

Software Testing
Testing Across the Entire
Software Development Life Cycle

Gerald D. Everett
Certifi ed Senior Testing Education Specialist
IBM

Raymond McLeod, Jr.
University of Texas at Austin
Austin, TX

Software Testing

Software Testing
Testing Across the Entire
Software Development Life Cycle

Gerald D. Everett
Certifi ed Senior Testing Education Specialist
IBM

Raymond McLeod, Jr.
University of Texas at Austin
Austin, TX

This book is printed on acid-free paper. ∞
Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,
fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy
or completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Wiley Bicentennial Logo: Richard J. Pacifi co

Library of Congress Cataloging-in-Publication Data:

Everett, Gerald D., 1943-
 Software testing : testing across the entire software development life
cycle / by Gerald D. Everett, Raymond McLeod, Jr.
 p. cm.
 Includes index.
 ISBN 978-0-471-79371-7 (cloth)
1. Computer software–Testing. 2. Computer software–Development. I.
 McLeod, Raymond.
 II. Title.
 QA76.76.T48E94 2007
 005.1’4–dc22 2007001282

Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1

http://www.copyright.com

To my wife Nell and her steadfast encouragement during the
relentless weekends and vacations while I wrote this book.

Jerry

To my good friend Carolyn, whose reminders, suggestions, and
inspiration have made me a better person, father, and appreciator

of the beauty that the world has to offer.

Ray

 vii

Contents

Preface xi
Acknowledgments xv

1. Overview of Testing 1

1.1 Introduction 1
1.2 Objectives and Limits of Testing 2
1.3 The Value Versus Cost of Testing 11
1.4 Relationship of Testing to the Software Development Life Cycle 16
1.5 Tester Versus Developer Roles in Software Testing 22
1.6 Putting Software Testing in Perspective 25
1.7 Summary 25

2. The Software Development Life Cycle 29

2.1 Introduction 29
2.2 Methodologies and Tools 29
2.3 The Evolution of System Development Life Cycles 30
2.4 The Phased Development Methodology 33
2.5 The Preliminary Investigation Stage 37
2.6 The Analysis Stage 43
2.7 The Design Stage 46
2.8 The Preliminary Construction Stage 50
2.9 The Final Construction Stage 54

2.10 The Installation Stage 56
2.11 Putting Phased Development in Perspective 57
2.12 Summary 57

3. Overview of Structured Testing 59

3.1 Introduction 59

viii Contents

3.2 Checklist Mentality for Software Testers 60
3.3 SPRAE—A Generic Structured Testing Approach 61
3.4 Putting the Overview of Structured Testing in Perspective 65

4. Testing Strategy 66

4.1 Introduction 66
4.2 The Chess Pieces for Testing Strategies 66
4.3 The Two-Dimensional Testing Strategy Chess Board 70
4.4 The Three-Dimensional Testing Strategy Chess Board 75
4.5 Putting the Testing Strategy into Perspective 77

5. Test Planning 79

5.1 Introduction 79
5.2 The Test Plan 79
5.3 Test Cases 83
5.4 Writing Your Test Plan and Test Cases in the Real World 88
5.5 Test Document Standards 90
5.6 Putting Test Planning in Perspective 91

6. Static Testing 93

6.1 Introduction 93
6.2 Goal of Static Testing 93
6.3 Candidate Documents for Static Testing 94
6.4 Static Testing Techniques 96
6.5 Tracking Defects Detected by Static Testing 98
6.6 Putting Static Testing in Perspective 98

7. Functional Testing 99

7.1 Introduction 99
7.2 Functional Test Cases from Use Cases 100
7.3 An Approach to Functional Testing 103
7.4 An Approach to Regression Testing 106
7.5 Detailed White Box Testing Techniques 107
7.6 Detailed Black Box Testing Techniques 112
7.7 Summary 119
7.8 Putting Functional Testing in Perspective 121

8. Structural (Non-functional) Testing 122

8.1 Introduction 122
8.2 Interface Testing 123
8.3 Security Testing 124
8.4 Installation Testing 125

Contents ix

8.5 The Smoke Test 125
8.6 Administration Testing 126
8.7 Backup and Recovery Testing 126
8.8 Putting Structural Testing in Perspective 127
8.9 Summary 127

9. Performance Testing 129

9.1 Introduction 129
9.2 Workload Planning Techniques 130
9.3 Workload Execution Techniques 134
9.4 Component Performance Testing 135
9.5 Round Trip Performance 136
9.6 Putting Performance Testing in Perspective 147
9.7 Summary 148

10. The Testing Environment 150

10.1 Introduction 150
10.2 Simulations 151
10.3 Benchmarking 151
10.4 Testing Environments 152
10.5 The Goal of a Testing Environment 152
10.6 Good Testing Environments and Why They Should Be Used 155
10.7 Bad Testing Environments and Why They Should Be Avoided 156
10.8 Putting the Testing Environment in Perspective 157
10.9 Summary 157

11. Automated Testing Tools 159

11.1 Introduction 159
11.2 Brief History of Automated Testing Tools for Software 160
11.3 Test Tool Record/Playback Paradigm 162
11.4 Test Tool Touchpoint Paradigms 164
11.5 Test Tool Execution Pardigm 168
11.6 The Benefi ts that Testing Tools Can Provide 169
11.7 The Liabilities that Testing Tools Can Impose 173
11.8 Putting Automated Testing Tools in Perspective 174
11.9 Summary 175

12. Analyzing and Interpreting Test Results 176

12.1 Introduction 176
12.2 Test Cases Attempted Versus Successful 176
12.3 Defect Discovery Focusing on Individual Defects 179
12.4 Defect Discovery Focusing on the Defect Backlog 181
12.5 Defect Discovery Focusing on Clusters of Defects 182

x Contents

12.6 Prior Defect Discovery Pattern Usefulness 187
12.7 The Rayleigh Curve—Gunsights for Defect Discovery Patterns 196
12.8 More Defect Tracking Metrics 200
12.9 Putting Test Results in Perspective 201

12.10 Summary 201

13. A Full Software Development Lifecycle Testing Project 203

13.1 Introduction 203
13.2 Preliminary Investigation Stage 204
13.3 Analysis Stage 206
13.4 Design Stage 213
13.5 Preliminary Construction Stage 219
13.6 Final Construction Stage 229
13.7 Implementation Stage 232
13.8 Postimplementation Stage 232
13.9 Case Study Closure 233

14. Testing Complex Applications 235

14.1 Introduction 235
14.2 1-Tier Applications 235
14.3 2-Tier Applications 237
14.4 3-Tier Applications 241
14.5 n-Tier Applications 246
14.6 Putting Testing Complex Applications in Perspective 249
14.7 Summary 249

15. Future Directions in Testing 250

15.1 Introduction 250
15.2 Future Directions in Software Development That Could Increase

the Need for Testing Professionals 250
15.3 Software Testing Challenges Already Upon Us 251
15.4 Software Testing Near Future Challenges 252
15.5 Software Testing Challenges To Come 252
15.6 Putting Future Testing Directions in Perspective 253
15.7 Summary 254

References 255

Index 259

 xi

Preface

An informal survey of twenty-one U.S. universities by the authors found that
nineteen were without any software testing courses. When talking with the faculty
responsible for the software testing courses in three of the universities, we learned
that the largest single impediment to creating a software testing course was the
absence of a good textbook. We were told that the current selection of textbooks
necessitated a combination of three or four to cover many of the topics, with some
topics not even covered at all. This situation leaves much of the material coverage to
the professor. If he or she does not have a background in software testing, the text-
books leave gaps that is hard to fi ll.

Whereas this situation is disconcerting, universities and businesses in Europe
and Asia seem to value testing expertise more than in the US. Instead of only three of
twenty-one universities delivering testing education as in the US, the ratio in Europe
is more like seven out of ten. The reason for this discrepancy is because academic
and business cultures that already value software testing do not need to be sold on
the value of a comprehensive, basic textbook on the subject.

THE IMPORTANCE OF SOFTWARE TESTING

Software Testing: Testing Across the Entire Lifecycle provides the fundamental
concepts and approaches to software testing. The topic is important for two reasons.
First, according to US Government surveys there has been an estimated $59.5B
in business losses since 2000 due to poor quality software. Second, based on the
authors’ inability to fi nd experienced software testers to address some of the esti-
mated $22.2B testing opportunity, the current pool of experienced software testers
is already gainfully employed.

The topic merits a book because in the authors’ opinion there is no single, com-
prehensive software testing textbook available that gives novice testers the whole
picture. There are a large number of narrowly scoped, deep textbooks that are

xii Preface

excellent for experienced testers, but they tend to leave the novice tester confused
and discouraged. Our task is to provide the novice tester with a complete coverage
of software testing as it is practiced today, as it will be practiced in the future, and
as a viable career option.

THE APPROACH

Software Testing: Testing Across the Entire Lifecycle takes a four-fold approach.
First, it examines the general mind-set of a tester using non-technical examples
like buying a car. Second, it examines the structured approach that emphasizes test
planning. Third, it examines the choices of software testing approaches and when
during the software development cycle they are normally used. Finally, it walks
the reader through a software development project from end to end, demonstrat-
ing appropriate use of the software testing approaches previously discussed on an
individual basis.

DISTINCTIVE FEATURES

The most distinctive features of Software Testing: A Comprehensive Software Test-
ing Approach are:

A comprehensive treatment of what a technology professional needs to know
to become a software tester. The presentation sequence builds from simple
examples to complex examples. The descriptions and examples are directed
toward practitioners rather than academicians.

A chapter on analyzing test results effectively using simple math and complex
math models. We have seen no other software testing textbook that treats
test results analysis statistically. Quite to the contrary, other software testing
textbook authors have expressed the opinion that statistics do not belong in a
testing textbook.

A choice of case studies.

Case Study A The fi rst case study uses a popular Internet application called
PetStore2 developed by Sun Microsystems to demonstrate best practices ap-
plication development using Java. The textbook demonstrates through reader
exercises how to plan and execute approaches described in Chapters 7 through
12 on this well-known application. The benefi t to the reader is two-fold. First,
the reader is given an application that is well suited for hands-on experience
that reinforces the testing approaches described in the textbook. Second, when
the reader successfully completes the case study exercises, she or he can claim
resumé testing experience with an industry recognized application.

Case Study B The second case study is a step-by-step description and ex-
ercises that follows a successful testing project presented in Chapter 13.

•

•

•

Preface xiii

Diffi culties are encountered along the way because this is a real testing
project. The case study unfolds in a manner that allows the authors to
incorporate most of the testing concepts and approaches discussed indi-
vidually in previous chapters and attempted hands-on in Case Study A.

ORGANIZATION

Chapter 1 provides an overview of testing, addressing such topics as the objectives
and limits of testing, and the value versus the cost of testing. Chapter 2 describes
the system development life cycle (SDLC) within which testing occurs. The major
SDLCs, such as the waterfall cycle, prototyping, rapid application development, and
the phased development methodology are described. This textbook uses the phased
development methodology as its basic software development framework.

Chapter 3 provides an overview of structured testing, explaining a generic struc-
tured testing approach called SPRAE, which consists of the components of SPECI-
FICATION, PREMEDITATION, REPEATABAILITY, ACCOUNTABILITY, AND
ECONOMY. Following, in Chapter 4, is an overview of four basic testing strategies—
Static, White Box, Black Box, and Performance (Load) Testing. Both two- and three-
dimensional “Chess Boards” are used to illustrate these basic strategies. Once the testing
strategy has been devised, test planning can proceed and that is the subject of Chapter 5.
Guidelines are offered for writing your Test Plan and Test Cases in the real world.

Chapters 6-9 explain the basic types of testing introduced in Chapter 4—
Chapter 6 explains Static Testing, Chapter 7 explains Functional Testing, Chapter 8
explains Structural (Non-functional) testing, and Chapter 9 explains Performance
Testing. As an example of the thoroughness of these explanations, the discussion of
Structural Testing includes coverage of Interface Testing, Security Testing, Installa-
tion Testing, and the appropriately named Smoke Test.

With an understanding of the mechanics of testing, attention is directed in
Chapter 10 to the testing environment, identifying both good and bad environments.
Then, Chapter 11 describes the important topic of automated test tools, and Chapter 12
explains how to analyze and interpret test results.

With this foundation laid, Chapter 13 goes through a Full Software Develop-
ment Lifecycle based on a project performed by the lead author for the State of
Colorado.

The textbook concludes with coverage of Testing Complex Applications in
Chapter 14, and identifi cation of Future Directions of Testing in Chapter 15 that
should prove helpful in considering a software testing career.

LEARNING AIDS

After the introductory chapter, Chapter 2 lays a conceptual foundation of meth-
odologies and tools. This chapter relies heavily on diagrams that serve as
frameworks, helping the reader successfully understand the concepts. Chapters

xiv Preface

that describe the testing process make substantial use of tables and sample printouts
so that the reader can visualize the process.

THE COMPANION WEBSITE

The companion website ftp://ftp.wiley.com/public/sci_tech_med/software_testing/
provided by John Wiley & Sons, Inc. contains:

A Study Guide with questions for each chapter, Case Study A, and Case
Study B.

An Instructor Guide with a course syllabus, textbook graphics for classroom
projection, teaching objectives, teaching techniques, topics for discussion,
questions for each chapter. To access the Instructor Guide, please contact Paul
Petrali, Senior Editor, Wiley Interscience, at ppetrali@wiley.com.

ACKNOWLEDGMENTS

Throughout the text, the authors use the term “we.” Although we take full responsi-
bility for the material and the manner in which it is presented, we acknowledge that
we have received much help along the way. First, we want to thank the thousands of
students in academia and industry who have not only allowed us the opportunity to
formulate and organize our material but to also provide valuable feedback that has
served to keep us on course. Second, we want to thank our business clients who have
provided real-world laboratories for us to apply our knowledge and experience. Lastly,
we want to thank the people at John Wiley & Sons who provided their professional
expertise to bring this book to reality. We especially want to thank Valerie Moliere,
Paul Petrolia, Whitney Lesch, and Danielle Lacourciere.

•

•

 xv

Acknowledgments

We want to thank Kenneth Everett for spending many long hours challenging the
testing approaches presented in the book. He won some. We won some. Several chap-
ters were strengthened considerably by the intense discussions, regardless of who
won. Ken is also responsible for the inclusion of case studies to provide more direct
reinforcement of the reader’s understanding and appreciation of testing techniques.

We want to thank Dr. Stephen Kan whose authorship discussions and profes-
sional, articulate writing style inspired us to write this book.

We want to thank our publication editor Paul Petralia and his trusty editorial
assistant Whitney Lesch who deftly navigated us through the maze of publishing
logistics to make this fi ne-looking textbook something you want to pick up and
explore.

 1

LEARNING OBJECTIVES

to identify the basic mindset of a tester, regardless of what is being tested

to determine the correct motivations for testing in business

to explain some of the reasons why testing is undervalued as a business practice

to explain what differentiates software testers from software developers

1.1 INTRODUCTION

There were numerous spectacular magazine cover stories about computer software
failures during the last decade. Even with these visible lessons in the consequences
of poor software, software failures continue to occur on and off the front page. These
failures cost the US economy an estimated $59.5 billion per year. [1] An estimated
$22.2 billion of the annual losses could be eliminated by software testing appropri-
ately conducted during all the phases of software development. [2]

“Software Testing: Testing Across the Entire Software Development Life Cycle”
presents the fi rst comprehensive treatment of all 21st Century testing activities from
test planning through test completion for every phase of software under development or
software under revision. The authors believe that the cover story business catastrophes can
best be prevented by such a comprehensive approach to software testing. Furthermore,
the authors believe the regular and consistent practice of such a comprehensive testing
approach can raise the industry level of quality that software developers deliver and
customers expect. By using a comprehensive testing approach, software testers can turn
the negative risk of major business loss into a positive competitive edge.

Many excellent textbooks on the market deeply explore software testing for
narrow segments of software development. [3–5] One of the intermediate-level
testing textbooks that the authors recommend as a follow-on to this textbook is Dr.
James A. Whittaker’s Practical Guide to Testing. [6] None of these textbooks deal
with software testing from the perspective of the entire development life cycle, which

•
•
•
•

Chapter 1

Overview of Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

2 Chapter 1 Overview of Testing

includes planning tests, completing tests, and understanding test results during every
phase of software development.

Readers who will benefi t the most from this textbook include software profes-
sionals, business systems analysts, more advanced Computer Science students, and
more advanced Management Information Systems students. The common experi-
ence shared by this diverse group of readers is an appreciation of the technology
challenges in software development. It is this common experience in software devel-
opment that will enable the readers to quickly gain a realistic expectation of testing
benefi ts and acknowledge the boundaries of good software testing.

Although this textbook focuses specifi cally on software testing, fundamental
testing concepts presented in the fi rst section apply to all kinds of testing from auto-
mobiles to wine. This is possible because, to a large extent, testing is a mindset that
anyone can practice on any professional task or pastime.

Computer hardware testers will fi nd about 85% of this textbook directly
applicable to their assignments. They should seek additional reference materials for
information about the remaining 15% of the techniques they need.

Note: The easiest way to determine whether you are doing software or hardware
testing is to examine the recommendation from the test outcome “this system runs
too slowly.” If the recommendation is to “tweak” the software or buy more/faster
hardware, then you are doing software testing. If the recommendation is to reach for
the soldering gun, then you are doing hardware testing.

Typically, a person interested in software testing as a profession will begin to
specialize in certain kinds of testing like functional testing. Whittaker’s textbook
mentioned in the beginning of this section can serve as the logical next step for ob-
taining a deeper understanding of functional testing. The breadth of topics discussed
in this textbook should serve as a reminder to the specialists that there are other
aspects of testing that often impinge upon the success of their specialty.

1.2 OBJECTIVES AND LIMITS OF TESTING

There are many opportunities for testing in both professional and personal life. We
will fi rst explore some examples of non-computer-related testing that show patterns
of thinking and behavior useful for software testing. Then we will examine some of
the boundaries imposed upon testing by fi nancial considerations, time constraints,
and other business limitations.

1.2.1 The Mind of a Tester

Kaner, Bach, and Pettichord describe four different kinds of thinking exhibited by
a good tester: [7]

Technical thinking: the ability to model technology and understand causes
and effects

Creative thinking: the ability to generate ideas and see possibilities

1.

2.

Critical thinking: the ability to evaluate ideas and make inferences

Practical thinking: the ability to put ideas into practice

An example of these kinds of thinking is found in a fable called “The King’s Challenge.”

The King’s Challenge (a fable)

Once upon a time, a mighty king wanted to determine which of his three court wizards
was the most powerful.

So he put the three court wizards in the castle dungeon and declared whoever escaped
from his respective dungeon cell first was the most powerful wizard in all the kingdom.

(Before reading on, decide what you would do.)

The first wizard immediately started chanting mystical poems to open his cell door.
The second wizard immediately started casting small polished stones and bits of

bone on the floor to learn how he might open his cell door.
The third wizard sat down across from his cell door and thought about the situation

for a minute. Then he got up, walked over to the cell door and pulled on the door
handle. The cell door swung open because it was closed but not locked.

Thus, the third wizard escaped his cell first and became known as the most
powerful wizard in all the kingdom.

What kinds of “tester” thinking did the third wizard exercise in solving the king’s puzzle?

Creative thinking: the ability to see the possibility that the door was not locked
in the fi rst place

Practical thinking: the ability to decide to try the simplest solution fi rst

1.2.2 Non-Software Testing at the User Level—Buying
a Car

Next, we will use the automobile industry to fi nd non-computer testing examples
that can easily be related to software testing. Have you ever shopped for a car or
helped someone else shop for a car? What shopping step did you perform fi rst ?

One of the most obvious motivations for testing a car is to determine its quality
or functionality before buying one. When you shop for a car, you typically have some
pretty specifi c objectives in mind that relate either to your transportation needs for
work or to your transportation needs for recreation. Either way, you are the person
who will drive the car, you will be the car “user.”

As a user, you are not interested in performing all possible kinds of tests on the
car because you assume (correctly or incorrectly) that the manufacturer has done
some of those tests for you. The important thing to realize is that you do limit your
testing in some way. We will refer to this limited test as a “test drive,” although some
of the testing does not require driving the car per se. To better understand the testing
limits, we will fi rst examine what you do not test. Then, we will examine what you
do test before you buy a car.

The following examples of test drive objectives are typically not those used for
a personal test drive:

3.

4.

•

•

1.2 Objectives and Limits of Testing 3

4 Chapter 1 Overview of Testing

Objectives of a Test Drive are NOT

 • to break the car
 • to improve the car’s design
You do not try to break the car or any of its components. Rather, you seek guaran-
tees and warranties that imply the car manufacturer has already tried to break it
and proven the car is “unbreakable” under normal driving conditions for x thousand
miles or y years, whichever occurs fi rst. In other words, you expect the car’s reliabil-
ity to have been already tested by others.

You do not typically try to improve the design of the car because you expect the
car manufacturer to have employed a design goal that was reached by the particular
model for which you are shopping. If you identify design changes you would like to
make in the car, the normal reaction is to simply shop for a different model or for
a different manufacturer to fi nd a car with the desired alternative design already
implemented.

A software analogy is to shop for a personal accounting package. For example,
consider shopping for a home fi nancial tool and fi nding Quicken by Intuit and
Money by MicroSoft. As a user, you are not interested in a “test drive” to break the
 software. You expect (correctly or incorrectly) that the software is unbreakable. As
a user, you are not interested in changing the software design. If you do not like the
way Quicken selects accounts using drop-down menus, you consider the way Money
selects accounts.

So what do you test during a car test drive? Typically, it is determined by
your transportation needs (goals). The needs become test drive objectives. Test
objectives are the measurable milestones in testing, which clearly indicate that the
testing activities have defi nitely achieved the desired goals. You translate test drive
objectives into testing approaches that validate whether the car on the dealer’s lot
meets your transportation objectives. Different objectives call for different test drive
 approaches. Next, we will look at examples of test drive objectives.

Objectives of a Test Drive ARE

 • to validate affordability
 • to validate attractiveness
 • to validate comfort
 • to validate usefulness
 • to validate performance
Each of these testing objectives can be validated against the car without trying to
break it or redesign it. Some of these testing objectives can be validated even before
you get in the car and start the engine.

All of these objectives are personal. You are the only one who can prioritize
these objectives. You are the only one who can evaluate the car against these objec-
tives by a test drive, and decide whether to buy the car.

Affordability: down payment, monthly payments, interest rate, and trade-in

Attractiveness: body style, color scheme, body trim, and interior

•
•

Comfort: driver or passenger height, weight, body shape, leg room, ingress or
egress through a front door or back door, and loading or unloading through a
hatchback or rear door.

Usefulness: the number of seats versus the number of passengers, trunk space,
convertible hauling space, on-road versus off-road, or trailer hitch weight
capacity

Performance: gas mileage, minimum grade of gas required, acceleration for
freeway merging, acceleration to beat your neighbor, cornering at low speeds,
cornering at high speeds, and the time or mileage between maintenance service

When you have your testing objectives clear in mind, you choose the testing ap-
proaches that best validate the car against those objectives. The following examples
show some testing approaches and the kinds of testing objectives they can validate.

Testing Approaches Include

 • examining the sticker price and sale contract
 • trying out the radio, the air conditioner, and the lights
 • trying acceleration, stopping, and cornering
These testing approaches are referred to by fairly common terminology in the testing
industry.

Examine � Static testing
(observe, read, review without actually driving the car)

Try out � Functional and structural testing
(work different features of the car without actually driving the car)

Try � Performance testing
(work different features of the car by actually driving the car)

1.2.3 Non-Software Testing at the Developer Level—
Building a Car

Now, we will switch from the user’s, buyer’s, or driver’s perspective to the auto
 manufacturer’s perspective. As with a shopper, it is important for a car builder to
have specifi c testing objectives in mind and discard other testing objectives that are
inappropriate for new car development.

Testing Objectives of a New Car to be Built

 • validate design via scale models.
 • validate operation of prototypes.
 • validate mass assembly plans from prototypes.
The basis for this example is the normal progression of new car development that
starts with written requirements for a new car such as

•

•

•

•

•

•

1.2 Objectives and Limits of Testing 5

6 Chapter 1 Overview of Testing

seats six

carries fi ve suitcases

runs on regular gas

consumes gas at a rate of 25 miles per gallon at highway speeds

has a top speed of 80 miles per hour

These requirements are the nonnegotiable design and manufacturing boundaries
set by groups other than the designers such as marketing teams, Federal regulatory
agencies, or competitors. It is the auto manufacturer’s job to build a new car that does
all these things to the letter of the requirements.

With the new car requirements in hand, the test objectives become more
understandable. It is the job of the auto design tester to validate the current state of
the new car against the car’s requirements. If the new car does not initially meet the
requirements (as few newly designed cars do), then it is the designer not the tester
who must improve the design to meet the requirements.

After design changes are made, it is the tester’s job to revalidate the modifi ed
design against the requirements. This design, test, correct, and retest cycle continues
until the new car design meets the requirements and is completed before the car is
manufactured.

Hopefully, this discussion points out the advantage of requirements for testing
validation at every stage of creating the new car. One of the most pervasive software
testing dilemmas today is the decision of companies to build Internet core-business
applications for the fi rst time without documenting any requirements. Note:
Additional requirements testing approaches can be found in the Chapter 6 of this
textbook.

As with the user test drive, the manufacture tester has many approaches
that can be employed to validate the aspects of a new car against the car’s
requirements.

Testing Approaches Used While Constructing New Cars

 • plan the tests based on requirements and design specifications.
 • examine blueprints and clay models.
 • perform and analyze wind tunnel tests.
 • perform and analyze safety tests.
 • perform and validate prototype features.
 • drive prototype and validate operations.

This example implies an additional layer of documentation necessary for successful
testing. As previously noted, requirements tell the designers what needs to be
 designed. Specifi cations (blueprints or models) are the designers’ interpretation of
requirements as to how the design can be manufactured.

When the specifi cations are validated against the requirements, all the subse-
quent physical car assembly validation can be performed against the specifi cations.

•
•
•
•
•

As with the test drive, the car builder testing approaches can be described by common
testing terminology.

Examine � Static testing
(observe, read, or review without actually building the car)

Perform � Functional and structural testing
(work different features of the car models, mock-ups, and manufactured
subassemblies)

Drive � Performance testing
(work different features of the car in the prototypes)

Because you have probably not built a car, it might be helpful to fi nd examples from
a book that details the car-building steps and the manner in which those steps are
tested during real car development. [8]

Example of static testing

Read the description of wind tunnel testing that showed changing shapes on the
wheel wells would allow the car to achieve 180 mph which became the target
speed for road tests later.

Example of test planning

Read the estimate of the number of prototypes to be built for testing the C5,
around one hundred, compared with the 300 or more expected to be built for
normal car pre-production testing. These prototypes were expected to be used
for all static and dynamic (road) testing prior to the start of assembly line
production. In fact, some of the prototypes were used to plan and calibrate
assembly line production steps.

Read the description of fi nal prototype endurance tests that include driving the
test car on a closed track at full throttle for a full 24 hours, stopping only for gas
and driver changes.

Examples of functional and structural testing

Read the description of heater and air conditioner testing in which drivers
would see how soon the heater made things comfortable in freezing weather.
In summer, one internal environment test would let a Corvette sit under the
desert sun for 3 hours, then the test driver would get in, close the doors, start
the car and air-conditioning to monitor the system until the driver stopped
sweating.

Read the description of body surface durability testing which involved driving
into a car-wash solution of corrosive salt and chemicals that caused the car to
experience the equivalent of a decade of corrosion exposure.

•

•

•

1.2 Objectives and Limits of Testing 7

8 Chapter 1 Overview of Testing

Example of performance testing

Read the description of travel weather testing extremes. Some cars were taken
to frigid climates and forced to operate in sub-zero temperatures. Some cars
were taken to extremely hot climates and forced to operate in 120+ degree
Fahrenheit temperatures.

Read the description of road grade conditions testing that required a driver to
pull up a short on a steep slope, set the parking brake, turn off the engine, wait
a few moments, then restart the engine and back down the slope.

Read the description of road surface conditions testing where drivers raced over
loose gravel to torture the underside of the car and wheel wells.

Read the description of road surface conditions testing that employed long
sequences of speed bumps to shake the car and its parts to an extreme.

The book traces all the steps that the General Motors Corvette development team
took to create the 1997 model C5 Corvette. It is interesting from the manufacturing
standpoint as well as the organizational intrigue standpoint because 1996 was
 supposed to be the last year the Corvette was made and sold. The C5 became the
next-generation Corvette and was brought to market in 1997. The C5 design was
manufactured until 2004. Perhaps you have seen the C5 fl ash by on the highway. It
looks like Figure 1.1.

Figure 1.1 1997 Corvette C5 Coupe

1.2.4 The Four Primary Objectives of Testing

Testing can be applied to a wide range of development projects in a large number
of industries. In contrast to the diversity of testing opportunities, there is a common
 underpinning of objectives. The primary motivation for testing all business
development projects is the same: to reduce the risk of unplanned development expense
or, worse, the risk of project failure. This development risk can be quantifi ed as some
kind of tangible loss such as that of revenue or customers. Some development risks
are so large that the company is betting the entire business that the development will
be successful. In order to know the size of the risk and the probability of it occurring,
a risk assessment is performed. This risk assessment is a series of structured “what
if” questions that probe the most likely causes of development failure depending on
the type of development and the type of business the development must support. This
risk motivation is divided into four interrelated testing objectives.

Primary objectives of testing

Testing objective 1: Identify the magnitude and sources of development risk
 reducible by testing.

When a company contemplates a new development project, it prepares a business
case that clearly identifi es the expected benefi ts, costs, and risks. If the cost of the
project is not recovered within a reasonable time by the benefi ts or is determined to be
a bad return on investment, the project is deemed unprofi table and is not authorized
to start. No testing is required, unless the business case is tested. If the benefi ts
outweigh the costs and the project is considered a good return on investment, the
benefi ts are then compared to the risks. It is quite likely that the risks are many times
greater than the benefi ts. An additional consideration is the likelihood that the risk
will become a real loss. If the risk is high but the likelihood of the risk occurring is
very small, then the company typically determines that the risk is worth the potential
benefi t of authorizing the project. Again, no testing is required.

If the risk is high and the likelihood of its occurrence is high, the questions “Can this
risk be reduced by testing?” and “If the risk can be reduced, how much can testing reduce
it?” are asked. If the risk factors are well known, quantifi able, and under the control of
the project, it is likely that testing can reduce the probability of the risk occurring. Fully
controlled tests can be planned and completed. If, on the other hand, the risk factors are
not under control of the project or the risk factors are fuzzy (not well known or merely
qualitative), then testing does not have a fair chance to reduce the risk.

Testing objective 2: Perform testing to reduce identifi ed risks.
As we will see in subsequent chapters, test planning includes positive testing

(looking for things that work as required) and negative testing (looking for things that
break). The test planning effort emphasizes the risk areas so that the largest possible
percentage of the test schedule and effort (both positive testing and negative testing)
are dedicated to reducing that risk. Very seldom does testing completely eliminate a
risk because there are always more situations to test than time or resources to complete
the tests. One hundred percent testing is currently an unrealistic business expectation.

1.2 Objectives and Limits of Testing 9

10 Chapter 1 Overview of Testing

Testing objective 3: Know when testing is completed.
Knowing that 100% testing of the development is unachievable, the tester must

apply some kind of prioritization to determine when to stop testing. That determination
should start with the positive test items in the test plan. The tester must complete the
positive testing that validates all the development requirements. Anything less, and
the tester is actually introducing business risk into the development process.

The tester must then complete as much of the risk-targeted testing as possible
relative to a cost and benefi t break-even point. For example, if there is a $10,000
business risk in some aspect of the development, spending $50,000 to reduce that
risk is not a good investment. A rule of thumb is a 10–20% cost to benefi t break-even
point for testing. If the same $10,000 business risk can be thoroughly tested for
$1000–2000, then cost to benefi t is very favorable as a testing investment.

Finally, the tester must complete as many of the negative test items in the plan
as the testing budget allows after the positive testing and risk testing are completed.
Negative testing presents two situations to the test planner:

The fi rst situation is the complement of the positive test items. For example, if
a data fi eld on a screen must accept numeric values from 1 to 999, the values 1,
10, 100, 123, 456, 789, and 999 can be used for positive test completion while
the values �1, 0, and 1000 can be used for negative test completion.

The second situation is the attempt to anticipate novice user actions that are not
specifi ed in the requirements or expected during routine business activities.
Planning these kinds of tests usually takes deep insight into the business and
into the typical ways inexperienced business staff perform routine business
activities. The time and expense necessary to test these “outlier” situations
often are signifi cantly out of proportion to the likelihood of occurrence or to
the magnitude of loss if the problems do occur.

Testing objective 4: Manage testing as a standard project within the development
project.

All too often, testing is treated as a simple skill that anyone can perform without
planning, scheduling, or resources. Because business risk represents real dollar loss,
real dollar testing is required to reduce the risk. Real dollar testing means that per-
sonnel with testing expertise should be formed into a testing team with access to the
management, resources, and schedules necessary to plan and complete the testing.
The testing team, as any other business team, can deliver the testing results on time
and within budget if the team follows good standard project management practices.

The benefi t of this observation is the reassurance that testing does not have to
be hit or miss. It can be planned and completed with the confi dence of any other
professional project to achieve its objectives. The liability of this observation is the
realization that testers are a limited resource. When all available testers are scheduled
for an imminent testing project, further testing projects cannot be scheduled until
you fi nd additional qualifi ed testers.

When you run out of time to test
As with all project schedules, it is possible to run out of testing time. If that situation
arises, what can be done to make the most of the testing that you can complete? When

•

•

approaching the end of the testing schedule, consider doing a quick prioritization of
the outstanding defects. Place most of the testing and correction emphasis on the
most severe defects, the ones that present the highest possible business risk. Then
review the testing plans that you will not have time to complete and assess the risk
that the incomplete testing represents.

Present the development manager with an assessment of the risks that are ex-
pected due to the premature halting of testing. The development manager must then
decide whether to halt the testing to meet project schedules or to seek additional time
and resources to complete the testing as planned.

When you know you can not test it all—positive testing objectives
When you know you can not test it all, review all the completed testing results and
compare them with the application or system functionality that the customer has
deemed most important. The object of this review is to determine the features to test
with your remaining schedule and resources that would make the largest positive
impact on the customer’s function and feature expectations.

When you know you can not test it all—hidden defect testing objectives
When you know you can not test it all, review the completed testing results and
determine if there are trends or clusters of defects that indicate more defects are
likely to be found in the same area. Then request a review of that area of code by
the development team to determine if additional, hidden defects can be corrected
by minor development rework. With minimal additional effort on the part of the
developer and tester, likely trouble spots can be addressed before the last remaining
testing resources are expended.

1.2.5 Development Axiom—Quality Must Be Built In
Because Quality Cannot Be Tested In

Testing can only verify the product or system and its operation against predetermined
criteria (requirements). Testing neither adds nor takes away anything. Quality
is an issue that is determined during the requirements and design phases by the
development project stakeholders or requesting customers. It is not decided at testing
time.

1.3 THE VALUE VERSUS COST OF TESTING

Most business decisions are based on a comparison of the value of doing something
versus the cost of doing something, typically called the return on investment (ROI).
ROI is the calculation of how quickly and how large the “payoff” will be if a project
is fi nanced. If the project will not quickly provide a payoff or the payoff is too small,
then the ROI is considered bad. The business motivation for doing something is to
receive more benefi t than the investment necessary to realize that benefi t.

Testing requires the same ROI decision as any other business project. The im-
plication is that testing should be done only when the test results can show benefi t

1.3 The Value Versus Cost of Testing 11

12 Chapter 1 Overview of Testing

beyond the cost of performing the tests. The following examples demonstrate how
businesses have placed value on testing results.

1.3.1 Non-Software Testing at the Marketing Level—
Auto Safety versus Sales

Auto manufacturers determined a long time ago that thoroughly testing their new car
designs was a safety risk management value that far outweighed the cost of the tests.
As a result, the descriptions of new car development safety testing such as those in
the Corvette story are found in the literature of all major car manufacturers.

There are two possible outcomes of safety testing and the management of the risk
that the tests reveal. The fi rst outcome is the decision whether or not to correct a safety
problem before the fi rst newly built car is manufactured and sold in large numbers. The
input for this decision is the cost of the safety repair versus the perceived risk of the
safety to the public in terms of lawsuits and penalties for the violation of regulations.

The second outcome is the decision whether or not to recall a car already
manufactured and sold to many customers in order to fi x the safety problem. The
inputs for this decision are the presales cost fi gures and risks and the added cost of
retrofi tting safety solutions to cars that are already manufactured and sold.

The Ford Pinto is one example of safety risk versus cost to mitigate the risk
decision. [9] Ford started selling Pintos in 1971. Later that same year, one of the
engineers’ testing scenarios discovered that when the Pinto is rear-ended in a
collision, the gas tank is punctured which causes an explosion and subsequent fi re
that can trap occupants in the fl aming vehicle. Ford assigned a risk probability to
such a rear-end collision and to the subsequent fatalities along with a cost of the risk
that would be incurred if families of the fatalities sued Ford.

From the risk assessment, Ford assigned a $25,000 value to a human life lost in a
car fi re. Then, they estimated the number of car fi res that could be expected from the
Pintos based on a vast number of car sales statistics. From these two numbers, Ford
calculated the break-even settlement cost resulting from faulty gas tank litigation at
approximately $2.20 per car. From the manufacturing assessment, Ford calculated
the cost of retrofi tting every Pinto with a gas tank bracket to be $8.59–11.59 per
car. At the end of 1971, Ford decided that the best ROI decision was to refrain from
retrofi tting the gas tank brackets and pay all faulty gas tank lawsuits.

In nonlife-threatening industries, this risk management strategy might have worked
well. In this situation, the families of the fatalities caused by the exploding gas tanks
foiled Ford’s risk mitigation strategy. Instead of suing Ford individually, the grieving
families fi led a class action suit after the third such fatality. That forced Ford to reveal
its testing discoveries and risk mitigation plan. Instead of the expected $5M–10M in
wrongful death lawsuit settlements, an incensed jury hit Ford with a $128M settlement.

