sect. 2.3 for LTL.)

Derivation of (BT8).

(1) E�A→ A (prop),(btl3)
(2) E �E�A→ E �A (nexb),(1)
(3) E�A→ E �E�A (prop),(btl3)
(4) E �E�A→ E �E �E�A (nexb),(3)
(5) E �E�A → E�E �A (indb1),(2),(4) �

Let us see now how BTL can be applied to state systems. We formally refer again
to transition systems as defined in Sect. 6.2 and since BTL is a propositional logic
we restrict the considerations to propositional STSs. Let

Γ = (∅,V ,W ,T )

be such an STS with the set V of system variables, the set W of (system) states
η : V → {ff, tt}, and the (total) transition relation T ⊆ W ×W . The relationship
to BTL is now immediate: Γ induces a language LBTLΓ = LBTL(V ) and a temporal
structure KΓ = (W ,�) in which, informally speaking, we take W as the state
multiset {ηι}ι∈I and let “T induce �”. Technically, W is a set; so (W ,T ) is a
branching time structure and we can define

KΓ = ({ηι}ι∈W ,T )

where ηι = ι for every ι ∈W (“every state of W is its own index in {ηι}ι∈W ”).
Clearly we have then {ηι}ι∈W = W , so we also may simply write

KΓ = (W ,T )

for this temporal structure (and Kη(F ) for the truth value of some F “in a state
η ∈W ”). A fullpath (η0, η1, η2, . . .) in W represents itself as a state sequence “in
KΓ ”.

Example. Consider the oscillator circuit shown in Sect. 6.1 and formalized in
Sect. 6.2 as STS Γosc with V = {b0, b1, b2}, W = {η : V → {ff, tt}}, and

T = {(η, η′) ∈W ×W |
η′(b0) = η(b0),
η′(b1) = tt ⇔ η(b0) �= η(b1),
η′(b2) = tt ⇔ η(b2) = tt if and only if η(b0) = η(b1) = ff}.

For the states η, η′ with

η(b0) = tt, η(b1) = tt, η(b2) = ff,
η′(b0) = tt, η′(b1) = ff, η′(b2) = tt
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we find (η, η′) ∈ T and (η′, η) ∈ T , so (η, η′, η, η′, η, . . .) is a fullpath in W and
“in KΓosc ”. It describes the execution sequence

011 � 101 � 011 � 101 � 011 � . . .

of Γosc shown in Sect. 6.2. �

In general, the fullpaths of the temporal structure KΓ represent the execution
sequences of the STS Γ and properties of Γ may be expressed by formulas in the
language LBTLΓ . Again we say that Γ has the property (expressed by the formula)
F if F is Γ -valid, and this latter notion is now defined directly through KΓ .

Definition. Let Γ be a propositional STS. A formula A of LBTLΓ is called Γ -valid
if A is valid in KΓ .

According to our previous discussions in Chaps. 6 and 7 (cf. also the Second
Reading paragraph in Sect. 8.6) system properties occur as specification axioms de-
scribing (mainly) the possible single steps of the system or as “long-term” behaviour
properties which one might want to prove for the system runs. Typical formulas in
LTL or FOLTL expressing specification axioms are of the form

A→ �(B1 ∨ . . . ∨ Bn)

(if not using a priming notation) where B1, . . . ,Bn describe possible successor states
of states in which A holds. In the present situation, the temporal structure KΓ com-
prehending the computation tree structure of the system Γ should be specified. This
can be done by axioms of the form

A→ (E �B1 ∨ . . . ∨ E �Bn) ∧ A �(B1 ∨ . . . ∨ Bn)

which says (more precisely than above) that the states described by B1, . . . ,Bn are
exactly those which will follow states described by A.

Actually, we do not pursue such a use of BTL as specification language. Branch-
ing time logics are typically used for describing system properties in the sense of
Chap. 7 together with another verification method (cf. Chap. 11) which does not
need specification axioms of a system. So turning to this kind of property, it is easy
to see in the first place that invariance and eventuality properties are now expressible
by formulas of the form

A→ A�B

and

A→ A�B ,

respectively (with “state formulas” A and B as before). The operators � and � in the
linear temporal logic formulations are now replaced by A� and A� which express
that �B and �B hold “on all runs”. However, one reason which we gave for the
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introduction of BTL was that it could also be desirable to describe properties which
hold only for some runs and it is clear that this can be done now with the operators
E� and E�. In particular, formulas of the form

A→ E�B

constitute now an interesting new class of system properties called reachability prop-
erties. Referring to the introductory motivation in this section, the formula

startΓToH
→ E�Afin

(where we imagine for a moment that we have extended BTL to a first-order version)
describes an example of such a property, it just expresses the desired informal phrase
and, in fact, such properties can not be expressed in linear temporal logic. On the
other hand, however, there are properties (e.g.: fairness constraints) expressible in
LTL, but not in BTL.

Generally, LTL and BTL are incomparable with respect to expressibility in a for-
mal sense. We will make this statement precise in the following section and indicate
here one part of it only informally. Consider a formula of LTL of the form

��A.

The “natural” translation A��A into BTL is not possible since this is no BTL for-
mula. The only remaining candidate to express ��A in BTL then seems to be

A�A�A

but this formula does not mean the same thing as ��A. It says that any run will
reach a state η such that A will hold in all states of all continuations from η on. The
common prefix up to η together with the different continuations are different runs,
and stating ��A means that in each of these runs there is a state from which A holds
permanently, but η need not necessarily be the same for all runs.

10.4 The Logics CTL and CTL∗

Like LTL, the basic branching time logic BTL can be extended in various ways. An
important extension widely used in applications is the computation tree logic CTL.
This logic is the branching time counterpart of LTL+b, i.e., it results from BTL by
adding some binary operator (under E and A). A usual choice of this operator for
CTL is until or its non-strict version unt. We fix it here by taking the non-strict unt,
so we add the binary operator Eunt to BTL which then allows for building formulas
of the form

A Eunt B .

The operator E� can be expressed by Eunt (as we will see below), so the syntax of
CTL may be defined as follows.
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Given a set V of propositional constants the alphabet of a language LCTL(V)
(also shortly: LCTL) of (propositional) CTL consists of all propositional constants of
V and the symbols

false | → | E �| E� | Eunt | ( | ) .

false and all propositional constants of V are formulas and if A and B are formulas
then so are (A → B), E �A, E�A, and (A Eunt B). The informal meaning of the
latter formula is

“There is a branch on which B will hold in some subsequent state and A holds
on this branch until that state”.

(For some reasons which will become clear shortly this new kind of formula is also
written in the form E(A unt B).)

The operator E� can now be introduced as

E�A ≡ true Eunt A,

the operators A �, A�, A� can be defined as in BTL, and furthermore we may abbre-
viate:

A Aunt B ≡ ¬(¬B Eunt (¬A ∧ ¬B)) ∧ ¬E�¬B

(Eunt has a higher binding priority than the classical binary operators) with the in-
formal meaning

“On every branch B will hold in some subsequent state and A holds on these
branches until that state”.

The semantics of CTL takes over the semantical framework and definitions of
BTL only extending the definition of Kι(A) by the clause

• Kι(A Eunt B) = tt ⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιj (B) = tt for some j ∈ N and
Kιk (A) = tt for every k , 0 ≤ k < j .

For A Aunt B we then get

• Kι(A Aunt B) = tt ⇔ for every fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι
there is j ∈ N with Kιj (B) = tt and
Kιk (A) = tt for every k , 0 ≤ k < j

and for E�A we get back in fact the clause we had already in BTL:

Kι(E�A) = tt ⇔ Kι(true Eunt A) = tt

⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιj (B) = tt for some j ∈ N and
Kιk (true) = tt for every k , 0 ≤ k < j

⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιj (B) = tt for some j ∈ N.
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Example. Let A ≡ v1 Eunt (v1 ∧ v2) with v1, v2 ∈ V, and let K be the temporal
structure with I = {1, 2, 3}, � = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 3)} and

η1 η2 η3

v1 tt tt ff
v2 ff tt tt

as considered already in Sect. 10.3. We have K2(v1 ∧ v2) = tt and K1(v1) = tt, so
we get

K1(A) = tt

with a fullpath (1, 2, . . .) and

K2(A) = tt

with (2, . . .). However, K3(v1 ∧ v2) = ff and there is only the fullpath (3, 3, 3, . . .)
starting with 3, so

K3(A) = ff. �

Valid formulas containing the new operator include particularly the fixpoint char-
acterization

(CT1) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B))

which is an adaption of the law (Tb13) of LTL+b and can be proved as follows.

Kι(A Eunt B) = tt ⇔ there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιj (B) = tt for some j ∈ N and
Kιk (A) = tt for every k , 0 ≤ k < j

⇔ Kι(B) = tt
or
there is a fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι and
Kιj (B) = tt for some j > 0 and
Kιk (A) = tt for every k , 0 ≤ k < j

⇔ Kι(B) = tt
or
Kι(B) = tt and
there is a κ ∈ I with ι � κ and
a fullpath (κ0, κ1, κ2, . . .) in I with κ0 = κ and
Kκj

(B) = tt for some j ∈ N and
Kκk

(A) = tt for every k , 0 ≤ k < j
⇔ Kι(B ∨ (A ∧ E �(A Eunt B))) = tt.

Some examples of further valid formulas of CTL are:

(CT2) A Eunt B → E�B ,
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(CT3) E �(A Eunt B) ↔ E �A Eunt E �B ,
(CT4) A Eunt C ∨ B Eunt C → (A ∨ B) Eunt C ,
(CT5) (A ∧ B) Eunt C → A Eunt C ∧ B Eunt C ,
(CT6) A Eunt (B ∨ C ) ↔ A Eunt B ∨A Eunt C ,
(CT7) A Eunt (B ∧ C ) → A Eunt B ∧A Eunt C .

Like BTL, CTL is decidable (again with exponential time complexity) and for
an axiomatization of CTL we may modify the formal system ΣBTL in the following
way.

Axioms

(taut) All tautologically valid formulas,
(btl1) E �true,
(btl2) E �(A ∨ B) ↔ E �A ∨ E �B ,
(btl3) E�A ↔ A ∧ E �E�A,
(ctl) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B)).

Rules

(mp) A,A→ B � B ,
(nexb) A→ B � E �A→ E �B ,
(indb1) A→ B ,A→ E �A � A→ E�B ,
(indc) A→ ¬C ,A→ A �(A ∨ ¬(B Eunt C )) � A→ ¬(B Eunt C ).

This formal system ΣCTL results from ΣBTL by replacing the axiom (btl4) and the
rule (indb2) for E� by an axiom (ctl) and a rule (indc) for Eunt. ΣCTL is sound and
weakly complete. As an example for its use we derive the law (CT2).

Derivation of (CT2). We use E�A ≡ true Eunt A and A �A ≡ ¬E �¬A as ab-
breviations and the rule (prop) as before.

(1) ¬E�B → ¬B (prop),(ctl)
(2) ¬E�B → ¬(true ∧ E �E�B) (prop),(ctl)
(3) ¬E�B → ¬E �E�B (prop),(2)
(4) ¬¬E�B → E�B (taut)
(5) ¬E �E�B → A �¬E�B (nexb),(prop),(4)
(6) ¬(¬E�B ∨ ¬(A Eunt B)) → ¬¬E�B (taut)
(7) A �¬E�B → A �(¬E�B ∨ ¬(A Eunt B)) (nexb),(prop),(6)
(8) ¬E�B → A �(¬E�B ∨ ¬(A Eunt B)) (prop),(3),(5),(7)
(9) ¬E�B → ¬(A Eunt B) (indc),(1),(8)
(10) A Eunt B → E�B (prop),(9) �

The application of CTL to state systems runs as with BTL. The definitions of
KΓ and of Γ -validity for a (propositional) STS Γ are taken over; the new linguis-
tic means allow now for the description of further system properties, especially by
formulas of the form

A→ B Aunt C
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which express properties similar to precedence properties as defined in Sect. 7.1. The
difference is that Aunt is a strong operator in the sense of Sect. 3.1 (B Aunt C says
that C has to become true on the branches considered) whereas precedence proper-
ties are built with weak binary operators. Recalling the law (Tb3) from Sect. 3.1, one
could think of defining a “weak version” Aunl of Aunt by

A Aunl B ≡ A Aunt B ∨ A�A

but this means

“On every branch, B will hold sometime and A will hold until then, or A holds
permanently on every branch”.

What we want to express, however, is

“On every branch, B will hold sometime and A will hold until then or A holds
permanently”.

This is different from the first phrase and, in fact, it cannot be expressed in CTL.
In general, the systematic relationship between various views of binary operators

gets lost in CTL. Another observation is that CTL is still incomparable with LTL (or
LTL+b) regarding expressibility: the LTL formulas mentioned as not expressible in
BTL in the previous section are not expressible in CTL either.

Such deficiencies could be overcome by a still more powerful extension CTL∗ of
BTL. The weakness of CTL in the cases discussed here comes from the fact that the
“branch quantifiers” E and A are strictly bound to one temporal operator and formulas
like A�� or A(A unt B ∨ �A) (this “translates” the above non-expressible phrase)
are not allowed by the syntax of CTL. In CTL∗ just this limitation is dropped.

To define CTL∗, let V be a set of propositional constants. The alphabet of a
language LCTL∗(V) (also shortly: LCTL∗ ) of propositional branching time temporal
logic consists of all propositional constants of V and the symbols

false | → | �| unt | E | ( | ) .

So we now use the quantifier symbol E for its own. The operators �and unt are
taken as basis for the “linear time aspect on single branches”.

The formulas of LCTL∗(V) are defined together with a second (auxiliary) syntac-
tical type of path formulas by a simultaneous induction.

Inductive Definition of formulas (of LCTL∗(V)).

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.
4. If A is a path formula then EA is a formula.
5. Every formula is a path formula.
6. If A and B are path formulas then (A→ B) is a path formula.
7. If A and B are path formulas then �A and (A unt B) are path formulas.
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(Formulas are often called state formulas in order to distinguish them more explicitly
from path formulas. Since we have introduced this notion already in another context
in Sect. 6.2 we prefer to use simply “formula” here.)

Further operators can be introduced as expected, e.g.,

AA ≡ ¬E¬A,
�A ≡ true unt A,
�A ≡ ¬�¬A

and priority rules analogous to the previous ones are adopted.
The semantics of CTL∗ is again based on the same notion of temporal structures

K = ({ηι}ι∈I ,�) as in BTL and CTL. For ι ∈ I , fullpath π = (ι0, ι1, ι2, . . .) in
I , and j ∈ N we let πj = (ιj , ιj+1, ιj+2, . . .) and define the truth values Kι(A) for
formulas and Kπ(A) for path formulas inductively as follows:

1. Kι(v) = ηι(v) for v ∈ V.
2. Kι(false) = ff.
3. Kι(A→ B) = tt ⇔ Kι(A) = ff or Kι(B) = tt.
4. Kι(EA) = tt ⇔ there is a fullpath π′ = (ι′0, ι

′
1, ι

′
2, . . .) in I with ι′0 = ι and

Kπ′(A) = tt.
5. Kπ(A) = Kι0(A) for formulas A.
6. Kπ(A→ B) = tt ⇔ Kπ(A) = ff or Kπ(B) = tt.
7. Kπ( �A) = Kπ1(A).
8. Kπ(A unt B) = tt ⇔ Kπj (B) = tt for some j ≥ 0 and

Kπk (A) = tt for every k , 0 ≤ k < j .

The clauses implied for the further operators are evident, e.g.:

9. Kι(AA) = tt ⇔ Kπ′(A) = tt
for every fullpath π′ = (ι′0, ι

′
1, ι

′
2, . . .) in I with ι′0 = ι.

10. Kπ(�A) = tt ⇔ Kπj (A) = tt for some j ≥ 0.
11. Kπ(�A) = tt ⇔ Kπj (A) = tt for every j ≥ 0.

Validity of formulas and the consequence relation are defined as in BTL and CTL.

Example. For v1, v2 ∈ V, A ≡ E( �¬v1 → �v2) is a formula of LCTL∗(V). Let K
be as above with I = {1, 2, 3}, � = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 3)} and

η1 η2 η3

v1 tt tt ff
v2 ff tt tt

For the fullpath π = (1, 2, 1, 2, . . .) we have Kπ( �¬v1) = K2(¬v1) = ff because of
η2(v1) = tt; hence Kπ( �¬v1 → �v2) = tt, and therefore

K1(A) = tt.

In the same way we calculate K2(A) = tt with the fullpath (2, 1, 2, 1, . . .) and, finally,
K3(A) = tt is obtained with the fullpath π′ = (3, 3, 3, 3, . . .) for which we have
Kπ′(�v2) = tt because of K3(v2) = η3(v2) = tt. This means that A is valid in K. �
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Mainly because of the high (double exponential) complexity of its decision pro-
cedures, CTL∗ is not widely used in practice. So we do not treat it in more detail, but
we still want to point out its relationships to LTL, BTL, and CTL.

Every CTL formula is a CTL∗ formula as well (with coinciding semantics) if we
write formulas

A Eunt B

with the operator Eunt in the form

E(A unt B).

(We mentioned already that this notation is often used in CTL instead of ours.) So
CTL and, hence, also BTL are sublogics of CTL∗.