1.3.2 Estimating the Cost of Failure

As we saw in the failure example for the Ford Pinto, there are different kinds of
business risks and different kinds of business losses that can occur from these risks.

It is important for the tester to understand the different kinds of business losses in
order to identify the most appropriate kinds of testing that can mitigate the losses.

Different Kinds of Business Losses

 • revenue or profit
 • testing resources (skills, tools, and equipment)
 • customers
 • litigation
One of the fi rst measures used by a business to put boundaries around testing is the
cost of testing. Regardless of the size of the risk to be reduced by testing, there is a
cost associated with performing the tests. Testing does not contribute directly to the
bottom-line of a business. Spending $5M on more car testing does not result in an
offsetting $5M in increased car sales; therefore, regardless of how well planned and
executed the tests are, testing reduces the total profi t of the fi nal product.

Unfortunately for project budgets, the cost of testing goes beyond the immedi-
ate testing efforts. As the authors of this textbook advocate, good testers need good
training, good tools, and good testing environments. These resources are not one-
time expenses. Most of these costs are ongoing.

The fi nal two kinds of business losses (customer and litigation) typically represent
the highest risk because the cost to the company cannot be forecast as accurately as
tester salaries, tools, and facilities. The loss of customers due to perceived issues of
poor quality or unsafe products can directly affect the bottom-line of the company,
but how many customers will be lost as a result? Part of the answer lies in how
the customer developed the negative perception, that is, by trade journal, magazine,
newspaper, or TV news commentator, to mention a few ways. To complete the loss
cycle, if enough customers develop a negative perception, then large numbers of
individual lawsuits or class action suits might result. The loss from litigation might
be beyond anyone’s ability to imagine, much less to forecast. Finally, at some level
the tester must realize that, for test planning purposes, an unhappy customer can do
a company as much fi nancial damage as an injured customer.

1.3.3 Basili and Boehm’s Rule of Exponentially
Increasing Costs to Correct New Software

Managers and executives of companies that develop computer software have per-
petuated the myth that quality can be tested into a software product at the end of the
development cycle. Quality in this context usually means software that exhibits zero
defects when used by a customer. It is an expedient myth from a business planning
perspective, but it ignores two truths: (1) Testing must be started as early as possible
in the software development process to have the greatest positive impact on the qual-
ity of the product and (2) You can not test in quality … period!

The reluctance of many managers to include testing early in the development
cycle comes from the perception of testing as a “watchdog” or “policeman” ready
to pounce on the tiniest product fl aw and cause expensive delays in making the

1.3 The Value Versus Cost of Testing 13

14 Chapter 1 Overview of Testing

product deadline. Ironically, just the opposite is true. The longer the delay in
discovering defects in the software under development, the more expensive it is to
correct the defect just prior to software release.

After spending a professional career measuring and analyzing the industry-wide
practices of software development, Drs. Basili and Boehm computed some industry
average costs of correcting defects in software under development. Figure 1.2 is an
irrefutable proof of the axiom “test early and test often.” [10A] The numbers fi rst
published in 1996 were revalidated in 2001.

At the beginning of a software development project, there is no code, just design
documentation. If the design documentation is properly tested (called static testing,
see Chapter 6), then the cost of correction is the cost of revising the documentation.
This is typically done by a technical writer at relatively small personnel cost after the
application-knowledgeable development management provides the correction. Basili
fi nds the average cost to revise a document defect is $25.

As software code (considered fair game for static testing) is written and code
execution begins, the cost of a correction rises to $139, primarily due to the expense
of programmer effort. Several kinds of testing can be done; however, the code defect
resolution at this development phase is correcting the code.

As pieces of program code are completed and tested, they are knitted together,
or integrated into larger program modules that begin to perform meaningful business
tasks. The cost of correcting these larger units of code more than doubles to $455
due to the additional time it takes to diagnose the problem in more complex code and
the additional time needed to disassemble the code module into correctable pieces,
correct the code, and then reassemble the code module for retesting.

As the software development team draws closer to the application or product
completion, more program modules are brought together into the fi nal delivery
 package. Capers estimates the cost of defect correction at this stage doubles to $7,136

Figure 1.2 Defect correction cost profile for the software industry

per defect, primarily due to the increased diffi culty in defect diagnosis and correction
for this larger aggregation of code that has been packaged for delivery.

Does it really save money to wait and test the software application or product just
before it goes out the door? Thirty years of industry statistics say a resounding “NO!”

The story gets worse. If the development manager decides to scrimp on testing
or skip testing completely to save a few thousand dollars and “let the customers help
test it,” the manager will experience the largest project defect correction cost. Capers
concludes that it costs on average $14,102 to correct each defect that got past the
development team entirely, and that is detected by the customer who receives the
application or product. Now the cost of defect correction must also include diagnosis
at a distance, package level correction, and the delivery of the correction fi xes to
all customers of the product, not only to the customer who found the defect. If the
customer has already installed the application or product and is using it in mission
critical situations, then the developer’s challenge to fi x the customer’s code is somewhat
like trying to fi x a fl at tire on a car… while the car is going 50 miles per hour.

1.3.4 The Pot of Gold at the End of the Internet Rainbow

Software that provides businesses with a presence on the Internet can represent
billions of dollars in new revenue to a company. This truly staggering business
sales increase is possible because the Internet immediately expands the businesses’
customer base from a local or regional base to a worldwide base. This phenomenal
business sales increase is further possible because the Internet immediately expands
the store hours from an 8-hour business day in a single time zone to 24 hours, 7 days
per week.

1.3.5 The Achilles Heel of e-Business

The lure of a staggering business sales increase causes business executives to drive a
company into its fi rst Internet ventures with a haste born of a king’s ransom promise.
Everything done by the software development team is scrutinized to fi nd ways to cut
corners and save time-to-market, to cash in on the king’s ransom before the competi-
tion does. One of the fi rst software development steps to succumb to the “gold rush”
is the proper documentation of requirements. The mandate is, “Just do something
… now !!!” Testing takes on the appearance of a speed bump as the executives race
toward going live on the Internet.

These business executives either forget or disregard the other side of the equation,
that is, the amount of risk in completing such a venture with a new, untried (from the
company’s perspective) technology. If the company stands to gain billions by the successful
completion of the fi rst Internet venture, the company also stands to lose billions if the fi rst
Internet venture fails. And failed they did, in droves, during 2000 through 2002.

So, two lessons can be learned from what is known as the “dot.bomb” crash.
These lessons can be related surprisingly easily to other instances of companies
rushing into new technology markets. First, you can take too many shortcuts when

1.3 The Value Versus Cost of Testing 15

16 Chapter 1 Overview of Testing

 developing software. Second, you will pay for testing now or later, but the cost of
testing is unavoidable. Testing now is always less expensive than testing later.

1.4 RELATIONSHIP OF TESTING TO THE
SOFTWARE DEVELOPMENT LIFE CYCLE

Software testing and software development are not totally unrelated activities. The
success of both processes is highly interdependent. The purpose of this section is to
examine the interdependency of testing and development. Additionally, both testing
and development processes are dependent on other support management processes
such as requirements management, defect management, change management, and
release management. Some of the ancillary management processes that directly
impact the effectiveness of testing will be discussed further in Chapter 10.

1.4.1 The Evolution of Software Testing as a
Technology Profession

Back in the 1950s and 1960s, software quality was a hit-or-miss proposition. There
were no formal development processes and no formal testing processes. In fact, the
only recorded testing activity during that time was reactive debugging, that is, when
a program halted (frequently), the cause was sought out and corrected on the spot.

One of the more famous industry legends of that era was Captain Grace Murray
Hopper, the fi rst programmer in the Naval computing center. At that time, comput-
ers were composed of vacuum tubes and mechanical switches. One day, Captain
Hopper’s computer program halted abruptly. After several hours of testing the vac-
uum tubes and checking the mechanical switches, she found a large moth smashed
between two contacts of a relay switch, thereby causing the switch fault that stopped
the computer program. She “debugged” the program by removing the moth from the
switch. The moth is still on display in the Naval Museum in Washington, DC.

Captain Hopper rose in military rank and professional stature in the software
community as she led efforts to standardize software languages and development
processes. She was still professionally active and a dynamic speaker in the 1990s.

As more and more software applications were built in the 1960s and 1970s,
their longevity enabled many corrections and refi nements that yielded very stable,
very reliable software. At this juncture, two events occurred that are of interest to
testers. First, customers began to expect software to be highly reliable and stable
over extended periods of time. Software developers, sensing this growing customer
expectation for extremely high-quality software, began to examine the development
processes in place and refi ne them to shorten the incubation time of new software
to attain the same stability and reliability as that found in the older, more mature
systems.

Software developers of the 1970s and 1980s were, for the most part, successful
in capturing their best development practices. These captured practices did provide

a repeatable level of software reliability and stability. Unfortunately for customers,
the level of software reliability and stability provided by these captured corporate
processes was far below the level of software reliability and stability of the earlier
systems. It is informed conjecture that the missing ingredient was a comparable
software testing process. For unexplained reasons, this new, lower quality software
became acceptable as the industry norm for a large number of computer users. [11]

Testing did not become a recognized formal software process until the 1990s
when the Y2K Sword of Damocles threatened all industries that relied on computer
power for their livelihood. Testing was thrust to the forefront of frantic software ac-
tivities as the savior of the 21st century. Billions of dollars were spent mitigating the
possible business disasters caused by the shortcuts programmers had taken for years
when coding dates. These shortcuts would not allow programs to correctly process
dates back and forth across the January 1, 2000 century mark or year 2000 or “Y2K”
in the vernacular. The authors think that it is to the credit of the professional testing
community that January 1, 2000 came and went with a collective computer whimper
of problems compared to what could have happened without intervention. Thousands
of businesses remained whole as the calendar century changed. Although some ex-
ecutives mumbled about the cost of all the Y2K testing, wiser executives recognized
how close to disaster they really came, and how much of the ability to do business in
the 21st century they owed to testers and testing processes.

1.4.2 The Ten Principles of Good Software Testing

Y2K testing did not start in a vacuum. Several groups of computer professionals
realized the need to develop a full repertoire of software testing techniques by the
mid-1980s. By the 1990s, software testing whitepapers, seminars, and journal ar-
ticles began to appear. This implies that the groups of the 1980s were able to gain
practical experience with their testing techniques.

Although Y2K testing did represent a very specifi c kind of defect detection and
correction, a surprising number of more general testing techniques were appropri-
ate for retesting the remediated (Y2K-corrected) programs. Thus, the Y2K testing
frenzy directed a spotlight on the larger issues, processes, and strategies for full
development life cycle software testing. These principles are an amalgam of the
professional testing experience from the 1980s and 1990s and the Y2K experience to
yield the following underlying software testing principles.

Principles of good testing

Testing principle 1: Business risk can be reduced by fi nding defects.
If a good business case has been built for a new software application or product,

the majority of the uncontrolled risks can be limited. Indeed, a large part of a good
business case is the willingness to chance the risk of failure in a certain market
space based on the perceived demand, the competition for the same market, and the
timing of the market relative to current fi nancial indicators. With those limits well
established, the focus is on the best way and most timely way to capture the target

1.4 Relationship of Testing to the Software Development Life Cycle 17

18 Chapter 1 Overview of Testing

market. The cost of the needed software development is forecast, usually with some
precision, if the effort is similar to prior software development efforts. The question
typically missed at this juncture is, “What will it cost if the software does not work as
it is advertised?” The unspoken assumption is that the software will work fl awlessly
this time, even though no prior software development has been fl awless. Therefore,
a strong connection should be made early in the process between looking for defects
and avoiding risk.

Testing principle 2: Positive and negative testing contribute to risk reduction.
Positive testing is simply the verifi cation that the new software works as advertised.

This seems like common sense, but based on the authors’ experience with software
during the past 20 years, new off-the-shelf software continues to have defects right out
of the package that scream, “Nobody tested me!” There is no reason to expect that
new corporate software systems have a better track record. Similarly, negative testing
is simply the verifi cation that customers can not break the software under normal
business situations. This kind of testing is most often omitted from the software
development because it is more time consuming than positive testing; it requires more
tester creativity to perform than positive testing, and it is not overtly risk-driven.

Testing principle 3: Static and execution testing contribute to risk reduction.
The preponderance of software testing conducted today involves executing the pro-

gram code under development. Functional, structural (nonfunctional), and performance
testing must execute program code to complete the tests. A small but growing number
of testing teams and organizations have awakened to the fact that there are a large num-
ber of documents produced during software development that, if reviewed for defects
(static testing), could signifi cantly reduce the number of execution defects before the
code is written. The corollary statement is that the best programmers in the organization
cannot overcome bad requirements or bad specifi cations by writing good code.

Testing principle 4: Automated test tools can contribute to risk reduction.
As software has become orders of magnitude more complex than the COBOL,

PL/1, or FORTRAN systems of yesterday, new types of business risks have arisen.
These new risks are most often found in the performance area where system response
times and high volumes of throughput are critical to business success. This makes
them impossible to test manually. It is true that performance testing tools are quite
expensive. It is also true that the potential risk due to poor performance can exceed the
cost of the performance test tools by several orders of magnitude. As of 2004, some
companies still consider a performance test that involves calling in 200 employees
on a Saturday, feeding them pizza, and asking them to pound on a new application
all at the same time for several hours. As we will discuss in Chapter 9, this kind of
manual testing has severe limitations, including typically an inadequate number of
employees that volunteer to test (What happens if you need to test 3000 users and
have only 200 employees?) and the nonrepeatability of test results because no one
performs a manual test exactly the same way twice. The last 5 years of automated
performance test tool maturity has prompted the strong consideration of testing tools
to replace other kinds of manual testing when conditions are favorable.

Testing principle 5: Make the highest risks the fi rst testing priority.
When faced with limited testing staff, limited testing tools, and limited time to

complete the testing (as most testing projects are), it is important to ensure that there
are suffi cient testing resources to address at least the top business risks. When test-
ing resources cannot cover the top business risks, proceeding with testing anyway
will give the system stakeholders the false expectation that the company will not be
torpedoed and sunk by software defects.

Testing principle 6: Make the most frequent business activities (the 80/20 rule) the
second testing priority.

Once you have the real business killers well within your testing sights, consider
the second priority to be the most frequent business activities. It is common industry
knowledge that 80% of any daily business activity is provided by 20% of the busi-
ness system functions, transactions, or workfl ow. This is known as the 80/20 rule.
So concentrate the testing on the 20% that really drives the business. Because the
scarcity of testing resources continues to be a concern, this approach provides the
most testing “bang for the buck.” The other 80% of the business system typically
represents the exception transactions that are invoked only when the most active
20% cannot solve a problem. An exception to this approach is a business activity
that occurs very seldom, but its testing importance is way beyond its indication by
frequency of use. The classic example of a sleeper business activity is a year-end
closing for a fi nancial system.

Testing principle 7: Statistical analyses of defect arrival patterns and other defect
characteristics are a very effective way to forecast testing completion.

To date, no one has reported the exhaustive testing of every aspect of any rea-
sonably complex business software system. So how does a tester know when the test-
ing is complete? A group of noted statisticians observed a striking parallel between
the defect arrival, or discovery patterns in software under development, and a family
of statistical models called the Weibull distribution. The good news is that the intel-
ligent use of these statistical models enables the tester to predict within 10%–20%
the total number of defects that should be discovered in a software implementation.
These models and their ability to predict human behavior (software development)
have been around for at least 20 years. The bad news is that we have not found any
signifi cantly better ways to develop software during the same 20 years, even though
programming languages have gone through multiple new and powerful paradigms.
Chapter 12 takes a closer look at these models and how they can assist the tester.

Testing principle 8: Test the system the way customers will use it.
This principle seems so intuitive; however, the authors see examples of software

every year that simply were not tested from the customer’s perspective. The fol-
lowing is a case in point. A major retail chain of toy stores implemented a Web site
on the public Internet. Dr. Everett attempted to buy four toys for his grandchildren
on this toy store Internet Web site with catalog numbers in hand. Finding the toys
to purchase was very diffi cult and took over 45 min to achieve. When he fi nally
found all four toys and placed them in his shopping cart, Dr. Everett was unable to

1.4 Relationship of Testing to the Software Development Life Cycle 19

20 Chapter 1 Overview of Testing

complete the purchase. The web page that asked for his delivery address continually
responded with the nastygram, “City required, please provide your city name,” even
though he entered his city name in the appropriate fi eld several different ways, in-
cluding lowercase, uppercase, and abbreviated formats. In frustration, he abandoned
the incomplete purchase. Thinking that he would at least alert the toy store to their
Internet problem, Dr. Everett clicked the Help button. In the fi eld entitled, “Give us
your comments,” he described his roadblock to completing the purchase. When he
clicked the Submit button, a name and address page appeared. Upon completion of
the name and address page, he clicked the next Submit button, only to receive the
“City required, please provide your city name” nastygram again. The application
programmers earned an “A” for city fi eld code reuse and an “F” for not testing the
city fi eld code in the fi rst place.

An address is a pretty basic piece of customer-supplied business information.
The company had a software defect in the customer address code that resulted in the
direct loss of business. The defect was such that the company also could not easily
learn why they were losing business from their customers. It took this company less
than a year to close their Web site because it was unprofi table … perhaps all because
nobody tested a city fi eld code routine.

Testing principle 9: Assume the defects are the result of process and not
 personality.

This principle presents an organizational behavior challenge for the tester. Good
software developers naturally feel a sense of ownership regarding the programming
they produce. Many aspects of the ownership can be positive and can motivate
developers to do their best possible work. At least one aspect of the ownership can
be negative, causing the developer to deny less-than-perfect results. The tester must
fi nd a way to focus on the software defect without seeking to place blame.

Many organizations have started tracking the source of software defects to
verify proper matching of programming task with programmer skills. If a mismatch
exists, the management process responsible for assigning development teams is truly
at fault, not the programmer who is working beyond his or her skill level. If the skills
are well matched to the tasks, the question becomes one of providing processes
that assist the developer in writing error-free code, that is, programming standards,
design walkthroughs, code walkthroughs, and logic-checking software tools. If the
execution phase is the fi rst time anyone else on the development team sees the code,
the development process provided no safety net for the developer before the code
has been executed. In this case, the tester can wear the white hat and, by identifying
defects, ultimately assist the improvement of the development process that helps the
developers write better code.

Testing principle 10: Testing for defects is an investment as well as a cost.
Most executives, directors, and managers tend to view testing only as an expense,

and to ask questions such as “How many people? How many weeks delay? How much
equipment? and How many tools?” Although these cost factors represent a legitimate
part of the overall business picture, so do the tangible benefi ts that can offset the
testing costs, business risk reduction notwithstanding. Some of the benefi ts can be

realized during the current testing projects by the intelligent use of automated testing
tools. In the right situations, automated testing tools can reduce the overall cost of
testing when compared with the same testing done manually. Other benefi ts can be
realized on the next testing projects by the reuse of testing scripts and the reuse of
defect discovery patterns. When testing scripts are written, validated, and executed,
they constitute reusable intelligence for the system being scripted. This “canned”
knowledge can be applied to the next version of the same system or to new systems
with similar functionality. The technique of reusing test scripts on a subsequent version
is called regression testing. Defect discovery patterns, when collected over a number
of development projects, can be used to more accurately forecast the completion of
testing. These same testing histories can also be used to verify that improvements
in development processes really do improve the system being developed. Historical
defect patterns and their usefulness are explored in Chapter 12.

1.4.3 The Game of “Gossip”

Capers Jones, has some revealing information about the source of software defects.
Figure 1.3 shows a plot of his fi ndings on the same software development axis as the
defect correction cost plot. [10B]

The fi ndings tell us that 85% of all software defects are introduced at the earli-
est phase of development before any code has been executed ! If there is no code
execution, then what is the source of this mountain of defects? The answer is the
documentation, that is, the requirements, the specifi cations, the data design, the pro-
cess design, the interface design, the database structure design, the platform design,

Figure 1.3 Percentage of defects. Applied Software Measurement, Capers Jones, 1996

1.4 Relationship of Testing to the Software Development Life Cycle 21

22 Chapter 1 Overview of Testing

and the connectivity design. Intuitively, this seems reasonable. If the system design
documentation is incorrect or incomplete, then no programmer can overcome a bad
design with good code. A dearth of requirements, the most fundamental develop-
ment documentation, is endemic to software development. The typical developer’s
attitude is, “Just tell me what you want and I’ll build it.”

To demonstrate the fallacy of bypassing requirements documentation, recall the
children’s game called “Gossip” in which everyone stands around in a circle, and
the game leader whispers something to the person on his or her right. That person
then whispers the same thing to the person on his or her right, and so on around the
ring. When the whispered message makes it around the ring to the last person, the
person says the message aloud, and the leader compares it to the original message.
Usually, the whole circle of children burst out laughing because the original message
was twisted and turned as it went around the circle. Now replace the children in the
circle with a business manager who wants a new software system or another product,
a director of software development, a software development manager, and say four
senior software developers. The director starts the game by whispering his/her new
software application requirements to the nearest manager in the circle. Would you
bet your company’s future on the outcome of the gossip circle? Many companies
still do.

1.5 TESTER VERSUS DEVELOPER ROLES IN SOFTWARE
TESTING

In the beginning, there was the software developer and he was mighty. He could
write specifi cations, could code programs, could test programs, and could deliver
perfect systems. Testers were nontechnical employees who volunteered to come into
the offi ce on a weekend and pound on a computer keyboard like a trained monkey
in exchange for pizza and beer. The emergence of a massive Y2K catastrophe
threat changed technical perceptions forever. The software developer’s shiny
armor of invincibility was considerably tarnished, whereas the tester’s technical
acumen rose and shone like the sun. It is now very clear that both the developer
and the tester have specifi c, complementary, highly technical roles to fulfi ll in the
development of good software. This section examines some of the issues around
these new roles.

1.5.1 A Brief History of Application Quality
Expectations, or “Paradise Lost”

The fi rst software development and operation environments were closed to the end-
user. These systems were predominantly batch processing, that is, end-users fed the
systems boxes and boxes of daily transactions on punch cards or paper tape and then
received the reports the next day or the next week. What happened in between the
submissions of batches and the production of reports was considered magic.

If problems occurred on either the input or output side during the batch runs, the
end-user never knew it. This closed environment enabled programmers to correct a
defect without the end-user’s knowledge of the nature of the defect, the nature of the
correction, or the amount of time necessary to perform the correction. Therefore,
the end-user perceived the system to be perfect. Continued system maintenance
over a number of years did, in fact, yield software that was incredibly stable and
 defect-free.

As the closed system was opened to the end-user via dumb terminals (data
display only, no process intelligence like personal computers), the end-user saw
how fl awlessly this mature software worked. When newer software systems were
developed, the systems’ immaturity was immediately evident by comparison with
the tried and true older systems. Initially, some developers lost their jobs over
the poor quality of the new software. End-user pressure to return to the quality
of the older systems prompted software development groups to seek and employ
development processes for delivering the same software quality. This software was
not necessarily better, just consistent in quality. Testing was considered “monkey-
work.” The authors of this textbook contend that, because testing was held in such
low esteem, developers with the best processes soon hit a quality brick wall. The
developers’ response to end-user complaints of software defects, instability, and
unreliability became, “We are using the best development processes in the industry.
This is the best we can do.”

After a couple of decades of hearing “This is the best we can do,” end-users
and software customers apparently began to believe it. Still, no professional testing
was done. Several books were published about the phenomenon of end-user quality
expectations converging downward to meet the software developers’ assurance of
best effort. Mark Minasi’s book, The Software Conspiracy, notes the resurging
consumer awareness of the relatively poor quality of the new century software. Mark
documented a growing consumer constituency that started sending the message, “You
can do much better” to the software industry through selective product boycotts. [11]
Smart software developers began to realize that if they were going to survive in the
marketplace, they must team with professional testers to get over the quality brick
wall.

To illustrate the point, ask yourself how many times you must reboot your busi-
ness computer each year. If you reboot more than once or twice a year and have not
complained bitterly to your business software retailer, welcome to the world of lower
software expectations.

1.5.2 The Role of Testing Professionals in Software
Development

Many software professions require very sophisticated technical skills. These pro-
fessions include software developers, database developers, network developers, and
systems administrators. The authors contend that the best software testers must have
advanced skills drawn from all of these software professions. No other software

1.5 Tester Versus Developer Roles in Software Testing 23

24 Chapter 1 Overview of Testing

professional except the software architect has a similar need for such a broad range
of technical skills at such a deep level of understanding. Without this breadth of
technical knowledge and advanced skills, a senior-level software tester could not
design, much less execute, the complex testing plans necessary at system completion
time for e-business applications.

What does the accomplished software tester do with this broad technical
knowledge base? The software tester’s singular role is that of a verifi er. The tes-
ter takes an objective look at the software in progress that is independent of the
authors of development documents and of program code and determines through
repeated testing whether the software matches its requirements and specifi ca-
tions. The tester is expected to tell the development team which requirements and
specifi cations are met and which requirements and specifi cations are not met. If
the test results are descriptive enough to provide clues to the sources of defects,
the tester then adds value to the developer’s effort to diagnose these defects; how-
ever, the full diagnosis and correction of defects remain solely the developer’s
responsibility.

What else does a tester do besides validating software? The professional answer
is plan, plan, and plan. Testing activities are always short of time, staff, equipment,
or all three; therefore, the expert tester must identify the critical areas of software to
be tested and the most effi cient ways to complete that testing. As with all technical
projects, these kinds of decisions must be made and cast into a plan and schedule
for testing. Then, the tester must manage the plan and schedule to complete the
testing.

1.5.3 The Role of Test Tool Experts in Software Development

Mature automated test tools began to arise in the marketplace around 1995. The good
news is that these tools enable software testers to do testing more effectively than
by using any manual procedure. In many cases, these tools have enabled software
testers to do testing that is impossible to perform manually. Although manual testing
still has a place in the software tester’s folio of approaches, the use of automated test
tools has become the primary strategy.

With over 300 automated test tools in the market, a new testing role emerged
that is responsible for identifying the right tool for the right testing, installing
the tool, and ensuring that the tool is operating correctly for the test team. The
fi rst testing professionals to fi ll this role tended to specialize in certain kinds of
tools from just one or two vendors. As the tool suites grew and matured, the test
tool experts found it necessary to broaden their specialty across more tool types
and tool vendors. The testing paradigms behind these test tools is examined in
Chapter 11.

The impetus behind test tool experts expanding their tool expertise is the
software testing community’s recognition that no single test tool can support all
the different kinds of tests that are necessary across the entire development life
cycle.

1.5.4 Who Is on the Test Team?

As with all other software professions, the software testing profession has entry-
level skills, intermediate-level skills, and advanced skills. A good test team has a
mix of skill levels represented by its members. This enables the more experienced
testers to be responsible for the test planning, scheduling, and analysis of test re-
sults. The intermediate-level testers can work within the test plan to create the
test scenarios, cases, and scripts that follow the plan. Then, with the advice and
mentoring of the senior testers, a mix of intermediate-level and entry-level testers
executes the tests.

1.6 PUTTING SOFTWARE TESTING
IN PERSPECTIVE

Billions of dollars in business are lost annually because companies and software
vendors fail to adequately test their software systems and products. These kinds of
business losses are expected to continue as long as testing is considered just another
checkmark on a “To-do” list or a task given to employees who are on the bench and
have nothing else to do.

Testing is, in fact, a professional role that requires technical skills and a mindset
that encourages the early discovery of the problems that represent real business
risks. Although this textbook covers software testing in detail, many of the testing
concepts and techniques it presents can be applied to other engineering disciplines
and professions, as well as many personal pursuits.

1.7 SUMMARY

There are many opportunities for testing in both professional and personal life. We
fi rst explored some examples of non-computer-related testing that show patterns of
thinking and behavior useful for software testing. Then, we examined some of the
boundaries imposed upon testing by fi nancial considerations, time considerations,
and other business limitations.

1.7.1 The Four Primary Objectives of Testing

Testing can be applied to a wide range of development projects in a large number
of industries. In contrast to the diversity of testing scenarios and uses is a common
underpinning of objectives. The primary motivation for testing all business devel-
opment projects is the same: to reduce the risk of unplanned expense or, worse,
the risk of failure. This primary motivation is divided into four interrelated testing
objectives.

1.7 Summary 25

26 Chapter 1 Overview of Testing

Identify the magnitude and sources of development risk reducible by
testing

Perform testing to reduce identifi ed risk

Know when testing is completed

Manage testing as a standard project within the development project

1.7.2 Development Axiom—Quality Must Be Built In
Because Quality Cannot Be Tested In

Testing is concerned with what is in the product or system and what is missing.
Testing can only verify the product or system and its operation against predetermined
criteria. Testing neither adds nor takes away anything. Quality is an issue that is
decided upon during the requirements and design phases by the development project
owners or requesting customers. Quality is not decided at testing time.

1.7.3 The Evolution of Software Testing as a
Technology Profession

Back in the 1950s and 1960s, software quality was a hit-or-miss proposition. There
were no formal development processes and no formal testing processes. Software
developers of the 1970s and 1980s were, for the most part, successful in capturing
their best development practices. This capture provided a repeatable level of soft-
ware reliability and stability. Unfortunately for customers, the level of software reli-
ability and stability provided by these repeatable corporate processes was far below
the level of software reliability and stability of the earlier systems. It is an informed
conjecture that the missing ingredient was a comparable software testing process.
For unexplained reasons, this new, lower quality software became acceptable as the
norm to a large number of computer users.

Testing did not become a recognized formal software process until the 1990s when
the Y2K Sword of Damocles threatened all industries that somehow relied on computer
power for their livelihood. Then, testing was thrust to the forefront of software activities
as the savior of the 21st century. Billions of dollars were spent mitigating the possible
business disasters caused by the shortcuts programmers had taken when coding dates.

1.7.4 The Ten Principles of Good Software Testing

Y2K testing did not start in a vacuum. Several groups of computer professionals
realized the need to develop a full repertoire of software testing techniques by the
mid-1980s. By the 1990s, software testing whitepapers, seminars, and journal ar-
ticles began to appear. This indicates that the groups of the 1980s were able to gain
practical experience with their testing techniques.

1.

2.

3.

4.

Although Y2K testing did represent a very specifi c kind of defect detection and
correction, a surprising number of more general testing techniques were appropri-
ate for retesting the remediated (Y2K-corrected) programs. Thus, the Y2K testing
frenzy directed a spotlight on the larger issues, processes, and strategies for full
development life cycle software testing. These principles are an amalgam of the
professional testing experience from the 1980s and 1990s and the Y2K experience to
yield the following underlying software testing principles.

Principles of good testing

Business risk can be reduced by fi nding defects.

Positive and negative testing contribute to risk reduction.

Static and execution testing contribute to risk reduction.

Automated test tools can substantially contribute to risk reduction.

Make the highest risks the fi rst testing priority.

Make the most frequent business activities (the 80/20 rule) the second
testing priority.

Statistical analyses of defect arrival patterns and other defect charac-
teristics are a very effective way to forecast testing completion.

Test the system the way customers will use it.

Assume that defects are the result of process and not personality.

Testing for defects is an investment as well as a cost.

KEY TERMS

KEY CONCEPTS

Testing is a technical profession with a signifi cantly different mindset, and
with signifi cantly different concepts and skills from those of the technical
developer profession.

All engineering projects introduce defects into the new system or product.
Making a business decision not to fi nd the defects, by not testing, will not
make them go away.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

•

•

Key Concepts 27

Test limits
Testing objectives
Multiple testing

approaches

Testing completion
Verifier
Requirements
Development risk

Risk assessment
Return on investment

(ROI)
80/20 rule

28 Chapter 1 Overview of Testing

Testing should start at the beginning of a development project because every-
thing produced by the project is an excellent test candidate.

To be most effective, testing plans and activities should focus on known busi-
ness risk.

No business testing project can ever exhaustively test for every possible de-
fect in a product or service because of fi nite limitations in funds, skills, and
resources.

The real challenge for experienced testers is to identify what can go untested
with the least impact to the business.

•

•

•

•

 29

LEARNING OBJECTIVES

to recognize that an information systems development project follows a well-defined
system development life cycle (SDLC) methodology

to examine the separate data and process models within an SDLC

to identify the more popular SDLC methodologies

to list the key features of the phased development methodology (PDM)

to identify where software testing occurs in the PDM

2.1 INTRODUCTION

The development of an information system demands the commitment of valu-
able company resources and time. Large projects often require millions of dollars
of effort and take years to complete. Specifi c sequences of activities have been
devised to guide developers along a path that repeatedly delivers quality software
on time and within budget. In this chapter, we describe how collections of the more
popular software activities have evolved, and then focus on one collection named the
PDM, which is especially effective in providing an overall framework for software
development.

2.2 METHODOLOGIES AND TOOLS

Two terms that one often hears in relation to information systems development are
methodologies and tools. A methodology is a recommended way of doing some-
thing, and a tool is a device for accomplishing a task. Relating these terms to the

•

•
•
•
•

Chapter 2

The Software Development
Life Cycle

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

building of a house, the arhchitect’s blueprint is a methodology (the architect’s
recommended way of building the house), and the tools are what the construc-
tion workers use to actually build the house (nail guns, circular saws, and electric
drills).

An information system methodology is a recommended way to develop an
information system. A System Development Life Cycle (SDLC) is a series of stages
within the methodology that are followed in the process of developing and revising
an information system. A stage is a segment of an SDLC that consists of certain
types of activity. Stages are usually completed in a certain sequence using software
development tools.

Developers use system design tools for data, process, and object modeling. Data
modeling tools include entity-relationship diagrams (ERDs) and data dictionaries.
Process modeling tools include data fl ow diagrams (DFDs) and use case diagrams.
Object modeling tools include class and sequence diagrams. Business processing
uses workfl ow diagrams (WFDs).

2.3 THE EVOLUTION OF SYSTEM DEVELOPMENT
LIFE CYCLES

When the fi rst business computer was installed at General Electric in 1954, the de-
velopers had no previous experiences to guide them in the right direction. They were
forced to use trial and error. Gradually, the developers compiled a list of Do’s and
Don’ts to cut down on the errors and increase the likelihood that the next develop-
ment project would be more successful.

2.3.1 The Classical SDLC

The lists of Do’s were the beginning of an SDLC. The first SDLC structure,
which we will call the classical SDLC, consisted of four stages—planning,
analysis, design, and implementation. Planning consisted of such things as
defining the problem to be solved or specifying the objectives of the new sys-
tem. Analysis consisted of conducting a system study for the purpose of thor-
oughly understanding the existing system. Design consisted of defining the
processes and data to be used in the new system. Implementation consisted
of preparing the software, building the data files, assembling the hardware,
and cutting over to the new system. Figure 2.1 illustrates how these stages
were intended to be taken in sequence. The term waterfall development life
cycle is used today to describe the classical SDLC because it was based on
the assumption that each stage would be executed a single time in a specific
sequence.

30 Chapter 2 The Software Development Life Cycle

2.3.2 Prototyping

Although the sequence of the classical SDLC stages was intuitively logical,
there were two major weaknesses. First, it took from 3 to 5 years to go through
the stages in order. All too frequently, the business market targeted by the
new system had time to move out from under the new system. Second, there
was invariably a need to backtrack and repeat stages or portions of stages to
accommodate changes in business requirements or changes in the business
market.

Developers came to the conclusion that a better approach would be to ex-
pect that interim changes would be the rule rather than the exception. The
result was prototyping: the development of a system by means of a series of
iterations to incorporate midstream changes until the system meets all the busi-
ness requirements. Figure 2.2 shows how the prototyping stages are arranged
with any of the first four stages repeated until the user approves the prototype.
Stage names different from those in the classical SDLC are used in the figure,
but they continue the logical sequence that begins with planning and concludes
with implementation.

In some projects, the user is unable to specifi cally defi ne what the system will
accomplish and how it will accomplish it. In these cases, developers use prototyping
to defi ne the user’s needs. This kind of prototype is called a requirements prototype.
The prototype is often just a nonoperational shell of the intended system. Once it
is approved, it serves as the blueprint for development of the system following an

Planning stage

Analysis stage

Design stage

Implementation
stage

Cutover

Figure 2.1 The waterfall development life cycle

2.3 The Evolution of System Development Life Cycles 31

32 Chapter 2 The Software Development Life Cycle

SDLC methodology. Figure 2.2 also illustrates the requirements prototype by virtue
of the design iteration, with the blueprint serving as the basis for completing the
system components such as software, hardware, and data. In other cases, a prototype
called an evolutionary prototype is built to contain all of the operational features of
the system and is put into use upon approval.

Although the classical SDLC has been largely replaced, prototyping con-
tinues to be used in many development projects, especially those of relatively
simple PC-based systems like electronic spreadsheets and database management
systems.

2.3.3 Rapid Application Development

Computer consultant James Martin conceived of the rapid application development
(RAD) in an effort to expand the classical SDLC to larger scale projects while
substantially reducing the implementation time by 2–3 years. [12] RAD consists

Preliminary
investigation

Analysis

Design

Construction

Complete
system

components

Cutover

Approve prototype

Reject prototype

Figure 2.2 The prototyping development life cycle

of basically the same stages as the classical SDLC, but they are augmented with
heavier user involvement, use of computer-based development tools, and skilled
with advanced tools (SWAT) teams. Figure 2.3 compares RAD with the classical
approach and illustrates how users play much greater roles, especially during the
early stages.

The information systems developers are able to spend less effort to complete
tasks because they use computer-aided software engineering (CASE) tools. Some-
times the information systems developers are organized into specialized teams, called
SWAT teams, such as those specializing in activities like economic justifi cation and
systems designs like those involving Web sites and wireless communications. Many
large fi rms using large computer systems today are committed to RAD as their
primary SDLC.

An SDLC that incorporates the best features of prototyping and RAD is the
phased development methodology (PDM). Because it is the methodology that we
will use in this text, it is described in detail on the remaining pages of this chapter.

2.4 THE PHASED DEVELOPMENT METHODOLOGY

The main underlying concept of phased development is that the system can be
subdivided into subsystems or modules. Each subsystem represents the objective
of a separate development phase. A phase is a series of SDLC stages that are
completed for a subset of a system, a subsystem, or module. Once work on the
individual phases is completed, the subsystems are integrated to form a whole
solution.

Figure 2.3 The RAD life cycle compared with a classical SDLC. Source: James Martin, Rapid
 Application Development, Prentice Hall, New York, 1991, page 127. Reprinted by permission of Pearson
Education, Inc, Upper Saddle River, NJ.

2.4 The Phased Development Methodology 33

34 Chapter 2 The Software Development Life Cycle

2.4.1 Life Cycle Stages

Figure 2.4 illustrates how the project begins with a preliminary investigation.
Then the analysis, design, and preliminary construction stages are executed in
an iterative manner for each phase until that phase receives user approval. Then,
the two fi nal stages complete the project. This entire process represents the fi rst
cycle in the life of the system being developed. The next releases of the system
will follow the same process paths to produce the second-third, and fourth cycles
in the life of the system. The life cycle is not considered complete until the system
is sunset.

Design stage

Phase 1 Phase 2 Phase n

Preliminary
investigation

stage

Final
construction

stage

Installation
stage

Preliminary
construction

stage

Analysis stage

Design stageDesign stage

Preliminary
construction

stage

Analysis stage

Preliminary
construction

stage

Analysis stage

Design stage

Figure 2.4 PDM stages and phases

2.4.2 System Development Phases

Figure 2.5 shows how the analysis, design, and preliminary construction stages are
repeated for a data warehousing project, assuming that the subsystems include a
staging area, the warehouse data repository, and an information delivery system.
The work on each subsystem is a phase.

2.4.3 Software Testing in the Stages

Some kind of software testing is normally performed in every development phase
except Installation. The Preliminary INVESTIGATION, Analysis, and Design
phases are “paper and pencil’’ exercises because all of these phase results are docu-
ments. No code is written in these phases, so no test executions can be performed.

Staging area module

Preliminary
construction

stage

Analysis stage

Design stage

Warehouse data
repository module

Preliminary
construction

stage

Analysis stage

Design stage

Information delivery
module

Preliminary
construction

stage

Analysis stage

Design stage

Preliminary
investigation

stage

Final
construction

stage

Installation
stage

Figure 2.5 PDM phases of a data warehousing project

2.4 The Phased Development Methodology 35

36 Chapter 2 The Software Development Life Cycle

That is ok because there is plenty to test in the documentation of the fi rst three
phases. Documents are tested to verify they are correct, complete, accurate, use
good spelling, use good grammar, and are properly formatted. This kind of manual
testing is sometimes called “paper and pencil testing’’ because computer execution
is not required. The more formally recognized term for this document testing is
static testing. As we have seen in Chapter 1, if the system requirements are not static
tested, then errors in the requirements will show up later as expensive program-
ming defects. The PDM demonstrates that there are documents written before the
 requirements documents that can, in fact, cause the requirements documents to have
errors. This documentation dependency further underscores the importance of the
tested correctness of the earliest documents written.

Programmers do not normally refer to their code as “documentation,’’ but in
fact it needs to be static tested like a document. If you have ever participated in code
inspections or code walk-throughs, these are some of the ways code is static tested
before it is executed for functional, structural, and performance verifi cation.

As the development progresses, other documents are produced that need to be
static tested as well. Examples of these later documents are End User Guides, Opera-
tor Guides, Training Manuals, and Installation Guides.

Once the development staff begins to write program code, additional kinds of
testing are needed as the code begins to work and are successively larger components
or modules of the application. Chapters 7–9 will provide a detailed treatment of the
code execution kinds of testing. The majority of this execution testing is considered
“active’’ testing because the tests intentionally cause the code to behave in certain
expected ways. Once the new system is installed, some kind of monitoring will prob-
ably be employed to verify the continued operation of the system as designed and
tested. This kind of testing is considered “passive’’ testing because the tests do not
cause the code to behave in certain ways; rather, the tests only observe and report the
behavior of the system doing routine business.

The Installation phase of the PDM is the only phase in which no testing occurs.
This phase presents its own challenges to the development and production teams
but not the testing team. The testing team has already validated that the system
will successfully install and that the persons responsible for operating the system
can perform the install correctly. This installation verifi cation is accomplished in
the last steps in the Final construction phase. To understand this approach better,
place yourself in the role of the new system owner who must sign a document
saying that the new system is ready for installation in production. Remember that
production is the way your company sustains daily business on the computer. Put-
ting anything untried in production is playing Russian Roulette with your entire
business. Are you really going to agree that the new system is ready for installation
in production without seeing proof that the new system passed all Final construc-
tion tests? We hope not.

Table 2.1 is a summary of the above testing discussion by PDM phase with a
little additional detail in the code producing phases to set the stage for the Chapters
7–9 presentations.

We will now describe each stage of the PDM.

2.5 THE PRELIMINARY INVESTIGATION STAGE

During preliminary investigation, the developers perform an enterprise analy-
sis. From this analysis the developers defi ne system goals, objectives, and
performance criteria. The developers evaluate system and project risk. Finally,
the developer evaluates system and project feasibility. The stage is completed
when the developers receive user approval of their fi ndings and recommendations
to proceed.

2.5.1 Perform Enterprise Analysis

As the developers seek to become familiar with the organization and its environ-
ment, two graphical diagrams can provide a framework. Figure 2.6 is the general
systems model of an example called the “fi rm,” which contains all of the required
components and fl ows of an organization functioning as a closed-loop, managed
system. The developers can ensure that all process components and data fl ows are
present and performing as intended. For example, does the fi rm have standards of
performance that managers are to achieve ? Another example, does information
fl ow directly to management from the physical system of the fi rm where the fi rm’s
operations are performed?

2.5 The Preliminary Investigation Stage 37

Stage Type of testing

Preliminary investigation
Analysis
Design
Preliminary construction

Final construction

Installation
Postimplementation evaluation

None
• Static testing of requirements
• Static testing of all design documents
• Static testing of all codes
• Functional tests
• Performance tests
• Static testing of users guide, operators guide,

installation guide, and training material
• Performance tests
• Load tests
• User acceptance testing
• Installation testing
None
• Monitoring of operation and performance

within prescribed boundaries

Table 2.1 Testing in the PDM

38 Chapter 2 The Software Development Life Cycle

Figure 2.6 The general systems model of the firm

A similar framework is the model of the fi rm in its environment in Figure 2.7.
This diagram shows eight elements that exist in the fi rm’s environment. The fi rm
is connected to the elements by resource fl ows of personnel, materials, machines,
money, data, and information. This model enables the developers to recognize
all of the environmental elements and consider their relationships within the
fi rm.

With this understanding of the enterprise and its environment, the developers
can turn their attention to the system and project at hand.

2.5.2 Define System Goals, Objectives, and Performance
Criteria

System goals are conditions or situations of great business importance that are to
be attained. They are the reason for the project and take such forms as improved
responsiveness, increased quality, and improved decision making. System objectives
are more specifi c targets that, when achieved, should lead to accomplishment of the
goals.

Figure 2.7 The firm in its environment

2.5 The Preliminary Investigation Stage 39

40 Chapter 2 The Software Development Life Cycle

Figure 2.8 is a goal analysis form that the developers can complete to address
three main goal categories:

system quality,

project management, and

relevance of the system to the organization.[13]

The left-hand side of the form lists these main goals and their subgoals. In the center
column, the developers can enter notes that describe the current situation and/or
the requirements to be met by the system and project. In the right-hand column, the
developers can enter actions that will be needed to meet the goals. This example
contains only entries for a sampling of the cells. For a project, the developers make
entries in all cells.

It is always a good idea to identify quantitative measures of the new system per-
formance so as to avoid the risk of failing to create a system that satisfi es the users’
perception of the system goals. The term performance criteria is used to describe
these quantitative measures for specifi c objectives. For example, if a goal of the new
system is to process customer sales orders faster, then a performance criterion could
be to process a customer sales order within 3 hours after receipt in the sales depart-
ment if it currently takes 4 hours. With the goals quantifi ed in such a specifi c way, it
will be relatively easy to test the extent to which the system meets these objectives
during development. If the system achieves the performance criteria objectives, then
achievement of the more general goals is assured.

1.

2.

3.

Current context and
requirements

Actions needed
to meet goals

System quality
Frequent out-of-stock Functionality
conditions, excessive
inventory costs.

Implement computed -
reorder points and
economic order quantiy.

Maintainability

Portability/Scalability

Project management
Timeliness Management wants new

inventory system as soon
as possible.

Manage project with Gantt
chart and milestone dates
report.

Cost

Client commitment

Organizational relevance
Decision-making
effectiveness

Buyers have incomplete
information for supplier
selection.

Maintain data for each
supplier on cost, quality,
and shipping response.

Operations efficiency

Competitive advantage

Figure 2.8 A goal analysis form

2.5.3 Evaluate System and Project Risk

As the developers embark on the project, they should identify any risks that they
might face in terms of project or system failure. The project risk evaluation form in
Figure 2.9 shows how attention can be directed at four categories that can infl uence
risk:

characteristics of the organization,

the information system being developed,

the developers, and

the users.

1.

2.

3.

4.

Factors affecting project risk
Rating

(–1, 0, +1) Comments

Organization
Has well-defined objectives? Has strategic business +1

plan
Is guided by a strategic information system
plan?
Proposed system supports achievement of
organizational objectives?

Information system
Existing model? Clear requirements? Existing system well +1

documented
Automates routine, structured procedures?

Affects only a single business area?

Uses proven technology?

Can be implemented in less than 3 months?

Installation at only a single site?

The developers
Are experienced in the chosen methodology? First time to use object-–1

oriented methodology
Are skilled at determining functional
requirements?
Are familiar with information technology?

The users
Have business area experience? Some are experienced; 0

some are new to the area
Have development experience?

Are committed to the project?

Total points +1

Figure 2.9 Project risk evaluation form

2.5 The Preliminary Investigation Stage 41

42 Chapter 2 The Software Development Life Cycle

The form lists specifi c characteristics for each category that are rated and
described by the developers. When a characteristic (such as the absence of well-
defi ned objectives) is considered to offer a risk, it receives a rating of �1. When
it does not offer a risk (such as the presence of well-defi ned objectives), it is
rated �1. When the situation is borderline, it receives a rating of 0. In this ex-
ample, only a sampling of the cells is completed. The rating points are summed,
and the total provides an indication of the degree of risk to be faced. This total
is not an absolute indicator: if the total points are positive, there may still be
unacceptable business risk in the project, or if the total points are negative, the
business risk may be acceptable. It usually takes the tracking and comparison of
risk evaluation and actual risk results from several projects to be able to accu-
rately interpret the meaning of the total risk points for a particular development
organization for future projects.

The developers should address any characteristics receiving a rating of 0 or �1
by specifying one or more risk reduction strategies to be taken. Good risk reduction
strategies are matched resources and skills with project needs, realistic completion
schedules, suffi cient budget, milestone reports, prototyping, documentation, educa-
tion, training, and software testing.

2.5.4 Evaluate System and Project Feasibility

At this point the developers seek to confi rm that the system and its project are
feasible. Feasibility studies are conducted to

evaluate technical feasibility (Does the required technology exist? Does the
fi rm know how to develop in that technology?),

economic feasibility (Can the system and project be justifi ed economically
from the additional revenue it will provide?),

operational feasibility (Is the system workable considering the skills and
attitudes of the people who must make it work?),

legal and ethical feasibility (Does the system fi t within legal and ethical
constraints of the business? Does the system conform to local and international
trade agreements?), and

schedule feasibility (Can the system be developed in the allotted time with the
proposed resources and budget?).

2.5.5 Conduct Joint Application Design (JAD) Sessions
to Confirm Preliminary Findings

Having gathered much information to guide the remainder of the project, the
developers must share their fi ndings with the users before proceeding. This sharing

•

•

•

•

•

can be accomplished by means of a JAD session. A JAD session is a joint meeting
of developers and users, directed by a trained facilitator, where project-related fi nd-
ings and questions are openly discussed, making liberal use of visual aids. [14] JAD
sessions are a good risk mitigation process.

The purpose of this particular JAD session is to get the information from
the preliminary investigation out on the table so that developers and users
agree on what the system will do (requirements) and how it will be developed
(specifications).

2.5.6 Receive Approval to Proceed

The fi rm’s top-level managers and those managers who have been directly involved
with the project determine whether to proceed. Three choices are available:

proceed to the analysis stage;

repeat some of the preliminary investigation steps to provide better informa-
tion for the decision; or

scrap the project.

When the approval to proceed is received, the next stage is analysis.

2.6 THE ANALYSIS STAGE

Each subsystem is analyzed for the purpose of determining its functional (business)
requirements and then documenting those requirements.

2.6.1 Analyze Functional Requirements

The functional requirements are the business functions that the system is to
perform. These requirements are defined by analyzing existing system docu-
mentation, conducting personal interviews and surveys with business manage-
ment and staff, conducting JAD sessions, and observing the existing system in
action.

2.6.2 Analyze Existing System Documentation

Documentation of the existing system can provide a valuable source of in-
formation about what the new system must do. This is especially true when
the new system is a replacement or enhancement of the existing one. Exist-
ing system documentation takes the form of flowcharts, dataflow diagrams,
entity-relationship diagrams, screen shots, example reports, and workflow
diagrams.

1.

2.

3.

2.6 The Analysis Stage 43

44 Chapter 2 The Software Development Life Cycle

2.6.3 Conduct Personal Interviews

In-depth interviews with key business owners who understand and use the ex-
isting system can represent the best source of information for the existing func-
tional requirements. Many but not all of these same business process owners
will also be an excellent source of information for the new functional require-
ments. Others like marketing or research executives who may have been the
source of the new functional requirement requests also need to be included in
the interview schedule.

2.6.4 Conduct Surveys

When information sources cannot be interviewed personally (perhaps there are too
many or they are spread over a wide geographic area), surveys can be designed to
gather the information in the form of mail or telephone questionnaires.

2.6.5 Conduct JAD Sessions

Another round of JAD sessions can be conducted, this time for the purpose of en-
abling groups to address and defi ne the functional requirements.

2.6.6 Observe the Existing System

The developers should spend time in the user area, observing the existing system in
operation and the use of on-line help or printed user guides.

2.6.7 Document Functional Requirements

Any number of documentation tools can be used to document the functional
requirements, but an excellent one is the functions components matrix, illustrated
in Table 2.2.

The matrix lists the functions that the system must perform (input, pro-
cessing, output, storage, and control) across the top as column headings and
lists the components of the system (its resources) as row headings down the
left-hand side. The resource rows include people, data, information, software,
and hardware. The matrix shows what resources will be used to perform what
functions and is prepared for each subsystem. The sample in Table 2.2 consists
of only a sampling of entries. On the People row you specify the titles of the
people and the functions that they perform. Data specifications can be in the
form of data tables, files, records, or elements. Information usually needs to

be displayed as some form of output. The software is specified in terms of its
components (names of programs and prewritten packages) and the functions
that they perform.

All of the documentation that is accumulated in a project forms the project
 dictionary. Figure 2.10 lists the contents at this point.

Input Processing Output Storage Control

People Data entry
operator
enters sales
order data

Sales order
clerk
batches
sales orders

Data Customer
master file

Inventory
master file

Accounts
receivable
master file

Information Customer
invoices

Customer
statements

Software
tools

Order entry
program

Inventory
program

Accounts
receivable
program

Billing
program

Access

Software
functions

Conduct
credit check

Compute
new
balance on
hand

Determine
new
receivable
amount

Hardware Data entry
workstations

Server Printers Direct
access
storage
devices

Table 2.2 Functions components matrix

2.6 The Analysis Stage 45

46 Chapter 2 The Software Development Life Cycle

2.7 THE DESIGN STAGE

With the functional requirements specifi ed, the developers now prepare the logical design
of the new system. Logical design is technology independent and consists of modeling the
data and the processes of the new system. Logical design consists of four basic steps:

Identify the feasible designs.

Evaluate the feasible designs.

Conduct JAD sessions to confi rm designs and evaluations.

Select the best design.

1.

2.

3.

4.

Problem definition I.

System goals II.
a. Goal analysis form

System constraintsIII.

System objectivesIV.

System performance criteria / quantifiable system V.
objectives

Existing system documentation VI.
Process models a.

Entity-relationship diagrams1.
Work flow diagrams 2.
Pseudocode3.

Data models b.
Data flow diagrams 1.
Data dictionary 2.

Object models c.
Class diagrams 1.
State diagrams 2.

New system functional requirements VII.
Functions components matrix a.
Use cases b.

Development plan VIII.
Project risk evaluation form a.
Risk reduction strategies b.
Gantt chart c.
Computer configurations d.
Network diagrams e.
Resource availability schedule f.
Schedule of activities / work plan g.
Milestone report h.

AppendixIX.
Working papers a.

Figure 2.10 Sample contents of the project dictionary at the end of the analysis stage

The project dictionary provides the starting point for taking these steps.

2.7.1 Identify the Feasible Designs

Modern computer technology provides many possible approaches to design-
ing a system configuration. For example, should the user interface employ a
graphical user interface or a text-only screen layout ? Should output informa-
tion be displayed on the screen or printed? Should the output be tabular or
graphic? The developers consider the possible designs that are feasible in terms
of the user needs, and, for each, consider the six types of design illustrated in
Figure 2.11.

 System control design Software design

Procedure
design

Other systems

System
interface

design

User interface
design (inputs)

Data design

User interface
design

(outputs)

Figure 2.11 Types of system design

2.7 The Design Stage 47

48 Chapter 2 The Software Development Life Cycle

Design the user interfaces (input and output)

User interfaces often take the form of an interactive dialog consisting of both input
and output. Within this framework, the output is a logical place to begin because the
fundamental purpose of the system is to produce some type of output. In considering
both output and input interface design, the developers evaluate the various display
devices and how they are to be used.

Design the procedures

This design considers all of the functions both from the business perspective (sales,
orders, and payments) and the technology perspective (shared data, security, and
backup/recovery).

Design the data

Attention is given to the nature of the data that the system must store and how it will
be stored (the structure and the devices).

Design the interfaces with other systems

With the input, procedure, output, and storage components designed, attention can
turn to how the system will interface with other systems on the same computers, on
other computers operated by the fi rm, and on other computers external to the fi rm
(suppliers, vendors, shippers, and large customers).

Design the system controls

Controls must be built into each component to ensure that at audit time it can be
proven by update logs that the system performs as intended.

Design the software

Determinations are made concerning how the component designs will be carried out
with software. Both the processes and data of the new system are documented using
the same tools that were used in documenting the existing system in the analysis
stage. Then, programming languages and standards are chosen that afford the
developers the best ways to express the new processes and data in lines of computer
code. Both language richness and maintainability are factors in this determination.

2.7.2 Evaluate the Feasible Designs

When the Figure 2.11 framework has been followed for each of the feasible designs,
they are then evaluated collectively by comparing and contrasting the advantages and
disadvantages of each. An effective approach to this collective evaluation task is to

 prepare a table such as the one pictured in Table 2.3. The alternative designs occupy the
columns, and the rows address the relevant points. Sample entries illustrate how each
alternative design is evaluated and how notes are made of questions to be answered.
The last row contains the user choice and the rationale that supports that choice.

This is only one of many possible approaches to feasibility evaluation. Other ap-
proaches can evaluate the systems based on how well each meets the goals specifi ed
in the goal analysis form, employ quantitative evaluations of weighted criteria, and
so forth. [15]

2.7.3 Conduct JAD Sessions to Confirm Designs
and Evaluations

The developers meet with the business owner managers and senior business users to
confi rm that all of the feasible designs were considered and that each was thoroughly

Alternative 1 GUI
interface and access

back end

Alternative 2 Web
interface and access

back end

Alternative n Web
interface and oracle

back end

Key features Custom-tailored
interface to user needs

Good relational
database model

Advantages Developers
knowledgeable in
technology

Relational database
with capacity for
future expansion

Disadvantages Relational database
with limited capacity
for future expansion

Questions Will this configuration
be sufficient in
meeting user current
and future needs?

Could firm
outsource oracle
implementation?

User choice This alternative
preferred based
primarily on
functionality and
ability to meet target
cutover date

Table 2.3 Alternative designs evaluation table

2.7 The Design Stage 49

50 Chapter 2 The Software Development Life Cycle

evaluated. Business users and developers have worked together throughout the
entire design process. This is the fi nal, formal review before taking the design to top
management for approval.

2.7.4 Select the Best Design

Armed with the evaluation data, business owner management and executives can se-
lect the best design. The management group can include project sponsors in the form
of the fi rm’s executive committee and MIS steering committee, information systems
managers, and user area managers working with members of the project team who
provide technical expertise. With the design selected and approved, the developers
can turn their attention to preliminary construction.

2.8 THE PRELIMINARY CONSTRUCTION STAGE

During preliminary construction, the logical design is converted to a physical design.
Physical design consists of assembling the components of people, data, information,
software, hardware, and facilities that comprise a functioning system or subsystem.
These components are brought to the construction as needed. For some items such
as hardware, personnel, and facilities, planning can begin immediately with actual
arrival coming in later stages. For example, planning can begin for user training that
will actually take place close to the date when the new system is put into operation.

The preliminary construction stage is primarily concerned with software devel-
opment and consists of two major steps:

Construct the software and test data for each module.

Demonstrate the modules to users and project sponsors.

This is the key user decision point in the phased development methodology pictured
in Table 2.4. The user acceptance of this completed preliminary phase work deter-
mines whether analysis, design, and preliminary construction will proceed to fi nal
construction. If the preliminary phase work is not accepted by the users, the develop-
ers must iterate back thru the earlier phases making the modifi cations necessary to
gain user acceptance the next time around.

2.8.1 Construct the Software for Each Module

The software development unfolds during this and the two fi nal stages of the phased
development. During this stage the software for each module is prepared, tested,
and approved by the users. In the fi nal construction stage, the tested modules from
the preliminary construction stage are integrated to form the whole system and are
tested as such. During the installation stage the system receives fi nal user approval
and is put into operation.

1.

2.

Across this life cycle process, the development of custom software evolves
through four environments, illustrated in Table 2.4. The software for each module is
prepared and tested in the development sandbox environment. The software for the
integrated system is assembled and tested in the development integration environ-
ment. User acceptance testing occurs in the production staging environment. The
approved system goes into operational use in the production environment. The fl ow
of purchased or packaged software through the environments usually starts with the
production staging environment because there is no source code for the fi rm’s pro-
grammers to develop or integrate.

A development sandbox consists of the required software development tools
and preliminary test data that developers use in “building sandcastles.’’ This is a
term used by developers to denote trying out creative designs without constraints
imposed by a rigid production environment. Locally duplicated sandboxes, called
variant sandboxes, enable team members to simultaneously work on different re-
leases of the same project. In this environment, developers use their own desktop
or laptop computers and engage in coding, prototyping, individual component and

Development
sandbox

environment

Development
integration

environment
Production staging

environment
Production
environment

Hardware Individual
developers’
workstations
or designated
individual
server areas

Shared server
space

Staging server(s)—
maybe externally
hosted

Production
server(s)—maybe
externally hosted

Access Developers
access their own
hardware

Project team
members,
 project
 managers

Review team,
project managers

Public—might
include worldwide
use or limited
use to enterprise
intranet or other
 security boundaries

Activities Coding

Prototyping

Individual
component
and page
development

Unit testing

Component and
page integration

Integration
testing

Integration
problem
resolution

System testing

User acceptance
testing

Public operation

Table 2.4 Software development environments

2.8 The Preliminary Construction Stage 51

52 Chapter 2 The Software Development Life Cycle

page development, and unit testing. The important ingredients of the development
environment include

copies of the latest software fi les by version number prepared by the module
team,

short test data fi les,

copies of all system documentation, and

a change log that identifi es the version, author, and date for each software
module revision.

•

•
•
•

Create new
software files
(Development

sandbox—
individual)

1

Test current
team version
(Development

sandbox—
individual)

2

Revise
individual files
(Development

sandbox—
individual)

3

Test integrated
system

(Production
staging

environment)

4

Development integration environment

Production environment

Individual software files

Preliminary
team
version

Tested
software
files

Tested
team
files

Tested
integrated
system files

Individual
software
files

Figure 2.12 Software flow to the production environment

Figure 2.12 shows how the software flows from the development environ-
ments to the production environment. As developers complete copies of their
 software (Step 1), it is loaded into the development integration environment
where it is made available to the members of all module teams. Each mem-
ber can load the software from the development integration environment into
their own sandboxes so that they can test their software to ensure that it works
with the team software (Steps 2 and 3). The developers revise their software
as needed and copy it back to the development integration environment (Step
3). The integrated system software is tested before entering the production
 environment (Step 4).

2.8.1.1 Test the Components of Each Module

Testing usually brings to mind software testing fi rst, which is certainly important.
But, attention should also be given to testing the other system components like the
hardware, the data, and the personnel.

Unit tests: The tests that are conducted on the module software are called unit
tests or module tests.

Data tests: Creation of the data component is so important that teams often
designate it as a separate phase. Planning for the database or warehouse data
repository to be used by the system must begin early in the project, perhaps
as early as the Preliminary investigation stage. In the Preliminary construc-
tion stage, data testing takes the form of building subsets of the database or
warehouse repository and confi rming that the data structures and contents
perform as anticipated by the system design independent of the software that
must maintain it.

Hardware tests: When the system module utilizes new hardware, tests should
be conducted to ensure that the hardware operations conform to the man-
ufacturer’s promises and the module’s operational requirements (processor
speed, screen resolution, data storage capacity, memory capacity for multiple
concurrent tasks, and so on).

Personnel tests: Testing the personnel component is intended to determine
whether the personnel already have suffi cient skills to use the new system.
The new system may require more detailed business knowledge than the old
system. How does the business manager measure his or her staff’s readiness?
What training is available to close any skill gaps before the system “goes
live?”

2.8.2 Demonstrate the New System Modules to Users
and Project Sponsors

As the software modules successfully pass the tests, they are demonstrated to users
and project sponsors. There are three possible outcomes of these demonstrations.

•

•

•

•

2.8 The Preliminary Construction Stage 53

54 Chapter 2 The Software Development Life Cycle

If signifi cant changes are considered to be necessary, an on-the-spot feasibil-
ity study can be conducted to determine whether to scrap the project or repeat
the analysis, design, and Preliminary construction stages.

If only minimal changes are identifi ed, the project reverts back to the analysis
stage and the changes are incorporated in the design.

When the users and project sponsors accept the module as demonstrated, the
next step is the Final construction stage.

2.9 THE FINAL CONSTRUCTION STAGE

This is the stage where all of the components of the new system are brought together
to verify readiness for installation and operation. Eight activities are performed.

Construct and test production-ready software.

Construct and test a production-ready database or warehouse data repository.

Install any required new hardware and connectivity.

Make available the physical facility.

Test the hardware confi guration.

Complete the documentation.

Gain user acceptance to “go live.’’

Train participants and users.

With so many activities going on usually at the same time, it is important that they be
well planned and managed. By virtue of being close to the cutover to the operational
system, it is possible to plan the remaining tasks with considerable accuracy. It is
common to revise the original implementation plan at this point to take advantage
of the additional, more precise planning information available from completing the
other development phases.

2.9.1 Construct and Test Production-Ready Software

The tests that are conducted of the entire system are called system tests. One purpose
of the tests is to validate the integrated modules to ensure that they function as a sys-
tem. A second purpose of the tests is to validate that the new system will correctly
interact/interface with other fi rm systems as needed. The goal of system testing is to
locate system errors before the system is put into production.

2.9.2 Construct and Test a Production-Ready Database
or Warehouse Data Repository

The creation of a database or warehouse data repository can be as challenging as
creation of software. This is especially true for such organizations as insurance

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

 companies and banks that maintain data for long periods of time. In addition to the
type of organization, other factors that contribute to a challenging effort include the
size of the fi rm, whether the data are already available in a computer-readable form
and whether existing data are in the format required by the new system. For projects
with complex data efforts, fi rms often outsource the development activity.

2.9.3 Install Any Required New Hardware and
Connectivity

Planning for acquisition of additional hardware should begin early in the project so
that the hardware is delivered, tested, and available when needed. Some new hardware
might be needed as early as unit testing in the preliminary construction stage. Consid-
erable lead time needs to be expected in order to identify potential hardware vendors,
get competitive bids, complete the purchase, and physically receive the hardware.

2.9.4 Make Available the Physical Facility

Planning for any construction of new or remodeled facilities must also begin early
in the project. Preparation of facilities for large-scale systems demands inclusion of
features that provide for the necessary temperature and humidity controls, pollutant
controls, uninterrupted power, fi re detection and suppression, and security mea-
sures. Such communications-oriented systems as local and wide area networks add
still another layer of complexity and importance to physical facility planning and
construction.

2.9.5 Test the Hardware Configuration

Common hardware tests include testing the system to ensure its ability to access data,
process data, communicate with other hardware, and handle forecast peak loads.

2.9.6 Complete the Documentation

As the project has unfolded, documentation has been added to the project diction-
ary. The conclusion of the Final construction stage is a good point to complete any
process and data models and other documentation that will be necessary for any
future system revision or reengineering efforts. This is also the time that the training
material and operation guides are written and published.

2.9.7 Gain User Acceptance to “Go Live”

During this activity, the system components are installed; the user acceptance test
is designed and conducted. The user acceptance test is the fi nal test of the system to
determine whether it meets the users’ perceived needs. Acceptance by both users

2.9 The Final Construction Stage 55

56 Chapter 2 The Software Development Life Cycle

and system sponsors is required before the development team can proceed to the
installation stage. In the event that all of the functional or performance criteria are
not satisfi ed, the project sponsors can demand that the system be revised or modifi ed
so as to meet the standards. This rejection will require that the project revert back
to previous stages.

2.9.8 Train Participants and Users

Users are typically the business managers and staff who will provide the system
inputs and use the system outputs to complete daily business activities. Participants
are those persons who work within the system but do not use its output for business.
Logically, you want to provide training as close to the cutover date as possible so that
the information will be fresh on the minds of the recipients as they put it into use.
However, planning for training development and delivery must begin earlier, perhaps
as early as the beginning of the project.

At this point, the developers are satisfi ed that the system accomplishes its objec-
tives. The remaining step is to obtain approval from the system users and project
sponsors that the system is acceptable. With that approval in the next stage, the
system can be put into operational use.

2.10 THE INSTALLATION STAGE

During this stage the system components are installed, cut over to the new system is
accomplished, and a postimplementation evaluation is conducted.

2.10.1 Install System Components

The unit testing and system testing in earlier stages focused on the software and
data components. The user acceptance test should encompass all of the components:
hardware, information, personnel, and physical facility along with the tested and
verifi ed software and data.

2.10.2 Cutover to the New System

With user approval, the system is put into use. Cutover can be immediate (for small-
scale systems), phased (for larger scale systems), or parallel (where the old system is
continued as the new system is gradually phased in).

2.10.3 Conduct the Postimplementation Evaluation

Some time after cutover and after the system has had time to settle down, an evalu-
ation is made to determine whether the new system did, in fact, meet the functional

and performance criteria. The evaluation can be made by users and such unbiased
third parties as internal auditors and consultants. The fi ndings of these evaluations
can determine whether additional systems work is necessary.

Over time as the system is used, both formal and informal additional evalua-
tions can be made. These evaluations form the basis for future redevelopment and
reengineering projects.

2.11 PUTTING PHASED DEVELOPMENT IN
PERSPECTIVE

The classical SDLC was not that bad from a logical standpoint. It is hard to
find fault with a repeatable sequence of planning, analysis, design, and imple-
mentation that worked. The big weakness was that the continual need to re-
peat stages was not anticipated in a proactive way and had to be handled in
a reactive way. Prototyping excels when it comes to the iterative design and
development because that is the main idea of that methodology. The PDM is a
blending of the logical sequence of the classical SDLC and proactive iterative
prototyping. The main strength of the PDM is the fact that it subdivides the
system into modules and then regards each as a separate phase of Analysis,
Design, and Preliminary construction. It is an extremely flexible methodology
that is applicable to all but exceptionally small projects, where prototyping can
fulfill the need.

2.12 SUMMARY

An information system methodology is a recommended way to develop an informa-
tion system. This methodology is known as an SDLC. SDLCs have evolved from
classical to prototyping to RAD to phased development.

Phased development consists of six stages: Preliminary investigation, Analysis,
Design, Preliminary construction, Final construction, and Installation. The Analy-
sis, Design, and Preliminary construction stages are repeated for each subsystem,
or module, of the system being developed. Each sequence of analysis, design, and
preliminary construction for a module is called a phase.

During Preliminary investigation, an enterprise analysis is conducted; system
objectives, goals, and performance criteria are defi ned; system and project risk are
evaluated; and system and project feasibility are evaluated. Findings are reviewed
with users in JAD sessions and approval to proceed is received.

During the analysis stage, functional requirements are analyzed using a variety
of data gathering techniques and are then documented. During the Design stage, the
logical design is developed by identifying feasible designs, evaluating them, con-
ducting JAD sessions to confi rm designs and evaluations, and selecting the best.
Six types of design include user interface, procedure, data, interfaces with other
systems, controls, and software.

2.12 Summary 57

58 Chapter 2 The Software Development Life Cycle

During Preliminary construction, efforts proceed through three environments
leading to production: development sandbox, development integration, and produc-
tion staging. Development sandboxes provide all of the tools necessary for software
development and are duplicated in the form of variant sandboxes to facilitate parallel
software development for the multiple modules. Unit tests are conducted of not only
software but the other components as well. New modules are demonstrated to users
and project sponsors.

When approval to proceed is received, the Final construction stage is executed,
bringing together all of the components to form an integrated system and conducting
system tests of each. When the developers, users, and system sponsors are convinced
that the system is performing as intended, proceed to the fi nal stage Installation. In-
stallation is where the system components are installed in the user area and cutover
to the new system is executed. Some time after cutover, a postimplementation evalu-
ation is conducted to verify the capability of the system to satisfy the performance
criteria.

The structure of phased development that consists of separate phases for each
system module is its main strength.

KEY TERMS

KEY CONCEPTS

System development life cycle
(SDLC)

Classical SDLC
Prototyping

Rapid application development (RAD)
Phased development methodology (PDM)
Multiple software development
environments

Methodology,
information system
methodology

Tools
Stage
Phase
Static testing

System goals
System objectives
Performance criteria
Joint application design

(JAD) session
Functional

requirement

Logical design
Physical design
Development

sandbox
Unit test, module test
System test
User acceptance test

 59

LEARNING OBJECTIVES

to recognize the value of checklists for technology processes

to simplify the plethora of testing checklists

to examine the usefulness of a robust, generic testing checklist

3.1 INTRODUCTION

The introduction to this book uses examples from the automobile industry to
illustrate how testers think. This chapter will use examples from the aircraft industry
to illustrate how testers plan.

In the mid-1930s, aircrafts were complex machines with metal skins and
powerful engines that could fl y high (10,000 ft) and fast (100 mph) for a substantial
distance (500 miles). War clouds began to form over Europe. In preparation for
possible involvement in a European confl ict, the U.S. Army Air Corps asked the
American aircraft manufacturers to build a “multi-engine bomber” that would fl y
higher (20,000 ft) and faster (250 mph) and farther (1000 miles) than any aircraft in
existence. The new aircraft needed to do all these things and carry a 2-ton payload
(bombs). Martin, Douglas, and Boeing aircraft manufacturers responded with plans
and subsequent hand-built fl ying prototypes. The fi rst fl ight tests revealed the Boeing
Model 299 to perform better than Martin’s 146 or Douglas’s DB-1; furthermore, the
Model 299 exceeded all government specifi cations. Jumping ahead in the story, one
fi nal compulsory fl ight for all competitors stood between Boeing and a business-
rescuing government contract for 18 of these new bombers.

On October 30, 1935, the Boeing Model 299 prototype took off for its fi nal ac-
ceptance fl ight…and promptly plunged to earth, killing all on board and completely
destroying the prototype. In accordance with government bidding rules, the contract
for new bombers was given to second place Martin whose prototype did fi nish the
mandatory fi nal acceptance fl ight. [16]

•
•
•

Chapter 3

Overview of Structured Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

What happened to the Boeing Model 299 prototype? It is not hard to imagine how
quickly Boeing wanted an answer to that question. From an economics viewpoint,
losing the government contracts could force Boeing into bankruptcy because Boeing
was already in dire fi nancial straits. From an engineering point of view, an unseen
design fl aw could make Boeing a pariah of new aircraft designs for the government
and commercial markets alike.

Boeing did discover the cause of the Model 299 prototype crash after a very
intensive investigation. The good news was that the crash was caused neither by faulty
design nor by faulty construction. Review of the crash revealed no inappropriate
pilot action. The prototype’s test pilots were the best in the industry.

The crash was caused by elevator (tail control) locks that were not removed before
takeoff. These control locks are normally placed on all control surfaces (ailerons,
rudder, elevators) when an aircraft is parked at an airport to prevent wind damage by
moving these hinged surfaces. At the time of the crash, there was no standard under-
standing among the ground crew and pilots as to who was responsible for removing
these control locks, either after landing or before the next takeoff. So, if both groups
assumed that the other group removed the control locks, the control locks remained
in place, thereby freezing the controls during takeoff with deadly consequences.

The solution to this problem was as profound as it was simple: the now ubiquitous
pilot’s prefl ight checklist. The prefl ight checklist guarantees that if an experienced
pilot verifi es each action on the checklist has been accomplished before takeoff, the
takeoff can be successfully accomplished repeatedly with minimal safety risk.

3.2 CHECKLIST MENTALITY FOR
SOFTWARE TESTERS

Professional software testers have found the concept of a “prefl ight” checklist with
the same professional caveats to be an excellent way of ensuring a successful testing
project.

What are the professional caveats? Before you pick up a checklist either for a pilot
or a tester and attempt to fl y a plane or test software, consider the professional prereq-
uisites. The goal of the checklist is to be able to say “Yes, I have verifi ed that” to every
checklist question. For example, the following question does appear on aircraft prefl ight
checklists: “fl ight controls free and correct?” It is just one short question in the middle
of a list of 15 or 20 questions. If you hold a pilot’s license, then your fl ight experi-
ence (2 weeks of ground school, 40 hours of fl ight instruction, pilot’s license, and 100–
5000 hours of fl ight as pilot in command) tells you what stick to wiggle and what wing
surface movement to expect before you say to yourself, “Yes, I have verifi ed that.”