The case of LTL is not so clear at first glance since LTL formulas are not cov-
ered by the syntax of CTL∗ formulas and, moreover, the semantical frameworks are
different in both logics. In order to enable a comparison we might base the seman-
tics of LTL on the branching time concept of temporal structures. This runs in an
analogous way as we could take transition systems as semantical basis for LTL as
mentioned at the end of Sect. 6.2 and summarized in Theorem 6.2.1. We may define
a formula A of a language LLTL(V) to be K-valid for a branching time temporal
structure K = ({ηι}ι∈I ,�) for V if

“A is valid in the LTL sense in every state sequence in K”,

formally: if

Kιj (A) = tt (in the LTL sense)

holds for every fullpath (ι0, ι1, ι2, . . .) in I , K = (ηι0 , ηι1 , ηι2 , . . .), and every j ∈ N.
An immediate transcription of the proof of Theorem 6.2.1 shows that A is valid if
and only if it is K-valid for every such K.

More interestingly in the present context, if A is a formula of LLTL(V) then AA
is a formula of LCTL∗(V) and, in fact, this formula characterizes the same structures
as A.

Theorem 10.4.1. For every formula A of LLTL(V) and every branching time tempo-
ral structure K for V, the formula AA of LCTL∗(V) is valid in K if and only if A is
K-valid.

Proof. Let K = ({ηι}ι∈I ,�) be a temporal structure for V, F be a formula of
LLTL(V).

a) We first show by induction on F that

Kπ(F ) = Kκ0(F ) (Kκ0(F ) in the LTL sense)

holds for every fullpath π = (κ0, κ1, κ2, . . .) in I and K = (ηκ0 , ηκ1 , ηκ2 , . . .). For
v ∈ V we have Kπ(v) = Kκ0(v) = ηκ0(v) = Kκ0(v), and false and A → B are
trivial as usual. Applying the induction hypothesis, we have
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Kπ( �A) = Kπ1(A) = Kκ1(A) = Kκ0( �A)

for �A and

Kπ(�A) = tt ⇔ Kπj (A) = tt for every j ≥ 0
⇔ Kκj

(A) = tt for every j ≥ 0
⇔ Kκ0(�A) = tt

for �A.
b) Let now AA be valid in K, (ι0, ι1, ι2, . . .) be a fullpath in I , and j ∈ N. Then

Kι(AA) = tt for all ι, so Kιj (AA) = tt and therefore Kπ(A) = tt for every fullpath
π = (ιj , . . .), particularly for π = (ιj , ιj+1, ιj+2, . . .). So we obtain Kιj (A) = tt by
a) which means that A is K-valid.

c) For the opposite direction, let A be K-valid, ι ∈ I , and π = (ι, . . .) be a
fullpath in I . Then Kι(A) = tt; hence Kπ(A) = tt by a) and this means that AA is
valid in K. �

Slightly generalizing a notion used earlier, this theorem says that the LTL formula
A and the CTL∗ formula AA are “model equivalent” (with respect to branching time
temporal structures K). If K is some KΓ for a transition system Γ then K-validity of
A means just Γ -validity in the sense of Sect. 7.1, so we can conclude that a system
Γ has a property described by A if and only if it has the property described by AA.

Putting all together we find that CTL∗ allows us to express system properties
which can be formulated in LTL, BTL, or CTL. Furthermore, the “interpretation” of
LTL in the common CTL∗ framework enables now the formal treatment of mutual
expressibility of formulas of these various logics in the sense of Sect. 4.1. Particu-
larly, we say that an LTL formula A is expressible in BTL (or CTL) if there is a BTL
(CTL) formula B such that (the CTL∗ formula) AA ↔ B is valid. The other way
round, a BTL (CTL) formula A is expressible in LTL if there is an LTL formula B
such that A↔ AB is valid.

With these formal notions we may state, as announced at the end of the previ-
ous section, the incomparability of LTL with BTL (and CTL) in a formal way. For
example, we argued already informally that the LTL formula ��A and the BTL for-
mula A�A�A do not “mean the same”. According to the present considerations this
amounts to the formal statement that the CTL∗ formula A��A ↔ A�A�A is not
valid. This fact is easily seen by taking the temporal structure K = ({ηι}ι∈I ,�) with
I = {1, 2, 3}, � = {(1, 1), (1, 2), (2, 3), (3, 3)} and such that η1(A) = η3(A) = tt
and η2(A) = ff. Then all execution sequences starting with η1 will either stay in η1

forever or reach at some time η3 where they will stay. Hence we have

K1(A��A) = tt.

But in the sequence which stays in η1 forever there is no state such that from there
�A will hold on all possible continuations since such continuations may also go
through η2. This means

K1(A�A�A) = ff
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and shows the desired assertion.
As a more general result it can be shown that, in fact, the LTL formula ��A is

not expressible (for arbitrary A) in CTL (and, hence, not in BTL). The proof of this
fact is somewhat cumbersome and not carried out here. The “opposite incomparabil-
ity” is provided by the following theorem which also justifies now our assertion in
Sect. 10.3 about the non-expressibility of reachability properties in LTL.

Theorem 10.4.2. The BTL (and CTL) formula E�A is (in general) not expressible
in LTL.

Proof. Let v be a propositional constant and assume that there is an LTL formula
B such that E�v ↔ AB is valid. Let I = {1, 2}, � = {(1, 1), (1, 2), (2, 2)}, and
K = ({ηι}ι∈I ,�) such that η1(v) = ff and η2(v) = tt. Then K1(E�v) = tt with
the fullpath (1, 2, 2, . . .) in I and therefore K1(AB) = tt which means Kπ(B) = tt
for every fullpath π in I . Let now K′ result from K by deleting the element 2 from
I and the pairs (1, 2) and (2, 2) from �. The only fullpath in I \ {2} with the new
� is (1, 1, 1, . . .) and this is also a fullpath in I , so we obtain K′

π(B) = tt; hence
K′

1(AB) = tt. But we also have K′
π(�v) = ff and therefore K′

1(E�v) = ff. This
contradicts the assumed validity of E�v ↔ AB and proves the assertion. �

Of course, the expressive power of CTL∗ can be compared “directly” with that
of BTL or CTL and it is easy to see that, e.g., the CTL∗ formula

E��A

cannot be expressed in these logics (nor in LTL in the above sense). So, adapting
a notion of Sect. 4.1, we may say that CTL∗ is more expressive than each of LTL,
BTL, and CTL.

Second Reading
In earlier Second Reading paragraphs we already compared (linear time) temporal with
modal logics. In the branching time framework this comparison provides some new insights.
Recalling the modal logic notions from Sect. 2.3, it is evident that a branching time temporal
structure K = ({ηι}ι∈I , �) is just the same as a modal logic Kripke structure with a total
accessibility relation. This observation, together with the remarks given in the above main
text about LTL in the branching time framework, provides a direct comparison of temporal
and modal logic expressibility.

Writing out the semantical definitions of the modal necessity and possibility operators �

and � for K = ({ηι}ι∈I , �) we obtain

Kι(�A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ,
Kι(�A) = tt ⇔ Kκ(A) = tt for some κ with ι � κ

and find as a first trivial fact that this coincides with the semantics of the branching time
operators A �and E �. In other words: the sublogic of BTL with only these latter operators
would be nothing but modal logic (with total accessibility relation), and richer branching
time temporal logics can be viewed as extensions of this basic modal logic.

A particular extension is the modal μ-calculus MμC which extends modal logic by the
fixpoint operators μ and ν and was briefly sketched in the Second Reading paragraph in
Sect. 3.2. Observing the fixpoint characterizations
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(BT1) E�A ↔ A ∧ E �E�A,
(CT1) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B))

of the operators E� and Eunt and recalling the discussions in Sect. 3.2 about LTL+μ, it is
easy to see that these operators can be expressed with μ and ν. This means that for every
formula A of some LCTL(V) there is an MμC formula A∗ such that, for every temporal (or
Kripke) structure K = ({ηι}ι∈I , �) for V,

Kι(A) = Kι(A
∗)

holds for every ι ∈ I . A∗ is defined inductively by v∗ ≡ v for v ∈ V, false∗ ≡ false,
(A → B)∗ ≡ A∗ → B∗, and

(E �A)∗ ≡ �A∗,
(E�A)∗ ≡ νu(A∗ ∧ �u),
(A Eunt B)∗ ≡ μu(B∗ ∨ (A∗ ∧ �u)).

So, in the notation of Sect. 4.1, we may write CTL ≤ MμC. Actually, by a more complicated
translation it can be shown that CTL∗ ≤ MμC (and, hence, LTL ≤ MμC) hold as well.

These observations also imply that the modal μ-calculus can be viewed (up to the totality
of accessibility) as an extension BTL+μ of BTL (even without E�) by fixpoint operators
which is the branching time counterpart of LTL+μ and turns out in this way to be of con-
siderable expressive power. System properties expressible in MμC (or BTL+μ) are called
regular. An example of a non-regular property (not expressible in MμC) is

“In every subsequent state, A will have been true in more previous states than B”.

It follows that such a property cannot be expressed in LTL (including its extensions), CTL,
or even CTL∗. One possibility to express them is to extend MμC in some appropriate way.

10.5 Temporal Logics for True Concurrency Modeling

The branching time logics BTL, CTL, and CTL∗ can be extended or modified in
various ways. We show a simple example which – together with other approaches
briefly exemplified at the end of this section – give rise to an interesting application
to state systems different from the kind described so far.

The example, called partial order temporal logic POTL, is just BTL extended
by past operators, corresponding to LTL+p in the linear time framework. The time
model is branching also “in the past”, i.e., a state in a temporal structure may have
not only different successors but also different predecessors. So we enrich BTL with
operators E �, E�, and E�− with the following informal meaning.

E �A: “There is a predecessor state in which A holds”,
E�A: “There is a branch of past states (ending in the present state)

on which A holds in all states”,
E�−A: “There is a branch of past states on which A holds in some state”.

Formally a language LPOTL(V) (shortly: LPOTL) of POTL for a given set V of propo-
sitional constants results from LBTL(V) by adding the symbols E �, E�, and E�− to
the alphabet and the clause
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• If A is a formula then E �A, E�A, and E�−A are formulas

to the inductive definition of formulas.
For the semantics, a partial order time structure (I ,�) is given by a non-empty

set I and a total binary relation � on I with the additional requirement that the
inverse relation � of � (i.e., the relation with d1 � d2 ⇔ d2 � d1) is total as well.
Fullpaths in the previous sense (with respect to �) are now called forward fullpaths,
and a backward fullpath in I is an infinite sequence (ι0, ι1, ι2, . . .) of elements of I
with ιk � ιk+1 for k ∈ N. A (partial order) temporal structure K = ({ηι}ι∈I ,�)
for some set V of propositional constants is defined as in BTL with the difference
that (I ,�) is now a partial order time structure.

The definition of Kι(F ) for formulas is adopted from BTL (with forward full-
paths) and extended by

• Kι(E �A) = tt ⇔ Kκ(A) = tt for some κ with ι � κ.
• Kι(E�A) = tt ⇔ there is a backward fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι

and Kιk (A) = tt for every k ∈ N.

• Kι(E�−A) = tt ⇔ there is a backward fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι
and Kιk (A) = tt for some k ∈ N.

Observe that, analogously to the case of LTL with Z as time model (cf. Sect. 10.1),
there is no need for distinguishing weak and strong versions of E �since � is total.
The definition of validity and consequence is as in BTL.

Clearly, dual operators can be introduced as usual by

A �A ≡ ¬E �¬A (“A holds in all predecessor states”),
A�A ≡ ¬E�−¬A (“A holds on all backward branches in all preceding

states”),
A�−A ≡ ¬E�¬A (“On all backward branches, A holds in some preceding

state”)

and they have the expected semantics:

• Kι(A �A) = tt ⇔ Kκ(A) = tt for every κ with ι � κ.
• Kι(A�A) = tt ⇔ for every backward fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι,

Kιk (A) = tt for every k ∈ N.

• Kι(A�−A) = tt ⇔ for every backward fullpath (ι0, ι1, ι2, . . .) in I with ι0 = ι,
Kιk (A) = tt for some k ∈ N.

Example. Let A ≡ E �E�v2 → A�−(v1 ∧ v2) with v1, v2 ∈ V. The branching time
temporal structure K as considered in the example in Sects. 10.3 and 10.4, i.e., with
I = {1, 2, 3}, � = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 3)} and

η1 η2 η3

v1 tt tt ff
v2 ff tt tt

is also a partial order temporal structure for V since � is total. We have:
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K2(E�v2) = tt with the forward fullpath (2, 3, 3, 3, . . .) ⇒
K1(E �E�v2) = K3(E �E�v2) = tt,

K1(v2) = ff ⇒ K1(E�v2) = ff ⇒ K2(E �E�v2) = ff,

K2(v1 ∧ v2) = tt,K3(v1 ∧ v2) = ff ⇒
K1(A�−(v1 ∧ v2)) = tt and
K3(A�−(v1 ∧ v2)) = ff because of the backward fullpath (3, 3, 3, . . .).

Together we obtain K1(A) = K2(A) = tt and K3(A) = ff. �

POTL is decidable and a sound and weakly complete formal system ΣPOTL can
be obtained by extending ΣBTL by the following axioms and rules.

Additional axioms

(potl1) E �true,
(potl2) E �(A ∨ B) ↔ E �A ∨ E �B ,
(potl3) E�A↔ A ∧ E �E�A,
(potl4) E�−A↔ A ∨ E �E�−A,
(potl5) A→ A �E �A,
(potl6) A→ A �E �A.

Additional rules

(prevpo) A→ B � E �A→ E �B ,
(indpo1) A→ B ,A→ E �A � A→ E�B ,
(indpo2) A→ ¬B ,A→ A �(A ∨ ¬E�−B) � A→ ¬E�−B .

These additions are easily understood from previous discussions. (potl5) and (potl6)
are counterparts of the axioms (pltl5) and (pltl6) in LTL+p (cf. Sect. 3.4).

POTL can be applied to state systems along the lines pointed out in Sects. 10.3
and 10.4. In this logic system properties like

A�(A→ A�−B)

(“all subsequent states in which A holds will be preceded by a state in which B
holds”) can be formulated which are safety properties in the terminology of Sect. 7.1
if A and B do not contain temporal operators. However, many other properties like,
e.g.,

A�(A→ E�−B)

(“all subsequent states in which A holds can be reached from a state in which B
holds”) cannot be expressed in linear temporal logic. On the other hand, the same
arguments as in BTL and CTL imply that there are properties expressible in LTL but
not in POTL.

Actually, POTL was designed for applications to state systems with another in-
tention. To explain this, let us come back to our discussion about linear and branch-
ing time modeling at the beginning of Sect. 10.3. State systems (which we want to
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speak and reason about) are characterized by a set of possible runs and, as formal-
ized in the transition system model, such runs are sequences (i.e., linearly ordered
sets) of states. Linear time temporal logics are designed to make statements about
single sequences, whereas branching time logics (and also POTL) can formulate and
argue about statements which concern the whole set of state sequences by taking the
branching structure of the set as semantical basis.

A special kind of state system are systems of concurrently running sequential
processes. Such systems can be represented by transition systems using the concept
of interleaving (together with fairness) as we discussed in detail in Chap. 8. However,
there exist also other formal (true concurrency) models of such systems which may
be more appropriate for handling certain problems. In these representations some
“concurrent transitions” have to be executed in some relative order but others need
not be forced into such an order by interleaving; they may be left unordered. This
implies that a single run is then represented by a partially ordered set of states. A sim-
ple example is given by two processes running through “local” states η0, η1, η2, . . .
and η′

0, η
′
1, η

′
2, . . ., respectively. Some states ηi and η′

j represent critical sections (cf.
Sect. 8.3) which are to be mutually excluded. A run could look like

· · · � η′
j−1

� η′
j

� η′
j+1

� · · ·

· · · � ηi−1

��� ���
ηi

� ηi+1
� · · ·

where ηi occurs after η′
j but other states are mutually unordered (assuming that they

are “non-critical”). The logic POTL is designed to treat such models. This also means
that it comes back to the linear temporal logic application style: one temporal struc-
ture of the logic represents one run of the system.

We do not pursue such models and their temporal logic treatment in detail, but
we want to indicate the great variety of possibilities by sketching another temporal
logic, called (discrete) event structure logic DESL, for which a more complicated
partial order system model is used and directly taken as semantical basis (cf. again
our remarks at the end of Sect. 6.2).

In this modeling the behaviour of a system is represented by a (discrete) event
structure (I ,�,�) consisting of a non-empty set I of events, an irreflexive, anti-
symmetric, and intransitive binary relation � on I , and an irreflexive, symmetric
binary relation � on I , called conflict relation, with the property that for any events
ι1, ι2, ι3 ∈ I , if ι1 � ι2 and ι2 �∗ ι3 then ι1 � ι3. The relation �∗ is the reflexive
transitive closure of � and called causality relation. Informally, a system is thought
of as a set of event occurrences, �∗ represents its “inherent sequential flow”, events
“in conflict” may not both occur, and events which are neither comparable by �∗

nor in conflict may occur concurrently. The condition on � means that in the “past”
of any event no two events may be in conflict.

A languageLDESL(V) (for a set V of propositional constants) of DESL is defined
as usual with the temporal operators �, �, �, �, and ��. The first four refer to the
partial order �∗ of events but unlike in POTL, they do not include quantification
on branches. The (unary) operator �� refers to the conflict relation, a formula ��A
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informally means

“A holds in all states which are in conflict with the present one.”