The following question appears on all professional software testing checklists:
“testing success defi ned?” It is just one short question in the middle of a list of 15–20
questions. If you have successfully completed several major testing projects, then
your testing experience tells you the importance of knowing how to tell when you
are done testing before you can plan a successful testing project so that you can say,
“Yes, I have verifi ed that.”

60 Chapter 3 Overview of Structured Testing

The pilot’s prefl ight checklist comes from the aircraft manufacturers. Where
does the software testing checklist come from? Unlike aircraft, software does not
normally come with a testing checklist from the factory. Software testing checklists
have historically come from three other sources.

A corporation’s custom checklist developed by trial and error (pain and
suffering) over years of internal organization experience.

A consulting company’s commercially offered standard checklist—usually
called a “methodology” or a “method” or a “process” or a “framework”
developed over years of experience with many customers.

A consulting company’s commercially offered customized checklist with
the customization process developed over years of experience with many
customers.

These three sources have produced more than a dozen testing checklists that the
authors have professionally encountered. The number is surprising at fi rst because
12+ is more than the three or four main ways of developing software (see Chapter
2) and less than the different kinds of software products on the commercial market.
The answer lies more toward the software development side of the equation than the
product side. Approximately 90% of the steps in the three or four different software
development approaches are common, step sequencing notwithstanding. So a single
software testing checklist with a few alternative steps could conceivably fi ll the bill
for all software development projects.

Examine closely any number of different testing checklists and two observations
will quickly arise. First, the superfi cial comparison of checklists causes one to
conclude that they are all very unique. Further research will show the uniqueness
arising primarily from differences in terminology and development stages that
different organizations choose. The testing terminology is usually tightly bound
to the organization’s development terminology. This binding does not necessarily
make testing any more effective or unique. This binding does make testing more
understandable to its associated development team.

Second, deep at the core of each testing checklist you will fi nd the same
questions. Most professional testers are, in effect, using a common checklist for
successful testing. To the inquiring reader, the assertion that all software testing
can be done using one robust, generic testing checklist needs proof. The remainder
of this chapter introduces an example of a robust, generic testing checklist called
SPRAE. SPRAE is then used as the presentation vehicle for the remainder of the
textbook topics that cover the software development life cycle end to end. Q.E.D.

3.3 SPRAE—A GENERIC STRUCTURED
TESTING APPROACH

Dr. Edward L. Jones, Florida A&M University, developed and published a simple,
fi ve-step checklist for software testing. His intended audience is software developers

1.

2.

3.

3.3 SPRAE—A Generic Structured Testing Approach 61

62 Chapter 3 Overview of Structured Testing

with the expectation that software developers who know how to test make better
software developers. We agree with Dr. Jones’ expectation and subscribe to his
statement:

“… SPRAE is general enough to provide guidance for most testing situations.” [17]

We also believe that Dr. Jones’ statement intimates that the greater value of SPRAE
is in the hands of experienced software testers.

Our professional examination of SPRAE has revealed SPRAE to be as robust as
the checklists available from the three common sources of testing methods previously
mentioned. This implies a double benefi t for those software professionals and students
who invest the time and effort to learn SPRAE. The fi rst benefi t is core testing concepts
and a checklist that does deliver good testing. The second benefi t is substantially
transferable skills from testing job to testing job, regardless of the customized test-
ing checklists used by the new employer. Recall that most of the differences among
 commercial testing methods are found in the development cycle terminology and mile-
stone positioning. Learn the new development life cycle and terminology and prior
testing checklist experience can be leveraged in the new development organization.

The SPRAE checklist has fi ve items. The acronym “SPRAE” is derived from
the fi rst letter of each checklist item.

Specifi cation

Premeditation

Repeatability

Accountability

Economy

3.3.1 Specification

The specifi cation is a written statement of expected software behavior. This software
behavior may be visible to the end user or the system administrator or someone in
between. The intent of the testing specifi cation is to give focus to all subsequent test
planning and execution. Dr. Jones states the corollary of this principle to be “no
specifi cations, no test.” This is the pivotal concept most often misunderstood about
software testing. Dr. James A. Whittaker at the Florida Institute of Technology rein-
forces Dr. Jones’ criticality of specifi cations as a prerequisite for successful testing
by continuously asking his testing students, “Why are you testing that?” [18]

3.3.2 Premeditation

Premeditation is normally expressed as written test plans, test environments, test
data, test scripts, testing schedules, and other documents that directly support the
testing effort. The actual quantity of documentation varies widely with the size
and duration of the testing project. Small, quick testing projects need only a few,

concise premeditation documents. Large, extended duration testing projects can
produce stacks of premeditation documents. One criticism publicly leveled at most
commercial testing methods is that their required premeditation documentation is
often overkill, wasting valuable tester resources and testing schedule to produce
documentation that does not add commensurate value to the testing effort.

The message to the new software tester is clear. Too little premeditation places the
testing project at risk to fail because of inadequate planning. Too much premeditation
places the testing project at risk to fail because the extra time consumed in planning
cannot be recovered during test execution.

3.3.3 Repeatability

This item arises from a software process dimension called “maturity.” The Software
Engineering Institute at Carnegie-Mellon has established an industry-wide yardstick
for measuring the relative success that a company can expect when attempting software
development. [19] This yardstick is called the Capability Maturity Model Integration
(CMMi). Based on the CMMi, successful development and testing of software for
wide ranges of applications requires the testing process to be institutionalized. In
other words, once a test has been executed successfully, any member of the test team
should be able to repeat all the tests and get the same results again. Repeatability of
tests is a mature approach for test results confi rmation. A testing technique called
“regression test” described in a later chapter relies heavily on the repeatability of
tests to succeed.

3.3.4 Accountability

Accountability is the third set of written documentation in SPRAE. This item
discharges the tester’s responsibility for proving he or she followed the test plan
(premeditation) and executed all scheduled tests to validate the specifi cations.Con-
trary to many development managers’ expectations, testing accountability does not
include the correction of major defects discovered by testing. Defect correction
lies squarely in development accountability. Supporting test completion documen-
tation normally comes from two sources. The fi rst source is the executed tests
themselves in the form of execution logs. The more automated the testing process,
the more voluminous the log fi les and reports tend to be. The second source is
the tester’s analysis and interpretation of the test results relative to the test plan
 objectives.

One signifi cant implication of the accountability item is that the tester can
determine when testing is complete. Although a clear understanding of test
completion criteria appears to be a common sense milestone, you will be amazed by
how many test teams simply plan to exhaust their available testing time and declare
“testing is completed.”

There exists a philosophy of software testing called “exploratory testing” that is
emerging in the literature.[20] This philosophy advocates concurrent test design and

3.3 SPRAE—A Generic Structured Testing Approach 63

64 Chapter 3 Overview of Structured Testing

test execution. Although some interesting results have been obtained by experienced
testers using the “exploratory testing” approach, its premise seems to preclude
accountability in the SPRAE context and appears to contradict prudent testing
practices for the inexperienced tester.

3.3.5 Economy

The economy item is more representative of a kind of thinking and planning like
repeatability than a kind of documentation like specifi cations and premeditation.
The crux of the economy item is testing cost effectiveness, which can be measured
in many ways. The introductory chapter examined some of the high-level cost issues
around software testing, namely the total cost of testing compared to the total cost
of the business risk reduced by testing. This SPRAE item requires the technical
teams to develop a detailed testing budget from which the total cost of testing can
be computed.

Because software testing is basically another kind of technology project, expected
testing personnel and equipment costs are included in the testing budget. Budget
items fairly unique to testing include test data preparation, testing environment setup
and teardown (not just a desktop computer per tester), and possibly automated testing
tools. These unique budget items will be examined in depth in a later chapter.

Finally, the testing schedule can be considered a contributor to the economy
of a test project. Because testing is often considered (incorrectly) to be a necessary
evil between development completion and deployment, the development manager
may consider relegating the testing executions to the third shift where it can be done
on schedule without interfering with daily development and routine business. This
“night owl” approach to testing will actually increase the time necessary to complete
testing, causing both testing and development schedule overruns.

To understand the reasons for this reverse economy, place yourself in a tester’s
shoes executing tests on schedule at 2 A.M. in the morning. One of your new test
scripts blows up. Under daytime testing circumstances, you might contact one of
the senior end users in your team to determine if the test script is attempting to
validate the specifi cations incorrectly. Another possibility might be your contacting
the developer to determine if the program code and application specifi cations are
in confl ict. A third possibility might be your contacting the system administrator to
determine if there is a problem with the recent program build or data load for test-
ing. None of these courses of action are available to help you resolve the test script
problem. Everybody you need to contact is at home in bed fast asleep. The best you
can do is leave notes around the offi ce or on voice mail, close down your testing
activity for the night (this problem is a testing showstopper), and go home to bed
yourself. What could have been resolved in an hour or two during the day shift will
now stretch over 8–10 hours while everybody fi nishes their night’s sleep, fi nd your
notes, and begin to respond to your problem. Your testing schedule just went out the
window with the fi rst major testing problem encountered.

In summary, SPRAE gives the experienced software tester a simple and effective
checklist of fi ve items that can lead to successful testing. Subsequent chapters use
SPRAE to examine and demonstrate the breadth of software testing techniques that
represent foundation testing skills.

3.4 PUTTING THE OVERVIEW OF STRUCTURED
TESTING IN PERSPECTIVE

The software testing profession has borrowed simple, proven approaches from other
engineering disciplines to construct a reliable, consistently successful method for
testing software. This successful software testing method relies heavily on a high-
level checklist that ensures that the right questions are asked at each step of the
testing process.

At fi rst glance, each testing project is vastly different from the previous testing
project due to the richness of software development. Taking the structured testing
approach with checklists, you quickly realize that it is the answers to the checklist
that are rich and varied, not the questions. This realization can give you a high
degree of confi dence in successfully validating any newly encountered software
development.

KEY TERMS AND CONCEPTS

Key Terms and Concepts 65

Checklist
Specification

Premeditation
Repeatability

Accountability
Economy

66

LEARNING OBJECTIVES

to examine the four basic testing approaches for software

to illustrate single platform testing strategies for all involved levels of software across
all development phases

to illustrate multiplatform testing strategies for all involved levels of software across
all development phases

4.1 INTRODUCTION

As with all technology projects, successful software testing starts with planning. We
 examined a number of reasons for doing software testing in Chapter 1. Planning is the
process that we use to turn these reasons into achievable testing goals. SPRAE PRE-
MEDITATION is the lens we will use to focus our attention on the test planning activity.

Test planning can be likened to a chess game. There are a number of pieces on
your side of the board, each available to help you win the game. Your challenge is to
develop a winning strategy and advance the specifi c chess pieces that will support
your strategy. Similarly, you have a number of testing “pieces” on your side that you
can choose to use at different times in the game to “win” the testing game.

4.2 THE CHESS PIECES FOR TESTING STRATEGIES

Over the last 25 years of software testing, four different test approaches have emerged
as the approaches (chess pieces) of choice for successful testing. These four testing
approaches include

static testing(pencil and paper—documents)

white box testing(you have the source code—logic paths)

•
•

•

Chapter 4

Testing Strategy

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

black box testing (you just have the executable code—behavior)

performance testing (Is the program somehow fast enough?)

Let us take a high-level look at the “moves” that these testing approaches provide.
Once you understand the basic strategy of a testing plan, we will drill down into a
more detailed discussion of each testing approach.

4.2.1 Static Testing

As we saw in Chapter 1, 85% of all software defects are introduced at the Design
phase of development. The burning question is “What is there to test during the
Design phase to reduce these defects?” The resounding answer is not “code!” The
actual programming occurs in a later phase. If code is not available to test at the
beginning of a development project, then what is? The answer is “documentation.”
Software development starts, continues, and ends with documentation. Early docu-
mentation is used to defi ne the software to be built. Later documentation covers
the software training, installation, and operation (user guides). There is plenty of
documentation to test anytime in a software development project. Many developers
view the writing of documentation as an afterthought. The truth is just the opposite.
The more time and effort spent developing good documentation, especially require-
ments, design, and specifi cations, the better chance the developer has to write good
code from that documentation. If you are now convinced that testing documentation
is just as important as testing the code, then your next question will be “how do
I test documentation ?” The short answer is by desk checking, inspections, walk-
throughs, and presentations. All of these techniques are different ways of examining
the correctness and completeness of the document being tested. Once discovered,
document defects need to be diligently tracked to correction; otherwise, the docu-
ment defect will remain in the document to cascade into many more defects in sub-
sequent development phases.

Testers are the best group to static test development documents for two reasons.
First, the testers are trained in appropriate document testing techniques seldom
learned by the developer. Second, the testers represent an objective third party who is
much more likely to identify document defects (especially what is missing) than the
document author whose sense of ownership typically clouds the testing objectivity.

We will discuss some static testing techniques in Chapter 6. You just need an
appreciation of static testing in order to do your test planning.

4.2.2 White Box Testing

White box testing is that kind of software testing you can do when you have both
the source code and the executable code in hand. This situation is fairly common
for in-house developers who are writing a new system or upgrading an existing
system custom built for their company. Another group of developers who typically
have access to the source code are developers of software for sale. If you purchase

4.2 The Chess Pieces for Testing Strategies 67

68 Chapter 4 Testing Strategy

off-the-shelf software, the source code is not included because the source code
represents the software vendor’s trade secret.

Having the source code in hand, developers and their testing team mates have
the opportunity to review and test every line of that code. Even with all the source
code available, there is usually insuffi cient time or resources to test 100% of the
source code. With all the pieces lying on the table, developers and testers still must
create test plans that methodically test as much of the source code as practical (see
the business cost/benefi t discussion in Chapter 1).

A team of developers and testers is the best group to plan and execute white box
test source code. The developer contributes knowledge of the program specifi cations,
programming standards, and logic represented in the source code lines. It is the
developer who knows what the code is supposed to do and how to prove that the
code is doing it (positive testing). The developer is also the person who has access
to the source code for testing execution. The tester contributes knowledge of white
box testing techniques that will cause the developer to look beyond just proving that
code works as specifi ed to fi nd out if the user can inadvertently “break” the code
(negative testing). The combination of positive testing and negative testing are what
make white box testing the most effective at fi nding defects.

There are several useful white box techniques for commercial software developers
and testers. White box testing is also referred to as “logic path” testing because of
the dominance of logic path analysis for this technique. We will examine these white
box techniques in a subsequent chapter. You just need a general appreciation now for
what white box testing is in order to do your test planning.

4.2.3 Black Box Testing

Black box testing is that kind of software testing you can do when you do not have
the source code, just the executable code in hand. This situation occurs at some point
in the development process regardless of the kind of development (custom software,
software for sale) being done. As the programming becomes more complete, it
is “packaged” as larger and larger components of code. This package is built by
compiling, linking, or binding executable code modules to demonstrate the collective
code’s execution behavior with inputs and outputs.

Another way to get executable code for black box testing is to buy an off-the-shelf
software product. You do test the software products you buy, don’t you?

A group of testers, end users (business experts), and developers is the best team
to do black box testing. The tester contributes substantial test planning and execution
expertise in positive and negative black box testing. The end user contributes
substantial knowledge of the proper business behavior to be expected of the
software. The developer contributes substantial knowledge of the business behavior
as implemented in the software (maybe different from what the user expects). The
tester drives the black box testing with the end user and developer validating ex-
pected versus actual test results. The fi rst question the tester must ask is “Do I know
the correct expected results ?” When a black box test fails (actual results do not
match expected results), the second question the tester must ask is “Did I run the test

correctly to get the expected results ?” If the answer is “yes” to both questions, then
it is the developer who must resolve the failed test as either a specifi cation error or
an implementation error.

Black box testing is also referred to as “behavior” testing because of the domi-
nance of expected/actual results analysis for this technique. We will examine these
black box techniques in a subsequent chapter. You just need a general appreciation
now for what black box testing is in order to do your test planning.

4.2.4 Performance Testing

Performance testing is that kind of software testing you can do once the software has
been shown to operate correctly. The testing emphasis changes from correctness to
response time and throughput. This change in emphasis occurs at some point near the
end of the development process regardless of the kind of development (custom, soft-
ware for sale) being done. Off-the-shelf software products are certainly candidates
for performance testing validation, especially because most software vendors adver-
tise the performance you should expect from their software under various operating
conditions. You do test the performance of software products you buy, don’t you ?

A team of experienced testers is the best group to plan and execute performance
tests. The tester is really the only development team member who understands and
can execute performance tests correctly. Performance testing is complex and re-
quires a number of testing skills that are usually found in a team of specialized
testers rather than one individual. A testing environment with performance test tools
must be created. The maximum mix (peak workload) of transactions (how many
of which kind) for performance testing must be determined with the assistance of
business experts. The system under test must be started empty and brought up to the
maximum mix of transactions in some controlled way. Measurements are taken on
the transaction responses individually and collectively during the maximum mix
execution. The system under test is allowed to idle down gracefully. When a perfor-
mance test fails, that is, transactions run too slow or not enough transactions com-
pleted per unit of time, the tester needs to provide the stakeholder and development
team with the results so that corrective action can be determined and taken.

Here is another departure for performance testing. With white box and black
box testing, the system behavior is tightly associated with particular business activi-
ties that, in turn, are dictated by that business (accounting principles, supply chain
principles, sales principles, and so forth).

So a defect found by white box or black box testing strongly implies program-
ming corrections. With performance testing, the system’s response time and through-
put are dictated more by the competition targeted by the system’s business. Examples
of competition targets would be cash register response times for a retail store, gas
pump authorization response times for an auto gas station, or web page rendering
response time for internet sales companies.

When performance tests indicate that the application will not be as fast as required, the
fi rst suggested solution from the development is usually a “quick fi x” such as buying faster
hardware, buying more memory (more cache for i/o), buying more network bandwidth, or

4.2 The Chess Pieces for Testing Strategies 69

70 Chapter 4 Testing Strategy

buying more disk storage. Failing to fi nd an adequate “quick fi x,” the developers are forced
back to the drawing board for some expensive design changes and retesting.

Performance testing is also referred to as “load” testing because the best way
to do performance testing is when you exert a load (many transactions) on the sys-
tem like it will have in production. We will examine this black box technique in a
subsequent chapter. You just need a general appreciation now for what performance
testing is in order to do your test planning.

4.3 THE TWO-DIMENSIONAL TESTING STRATEGY
CHESS BOARD

Now we have four chess pieces (static testing, white box testing, black box testing,
and performance testing) that we can use to plan our winning moves. What does
the chess board look like ? Figure 4.1 shows you the empty test planning “chess
board” as a starting point. Figure 4.1 is Table 2.1 development stages for columns by
 software layers to be tested for rows.

The software testing techniques (chess board “pieces”) we just discussed and
their icons are shown in the upper right legend and are placed on appropriate squares
in the chess board.

Software

Application

Connectivity
(private,

Data resources
(data

Security
(access,

Operating
system

Preliminary
investigation

+ Analysis

Preliminary
construction

Final
construction

Ship
or

Post-
implement

Static White

Performance

Black

X Too late to

Software testing

Phased development

Figure 4.1 The testing strategy chess board

At the bottom along the horizontal axis, or x-axis, are the phases of the phased
development methodology (PDM) discussed in Chapter 2. The PDM starts with the
left-most column and proceeds left to right until implementation is complete. Each
subsequent column to the right represents the next phase of development.

At the left side along the vertical axis, or y-axis, are the software platform layers
necessary to operate a typical software application. The bottom-most row represents
the most basic software, the operating system, the software that “talks” directly to the
hardware. The next layer up is security software that restricts/allows access to all the
layer activities above it. The next layer up is data resources that provides fi le or da-
tabase management of data stored on fi xed or removable media. The next layer up is
connectivity that provides interchange of tasks and data among software components
located on different computers via networks. These connected computers can be lo-
cated physically in the same room, the next room, the next building, the next city, the
next state, the next country, or the next continent. Finally, the topmost row represents
the application under development that is the primary focus of the test plan. The exis-
tence of layers below the application under development gives us a strong indication
that planning testing just for the application under development may be insuffi cient.

So far, software testing may appear to be a simple choice among a number of
testing techniques whenever a tester sees the need. In fact, the strategy for using
these techniques is much more complex. The key to successful testing is to de-
velop the appropriate testing strategy for the application under development and the

4.3 The Two-Dimensional Testing Strategy Chess Board 71

Software testing

Phased development

Software

Application

Connectivity
(private,

Data resources
(data

Security
(access,

Operating
System

Preliminary
investigation

+ Analysis

Preliminary
construction

Final
constrnuction

Ship
or

Post-
implement

Static White

Performance

Black

X Too late to test

X

Figure 4.2 Testing strategy for the application under test

72 Chapter 4 Testing Strategy

supporting layers beneath the application before any actual testing is begun. The
testing strategy involves using an intelligent combination of testing techniques.

The testing strategy discussion will fi rst focus on just the top row, the applica-
tion under development. Assume for current discussion that the application under
development will be custom written. Off-the-shelf software package testing will be
discussed later in this chapter. Figure 4.2 shows you an optimal placing of chess
pieces on the test planning “chess board for your custom-written application under
development (top row).

For the Preliminary investigation, Analysis, and Design phases (leftmost
column), there is only a magnifying glass strategy in the application under de-
velopment (top row) indicating only static testing to be planned for these phases.
At this stage in the life cycle, the application exists only as design documents:
requirements, specifi cations, data structures, and so forth. No program code has
been written yet. So the only development artifacts that can be tested are the docu-
ments. This kind of testing done at this stage in the life cycle is concerned with
two issues:

identifying incomplete, incorrect, or confl icting information within each
document and across all documents that describe all aspects of the applica-
tion to be developed, and

confi rming that the document objectives are testable when they have been
translated into software.

For the Preliminary construction phase (second column from the left),
there is a magnifying glass, a white box, and a black box strategy piece in the
application under development row. At this phase in the life cycle, there is a rich
set of artifacts to test: environment setup documentation, program source code,
data, and program code that can be executed. Besides source code walkthroughs
(magnifying glass), there is testing of the newly written code paths (white
box) and code input/output behavior (black box) as the written code becomes
complete.

For the Final construction phase (third column from the left), there is a
magnifying glass, a black box, and a hammer strategy piece in the application under
development row. Some of the later produced documentation like user’s guides,
training guides, installation guides, and operating manuals need to be tested here.
Testing “inside” the code (white box) is no longer practical because all the code
components have been “packaged” or integrated together via compilation, linking,
or bindings. Testing of the packaged, more complex code component inputs and
outputs (black box) is continued during this phase. The fi nal testing that remains
at the end of this phase is verifi cation that the new application installs correctly
and operates properly (both black box testing) in its documented production
environment.

The hammer represents two different kinds of performance testing strategies:
performance baseline and workload. In traditional performance baseline testing,

1.

2.

response times for single transactions or activities in an empty system are verifi ed
against performance requirements as an extension of black box testing. This per-
formance baseline testing is a wakeup call for the developers, knowing that a slow
transaction in an empty system will get no faster as more transactions are added to
the system. As the performance baseline results begin to fall in line with require-
ments, load testing of large numbers of transactions is planned and performed. The
load testing decisions about the mix of transactions and how many of each trans-
action to test comes from a business workload analysis that will be discussed in
Chapter 9.

For the Ship or Install phase (fourth column line from the left), we suggest that
it is too late to test because the application is no longer available to the development
team. Another way to say it is, “when the application is ready to ship, by defi nition
the testing is done.”

For the Post Implementation phase (last column to the right), there are mag-
nifying glass and hammer strategies in the application under development row.
The static testing (magnifying glass) of implementation checklists and fi rst use of
operational manuals are done after the new installation is verifi ed correct. Les-
sons learned documents are also static tested for thoroughness, completeness, and
accuracy. The fi rst few days and weeks of new application operation are moni-
tored to compare business workload and application performance test results with
actual business workload and actual application performance under that work-
load in production. Comparison discrepancies found in either workload or perfor-
mance testing become issues either for short-term solutions, for example, faster
hardware, or longer term solutions, for example, redesign next release for better
performance.

When a company purchases a software package, the development and testing
situation is similar to the Final construction phase of custom-written software. The
only application artifacts to test are the documentation and executable code. No
requirements or specifi cations or source code are provided with purchased soft-
ware. So you test what is available, namely the documentation (magnifying glass)
and the input/output behavior (black box) against your company’s purchase evalu-
ation criteria. Performance (hammer) testing is done in the intended production
environment with samples of real business data to validate the software package
performance against your company’s performance criteria. Companies that do not
insist on testing a purchased package as a prerequisite to the purchase will always be
disappointed with the products they buy.

Next release testing

Changes, corrections, and additional features are an inevitable part of the
software development life cycle regardless of whether it is custom code or a
purchased package. Just consider how many “versions” of your word processor
you have installed in the last 5 years. For a next release, the development and

4.3 The Two-Dimensional Testing Strategy Chess Board 73

74 Chapter 4 Testing Strategy

testing activities typically follow an abbreviated version of the PDM. Many of
the critical design decisions have already been made. The next release probably
represents additional functionality within the context of the current design. So
both the development and testing follow similar plans from the previous release
and invest effort most heavily in the new or updated code required for the next
release. If good test planning is done during the original development project,
most of the black box test scripts are designed to be reusable in subsequent re-
lease tests. The reuse of these tests is called “regression testing.” The primary
purpose of regression testing is to verify that all the changes, corrections, and
additional features included in the next release do not inadvertently introduce
errors in the previously tested code. Regression testing will be discussed further
in Chapter 7.

Figure 4.3 shows the updated testing strategy chess board. The top row
representing the application under development test strategy is now complete and
ready to drive the test plan. The remaining four rows representing the supporting
software layers have their test strategies copied down from the fi rst row as the
fi rst draft of their test strategy. The question mark to the right of each row in-
dicates the need to validate or modify the draft test strategy at each subsequent
layer.

Software testing

Phased development

Software

Application

Connectivity
(private,

Data resources
(data

Security
(access,

Operating
system

Preliminary
investigation

+ Analysis

Preliminary
construction

Final
construction

Ship
or

Post
implement

Static White Box

Performance

Black Box

X Too late to test

X

X

X

X

X Planned

?

?

?

?

Figure 4.3 Testing strategy for the supporting software layers

If all of the support layers for the application under development have been used
successfully many times by the developers, then the support layers are considered
“trusted,” and only cursory test planning is necessary to reverify their “trustedness.”

If any of the support layers are new to development (and production by
implication), then you need to seriously consider a full test plan for that support layer
and all support layers above it. Strongly consider testing the support layers as far in
advance of the application under development coding as possible. If the new support
software layer does not pass all verifi cation tests, the developers could be forced to
redesign their application in mid-stream to use different support software … that
should likewise be tested before redevelopment is too far along.

Popular approaches for designing e-business software have presented the support
layer testing strategist with a new dilemma. The design of the new e-business soft-
ware may rely on trusted support layers, but the combination of trusted components
is new to development and production. A cautious, conservative testing strategy is
recommended. Consider testing the new support combinations more thoroughly
than if they were truly trusted but less thoroughly than if they were completely new
components. Test key features and functionality that the application under develop-
ment must rely on. If no issues arise, complete the testing at a cursory level. If issues
arise, deepen the testing effort to help the developers quickly formulate a go/no go
decision with this support combination.

4.4 THE THREE-DIMENSIONAL TESTING STRATEGY
CHESS BOARD

The internet has matured as a viable business marketplace. Part of that internet
maturing process has been the implementation of successively larger, more com-
plex e-business applications. At fi rst blush, it would appear that you need a whole
new set of testing skills and strategies to test these e-business applications. A closer
examination of the situation reveals that over 95% of the testing skills and strategies
used for traditional (non-e-business application) testing are still viable. The 5% new
testing skills and strategies will be discussed in Chapter 14.

The best way to apply the 95% of testing strategies that you already know to
e-business applications is to add a third dimension to the testing strategy chess
board. This third dimension will represent the multiplicity of software platforms
that e-business applications typically use.

4.4.1 Software Platforms—The Third Testing
Strategy Dimension

Let us look at some examples of software platforms from a testing strategy per-
spective. Consider the grouping of all business computers into three categories:
workstations, networks, and servers.

4.4 The Three-Dimensional Testing Strategy Chess Board 75

76 Chapter 4 Testing Strategy

Workstations are those computers that end users and customers and
employees use to accomplish work. These computers normally have some kind
of human interface like a keyboard, touch pad, display screen, microphone, or
speaker. Examples of workstation platforms are personal computers, palmpilots,
cellphones and Blackberrys. New workstation devices are appearing in the mar-
ket that combine features of existing workstations and add new features, like
the cellphone that has a keyboard for e-mail and a display screen for streaming
video.

Networks are those computers and connectivity equipment (wires and wireless
broadcast) that permit the communication among workstations and servers and
other workstations. Examples of network platforms are local area networks within
one building or across a complex of adjacent buildings. Wide area networks
connect computers in different geographies on the same continent and on differ-
ent continents. Satellites are similar to wide area networks in geographical reach
but do not require the physical cabling from point to point that wide area networks
require; rather, they rely on a group of earth orbiting satellites to hop continents
and oceans.

Servers are the business computer workhorses. Over time these work-
horses have become specialized in the business services they provide. There are
application servers that provide the daily business functionality like ordering,
purchasing, fulfi llment, billing, and accounting. There are database servers that
organize, store, and, retrieve business records for customers, services, parts and
supplies, equipment, music, or art. There are security servers that limit what an
employee or a customer can do with company data, depending on that customer’s
contract status or that employee’s job responsibilities. There are telephony servers
that answer phones and with appropriate responses from the caller, can route
calls to appropriate customer, service representatives. There are Web site servers
that provide all the home page services necessary for a company to do business
on the Internet. There are fi rewalls that protect company data from unauthorized
access or updates from outside the company walls, usually via networks or the
Internet.

IT professionals who remember working on the giant mainframe computers of
the 1970s and 1980s often look for a fourth category called either “mainframes”
or “host systems.” The computers that would have been correctly placed in those
categories in the 1980s are now being placed in the “servers” category. As compa-
nies have moved into the e-business arena, they have discovered that the ubiquitous
mainframe is best utilized as an incredibly powerful and reliable multi-server, not a
stand-alone monolith as in the past.

e-business requires many computers from all three categories of platforms. So,
instead of requiring just one grid of testing decisions, the testing teams must consider
three strategy grids, one for each platform involved. The expanded testing strategy
chess board is shown in Figure 4.4.

The complex task of planning the testing strategy for these multiplatform
applications can now be simplifi ed to a familiar two-dimensional testing strategy

for each platform. Depending on the nature of the software components on each
platform, the appropriate testing strategy questions can be asked and answered just
for that platform. This allows clarity and independence of testing priorities across the
platforms involved, yielding more thorough test planning for the entire development
effort.

4.5 PUTTING THE TESTING STRATEGY
INTO PERSPECTIVE

The rich repertoire of testing techniques can be grouped into four major ap-
proaches to simplify the understanding of when the approaches are appropri-
ate during the software development life cycle. If these four major approaches
are placed on a grid with the development phases and the different layers of
software required to operate the application under test, useful patterns arise
for test planning purposes. These patterns are further useful in determining
what needs to be tested and what does not need to be tested at a fairly high
level.

4.5 Putting the Testing Strategy into Perspective 77

Software testing

Phased development

Software

Application
under test

Connectivity
(private, public)

Data resources
(data

Security
(access,

Operating system
(cycles and

Preliminary
investigation

+ Analysis

Preliminary
construction

Final
construction

Ship
or

Post-
implement

Static White

Performance

Black

X Too late to

X

X

X

X

X

Workstation

Network

Server

Figure 4.4 Testing strategy for multiple platforms

78 Chapter 4 Testing Strategy

KEY TERMS AND CONCEPTS

Static testing
White box testing
Black box testing

Performance testing
Testing strategy chess board
Software platforms

Software platform layers
Application under test
Supporting software layers

 79

LEARNING OBJECTIVES

to connect the test strategy to test plan development

to connect a test plan to test writing and execution

to synchronize test documentation writing with development phases

5.1 INTRODUCTION

The most effective and manageable way to develop and deliver your testing is to
document the effort into two distinct parts. The fi rst part contains the overall test
plan description. The second part contains the detailed test execution instructions.

5.2 THE TEST PLAN

You will encounter different names in the literature for the fi rst part: Master test
plan, Comprehensive test plan, and High-level test plan, to name a few examples. For
the purpose of discussion in this textbook, the overall test plan document will simply
be called the Test Plan. The scope of the test plan is the whole testing strategy chess
board: what application(s) will be tested and why, which support layers will be tested
and why, and how much (if not all) of the development life cycle will require testing.
A typical test plan should include the following:

application(s)/system(s) to be tested

testing objectives and their rationale (risk and requirements)

scope and limitations of the test plan

sources of business expertise for test planning and execution

source of development expertise for test planning and execution

sources of test data

•
•
•

1.

2.

3.

4.

5.

6.

Chapter 5

Test Planning

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

80 Chapter 5 Test Planning

test environments and their management

testing strategy (chess board)

<Repeated> testing details for each development phase

(a). development phase
(b). how can you tell when you are ready to start testing?
(c). how can you tell when you are fi nished testing?
(d). <Draft> test cases list (ID, title, and brief description)
(e). <Draft> test case writing schedule
(f). <Draft> test case execution schedule
(g). <Draft> test case execution results analysis and reporting schedule

<Draft> overall testing schedule

<Repeated>

This test plan table of contents has one item that begins with <Repeated>. This nota-
tion means that you should expect to repeat this item and all subitems for as many
times as there are development phases.

<Draft>

This test plan table of contents has several items that begin with <Draft>. This nota-
tion means that at the time the test plan is fi rst written, there is insuffi cient informa-
tion from the development activities to fully document the <Draft> items. So the
test manager and test team construct the test plan with the best answers they have at
the time or leave a placeholder in the documentation for later entries. The test plans
must be revisited regularly to update the <Draft> items with new information and
revalidate the whole plan. All of the <Draft> items in the test plan should be fi nal-
ized by the time the Preliminary construction development phase is started, usually
one third the way through the development process.

Here is a brief description of each test plan item:

Application(s)/systems(s) to be tested—the application or group of applica-
tions that are included in the current testing effort.

Testing objectives and their rationale—the specifi c objectives that testing
must achieve for the application(s)/system(s) named in item 1. Objectives
must be focused on business needs and perceived business risk. Good object-
ives are measurable and achievable within the development project schedule.
Testing objectives like “we’ll test till we’re tired” or ‘we’ll test till it is time
to ship” are unacceptable.

Scope and limitations of the test plan—we need to state what will be tested
and what will not be tested to more accurately forecast testing resource
 requirements and to set appropriate development project expectations.

7.

8.

9.

10.

1.

2.

3.

5.2 The Test Plan 81

Occasi onally, a particular function or feature of an application is identifi ed as
being very expensive to test but poses only a low business risk to fail. So, that
function or feature can be declared out of scope and not tested.

Sources of business expertise for test planning and execution—testers are
usually not expected to be experts in the business to be supported by the appli-
cation or system. So somebody in the “business side of the house” needs to be
earmarked as a business expert who can assist the testing team with design-
ing, executing, and interpreting tests in the correct business context.

Sources of development expertise for test planning and execution—the
 development team may design the new application or system with languages,
data bases, or support software unfamiliar to the testing team. So, somebody
in the “technology side of the house” needs to be earmarked as a technology
expert who can assist the testing team with building and executing tests cor-
rectly in the target technology environment.

Sources of test data—the testers will need test data as close to “real” data
(production data) as possible. It is helpful from an overall project planning
per spective to identify the sources and the amount of effort necessary to ac-
quire data for the testing environment. Many times, it is both most effective
from a testing perspective and easiest from a data preparation perspective to
use copies of production fi les and databases.

Test environments and their management—after the code is written and
tested by the developer (white box testing), that code needs to be migrated
into a separate testing environment for independent testing by the test team
(black box testing and performance testing). This separate testing environ-
ment needs to be a mirror image of the intended production environment for
the test results to be credible. This separate testing environment also needs
to be under the sole control and management of the test team so that tests can
be run and rerun as needed without any restrictions or confl icts with develop-
ment runs or production runs. One of the most challenging aspects of manag-
ing this testing environment is the coordination of multiple runs and reruns
of test cases. Test cases that are successful must be rerun to prove repeatabil-
ity of results. Test cases that are unsuccessful must be rerun to validate the
subsequent software correction for the defect that caused the test case to be
unsuccessful in the fi rst place.

Testing strategy (chess board)—this is the testing strategy chess board
 defi ned for the application under test and all the software support layers as
described in Chapter 4.

<Repeated> Testing details for each development phase—this list of items
is repeated for each development phase. The content for each repeat is dif-
ferent because different kinds of testings are appropriate at each subsequent
development phase. The intent is to tie each development phase’s testing ac-
tivities back to the overall test plan to ensure that the testing activities for
each phase support the overall test plan objectives. It is so easy to become

4.

5.

6.

7.

8.

9.

82 Chapter 5 Test Planning

curious about testing some aspect of an application and go off on a tangent,
wasting both valuable time and resources on testing that is interesting but
out of scope.

(a) Development phase—this is the name of the development phase for
which these occurrences of the items (a) through (g) are planned.

(b) How can you tell when you are ready to start testing in this phase?—at
fi rst glance, this seems to be a trivial question, but on deeper examina-
tion, this may be a complex question based on the availability of only
partially completed development.

(c) How can you tell when you are fi nished testing in this phase?—this is a
complex question any way you wish to consider it. The crux of the matter
is that all of the test cases may have been executed, but the backlog of
software defects discovered by these test cases has not been resolved.

(d) Test cases list (ID, title, and brief description) for this phase—this is the
summary list of test cases that you think are needed to adequately cover
all the testing situations in this development phase. This list is refi ned
a number of times as more details about the application design become
available.

(e) Test case writing schedule—once the needed test cases are identifi ed,
somebody has to take the time to write out their details. This is a work-
intensive activity with the testing expert doing the writing and with the
assistance of the business expert and the development expert.

(f) Test case execution schedule—once the test case is written and validated,
an execution schedule must be drafted that takes advantage of test case
depen dencies, precursors, and postcursors to provide the most expedi-
tious test execution and results gathering possible.

(g) Test case execution results analysis and reporting schedule—this
 schedule extends the test execution schedule to include time to analyze
and report test results. Usually, there is some analysis time and minimal
report drafting time associated with each test execution so that the tes-
ters can begin to see the nature of the testing outcome early in the test
execution schedule. Then, if adjustments need to be made in the test
execution to accommodate surprises, there is test execution schedule
 remaining for the tactical adjustments. This fi rst allotment of analysis
and reporting time can range from a half day to a couple of days per
test case. A second allotment of time is made for the analysis of results
across multiple test case executions for more pervasive trends and com-
pletion of the drafted report. This second allotment of time can range
from 2 to 4 weeks depending on the size and complexity of the testing
project.

<Draft>Overall testing schedule—this schedule is the composite of all test
case documentation, execution, and reporting schedules for all development phases.
This schedule represents the master schedule of testing activity that the test team
must manage.

10.

Test plan items 1–8 describe the skills, process, and technology framework
needed for the testing to be accomplished. Availability of all these items for the test-
ing effort is prerequisite for successful testing of the application or system.

Items 9(a)–9(g) provide development phase-specifi c test planning activities that
culminate in test results for that phase. The term “test case” is introduced here for
the fi rst time and is explained in the next section of this chapter.

One question that frequently arises about the test plan is the nature of the physical
document. Some testing methodologies mandate that all the items must be written
in a single, all-inclusive document. Other testing methodologies mandate that items
1–8 and 10 in the test plan be a stand-alone document and that each testing detail
Section 9 be a stand-alone document. Both approaches represent extremes. The truth
lies somewhere in between. Usually the size of the development project gives you
an idea about the size of the test plan. If it is a small or medium size development
project, say 1–15 developers, then perhaps the test plan can be written and updated
conveniently as a single document. When the development project has more than 15
developers, then the complexity of each development phase may cause you to split
out some or all of the test plan item 9 occurrences into separate documents for writ-
ing document management convenience.

By necessity, the fi rst draft of the test plan will contain a testing schedule that
closely follows the development schedule. As the development efforts proceed, more
information is acquired and understood about the detailed nature of the testing to be
done. The acquisition of additional testing detail will necessitate revisions to the test
plan details and testing schedule to provide successively more accurate scheduling
estimates. Expect the revised testing schedule in the test plan to become longer as
testing concerns surface from the detailed development that were not apparent at the
start of the development (the devil is in the details !). It is not unusual to fi nd your-
self one third of the way through the development phases and discover that testing
completion will need 3 or 4 weeks more than the original development deadline.

5.3 TEST CASES

One outcome of preparing the test plan is a list of test cases needed for each
 development phase. Test cases are initially identifi ed by the testing team as high-
level testing requirements from the new application’s business requirements,
 business risks, or software specifi cations. As the developers identify more and more
details about the new application, the testers expand the description of the test case
to include very detailed testing instructions and expected outcomes.

The test team manager might say, “at this phase of development, we need to
test all the data entry screens.” This would cause the test team to identify all the
data entry screens to be developed and the general business functions these data
entry screens will support. For example, if the application under test was a payroll
system, then there might be six groups of data entry screens: employee personal
information, employee benefi ts information, employee tax information, state tax
information, and federal tax information. To keep testing execution management

5.3 Test Cases 83

84 Chapter 5 Test Planning

as simple as possible, the test team would defi ne six test cases, one for each group
of data entry screens—regardless of the actual number of data entry screens to be
tested in each group. The writing schedule of these test cases then needs to be coor-
dinated with the developer schedule for these data entry screens.

Another common example of test case planning is performance testing. Al-
though we have not yet discussed the particulars of performance testing, hopefully
the reader can identify at least four potential test cases for most applications: a base-
line performance test case, a batch workload test case, an online workload test case,
and an Internet workload test case.

5.3.1 Test Case Details

The purpose of the test plan is to collectively document the testing “what” and “why”
for this application. We focus on the testing “how” for this application by drafting
test cases. As we saw with the test plan terminology, you will fi nd references to these
“how” test documents as test scenarios, test cases, and test scripts elsewhere. As long
as you understand the purpose of these test documents and confi rm that you are col-
lecting all the information necessary for successful testing, the terminology choice is
arbitrary. For the purposes of discussion in this textbook, the detailed test execution
document will simply be called the test case.

The contents of the test case take on the narrow focus of just one of many testing
 activities that collectively support the overall test plan. Defi ning the boundaries of
a good testing case is still very much an art that is learned over a number of years
of testing experience. A good starting place is to identify some of the smallest or
 simplest business activities that the new software needs to support and defi ne test
cases for each of these activities. Then, defi ne test cases that portray either larger
business activities or specifi c sequences of smaller business activities that tend to
approximate useful business tasks. Check the software business requirements and
confi rm that you have accounted for all required business activities with your test
cases and add test cases for the business activities that are not covered yet by testing.
We will examine some test cases in Chapters 8 and 9 that cover other aspects of the
software besides business activities, but business activities are the logical starting
place for designing test cases. Test cases should include the following:

unique test case ID (from test plan)

unique title (from test plan)

brief description (from test plan)

development phase in which this test case is executed (from test plan)

specifi c testing goals and their achievement measures

suggested test data

suggested test tools

test startup procedure

1.

2.

3.

4.

5.

6.

7.

8.

test closedown procedure

test reset procedure for rerun

�Repeated� test execution steps

(a). step number
(b). step action
(c). expected results
(d). �Placeholder� actual results

�Placeholder� fi rst attempt to execute this test case date: time

�Placeholder� number of attempts to successfully execute this test case

�Placeholder� list of software defects discovered by this test case

�Placeholder� is this test case executed successfully ? (yes/no)

<Placeholder>

Some of the items above are prefi xed by <Placeholder>. This denotes the need
for some type of tracking and reporting capability to provide that item from external
sources. Some test teams opt to do this tracking and reporting with simple tools like
spreadsheets or simple databases. Other test teams opt to do this tracking and re-
porting with more complex test management tools. At the end of the testing day, the
approach you choose must tell you in detail what testing was attempted, what testing
succeeded, and what testing failed.

Here is a brief description of each test case item:

Unique test case ID—a string of letters and numbers that uniquely identify
this test case document. The ID is defined during test plan design and is en-
tered on test plan item 9(d).

Unique title—a short descriptive label that clearly implies the purpose of this
test case. The title is defined during test plan design and is entered on test
plan item 9(d) beside the test case ID.

Brief description—a paragraph that expands on the title to give more details
about the purpose of this test case. The description is defined during test plan de-
sign and is entered on test plan item 9(d) beside the test case ID and unique title.

Development phase in which this test case is executed—this is a cross-
 reference to the development phase section of the test plan that mentions this
test case. It is meant to be a reminder of the development state of the code to
be tested as a reality check against the kind of testing this test case is intended
to accomplish.

Specific testing goals and their achievement measures—this item takes the
purpose of the test case stated in the title and brief description and quantifies
 specific testing goals as well as how the test team can measure the achieve-
ment of these goals.

9.

10.

11.

12.

13.

14.

15.

1.

2.

3.

4.

5.

5.3 Test Cases 85

86 Chapter 5 Test Planning

Suggested test data—this item identifies the minimal amount of data and
most useful data sources for executing this test case in the test environment.
For example, if the application under test is a payroll system, then a copy of
the current employee master file would be one of the most useful data source
for testing. The number of employee records needed for testing this test case
would depend on the testing goals. Usually, a representative sample of em-
ployee records will be adequate for testing (see Generic black box testing
techniques in Chapter 7). Sometimes it requires less effort to use a copy of
the whole file rather than to carve out a representative sample.

Suggested test tools—if the tester is knowledgeable about automated test tools,
this is where the tester suggests one or two that have capabilities particularly
appropriate for executing this test case. A recap of all tool suggestions across
all test cases in the test plan becomes the basis of the test manager’s rec-
ommendation regarding the automated test tools in the testing environment.
Not all test cases lend themselves to automated test tool usage. The cost of
automated test tools makes them prohibitively expensive for a relatively small
number of executions. Test tools will be examined further in Chapter 11.

Test startup procedure—this documents what hardware, software, and data
must be available to start the test execution. It further identifies how the
required software including the application under test must be launched or
made active in order to allow the first execution step of this test case to be
accomplished.

Test closedown procedure—this documents how to gracefully stop all the
software launched or made active including the application under test. A
 graceful software stop allows the software activities to idle down and the
software to terminate normally.

 Test reset procedure for rerun—this documents what must be done between
the most recent test execution closedown and the next test startup in order to
allow this test case to be executed again. Most times, this section deals with
restoring data to its previous state prior to adds, changes, and deletes caused
by executing this test case after the startup.

 �Repeated� Test execution steps—this list of items is repeated for each new
step number. One execution attempt of this test case is achieved by perform-
ing all the steps once in step number order.

(a). Step number—a unique number that sequences the test case steps for-
execution.

(b). Step action—the specifi c, fully described action taken by a tester to evoke
a desired software behavior. Examples of step actions include keystrokes,
mouse movements, button clicks, drop-down list selections, and voice com-
mands.

(c). Expected results—the particular software behavior or response expect-
ed from the step action. Examples of expected results include screen
responses, printer responses, fi le responses, and network responses.

6.

7.

8.

9.

10.

11.

(d). �Placeholder� Actual results—the particular software behavior or
 response actually observed from executing the step action. Examples of
actual results include screen responses, printer responses, fi le responses,
and network responses.

�Placeholder� First attempt to execute this test case date: time—this item
documents the date and time when the steps of the test case are fi rst attempted. This
metric helps the test manager measure testing progress toward 100% test cases at-
tempted.

�Placeholder� Number of attempts to successfully execute this test case—
this item measures how many attempts become necessary to achieve a successful test
case execution.

�Placeholder� List of software defects discovered by this test case—the
log of genuine, correctable software defects discovered by this test case. If the
 software development process does not change signifi cantly from project to project,
then this log will begin to reveal defect patterns that may forecast the approximated
number of defects to be discovered by the next development project. If the software
development process does change signifi cantly over time, then this log can demon-
strate how much the new development process increases or decreases the software
quality (fewer defects) by development phase. This kind of defect log interpretation
is the subject of an entire section in Chapter 12.

�Placeholder� Is this test case executed successfully? (yes/no)—this item
is answered only after the fi rst test case attempt. The answer can subsequently be
changed from “no” to “yes” after any number of attempts that achieve successful test
case execution. Usually, some of these attempts occur after software correction in
order to confi rm the correction as well as achieve successful test case execution.

5.3.2 Step Action

Step actions are the documented keystrokes, mouse movements, and screen render-
ing for all of the end user steps to complete a business task. Using the data entry
screen testing example, a sequence of step actions would describe the mouse or key-
board commands to move the cursor to the next data fi eld to be tested. The next step
actions would document the specifi c data entered by keyboard or selected by mouse
from a dropdown menu. After a series of these keyboard entries and mouse move-
ments on the screen, the next step actions might describe a “request completed” mes-
sage that appears below the submit button or in a separate window. The overt intent
of the step actions is to cause the system under test to behave as if the end users were
performing routine business activities.

One of the major issues confronting the test case writer is the degree to which
the test case is dependent on visual screen positioning of objects. Screen objects will
change position (even by a pixel or two), change label, change label font, change
color, or change some other property. If screen position validation is not a testing
 objective, then the test case author needs to avoid specifying the expected results

12.

13.

14.

15.

5.3 Test Cases 87

88 Chapter 5 Test Planning

based on absolute screen position. If screen position is part of the software require-
ment or specifi cation, then be alert to how different kinds of screen monitors and
screen display resolution will probably distort that positioning. This issue arises
more when using automated testing tools than when using manual scripting due to
the precision that the tools bring to the expected versus actual result comparisons.

5.3.2.1 Expected versus Actual Results in a “Failed” Execution Step

When the expected results match the actual results, the step is said to have “passed”
the test. When the expected results do not match the actual results, the step is said
to have “failed” the test and further diagnostic analysis is required. There are at
least two possible causes of a “failed” step: the expected results are incorrect or
the actual results are incorrect. Incorrect expected results can come from several
sources starting with the tester’s incorrect understanding of what the expected
 results should be and continuing to the developer’s incorrect understanding of what
the expected results should be to the business expert’s incorrect understanding
of what the expected results should be. If the tester, the developer, and the busi-
ness expert all agree on the expected results, then the “failed” step has revealed a
 software defect. Who, when, and how the software defect is corrected is one of the
topics in Chapter 12.

5.3.2.2 Validate Test Case Step Actions

Test case validation is a double check of the step actions and expected results with
the software requirements, specifi cations, and business expert. The risk of not
 validating test cases is the increased likelihood that the test team will incorrectly
report a number of “failed” step actions as software defects instead of step action
design defects (testing defects). Put yourself in the shoes of a developer who is under
much pressure to deliver a complex application on a tight deadline. Your work has
just been interrupted a third time today to attend a meeting with the test team to
discuss another suspected major software defect … and the last two meetings were
halted 15 min into the discussion when you pointed out that the tester’s expected
results did not match the software specifi cations. How many more of these kinds of
meetings will you attend before you tell your development manager that testing is a
waste of time?

5.4 WRITING YOUR TEST PLAN AND TEST CASES
IN THE REAL WORLD

It would be so nice for the test team to be able to walk into a development project
and fi nd all of the information needed on the fi rst day to write all the test documents.
As you have probably guessed, that is not how things happen. There defi nitely is
enough information at the beginning of the development effort to draft the test plan,
but the details suffi cient to write test cases will not surface for a while. When they

do, these surface details will arrive in reverse order relative to the execution of the.
It is counter-intuitive to the way development planning occurs, but it works well for
testing. You can fi nd this relationship of development phases to test case writing,
and execution will be referenced in the literature as either the “V-diagram” or the
“bathtub diagram.” Figure 5.1 shows the bathtub diagram.

The left-hand side of the bathtub diagram represents development phases.
The right-hand side represents test planning, writing, and executing. The bathtub
 diagram is read from top to bottom to follow the development life cycle. Please refer
to Chapter 4 to refresh your memory of the testing approaches expected for each
development phase.

Here are the relationships that the arrows show:

Arrow 1 indicates that the development activities in Preliminary investi-
gation and Analysis produce enough information about the new applica-
tion that the test team can draft a test plan and write the test case for post-
 implementation.

Arrow 2 indicates that the development activities in design produce enough
information about the new application that the test team can update the test
plan and write the test case for fi nal construction.

Arrow 3 indicates that later development activities in design also produce
enough information about the new application that the test team can update
the test plan and write the test case for preliminary construction.

Arrow 4 indicates that the development planning activities have been completed
and the development programming activities in preliminary construction have

•

•

•

•

5.4 Writing Your Test Plan 89

Preliminary
investigation
+ Analysis

Preliminary
construction

Final
construction

Draft test plan
 + write test cases
 for postimplementation

 Design

Update test plan
+ write test cases
for final construction

update test plan
+ write test cases

for preliminary construction

execute test cases
for preliminary construction

execute test cases
for final construction

Development
phases

Test plan
and test cases

1

2

3

4

5

Installation
Post

implementation
execute test cases
for implementation

6

Figure 5.1 The bathtub diagram

90 Chapter 5 Test Planning

begun, allowing the test team to follow the test plan and execute the test case
for preliminary construction.

Arrow 5 indicates that the development programming activities in fi nal
 construction have begun, allowing the test team to follow the test plan and
execute the test case for fi nal construction.

Arrow 6 indicates that the new application has been installed and made
operational that is the starting point of post-implementation, allowing the test
team to follow the test plan and execute the test case for postimplementation.

5.5 TEST DOCUMENT STANDARDS

Because software testing is a professional branch of software engineering, you
 expect to find standard software testing documentation templates. We intro-
duce to two of the industry-recognized standards sources for testing documen-
tation: the IEEE Computing Society and the Tigris Open Source SOFTWARE
Community.

The IEEE Computing Society was founded in 1884 as a merger of the American
Institute of Electrical Engineers (AIEE) and the Institute of Radio Engineers
(IRE). The full name of the current organization is the Institute for Electrical and
 Electronics Engineers, Inc. Through its members, the IEEE is a leading authority
in technical areas ranging from computer engineering, biomedical technology, and
telecommunication to electric power, aerospace engineering, and consumer electron-
ics. The IEEE currently has more than 3,65,000 members worldwide, over 68,000
student members, 39 societies, and 1.1 million documents in the IEEE/IEE Elec-
tronic Library. IEEE document templates are available on the IEEE Web site for
subscribers only. [21]

The IEEE documentation standard #829-1998 for testing contains templates for

test plan

test design specifi cation

test case specifi cation

test procedure specifi cation

test log specifi cation

test incident report

test summary report

The test plan contents described in this textbook correspond somewhat to the IEEE
test plan, test design specifi cation, and test case specifi cation. The test case con-
tents described in this textbook correspond somewhat to the IEEE test design specifi -
cation, test case specifi cation, and test procedure specifi cation. The textbook items
in the test case marked <Placeholder>correspond somewhat to the test log specifi ca-
tions, test incident report, and test summary report.

•

•

The Tigris Open Source Software Community is a mid-size open source
 community focused on building better tools for collaborative software development.
The Tigris Community is about 10 years old. The tool building activities are
 organized into projects. The Tigris project of most direct interest to this textbook’s
readers is the ReadySET project. ReadySET is an open source project to produce
and maintain a library of reusable software engineering document templates. These
templates provide a ready starting point for the documents used in software develop-
ment projects.

The test plan contents described in this textbook correspond somewhat to the
ReadySET QA plan template. The test case contents described in this textbook
 correspond somewhat to the ReadySET test case template. The ReadySET templates,
being open source, are available on the Tigris Web site at no charge. [22]

What you should infer from this discussion is that nobody has found a single testing
document adequate to cover all the test planning and execution requirements for all
software development situations. The textbook examples, the ReadySET templates,
and the IEEE templates are identifi ed as starting points for your organization to
develop and evolve your testing documentation. If the testing documentation has
been done correctly, the testing execution results will be the same regardless of the
documentation approach adopted. It is the thought behind the planning that makes
the difference between a successful testing project and an unsuccessful one, not the
documentation approach.

Knowing that there is no “one way” to document software testing, the obvious
question is “how do I start.” One rather low-risk, high-benefi t way is to review a
recent software development project and use its documentation to pilot a represen-
tative set of testing documentation described in this chapter. That representative set
of documentation should include a test plan and test cases for a few test executions
during each development phase. Conduct a pilot lessons-learned meeting where you
discuss both the ease and diffi culty of writing the test documentation with an eye
toward minor document structure changes that would make the task easier next time
or with a larger project. Consider also discussing which items included in the pilot
documentation did not seem to be benefi cial and could be dropped. Then, consider
discussing any documentation gaps discovered by the pilot and which items might be
added next time to fi ll those gaps.

Finally, consider doing a second pilot with a slightly larger software develop-
ment project using the revised testing documentation from the fi rst pilot lessons
learned.

Because we do not have a subscription to the IEEE templates, we decided to use
the ReadySET templates for all the case studies in this textbook.

5.6 PUTTING TEST PLANNING IN PERSPECTIVE

Inexperienced software testers tend to leap from the testing strategy directly into
test cases much like inexperienced software developers tend to leap from application

5.6 Putting Test Planning in Perspective 91

92 Chapter 5 Test Planning

designs directly to coding. The outcome of such a leap is incomplete testing at best.
The correct intermediate step for testers is a test plan.

It is the test plan perspective that helps the test team manager identify what
will be tested and quickly assess if the planned testing will satisfy the testing
goals. Test plan also guides the test team in the next test planning step of test cases
 development..

KEY TERMS AND CONCEPTS

Test plan
Test case
Test documentation standards

 93

LEARNING OBJECTIVES

to examine the necessity of testing all documentation produced by a software
 development project

to list the variety of software development documentation that should be tested

to describe the techniques for testing software development documentation

6.1 INTRODUCTION

All good software development projects produce documentation as well as code.
This documentation serves a wide variety of purposes from shaping the software
itself to assisting the end user in successfully operating the software. Recalling
Chapter 3, this documentation fulfi lls the specifi cation item in the SPRAE check-
list. The process of testing this documentation is called static testing. The term
“static” in this context means “not while running” or “not while executing”, and
is used in contrast to testing software by running or executing it as described
in Chapters 7–9. Recalling the testing strategy chess board in Chapter 4, static
testing is considered a recommended strategy for all development phases except
Installation.

6.2 GOAL OF STATIC TESTING

Static testing is the least expensive form of testing and, with Chapter 1 defect sources
in mind, has the largest potential for reducing defects in software under develop-
ment. The primary goal of static testing is defect reduction in the software by reduc-
ing defects in the documentation from which the software is developed. A secondary
goal is correct operation of the software. This statement may seem like a statement
of the obvious, but many software systems and products have been abandoned after

•

•
•

Chapter 6

Static Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

94 Chapter 6 Static Testing

an investment of millions of dollars because the end users could not fi gure out how to
properly operate the software to do their routine business. Human nature being what
it is, the recipients of poor documentation and training do not say, “I will fi gure out
how to operate this software”; rather, they say, “this software doesn’t do what I need
it to do, so I want the old system back.”

6.3 CANDIDATE DOCUMENTS FOR STATIC
TESTING

It is time to take a look at a reasonably representative list of software development
document candidates for static testing.

Software development manager’s documents
(a) Software requirements
(b) Software project plans

Software developers’ documents
(a) Use cases
(b) Software designs
(c) Software specifi cations
(d) Data fl ow diagrams
(e) Database and fi le designs
(f) Online operating environment specifi cations
(g) Batch operating environment specifi cations
(h) Interfaces
(i) Connectivity (network) specifi cations
(j) Security specifi cations
(k) Screen/window/page specifi cations
(l) Report specifi cations
(m) Code

Testers’ documentation
(a) Test plans
(b) Test cases
(c) Test environment specifi cations
(d) Test data sources and preparation
(e) Test tool installation and operation

Administrator’s documentation
(a) Installation guides
(b) Operation/administration guides

End users’ documentation
(a) Users guides
(b) Help screens
(c) Training manuals

1.

2.

3.

4.

5.

6.3.1 Software Development Manager’s Documents

Software requirements are the foundation on which all subsequent documentation and
code are written. If these critical documents are either missing (see Chapter 1’s game
of “Gossip”) or incorrect, then no programming staff can deliver the correct soft-
ware. The format for requirements varies widely from company to company. If your
company is new to writing requirements for your software, consider starting with the
software requirements templates found in the Rational Software Development Tool
RequisitePro. [23] The templates in this tool enjoy a good industry reputation. So why
not use recognized quality templates until your company has gained enough of its
own experience to customize the requirements templates where appropriate … if you
really fi nd the need to customize.

Software project plans contain the roadmap that the software development will
follow for this particular system or product. If your software development projects
always come in on time and under budget, then perhaps you do not need to static test
this document. If your software development projects tend to be late or over budget,
then perhaps a little static testing can help identify some of the planning gaps that
contribute to those overruns.

6.3.2 Software Developers’ Documents

Use cases are the formal documentation of the business processes that the new
system must provide. This documentation identifi es the actors (different roles
the system users play) and activities (processes that are performed by specifi c
actors). There is no industry consensus about who should write these use cases
or how much process detail the use cases need to express. Because the develop-
ment managers typically do not write use cases and the test teams typically base
part of their test plans on use cases, it seems expedient to place the authorship of
use cases somewhere in the development team’s realm with or without business
assistance.

Software designs contain the high-level technical solution (the how) for the
 business requirements (the what) that are expressed in part by use cases. It is the what
to how linkage that is most often incomplete, leading to missed, or poorly understood
features and capabilities. All the software developer’s documents below software
 designs, that is, software specifi cations, data fl ow diagrams, database and fi le designs,
online operating environment specifi cations, batch operating environment specifi -
cations, interfaces, connectivity (network) specifi cations, security specifi cations,
screen/window/page specifi cations, report specifi cations, and code are successively
deeper details of the technical implementation of the business requirements. Not all
documents are needed for every system or application. Part of the software develop-
ment manager’s job is to identify which of these documents need to be written for the
new project. There are two static testing concerns that run through this list of more
detailed documents. The fi rst static testing concern is completeness, that is, the more
detailed documents must completely describe the next level of technology needed to

6.3 Candidate Documents for Static Testing 95

96 Chapter 6 Static Testing

fully respond to the higher level documents. The second static testing concern is that
as the technical details are written, some of the details stray from or are not really a
part of the original business requirements (out of scope).

6.3.3 Testers’ Documentation

Tester’s documentation (test plans, test cases, test environment specifi cations, test
data sources and preparation, and test tool installation and operation) needs to
be tested as thoroughly as other project documents. The sequence of development
events that allow test plans to be developed were covered in the bathtub example
in Chapter 5. The static testing concern is similar to the more detailed developer
documentation: completeness of testing plans against the business requirements and
intended development with no gratuitous testing.

6.3.4 Administrator’s Documentation

Administrators’ documentation (installation guides and operation/administration
guides) documents the steps that must be taken by technical staff to install and sup-
port the new system or application. The static testing concern in these documents is
double-sided. The fi rst side is clear and unequivocal support of the business require-
ments. The second side is stepwise instructions that can be carried out successfully
by the support staff at their expected administrative skill level.

6.3.5 End Users’ Documentation

End users’ documentation (users guides, help screens, and training manuals) docu-
ments the steps that must be taken by business end users to perform their routine
daily activities on the new system or application. As with the administrative manu-
als, the static testing concern with these documents is the double-sided business
requirements/operations within expected end user business skill level.

6.4 STATIC TESTING TECHNIQUES

Because static testing requires a high degree of interaction among software develop-
ment team members, the most challenging aspect of static testing is to keep the test-
ing activities objective and impersonal. The force working against you is the human
tendency to take ownership of documents to the extent that a perceived attack on
the document is a perceived personal attack on the owner-author. Document owner-
ship is, in fact, a good thing. It causes the author to do his or her best job and gain a
sense of pride in good-quality results. Static testing strives to help the owner-author
produce the best possible (most correct) document by helping identify corrections
and improvements to documents that might already be of good quality. This pride of

ownership reaches its zenith with program code. Because no large software applica-
tion is 100% defect free, all program code has room for improvement. Static testing
is one of the more cost-effective ways to identify these improvements.

Consider using a two-step approach to static testing. For the fi rst step, clean up
the cosmetic appearance of the document: check spelling, check grammar, check
punctuation, and check formatting. The benefi t of doing the fi rst step is that when
the document is cosmetically clean, the readers can concentrate on the content. The
liability of skipping the fi rst step is that if the document is not cosmetically clean, the
readers will surely stop reading the document for meaning and start proofreading—
to the detriment of content review.

For the second step, use whatever techniques seem appropriate to focus expert
review on document contents. Here are some of the more popular and effective tech-
niques used for content review.

Static testing techniques for content review

desk checking

inspections

walk-throughs

Desk checking is the least formal and least time-consuming static testing tech-
nique. Of all the techniques, desk checking is the only one whereby the author is en-
couraged to test his or her own document. The remaining techniques rely on indepen-
dent eyes to provide a more thorough and objective review. Desk checking involves
fi rst running a spellchecker, grammar checker, syntax checker, or whatever tools are
available to clean up the cosmetic appearance of the document. Then, the author slowly
reviews the document trying to look for inconsistencies, incompleteness, and missing
information. Problems detected in the contents should be corrected directly by the au-
thor with the possible advice of the project manager and other experts on the project.
Once all corrections are made, the cosmetic testing is rerun to catch and correct all
spelling, grammar, and punctuation errors introduced by the content corrections.

Inspections are a little more formal and a little more time consuming than desk
checking. The technique also fi nds more document defects than desk checking. The
intent of the technique is for an independent pair of eyes, usually a more senior
member of the team, to read the document and discover content problems. As rec-
ommended with desk checking, the document to be inspected should be made as
cosmetically clean as possible by the author so that the independent reader(s) can
focus on the content. The independent reader then takes the document elsewhere and
reviews it. Separating the document from the author allows the document to stand
on its own merit. If the reviewer inspects the document in front of the author, the
human tendency is for the author to kibitz the reviewer, which defeats the purpose of
the independent reviewer. Suspected problems in the content should be documented
by the independent reviewer and presented to the author in a subsequent meeting.
The author then needs to provide suggested corrective action alongside the suspected
problem. The project manager or someone senior on the project should then review

•
•
•

6.4 Static Testing Techniques 97

98 Chapter 6 Static Testing

the list of reviewer’s suspected problems, and author’s suggest corrective actions in
order to negotiate an agreed corrective action.

Walk-throughs are the most formal and most time-consuming document test-
ing techniques, but they are the most effective at identifying content problems. The
walk-through is a scheduled meeting with a facilitator, the document author, and
an audience of senior technical staff and possibly business staff. The author must
scrub the document for cosmetic errors and send the document to all participants
in advance of the meeting. The participants read the document and formulate ques-
tions about the document contents based on their own knowledge of the new system
or application. At the appointed time, the author presents his or her document to the
walk-through meeting. The facilitator becomes the clearinghouse for questions by
the audience and answers by the author. The facilitator also ensures that the ques-
tions are posed in an objective, nonthreatening way. The walk-through facilitator
documents all suspected content problems and author responses for later resolution
by the project manager in a manner similar to the inspection resolutions.

6.5 TRACKING DEFECTS DETECTED BY STATIC
TESTING

Each of the previously described static testing techniques involved writing down sus-
pected or confi rmed content problems, their suggested or negotiated corrective action, and
a correction completion date. These lists can be managed using simple tools like spread-
sheets or complex tools like databases. Either way, there are two compelling reasons for
recording and tracking these defects to correction. The fi rst reason is to enable the project
management to verify the corrections are actually applied to the tested document in a
timely manner. The second reason is to demonstrate the importance of current, correct
documentation to the early success of the project. Without defect tracking as a reminder to
get the documentation right, the attitude of “I’ll document that after I’ve written the code”
will rise up and make Capers Jones’ gloomy prediction a reality for your project too.

6.6 PUTTING STATIC TESTING IN PERSPECTIVE

Static testing is one of the most frequently overlooked testing approaches. The mis-
taken impression of static testing is that it takes up time and effort that could be
better spent on designing the system or writing the software. In fact, a few well spent
hours static testing the development project documentation as it is written could save
the project hundreds of hours correcting or redesigning the code caused by poor
documentation in the fi rst place.

KEY TERMS AND CONCEPTS

Static testing
Desk checks

Inspections
Presentations

 99

LEARNING OBJECTIVES

to examine the benefits of use case driven functional testing

to extend the effectiveness of functional testing by regression testing

to discover the depth of functional testing afforded by white box testing

to discover the depth of functional testing afforded by black box testing and how it
differs from white box testing

7.1 INTRODUCTION

Recalling our SPRAE testing approach in Chapter 3, the preparation for and execution
of tests to validate software behavior are critical next steps in premeditation. The
planning part of premeditation was accomplished in Chapters 4 and 5. Specifi cation
was accomplished in Chapter 6. The remainder of premeditation will be accomplished
in Chapters 7–9.

Starting with this chapter, the next three chapters discuss testing techniques that
validate the behavior of software as the software matures. Behavior in this context
means that a tester provides an input to the software and observes the software’s
behavior (output). To make the software behave in an expected manner, the tester
must execute the software code in a controlled testing environment. These execution
testing techniques are fundamentally different in objective and approach from static
testing where no code is executed.

The objective of functional testing is to validate the software behavior
against the business functionality documented in the software requirements and
specifi cations. Business functionality is generally defi ned as those activities that
support routine daily business. Functional testing is achieved by a series of tests that
exercise increasingly more of the software that directly enables users to accomplish
this routine daily business.

•
•
•
•

Chapter 7

Functional Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

100 Chapter 7 Functional Testing

Chapter 5 described the desirable contents of a test plan and the associated test
cases. The heart of the test plan is a series of test cases that detail the test execution
steps needed to validate the software. The challenge for the tester is to progress from
writing the test plan at a high level to writing the test cases at the test execution level.
The experienced tester has discovered that the developer produced use cases provide
a ready blueprint for test case authorship.

7.2 FUNCTIONAL TEST CASES FROM USE CASES

There is a relatively new scoping technique called use case that software developers
employ to capture functional requirements of a system for the purpose of scoping the
project. The technique became popular in the mid-1990s fi rst as an object-oriented
design technique and later broadened in appeal for other types of software develop-
ment. If this topic sparks your interest, there are a number of recent textbooks that
can give you more guidance about writing use cases. [23, 24]

The software development community has not yet standardized on the devel-
opment team role that should write these use cases. Some organizations give this
responsibility to the developers. Some organizations give this responsibility to the
testers. Some organizations give this responsibility to a business analyst. As long as
use cases are written by someone, testers can take advantage of these use cases when
writing functional test cases.

The building blocks of this approach are actors, use cases, happy paths
and alternate paths. Actors are those business roles who are going to directly
use the software. The happy path is the sequence of actions that the actor must
take in order to accomplish a specific use case. Alternative steps that could
be used by an actor to complete the use case represent contingency use cases
(customer not found, credit denied, accessories not available, and so forth.) to
a happy path. A kind of node diagram of the software emerges that displays
all the high-level tasks for a specific business role and the steps necessary to
accomplish these tasks. This node diagram is translated into a text descrip-
tion. The combined node diagram and text description constitute the use case
documentation.

For example, if a developer were to write a use case for an online purchasing
system, the use case text might look like Figure 7.1.

As stated in the Use Case #001 title, this is a happy path, that is, all steps
are expected to be completed by the customer in the sequence shown. An
alternate path associated with this happy path would be dealing with rejection
of the customer’s attempted payment. The same products will ultimately be
purchased as with the happy path, but there will be intervening action needed
to solicit acceptable payment from the customer that the happy path does not
encounter.

Use Case #001 provides a high-level description of the sequence of steps that
the actor (customer) must take to complete an online purchase. Recall that in the test
case content description in Chapter 5, there is a sequence of test steps. For functional
testing, here is the helpful crossover. Consider drafting a test case for each use case

happy path and each use case alternate path, bringing the use case sequence of ac-
tions into the test case steps almost one-for-one. Figure 7.2 shows what the steps of
the Use Case #001 happy path test case might be.

Actor Action Description

Customer Log on A homepage screen sets up the application, counts

the user visits to the application, and starts the user

at a main menu .

Customer Browse catalog The customer is able to search the product c atalog

by product category, manufacturer catalog and,

number. interest from the search can Products of

be selected for further consideration.

Customer product Browse

detail

The customer can display each selected product by

description,product and price,image,producta

the quantity in stock.

Customer Update shopping

cart

The customer can add, remove, or update products

to be purchased in the shopping cart.

Customer Purchase shopping

cart products

cancustomerThe be toproductsthereview

purchased, indicate customer delivery information,

and collect customer billing/payment information.

Customer Purchase order

completion

This validates the customer’s ability to pay for the

thetoorderpurchaseaprovidesproducts,

customer, and initiates product delivery.

Customer Log off This checks for completion of all customer actions

during this session before disconnecting from the

customer.

Figure 7.1 Example use case for an online purchasing application Use Case 001—product purchase
(happy path)

7.2 Functional Test Cases from Use Cases 101

Step no. Step Expected result

1. Log on Access the main menu

2. Browse catalog Find a blue widget

3. Browse product detail Display the blue widget descr.

4. Update shopping cart Add the blue widget

5. Purchase shopping cart products

6. Purchase order completion Get blue widget purchase confirm

7. Log off Exit the application successfully

Buy the blue widget

Figure 7.2 A full business path test case from use case

102 Chapter 7 Functional Testing

The fi rst draft of the use cases and the test cases have insuffi cient details to either
write code or execute tests at this time. Both do represent a roadmap to the additional
level of details needed for writing code and executing tests.

As the design phase of the software development project continues, details
become available that spell out how each actor can accomplish the use case
activities—menus, data entry web pages, data search web pages, report web pages,
printouts, databases for purchases, and so forth. As these details emerge from the
design work, the tester can identify the pieces that need testing individually before
they can be tested together, possibly implying more test cases.

An example of this individual piece testing would be the purchase web
page on which the customer indicates delivery information, billing informa-
tion, and method of payment. For the purposes of discussion, one web page is
assumed to collect all of this information. The purpose of the test case for the
purchase page is to rigorously test all of the data entry fields (delivery street
address), dropdown lists (state code and credit card), radio buttons (5-day
ground, second day air, and so forth), and any other buttons on the page. The
intent is to completely validate this web page before it is included in a happy
path test case. Figure 7.3 shows what the steps of the more detailed purchase
page test case might be.

The more the individual web page validation that can be done before the
happy path and alternate path validation, the more successful the fi rst time path
tests will be. The other way to look at it is that if all of the individual web pages
work as advertised and one of the paths fails, then you can focus on the activ-
ity-to-activity interaction instead of asking which page might not be working
correctly.

It is hopefully clear now that use cases are a powerful basis on which to develop
business path test cases. Use cases contain the business functionality to be veri-
fi ed. As each use case is refi ned by additional requirements and design detail, the
tester can leverage the more detailed use cases to develop detailed test cases for the
individual application pieces. Execution of the test cases then proceeds in reverse

Step no. Step Expected result

1. Launch the purchase order screen Screen appears

2. Enter purchaser name Accept valid names

3. Enter purchaser address street Accept multiple addresses

4. Enter purchaser address state Select multiple states

5. Enter purchaser address zip Select multiple zip areas

6. Select method of payment Select check/credit card

7. Exit purchase order screen Screen stops successfully

Figure 7.3 A full business path test case from use case

order, that is, the test cases for the individual application pieces are executed fi rst.
When all of the pieces are validated, the test cases for the different business paths
are executed. The next section gives you some approaches for designing both kinds
of functional test cases.

There are some signifi cant limitations to test case development from use
cases. One signifi cant limitation of use cases is the absence of structural (non-
functional) software requirements like security, data management, and inter-
faces. Another signifi cant limitation of use cases is the absence of performance
requirements. We will explore alternative ways of developing structural test
cases in Chapter 8 and alternative ways of developing performance test cases in
Chapter 9.