Formally, the semantics of LDESL is based on the notion of an (event) temporal struc-
ture K = ({ηι}ι∈I ,�,�) for V which is given by an event structure (I ,�,�) and
a multiset {ηι}ι∈I of states defined as before. According to the informal meaning,
the definition of Kι(F ) for formulas F built with the temporal operators of DESL is
given as follows:

• Kι( �A) = tt ⇔ Kκ(A) = tt for every κ such that ι � κ.
• Kι(�A) = tt ⇔ Kκ(A) = tt for every κ such that ι �∗ κ.
• Kι( �A) = tt ⇔ Kκ(A) = tt for every κ such that κ � ι.
• Kι(�A) = tt ⇔ Kκ(A) = tt for every κ such that κ �∗ ι.
• Kι(��A) = tt ⇔ Kκ(A) = tt for every κ such that ι � κ.

Observe that the clauses for �, �, �, and � resemble the corresponding definitions
in LTL+p with the difference that N is replaced by I and the linear order on N is
replaced by the partial order �∗. (Cf. also our remarks about modal logic in the
Second Reading paragraph in Sect. 2.3.) Validity and consequence are defined as
before. Typical laws of the logic include the following formulas.

(ET1) �A→ ��A,
(ET2) �A→ ��A,
(ET3) �A→ A ∧ ��A,
(ET4) �A→ A ∧ ��A,
(ET5) A→ ��A,
(ET6) A→ ��A,
(ET7) ��(A→ B) → (��A→ ��B),
(ET8) A→ ��¬��¬A,
(ET9) ��A→ ���A.

(ET8) expresses the symmetry of the relation � and (ET9) is given by its “inheritance
property”. This can easily be seen when proving it:

Kι(��A) = tt ⇒ Kκ(A) = tt for every κ such that ι � κ

⇒ Kκ′(A) = tt for every κ and κ′ such that ι � κ and κ �∗ κ′

⇒ Kκ(�A) = tt for every κ such that ι � κ

⇒ Kι(���A) = tt.

DESL is decidable and can be axiomatized. Describing system properties is simi-
lar to linear temporal logics (with another understanding of system runs) as far as the
use of the operators �, �, �, � is concerned. The operator �� is used for expressing
conflict freeness: the informal meaning of ��A noted above can also be understood as
saying

“All states in which ¬A holds are not in conflict”.



Bibliographical Notes 373

Bibliographical Notes

The embedding of FOLTLfp into FOLTL is due to [107]. Correspondence theory is
a prominent field of study of modal logic that is dedicated to the study of differ-
ent semantical conditions on the accessibility relation of Kripke structures and their
representation by the axioms of the logics. Within temporal logic, many semantic
variations have been studied in [58, 151]. Temporal logics for real-time systems are
studied, e.g., in [6, 135]. Spatial-temporal logics for mobile agents were first in-
troduced in connection with process calculi [26]; our presentation mainly follows
[74, 161].

The interval temporal logic ITL was first introduced by Moszkowski [110] in
connection with temporal logic programming. Its decision problems and axiomati-
zation are studied in [22, 111].

The investigation of branching time temporal logics originated with [15]. Their
studies have generated a large body of research and we cannot pretend to do justice
to this field in our exposition; see [45, 67] for elementary presentations. The formal
system ΣBTL and its extension to CTL presented here are inspired by [117]. There
has been a long controversy about the relative merits of linear time and branching
time temporal logics for system specification, started by [87]. Vardi [154] evokes
key arguments of that discussion and puts them in perspective. A study of temporal
logics for expressing non-regular properties appears in [89].

Partial-order temporal logics have also attracted considerable attention, and dif-
ferent languages have been suggested emphasizing different aspects of partial-order
structures and their use for modeling distributed systems. Besides [117], we would
like to mention [17, 113].



11

System Verification by Model Checking

In this last chapter we come back to the verification of (properties of) state systems.
Verification means to show that the system in question has some property (expressed
by a formula) F . In its basic deductive form treated at great length in Chap. 7, this
is performed by deriving F from specification axioms using the proof-theoretical
means of the underlying temporal logic.

We now study an alternative approach called model checking. This is a method
for semantical system verification not using any deductive means of the logic. More-
over, it does not use a temporal logic system specification but refers to the respective
system in a more “direct” way.

Model checking is used as an algorithmic method and it can be applied for dif-
ferent temporal logics. In any case, it presupposes some assumptions on the decid-
ability of the verification task. We treat the method for finite state systems which
ensure these assumptions, and we concentrate on LTL and CTL as underlying log-
ics. In Sects. 11.2–11.5 the basics of the model checking approach are studied in
detail. Some short comments on more advanced techniques in Sect. 11.6 conclude
the considerations.

11.1 Finite State Systems

To verify some property F for a state (transition) system Γ means to show that F
is Γ -valid. Γ -validity is a semantical notion, whereas the “deductive” approach to
verification by deriving F within a formal system of temporal logic from a setAΓ of
specification axioms for Γ (or some modification of this as in Sect. 9.4) is a proof-
theoretical one. It is justified because of the argument chain

AΓ � F ⇒ AΓ � F ⇒ F is Γ -valid

(cf. Sect. 7.2).
Another approach could be to carry out the proof of the desired assertion on the

semantical level itself either by showing AΓ � F or even “directly”, i.e., without
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any reference to specification axioms, by just using the definition of Γ -validity. In
general, the proof-theoretical approach appears more attractive than such semantical
methods since derivations are formal, schematic activities and may be supported by
at least semi-automatic means. General semantical reasoning is not that “mechani-
cal” – unless the underlying logic is “poor” enough. (In fact, this is one methodolog-
ical purpose of introducing formal systems in logics.)

These findings may, however, change in special situations. For example, if the
underlying temporal logic is propositional (and AΓ is finite) then the semantical
relationship AΓ � F is decidable and might – in principle – be established even
algorithmically. It could be shown without using a formal proof system, e.g., by
applying the methods discussed in Sect. 2.5. Clearly, systems (“directly”) formalized
as propositional STSs are examples for this special case and, as indicated in Sects. 6.1
and 6.2 by the circuit system Γosc , there are in fact real applications of this kind.

The restriction to propositional STSs and their corresponding propositional tem-
poral logic is not as strong as it may seem at a first glance. In general, first-order
STSs are beyond the borderline of reasonable semantical approaches. In many ap-
plications, however, state systems formalized as such STSs do not really need the
full power of first-order logic but can, in fact, also be represented by a propositional
STS (in other words: the first-order STS can be encoded as propositional STS) and
system properties can be formulated in propositional temporal logic.

An important class of such state systems is given by finite state systems, i.e.,
systems with only finitely many states. Consider, as an example, the terminating
counter Γtcount of Sect. 6.2 with the system variables on and c. The possible values
of c in arbitrary states are restricted to the set {0, 1, . . . , 100}, so the set of all states
of Γtcount is clearly finite. Let now

cval0, cval1, . . . , cval100

be new propositional system variables and Ṽ = {on, cval0, cval1, . . . , cval100}. For
every state η of Γtcount let

η̃ : Ṽ → {ff, tt}

be defined by η̃(on) = η(on) and

η̃(cvalk ) = tt ⇔ η(c) = k for 0 ≤ k ≤ 100.

Every such η̃ contains “the same information” as the original η: the value for the
system variable on is the same and the value η(c) = k of the individual system
variable c is encoded by η̃(cvalk ) = tt. So let W̃ be the set of all such η̃ and define

T̃ = tot(T̃ ′)

where

T̃ ′ = {([tt, cvalk ], [tt, cvalk+1]), ([tt, cvalk ], [ff, cvalk ]),
([ff, cvalk ], [ff, cvalk ]), ([ff, cvalk ], [tt, cval0]) | 0 ≤ k ≤ 99}
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(the second component in [. . . , . . .] denotes the cvalk with η̃(cvalk ) = tt). The propo-
sitional STS

Γ̃tcount = (∅, Ṽ , W̃ , T̃ )

obviously represents the same state system as the first-order STS Γtcount . For exam-
ple, a run of the system represented by the execution sequence

[ff, 32] � [tt, 0] � [tt, 1] � . . .

of Γtcount is described by

[ff, cval32] � [tt, cval0] � [tt, cval1] � . . .

in Γ̃tcount .
System properties described within some first-order temporal logic with respect

to Γtcount can be expressed in a propositional temporal logic corresponding to
Γ̃tcount . For example, the property

c = x → c ≥ x unl c = 0

is “translated” to

100∧

i=0

(
cvali →

( 100∨

j=i

cvalj
)

unl cval0
)
.

A property like “there is a number n and an execution sequence in which the counter
value will eventually be different from n” which could be written as

∃xE�(c �= x )

in some first-order extension of BTL is propositionally expressed by

100∨

i=0

E�¬cvali .

It is easy to see from the example how this construction works in general. If a
first-order STS Γ represents a finite state system then the domains |SΓ |s (i.e., the sets
of possible values of individual system variables) can be chosen to be finite for every
sort s ∈ SΓ and Γ is encoded by a propositional STS Γ̃ = (∅, Ṽ , W̃ , T̃ ) where

• Ṽ = VΓ ∪
⋃

a∈XΓ

Va with Va = {avald | d ∈ |SΓ |s} for every a of sort s

(VΓ and all Va being pairwise disjoint),
• any state η ∈WΓ is encoded by η̃ : Ṽ → {ff, tt} with η̃(v) = η(v) for v ∈ VΓ

and

η̃(avald) = tt ⇔ η(a) = d for avald ∈ Va , a ∈ XΓ
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and W̃Γ is the set of all such states η̃; this set is finite,
• T̃ is the set of all pairs (η̃, η̃′) ∈ W̃ × W̃ such that η̃ and η̃′ encode η and η′

with (η, η′) ∈ TΓ .

The translation of properties of Γ into the propositional temporal logic correspond-
ing to Γ̃ has no special temporal aspect and is well known from classical logic.
Apart from some simple technical details concerning variables and function symbols
the main principles are:

• atomic formulas p(a, b, . . .) with a, b, . . . ∈ XΓ are translated to

∨

pSΓ (da ,db ,...)=tt

(
avalda

∧ bvaldb
∧ . . .

)

(with an analogous translation of formulas a = b),
• quantification of formulas with ∃ or ∀ runs only over finitely many values and is

replaced by disjunction or conjunction, respectively.

(Observe that formulas with free variables as in the example can also be viewed as
universally closed.)

Summarizing the whole discussion we may assume without loss of generality that
an STS representing a finite state system is propositional and has only finitely many
states. According to our general definitions in Sect. 6.2 the set V of (propositional)
system variables may be infinite. However, because of the finiteness of the state set,
it is quite easy to encode an infinite V by a finite one. Moreover, we mentioned
in Sect. 6.2 that the general choice was made only for some “theoretical” reasons
whereas in practical applications V is usually finite. (This fact is not invalidated by
the above encoding of first-order finite state systems into propositional ones.) So we
assume that the set V is finite itself. (Note that the state set and also the transition
relation are then “automatically” finite.)

We give the following separate definition for this case.

Definition. A finite (state) transition system (briefly: FSTS) Ψ = (V ,W ,T ) is
given by

• a finite set V of system (or state) variables,
• a set W of (system) states η : V → {ff, tt},
• a total transition relation T ⊆W ×W .

In the following considerations any FSTS will (also) be handled as a propositional
STS and notions of successor state, execution sequence, etc., and notations like
Ψ(V ), WΨ , etc. will be adopted from Sect. 6.2.

Finite transition systems may be depicted in a graphical representation as transi-
tion diagrams. States η are given by nodes in the diagram “containing” those system
variables v with η(v) = tt, and arrows between the nodes represent the transition
relation. For example, the FSTS Γ̃tcount from above is represented by the transi-
tion diagram in Fig. 11.1 (where we write ck instead of cvalk ). The node containing
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Fig. 11.1. Transition diagram for a counter

only c1 represents the state [ff, c1], the arrow from this node to that with on and c0

represents the pair ([ff, c1], [tt, c0]) of the transition relation.
The temporal logic language of an FSTS Ψ is some propositional one. A (tem-

poral logic) specification of Ψ is given by a set AΨ of formulas of this language. For
example, a specification of the terminating counter in its propositional form Γ̃tcount

above could be given by the axioms

100∨

k=0

cvalk ,

cvalk → ¬cvalj for 0 ≤ k , j ≤ 100, k �= j ,
on ∧ cvalk → (on ′ ∧ cval ′k+1) ∨ (¬on ′ ∧ cval ′k ) for 0 ≤ k < 100,
¬on ∧ cvalk → (¬on ′ ∧ cval ′k ) ∨ (on ′ ∧ cval ′0) for 0 ≤ k < 100,
cval100 → (on ′ ↔ on) ∧ cval ′100.

The first two of these axioms describe that c has a (unique) value in the interval from
0 to 100 and the other three axioms are trivially taken from the first-order axioms
given for Γtcount in Sect. 6.2.

Coming back finally to the discussion at the beginning of this section, we may
now say that the semantical verification of some property F for a finite state system –
formally represented as an FSTS Ψ – takes place within an (algorithmically treatable)
propositional temporal logic framework, and it means to show AΨ � F or to check
whether F is Ψ -valid. The latter approach is called (temporal logic) model checking.

To show some consequence relationship AΨ � F (for finite AΨ ), a decision pro-
cedure like the one presented in Sect. 2.5 might be used. For example, if the axioms
ofAΨ and F are LTL formulas thenAΨ � F can be shown by constructing a tableau
for the PNP (AΨ , {F}). Model checking algorithms are usually more efficient and,
hence, more attractive in practice than such procedures since they use the FSTS Ψ
“directly” whereas the axioms of AΨ “encode” Ψ and, in general, the decision pro-
cedures cannot take advantage of the special form of these formulas. For this reason
we will focus on the model checking approach in the following sections.

Concerning complexity, model checking algorithms themselves depend on which
temporal logic is used to describe the system property F . In the case of linear tem-
poral logic model checking algorithms have time complexity linear in the size of the
FSTS Ψ and exponential in the length of F . Model checking with the branching time
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logic CTL∗ has the same complexity, but restricting the logic to CTL changes the
situation significantly. CTL model checking can be performed with time complexity
linear both in the size of the FSTS and the formula. So, in practice, model check-
ing with CTL has been established as the most popular and best elaborated kind of
all the semantical verification approaches, and we will study this variant in detail in
Sects. 11.3–11.5. Model checking with linear temporal logic is only briefly sketched
in the next section.

Compared with the definitions in Chap. 6, an FSTS corresponds to the “basic”
case of STSs introduced in Sect. 6.2. Of course, we can extend the considerations to
the more refined kinds of transition systems. We restrict ourselves to the context of
verification by model checking and consider, firstly, systems in which certain initial
states are distinguished. In Sect. 6.3 such rooted STSs were defined to be endowed
with a formula start which could immediately be used for specification purposes.
Although specification is not relevant in the model checking approach, we can define
rooted FSTSs in the same way, but we can also come back to what was already men-
tioned in Sect. 6.3 and represent such systems “more directly” by explicitly adding
the set W0 ⊆ W of initial states to the FSTS definition. In any case, however, one
must take care then to formulate properties in a way which takes into account that
only execution sequences are considered which begin in an initial state.

Labeled systems in the sense of Sect. 6.4 need no particular treatment at all in the
present context. System variables of the form execλ are propositional and therefore
permitted in FSTSs (if they are needed for describing system properties). Enabling
conditions were useful for specification but do not provide more information than
what can directly be described in the transition relation of the system.

Example. The printer system shown in Sect. 6.5 can immediately be written as an
FSTS Ψprinter = (V ,W ,T ) where

V = {execλ | λ ∈ {α1, α2, β1, β2, γ}} ∪ {req1, req2},
W = {η : V → {ff, tt} |

if η(execα1) = tt then η(req1) = ff,
if η(execα2) = tt then η(req2) = ff,
if η(execβ1) = tt then η(req1) = tt,
if η(execβ2) = tt then η(req1) = tt,
η(execλ) = tt for exactly one λ ∈ {α1, α2, β1, β2, γ}},

T = {(η, η′) ∈W ×W |
if η(execα1) = tt then η′(req1) = tt, η′(req2) = η(req2),
if η(execα2) = tt then η′(req1) = η(req1), η′(req2) = tt,
if η(execβ1) = tt then η′(req1) = ff, η′(req2) = η(req2),
if η(execβ2) = tt then η′(req1) = η(req1), η′(req2) = ff,
if η(execγ) = tt then η′(req1) = η(req1), η′(req2) = η(req2)}.

Additionally assuming that the system starts in a state where there is no user request
we would obtain a rooted FSTS with the initial condition

¬req1 ∧ ¬req2
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or the set

W0 = {η ∈W | η(req1) = η(req2) = ff}

of initial states. The property described by the formula req1 → �exec β1 (cf.
Sect. 7.4) for the non-rooted version should be formulated as

¬req1 ∧ ¬req2 → �(req1 → �execβ1)

(in both cases) if the system is rooted. �

Actually we used the system Γprinter in Sect. 6.5 to motivate the concept of
fairness. Of course, fairness assumptions may be relevant when concerning the veri-
fiability of properties of an FSTS as well and we will study this issue separately and
in more detail in Sect. 11.4.