7.3 AN APPROACH TO FUNCTIONAL TESTING

All functional testing uses business requirements and the associated software design
specifi cations as the validation yardstick. If the business requirement says the
software should do “x,” then functional testing validates “x” as the expected result.
If this topic sparks your interest, Whittaker’s textbooks can give you more details
and the results of current academic research. [25] The functional testing objectives
typically include those described in the following subsections.

7.3.1 User Navigation Testing

If an application is strictly batch processing, then user navigation testing does not
apply. Most software has a series of end user and administrator screens for directing
the software’s operation. The end user screens can be divided into two categories:
navigation and transaction. Navigation screens are those log on and log off screens
that control access to the software, all menus that provide alternate activity paths
thru the software, and all screen-to-screen linkage that represents a continuum of
some business activity. User navigation testing focuses on the user’s ability to log
on to the software with appropriate authority, traverse the application to the de-
sired transaction screens, traverse the transaction screens correctly, and log off the
software. This kind of testing is not concerned with what transaction activity is
being performed on the transaction screens encountered, just that the screens can
be encountered in the correct sequence. As the transaction screens themselves have
become more complex, it takes fewer screen traversals to complete a business activ-
ity. The navigation becomes more intrascreen movement (tabbing) than interscreen
movement.

It is the tester’s job to design and execute tests that traverse all valid navigation
paths and attempt to traverse as many invalid navigation paths as possible. The
valid navigation paths are found primarily in the user guide. The input/expected
result paradigm of black box testing becomes path taken/expected destination
paradigm.

7.3 An Approach to Functional Testing 103

104 Chapter 7 Functional Testing

One of the more complex aspects of user navigation to both develop and test is
the aspect of “stateless” user screens, that is, user screens that you can land on from a
variety of other screens without a prerequisite screen sequence. Indeed, it is common
for several “stateless” screens to be active at the same time.

7.3.2 Transaction Screen Testing

Once an end user or administrator has navigated to a transaction screen, he or she
will perform some meaningful business activity on that transaction screen. The
transaction screen normally has input data fi elds, lists of choices, options, and action
buttons (Add, Change, Delete, Submit, Cancel, OK, and so forth). Some kind of
results may be displayed on the transaction screen after appropriate action buttons
are pressed.

It is the tester’s job to design tests that validate the operation of every fi eld,
list, option, and action button on each transaction screen against the business
requirements, the user guide, and the administrator guide. If results are also
displayed on the transaction screen, then the black box inputs versus the expected
result technique is used to validate the displayed results.

7.3.3 Transaction Flow Testing

Transaction fl ow testing takes the transaction screens that have been validated by
testing and determines if their combined results of correct navigation completes the
intended business activity in some specifi ed way. An example of transaction fl ow
testing is to validate customer profi le updates as

transaction screen 1 for customer name, address, and contact person

transaction screen 2 for customer line of credit approval

transaction screen 3 for customer payment terms and discounts

transaction screen 4 for profi le summary and update action

transaction screen 5 for viewing updated customer profi le

The result of the sequence of fi ve screens being completed is expected
to be a master fi le or database fi le update with all the information collected on these
transaction screens. Another example of transaction fl ow is when you purchase
something online. The expected result is a purchase order for the product(s)
you want to order and pay for. A third example of transaction fl ow is when you pay
a bill online. The expected result is a transfer of funds from your bank account or
posting against your credit card to the company you are paying.

It is the tester’s job to validate that correctly completing the sequence of
transaction screens does provide a correct result. The tester also validates that if any
of the system’s business rules are violated, the system does not provide any result
(all results under the circumstances are normally not valid). Although the tester’s

task for transaction fl ow testing is more complex than the transaction screen testing,
the effi cient tester will use sequences of successful transaction screen test actions to
drive more complex transaction fl ow testing. There is no need to reinvent transaction
screen test actions just for fl ow testing.

7.3.4 Report Screen Testing

Report screen testing is similar to transaction screen testing. The difference is that
you are attempting to retrieve and display data from the system using the report
screens instead of entering data using the transaction screens. The diffi culty in
report screen testing usually lies in the variety of ways an end user can specify
which data are retrieved (search criteria) and how these data are displayed (sorting
and formatting options).

The tester’s job is to pay particular attention to the data retrieved and displayed
because the wrong data may have been selected or, worse yet, not all data requested
were displayed.

7.3.5 Report Flow Testing

Report fl ow testing becomes different from report screen testing when the report results
are provided in other modalities besides on-screen display. For example, hardcopy
output would be one of the more popular alternate report modalities. The tester must
ask the question, “Does the software send exactly the same results to the printer that
it displays on the report screen?” Having a printer option implies the possibility of the
report screen offering a selection of print fonts, another fertile area for testing. Another
rseport modality might be a print fi le to disk (fl oppy, hard disk, CD, or e-mail).

It is the tester’s job to validate the report results on all the alternative report
modalities supported by the software. Similar to our suggestion with transaction
fl ow testing, use successful report screen tests to drive the report fl ow testing.

7.3.6 Database Create/Retrieve/Update/Delete Testing

Many applications use databases behind their transaction and report screens to
manage the application’s data. Database functional testing is normally done in two
steps. The fi rst step is to test the database design viability by successfully performing
the application data manipulations outside of the application.

A brief word of explanation might be needed at this juncture. Databases are
managed by database management systems or DBMSs. Examples of DBMSs
are DB2, Oracle, Sybase, and MicroSoft Access. Each DBMS has a language for
describing data structures (DDLs) and manipulating data within these structures
(DML). Typically, a database administrator is well versed in both languages and
sets up the databases for the application development team. Once the databases are

7.3 An Approach to Functional Testing 105

106 Chapter 7 Functional Testing

set up, programmers can create new records, retrieve records, update records, and
delete records using the DBMS language totally independent of any application.

Back to the fi rst database testing, the tester needs to see if the data in the
databases can be managed per the application requirements. Using our previous
transaction fl ow example, the tester must be able to successfully add a new user
profi le, updating an existing user profi le, and deleting a user profi le just using
the DBMS commands. What this kind of testing validates is the viability of the
database design for the intended application. If the database design is not viable, then
the application can never maintain its data correctly regardless of the expertise of the
application programmers.

The second step is to test the application software’s use of the validated database
design. This testing amounts to looking at the “back side” of the application
after successful fl ow testing has been completed. The test results may look good
on the screen; however, the testing question is “have those same results been
correctly managed in the database by the application?” This kind of testing is easiest
done by pairing up validated transaction fl ow screens with validated report fl ow
screens. If what is seen going into the transaction screens appears on the report
screens, chances are good (not 100%) that the underlying database structure that
supports these screens is being manipulated correctly.

Testing application databases requires cooperation and collaboration between
the tester and the database administrator due to the complexity of DBMS languages,
design, and operations.

7.4 AN APPROACH TO REGRESSION TESTING

The easiest way to describe regression testing is to quote the famous Humphrey
Bogart line in the movie Casablanca, “play it again, Sam.” The term itself means
to regress or go back to a less mature or less stable state. Applied to software,
regression testing means to search for software corrections that make the current
version less stable by unintentionally affecting code not directly related to the
corrections. If this topic sparks your interest, there are a number of good textbooks
that can give you more details and the results of current academic research.
[26–28]

Regression testing is normally started while new code is being written and
existing code is being corrected. The addition of new code or corrections to existing
code always raises the possibility that the new or changed code may accidentally
“break” the already tested code. The testing response to this possibility is to rerun all
successful test cases to date on a new build of the software. If the previously tested
code is not affected by the new or changed code, the previously tested code will
again pass all tests and the testing can go forward. If the regression testing discovers
defects, then the nature and location of the new or changed code is used to help di-
agnose the defect because the new or changed code is the number one suspect. Plan-
ning for regression testing includes standard approaches to writing test actions and
scripts so that they are rerunable and maintained in some kind of library to facilitate

many reruns after many builds. Regression testing is also done from version to ver-
sion. The intent is to rerun the prior version suite of test cases on the next version
build to verify that the new version has not interfered with any prior functionality.
The next version will usually have additional functionality, one of the primary rea-
sons for a new release. Once the new version has been tested and verifi ed ready to
ship or place in production, the new functionality test activities and scripts need to
be added to the prior version regression suite.

Notice that if any of the functionality of the prior version is either changed or
removed, the prior version suite of test cases will predictably fail for those changes
or removals. The response to these test failures is not the usual attempt to try to fi x
the code; rather, the response is to retire the obsolete test activities and scripts from
the next version regression suite. Therefore, the regression suite will not be cast in
concrete per the fi rst version. Rather, it will evolve with functional additions and
changes introduced in each subsequent release.

7.5 DETAILED WHITE BOX TESTING TECHNIQUES

The objective of white box testing is to verify the correctness of the software’s
statements, code paths, conditions, loops, and data fl ow. This objective is often
referred to as logic coverage. The prerequisites for white box testing include the
software requirements, use cases, the executable program, its data, and its source
code. If this topic sparks your interest, there are a number of good textbooks that can
give you more details and the results of current academic research.[29–33]

The software developer normally does white box testing as an extension of code
debugging activity early in the development cycle. Software developers usually focus
on “making the code work” according to use case activities, which gives them the
tendency to debug only the code they know works (selective logic test coverage).
Testers add value to developer debugging activity by helping the developer plan and
debug more of the code than usual (more thorough logic test coverage). The more
the logic test coverage you attain while debugging, the fewer the defects will be
discovered later by other kinds of testing.

As Capers Jones concludes, the earlier these defects can be discovered, the less
expensive they are to correct. The business motivation behind white box testing is ex-
pected economies of testing. Much of the research you will fi nd in white box testing will
relate to hypotheses, algorithms, and procedures that attempt to achieve 100% logic test
coverage under certain, very controlled circumstances. Research has not yet produced a
white box approach that guarantees 100% logic test coverage for all situations.

We will briefl y discuss six generic white box testing techniques.

7.5.1 Statement Coverage Technique

Statement coverage techniques focus on determining what percentage of the
source code lines in a program has been executed. If there are 5,000 lines of

7.5 Detailed White Box Testing Techniques 107

108 Chapter 7 Functional Testing

source code in a program and you can determine manually or with a tool that
you have executed 4,537 lines of source code, then you have achieved a 90.7%
statement coverage (exceptionally high for complex programs). The underlying
hypothesis is that the higher the source code test coverage, the fewer will be the
defects found later. The practical conclusion is that new, unexecuted code lines
are just a software time bomb waiting to explode at the most inopportune mo-
ment in production. The question is not “if” they will explode, only a question
of “when.”

7.5.2 Branch (Simple Condition) Coverage Technique

Branch coverage techniques focus on determining what percentage of the source
code branch (true/false) logic in a program has been executed. If there are 1,500
source code branch points in a program and you can determine manually or with a
tool that you have executed 1,145 branches (count true and false branch executions
separately), then you have achieved a 76.3% branch point coverage (exceptionally
high for complex programs). The underlying hypothesis is that the higher the
branch point test coverage, the fewer will be the defects found later. The practical
conclusion is that unexecuted branches, true or false, are just a software time
bomb waiting to explode just like unexecuted statements. The co-occurrence of
unexecuted branches with unexecuted statements is found most often in untested
error recovery logic.

Because all computer logic conditions resolve to either true or false, you may
wonder about the stipulation of simple conditions in this technique. Choosing to
test the simple condition branches before the compound condition branches requires
fewer initial test actions. All the developer needs to do is choose any test value that
will force a true branch and any test value that will force a false branch, just two test
values per branch.

7.5.3 Compound Condition Coverage Technique

The compound condition coverage technique extends the branch coverage technique
to branches with compound conditions, ones that contain combinations of Boolean
operators AND, OR, and NOT along with pairs of parentheses, possibly nested.
The challenge is to identify all the test value combinations that will evaluate to
true and false for every simple condition and every Boolean combination of simple
conditions. Truth tables are normally employed at this point in the white box test
planning to enumerate all the possible condition permutations. Here is a compound
condition containing two simple conditions.

(AGE � 18 AND SEX � M)
In order to identify the test data for 100% compound condition coverage, the
following truth table is constructed.

From this truth table, you can see that a simple branch test that evaluated to the only
true condition and one false condition would miss the two additional test data input
combinations that would evaluate to false … and possibly discovering a logic error.

The truth table becomes larger and more complex with additional Boolean
conditions, allowing more opportunity for missing logic coverage when using only simple
branching coverage. Here is a compound condition with three simple conditions.

((AGE � 18 AND SEX � M) OR HEIGHT � 6 ft)

There are standard programming language rules for the order of evaluating complex
expressions such as this example. In order to identify the test data for 100% com-
pound condition coverage, the previous example would expand in the following way
using standard Boolean evaluation rules.

From this truth table, you can see that a simple branch test that evaluated to one true con-
dition and one false condition would miss the six additional test data input combinations
that would evaluate to both true and false … and possibly discovering a logic error.

7.5.4 Path Coverage Technique

Path coverage techniques focus on determining what percentage of the source code
paths in a program have been traversed completely. There are a number of defi nitions
of source code paths in the literature. In its simplest form, a source code path is
the sequence of program statements from the fi rst executable statement through a

AGE SEX
ANDed

condition

�18 False
�18 False
�19 True
�19 True

�F False
�M True
�F False
�M True

�F False
�F False
�F False
�T True

ANDed ORed

AGE SEX Condition HEIGHT Condition

�18 False
�18 False
�19 True
�19 True
�18 False
�18 False
�19 True
�19 True

� F False
� M True
� F False
� M True
� F False
� M True
� F False
� M True

� F False
� F False
� F False
� T True
� F False
� F False
� F False
� T True

�16 False
�16 False
�16 False
�16 False
�17 True
�17 True
�17 True
�17 True

� F False
� F False
� F False
� T True
� T True
� T True
� T True
� T True

7.5 Detailed White Box Testing Techniques 109

110 Chapter 7 Functional Testing

series of arithmetic, replacement, input/output, branching, and looping statements to
a return/stop/end/exit statement. If there are 943 different paths through a program
and you can determine manually or with a tool that you have executed 766 of them,
then you have achieved an 81.2% path coverage (exceptionally high for complex
programs). The underlying hypothesis is that the higher the path test coverage, the
fewer will be the defects found later. The practical conclusion is that unexecuted
paths are just a time bomb waiting to explode at the most inopportune moment in
production, even though all of the statements and branch points in the path have been
individually tested.

7.5.5 Loop Coverage Technique

Loop coverage techniques focus on determining what percentage of the source code
loops in a program has been cycled completely. There are several loop constructs
in programming languages like DO, FOR, WHILE, and UNTIL. Some loops are
a clever construct of IF statements and subsequent returns to these IF statements.
Regardless of the loop construct, the objective of loop testing is to force the program
through the loop zero times, one time, n/2 times (where n is the terminal loop value),
n times, and n� 1 times. The one-time loop, the n/2-time loop, and n-time loop
validate expected loop response at the beginning, middle, and end of the longest loop.
The zero-time and n� 1-time loop test for unexpected and inappropriate looping
conditions. We will see this end-point/mid-point testing tactic again in black box
boundary value testing. If there are 732 loops in a program and you can determine
manually or with a tool that you have executed 312, then you have achieved a 42.6%
loop coverage (about average for complex programs). The underlying hypothesis is
that the higher the loop test coverage, the fewer will be the defects found later. The
practical conclusion is that unexecuted loops and loops execute only within expected
loop limits are just a time bomb waiting to explode at the most inopportune moment
in production.

7.5.6 Intuition and Experience

This section is devoted to those software aspects that experienced testers have
found to be troublesome areas of coding that the more formal debugging and testing
techniques tend to miss. Here is a summary of those troublesome aspects.

7.5.6.1 Dates

Dates present three unique data challenges to the developer: valid formats, sort
sequence, and calculations. The original mm/dd/yyyy format of dates remains
problematic because for each mm (month) there is a specifi c range of values for
dd (day) depending on yyyy (years like leap years). The validation of mm versus
dd versus yyyy remains complex and grows more because we crossed the century
boundary with computer systems (the infamous Y2K problem). The global nature

of the Internet has caused software to support a variety of date input formats. For
example, the U.S. date standard is mm/dd/yyyy, whereas the British date standard
is dd/mm/yyyy. Throw in the spelling or abbreviation of the month represented by
mm, and the date input formats become a sizeable format coding challenge.

Date sort sequencing can also be a signifi cant application problem. If the
application wishes to maintain its records in date order (either ascending or
descending), the application must convert the input date to a yyyy/mm/dd sort format
in order for the year to be the primary sort key, the month to be the secondary sort
key, and the day to be the tertiary sort key.

An alternative approach to converting dates back and forth between sort and
report formats is to calculate the number of days elapsed since some “anchor date”
in the past. If the data are really historical, then systems choose a very old anchor
date like October 15, 1582, the advent of the Gregorian calendar and leap year. If the
data just span a century or two, then January 1, 1800 might be an appropriate anchor
date. Then, every date is sorted in two formats, a display format and number of days
elapsed since the anchor date. The number of days elapsed then becomes a much
simpler sort key to manage, just a positive integer. A secondary advantage of this
calculation and storage of days elapsed is that you have the data structure suffi cient
to readily calculate “date � x days” or “date � y days” or day of the week (Monday,
Tuesday, and so forth).

All of these date calculations are possible sources of date processing error or
failure. The tester can plan and execute most of the date testing by collaborating
with the developers to identify and understand where dates and date calculations are
imbedded in the software input/output design, fi le designs, and database designs.

7.5.6.2 Zero Length Anything

There are a number of programming situations that can produce zero data or counts
or process steps. Here is a partial list.

arrays

blank inputs

divide by zero

loops

pointers

record lengths

records (empty fi les)

sorts

As with the dates, many of these zero items can be forced by pressing the “send”
key when you have supplied no data. Also, where calculations are known to exist,
entering blank or zero for some or all of the input values also force these behaviors.
More specifi c testing might require collaboration with the developer to identify other
potential zero-causing areas of the software.

7.5 Detailed White Box Testing Techniques 111

112 Chapter 7 Functional Testing

This is one of the areas in which your background and experience as a software
developer will tend to guide you toward zero-causing areas of the software because
that is where you would place it if you were coding it.

7.5.6.3 Buffer Overflow

Buffer overfl ow is a particularly insidious programming problem because it does
not manifest itself until the software is relatively busy. The problem arises when
an area in memory called a buffer is set aside to manage transient data like user
input or report output or database records or internet packets. When that buffer
area becomes full of data, something must happen to empty part of the buffer and
accommodate more data. Some refi ll strategies dictate that a full buffer must be
completely emptied before more data can be accommodated. Other refi ll strategies
wrap the data around the buffer, accommodating more data while emptying what it
has. So, you can be fi lling and emptying a buffer a number of different ways when
the buffer overfl ows its area. This can make buffer overfl ow errors exceptionally
challenging to repeat.

The symptoms of buffer overflow are as insidious as the event itself because
when a buffer overflows, it overwrites adjacent areas in the computer’s memory.
If that adjacent area also holds data, then the data become corrupt for no apparent
reason. If that adjacent area holds instructions, then the software begins bizarre
behavior that might implicate perfectly correct code under normal conditions.

The buffer overfl ow problem takes on a higher level of testing criticality when
you realize that many computer viruses are introduced by forcing buffer overfl ow
into the software’s instructions.

One of the most effective ways to test for buffer overfl ow is to drive the software
with a large volume of input data, force a large volume of internal fi le processing
or database processing, and force a large volume of output for specifi c buffer areas.
As with the date calculation situation, the tester must collaborate with the devel-
oper to identify the specifi c inputs, outputs, fi le processing, and database processing
that rely on specifi c buffers that need to be tested. It may make sense to combine
some of the buffer overfl ow white box testing with later performance black box
testing described in Chapter 9 to get the volume of buffer traffi c necessary to cause
overfl ow.

All of the white box testing techniques presented here attempt to increase the logical
coverage of source code debugging/testing. The underlying premise is that unexecuted
source code is one of the most frequent and predictable sources of defects.

7.6 DETAILED BLACK BOX TESTING TECHNIQUES

The objective of black box testing is to verify the correctness of the software’s
behavior that directly supports daily business activity. This objective is often
referred to as behavior coverage. The requirements for black box testing are the

software requirements, use cases, only the executable program, and its data.
These requirements are usually met during the middle phases of the development
life cycle when large pieces of code begin to operate together or when software is
purchased from a vendor. If this topic sparks your interest, there are a number of
good textbooks that can give you more details and the results of current academic
research. [34–36]

It is reasonable for anyone (developer or tester) to do the black box test-
ing as long as the person doing the testing is not the person who authored the
code. Software developers usually focus their black box testing on validating
expected behavior of the code (positive testing) against use cases, which gives
them the tendency to ignore unexpected behavior (negative testing). Testers add
value to black box testing by planning and executing both positive and negative
behavior testing because the tester knows that the majority of user-detected
defects arise from unexpected behavior. Much of the research you will find
in black box testing will relate to structured approaches that attempt to pro-
vide 100% positive and negative behavior coverage under certain controlled
circumstances. The best reference for these structured approaches in detail is
Whittaker’s textbook.

We will briefl y discuss four generic black box testing techniques.

7.6.1 Equivalence Classes Technique

Equivalence class techniques focus on identifying groups of input data that tend to
cause the application under test to behave the same way for all values in the group.
The rationale behind this search for input data test groups is to substantially reduce
the volume of test data needed to verify a specifi c behavior. Two simple examples
will help you understand this rationale better.

The fi rst example is a data fi eld with data values grouped by other character-
istics. Consider the application under test to be a security system with a logon ID
 requirement. Furthermore, consider that the security system must validate over
5,000 log on IDs when in production.

The tester might decide to validate every one of the 5,000 logon IDs. Alterna-
tively, if the tester knows that there are only three categories (clerks, supervisors,
and managers) of logon IDs, then perhaps a sampling from each category will
provide suffi cient validation. Consider testing 50 logon IDs from each category.
If any of the 50 logon IDs for a given category is not correctly accepted, consider
increasing the sample size of logon IDs for that category and continue testing. If
the initial sample of 150 logon IDs for all three categories are correctly accepted,
then the tester has achieved the desired test results using only 3% of the possible
test data.

The second example is a data fi eld with a range of possible numerical values.
Consider the application under test to be a hospital admission system, and it is re-
quired to admit patients ranging in age from 1 year old to 99 years old, inclusively.
The tester might decide to test all 99 possible age values. Alternatively, the tester

7.6 Detailed Black Box Testing Techniques 113

114 Chapter 7 Functional Testing

could select the equivalence class of ages 1, 50, and 99 and test the same behavior
using 97% fewer test values. The set of values (1, 50, and 99) is said to be an equiva-
lence class of the set of all possible values (1, 2, 3, …, 97, 98, 99).

The example becomes more dramatic if real number values are to be
tested. Consider the same hospital admission system to require a co-pay be-
fore admission (money the patient must pay first before his or her insurance
will pay the rest of the bill). If the co-pay input field allowed from $0.00 (no
co-pay) to $1000.00, then the tester might decide to test all 1,00,001 possible
co-pay values. Alternatively, the tester could select the equivalence class of
co-pay amounts $0.00, $0.99, $1.00, $1.99, $10.00, $10.99, $100.00, $100.99,
$999.00, $999.99, and $1000.00 and test the same behavior using 99.992%
fewer test values.

Please notice that in both examples, test values at the beginning, in the middle,
and end of the data range were chosen as the equivalence class. Correct middle range
value behavior by the software does not necessarily guarantee correct beginning or
end value behavior by the software. Conversely, correct beginning and end value
behavior by the software do not necessarily guarantee correct middle range value
behavior by the software. So, the recommended black box technique for selecting
equivalence class values includes values at the beginning, in the middle, and at
the end of the range. Please notice that the second equivalence class example, co-
pay, also had values for the different possible value lengths (numbers of signifi cant
digits).

7.6.2 Boundary Value Analysis Technique

The boundary value analysis technique extends the analysis of beginning and ending
input value possibilities for an equivalence class. Boundary values are of interest to
testers because a large percentage of functional errors from input and output data
occur on or around these boundaries.

The traditional boundary value analysis begins by identifying the smallest value
increment in a specifi c equivalence class. This smallest value increment is called
the boundary value epsilon. The epsilon is used to calculate �/� values around
the beginning and ending values in an equivalence class. In the previous example,
the admission age boundary value epsilon is 1 because the input fi eld allows for no
age increment less than a whole year. The admission co-pay boundary value epsi-
lon is $0.01 because the input fi eld allows for no payment increment smaller than a
penny.

In the case of admission age, the beginning boundary test ages would be
�1, 0, and �1, which are �/� epsilon around the beginning value 0. The ending
boundary test ages would be 98, 99, and 100, which are �/� epsilon around the
ending value 99. Good boundary value testing technique suggests that you also
test epsilon values around the equivalence class midpoint like 49, 50, and 51 for
the admission age midpoint of 50. The resulting equivalence class with boundary

value analysis results would then be the set of values (�1, 0, 1, 49, 50, 51, 98, 99,
and 100).

In the case of admission co-pay, the beginning boundary test co-pay would
be �$0.01, $0.00, and �$0.01, which are �/� epsilon around the beginning value
$0.00. The ending boundary test co-pay would be $999.99, $1000.00, and $1,000.01,
which are �/� epsilon around the ending value $1000.00. The midvalue epsilon
test values would be $499.99, $500.00, and $500.01. The resulting equivalence
class with boundary value analysis results would then be the set of values (�$0.01,
$0.00, $0.01, 0.99, $1.00, $1.99, $10.00, $10.99, $100.00, $100.99, $499.99, $500.00,
$500.01, $999.00, $999.99, $1000.00, and $1000.01).

The result of a boundary value analysis is additional input test values to the
equivalence class of values to specifi cally exercise the application’s behavior where
that behavior tends to fail most often. Even with the additional boundary test values,
the equivalence classes remain signifi cantly smaller than the set of all possible val-
ues for the input under consideration.

Equivalence classes of inputs with boundary values are executed as one of the
fi rst step in black box testing. Once correct input value acceptance has be verifi ed,
you can begin to verify correct output results.

7.6.3 Expected Results Coverage Technique

While equivalence classes and boundary value analysis focus on input test values,
expected results coverage focuses on output test values for associated input values.
The fi rst step is to fi nd the business rules in the application requirements that defi ne
the expected results. We will use our hospital admission example to demonstrate
what kind of business rules might be found in the requirements documentation.
Presented with an admission age and a co-pay, the application under test must de-
termine the maximum daily hospital room rate for hospital room assignment. The
maximum room rate insurance coverage business rules might look like the table
below.

Input Input
Output/
result

Age on
admission Co-pay

Maximum
room rate

0–6 years
7–17 years
18–35 years
36–49 years
50–74 years
75–99 years

$50.00
$75.00
$100.00
$125.00
$200.00
$250.00

$50.00
$100.00
$150.00
$300.00
$350.00
$400.00

Business rules for maximum room rate insurance coverage

7.6 Detailed Black Box Testing Techniques 115

116 Chapter 7 Functional Testing

The next step is to develop a table of valid combinations of equivalence class
inputs with boundary values per the business rules that are expected to give the busi-
ness rule results. Below is the start of the table of valid combinations for the hospital
admission business rules.

The next step is to extend the table of combinations to disallowed combinations
by the business rules. For these disallowed combinations, some kind of error mes-
sage should be found in the corresponding expected results column rather than a
maximum room rate. The programming specifi cations should be the source of these
expected error messages in lieu of maximum room rates. Below is the extension of
the table of combinations to account for disallowed combinations.

Table of valid combinations—maximum room
rate (partial table)

Input Input
Output/
result

Age on admission Co-pay Maximum
room rate

0–6 years
0
1
3
5
6
6–17 years
7

$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$75.00
$75.00

$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$100.00
$100.00

Table of valid and disallowed combinations—maximum room rate (partial table)

Input Input Output/result

Age on admission Co-pay Maximum room rate

0–6 years
�1
0
1
3
5
6
7
3
3
6–17 years
5
6
7

$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$49.99
$50.01
$75.00
$75.00
$75.00
$75.00

$50.00
error—age not in range
$50.00
$50.00
$50.00
$50.00
$50.00
error—co-pay not valid for age
error—co-pay not valid for age
error—co-pay not valid for age
$100.00
error—co-pay not valid for age
$100.00
$100.00

The fi nal step is to add a column on the right side of the combinations table for
actual test results. The resulting table is called an expected value coverage matrix.
The partial matrix for this example is given below.

The actual test results are posted in the matrix as the black box test execution is
performed. Differences between expected results and actual results for any combina-
tion of inputs should cause further analysis to determine if the difference is (a) faulty
test design, (b) unclear ambiguous business rules, or (c) program error.

7.6.4 Intuition and Experience

This section is devoted to those software aspects that testers have found by repeated ex-
perience to be troublesome areas in an application under development that the more for-
mal behavioral testing tends to miss. Here is a summary of these troublesome aspects.

7.6.4.1 Error Handling

Error handling is by far the most complex and most onerous programming to
develop. By its very nature, error handling is supposed to expect the unexpected
and gracefully recover to the pre-error operation state. It is not surprising that er-
ror handling represents the greatest risk of behavior failure.Error handling chal-
lenges the programmer fi rst to detect that an error in data or processing has occurred.
Then, error handling challenges the programmer to correctly alert the end user to
the situation. Finally, error handling challenges the programmer to correctly recover

Expected results matrix—maximum room rate (partial table)

Input Input Expected results Actual results

Age Co-pay Maximum room rate
Maximum
room rate

0–6 years
�1
0
1
3
5
6
7
3
3
6–17 years
5
6
7

$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$50.00
$49.99
$50.01
$75.00
$75.00
$75.00
$75.00

$50.00
error—age not in range
$50.00
$50.00
$50.00
$50.00
$50.00
error—co-pay not valid for age
error—co-pay not valid for age
error—co-pay not valid for age
$100.00
error—co-pay not valid for age
$100.00
$100.00

7.6 Detailed Black Box Testing Techniques 117

118 Chapter 7 Functional Testing

both data and processing from the error and allow the end user to continue error-free
operation.

The richness of the error recovery code is limited in part to the programmer’s
exposure to end users of similar kinds of applications or support technologies. The
richness of error recovery testing is also limited in part to the tester’s exposure to
error recovery techniques that do not work well regardless of the business application
or support technologies.

In an ideal development project, the programmers maintain a single list of errors
that end users can encounter. This list would contain items like

Application X—message list contents

unique error code/ID

error message text

error description

code module that detects the error condition

severity of the error encountered

I � Informational
W � Warning
A � Abort current activity and attempt to recover to preerror operation

user action required

application action required

likelihood of data loss

Such a list becomes the basis for planning 100% error handling validation. The
testing challenge is to repeatably (remember SPRAE) cause the errors on demand.

The sad truth is that many development projects let their programmers imbed
most of this error message information in the source code. The practice of scattering
error handling information throughout the source code is so prevalent in Internet
applications that software vendors have found a thriving niche market in providing
reverse engineering tools that fi nd and list out all error messages in an application.
The testing challenge is to determine what circumstances can cause each reverse
engineered error message to appear.

7.6.4.2 Data Type Conversions

Any time user inputs are converted from one data type to another, for example,
alphabetic to numeric, there is the possibility of an incorrect or failed conver-
sion. Depending on the programming language(s) used to develop the new ap-
plication, this failed conversion can cause a range of execution responses from
benign return codes that the application can intercept and interpret to malignant
execution halts. The corollary to failed conversion is the application’s ability to
identify incorrect conversions (alphas in a strictly numeric fi eld) before they are
attempted.

The tester has the challenge of identifying input and output fi elds that are data
type sensitive and design execution tests to validate their correctness and robustness
(will not fail). The primary source for this test planning is the user guide that is sup-
posed to spell out all input fi eld data type restrictions.

7.6.4.3 Dates

We discussed the complexities of date formats and date calculations in white box
testing. Dates reappear in the black box discussion because there is date behavior
that a user can observe and a tester can test without having the code available. These
dates typically appear on data entry screens, in information search criteria, and on
reports. The user guide is the best source of expected behavior for dates that the user
directly controls and sees. This is also the situation in which the tester discovers date
formatting choices in some kind of user profi le, for example, the formats mm/dd/
yyyy or dd/mm/yyyy or Month, yyyyy. So, the tester is challenged to test the default
date format wherever it is used in the software, as well as all the other formatting
choices in the same software locations.

7.7 SUMMARY

The objective of functional testing is to validate the software behavior against the
business functionality documented in the software requirements and specifi ca-
tions. Business functionality is generally defi ned as those activities that support routine
daily business. Functional testing is achieved by a series of tests that exercise increasingly
more of the software that directly enables users to accomplish this routine daily business.

There is a relatively new development scoping technique called a use case that
software developers employ to capture user-functional requirements of a system for
the purpose of scoping the project. The technique became popular in the mid-1990s
fi rst as an object-oriented design technique and later broadened in appeal for other
types of software development. Consider drafting a test case for each use case happy
path and each use case alternate path, bringing the use case sequence of actions into
the test case steps almost one-for-one.

As the design phase of the software development project continues, details
become available that spell out how each actor can accomplish the use case activi-
ties—menus, data entry web pages, data search web pages, report web pages, print-
outs, databases for purchases, and so forth. As these details emerge from the design
work, the tester can identify the pieces that need testing individually before they can
be tested together, implying more test cases. Use cases are a powerful basis to develop
business path test cases. Use cases contain the business functionality to be verifi ed.
As each use case is refi ned by additional requirements and design detail, the tester can
leverage the more detailed use cases to develop detailed test cases for the individual
application pieces. Execution of the test cases then proceeds in reverse order, that is,
the test cases for the individual application pieces are executed fi rst. When all of the
pieces are validated, the test cases for the different business paths are executed.

7.7 Summary 119

120 Chapter 7 Functional Testing

All functional testing uses business requirements and the associated software
design specifi cations as the validation yardstick. If the business requirement says the
software should do “x,” then functional testing validates “x” as the expected result.
The functional testing objectives typically include

user navigation testing

transaction screen testing

transaction fl ow testing

report screen testing

report fl ow testing

database create/retrieve/update/delete testing

The term “regression testing” means to regress or go back to a less mature or
less stable state. Applied to software, regression testing means to search for software
corrections that make the current version less stable by unintentionally affecting
code not directly related to the corrections. Regression testing is normally started
while new code is being written and existing code is being corrected. The addition
of new code or corrections to existing code always raises the possibility that the
new or changed code may accidentally “break” the already tested code. The testing
response to this possibility is to rerun all successful test actions and scripts to date
on a new build of the software.

The objective of white box testing is to verify the correctness of the software’s
statements, code paths, conditions, loops, and data fl ow. This objective is often re-
ferred to as logic coverage. The prerequisites for white box testing include the soft-
ware requirements, use cases, the executable program, its data, and its source code.
Six generic white box testing techniques are as follows:

statement coverage technique

branch (single condition) coverage technique

compound condition coverage technique

path coverage technique

loop coverage technique

intuition and experience

The objective of black box testing is to verify the correctness of the software’s
behavior that directly supports daily business activity. This objective is often referred
to as behavior coverage. The requirements for black box testing are the software
requirements, use cases, only the executable program, and its data. These require-
ments are usually met during the middle phases of the development life cycle when
large pieces of code begin to operate together or when software is purchased from a
vendor. Four generic black box testing techniques are

equivalence classes technique

boundary value analysis technique

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

1.

2.

expected results coverage technique

intuition and experience

7.8 PUTTING FUNCTIONAL TESTING IN
PERSPECTIVE

The most visible and well understood kind of testing is functional testing. Both the
need for functional testing and the best description of functional testing goals come
from the business requirements. The most common test shortcomings in functional
testing tend to arise from the alternate paths, the exceptions, and the negative situa-
tions. Much of this chapter is devoted to a variety of general and detailed functional
testing techniques that when conscientiously applied in a comprehensive test plan
tend to reduce these shortcomings.

KEY TERMS AND CONCEPTS

3.

4.

White box testing
Logic coverage
Anchor date

Black box testing
Behavior coverage
Boundary value epsilon

Functional testing
Use case testing
Regression testing

Key Terms and Concepts 121

122

LEARNING OBJECTIVES

to examine structural testing approaches

to assess the potential business liabilities of ignoring structural testing

8.1 INTRODUCTION

This section continues the discussion of software testing that validates the behavior
of software. The objective of structural testing is to validate the behavior of software
that supports the software the user touches. Said another way, the business application
software must operate on a hardware platform with an operating system and one or
more software support components such as security, connectivity, and some kind
of data management. This collective support software is often called the software
platform. The software platform purpose is basically different from the application
software. The software platform is not written for one specifi c business application.
Conversely, a software platform is written as a generic capability that can support
many different kinds of business applications at the same time. Therefore, software
platforms are a possible point of failure when newly developed software is run. The
risk of software platform failure is reduced by structural testing techniques.

The term non-functional testing is used parenthetically in the chapter title because
it is a popular synonym for structural testing in much of the testing literature. The au-
thors choose to use the term structural instead of non-functional in this textbook to avoid
the common rejoinder, “if the code we are testing is non-functional, doesn’t that mean
we already know it does not work ??!” The structural testing techniques in this section
should be viewed more as a buffet rather than a strict diet plan. Apply these techniques
only to the software platform components necessary to support your new application.

•
•

Chapter 8

Structural (Non-functional)
Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

Because most software platform components come prepackaged (no source code
available), the white box techniques cannot be applied to the software platform. Because
the software platform behavior is seldom observed directly by the end user, most of
the black box testing techniques except intuition and experience cannot be applied to
the software platform as well. This is an area of testing that relies on the tester’s own
experience of some kind as a system administrator role or the tester’s collaboration with
system administrators. Several structural testing techniques have been described here.

8.2 INTERFACE TESTING

Interface testing focuses on data transferred between the application under test and
different software platform components. Examples of data transfer mechanisms that
need testing include data fi les, application program interfaces (APIs), database re-
quests, and network data transfers. One helpful way to develop interface testing is to
consider a four-step approach.

First, write tests that cause the application to produce data for transfer but
have the transfer itself inhibited. That will allow the tester to validate that the
application is producing the correct data in the correct format for use by the
receiving software platform components.