11.2 LTL Model Checking

According to the definition of Ψ -validity in Sect. 6.2, to verify by model checking
that an FSTS Ψ has a property F which is described in a (propositional) linear tem-
poral logic means to show that all execution sequences WΨ of Ψ (which are now just
temporal structures) satisfy F . Algorithms for this task typically use some tableau
construction, and in fact, restricting the logic to the basic LTL, we may directly take
the construction presented in Sect. 2.5 and modify it a little to provide an LTL model
checking algorithm.

Consider, as an example, the FSTS Ψ({v1, v2}) given by the transition diagram

η1

��

��

v1 η2

��

��

v1
v2

�
�

�

(denoting the two states of Ψ by η1 and η2) and let

A ≡ v1 ∨ v2 → �v1.

Clearly, A is Ψ -valid but not universally valid. The latter fact is reflected by the
tableau TP for the PNP P = (∅, {A}) shown in Fig. 11.2. (We use an extended
form with the rule (∨+) for disjunction and omit the set parentheses in the graphical
representation since all non-empty formula sets contain exactly one element.) TP
is successful, so ¬A is satisfiable. Let us examine this observation somewhat more
precisely.

The tableau contains all possible “attempts” of how ¬A could be satisfied. Nodes
Q particularly indicate how the propositional constants of A should be evaluated by
tt (if contained in pos(Q)) or ff (if contained in neg(Q)) in the states of a satisfying
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∅ , v1 ∅ , ��v1

∅ , ∅ ∅ , �v1

v1 , v1 v2 , v1 v1 , ��v1 v2 , ��v1

v1 ∨ v2 , v1 v1 ∨ v2 , ��v1

v1 ∨ v2 , �v1

∅ ,A

Fig. 11.2. Tableau for (∅, {A}), A ≡ v1 ∨ v2 → �v1

temporal structure K. A closed node like the one marked 5 is “contradictory” and not
helpful for finding K since it contains v1 both positively and negatively.

The definition of closed nodes reflects the fact that we look for an arbitrary K, so
“contradictions” are only given by nodes according to the clause (C1), i.e., satisfying
condition (⊥) and their propagation through the tableau by the inductive clauses
(C2) and (C3).

Turning now to the Ψ -validity of the formula A, it is in fact quite easy to modify
the tableau TP along these basic ideas such that this fact can be drawn from it in a
similar usage. An arbitrary formula F is Ψ -valid if and only if there is no temporal
structure WΨ containing a state η in which F has the truth value ff. Such an η can
be any state of Ψ . So the modified tableau in our example should comprehend all
attempts for all η ∈ WΨ of how to satisfy ¬A by some WΨ “at state η”; in other
words, how to make ¬A true in η under the assumption that the continuation of η in
any temporal structure under consideration is given by the transition relation of Ψ .

Consider, e.g., the state η1. Looking for a possibility to make ¬A true in η1 within
some WΨ means that the nodes 1–8 in TP which do not involve any step according
to the tableau condition ( �) must be “consistent” with the definition of η1. Node 5
is still “contradictory in itself”, but nodes 6 and 8 which both suggest a state η with
η(v2) = tt can now also be viewed as closed (without any successor node) since this
contradicts η1(v2) = ff.
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∅ , v1 η1 ∅ , ��v1 η1 ∅ , v1 η2 ∅ , ��v1 η2

∅ , �v1 η1 ∅ , �v1 η2

v1 , v1 η1 v2 , v1 η1 v1 , ��v1 η1 v2 , ��v1 η1

v1∨v2 , v1 η1 v1∨v2 , ��v1 η1

v1∨v2 , �v1 η1

∅ ,A η1

Fig. 11.3. Modified tableau

Node 10 is reached by a step according to ( �) and therefore deals with the pos-
sible successor nodes of η1 in WΨ . These are η1 and η2, so we may split the node 10
into two instants which have to be consistent with η1 and η2, respectively, and pro-
ceed then in the same way. A tableau following this idea could look like the one in
Fig. 11.3

Each node is augmented with the additional information about which state of Ψ
it should be consistent with. Nodes 9 and 10 are the two nodes corresponding to
the former node 10. The successors of node 12 are nodes 9 and 10 as for node 7,
and the successor of node 14 is node 9 since η1 is the only successor state of η2

in Ψ . The nodes 5, 6, 8, 11, and 13 are to be seen as closed, the latter two because
of η1(v1) = η2(v1) = tt. So, applying the propagation rules (C2) and (C3), the
root 1 of this tableau would turn out to be closed which shows that ¬A cannot be
made true in state η1 in a temporal structure WΨ . Observe that if we change Ψ such
that η2(v1) = ff then node 13 would not be closed (and would have some successor
node), and thus the root would not be closed either. In fact, A would then not be valid
in any execution sequence WΨ = (. . . , η1, η2, . . .).

So far, we have only considered how ¬A could be true in state η1, and the tableau
in Fig. 11.3 reflects this. We could build now another such modified tableau for η2

(in general: for all states of the FSTS) or, more concisely, we may identify equal
nodes, i.e., nodes with equal PNP and equal state information and thus melt these
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single tableaux into only one which then has two roots (in general: n roots for an
FSTS with n states).

Summarizing, we may describe the modified tableau construction as follows.
Given an FSTS Ψ = (V ,W ,T ), a Ψ -PNP is a PNP P such that every F ∈ FP
is a formula of LLTL(V ). A tableau for Ψ and a Ψ -PNP P is a directed graph T of
pairwise distinct pairs (Q, η) where Q is a Ψ -PNP and η ∈W . T contains all the
pairs (P, η), η ∈W , as roots and for every node (Q, η) of T , Q = (F+,F−), one
of the following conditions has to hold:

(⊥) false ∈ F+ or F+ ∩F− �= ∅ or η(v) = ff for some v ∈ F+ or η(v) = tt for
some v ∈ F− (where v ∈ V ), and (Q, η) has no successor node.

(→+) A→ B ∈ F+ for some formulas A,B , and (Q, η) has precisely two succes-
sor nodes: the left-hand successor ((F+ \ {A→ B},F− ∪ {A}), η) and the
right-hand successor (((F+ \ {A→ B}) ∪ {B},F−), η).

(→−) A → B ∈ F− for some formulas A,B , and (Q, η) has precisely the succes-
sor node ((F+ ∪ {A}, (F− \ {A→ B}) ∪ {B}), η).

(�+) �A ∈ F+ for some formula A, and (Q, η) has precisely the successor node
(((F+ \ {�A}) ∪ {A, ��A},F−), η).

(�−) �A ∈ F− for some formula A, and (Q, η) has precisely two successor nodes:
the left-hand successor ((F+, (F− \ {�A}) ∪ {A}), η) and the right-hand
successor ((F+, (F− \ {�A}) ∪ { ��A}), η).

( �) All formulas in FQ are of the form false, v (where v ∈ V ) or �A for some
formula A, node (Q, η) does not satisfy (⊥), and has precisely the successor
nodes ((σ1(Q), σ3(Q)), η′) with all η′ such that (η, η′) ∈ T .

(Again, σ1 and σ3 are the functions defined in Sect. 2.4.) Note that because of the
finiteness of the state set W there are only finitely many possible nodes for making
up the tableau.

The set of closed nodes of such a tableau T is defined as in the original construc-
tion:

(C1) All nodes (Q, η) of T that satisfy condition (⊥) are closed.
(C2) Every node (Q, η) of T all of whose successors are closed is closed.
(C3) If (Q, η) is a node and A is a formula such that �A ∈ neg(Q) and every path

from (Q, η) to nodes (Q′, η′) with A ∈ neg(Q′) contains some closed node
then (Q, η) is itself closed.

(We have listed only conditions for expansion and pruning steps with respect to the
basic LTL operators. Extensions for derived operators can be given in the same way
as in the original definition.)

We do not go into proof details, but it should be quite evident from the elabo-
rated proofs in Sect. 2.5 and the above considerations that the former (appropriately
modified) lemmas can easily be transferred to the present situation providing the de-
sired model checking algorithm: given an FSTS Ψ(V ) and a formula F of LLTL(V ),
in order to decide whether F is Ψ -valid one can construct a tableau for Ψ and the
Ψ -PNP (∅, {F}) and decide whether all of its roots are closed.
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We finally note that this verification method can easily be adapted to the case of
rooted FSTSs: if, e.g., a system is given with an initial condition start then the roots
of the tableau are the pairs (P ′, η) where P ′ = (pos(P) ∪ {start},neg(P)).

We have observed a close connection between the tableau construction and Büchi
automata in Sect. 4.4, and this connection has been very fruitful for deriving model
checking algorithms for LTL. We sketch the practically important case where Γ is a
rooted FSTS given with a designated set W0 of – for simplicity – precisely one initial
state η0 (cf. Sect. 11.1), and where one is interested in the validity of an initial prop-
erty F in the sense of Sect. 9.4. This means that K0(F ) = tt holds for all temporal
structures K that arise from execution sequences of Γ starting at state η0. Equiva-
lently, there does not exist any execution sequence from η0 such that K0(F ) = ff
holds for the corresponding temporal structure. According to Theorem 4.4.1, this
means that no such structure is accepted by the Büchi automaton Ω(∅,{F}). Fur-
thermore, a rooted FSTS Γ itself resembles an automaton (with trivial acceptance
condition), and a product construction similar to the one described in Theorem 4.3.1
can be used to construct a Büchi automaton “synchronizing” Γ and Ω(∅,{F}). This
automaton defines the empty language if and only if F is (initially) Γ -valid, and
language emptiness of Büchi automata can be decided by Theorem 4.3.8. In fact,
the proof of this theorem provides the idea to compute an element of the language
when it is non-empty, and graph search algorithms employed to determine emptiness
yield such a witness in a direct way. In the context of model checking, a witness of
the product automaton represents a counterexample: an execution of Γ from η0 that
does not satisfy F . The ability to produce counterexamples makes model checking
an attractive approach in practice.

More precisely, the locations of the product automaton are pairs (η, q) where η
is a state of Γ and q is a location of Ω(∅,{F}). The initial locations are of the form
(η0, q0) for initial locations q0 of Ω(∅,{F}). The transition formulas of the product
automaton synchronize possible transitions of Γ and of Ω(∅,{F}) as follows:

δ((η, q), (η′, q ′)) =
{

true if (η, η′) ∈ TΓ and �
η
δ(q , q ′),

false otherwise.

The set of acceptance locations of the product automaton is the set of all pairs (η, qf )
such that qf is an accepting location of Ω(∅,{F}).

The size of the automaton is the product of the sizes of Γ and of Ω(∅,{F}), and
the latter can be exponential in the size of the formula F , as we have observed in
Sect. 4.4. However, formulas are often quite short, and the linear factor contributed
by Γ is often the limiting one; this is the infamous state explosion problem of model
checking. So-called “on-the-fly” algorithms alleviate the problem by interleaving the
emptiness check and the construction of the product automaton, thus avoiding the
explicit construction (and storage in computer memory) of the latter.
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11.3 CTL Model Checking

Model checking has been successfully applied particularly in the CTL framework.
Recalling the remarks about the application of BTL to state systems in Sect. 10.3
(which can be carried over to CTL as well), an FSTS Ψ = (V ,W ,T ) induces in this
case a language LCTLΨ = LCTL(V ) and a temporal structure KΨ = ({ηι}ι∈W ,T )
for V with ηι = ι for every ι ∈W , briefly denoted by

KΨ = (W ,T ).

A property of Ψ is given by a formula F of LCTLΨ and to verify by model checking
that Ψ has this property means, according to the definition of Ψ -validity, to show that
F is valid in KΨ , i.e., that

KΨ
η (F ) = tt for every η ∈W .

(If Ψ is rooted with a set W0 of initial states, we may be more interested in determin-
ing if KΨ

η (F ) = tt holds for all η ∈ W0. The techniques described in the following
are easily adapted to this situation.)

There are several different approaches to perform this task algorithmically. We
present here one method which particularly allows for quite efficient implementation.
The idea is to determine all states η ∈W with KΨ

η (F ) = tt and then check whether
these are all states of W . The latter part is trivial, so, introducing the notation

�F �Ψ = {η ∈W | KΨ
η (F ) = tt}

(for arbitrary formulas F of LCTLΨ ), we may fix the essential part of this CTL model
checking approach as follows:

• Given an FSTS Ψ and a formula F of LCTLΨ , determine the set �F �Ψ .

We call �F �Ψ the satisfaction set of F (with respect to Ψ ), and for simplicity we
will often write �F � instead of �F �Ψ and also Kη instead of KΨ

η if the context of the
given Ψ is clear. The notation �F �Ψ resembles the similar notation �F �Ξ

K introduced
in Sect. 3.2. In fact, we will shortly come back also to some techniques discussed
there.
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Fig. 11.4. An FSTS Ψexmp
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Example. Let Ψexmp({v1, v2}) be the FSTS represented by the transition diagram
in Fig. 11.4. Then

KΨexmp = ({η1, η2, η3}, {(η1, η2), (η1, η3), (η2, η1), (η2, η3), (η3, η3)}).

Up to some renamings, KΨexmp is just the temporal structure K = ({ηι}ι∈{1,2,3},�)
from Sect. 10.4 which was defined by � = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 3)} and

η1 η2 η3

v1 tt tt ff
v2 ff tt tt

For the formula A ≡ v1 Eunt (v1 ∧ v2) we found there that K1(A) = K2(A) = tt
and K3(A) = ff. With respect to the notation used for KΨexmp we write this now as
Kη1(A) = Kη2(A) = tt and Kη3(A) = ff, so we have �A� = {η1, η2}. �

In general, given Ψ = (V ,W ,T ), the set �F � can be determined recursively
with respect to the formula F and, since W and T are finite, this provides in fact an
algorithm for computing it. We begin with the obvious cases concerning the classical
logical connectives of CTL:

• �v� = {η ∈W | Kη(v) = tt}
= {η ∈W | η(v) = tt} for v ∈ V .

• �false� = ∅.
• �A→ B� = {η ∈W | Kη(A→ B) = tt}

= {η ∈W | Kη(A) = ff or Kη(B) = tt}
= (W \ �A�) ∪ �B�.

The third clause states the fact (which occurred implicitly already in the setting of
Sect. 3.2) that the classical implication operator→ is represented by some set opera-
tions on �A� and �B�. It is clear that this extends also to the derived operators ¬,∨,∧
in the following way:

�¬A� = W \ �A�.

�A ∨ B� = �A� ∪ �B�.

�A ∧ B� = �A� ∩ �B�.

Turning to the proper CTL operators E �, E�, and Eunt, the first of them is still
easy. Denoting the inverse image operation of the relation T by T−1 (which means
T−1(W ′) = {η ∈W | there exists η′ ∈W ′ with (η, η′) ∈ T} for W ′ ⊆ W ) we
have

�E �A� = {η ∈W | Kη′(A) = tt for some η′ with (η, η′) ∈ T}
= T−1(�A�).

Example. Let Ψexmp be the FSTS of the previous example. According to the clauses
up to now we have
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�v1� = {η1, η2},
�v2� = {η2, η3},
�¬v1� = W \ {η1, η2} = {η3},
�v1 ∧ v2� = �v1� ∩ �v2� = {η1, η2} ∩ {η2, η3} = {η2},
�¬v1 ∨ v2� = �¬v1� ∪ �v2� = {η3} ∪ {η2, η3} = {η2, η3},
�E �v1� = T−1(�v1�) = T−1({η1, η2}) = {η1, η2}.

These results are informally quite evident from the transition diagram. For example,
�E �v1� is the set of those nodes for which there is an arrow to another node which
contains v1. These are just η1 and η2. �

The remaining cases of the operators E� and Eunt are somewhat more difficult.
For their treatment we recall, as basic idea, that these operators satisfy the fixpoint
characterizations

(BT1) E�A ↔ A ∧ E �E�A,
(CT1) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B))

(cf. Sects. 10.3 and 10.4). This fact indicates that we can characterize the correspond-
ing satisfaction sets as fixpoints of certain functions, quite similarly to how this was
elaborated in Sect. 3.2 for the case of linear temporal logic operators. In the present
situation we consider, for a given FSTS Ψ = (V ,W ,T ), functions

Υ : 2W → 2W

and recall that some Z ⊆ W is a fixpoint of such an Υ if Υ (Z ) = Z . Furthermore,
fixpoints can be compared by set inclusion, so least and greatest fixpoints may be
distinguished among them.

Consider now the function

ΥA(Z ) = �A� ∩ T−1(Z )

(for some given formula A of LCTLΨ ). From similar definitions in Sect 3.2 and the
equivalence (BT1) it should be quite evident that this function tackles the case E�A.

Theorem 11.3.1. �E�A� is the greatest fixpoint of ΥA.

Proof. We have

η ∈ �E�A� ⇔ Kη(E�A) = tt

⇔ there is a fullpath (η0, η1, η2, . . .) in W with η0 = η
and Kηk

(A) = tt for every k ∈ N

⇔ Kη(A) = tt and there exists η′ ∈ �E�A� with (η, η′) ∈ T
⇔ η ∈ �A� and η ∈ T−1(�E�A�)
⇔ η ∈ ΥA(�E�A�),

so �E�A� is a fixpoint of ΥA.
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Let now Z be an arbitrary fixpoint of ΥA and η0 ∈ Z . So, Z = ΥA(Z ) and
therefore η0 ∈ �A� and (η0, η1) ∈ T for some η1 ∈ Z . Applying the same argument
for η1 and continuing inductively, we find a fullpath (η0, η1, η2, . . .) in W such that
ηi ∈ �A�, i.e., Kηi

(A) = tt for all i ∈ N. This means that η0 ∈ �E�A� and therefore
Z ⊆ �E�A�. So �E�A� is in fact the greatest fixpoint of ΥA. �

Turning to the case of A Eunt B and following the equivalence (CT1), we define
the function

ΥA,B (Z ) = �B� ∪ (�A� ∩ T−1(Z ))

(for formulas A and B of LCTLΨ ) and obtain the following result.

Theorem 11.3.2. �A Eunt B� is the least fixpoint of ΥA,B .

Proof. As in the previous proof we first find that �A Eunt B� is a fixpoint of ΥA,B

because of

η ∈ �A Eunt B� ⇔ Kη(A Eunt B) = tt

⇔ there is a fullpath (η0, η1, η2, . . .) in W with η0 = η
and Kηj

(B) = tt for some j ∈ N

and Kηk
(A) = tt for every k , 0 ≤ k < j

⇔ Kη(B) = tt
or

Kη(A) = tt
and there exists η′ ∈ �A Eunt B� with (η, η′) ∈ T

⇔ η ∈ �B� or η ∈ �A� ∩ T−1(�A Eunt B�)
⇔ η ∈ ΥA,B (�A Eunt B�).

Let now Z be an arbitrary fixpoint of ΥA,B , i.e.,

Z = ΥA,B (Z ) = �B� ∪ (�A� ∩ T−1(Z )).

It remains to show that �A Eunt B� ⊆ Z so that �A Eunt B� is the least fixpoint
of ΥA,B . Let η0 ∈ �A Eunt B�. This means that there is a fullpath (η0, η1, η2, . . .)
in W and some j ∈ N such that Kηj

(B) = tt and Kηk
(A) = tt for 0 ≤ k < j . The

number j depends on η0 and to show the claim we prove now by induction on this j
that η0 ∈ Z .

If j = 0 then Kη0(B) = tt, so η0 ∈ �B� and η0 ∈ Z is clear. For j > 0 we obtain
Kη0(A) = tt; hence η0 ∈ �A�. Moreover, considering the fullpath

(η′
0, η

′
1, . . . , η

′
l , . . .) = (η1, η2, . . . , ηj , . . .)

we find that Kη′
l
(B) = Kηj

(B) = tt and Kη′
k
(A) = tt for every k , 0 ≤ k < l . This

implies η1 = η′
0 ∈ �A Eunt B� and because of l < j we may apply the induction

hypothesis to the case of η1 and obtain η1 ∈ Z . With (η0, η1) ∈ T we get altogether

η0 ∈ �A� ∩ T−1(Z )

and therefore η0 ∈ Z . �
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In order to obtain an algorithm from the preceding theorems about �E�A� and
�A Eunt B� we recall from Sect. 3.2 that in general, given a set D, a function
Υ : 2D → 2D is called monotone if Υ (E1) ⊆ Υ (E2) for E1, E2 ⊆ D with E1 ⊆ E2.
Theorem 3.2.1 gives characterizations of the least and the greatest fixpoints, respec-
tively, of a monotone Υ . If, additionally, the set D is finite, which is the case in our
application here with D = W , then we are able to modify this theorem in a way such
that simple procedures for computing these fixpoints can be derived.

To show this we start with the following simple lemma. (We write Υ i(E) to de-
note i applications of Υ to E; more formally: Υ 0(E) = E and Υ i+1(E) = Υ (Υ i(E))
for every i ∈ N.)

Lemma 11.3.3. Let D be a set and Υ : 2D → 2D a monotone function. Then, for
every i ∈ N,

a) Υ i(∅) ⊆ Υ i+1(∅).
b) Υ i(D) ⊇ Υ i+1(D).

Proof. The proofs for both a) and b) run by induction in i . For i = 0 we have
Υ 0(∅) = ∅ ⊆ Υ 1(∅) and Υ 0(D) = D ⊇ Υ 1(D), and with the induction hypothesis
(for i ) we obtain

Υ i+1(∅) = Υ (Υ i(∅)) ⊆ Υ (Υ i+1(∅)) = Υ i+2(∅),
Υ i+1(D) = Υ (Υ i(D)) ⊇ Υ (Υ i+1(D)) = Υ i+2(D)

since Υ is monotone. �

Theorem 11.3.4. Let D be a finite set and Υ : 2D → 2D a monotone function. Then
the following assertions hold.

a) There is some m ∈ N such that Υm+1(∅) = Υm(∅) and Υm(∅) is the least
fixpoint of Υ .

b) There is some m ∈ N such that Υm+1(D) = Υm(D) and Υm(D) is the greatest
fixpoint of Υ .

Proof. a) By Lemma 11.3.3 a) we have

Υ 0(∅) ⊆ Υ 1(∅) ⊆ Υ 2(∅) ⊆ . . . .

The assumption that Υ i(∅) �= Υ i+1(∅) holds for all i ∈ N would imply that this is
an infinite chain of subsets of D with permanently increasing numbers of elements.
This cannot be since D is finite; hence Υm+1(∅) = Υm(∅) for some m ∈ N. This
also means that Υ (Υm(∅)) = Υm+1(∅) = Υm(∅), so Υm(∅) is a fixpoint of Υ .

Furthermore, if E is another fixpoint of Υ then we find by induction on i that
Υ i(∅) ⊆ E for every i ∈ N: Υ 0(∅) = ∅ ⊆ E is trivial and with the monotonicity of
Υ and the induction hypothesis we obtain Υ i+1(∅) = Υ (Υ i(∅)) ⊆ Υ (E) = E.

So we have Υm(∅) ⊆ E and taking all together, Υm(∅) is the least fixpoint of Υ .
b) The proof of this part is symmetrical, using Lemma 11.3.3 b). �
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This theorem provides the announced procedures for computing the least or the
greatest fixpoint in the case of a monotone function Υ : 2D → 2D and finite D. One
has to compute successively the sets

Υ 0(∅), Υ 1(∅), Υ 2(∅), . . .

or

Υ 0(D), Υ 1(D), Υ 2(D), . . . ,

respectively, until Υm+1(. . .) = Υm(. . .) holds. The set Υm(. . .) is then the least
(greatest) fixpoint of Υ . Theorem 11.3.4 particularly ensures that these procedures
terminate. (Actually, it is easy to see from the proof that in both cases the number of
elements of D is an upper bound for the number of necessary iterations computing
the Υ i(. . .) until the fixpoint is found.)

In order to apply this general result now to the computation of �E�A� and
�A Eunt B�, it is only left to show that the functions ΥA and ΥA,B defined above are
monotone.

Lemma 11.3.5. The functions ΥA and ΥA,B are monotone.

Proof. Let Z1,Z2 ⊆W , Z1 ⊆ Z2. If η ∈ ΥA(Z1) then η ∈ �A� and there exists
some η′ ∈ Z1 with (η, η′) ∈ T . For this η′ we have also η′ ∈ Z2 which implies
η ∈ ΥA(Z2) and shows that ΥA is monotone.

If η ∈ ΥA,B (Z1) then η ∈ �B� in which case η ∈ ΥA,B (Z2) is trivial or, other-
wise, η ∈ �A� and (η, η′) ∈ T for some η′ ∈ Z1, so η ∈ ΥA,B (Z2) as in the case of
ΥA. Thus, ΥA,B is monotone as well. �

Putting now all together, the satisfaction sets �E�A� and �A Eunt B� can be
computed as induced by Theorem 11.3.4. More precisely, we have the following two
procedures.

• Computation of �E�A�:
Compute successively the sets Z0,Z1,Z2, . . ., inductively defined by

Z0 = W ,
Zi+1 = �A� ∩ T−1(Zi),

until Zm+1 = Zm holds for some m ∈ N.
Then �E�A� = Zm .

• Computation of �A Eunt B�:
Compute successively the sets Z0,Z1,Z2, . . ., inductively defined by

Z0 = ∅,
Zi+1 = �B� ∪ (�A� ∩ T−1(Zi)),

until Zm+1 = Zm holds for some m ∈ N.
Then �A Eunt B� = Zm .
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Example. For the FSTS Ψexmp in Fig. 11.4 we have already computed that

�v1� = {η1, η2},
�v1 ∧ v2� = {η2},
�¬v1 ∨ v2� = {η2, η3}.

Let us now determine �E�(¬v1 ∨ v2)� and �v1 Eunt (v1 ∧ v2)� with the above pro-
cedures. Applying the first one we have:

Z0 = W ,

Z1 = �¬v1 ∨ v2� ∩ T−1(W )
= {η2, η3} ∩W
= {η2, η3},

Z2 = �¬v1 ∨ v2� ∩ T−1({η2, η3})
= {η2, η3} ∩W
= Z1.

This means that

�E�(¬v1 ∨ v2)� = {η2, η3}.

To compute �v1 Eunt (v1 ∧ v2)� we take the second procedure:

Z0 = ∅,
Z1 = �v1 ∧ v2� ∪ (�v1� ∩ T−1(∅))

= {η2} ∪ ({η1, η2} ∩ ∅)
= {η2},

Z2 = �v1 ∧ v2� ∪ (�v1� ∩ T−1({η2}))
= {η2} ∪ ({η1, η2} ∩ {η1})
= {η1, η2},

Z3 = �v1 ∧ v2� ∪ (�v1� ∩ T−1({η1, η2}))
= {η2} ∪ ({η1, η2} ∩ {η1, η2})
= {η1, η2}
= Z2.

So we obtain

�v1 Eunt (v1 ∧ v2)� = {η1, η2}

and this coincides with what we found already at the beginning of this section. �

Summarizing our considerations, we have reached the announced goal: we have a
(recursive) algorithm which, given an FSTS Ψ and a formula F of LCTLΨ , computes
the satisfaction set �F �Ψ and thus solves the CTL model checking problem. The
algorithm is given by the clauses
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�v�Ψ = {η ∈W | η(v) = tt} for v ∈ V ,
�false�Ψ = ∅,
�A→ B�Ψ = (W \ �A�) ∪ �B�,
�E �A�Ψ = T−1(�A�),

and the two iterative “subroutines” for the cases E�A and A Eunt B .
Similarly as in the case of LTL model checking (cf. Sect. 11.2), witnesses and

counterexamples that explain why CTL formulas hold or fail to hold can be com-
puted as a “by-product” of the computation of satisfaction sets. As we have al-
ready remarked for the LTL case, this ability of model checking algorithms, be-
yond being mere decision procedures, makes them attractive for use in industrial
practice. Consider a formula of the form E�A, a state η0 ∈ �E�A�, and let
T (η) = {η′ ∈ W | (η, η′) ∈ T} denote the set of successor states of an η ∈W
with respect to the transition relation T of Ψ . The set �E�A� ∩ T (η0) cannot be
empty since Kη0(E�A) = tt implies Kη′(E�A) = tt for some η′ ∈ T (η0). Choos-
ing an arbitrary η1 ∈ �E�A�∩T (η0) and continuing in the same way we find states
η2, η3, η4, . . . from the intersections of �E�A� with T (η1),T (η2),T (η3), . . .. So the
fact that η0 ∈ �E�A� holds does not only tell us that there is a fullpath starting with
η0 on which A holds in every state; the fullpath

(η0, η1, η2, η3, . . .)

constructed in this way is a witness for this: we have Kηi
(A) = tt for all i ∈ N.

Example. In the previous example we saw that �E�(¬v1 ∨ v2)� = {η2, η3}. With
T (η2) = {η1, η3}, �E�(¬v1 ∨ v2)� ∩ T (η2) = {η3}, and T (η3) = {η3} we obtain
the fullpath

(η2, η3, η3, η3, . . .)

as (the only) witness for E�(¬v1 ∨ v2) being true in η2. �
With similar constructions witnesses for formulas F of the form E �A, E�A, or
A Eunt B (with respect to some state η0 ∈ �F �) can be found. Dually, if we consider
a formula A�A and a state η0 /∈ �A�A� then η0 ∈ �E�¬A� and a witness for E�¬A
is a counterexample for A�A: a fullpath on which A will not be true in all states.
Counterexamples for A �A, A�A, or A Aunt B can be computed in a similar manner.

Analyzing the complexity of the CTL model checking algorithm, observe that at
least one state is added (when computing �Eunt A�) or removed (when computing
�E�A�) at each iteration of the fixpoint computation. Therefore, the computation
takes at most |W | iterations. The cost of computing the functions at each iteration
can be linear in δ, and therefore (at worst) quadratic in |W |. In order to compute
�F � for a CTL formula F , sets �A� have to be computed for each subformula of F ,
whose number is linear in the length of F . Overall, the complexity of the algorithm
is therefore linear in the length of F and cubic in |W |.

An improved algorithm is still linear in the length of F , but only quadratic in
|W | (and therefore linear in the size of Γ , which is dominated by the transition
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relation). The idea for computing �A Eunt B� is to perform a backward search
starting from the states in �B� (which has already been computed). For �E�A�, the
graph of Γ is first restricted to those states satisfying A, and the algorithm enumerates
the strongly connected components of this subgraph. Now, �E�A� consists of all
states from which such a graph component is reachable, which can be found using a
breadth-first backward search.

11.4 Fairness Constraints

As we have seen in earlier chapters, the validity (and, hence, the verifiability) of sys-
tem properties may require assumptions about certain fairness conditions. In case of a
linear temporal logic framework the inclusion of such conditions into the verification
process is easy since they can be expressed adequately by formulas of the underlying
logic. In deductive verifications the setAfair of these formulas is added to the speci-
fication of the system, so the formulas may be used as assumptions in deductions. In
a tableau model checking algorithm the verification process for a property F checks
whether ¬F is satisfiable. In the algorithm presented in Sect. 11.2 this is done (in
the basic FSTS case) by constructing a tableau for the FSTS Ψ under consideration
and the Ψ -PNP (∅, {F}). To include the fairness assumptions of Afair means that
the satisfiability of ¬F has to be checked under the additional condition that the for-
mulas of Afair have to be true in every state of a temporal structure WΨ . Obviously
this can be achieved by constructing a tableau for Ψ and the Ψ -PNP

({�A | A ∈ Afair}, {F}).

Turning to the CTL framework we face the fact (cf. the corresponding remarks
in Sects. 10.3 and 10.4) that “usual” fairness conditions cannot be expressed as CTL
formulas. However, fairness can be taken into consideration in CTL model checking
in several other ways. We describe in the following one such method and we begin
with illustrating it by an example.

Consider the printer system Ψprinter with the system variables execα1, execα2,
exec β1, exec β2, exec γ, req1, req2 given in the example at the end of Sect. 11.1.
Recalling the discussion of the corresponding STS Γprinter in Sect. 6.5 and transfer-
ring it to the present situation, Ψprinter should be considered as a fair FSTS which
means to restrict the “relevant” execution sequences of Ψprinter to those which fulfil
the fairness assumptions, e.g.,

• if req1 is true in infinitely many states then so is execβ1,
• if req2 is true in infinitely many states then so is execβ2.

If execβ1 (or execβ2) is true in a state then ¬req1 (or ¬req2) is true in the successor
state, respectively. Moreover, if req1 (or req2) is true in a state and ¬req1 (¬req2) is
true in some subsequent state then execβ1 (execβ2) must be true “in between”. So it
is evident that these assumptions are equivalent to

• ¬req1 is true in infinitely many states,
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• ¬req2 is true in infinitely many states.

(The fairness conditions for execα1 and execα2 can be treated analogously.)
Restrictions of this kind can in fact be introduced into CTL model checking algo-

rithms. So we generally model the fairness of an FSTS Ψ = (V ,W ,T ) by endowing
it with a finite set H of formulas of LCTLΨ , called fairness constraints, and define a
fullpath (η0, η1, η2, . . .) in W to be fair (with respect to H) if, for every C ∈ H,
KΨ

ηk
(C ) = tt holds for infinitely many k ∈ N. The Ψ -validity of a formula with

respect to H is given by restricting the range of the “path quantifiers” E and A in the
truth evaluation of formulas to fair fullpaths. (This kind of fairness is often called
simple and is in general weaker than strong fairness.)

Relating these definitions to the CTL model checking method of Sect. 11.3, the
algorithm shown there has to be modified such that it computes, for given H, the
following new satisfaction sets for formulas E �A, E�A, and A Eunt B :

�E �A�HΨ = {η ∈W | there is a fair fullpath (η0, η1, η2, . . .) in W with
η0 = η and KΨ

η1
(A) = tt},

�E�A�HΨ = {η ∈W | there is a fair fullpath (η0, η1, η2, . . .) in W with
η0 = η and KΨ

ηk
(A) = tt for every k ∈ N},

�A Eunt B�HΨ = {η ∈W | there is a fair fullpath (η0, η1, η2, . . .) in W with
η0 = η and KΨ

ηj
(B) = tt for some j ∈ N and

KΨ
ηk

(A) = tt for every k , 0 ≤ k < j}.

We want to show that these sets can be constructed similarly as before and we begin
with the case of �E�A�H. (We again omit the index Ψ in the given context.) We first
recall from Sect. 11.3 that, for arbitrary formulas A and B of LCTLΨ , the “normal”
satisfaction set �A Eunt B� is the least fixpoint of the function ΥA,B : 2W → 2W ,

ΥA,B (Z ) = �B� ∪ (�A� ∩ T−1(Z )).

Let ΥA,Z ′ : 2W → 2W for any fixed Z ′ ⊆W be defined by

ΥA,Z ′(Z ) = Z ′ ∪ (�A� ∩ T−1(Z )).