Second, remove the data transfer inhibitors and observe if the receiving
software platform component deals with the incoming data from the application
correctly. This will allow the tester to validate that the software platform is
correctly processing the already validated application data. If problems are
found with this data transfer, then you have isolated the problem to the vendor’s
interface component or its data specification.

Third, write tests that cause the application to request data from other software
platform components, but manually substitute the requested data in lieu of a
“live” data feed from the involved software platform. This technique is referred
to as “stubbing” the inputs. You will need to create and validate the manual data
using the software platform component vendor interface specifications. This
will allow testers to validate that the application is correctly accepting the data
from the software platform.

Fourth, connect the application to the software platform components and rerun
the data requests with “live” data feeds. This will allow the tester to validate that
the software platform is producing data per its data specifications. If the problems
are found with these data, you have isolated the problem to the vendor’s interface
component (does not work as advertised) or its data specifications.

Here is a pictorial view of these four steps.

 1st: Application under test → Data (validate)
 2nd: Application under test → Data → Support platform (validate)
 3rd: Application under test (validate) ← Data ← Manual substitution
 4th: Application under test ← Data (validate) ← Support platform

8.2 Interface Testing 123

124 Chapter 8 Structural (Non-functional) Testing

8.3 SECURITY TESTING

Consider leveraging equivalence classes for security behavior testing. Most se-
curity systems have different types or levels of security relating to end user
processing restrictions based on job roles. For example, a typical three-level
security system would define (1) clerks and other employees who just need to
view data at security level 1, (2) clerk managers who need to view and update
at security level 2, and (3) security administrators at security level 3 to grant
and deny permissions to clerks at security level 1 and clerk managers at security
level 2.

A brute force approach to testing these security behaviors would be to col-
lect all of the user ID/password pairs in the company (very sensitive corporate
information) and test each user ID/password pair to verify that the user ID under
test is authorized and has the appropriate security access. In smaller companies,
this could require testing hundreds of ID/password pairs. In larger companies,
this could require testing thousands of pairs. Applying equivalence class analy-
sis to the situation would allow you to choose may be 20–50 ID/password pairs
for each level of security. Remember that in each equivalence class of ID/pass-
words by security level, you want to choose some valid ID/password pairs for the
level (positive testing) and some invalid ID/password pairs for the level (negative
testing).

Security for the new application may include encryption of passwords, as well as
data that may be sent or received by the application. Testing techniques for encryption
are beyond the scope of this textbook; however, we have provided a starting point for
further reading. [37–41]

Once ID/password combinations, ID/password pair security levels, and data
encryption have been tested, there is one remaining area of security concern. As
with all software capabilities, security comes with a performance price tag. It takes
a fi nite amount of time (greater than zero) to complete a security activity every
time it is needed. Some software designers prefer to do security checking only at
the start of a user session. Other software designers prefer to do security checking
before each activity a user invokes. Still other software designers use a combina-
tion of initial checking and ongoing checking during end-user sessions. Regard-
less of the approach that the software designer takes to implementing security, the
tester needs to measure the application’s performance degradation specifi cally due
to security. We have seen companies decide not to test security performance but
to “turn on” security just before the system goes “live” because security was not
expected to add noticeable processing overhead. These companies then faced the
following question midday the fi rst day the new application is live, “How can we
disable security until we fi nd out what is making the application run so slow in
production?”

Although performance testing is the subject of the next chapter, it is reasonable
to raise the security testing concern here and encourage the software development
team to turn on full security as early in the application as practical both from a
regression standpoint and a performance standpoint.

8.4 INSTALLATION TESTING

Installation testing focuses on the way the new application or system is placed into its
production environment. The installation process itself can vary from a simple startup.
exe that copies all application fi les to their proper place to a complex set of fi les and an
instruction manual for an experienced system installer. Regardless of the simplicity or
complexity of the installation process, it needs to be tested to ensure that the recipients
of the new application or system can be successful at making it ready for use.

The recommended approach is to have a test environment with the hardware
platform(s) and software platform set up to look exactly like the intended production
environment. Then the test is to execute the installation procedure as written with
the fi les provided to validate successful installation.

During the last 10 years, installation processes were weak in helping the end-user
installer determine if the installation was successful. There has been a resurgence of
vendors that include installation verifi cation aids, both manual and automatic, with
the installation packages. Do not forget to test the verifi cation aids too!

8.5 THE SMOKE TEST

With the new, complex software applications, verifi cation of a successful installation is
not suffi cient to allow the end user to start using the software for routine business. Two
more tasks must be completed fi rst: confi guration and administration. This section deals
with confi guration verifi cation. The next section deals with administration verifi cation.

Confi guring an installed application means selecting among a list of optional
ways the software can be operated to make the software operate more closely to
the specifi c organization’s requirements. Typical confi guration tasks include setting
startup parameters and choosing process rules. Examples of startup parameters are
the location of data fi les, maximum number of user sessions, maximum user session
duration before automatic timeout, ID/password of the system administrator, default
date formats, and geography-specifi c settings for language and culture. Examples of
process rules are defi nitions of security classes, startup/shutdown schedules, backup
schedules and destination fi les, accounting rules, and travel reservation rules.

The smoke test is used to verify that a successfully installed software applica-
tion can be subsequently confi gured properly. As you can see by the variety of con-
fi guration examples, there are a large number of confi guration combinations possible
for most applications. The challenge of the smoke test planner is to identify the most
likely confi guration combination for the 10 most important customer installations.

The tester starts with a successfully installed copy of the software and proceeds
to confi gure/reconfi gure the software per the 10 combinations. Each time a differ-
ent confi guration combination is established, the tester executes minimal steps that
demonstrate the software is correctly honoring the new confi guration.

The term “smoke test” comes from the hardware engineering practice of plug-
ging a new piece of equipment into an electrical outlet and looking for smoke. If

8.5 The Smoke Test 125

126 Chapter 8 Structural (Non-functional) Testing

there is no sign of smoke, the engineer starts using the equipment. The software
smoke test is not exhaustive like regression testing. Rather, it is an attempt to verify
the usability of the most likely fi rst production confi gurations independent of the
confi guration test cases that were executed during software development.

8.6 ADMINISTRATION TESTING

Administration of a new application or system is the next operational step after
successful installation and smoke test. Administration can include such technically
complex activities as applying updates and fi xes to the software. Administration
can also include organization-specifi c activities such as adding users to the system,
adding user security to the system, and building master fi les (customer lists, product
lists, sales history, and so forth).

Administration testing is an extension of functional testing of business activities
to functional testing of business support activities. If the administrative software
components are developed fi rst, then the results of successful administrative tests
can be saved as the starting point for business function testing that relies on cor-
rect administrative setup. If the administrative components are developed second to
business functions, then the manually built system setup fi les used to successfully
test the business functions can be used as the expected results of the administrative
component tests.

8.7 BACKUP AND RECOVERY TESTING

Sooner or later, all business software applications fail. The extent of fi nancial dam-
age that occurs with this failure is directly proportional to the software developer’s
effort to minimize that fi nancial damage. If little thought is given to recovery after
failure, the business will not be able to recover. A surprising number of commercial
software packages simply instruct you to “start over” when a failure occurs.

If serious thought is given to recovery after failure, a backup strategy emerges
that enables that recovery to occur. The accepted approach is that you start your
failure defense by periodically making backup copies of critical business fi les such
as master fi les, transaction fi les, and before/after update images. Then, when (not
if) the software fails, the backup fi les are used to restore the software close to its
pre-failure state.

Depending on what resources you are willing to spend on routine backup ac-
tivities, the recovery pre-failure state can range from last weekend’s backups (fairly
inexpensive) to last night’s backups (more expensive) to all backed up transactions
except the one that caused the failure (very expensive but guarantees minimum loss
of business). To test backup and recovery processes, you must perform a number
of backups, interrupt the application abnormally, and restore the application using
just the backups. Recovery data are then validated against the expected pre-failure
state.

This testing approach seems relatively straightforward and somewhat intuitive.
Be aware that the authors have seen more companies skip restore testing than per-
form restore testing. For some unexplained reason, these companies concentrate on
validating the backup schedule and procedures, never trying to restore business from
those backups. More often than not, when the untested but now business-critical
restore process is used for the fi rst time on real data, the attempt will fail for a variety
of preventable reasons. For example, the backup fi les are empty or the backup fi le
rotation is erroneous, causing you to write over the backup fi les last weekend that
you so desperately need now. It is truly a career-altering experience.

8.8 PUTTING STRUCTURAL TESTING
IN PERSPECTIVE

The obvious focus of test planning for software is the application or system under
development. A less obvious but just as important focus is the software that supports
the new application. Although the support software cannot compensate for a poor
application implementation, it can detract from a good application implementation.
The motivation to plan and execute structural tests is to validate this software ap-
plication enabler.

8.9 SUMMARY

The objective of structural testing is to validate the behavior of software that sup-
ports the software the user touches. This collective support software is often called
the software platform. The software platform purpose is basically different from
the application software. The software platform is not written for one specifi c busi-
ness application. Conversely, a software platform is written as a generic capability
that can support many different kinds of business applications at the same time.
Therefore, software platforms are a possible point of failure when a newly developed
software is run. The risk of software platform failure is reduced by structural testing
techniques.

Because most software platform components come prepackaged (no source
code available), the white box techniques cannot be applied to the software platform.
Because the software platform behavior is seldom observed directly by the end user,
most of the black box testing techniques except intuition and experience cannot be
applied to the software platform as well. This is an area of testing that relies on the
tester’s own experience of some kind as a system administrator role or the tester’s
collaboration with system administrators. Structural testing techniques include the
following:

interface testing

security testing

1.

2.

8.9 Summary 127

128 Chapter 8 Structural (Non-functional) Testing

installation testing

the smoke test

administration testing

backup and recovery testing

KEY TERMS

3.

4.

5.

6.

Software platform
Interface testing
Security testing

Installation testing
Smoke test

Administration testing
Backup and recovery

testing

 129

LEARNING OBJECTIVES

to define the kind of testing that measures the speed of software

to analyze techniques that simplify the intrinsically complex performance testing of
software transaction mixes

to assess the potential business liabilities of ignoring performance testing

9.1 INTRODUCTION

We advance from testing techniques that validate the software behavior to testing
techniques that validate the software “speed.” Speed in this context means that a
tester measures aspects of software response time while the software is laboring un-
der a controlled amount of work, called a “workload.” To make the software reveal
its true production speed, the tester must execute the performance tests in a testing
environment that approximates the intended production environment as closely as
possible. These execution testing techniques are fundamentally different in objective
and approach from functional testing where the objective is validating correct code
behavior regardless of speed.

Performance testing occurs after the functional testing is mostly completed and
the software has become quite stable (fewer and fewer changes or corrections). Func-
tional defects in the software may be revealed during performance testing, but this
is not the testing objective.

The objective of performance testing is to validate the software “speed” against
the business need for “speed” as documented in the software requirements. Software
“speed” is generally defi ned as some combination of response time and workload
during peak load times. These peak load times may occur during lunch time, at the
opening of the stock market day, or after midnight when all online customers are in
bed (overnight batch workload). Performance testing is achieved by a series of tests

•
•

•

Chapter 9

Performance Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

130 Chapter 9 Performance Testing

that introduces increasingly more workload of increasingly more complex business
transaction mixes.

9.2 WORKLOAD PLANNING TECHNIQUES

Your fi rst thoughts about performance testing may revolve around timing
measurement precision. If the workload is incorrectly planned or executed, the most
precise timing measurements will not bear any resemblance to the timing exhibited
by the software in production. So we need to consider workload planning as the fi rst
step in performance testing.

The performance tester’s fi rst workload challenge is to identify which business
transactions and activities need to be measured for performance. In all but the simplest
software applications, it is diffi cult to identify the most important transaction and activ-
ity candidates for performance testing. The diffi culty lies partly with the software end
user’s typical reaction, “everything must respond in less than 3 seconds.” Somehow the
tester must convince the end-user that different groups of transactions and activities
will have different performance requirements based on different business priorities.

For example, customer purchase transactions may need to be completed in less
than 3 seconds in order to keep the customer interested in buying more merchandise.
By contrast, the transactions like credit card validation or warehouse ship ordering
that occur to complete the purchase can be done 3 hours later and the customer will
still get his or her merchandise delivered on the same date next week. This slow re-
sponse time grouping may not thrill the employees, but as long as they can get their
job done in time, the business investment required to speed up the employee transac-
tion grouping response time faster than 3 hours has a very low return on investment.

Another example would be bank customer online requests for fund transfers.
Because it is the policy of most banks to make the fund transfer available no sooner
than overnight, the online customer request confi rmation for fund transfer may have
a 5 seconds response time requirement whereas the transfer transaction itself has a
12 hours response time (batch, overnight).

Lurking in the background of all online transaction rate discussions is the “Rule
of 8.” The Rule of 8 is a human behavior discovered in the 1970s by measuring the
productivity of computer users as their system response time slows from subseconds
to 20 seconds. The conclusion back in the 1970s and reconfi rmed in the 1990s is that
when the system response slows down beyond 8 seconds per transaction, human pro-
ductivity falls off dramatically. The popularly accepted explanation for this phenome-
non is that when the system responds in 8 seconds or less, the computer user can retain
his or her train of thought about intended next actions. Response times longer than
8 seconds cause the computer user to forget what he or she was doing or intended to do
next. For this reason, there was much emphasis placed on response times of 8 seconds
or less for mainframe and client/server applications during the 1980s and 1990s.

Here is an interesting side note to the Rule of 8. Computer center staff continually
need to manage the expectations of their users. If something does not work correctly,
the users get upset. If something does not work fast enough, the users get upset. By

the late 1970s, large mainframe computers had the capacity for delivering subsecond
response times over a wide range of software activities for a large number of users.
Computer center managers opted to “tune” these mainframes to a 4–5 seconds (in-
tentionally slowed down) response time. Users became accustomed to the 4–5 sec-
onds response time as the norm and certainly satisfactory with respect to the Rule
of 8. Then, as new software was added to the mainframe, there was reserve capacity
that the computer center managers could “tune” back in so that the response time
never slowed down beyond the 4–5 seconds range. The users came to expect that
adding software to the mainframe’s workload would not slow down the response
time as they had experienced in the 1960s and early 1970s. The computer center
managers found a way to manage performance expectations of their users without
giving the users the absolute best performance that the technology could provide.

The emergence of Internet applications has caused great consternation among
end users. Internet application response times often range in the 10 seconds–3 min
range with little hope for improvement using the current technology. Knowing that
the Rule of 8 is still alive and well, the tester must team with the developer in setting
realistic end-user expectations about performance capabilities and limitations of a
new Internet system.

9.2.1 Documenting the Performance Workload
Requirements

The outcome of this workload analysis for a purchasing application might be the
following groups of transactions and their performance requirements. Notice that
the performance requirement is stated as a maximum response time (no slower than)
rather than an average response time.

9.2.2 Documenting the Performance Workload Peaks

The performance tester’s second workload challenge is to determine peak usage
of each group of transactions and the timeframes in which the peak usage occurs.

Transaction group
Response time

requirement

Menu navigation
Log on/Log off
Product detail display
Purchase steps
Catalog search
Credit card payment
Product ship

Max 3 seconds
Max 3 seconds
Max 4 seconds
Max 7 seconds
Max 10 seconds
Max 30 seconds
Max 24 hours

Draft 1 Performance workload plan

9.2 Workload Planning Techniques 131

132 Chapter 9 Performance Testing

Peak usage is normally measured in terms of active users. For example, if 500 users
normally log on to the purchasing system over the lunch hour and 2,000 users nor-
mally log on around 7P.M. in the evening, then the peak expected workload for all log
on/log off is 2,000 users. Notice also that the peak expected workload is 2,000 users
whether the user base is 2,000 users or 2,000,000 users.

When researching the peak workload of users for a particular group of transactions,
specify that you are interested in numbers of active users at peak workload time rather
than the number of concurrent users. Concurrent user workloads are of interest for
specifi c tests such as database record lock contention, deadly embraces, or network
packet collisions. The actual occurrence of truly concurrent activity is rare. For ex-
ample, if the peak workload is 2,000 active users, then it will be most unusual to ob-
serve more than fi ve truly concurrent users at any time. Truly, concurrent users press
the Enter key on the same transaction at precisely the same time causing the same
transaction to launch in the application and follow exactly the same execution path.

Active users access the system during the same timeframe, have been allocated
system resources for a work session, and are launching a variety of activities or
transactions based on their job role or customer needs. It is this allocation/realloca-
tion of system resources during the active work sessions that will affect the vast
majority of transactions being launched. Each launched transaction will compete
with every other launched transaction for these fi nite system resources. It will be the
objective of the performance instrumentation to measure how well the transactions
compete for these resources under different workload situations.

The peak usage of each transaction group is now added to the workload plan:

The Mon–Fri 12–1 P.M. peak activity entry means that a peak of 2,000 custom-
ers use the system during lunchtime at least one workday of the week. From a per-
formance testing perspective, it does not matter which specifi c day it occurs or if it
occurs during several weekdays. The peak is the peak from a performance testing
perspective. Later in the development process, the production staff will want very
much to know which day(s) of the week the peak occurs for production schedule
perspective.

The third performance tester’s challenge is to clarify just how many different
workload peaks need to be tested. Looking down the Draft 2 plan, you will notice

Transaction group

Response time
requirement

Peak active
users/

customers
Day/time of peak

activity

Menu navigation
Log on/Log off
Product detail display
Purchase steps
Catalog search
Credit card payment

Max 3 seconds
Max 3 seconds
Max 4 seconds
Max 7 seconds
Max 10 seconds
Max 30 seconds

2,000
2,000
2,000

500
2,000

500

Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Sat 9–11 A.M.
Mon–Fri 12–1 P.M.
Sat 9–11 A.M.

Draft 2 Performance workload plan

that not all of the transaction groups peak Mon–Fri noon. Some of the groups peak
during Sat A.M. Looking a little closer, you will realize that the weekday noon
 transaction groups are predominantly browsing activities in contrast to the Saturday
transaction groups that are predominantly purchasing activities. This weekly
workload has more than one peak. To complete the workload plan, you will need to
revisit each of the two peaks and develop separate workload plans, now designated
weekday browsing and Saturday purchasing.

Look for the peak active users for each transaction group in all workload plans.
Failure to revisit each transaction group for all plans may cause performance test
underreporting. For example, if you test the weekday browse peak workload without
any purchases because purchases peak on Saturday, you may miss the fact that a
few purchase transactions during the weekday could noticeably slow down a browse
response. Although the number of customers making purchases during the week
does not reach the Saturday 500 peak, you should strongly suspect that there may be
at least 50 purchases (10% of Saturday peak) during the weekday browse workload
peak. Similarly, the number of customers doing catalog searches on Saturday does
not reach the 2,000 weekday peak; however, you should suspect that there may be at
least 200 catalog browses (10% of the weekday peak) during the purchase Saturday
workload peak.

Here is the revised workload plan split out to represent the two workload peaks
discovered so far.

Transaction group
Response time

requirement
Peak active

users/Customers
day/time of peak

activity

Menu navigation
Log on/Log off
Product detail display
Purchase steps
Catalog search
Credit card payment

Max 3 seconds
Max 3 seconds
Max 4 seconds
Max 7 seconds
Max 10 seconds
Max 30 seconds

2,000
2,000
2,000

50
2,000

50

Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.

Draft 3 Performance workload plan for weekday browsing

Transaction group
Response time

requirement
Peak active users/

customers
Day/time of
peak activity

Menu navigation
Log on/Log off
Product detail display
Purchase steps
Catalog search
Credit card payment

Max 3 seconds
Max 3 seconds
Max 4 seconds
Max 7 seconds
Max 10 seconds
Max 30 seconds

500
500
200
500
200
500

Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11

Draft 3 Performance workload plan for saturday purchases

9.2 Workload Planning Techniques 133

134 Chapter 9 Performance Testing

9.3 WORKLOAD EXECUTION TECHNIQUES

Once you have identifi ed the groups and volumes of transactions for each peak
workload test, you need to develop the steps to create that peak in a test environment
so that performance measurements can be taken. There are three traditional steps for
executing performance test workload.

9.3.1 Workload Ramp-up to Peak

Workload ramp-up is the process of initiating enough user sessions to drive the peak
workload. If the peak is 2,000 users, then 2,000 users must be logged on to the sys-
tem in the test environment during the fi rst part of the peak workload window. In
real life, 2,000 users would not simultaneously log on within the fi rst seconds of the
lunch hour. The log ons would be staggered over a period of 5–10 min (more work-
load analysis information is needed here) as users put away their daily business and
prepare to browse during their lunchtimes.

Successful ramp-up without any user transaction activity is the testing objec-
tive of the fi rst step. Said another way, if the peak workload of users cannot even
log on, then workload transaction response time is moot. The log on or launch or
startup user activity may appear simple on the screen; however, this is normally the
time when the largest number of processing resources (memory, fi les, and process
threads) are allocated to the user. Complete resource depletion of the application’s
test operating environment occurs frequently during initial attempts to ramp up
 active users to peak.

The fi rst time you attempt to ramp up any large number (hundreds) of users,
the application is expected to fail before half of the intended users have been ini-
tiated. Try the ramp-up in small increments of 5 or 10 users to better isolate the
ramp-up failure point. At this time in the development and testing cycle, only a
small number (less than fi ve) of users have ever been launched at any time by either
the developers or testers. The ramp-up will reveal all kinds of resource problems
such as not enough memory, not enough processing threads, or not enough fi le
space.

Once the application has been able to successfully ramp up the peak workload
log on without any user activity, the application is tested for successful ramp- up
within a peak time window, say 10 min in our example. Again, expect the applica-
tion to fail several ramp-up attempts within the required time interval. The resource
starvation issues will shift from memory, fi les, and process units to raw CPU speed
and communication bandwidth that really have not been taxed fully by slow ramp-
up testing at this point. Expect some software under development to never achieve
the required peak workload ramp-up in the required time interval due to inadequate
performance design. If the peak workload within the time interval is a contractual
requirement, then the developers are faced with either a major redesign effort and as-
sociated contract penalties or abandonment of the software and loss of the software
development contract.

9.3.2 Workload Ramp-down From Peak

Workload ramp-down is the process of gracefully ending all the active user sessions
that drove the peak workload. At the end of lunchtime, users log off the system,
maybe over a 2–3 min period (more workload analysis information is needed
here too).

With peak workload ramp-up successfully achieved, ramp-down testing
commences in a similar way. During ramp-up testing, the ramp-down is not an
issue. You close down the active users in the test environment any way you can
as quickly as you can to clean up and get ready for the next ramp-up test. Now
we need to focus on achieving successful ramp-down. As with the ramp-up, a
successful ramp-down should be attempted fi rst in increments of 5 or 10. While
releasing resources should be faster and less error-prone than acquiring resources,
ramp-down errors will be encountered. Continue to ramp up/ramp down in
additional user increments. Once gentle ramp-down has been achieved from peak
workload, perform the ramp-down again within a required ramp-down time inter-
val if such a requirement exists. Expect more errors to be encountered during the
timed ramp-downs.

9.3.3 Performance Measurement at the Peak

Having successfully achieved ramp-up and ramp-down for the peak workload, you
are now ready to consider the timing aspects of performance measurement at peak
workload. We are going to set aside the workload plans for a moment and gain a
perspective on measuring the responsiveness of software. Then, we will marry that
measurement perspective with the workload ramp-up/ramp-down testing that we
have just completed.

9.4 COMPONENT PERFORMANCE TESTING

The term “performance testing” has come to mean a variety of different software
testing techniques where the common characteristic is the measurement of some
kind of response time from the software. Performance testing can mean that you
measure the response time of some component of the software that is suspected of
contributing a large delay in completing a task. An example of performance testing
at the component level would be database searches on various criteria in database
fi les of various sizes regardless of what is done with the search results. Another
example of performance testing at the component level would be rendering (paint-
ing) a screen with results from some processing such as a name search or a product
search. To do this kind of performance testing, the software development need not
necessarily be fi nished, but the candidate components must have already passed the
tests for functional correctness. A really fast search that provides an incorrect result
is not a good performance.

9.4 Component Performance Testing 135

136 Chapter 9 Performance Testing

The purpose of doing performance testing on components is to get an early idea
of whether the sum of the individual component response times can be expected to
come anywhere close to the performance response time maximum we have recorded
in our peak workload plans. If, for example, the worst database search response time
for our invoice item display is 6 seconds and the worst screen rendering for that item’s
description is 5 seconds, then you can alert the developer that the current version of the
Invoice Item Detail Display code has an 11 seconds total response time. If the business
performance requirement for this display is 7 seconds, you have just given the developer
an early warning that his or her code as is will not meet the performance requirements.

9.5 ROUND TRIP PERFORMANCE

Other meanings of the term “performance testing” tend to encompass more and more
of the application activities to be included in response time measurement. At the far
end of the performance testing defi nition spectrum is the measurement of the appli-
cation’s response time from when the “enter” key or “submit” button is pressed until
the results have been fully rendered on the screen or until the report has been printed
out or when the product is delivered to your door. Although there are several terms
in the literature for this kind of performance testing, we will use the term “round trip
performance testing.” When we use this term, we will explicitly mean the time that
it takes for one transaction or activity to be initiated by the user pressing Enter or
Submit until the complete result such as a screen, report, or fi le is returned to the user.
This overall timing will include all intervening processing done on the user’s com-
puter, all necessary communications with other support computers via networks, and
all secondary processing done on other support computers for a given transaction.

To demonstrate what round trip performance testing might look like, consider
putting timing points at various strategic points in the test environment platform
of the application such as on the client computer, on the network, and on the server
computer. Then, consider running just one purchase step transaction in the empty
test environment. For the purposes of discussion, say the completed round trip took
a total of 5.8 seconds and was comprised of the following individual timings:

Purchase step transaction round trip performance instrumentation

0.5 seconds client—purchase screen data input record generation

0.2 seconds network—transmission of new purchase record to server

2.4 seconds server—new database purchase record insert into database

1.3 seconds server—generate warehouse order record

0.7 seconds server—generate purchase order confi rmation record

0.1 seconds network – transmission of confi rmation record to client

0.6 seconds client – display confi rmation record / successful completion

=====

5.8 seconds total round trip performance response time in an empty test system

This is less than the 7 seconds maximum in our peak workload plans. The conclusion
is that this transaction is ready for workload testing where we know the round trip
performance will get slower as the transaction competes for resources in a busier
system. Maybe it will stay below the 7 seconds maximum when the peak workload
number of purchase steps are executed together, maybe not.

Carrying the thought one step further, it has been found to be very benefi -
cial from a test management perspective to plan for the round trip performance
testing of all transactions or representative transactions of all groups individually
in an empty system. After recording the results on the peak workload plans, you
should alert the developers as to which transactions did not perform under the
maximum response time allowed by the software requirements. There is no need
to start workload testing of these transactions yet because they already exceed
their performance boundaries. In contrast, the transactions that did perform under
the maximum response time allowed by the software requirements are ready for
workload testing. Draft 4 shows what the extended workload plans might look like
with the round trip performance results in an empty system. Round trip perfor-
mance numbers with a (green) notation indicate that the transaction group on that
row is ready for peak workload testing. Round trip performance numbers with a
(red) notation indicate that the transaction group on that row is not ready for peak
workload testing.

Transaction
group

Response time
requirement

Round trip
performance
(red/green)

Peak active
users/

customers
Day/time of peak

activity

Menu navigation
Log on/Log off
Product detail
display

Purchase steps
Catalog search
Credit card
payment

Max 3 seconds
Max 3 seconds
Max 4 seconds

Max 7 seconds
Max 10 seconds
Max 30 seconds

4.5 seconds (red)
2.0 seconds (green)
15.3 seconds (red)

3.0 seconds (green)
1.6 seconds (green)
103 seconds (red)

2,000
2,000
2,000

50
2,000

50

Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.

Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.
Mon–Fri 12–1 P.M.

Draft 4 Performance workload plan for weekday browsing

Transaction group
response time
requirement

Round trip perfor-
mance (red/green)

Peak ac-
tive users/
customers

Day/time
of peak
activity

Menu navigation
Log on/Log off
Product detail display
Purchase steps
Catalog search
Credit card payment

Max 3 seconds
Max 3 seconds
Max 4 seconds
Max 7 seconds
Max 10 seconds
Max 30 seconds

4.5 seconds (red)
2.0 seconds (green)
15.3 seconds (red)

3.0 seconds (green)
1.6 seconds (green)
103 seconds (red)

500
500
200
500
200
500

Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11
Sat 9 A.M.–11

Draft 4 Performance workload plan for saturday purchases

9.5 Round Trip Performance 137

138 Chapter 9 Performance Testing

9.5.1 A Typical Performance Response Curve

Starting with an empty test environment, you should launch more and more copies
of the same transaction and watch a predictable pattern of round trip performance
emerge under increasingly higher workload conditions. Figure 9.1 illustrates what
the plot will look like if you keep adding more transactions.

The x-axis is the number of transactions active at the same time. The y-axis
is the slowest response time measured for any of the active transactions. Using
either the average response time or the fastest response time for comparison with
the performance requirement will, in effect, mask the worst response times. A
reasonably well-designed transaction process will exhibit linear performance up
to a point, in this case 350 transactions. More than 350 transactions exhibit an
exponential response time. The point at which the trend changes from linear to ex-
ponential is traditionally called the “knee” of the curve. This curve infl ection rep-
resents some kind of bottleneck arising in the transaction process path. The plot
does not tell you the nature of the bottleneck, just the circumstances. Currently,
the only way to discover the location of the knee is to execute the workload and
plot the results.

Your fi rst impression of using the performance curve might be that you
must push your workload till you encounter the knee of the curve, but that may
not be necessary. Consider the plot in Figure 9.2 and our business performance
 requirement of 10 seconds maximum per catalog browse for a peak workload of
250 active transactions.

Box A represents the peak workload round trip response time of 250 active
transactions. At 250 transactions, the worst transaction response time was about

500450400350300250200150100501

Number of round trip transactions

0

10

20

30

40

50

R
es

po
ns

e
tim

e
(s

)

"Knee" of
the curve

Figure 9.1 Round trip performance for catalog browse transactions

5.6 seconds, well below the 10 seconds maximum response time (arrow). Knowing
that the knee of the curve is lurking somewhere out there, you extend your peak
workload test to 350 transactions per Box B and see that the plot is still linear and
still below the 10 seconds maximum. So you have just discovered that you have at
least a 40% margin of safety with the performance requirement without seeing the
knee of the curve.

Consider the plot in Figure 9.3 with the same 10 seconds response time require-
ment maximum for a peak workload of 350 active transactions.

500450400350300250200150100501

Number of round trip transactions

0

10

20

30

40

50

R
es

po
ns

e
tim

e
(s

)

Max response time = 10 s

 - Box A - Box B

Work
load
peak
250
 |

Figure 9.2 Round trip performance for catalog browse transactions

500450400350300250200150100501

Number of round trip transactions

0

10

20

30

40

50

R
es

po
ns

e
tim

e
(s

)

Max response time = 10 s

 - Box B - Box C

Work
load
peak
350

Figure 9.3 Round trip performance for catalog browse transactions

9.5 Round Trip Performance 139

140 Chapter 9 Performance Testing

Box B still represents the peak workload response time for 350 active transac-
tions. At the new 350 transaction peak, the worst transaction response time is about
6.8 seconds, still well below the 10 seconds maximum response time (arrow). Know-
ing the knee of the curve is lurking somewhere out there, you extend your peak
workload test to 450 transactions as illustrated with Box C and, in fact, see the knee
of the curve push your transaction response time to 26.4 seconds, well above the
10 seconds maximum response. So you have just discovered that there is no margin
of safety in the 350 peak workload. As soon as something in the business forces
more than 350 transactions active at the same time, the transaction will begin to slow
down unacceptably.

What do you do with this information ? You should discuss your fi ndings with
the development team. They may want to analyze the code for the apparent response
bottleneck, make some programming changes, and attempt to push the knee well
to the right by some agreed safety margin. They may want to cap the system just
to the left of the knee. Because the knee is 350 transactions in this case, the de-
veloper might put a governor on the transaction with a 10% safety margin so that
when 315 transactions have become active, the user attempting to submit the 316th
transaction will get a message like “The system is responding to the maximum num-
ber of catalog browse requests. Please wait a moment and try your request again.”
 Regardless of which alternative the developers choose to implement, you will need
to retest their solution to confi rm that the changes keep the system off the knee of
the performance curve.

Recapping your performance testing activities so far, you have developed the
needed peak workload plans; you have successfully ramped your workloads up and
down, and you have run your round trip performance tests for each transaction that
will be in the peak workload mix. The next step is to run the round trip performance
tests with the peak workload mix.

9.5.2 Saturday Peak Workload in an Empty Test System

We return to our performance workload Draft 4 plans to demonstrate what can hap-
pen when you test a workload mix. We will focus fi rst on the workload mix for Sat-
urday purchasing. For simplicity of discussion, we will place just three transaction
groups in our demonstration: log on/log off, purchase steps, and catalog search. We
choose the Saturday workload to mix fi rst because, of the two workload plans, the
Saturday plan requires fewer transactions at the testing peak. This is what we know
about these three transaction groups for the Saturday workload:

Transaction
group

Response
time max

Peak
workload

Log on/log off
Purchase steps
Catalog search

3 seconds
7 seconds

10 seconds

500
500
200

Next we test each transaction group with its Saturday workload volume. Figure 9.4
shows the fi rst results of testing those transactions individually at peak workload
before we mix them into one workload. First we test and confi rm that the log on/log
off response times are well below the requirement maximum for the Saturday peak
workload for that transaction.

Next, in Figure 9.5 we test and confi rm that the purchase steps response times
are well below the requirement maximum for the Saturday peak workload for that
transaction.

Last, in Figure 9.6 we test and confi rm that the catalog browse response times
are well below the requirement maximum for the Saturday peak workload for that
transaction.

500450400350300250200150100501

Number of round trip transactions

1.5

2

2.5

3

3.5

4

R
es

po
ns

e
tim

e
(s

)

Log on

Max response time = 3 s

Figure 9.4 Round trip performance for peak logon workload

500450400350300250200150100501

Number of round trip transactions

2

3

4

5

6

7

8

R
es

po
ns

e
tim

e
(s

)

Purchase

Max response time = 7 s

Figure 9.5 Round trip performance for peak purchase workload

9.5 Round Trip Performance 141

142 Chapter 9 Performance Testing

9.5.3 Saturday Peak Workload Mix

Because all three transaction groups perform below (faster than) their required response
times at peak workload, it is appropriate to attempt a workload mix of the same volume
of transactions. Your fi rst thought might be to throw all three transaction groups into
the same performance measurement window and see if they continue to demonstrate
performance below their requirements. The problem with this approach is that if one
or more of the transaction groups’ response times go above the requirement maximum,
you do not have many clues as to what in the mix changed the performance.

Consider a deliberate ramp-up of each transaction group into the mix in an order that
refl ects the business priority of the workload. For example, the business priority of the
Saturday workload is purchasing. So the suggested transaction group mix sequence for
the Saturday workload is (1) log on/log off, (2) purchase steps, and (3) catalog search.

Figure 9.7 shows the results of ramping up the log on/log off to peak workload,
then launching purchase steps to peak workload.

200150100501

Number of round trip transactions

0

2

4

6

8

10

12

R
es

po
ns

e
tim

e
(s

)

Catalog browse

Max response time = 10 sec

Figure 9.6 Round trip performance for peak catalog workload

500450400350300250200150100501

Number of round trip transactions

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

R
es

po
ns

e
tim

e
(s

)

Log on Purchase

Log on max
3 s

Purch max
7 s

Figure 9.7 Round trip performance for peak logon + purchase workload mix

The purchase step transaction group is behaving well (not slowing down much)
throughout the workload. The log on/log off transaction group behaved well until the
workload reached 400 users. At that point, the log on/log off performance jumped
to the requirement maximum. The performance tester should use this information to
alert the developer that the log on performance becomes marginal when the purchase
step workload exceeds 400 active transactions.

Figure 9.8 shows the results of ramping up the log on/log off along with launch-
ing purchase steps and catalog browser transactions to peak workload.

9.5.4 Saturday Workload Showstoppers

Clearly, there is some kind of resource confl ict between the purchase steps and the
catalog browse. The performance requirement max for the catalog browse was ex-
ceeded when the ramp-up achieved only 100 active users. These results are suffi -
ciently severe as to halt further performance testing of the Saturday workload until
the development team diagnoses and implements some performance solutions. This
kind of testing discovery is referred to as a “showstopper” from the testing perspec-
tive. Furthermore, because we chose the lower volume workload peak to test fi rst, we
know that there is no benefi t to starting the weekday workload testing that demands
an even higher volume of the same poorly performing transactions.

While the performance testers await development solutions to these response
time problems, other types of testing such as functional and structural testing can
continue. Notice that testers doing the other types of testing will be affected when
the developers do fi nd solutions to the response time problems. Specifi cally, the de-
velopment solutions to the performance problems will need to be retested (regression
testing) to verify that the performance solutions affect only the performance aspect
of the software and not inadvertently impair any functional aspects of the software.
Regression testing here will add time and effort to the test schedule that may not
have been anticipated in the original test execution schedule.

Figure 9.8 Round trip performance for peak logon + purchase + catalog browse workload mix

9.5 Round Trip Performance 143

144 Chapter 9 Performance Testing

9.5.5 Saturday Workload Showstopper Corrections, We Think

At this point in our discussion, we receive the corrected, functionally regressed software
ready for performance workload retesting. We learn from the code correction log and
discussions with the developers that the logon code modules experienced interference
from the purchase steps at 400 active users because the memory area allocated for user
IDs and passwords began to “leak” into the purchase step execution area. We also learn
from the same sources that the purchase steps and catalog browse code modules shared
a set of utility routines in a common dynamic library that began to degrade the perfor-
mance of both modules by the way the utility routines were loaded for execution.

Our next step is to rerun the individual transaction groups in an empty test system to ver-
ify that the performance fi xes did not, in fact, slow down the code. Figures 9.9–9.11 show the
results of our empty system ramp-up performance measurements in an empty test system.