Slightly abusing notation, we write �A Eunt Z ′� for the least fixpoint of ΥA,Z ′ , and
inspecting the proof of Theorem 11.3.2 it is evident that

�A Eunt Z ′� = {η ∈W | there is a fullpath (η0, η1, η2, . . .) in W with
η0 = η and ηj ∈ Z ′ for some j ∈ N and
KΨ

ηk
(A) = tt for every k , 0 ≤ k < j}.

Let now Υ ′
A : 2W → 2W be defined by

Υ ′
A(Z ) = �A� ∩

⋂

C∈H
T−1(�A Eunt (Z ∩ �C �)�).

Υ ′
A is a modification of ΥA(Z ) = �A� ∩ T−1(Z ) which was used to characterize

�E�A� in Sect. 11.3 and, in fact, we obtain a corresponding result to Theorem 11.3.1:
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Theorem 11.4.1. �E�A�H is the greatest fixpoint of Υ ′
A.

Proof. If η0 ∈ �E�A�H then there is a fair fullpath (η0, η1, η2, . . .) in W with
Kηk

(A) = tt for every k ∈ N. (η1, η2, η3, . . .) is a fair fullpath as well, so we find
that for every C ∈ H there is j ≥ 1 such that ηj ∈ �E�A�H ∩ �C �. We obtain
η0 ∈ T−1(�A Eunt (�E�A�H ∩ �C �)�) for every C ; hence

η0 ∈ �A� ∩
⋂

C∈H
T−1(�A Eunt (�E�A�H ∩ �C �)�)

which means η0 ∈ Υ ′
A(�E�A�H).

On the other hand, if η0 ∈ Υ ′
A(�E�A�H) then Kη0(A) = tt and there is a fullpath

(η1, η2, η3, . . .) with (η0, η1) ∈ T , ηj ∈ �E�A�H for some j ≥ 1, and Kηk
(A) = tt

for 1 ≤ k < j . So there is a fair fullpath (η′
j , η

′
j+1, η

′
j+2, . . .) with η′

j = ηj and
Kη′

k
(A) = tt for every k ≥ j . With the fair fullpath (η0, η1, . . . , ηj , η

′
j+1, η

′
j+2, . . .)

we find that η0 ∈ �E�A�H; thus together we obtain Υ ′
A(�E�A�H) = �E�A�H, i.e.,

�E�A�H is a fixpoint of Υ ′
A.

Let now Z be an arbitrary fixpoint of Υ ′
A, η0 ∈ Z , and H = {C1, . . . ,Cn}. So

Z = Υ ′
A(Z ) and therefore Kη0(A) = tt and there is a fullpath with a finite prefix

(η1, . . . , ηj ) such that (η0, η1) ∈ T , Kηk
(A) = tt for 1 ≤ k < j , and ηj ∈ Z ∩ �C1�.

Since ηj ∈ Z we find in the same way that Kηj
(A) = tt and there is (η′

j+1, . . . , η
′
l)

such that (ηj , η
′
j+1) ∈ T , Kη′

k
(A) = tt for j+1 ≤ k < l , η′

j ∈ Z∩�C2�, and so on for
the other C3, . . . ,Cn . This yields a state sequence (η0, . . . , η) and applying the same
argument to η and continuing inductively, we obtain a fair fullpath (η0, η1, η2, . . .)
in W with Kηk

(A) = tt for every k ∈ N. This means η0 ∈ �E�A�H and shows
Z ⊆ �E�A�H. So �E�A�H is in fact the greatest fixpoint of Υ ′

A. �

We still need the monotonicity of Υ ′
A.

Lemma 11.4.2. The function Υ ′
A is monotone.

Proof. Let Z1,Z2 ⊆ W , Z1 ⊆ Z2, and η0 ∈ Υ ′
A(Z1). Then η0 ∈ �A� and there is a

fullpath (η1, η2, η3, . . .) with (η0, η1) ∈ T and such that, for every C ∈ H, there is
j ≥ 1 with ηj ∈ Z1∩ �C � and Kηk

(A) = tt for 1 ≤ k < j . Then also ηj ∈ Z2∩ �C �;
so we obtain η0 ∈ Υ ′

A(Z2) which proves the assertion. �

Taking these results it follows that �E�A�H can be computed according to The-
orem 11.3.4 b) by starting with Z0 = W and then computing successively the sets

Zi+1 = Υ ′
A(Zi)

until Zm+1 = Zm holds for some m ∈ N. Then Zm is just �E�A�H. Observe that in
each iteration step the computation of the set �A Eunt (Zi ∩ �C �)� can be performed
as described in Sect. 11.3 for sets �A Eunt B�: starting with Z ′

0 = ∅ one iterates by

Z ′
i+1 = (Zi ∩ �C �) ∪ (�A� ∩ T−1(Z ′

i )).

Having a procedure for computing �E�A�H, the remaining cases of �E �A�H and
�A Eunt B�H can be handled quite easily. The set



11.5 Symbolic CTL Model Checking 397

Wfair = �E�true�H

comprises all those states η of W for which there is a fair fullpath in W beginning
with η. Using this set we obtain

�E �A�H = {η ∈W | there is a fair fullpath (η0, η1, η2, . . .) in W with
η0 = η and Kη1(A) = tt}

= {η ∈W | Kη1(A) = tt for some η1 with (η, η1) ∈W and
there is a fair fullpath (η1, η2, η3, . . .) in W }

= T−1(�A� ∩Wfair )

and (using again the above notation for the least fixpoint of ΥA,Z ′)

�A Eunt B�H = {η ∈W | there is a fair fullpath (η0, η1, η2, . . .) in W with
η0 = η and Kηj

(B) = tt for some j ∈ N and
Kηk

(A) = tt for every k , 0 ≤ k < j}
= {η ∈W | there is a fullpath (η0, η1, η2, . . .) in W with

η0 = η and Kηj
(B) = tt for some j ∈ N and

Kηk
(A) = tt for every k , 0 ≤ k < j and

there is a fair fullpath (ηj , η
′
j+1, η

′
j+2, . . .)}

= �A Eunt (�B� ∩Wfair )�.

Both sets can be computed with the algorithms given in Sect. 11.3 and the procedure
for �E�A�H, applied to A ≡ true.

Summarizing, we see that the algorithm for computing satisfaction sets �F � in
the presence of simple fairness constraints is a straightforward variant of the or-
dinary one. For the temporal subformulas of F , the sets �E �A�H, �E�A�H, and
�A Eunt B�H are computed as described above. For the remaining subformulas, the
algorithm remains unchanged. The results of such computations, however, have to
be interpreted with some care compared with the “normal” case. If no fairness is in-
volved, the Ψ -validity of F is decided by finally checking whether W = �F � holds.
But if fairness is taken into account then W may contain states which are not in
Wfair and these, of course, need not be contained in �F �. So, what has to be checked
then is whether Wfair ⊆ �F � holds.

Finally we remark that witnesses and counterexamples can be found also if fair-
ness constraints are involved. This works in a similar way as indicated at the end of
the previous section for the case without fairness.

11.5 Symbolic CTL Model Checking

The CTL model checking algorithm elaborated in Sect. 11.3 manipulates sets of
states using the operations union, intersection, and difference and the inverse image
operation of a transition relation. We mentioned already that the algorithm can be
implemented quite efficiently. This is achieved by an adequate data structure, called
binary decision diagrams, which in fact allows for an efficient realization of such
sets and operations.
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Fig. 11.5. A binary decision diagram Bexmp

In general, binary decision diagrams are intended to represent boolean functions.
We adapt their definition here directly to our present goal of representing sets of
states of a finite state transition system.

Definition. A binary decision diagram (briefly: BDD) (with respect to a set V ) is a
rooted directed acyclic graph with the following properties:

• Every non-terminal node g is labeled by an element var(g) of V and has pre-
cisely two successor nodes zero(g) and one(g).

• Every terminal node g is labeled by either + or −.

Example. Figure 11.5 shows a BDD Bexmp with respect to V4 = {v1, v2, v3, v4}.
Terminal nodes are displayed by squares, edges leading to successors zero(. . .) or
one(. . .) are labeled by 0 or 1, respectively. (As in earlier graphs, the nodes are
marked by numbers 1–8 for identification.) �

Let now V = {v1, . . . , vm}, W (V ) be the set of all mappings η : V → {tt, ff},
and B be a BDD with respect to V . Every node g of B determines a set Zg ⊆W (V )
of such mappings (i.e., states) as follows.

• If g is terminal then Zg = W (V ) if g is labeled by + and Zg = ∅ if g is labeled
by −.

• If g is non-terminal and var(g) = vi (1 ≤ i ≤ m) then

Zg = ({η ∈W (V ) | η(vi) = ff} ∩ Zzero(g)) ∪
({η ∈W (V ) | η(vi) = tt} ∩ Zone(g)).

We denote Zg for the root g of B by ZD and say that B determines the state set ZD.
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Example. For the BDD Bexmp in Fig. 11.5 we find the following sets Z1–Z8 for the
nodes (marked by) 1–8. (We briefly write {. . .} instead of {η ∈ W (V4) | . . .} for
sets of states under consideration.)

Z7 = W (V4).
Z8 = ∅.
Z5 = ({η(v4) = ff} ∩ Z7) ∪ ({η(v4) = tt} ∩ Z8) = {η(v4) = ff}.
Z6 = ({η(v4) = ff} ∩ Z8) ∪ ({η(v4) = tt} ∩ Z7) = {η(v4) = tt}.
Z4 = ({η(v3) = ff} ∩ Z5) ∪ ({η(v3) = tt} ∩ Z6) = {η(v3) = η(v4)}.
Z2 = ({η(v2) = ff}∩Z4)∪ ({η(v2) = tt}∩Z8) = {η(v2) = ff, η(v3) = η(v4)}.
Z3 = ({η(v2) = ff}∩Z8)∪ ({η(v2) = tt}∩Z4) = {η(v2) = tt, η(v3) = η(v4)}.
Z1 = ({η(v1) = ff} ∩ Z2) ∪ ({η(v1) = tt} ∩ Z3)

= {η(v1) = η(v2), η(v3) = η(v4)}.
ZD is Z1; in full notation: ZD = {η ∈W (V4) | η(v1) = η(v2), η(v3) = η(v4)}. �

The definition of the set ZD determined by some BDD B can be understood quite
intuitively as follows. Assume that on every path (this notion is used as in earlier
cases) from the root of B to a terminal node there is, for every v ∈ V , at most one
occurrence of v as a node label. Then the path determines a state η given by η(v) = tt
whenever the path proceeds from a node labeled with v to its one-successor and by
η(v) = ff if it goes to the zero-successor. Then η ∈ ZD if and only if the terminal
node at the end of the path is labeled with +. For example, in Bexmp the path through
the nodes 1, 3, 4, 5, 7 provides the state η with η(v1) = tt, η(v2) = tt, η(v3) = ff,
η(v4) = ff which belongs to ZD. Any state η′ with η′(v1) = tt and η′(v2) = ff given
by the path through 1, 3, 8 does not belong to ZD.

It is evident that, in general, sets of states can be represented by binary decision
diagrams with quite different structure. In applications like the one intended here
it is desirable to have distinguished canonical representations which are unique. To
obtain them we firstly restrict ourselves to ordered binary decision diagrams (briefly:
OBDDs). An OBDD B is a BDD (with respect to V ) with the property that there
is a linear order � on V such that for any node g in B, if g has a non-terminal
successor node g ′ then var(g)�var(g ′). More intuitively: on all paths from the root
to a terminal node, the elements of V labeling the nodes occur in the same order
(possibly missing some of them). For example, taking the order v1 � v2 � v3 � v4,
the BDD Bexmp is ordered.

Given an OBDD B, a canonical OBDD is obtained by repeatedly applying the
following three transformations (which do not alter the state set determined by B):

• Removal of duplicate terminals:
Delete all terminal nodes with label + except one and redirect all edges leading
to the deleted nodes to the remaining one. Proceed in the same way with the
terminal nodes with label −.

• Removal of duplicate non-terminals:
If var(g) = var(g ′), zero(g) = zero(g ′), and one(g) = one(g ′) for some non-
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terminal nodes g and g ′ then delete one of them, say g , and redirect all edges
leading to g to g ′.

• Removal of redundant tests:
If zero(g) = one(g) (= g ′) for some non-terminal node g then delete g and
redirect all edges leading to g to g ′.

An OBDD is called reduced if none of these reduction transformations can be ap-
plied. It can be shown that for any state set Z and fixed order � on V there is a
unique reduced OBDD B which determines Z . We denote this OBDD by B(Z ).
Of course, B(Z ) depends on how V is ordered, and it should be noted that different
orders may in fact lead to OBDD representations of significantly different size. Algo-
rithms to find the “optimal” order are beyond practicable complexity but there exist
good heuristic methods which usually provide reasonable results to this problem in
practice.

Let us now come to the representation of the necessary set operations in the
framework of reduced OBDDs. We first introduce an auxiliary operation defined as
follows. For η ∈W (V ), v ∈ V , x ∈ {ff, tt} let ηv �→x ∈W (V ) be given by

ηv �→x(v) = x,
ηv �→x(v ′) = η(v ′) for v ′ �= v .

The restriction Zv �→x of some Z ∈W (V ) is the state set

Zv �→x = {η ∈W (V ) | ηv �→x ∈ Z}.

This operation is represented by the following BDD restriction transformation.

• Construction of B(Zv �→x) from B(Z ):
– Delete all edges from a node g with var(g) = v to zero(g) if x = tt or to

one(g) if x = ff, respectively, and delete all nodes which then are no longer
reachable by a path from the root.

– Delete all nodes g with var(g) = v and redirect all edges leading to such
nodes to zero(g) if x = ff or to one(g) if x = tt, respectively.

– Apply the reduction transformations to obtain a reduced OBDD.

Example. As seen in the previous example, the state set

Z = {η ∈W (V4) | η(v1) = η(v2), η(v3) = η(v4)}

is represented by the BDD Bexmp of Fig 11.5 which is in fact a reduced OBDD. We
have

Zv4 �→tt = {η ∈W (V4) | ηv4 �→tt ∈ Z}

where ηv4 �→tt(v) = η(v) for v ∈ {v1, v2, v3} and ηv4 �→tt(v4) = tt; thus

Zv4 �→tt = {η ∈W (V4) | η(v1) = η(v2), η(v3) = tt}.

Applying the above construction to Bexmp we obtain (without any reduction trans-
formations) the reduced OBDD shown in Fig. 11.6 which represents Zv4 �→tt. �
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Fig. 11.6. A restriction of Bexmp

With the restriction operation we are now able to give constructions for set union
∪, intersection ∩, and difference \, and we can do this even in a uniform way for
these operations. The key idea is to use the Shannon expansion (applied to state
sets), i.e., the fact that if � denotes ∪, ∩, or \ then

Z � Z ′ = ({η ∈W (V ) | η(v) = ff} ∩ (Z � Z ′)) ∪
({η ∈W (V ) | η(v) = tt} ∩ (Z � Z ′))

= ({η ∈W (V ) | η(v) = ff} ∩ {η ∈W (V ) | ηv �→ff ∈ Z � Z ′}) ∪
({η ∈W (V ) | η(v) = tt} ∩ {η ∈W (V ) | ηv �→tt ∈ Z � Z ′})

= ({η ∈W (V ) | η(v) = ff} ∩ (Zv �→ff � Z ′
v �→ff)) ∪

({η ∈W (V ) | η(v) = tt} ∩ (Zv �→tt � Z ′
v �→tt))

holds for arbitrary Z ,Z ′ ⊆W (V ), and v ∈ V . Comparing this equation for Z �Z ′

with the general definition of ZD for a BDD B, it is easy to see that the construction
of B(Z � Z ′) can be organized recursively. As v in the expansion we take the “least
occurring” element of V . This v labels the root of B(Z � Z ′) and the zero- and
one-edges lead to the diagrams for Zv �→ff � Z ′

v �→ff and Zv �→tt � Z ′
v �→tt, respectively.

The recursion terminates if both diagrams which are to be combined consist only of
a single terminal node.

• Construction of B(Z � Z ′) from B(Z ) and B(Z ′)
(� denotes the union ∪, intersection ∩, or difference \ of sets; g and g ′ denote
the roots of Z and Z ′, respectively):
– If g and g ′ are terminal then B(Z � Z ′) has only one node which is terminal

and labeled by + if and only if
· at least one of g or g ′ is labeled by + in case � is ∪,
· both g and g ′ are labeled by + in case � is ∩,
· g is labeled by + and g ′ by − in case � is \.

– If g is non-terminal, var(g) = v , and g ′ is terminal or non-terminal with
v � var(g ′) or v = var(g ′) then construct B0 = B(Zv �→ff � Z ′

v �→ff) and
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Fig. 11.7. Construction steps for a set intersection

B1 = B(Zv �→tt � Z ′
v �→tt). Then B(Z � Z ′) is the OBDD with root g and the

roots of B0 and B1 as zero(g) and one(g), respectively.
– The case that g ′ is non-terminal and g is terminal or non-terminal with a

label not less than the label of g ′ with respect to the order � is handled
symmetrically.

– Apply the reduction transformations to obtain a reduced OBDD.

Example. Let Z = {η ∈W (V4) | η(v1) = tt}, Z ′ = {η ∈W (V4) | η(v2) = tt},
and assume again v1 � v2. Figure 11.7 shows the essential steps when constructing
B(Z ∩ Z ′). The OBDDs (a) and (b) represent Z and Z ′. Let B+ and B− denote
the trivial OBDDs consisting of just a terminal node which is labeled by + or −,
respectively. Then we have by the restriction construction

B(Zv1 �→ff) = B(Z ′
v2 �→ff) = B− ,

B(Zv1 �→tt) = B(Z ′
v2 �→tt) = B+ ,

and both B(Z ′
v1 �→ff) and B(Z ′

v1 �→tt) are the OBDD (b). The root of B(Z ∩ Z ′) has
to be labeled by v1 and the zero- and one-successors of the root are the roots of
B(Zv1 �→ff ∩ Z ′

v1 �→ff) and B(Zv1 �→tt ∩ Z ′
v1 �→tt), respectively. The construction of these

diagrams provides B− for the first and the OBDD (b) for the second one. Putting
them together yields the OBDD (c) which is finally reduced to the OBDD (d). �

Besides set operations we have to represent the transition relation T of a given
FSTS Ψ and its inverse image operation. For this purpose, let V c = {vc | v ∈ V }
be a “copy” of V . For η1, η2 ∈W (V ) we define η1×η2 ∈W (V ∪V c) by

η1×η2(v) = η1(v) for v ∈ V ,
η1×η2(vc) = η2(v) for vc ∈ V c .

With T we associate now a subset T× of W (V ∪V c):

T× = {η1×η2 ∈W (V ∪V c) | (η1, η2) ∈ T}.

T× is a set of states (with respect to the set V ∪ V c of system variables), and we
represent T by the reduced OBDD B(T×).
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Fig. 11.8. A binary decision diagram for a transition relation

Example. Consider the FSTS Ψexmp = ({v1, v2}, {η1, η2, η3},T ) of Sect. 11.3
with η1(v1) = η2(v1) = η2(v2) = η3(v2) = tt, η3(v1) = η1(v2) = ff, and

T = {(η1, η2), (η1, η3), (η2, η1), (η2, η3), (η3, η3)}.

Then we have

T× = {η1×η2, η1×η3, η2×η1, η2×η3, η3×η3}

where the elements of T× are mappings {v1, v2, vc
1 , vc

2 } → {ff, tt} given by

η1×η2 η1×η3 η2×η1 η2×η3 η3×η3

v1 tt tt tt tt ff
v2 ff ff tt tt tt
vc
1 tt ff tt ff ff

vc
2 tt tt ff tt tt

Figure 11.8 shows a OBDD representation of T×. For example, the path from the
root of this BDD along the edges labeled by 1, 1, 1, 0 represents η2×η1; hence the
pair (η2, η1) of T . �

For representing the inverse image operation we first observe that, for an arbitrary
state set Z and system variable v we have

(∗) η ∈ Zv �→ff ∪ Zv �→tt ⇔ there exists η ∈ Z with η(v) = η(v) for v �= v

since η ∈ Zv �→ff ∪ Zv �→tt ⇔ ηv �→ff ∈ Z or ηv �→tt ∈ Z .
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Let now Z be a subset of W (V ) for an FSTS Ψ = (V ,W ,T ) and

Z c = {η1×η2 ∈W (V ∪V c) | there exists η ∈ Z with
η2(vc) = η(v) for every vc ∈ V c}.

Furthermore, let again V = {v1, . . . , vm} and consider the following sets:

Z (0) = Z c ∩ T×,
Z (1) = Z (0)

vc
1 �→ff ∪ Z (0)

vc
1 �→tt ,

Z (2) = Z (1)
vc
2 �→ff ∪ Z (1)

vc
2 �→tt ,

...
Z (m) = Z (m−1)

vc
m �→ff ∪ Z (m−1)

vc
m �→tt .

Using the assertions (∗) above n times we then have

η ∈ Z (m) ⇔ there exists η ∈ Z (0) with η(v) = η(v) for v ∈ V
⇔ there exists η×η′ ∈ Z c ∩ T×

⇔ there exists η′ ∈ Z with (η, η′) ∈ T .

Due to the construction of Z (m) the OBDDB(Z (m)) does not contain any nodes with
labels from V c , so, according to this equivalence, this OBDD can also be viewed
as determining the set of those η ∈ W (V ) for which there exists η′ ∈ Z with
(η, η′) ∈ T which is just T−1(Z ).

Following a similar argument, an OBDD for Z c is given by an OBDD for the set
{ηc ∈ W (V c) | ηc(vc) = η(v), η ∈ Z}. Thus the inverse image operation can be
represented in the following way.

• Construction of B(T−1(Z )) from B(T×) and B(Z )
Construct B(Z c) by replacing all labels v of non-terminal nodes in B(Z ) by
vc , and then construct successively B(Z (0)),B(Z (1)), . . . ,B(Z (m)) for the sets
Z (0),Z (1), . . . ,Z (m) defined above.
Then B(Z (m)) is B(T−1(Z )).

Example. Consider again the FSTS Ψexmp from the previous example. The OBDD
representation of its transition relation T was given in Fig. 11.8. The stepwise con-
struction of B(T−1(Z )) for Z = {η2} is shown in Fig. 11.9. The OBDDs (a),
(b), (c), and (d) represent the sets Z c , Z (0), Z (1), and Z (2), respectively. So (d)
is B(T−1(Z )) = B({η1}). �

The model checking algorithm of Sect. 11.3 computes the satisfaction set �F �Ψ

for given FSTS Ψ and formula F of LCTLΨ . Summarizing the preceding efforts, it is
clear now that this algorithm can be implemented by manipulating reduced OBDDs
as representations of state sets. The OBDD constructions for set union, intersection,
or difference are applied wherever these operations are used in the clauses of the al-
gorithm. The case F ≡ E �A is handled by constructing B(T−1(W (A))), and such
inverse image constructions are also applied in the iteration steps of the procedures
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Fig. 11.9. Construction steps for an inverse image

for formulas E�A and A Eunt B . The termination check in these latter procedures
needs to compare reduced OBDDs and determine whether they represent the same
set. Because of their canonical form this is easily carried out by checking whether
they are equal.

The representation of satisfaction sets of formulas by BDDs is often called sym-
bolic, emphasizing that the size of a representing BDD depends on the structure of
the underlying formula rather than on the size of the set: for example, the empty set
and the set of all states as satisfaction sets of false and true are both represented
by diagrams with just one node (the diagrams B− and B+ introduced in an example
above). Consequently, the algorithm of Sect. 11.3 in the OBDD implementation is
called a symbolic model checking technique.

In practice a concrete model checking system realizing the algorithm typically
offers an input language in which the user can formulate the FSTS, possible fairness
constraints, and the formula(s) to be checked. Often the implementation does not
really “strictly translate” the “abstract” algorithm but utilizes certain optimizations.
After running the algorithm the model checker either confirms that the property holds
or reports that it is violated. In cases where this feature is applicable, a witness or
counterexample is delivered as well.

11.6 Further Model Checking Techniques

In the previous sections we have discussed some basics of the model checking ap-
proach to system verification. Based on these, there are many advanced techniques
which were designed to improve and extend the practical applicability of the method.
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Among others, some important examples of such techniques are

• bounded model checking,
• partial order reduction,
• abstraction,
• combination of deductive and model checking methods.

We conclude this chapter with some short comments on these keywords just to illus-
trate the wide range of useful modifications and extensions of the model checking
idea.

Bounded model checking can be considered as a symbolic model checking tech-
nique. As in the BDD-based approach, the transition relation T of the FSTS is
symbolically represented: by a formula characterizing the set T× of states (cf.
Sect. 11.5). However, instead of computing fixpoints, the verification algorithm at-
tempts to find counterexamples whose length does not exceed some pre-determined
bound. To do so, it relies on efficient algorithms for solving the satisfiability (SAT)
problem of classical propositional logic PL, cf. Sect. 1.1.

We describe the principle of bounded model checking for LTL. Consider some
state η0 of an FSTS Ψ and a formula �A, where A is non-temporal. A counterexam-
ple to �A starting from η0 is provided by a finite prefix

η0
� η1

� . . . � ηk

of an execution sequence that reaches a state ηk in which A does not hold. An algo-
rithm for bounded model checking searches for such prefixes up to some fixed length
k ∈ N. If a state in which A does not hold is found in this way then the correspond-
ing finite state sequence is a finite counterexample (for �A and η0 in Ψ ), showing
that �A does not hold in η0. Otherwise, the search is repeated with a larger k . The
repetition stops when some previously known upper bound is reached or – without
final decision – when the process runs out of available resources.

For formulas �A (for non-temporal A) a finite counterexample cannot be of the
simple form above, but it must have some “loop structure”

η0
� η1

� . . . � ηi
� . . . � ηk .

�

If A is false in all η0, . . . , ηk then such a loop is a finite counterexample to the
formula �A in η0. This idea can be extended to arbitrary LTL formulas.

For an LTL formula F , a state η of the FSTS Ψ , and k ∈ N, a formula F (Ψ,η)
k

of PL is associated such that F (Ψ,η)
k is satisfiable if and only if there is a finite coun-

terexample of length k for F and η in Ψ .
We illustrate the definition of F (Ψ,η)

k by an example. Consider the FSTS Ψexmp

from earlier examples given by the transition diagram in Fig. 11.10 and the formula
F ≡ �(¬v1 ∨ v2). Let k = 1 and

AT ≡ (v1 ∧ ¬v2 ∧ vc
2 ) ∨ (v1 ∧ v2 ∧ (vc

1 ↔ ¬vc
2 )) ∨ (¬v1 ∧ v2 ∧ ¬vc

1 ∧ vc
2 ).
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Fig. 11.10. The FSTS Ψexmp again

This formula describes the transition relation of Ψexmp using copies vc
1 and vc

2 of the
system variables v1 and v2 as in Sect. 11.5 (cf. Fig. 11.8). Thus, the formula

A1 ≡ v1 ∧ v2 ∧AT

describes all state sequences η2
� η′ of length 1 in Ψ . Moreover, let Ac

T result
from AT by replacing v1 and v2 by vc

1 and vc
2 and the latter by further copies vcc

1

and vcc
2 , respectively. Then the formula

A2 ≡ A1 ∧ ((Ac
T ∧ vcc

1 ∧ vcc
2 ) ∨ (Ac

T ∧ (vcc
1 ↔ vc

1 ) ∧ (vcc
2 ↔ vc

2 )))

describes all such sequences η2
� η′ which contain a loop (from η′ to η2 or to η′).

Then it is evident that the formula

F (Ψexmp ,η2)
1 ≡ A2 ∧ (¬v1 ∨ v2) ∧ (¬vc

1 ∨ vc
2 )

encodes F in the desired way. In fact, this formula is satisfied by the valuation

v1 �→ tt, vc
1 �→ ff, vcc

1 �→ ff,
v2 �→ tt, vc

2 �→ tt, vcc
1 �→ tt

which corresponds to the finite counterexample

η2
� η3

�

for F . Observe that a state sequence is a counterexample for F if and only if it is
a witness for the CTL formula F ′ ≡ E�(¬v1 ∨ v2). The result agrees with earlier
examples in Sect. 11.3 where we found that F ′ is true in η2, with the (infinite) witness

η2
� η3

� η3
� η3

� . . . .

This sequence is just the “unfolded” finite counterexample for F .

Turning to the next item of our short list of further model checking techniques,
we have observed in Sect. 11.2 that the state explosion problem is the main limitation
to the application of model checking. Symbolic model checking algorithms attempt
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to alleviate this limitation by providing compact representations of sets of states.
Alternatively, approaches have been considered that reduce the size of the system
that needs to be analysed during model checking.

An FSTS Ψ to be verified by model checking may represent a concurrent pro-
gram as studied in Chap. 8 (more generally: a system composed of concurrent pro-
cesses with some “interaction”). In this case the transition relation of Ψ represents
all possible interleavings of the atomic steps of the individual processes. For many
properties, however, the relative order of such steps in different processes is irrele-
vant and it suffices to consider only some representative interleaving sequences. This
particularly holds when only little synchronization takes place between the concur-
rent processes. Partial order reduction techniques are designed to reduce the number
of such sequences, i.e., execution sequences of Ψ and, as a consequence, the number
of states, which have to be considered in the model checking process.

The main problem for finding an appropriate reduction is to detect only from the
“local” knowledge available at a given state when some interleaving may be omitted.
A simple idea would be to connect this with the commutativity of two atomic steps
α and β which means that the state reached after executing them does not depend on
the order of their execution and may be depicted by

η1
α� η2

β� η3 and η1
β� η′

2
α� η3 .

To omit one of these sequences, however, is dangerous: the states η2 and η′
2 may

have successors other than η3 which may not be explored if the respective sequence
is ignored. Moreover, the property to be checked might be quite sensitive to the
choice of the intermediate states η2 and η′

2.
Algorithms embodying partial order reduction techniques differ in how these

problems are dealt with efficiently and in a way appropriate for the systems of inter-
est. We show, as an example, one possible selection of conditions such that one of
the above two sequences could be ignored in the model checking process.

We say that two atomic steps α and β commute in a state η where they are both
enabled (i.e., there are (η, η′) ∈ TΨ “caused by α” and (η, η′′) ∈ TΨ “caused by β”)
if all of the following hold:

• β is enabled in all possible successors of η reached by executing α,
• α is enabled in all possible successors of η reached by executing β,
• the states reachable from η by executing α followed by β are the same as those

reachable by executing first β, then α.

When model checking an LTL formula F over Ψ , the atomic step β can be de-
layed (i.e., the second sequence in the illustration above can be ignored) if the fol-
lowing conditions are satisfied.

• F is stuttering invariant (in the sense of Sect. 9.3).
• The atomic step β does not modify the values of the system variables occurring

in F .
• The step β commutes with all atomic steps γ of Ψ , in all states where β and γ

are simultaneously enabled.
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In practice, deciding whether two atomic actions commute can be costly, and the
third condition above is approximated by sufficient syntactic conditions. For exam-
ple, the assignment to a local variable of a process commutes with all steps that do
not modify the variables of the expression in the right-hand side of the assignment.

Abstraction is another technique for decreasing the number of states and tran-
sitions which have to be considered when model checking is applied to a system.
Recall from Sect. 11.1 that an FSTS may be an encoding of a first-order STS. Such
systems manipulate data and are a particular application area for this technique.

Abstraction is based on the observation that system properties in such cases of-
ten involve only simple relationships between the data values occurring during ex-
ecution. The idea is to find an abstraction mapping between the data of the given
systems and a small set of “abstract” data with the goal that when extending this
mapping to states and transitions one obtains an abstract version of the system which
is smaller and still sufficient for the verification of the property under consideration.
More precisely: the property holds of the given system if it can be proved for the
abstract one.

On the first-order STS level the abstraction mapping can typically be understood
to be realized by functions ϕa for every individual system variable a of the given
system. Assume that the domain D of possible values of a is partitioned into sets
D1, . . . , Dn . The set {d1, . . . , dn} is a (finite) set of abstract values for a (called
abstract data domain) and the abstraction mapping ϕa is given by

ϕa(d) = di if d ∈ Di

for every element d ∈ D. In an encoding FSTS we then have n propositional system
variables aval1, . . . , avaln encoding the abstract values, i.e., with the meaning that

η̃(avali) = tt ⇔ η(a) ∈ Di for 1 ≤ i ≤ n.

(η̃ denotes the encoding of the original state η as in Sect. 11.1.) The appropriate
partition of D depends on the application. In the general case, it has to be defined by
the user. Observe that the abstraction technique therefore is not an entirely automatic
method in the same way that standard model checking is. Full automation can be
recovered for pre-defined abstract domains, such as partitioning the integers into
zero, strictly positive and strictly negative integers. Abstraction may be applicable if
the original domain D is infinite, so the given system is not a finite state system.

Again we give a simple example for illustration. The counter system Γcount in-
troduced in Sect. 6.2 has (under some fairness assumptions) the property

�(c = 0).

Γcount has infinitely many states since the values of c may be any natural number, but
it is quite obvious from the possible transitions (and can also be seen by an inspection
of the formal derivation of this formula in Sect. 7.4) that realizing the fact that any
(fair) execution sequence will eventually reach a state with c = 0 does not really
refer to the concrete values of c. The only relevant “information” about c is whether
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Fig. 11.11. Transition diagram of an abstract FSTS

it equals 0 or not. Thus, a partition of N into the sets D1 = {0} and D2 = N \ D1

provides a faithful abstract finite state system which can be represented as an FSTS
with the system variables on and c0 and the transition diagram depicted in Fig. 11.11.
The system variable c0 stands for “the value of c is 0” and, e.g., the arrow from η4 to
η1 represents the transition of switching the counter on in a state where it is off and
c �= 0. All counting steps are represented by arrows leading to η2, i.e., to the state in
which the counter is on and c �= 0. Under suitable fairness assumptions, the formula
�(c = 0) can easily be verified for this FSTS and the result can be transferred back
to Γcount .

Instead of defining an abstraction mapping, a reduced system can be obtained by
a quotient construction with respect to an equivalence relation. This idea underlies a
technique known as symmetry reduction that identifies system states that agree “up
to permutation”. For example, systems are often composed of processes that behave
identically, and for many properties the precise identity of a process performing a
certain step can be ignored.

The idea of abstraction also is a natural basis for combining deductive and model
checking methods for system verification. Among several possible approaches, we
mention just one that is directly related to abstraction as just sketched. The abstrac-
tion mapping maps concrete to abstract systems. Thus, it works “semantically” and
in complex cases it might be difficult to see that the abstract system reflects the
concrete one in a correct way. The idea of the method is to formalize this step by
some deductive procedure between specifications of the systems on the two levels.
Moreover, the specification of the abstract system may be represented in a form of
a predicate diagram which can directly be viewed as (the transition diagram of) an
FSTS verifiable by model checking.

We use again the counter system Γcount as a simple example to indicate the basic
idea. A specification of Γcount was given in Sect. 6.2 by the two axioms

on → (on ′ ∧ c′ = c + 1) ∨ (¬on ′ ∧ c′ = c),
¬on → (¬on ′ ∧ c′ = c) ∨ (on ′ ∧ c′ = 0).

An adequate predicate diagram for the system (and the property �(c = 0) to be
proved) could be as given in Fig. 11.12. Its one-to-one correspondence to the tran-
sition diagram depicted for the above abstraction example is evident: c = 0 can
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Fig. 11.12. Predicate diagram for a counter

be viewed as (another notation of) a propositional system variable, and negations
mean that a system variable has the value ff. So, model checking can be performed
as before.

On the other hand, the nodes of the predicate diagram can be read as formulas
by combining their atomic formulas by conjunction. Interpreting the arrows still as
possible “transitions” from a state to a successor state, the diagram represents the
formulas

on ∧ c = 0 → (¬on ′ ∧ c′ = 0) ∨ (on ′ ∧ c′ �= 0),
on ∧ c �= 0 → (on ′ ∧ c′ �= 0) ∨ (¬on ′ ∧ c′ �= 0),
¬on ∧ c = 0 → (¬on ′ ∧ c′ = 0) ∨ (on ′ ∧ c′ = 0),
¬on ∧ c �= 0 → (¬on ′ ∧ c′ �= 0) ∨ (on ′ ∧ c′ = 0)

which specify the abstract system. These formulas are derivable from the axioms of
Γcount . Therefore, any safety property verified for the predicate diagram holds for
Γcount as well. The technique can be extended to arbitrary temporal properties when
fairness hypotheses are faithfully represented in the predicate diagram.
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List of Temporal Logic Laws

We give here a compact list of laws of the various temporal logics, particularly in-
cluding those which are frequently used throughout the book. Furthermore, we note
some of the corresponding formal systems.

Laws of Basic LTL

(T1) ¬ �A↔ �¬A
(T2) ¬�A↔ �¬A
(T3) ¬�A↔ �¬A
(T4) �A→ A
(T5) A→ �A
(T6) �A→ �A
(T7) �A→ �A
(T8) �A→ �A
(T9) ��A→ ��A
(T10) ��A↔ �A
(T11) ��A↔ �A
(T12) � �A↔ ��A
(T13) � �A↔ ��A
(T14) �(A→ B) ↔ �A→ �B
(T15) �(A ∧ B) ↔ �A ∧ �B
(T16) �(A ∨ B) ↔ �A ∨ �B
(T17) �(A↔ B) ↔ ( �A↔ �B)
(T18) �(A ∧ B) ↔ �A ∧�B
(T19) �(A ∨ B) ↔ �A ∨�B
(T20) ��(A ∨ B) ↔ ��A ∨��B
(T21) ��(A ∧ B) ↔ ��A ∧��B
(T22) �(A→ B) → (�A→ �B)
(T23) �A ∨�B → �(A ∨ B)
(T24) (�A→ �B) → �(A→ B)
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(T25) �(A ∧ B) → �A ∧�B
(T26) ��(A ∧ B) → ��A ∧��B
(T27) ��A ∨��B → ��(A ∨ B)
(T28) �A↔ A ∧ ��A
(T29) �A↔ A ∨ ��A
(T30) �(A→ B) → ( �A→ �B)
(T31) �(A→ B) → (�A→ �B)
(T32) �A → ( �B → �(A ∧ B))
(T33) �A → (�B → �(A ∧ B))
(T34) �A → (�B → �(A ∧ B))
(T35) �(�A→ B) → (�A→ �B)
(T36) �(A→ �B) → (�A→ �B)
(T37) ���A↔ ��A
(T38) ���A↔ ��A

Laws for Binary Operators in LTL

(Tb1) A until B ↔ ��B ∧A unless B
(Tb2) A unless B ↔ �(A unl B)
(Tb3) A unl B ↔ A unt B ∨�A
(Tb4) A unt B ↔ B ∨ (A ∧A until B)
(Tb5) A unless B ↔ B atnext (A→ B)
(Tb6) A atnext B ↔ B before (¬A ∧ B)
(Tb7) A before B ↔ ¬(A ∨ B) unless (A ∧ ¬B)
(Tb8) �A↔ A atnext true
(Tb9) �A↔ A ∧A unless false
(Tb10) �A↔ A unl false
(Tb11) A until B ↔ �B ∨ �(A ∧A until B)
(Tb12) A unless B ↔ �B ∨ �(A ∧A unless B)
(Tb13) A unt B ↔ B ∨ (A ∧ �(A unt B))
(Tb14) A unl B ↔ B ∨ (A ∧ �(A unl B))
(Tb15) A atnext B ↔ �(B → A) ∧ �(¬B → A atnext B)
(Tb16) A before B ↔ �¬B ∧ �(A ∨A before B)
(Tb17) ¬(A unless B) ↔ �¬B ∧ �(¬A ∨ ¬(A unless B))
(Tb18) �(¬B → A)→ A unl B
(Tb19) �(A unl B) ↔ �A unl �B
(Tb20) (A ∧ B) unl C ↔ A unl C ∧ B unl C
(Tb21) A unl (B ∨ C ) ↔ A unl B ∨A unl C
(Tb22) A unl (B ∧ C ) → A unl B ∧A unl C
(Tb23) A unl (A unl B)↔ A unl B
(Tb24) (A unl B) unl B ↔ A unl B
(Tb25) �(B → A)→ A atnext B
(Tb26) �(A atnext B) ↔ �A atnext �B
(Tb27) (A ∧ B) atnext C ↔ A atnext C ∧ B atnext C
(Tb28) (A ∨ B) atnext C ↔ A atnext C ∨ B atnext C
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(Tb29) A atnext (B ∨ C ) → A atnext B ∨A atnext C

Laws for Fixpoint Operators in LTL

(Tμ1) �A ↔ νu(A ∧ �u)
(Tμ2) �A ↔ μu(A ∨ �u)
(Tμ3) A until B ↔ μu( �B ∨ �(A ∧ u))
(Tμ4) A unless B ↔ νu( �B ∨ �(A ∧ u))
(Tμ5) A unt B ↔ μu(B ∨ (A ∧ �u))
(Tμ6) A unl B ↔ νu(B ∨ (A ∧ �u))
(Tμ7) A atnext B ↔ νu( �(B → A) ∧ �(¬B → u))
(Tμ8) A before B ↔ νu( �¬B ∧ �(A ∨ u))

Laws for Propositional Quantification in LTL

(Tq1) ∀uA→ Au(B)
(Tq2) ∀u �A↔ �∀uA
(Tq3) ∀u�A↔ �∀uA
(Tq4) ∃u�A↔ �∃uA
(Tq5) �(A ∨ B)→ ∃u�((A ∧ u) ∨ (B ∧ ¬u))

Laws for Past Operators in LTL

(Tp1) �A→ ¬ �false
(Tp2) �¬A→ ¬ �A
(Tp3) ¬ �A↔ �¬A
(Tp4) A→ ��A
(Tp5) A→ ��A
(Tp6) �(A→ B) ↔ �A→ �B
(Tp7) �(A ∧ B) ↔ �A ∧ �B
(Tp8) �(A ∧ B) ↔ �A ∧ �B

Laws of First-Order LTL

(T39) ∃x �A↔ �∃xA
(T40) ∀x �A↔ �∀xA
(T41) ∃x�A↔ �∃xA
(T42) ∀x�A↔ �∀xA
(Tb30) ∃x (A unl B) ↔ A unl (∃xB)

if there is no free occurrence of x in A
(Tb31) ∀x (A unl B) ↔ (∀xA) unl B

if there is no free occurrence of x in B
(Tb32) ∃x (A atnext B)↔ (∃xA) atnext B

if there is no free occurrence of x in B
(Tb33) ∀x (A atnext B)↔ (∀xA) atnext B

if there is no free occurrence of x in B
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Derivation Rules of Linear Temporal Logic

(nex) A � �A
(alw) A � �A
(ind) A→ B ,A→ �A � A→ �B
(ind1) A→ �A � A→ �A
(ind2) A→ B ,B → �B � A→ �B
(som) A→ �B � A→ �B
(chain) A→ �B ,B → �C � A→ �C
(indunless) A→ �C ∨ �(A ∧ B) � A→ B unless C
(indunl) A→ C ∨ (B ∧ �A) � A→ B unl C
(indatnext) A→ �(C → B) ∧ �(¬C → A) � A→ B atnext C
(indbefore) A→ �¬C ∧ �(A ∨ B) � A→ B before C
(μ-ind) Au(B) → B � μuA→ B if there is no free occurrence of u in B
(qltl-ind) F → ∃u2

�((u2 ↔ u1) ∧ Fu1(u2))
� F → ∃u2((u2 ↔ u1) ∧�Fu1(u2))

if every occurrence of variables ui
1 in F is in the scope of

at most one �operator and no other temporal operator
(indpast) A→ B ,A→ �A � A→ �B
(indinit) init → A,A→ �A � A
(wfr) A→ �(B ∨ ∃ȳ(ȳ ≺ y ∧Ay(ȳ))) � ∃yA→ �B

if B does not contain y ,
for y , ȳ ∈ XWF

Laws of Generalized TLA

(GT1) �
[
[A]e → A

]
e

(GT2) �A→ �[ �A]e
(GT3) �

[
[A]e
]
e
↔ �[A]e

(GT4) �
[
�[A]e1 → [A]e1

]
e2

(GT5) �[A]e1 → �
[
[A]e1

]
e2

(GT6) �
[
[A]e1

]
e2
↔ �

[
[A]e2

]
e1

Laws of Interval Temporal Logic

(IT1) empty chop A ↔ A
(IT2) �� A chop B ↔ �� (A chop B)
(IT3) (A ∨ B) chop C ↔ A chop C ∨ B chop C
(IT4) A chop (B ∨ C ) ↔ A chop B ∨A chop C
(IT5) A chop (B chop C ) ↔ (A chop B) chop C



List of Temporal Logic Laws 417

Laws of BTL and CTL

(BT1) E�A ↔ A ∧ E �E�A
(BT2) E�A ↔ A ∨ E �E�A
(BT3) A�A ↔ A ∧ A �A�A
(BT4) A�A ↔ A ∨ A �A�A
(BT5) A �A → E �A
(BT6) E�A → E �A
(BT7) E�E�A ↔ E�A
(BT8) E �E�A → E�E �A
(BT9) E �(A ∧ B) → E �A ∧ E �B
(BT10) E �(A→ B) ↔ A �A→ E �B
(BT11) E�(A ∨ B) ↔ E�A ∨ E�B
(BT12) E�(A ∧ B) → E�A ∧ E�B
(CT1) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B))
(CT2) A Eunt B → E�B
(CT3) E �(A Eunt B) ↔ E �A Eunt E �B
(CT4) A Eunt C ∨ B Eunt C → (A ∨ B) Eunt C
(CT5) (A ∧ B) Eunt C → A Eunt C ∧ B Eunt C
(CT6) A Eunt (B ∨ C ) ↔ A Eunt B ∨A Eunt C
(CT7) A Eunt (B ∧ C ) → A Eunt B ∧A Eunt C

Derivation Rules of Branching Time Temporal Logic

(nexb) A→ B � E �A→ E �B
(indb1) A→ B ,A→ E �A � A→ E�B
(indb2) A→ ¬B ,A→ A �(A ∨ ¬E�B) � A→ ¬E�B
(indc) A→ ¬C ,A→ A �(A ∨ ¬(B Eunt C )) � A→ ¬(B Eunt C )

The Formal System ΣLTL

(taut) All tautologically valid formulas
(ltl1) ¬ �A ↔ �¬A
(ltl2) �(A→ B) → ( �A→ �B)
(ltl3) �A → A ∧ ��A
(mp) A,A→ B � B
(nex) A � �A
(ind) A→ B ,A→ �A � A→ �B

Additional Axioms and Rules for Extensions of LTL

(until1) A until B ↔ �B ∨ �(A ∧A until B)
(until2) A until B → ��B
(unless1) A unless B ↔ �B ∨ �(A ∧A unless B)
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(unless2) ��A→ A unless B
(atnext1) A atnext B ↔ �(B → A) ∧ �(¬B → A atnext B)
(atnext2) ��¬B → A atnext B
(before1) A before B ↔ �¬B ∧ �(A ∨A before B)
(before2) ��¬B → A before B
(μ-rec) Au(μuA) → μuA
(μ-ind) Au(B) → B � μuA→ B if there is no free occurrence of u in B
(qltl1) Au(B) → ∃uA
(qltl2) ∃u �A↔ �∃uA
(qltl3) ∃u(u ∧ ��¬u)
(qltl-part) A→ B � ∃uA→ B if there is no free occurrence of u in B
(qltl-ind) F → ∃u2

�((u2 ↔ u1) ∧ Fu1(u2))
� F → ∃u2((u2 ↔ u1) ∧�Fu1(u2))

if every occurrence of variables ui
1 in F is in the scope of at

most one �operator and no other temporal operator

(pltl1) �¬A→ ¬ �A
(pltl2) �(A→ B) → ( �A→ �B)
(pltl3) �A→ A ∧ ��A
(pltl4) �− �false
(pltl5) A→ ��A
(pltl6) A→ ��A
(prev) A � �A
(indpast) A→ B ,A→ �A � A→ �B
(iltl) �¬init
(init) init → �A � A
(since) A since B ↔ �B ∨ �(A ∧A since B)
(backto) A backto B ↔ �B ∨ �(A ∧A backto B)
(atlast) A atlast B ↔ �(B → A) ∧ �(¬B → A atlast B)
(after) A after B ↔ �¬B ∧ �(A ∨A after B)

The Formal System ΣFOLTL

(taut) All tautologically valid formulas
(ltl1) ¬ �A ↔ �¬A
(ltl2) �(A→ B) → ( �A→ �B)
(ltl3) �A → A ∧ ��A
(ltl4) Ax (t) → ∃xA if t is substitutable for x in A
(ltl5) �∃xA → ∃x �A
(ltl6) A→ �A if A is rigid
(eq1) x = x
(eq2) x = y → (A→ Ax (y)) if A is non-temporal

(mp) A,A→ B � B
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(nex) A � �A
(ind) A→ B ,A→ �A � A→ �B
(par) A→ B � ∃xA→ B if there is no free occurrence of x in B

The Formal System ΣpGTLA

(taut) All tautologically valid formulas
(tautpf ) �[A]e if A is a tautologically valid pre-formula
(gtla1) �A→ A
(gtla2) �A→ �[A]e
(gtla3) �A→ �[ ��A]e
(gtla4) �[A→ B ]e → (�[A]e → �[B ]e)
(gtla5) �[e ′ �= e]e
(gtla6) �[¬ �A↔ �¬A]e
(gtla7) �[ �(A→ B)→ ( �A→ �B)]e
(gtla8) �

[
�[A]e1 → [A]e1

]
e2

(gtla9) �[A]e1 → �
[

��[A]e1

]
e2

(gtla10) �
[
[A]e1 ∧ ��[A]e1 → �[A]e1

]
e2

(gtla11) �
[

��A→ �[ �A]e1

]
e2

(mp) A,A→ B � B
(alw) A � �A
(indpf ) A→ B ,�[A→ �A]U(A) � A→ �B

The Formal System ΣBTL

(taut) All tautologically valid formulas
(btl1) E �true
(btl2) E �(A ∨ B) ↔ E �A ∨ E �B
(btl3) E�A ↔ A ∧ E �E�A
(btl4) E�A ↔ A ∨ E �E�A
(mp) A,A→ B � B
(nexb) A→ B � E �A→ E �B
(indb1) A→ B ,A→ E �A � A→ E�B
(indb2) A→ ¬B ,A→ A �(A ∨ ¬E�B) � A→ ¬E�B

The Formal System ΣCTL

(taut) All tautologically valid formulas
(btl1) E �true
(btl2) E �(A ∨ B) ↔ E �A ∨ E �B
(btl3) E�A ↔ A ∧ E �E�A
(ctl) A Eunt B ↔ B ∨ (A ∧ E �(A Eunt B))
(mp) A,A→ B � B
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(nexb) A→ B � E �A→ E �B
(indb1) A→ B ,A→ E �A � A→ E�B
(indc) A→ ¬C ,A→ A �(A ∨ ¬(B Eunt C )) � A→ ¬(B Eunt C )
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Intl. Conf. Computer Aided Verification (Paris, France, 2001), G. Berry, H. Comon, and
A. Finkel, Eds., vol. 2102 of Lecture Notes in Computer Science, Springer, pp. 53–65.



424 References

55. GERTH, R., PELED, D., VARDI, M. Y., AND WOLPER, P. Simple on-the-fly automatic
verification of linear temporal logic. In Protocol Specification, Testing, and Verification
(Warsaw, Poland, 1995), Chapman & Hall, pp. 3–18.

56. GODEFROID, P. AND WOLPER, P. A partial approach to model checking. Information
and Computation 110, 2 (1994), pp. 305–326.
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149. THOMAS, W. Complementation of Büchi automata revisited. In Jewels are For-
ever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa,
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