500450400350300250200150100501

Number of round trip transactions

1.5

2

2.5

3

3.5

4

R
es

po
ns

e
tim

e
(s

)

Log on

Max response time = 3 s

Figure 9.9 Round trip performance for peak logon workload after performance corrections have
been applied

500450400350300250200150100501

Number of round trip transactions

2

3

4

5

6

7

8

R
es

po
ns

e
tim

e
(s

)

Purchase

Max response time = 7 s

Figure 9.10 Round trip performance for peak purchase workload after performance corrections have
been applied

The empty system performance of the log on/log off code has not been affected
by the code changes. This response pattern is expected because the correction is
supposed to make a difference only when other transaction groups are added to the
workload mix. The purchase steps code and catalog browse code both show slightly
improved performance in empty system workloads. This is a pleasant surprise be-
cause the code corrections were focused on cross-transaction performance degrada-
tion due to a poor common utility-routine-sharing strategy. The improved sharing
strategy also helped each transaction group independently of the workload mix.

Because the individual transaction group workload rerun responses stay well
below the requirement maximums, our fi nal step for this workload plan is to rerun
the transaction group mixes to verify that the performance fi xes did speed up the
transactions in competition for computing resources. In Figure 9.12 we see the fi rst
results of our transaction mix performance test reruns.

200150100501

Number of round trip transactions

0

2

4

6

8

10

12

R
es

po
ns

e
tim

e
(s

)

Catalog browse

Max response time = 10 s

Figure 9.11 Round trip performance for peak catalog browse workload after performance correc-
tions have been applied

9.5 Round Trip Performance 145

500450400350300250200150100501

Number of round trip transactions

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

R
es

po
ns

e
tim

e
(s

)

Log on Purchase

Log on max
3 s

Purch max
7 s

Figure 9.12 Round trip performance for peak logon + purchase workload mix after performance
corrections have been applied

146 Chapter 9 Performance Testing

We can see that the log on/log off code performance correction did solve the
problem. Now log on/log off response is not adversely affected after 400 purchase
steps have been launched. Both transaction groups remain well below their
requirement maximums.

Because the rerun of the fi rst mix of transaction groups stay well below
requirement maximums, we are ready to add catalog browse transaction groups
to the mix to verify that the crosstransaction performance fi xes did speed up the
transactions in competition for computing resources. Figure 9.13 illustrates the
results of our second transaction mix performance test rerun.

With these results, the performance corrections are now verifi ed as lower-
ing all mixed performance response times below the requirement maximums
without adversely affecting functionality. The application under test passes the
 Saturday workload performance test. As more of the application is completed, the
performance tests become a part of the regression test to prove that newly added
functionality does not inadvertently degrade performance beyond the requirement
maximums.

9.5.6 Weekday Workload Performance
Plan Execution

You will approach the weekday workload testing in the same way that we per-
formed the Saturday workload testing. Ramp up each transaction group in
the workload to confirm that the transaction group response times are below

500450400350300250200150100501

Number of round trip transactions

0

2

4

6

8

10

12

0

2

4

6

8

10

12

R
es

po
ns

e
tim

e
(s

)

Log on Catalog browse Purchase

Log on max
3 s

Browse max
7 s

Purch
Max10 s

Figure 9.13 Round trip performance for peak logon + purchase + catalog browse workload mix after
performance corrections have been applied

the required maximums before any transaction mixing is attempted. If all
 transactions pass this first hurdle, then systematic mixing of workloads is at-
tempted until all mixes are successful or until the testing hits a showstopper.
The showstopper/correction/regression/retest cycle is repeated until the re-
quired performance is achieved. Rather than using more charts to demonstrate
what might happen with the weekday workload testing, we will discuss the out-
comes you might expect and why you might expect them. The associated charts
should leap to mind.

The most noticeable difference between the Saturday and weekday work-
loads is the volume of work, almost four times more transactions. This would
lead you to expect new volume-related issues to be revealed by the weekday
performance testing. For example, we learned that the logon/logoff code was de-
signed to operate primarily from lists (active user ID and password) in memory
as opposed to lists on disk fi les. While it is true that everything runs faster in
memory than from disk, it is also true that memory usually has a much smaller
storage capacity. One possible outcome of this design strategy tradeoff is that
the logon/logoff transaction group could become a memory exhaustion show-
stopper before the 2,000 weekday log on workload is achieved. Buying 2,000
memory chips costing $100 each may be a less desirable solution than revising
the logon/logoff performance maximums to a slower response and revising the
logon/logoff code to maintain some of its user ID/password information on disk
fi les. The tradeoff faced by the application owner is the cost of additional hard-
ware versus the cost of revising the logon/logoff code and attendant slower disk
access performance expectation.

Because we will test fewer purchase step transaction groups during the
weekday workload tests than we did during the Saturday workload tests, the
purchase steps should rightfully be expected to stay below the performance
maximums or at least not exceed them. The catalog browse transaction group
is just the opposite situation from the purchase steps. The weekday workload
will require many more catalog browse transaction groups than the Saturday
workload tests. There is a distinct possibility that the catalog browse plot will
reveal a curve knee before its workload peak is achieved. Aided by performance
test results, the developers should be able to make the corrections that will ul-
timately allow the software to pass the weekday workload performance tests as
well.

9.6 PUTTING PERFORMANCE TESTING
IN PERSPECTIVE

Software performance is the ugly stepchild of software functionality. Both de-
velopers and testers spend signifi cant time and effort to ensure that the required
software functionality is delivered. Many development teams have discovered
that if the software delivers correct functionality too slowly, the end-user is just

9.6 Putting Performance Testing in Perspective 147

148 Chapter 9 Performance Testing

as dissatisfi ed with the software as if the functionality were incorrect in the fi rst
place. The reason for this end-user attitude is because correct answers delivered
too late lose business opportunity just as surely as if the correct answers were
never delivered at all.

This chapter describes an approach to performance testing that will alert the
development team about software performance shortfalls before the software is
delivered to end-users. Although software delivery of business functionality has
advanced signifi cantly in the past 30 years, performance delivery continues to be
problematic. Expect the fi rst performance tests from any new software to reveal
not “if” the software is performing to requirements but “how much” the software is
missing the performance requirements.

9.7 SUMMARY

The objective of performance testing is to validate the software “speed” against the
business need for “speed” as documented in the software requirements. Software
“speed” is generally defi ned as some combination of response time and workload
during peak load times. These peak load times may occur during lunchtime, at the
opening of the stock market day, or after midnight when all online customers are in
bed (overnight batch workload). Performance testing is achieved by a series of tests
that introduces increasingly more workload of increasingly more complex business
transaction mixes.

Performance testing occurs after the functional testing is mostly completed and
the software has become quite stable (fewer and fewer changes or corrections). Func-
tional defects in the software may be revealed during performance testing, but this
is not the testing objective.

The performance tester’s fi rst workload challenge is to identify which
business transactions and activities need to be measured for performance. In all
but the simplest software applications, it is diffi cult to identify the most important
transaction and activity candidates for performance testing. The diffi culty lies partly
with the software end-user’s typical reaction, “everything must respond in less than
3 seconds.” Somehow the tester must convince the end user that different groups of
transactions and activities will have different performance requirements based on
different business priorities.

The performance tester’s second workload challenge is to determine peak usage
of each group of transactions and the timeframes in which the peak usage occurs. Peak
usage is normally measured in terms of active users. The third performance tester’s
challenge is to clarify just how many different workload peaks need to be tested.

Once you have identifi ed the groups and volumes of transactions for each peak
workload test, you need to develop the steps to create this peak in a test environment
so that performance measurements can be taken. There are three traditional steps for
executing performance test workload. First, you execute workload ramp-up to peak
load. Then, you execute performance measurements at the peak. Finally, you execute
workload ramp-down from the peak.

KEY TERMS

Response time
Response time requirement
Workload
Workload peak
Peak workload in an

empty test system

Peak workload mix
Rule of 8
Ramp up to peak
Ramp down from peak
Performance

measurement at the peak

Round trip performance
Response curve
Knee of the curve
Margin of safety
Testing showstopper

Key Terms 149

150

LEARNING OBJECTIVES

to know what constitutes a testing environment

to know why testing environments are the most effective approach to measure the
behavior of software before it goes into production

to understand when a testing environment is normally set up and torn down

to know what testing environment setup issues challenge the test team

to know what testing environment control issues challenge the test team

10.1 INTRODUCTION

Thus far, we have discussed test planning and a variety of ways to accomplish test
execution. The implicit assumption is that we know how to set up and tear down the
test execution environment(s) that are needed to carry out that test planning and
execution. The objective of this chapter is to examine the testing environment as a
legitimate and important testing topic itself.

A testing environment allows the testers to observe execution results that the
customer or user will actually experience in production before the software is
deployed into production. This testing environment approach should be compared
critically with similar sounding approaches that do not give equivalent results
or anything close. The two similar sounding approaches that you will hear pro-
posed most often in lieu of a good testing environment are simulations and bench-
marks. Both of these approaches provide valuable information to the software
development team, but that information is not as relevant as test execution results
in a good testing environment. Let us examine these similar sounding approaches
briefl y and determine why they do not give results comparable to test environment
execution.

•
•

•
•
•

Chapter 10

The Testing Environment

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

10.2 SIMULATIONS

Simulations have been used in development shops for at least 40 years. The idea
is simple but the activity is complex and work intensive. Simulations are based
on the correct assumption that the behavior of hardware is measurable and pre-
dictable. Simulations are mathematical models of hardware behavior that can be
linked together to approximate the production environment of a new application
or system under ideal conditions. The argument for using simulation predictions
is that they are much less expensive than acquiring the hardware just for testing
purposes. This assertion tends to discount the enormous effort necessary to col-
lect the detailed data needed to make the simulation results better than an expe-
rienced systems programmer’s best guess. How many corporate executives would
be willing to risk a $100 million revenue forecast based on a programmer’s best
guess? If you hear someone behind you in class mumble “none,” then you have just
experienced why simulation as a testing technique fell into disfavor with corporate
IT departments.

In the last 5 years, simulations have experienced resurgence in popularity in
the role of design validation. Simulations are now used to identify and discard
designs that truly will not meet the design goals, allowing designers to focus on
the designs that have the best prospects (not guarantees) of meeting the design
goals.

10.3 BENCHMARKING

Benchmarking techniques have existed about as long as simulations. Like
simulations, they became very popular in the 1960s. Also like simulations,
they fell into disuse. Unlike simulations, they have not experienced a real re-
surgence. A benchmark is the execution of a specific application or system
under very controlled circumstances that are thoroughly measured and well
documented.

The original impetus behind benchmarks was to have a public comparison of
products for prospective buyers. For example, if you are interested in buying an
industrial strength database management system, you might shop DB2, Oracle, and
Sybase. If the brochure features of all three database management systems meet your
purchase criteria, then you look for benchmark results from each vendor that refl ect
circumstances closest to the way you intend to use the product. The more dissimilar
the benchmark circumstances are from your needs, the less valuable the benchmark
results are in comparison shopping.

The benchmark owes its popularity in part to the fact that the benchmark cost
is not born by the prospective customer. It is part of the vendor’s marketing cost.
Unfortunately, public benchmarks are seldom run exactly as the customer intends
to use the product; furthermore, if the new application or system is not off-the-shelf
software, then its benchmark is probably not cost justifi ed.

10.3 Benchmarking 151

10.4 TESTING ENVIRONMENTS

The third approach to testing is to set up a separate computing environment very similar
to the target or production computing environment for testing the new software. Then,
testers plan and execute tests against the software in operation to validate the software’s
behavior by direct observation and measurement in a copy of its intended operating
environment. This special computing environment is called the “testing environment.”

Questions about the composition of the testing environment should arise very
early in the development project. The documentation during the developers’ Prelimi-
nary investigation and Analysis lifecycle stages should contain a moderately detailed
description of the target production environment for the new software application or
system. Referring to the bathtub diagram in Figure 5.1, the draft test plan developed
from Preliminary investigation and Analysis should adopt the targeted production en-
vironment as its fi rst draft testing environment. This will enable the test team to nar-
row its strategic plan questions to just those platforms and software layers in Figure 4.4
that are actually needed to support the new application or system in production.

10.5 THE GOAL OF A TESTING ENVIRONMENT

The goal of a testing environment is to cause the application under test to exhibit
true production behavior while being observed and measured outside of its produc-
tion environment. Achieving this goal can be just as challenging as designing and
executing the tests themselves.

As previously stated, the test team becomes aware of the application’s target pro-
duction environment very early in the software development lifecycle. Because it takes
time to design and code software to be tested, the test team has a built-in window of
opportunity to plan the test environment, acquire the needed hardware and software,
and set up the test environment well in advance of the fi rst scheduled test executions.
This test environment setup should include activities that validate the viability and
correctness of the test environment for running tests. If the decision is made to use au-
tomated test tools, then the test environment setup must include installing the test tool
in the testing environment, validating that the test tool is operational and, if necessary,
calibrating the tool. We will examine automated test tools in the next chapter.

You may need to enlist the help of several different kinds of systems experts to
acquire and set up the test environment components. Out-of-the-box default operat-
ing system installations rarely refl ect the way they are used in business. If the test
environment operating system is very complex, you will need to fi nd an operating
systems expert to set it up correctly in the testing environment. Here is a more com-
plete list of test environment components for which you may need to seek expert
systems assistance for testing setup.

Operating systems

Security

•
•

152 Chapter 10 The Testing Environment

File systems

Databases

Connectivity (LANs, WANs, Satellite, Wireless, and Internet)

Finally, you will need to seek test data experts for three reasons. The fi rst reason is
that you will need to fi nd the best possible test data sources to represent expected
production data. The second reason is that you will need to determine how best to
load that test data into the test environment as a testing starting point. The third
reason is that you will need to determine how best to reload that test data for reruns
once a series of tests has been executed, regardless of whether the tests were success-
ful. Examples of groups that you might contact for test data help include experienced
end-users, senior developers, database administrators, and operations management.

The way you load and reload test data in the test environment seldom refl ects
the production backup and recovery strategy for the application under test. Produc-
tion backup and recovery serve an entirely different purpose for the application in
production, namely business continuity. Recall from Chapter 8 that there are testing
techniques specifi cally for backup and recovery.

It is common to fi nd multiple testing environments in many development shops.
The fi rst and most common testing environment you will fi nd is the developer environ-
ment itself that may not be considered a true testing environment. Recall the white box
testing discussion in Chapter 7. This kind of testing must be performed by the devel-
oper because the tester rarely has access to the source code under construction. Quite
naturally, the developer completes white box testing in the same environment in which
he or she does development. The observation is made to differentiate code debugging
from testing but does not add any further value to the discussion of test environments.

The next kind of testing environment you may fi nd is called a “staging” environ-
ment or a “migration” environment or a “deployment” environment. The developers
see this environment as the next place their programs go prior to “going live.” It repre-
sents the collection point over time of all fi nished programming. It also represents an
excellent testing environment for the fi nished programming both as the fi nished com-
ponents become available and as the application itself becomes complete. Figure 10.1
illustrates what a simple computing environment strategy such as this might look like.

•
•
•

Figure 10.1 Simple computing environment strategy

Development
environment

Version 1

Version 2

Version 3

Staging (t est)
environment

Next version

Untested
and

corrected
software

Production
environment

Next version

Tested
software

only

10.5 The Goal of a Testing Environment 153

154 Chapter 10 The Testing Environment

Depending on the size and complexity of the application being developed, there
may be multiple smaller staging environments for major subcomponents of the ap-
plication. For example, an enterprise-wide application may have separate staging
environments for the accounting subcomponent, the marketing subcomponent, the
manufacturing component, and the warehousing component. All of these subcom-
ponent staging environments represent excellent testing environments prior to the
complete enterprise-wide application availability for testing. Figure 10.2 shows what
a complex computing environment strategy like this might look like.

It is important for the test team to control the test environment from a test sched-
ule perspective and from a data reload and rerun perspective. Control of the testing
environment needs to encompass the additional dimension of controlled staging or
“builds.” A “build” is the collection of specifi c versions of application components
for executing specifi c test cases. When software is ready to be tested, that software
must be moved somehow from the development environment to the testing environ-
ment. Staging of software from development to test is typically accomplished either
by manual procedures or by automated staging tools.

The lifetime of a test environment is determined by several factors. If the soft-
ware being developed is expected to have multiple versions over a number of months
or years, then it makes good sense to establish and maintain a reusable test environ-
ment for the duration of the software development schedule. The economy of scale
is derived from the increasing number of subsequent versions tested in the same test
environment because the cost of personnel to set up and tear down a testing environ-
ment will exceed the cost of the test hardware over time.

When it is clear that the testing environment is needed for just a small number
of versions to be tested or the time in between version tests is months or years, then
a short-term testing environment might make more economic sense. The largest cost
of setting up a short-term testing environment is usually the hardware cost. It is very
diffi cult to justify the outright purchase of hardware for one or two tests. Often, it

Figure 10.2 Complex computing environment strategy

Production
environment

Enterprise-
wide

application

Tested
software

only

Development
environment

Accounting
subsystem

Marketing
subsystem

Manufacturing
subsystem

Warehousing
subsystem

Staging (t est)
environments

Accounting
Untested and corrected

Marketing
Untested and corrected

Manufacturing
Untested and corrected

Warehousing
Untested and corrected

Final staging
(t est)

environment

Enterprise-
wide

application

Untested and
corrected

is signifi cantly less expensive to rent or lease computer equipment for a short time
(1–3 months) than it is to purchase the equipment. The cost of setting up and tearing
down the test environment becomes a standard line item of the testing project budget.

What about testing environments whose lifetime falls somewhere in between
the two extremes? The recommendation is to start with pricing research for the
needed testing equipment both as a short-term rental and as a long-term purchase.
Then, determine from previous testing projects the estimated effort in setting up
and tearing down the testing environment. Finally, estimate the number of times the
test environment will be used over a 1-year period starting as soon as the software
development project begins. Do the math and determine which approach is most
cost-effective for your software development projects.

10.6 GOOD TESTING ENVIRONMENTS AND WHY
THEY SHOULD BE USED

A good testing environment is one that very closely operates like the intended or
existing production environment and is totally controlled by the test team.

The closer the testing environment resembles the production environment, the
more valid the test results become. In many cases, the testing environment can be
set up truly identical to the production environment. Testing in this kind of duplicate
environment gives the developer and the end user an exceptionally accurate view of
how the new software will behave in production.

Test team control of the testing environment has two major benefi ts. The fi rst benefi t
relates to the controlled repeatability of all testing. When the test team does control the
testing environment, then the team knows exactly what versions of software components
are in the testing environment at all times, as well as the state of all test data fi les. As
defects are detected in the software, the tester can repeat the test and confi rm the defect
discovery for anybody who needs to see the defect demonstrated … like the developers.
The second benefi t of a tester-controlled environment is the testers’ ability to plan and
execute tests without being interfered by or interfering with development activity. The
testers drive the test schedule, whether it is to complete a certain set of tests by a certain
date or to rerun a set of tests to validate correction of previously detected defects. A fi nal
implication of tester control of the testing environment is that testers can ensure that no
software corrections are made directly in the testing environment. Modify a previously
tested piece of code, and the previous test results are null and void. Corrections and
modifi cations must be made in the developer’s environment and be re-staged into the
testing environment using the same staging process as fi rst introduced.

Staging procedures also represent a level of testing environment control. Good
staging procedures take advantage of automated staging tools. The primary intent of
staging tools is to guarantee that the software that arrives in the testing environment
is the same as the software that departed from the development environment ready
for testing. The secondary intent is to guarantee that each staging is repeatable, that
is, rerunning the staging tool for the same versions provides the tester with exactly
the same software to test. Very often, the migration tool used to move software from

10.6 Good Testing Environments 155

156 Chapter 10 The Testing Environment

development to testing is also the tool used to move software from testing to produc-
tion. This approach guarantees that the software verifi ed as behaving correctly in
the test environment is guaranteed to be the correctly behaving software placed in
production.

10.7 BAD TESTING ENVIRONMENTS AND WHY
THEY SHOULD BE AVOIDED

A bad testing environment is one that is only similar to the intended or existing
production environment and is shared by other groups such as the developers or the
training staff.

The more dissimilar the testing environment is from the production environment,
the less valid the test results become. For example, suppose your application uses a
number of disk fi les to maintain application data. Further suppose the development
and test teams get the fastest computers available to speed up the development and
testing schedules. Your test computers then use a larger, faster disk drive than the
production computers, resulting in performance tests that will mislead the end- users
to believe the application will run faster in production. The corollary situation (more
common) is that the test team is given older, hand-me-down computers that have
slower, lower capacity disk drives than in production. In this situation, the perfor-
mance tests will under-report the application’s response times … if the application
runs in the test environment at all. Extend the disk drive example to CPU speed, resi-
dent memory capacity, network topology, network speed, network capacity, printer
speed, monitor screen refresh rate and you will quickly realize how many ways the
testing environment execution dimensions can miss the mark.

When the test team shares any of the testing environments with other teams, the
loss of control can be disastrous for the test effort. The most obvious downside of not
controlling the testing environment is that the test team will be forced occasionally
to pause and possibly reschedule tests because the test environment is “busy.”

Another example of a busy test environment that impacts the test team schedule
is when testing is relegated to the third shift (11 P.M.–7 A.M.) of a computing envi-
ronment not used at night. Working at night does eliminate testing confl icts with
development. The real issue that arises is that when a tester fi nds a possible defect
in the middle of the night, there is nobody around at 3 A.M. from either development
or end-user groups to help confi rm the defect discovery. Everybody the tester needs
to contact is at home in bed. In this situation, the testing may need to be halted until
the next morning when everybody the tester wants to contact comes to work. Of
course, the tester will not be at the offi ce to greet them. The tester will come to work
late because he or she has been up all night. The result is the very delay hoped to be
avoided by third shift testing in the fi rst place.

Without clear management and coordination of the testing environment, it is
also possible that multiple test teams needing to reset the environment data in con-
fl icting ways cannot get their confl ict resolved in a timely and supportive way.

A less obvious downside of not controlling the testing environment is that
someone other than the testers may place rogue software in the testing environment
that affects the test runs unknowingly and undetected. The fi rst clue that there is rogue
software in the test environment arises when test execution results cannot be repeated.

Decisions to reject automated staging tools in favor of manual procedures also im-
pact the testing validity. The primary intent of manual staging is usually to circumvent
the staging rules and be able to easily introduce alternate versions of the software
components to be tested. Although this approach seems to offer more fl exibility than
staging tools on the surface, the fact is that circumventing the staging rules diminishes
the veracity of subsequent test results. Furthermore, circumventing the staging rules is
the quickest way to guarantee that the software test results are not repeatable.

The other way to look at the staging alternatives is to conclude that “quick fi xes”
via manual staging are neither quick nor helpful. If manual staging is problematic
for testing, then it is a disaster for production. Too many companies still allow their
software developers to place untested fi xes directly into production and are amazed
when the application crashes. [42] The irony of the decision is that it takes more time
and resources to correct and test the quick fi x than it would have taken to correct the
original problem the right way in the fi rst place.

10.8 PUTTING THE TESTING ENVIRONMENT
IN PERSPECTIVE

All too often, the testing environment is an afterthought of the development project
that is already tight on budget and computing resources. The fi rst reaction is to give
the test team “orphan” equipment that nobody else wants or uses. The consequence
is test failures on the tester computers that cannot be recreated on the developer
computers because of the disparity in computing resources. It does not take many
of these false test failures for all testing results to be completely dismissed by the
project. Of course the true test failures also become dismissed.

The “pay me now or pay me later” axiom certainly applies to this situation. The
development project really has two choices:

Plan to provide an appropriate testing environment separate from all other
project environments to get the best possible test results throughout the
project

Plan to scrimp on the testing environment and likely experience end user dis-
covered defects that cost much more to diagnose and fi x than an appropriate
testing environment would have in the fi rst place.

10.9 SUMMARY

A testing environment allows the testers to observe the execution results that the
customer or user will actually experience in production before the software is

1.

2.

10.9 Summary 157

158 Chapter 10 The Testing Environment

deployed into production. Questions about the composition of the testing environment
should arise very early in the development project. The documentation during the
developers’ Preliminary investigation and Analysis lifecycle stages should contain
a moderately detailed description of the target production environment for the new
software application or system. This will enable the test team to narrow its strategic
plan questions to just those platforms and software layers in Figure 4.4 that are actu-
ally needed to support the new application or system in production.

The goal of a testing environment is to cause the application under test to exhibit
true production behavior while being observed and measured outside of its produc-
tion environment. Achieving this goal can be just as challenging as designing and
executing the tests themselves.

The closer the operation of the testing environment to the production environ-
ment, the more valid the test results become. In many cases, the testing environment
can be set up truly identical to the production environment. Testing in this kind of
duplicate environment gives the developer and the end user an exceptionally accu-
rate view of how the new software will behave in production. The more dissimilar
the testing environment is from the production environment, the less valid the test
results become.

KEY TERMS

Simulations
Benchmarks
Test execution
Production behavior

Testing environment
Testing environment

control
Test data

Staging
Test repeatability

 159

LEARNING OBJECTIVES

to compare the small number of tool paradigms used for automated testing

to describe the large number of automated testing tools available

to identify the considerations for choosing manual testing versus tool testing

11.1 INTRODUCTION

The dominant role that automated testing tools play in the successful development
of business software compels a software tester to learn something about them.
Automated testing tools are a collection of software products designed specifi cally
to assist software testers and software testing managers with different aspects of a
testing project. The current commercial tool market has over 300 products. Each of
these tools offers to assist the tester with one or more of the tester’s activities. So far,
no one tool has been proven to offer assistance with all tester activities.

It may sound like heresy to some testing professionals, but this chapter will
teach you that automated testing tools are not always required for successful soft-
ware testing. There are testing situations in which the use of automated testing tools
is inappropriate, disadvantageous, and expensive. There are also testing situations in
which the use of automated testing tools is appropriate, advantageous, and cost-ef-
fective. We will examine both kinds of situations in this chapter.

The fi rst time a tester has experienced success with a testing tool, a kind of
technical euphoria sets in that tends to cloud decisions about future tool use. The
effect is best described by the old saying: “when you fi rst learn how to use a hammer,
everything looks like a nail.” Part of the purpose of this chapter is to burst the tool
euphoria bubble and bring the tester back to a rational level of decisions about
appropriate tool choices and use. It is not the purpose of this chapter to tell you
which test tool to buy.

•
•
•

Chapter 11

Automated Testing Tools

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

160 Chapter 11 Automated Testing Tools

11.2 BRIEF HISTORY OF AUTOMATED TESTING
TOOLS FOR SOFTWARE

Three hundred test tools sound like a lot of tools. Where did they come from? Is the
market expanding? Will there be 500 tools next year? A brief history of automated
testing tools may lower your anxiety level with so many alternatives.

Robust, industrial strength testing tools began to appear in the software market-
place around 1980. The tools were simple, single-purpose products focused primar-
ily on functional testing activities. Many of these activities were a useful extension
of program code debugging. As these functional testing tools gained popularity,
management tools to organize and maintain tool data, command sets, execution
schedule, results, and reports began to appear in the market.

The combined use of a test management tool and a functional test tool proved to
be much more effective than either tool used separately. The main drawback to such
combined tool use was the awkwardness of the interfaces between the tools. Around
1990, test tool vendors addressed this combined tool awkwardness by marketing
tool suites that offered tightly interfaced test management tools with functional test
tools. Half of these tool suite offerings were written from scratch, leveraging prior
user experience with the individual tools. Half of these tool suite offerings were
company acquisitions with focused integration of tools that already worked pretty
well together.

Around 1995, a new type of automated test tool began to emerge in the market-
place. This new tool was designed to measure software performance as we defi ned
it in Chapter 9: response time and throughput. As with the functional test tools, the
fi rst performance test tools provided only basic performance measurements on a few
computing platforms for simple workloads. As the tools matured, their capabilities
expanded to provide a variety of performance measurements on a variety of com-
puting platforms for complex workloads. Unlike the functional test tool evolution,
performance test tools appeared with management and reporting capabilities from
the beginning. At a cursory level, one would expect the new performance tools to
leverage the management and reporting tool designs already fi eld proven for the
functional test tools; however, performance test tool execution and results are not
based on pass/fail like functional test tools. With functional test tools, there is an
automated comparison of expected versus actual data or screen contents or report
contents. Either the results compare exactly (pass) or they do not (fail). Performance
test tools simply report the speed with which the instrumented code responds. The
goal of performance testing is usually expressed in a slowest response time or a re-
sponse time range that must be manually compared with the tool-reported response
times. The results can either be clear-cut such as “the software function responds
within the response time limit by 2 seconds or not so clear-cut as “the software func-
tion responds just 0.2 seconds slower than the limit that is still acceptable.”

Around 2000, tool vendors began aggregating their tools into more compre-
hensive tool suites, providing test management, functional testing, and performance
testing in the same tool suite. The indisputable advantages of one-stop shopping for
an integrated tool suite caused the automated test tool market to become dominated

by only a dozen tool vendors who could provide these tool suites. With sophisti-
cated tool suites available, the user demand for more powerful, easier to use, fully
integrated tools was replaced by a user demand from a surprising new direction.
As with all software product designs, each tool suite had limitations. Some of these
limitations were apparent during tool feature shopping. Other limitations surfaced
with hands-on tool experience. As companies began to have second thoughts about
the tool suites they purchased and started shopping for new tool suites, they discov-
ered that they could not easily leverage their sizeable investment in the current tool’s
training, scripting, data, results, and reporting when migrating to a different vendor’s
tool suite.

This tool suite migration roadblock presented the tool vendors with an interest-
ing dilemma: eliminate the migration roadblock and customers can abandon a prod-
uct too easily; provide no migration assistance to other tool suites and risk losing
initial sales due to customer-perceived “bundled” products that were so despised in
the 1960s and 1970s. Some amount of migration assistance is the desirable compro-
mise, but how much is “some?”

In the middle of the 2002–2003 timeframe, major tool suite vendors chose a
professionally creative and potentially durable long-term solution to the migration
challenge. By the time this textbook is published, their solution will be either ac-
cepted by the tool customer community as the norm or rejected by the tool customer
community causing vendors to seek a different solution. The chosen solution is for
all test tool vendors to adopt a standard product architecture using standard archi-
tecture components. The standard architecture and components afford a moderately
diffi cult but achievable suite-to-suite migration while allowing each vendor to retain
the majority of its unique capabilities.

The new architecture and component standard chosen by the automation tool
industry is Eclipse/Hyades.[43, 44] The Eclipse Foundation describes itself as an
independent, open ecosystem around royalty-free technology and a universal plat-
form for tools integration. Eclipse is a nonprofi t corporation that was established in
November 2001 and is comprised of many of the computer industry leaders. The
Eclipse web site documents the current corporate membership.

As described on the Eclipse web site, the Eclipse Platform is an integrated
development environment that can be used to create a diverse collection of ap-
plications based on Java and C��. Eclipse provides a plug-in-based framework
that makes it easier to create, integrate, and utilize software tools, saving time and
money.

Hyades is the name of an Eclipse project to provide an open-source platform
for automated software quality tools. Hyades delivers an extensible infrastructure
for automated testing, tracing, profi ling, monitoring, and asset management. Finally,
Hyades is designed to support a full range of testing methodologies via an open-
source infrastructure layer and Eclipse plug-ins.

Concluding the tool background discussion, it can be seen that a corporate soft-
ware tester will normally encounter, use, and become profi cient in maybe a dozen
different tool suites. This number is impressive but it is nothing approaching the 300
individual tools in the market.

11.2 Brief History of Automated Testing Tools for Software 161

162 Chapter 11 Automated Testing Tools

11.3 TEST TOOL RECORD/PLAYBACK PARADIGM

Automated test tools that execute the application under test (AUT) are designed to be
used in a unique way. This unique way is referred to as “record/playback.” The term
is shorthand for the following repeatable three-step process.

Step 1. An end-user operates the AUT to accomplish some useful business task.

Step 2. The test tool “watches” the end-user operations and records/saves
the actions in a fi le of reusable commands called a script fi le.

Step 3. The test tool plays the script fi le back in order to precisely recreate the end-
user operations in the application without human intervention.

Figure 11.1 illustrates this unique record/playback paradigm.

The end-user provides the application intelligence to the test tool by operating
the AUT in a presumably correct manner. The test tool “looks over the end-user’s
shoulder” and writes down what the end-user does. The test tool’s recording of the
end-user operations is saved as some kind of command fi le, called a script fi le, for
later playback. At a later time, the tool can be directed to use this script fi le to cause
the AUT to operate exactly as if the end-user was sitting in the chair and operating it.

All three steps are designed to be repeatable and in fact are repeated many times
during the course of correct test tool usage. The end-user can operate the AUT for
many different business activities or for the same business activity many times as the
activity becomes more refi ned during the development process.

The test tool can be used to record and rerecord any end-user session. Rerecording
might be necessary because the end-user made a mistake in operation and needs to
repeat the operation. Rerecording might also be necessary because the previously
recorded operation has been changed during software development.

Test computer
running the AUT1. End-user

operates the AUT
(repeatable)

2. Test tool ‘‘watches’’ end-user
and records actions as a script
(repeatable)

3. Test tool plays script
back (repeatable)

Test tool
script file

Figure 11.1 Tets tool record/playback paradigm

The test tool will be used to play back a script several times. If the AUT operates
perfectly the fi rst time the script is played back; a recommended tester practice is
to play back the script at least one more time to prove repeatability of these perfect
results. If the (AUT) does not operate perfectly, then the script is played back again
after developers make the necessary code corrections to verify that the corrections
solved the problem. The more defects that a test tool script reveals in the AUT, the
more times the test script will be replayed to verify code corrections.

11.3.1 Test Script Command Language

There is no standard or universal script command language for all test tools.
Because all script languages have a common purpose within the same record/play-
back paradigm, the language skill a tester acquires using one vendor’s tool script
transfers substantially intact to a different vendor’s tool script. Tool vendors have
typically chosen one of two approaches to designing their test tool’s script language.
The fi rst approach is to invent a scripting language from scratch that addressed the
unique kinds of activities that operate a computer without end-user intervention. The
vendors who started their scripting languages from scratch quickly recognized the
need to add fl ow of control constructs to their scripting languages like those found in
such standard programming languages as COBOL, FORTRAN, PL/1, and BASIC.
The second approach was to adopt one of the standard programming languages for
fl ow of control and extend that language with commands that are uniquely needed
for robot control of a computer. The four standard programming languages most of-
ten extended for test tool scripting are PASCAL, C, Visual Basic, and most recently
Java.

Because the tool scripting languages follow standard programming language
conventions, timing point information from the operating system clock is readily
available. The implication for performance testing is that specifi c application actions
can be timed very accurately. For example, if an application lets the end user search
a catalog for products, the test script language allows timing points to be placed just
before and just after the search button is clicked. The difference between these two
timing points tells the tester and the developer precisely how long the search took.
These timing points are used both to fi nd bottlenecks in the application (places where
the application transaction takes the most time to complete) and to establish the per-
formance baseline described in Chapter 9. The performance baseline is measured by
adding timing points at the very beginning and very end of a script that has already
verifi ed the correct behavior of a particular business transaction. Re-executing the
script with these two added timing points provides the precise total processing time
necessary to complete the verifi ed business transaction in an empty system.

A time-saving feature called data-driven execution has emerged in most script-
ing languages. This feature allows the tester to record a simple end-user activity
such as logging into the AUT with one user ID. Then, by using data-driven execution
features, the tester can make the same simple recorded script execute with hundreds
or thousands of additional user IDs. The key to the data-driven execution approach

11.3 Test Tool Record/Playback Paradigm 163

164 Chapter 11 Automated Testing Tools

is for the tester to replace the end-user typed values such as user ID “JONES” with a
reference to a data fi le containing 350 user IDs, for example. When the tester replays
the script, each of the 350 user IDs (perhaps including “JONES”) on the data fi le are
attempted for log-in.

The time-saving nature of data-driven execution becomes more profound as
more recorded script values are replaced by data fi le references, enabling large
numbers of permutations to be tested just as easily as the original set of values.
For example, a test tool records an end user placing an order for one offi ce supply
item. Three end-user data fi elds are subsequently identifi ed for a large number
of permutation tests. The fi rst permutation data fi eld is the customer’s shipping
address zip-code (say 2,000 different zip-codes) that signifi es the customer’s de-
livery geography. The application must identify which offi ce supply items are
available for purchase in which geography. The second permutation data fi eld is
customer type which can be one of the four values: 1 � small retail customer,
2 � large retail customer, 3 � small wholesale customer and 4 � large wholesale
customer. Different standard discounts are offered on different offi ce supplies
depending on customer type. The third and fi nal permutation data fi eld is the of-
fi ce supply item code (say 5,000 different item codes). So the test script recorded
for a purchase in just one zip code, one customer type, and one offi ce supply item
can have these end-user supplied values substituted for data fi les with all possible
values to produce a simple test script capable of verifying 2,000 � 4 � 5,000 �
40,000,000 permutations.

One last set of features resulting from the record/playback paradigm needs
to be acknowledged here and described in more detail later in this chapter.
About midway through the test tool maturity cycle, maybe the early 1990s, test
tools began providing some means of test tool management: capturing results of
an end-user recording session, scheduling tool playback sessions, and captur-
ing results of playback sessions for reporting. These results could range from a
message on the screen to the appearance of new screens to the hidden update
of particular database records. These test tool management features will be
discussed in the Test Management Paradigm section of this chapter. Examples
of all of these features can be found in the current major test tool vendors’
products. [45–47]

11.4 TEST TOOL TOUCHPOINT PARADIGMS

There are only two touchpoint paradigms that underlie the large number of avail-
able test tool products. A test tool touchpoint is the location of a test tool probe,
either hardware or software, in the computer under test in order to measure some
specifi c operational aspect of this test computer. The situation is similar to the
small number of software development paradigms we found in Chapter 2 for a large
number of software development methods. If we understand these two touchpoint
paradigms, we can quickly understand and anticipate how a particular test tool will
be used.

11.4.1 Touchpoint Paradigm for Functional Test Tools

The fi rst touchpoint paradigm is used by functional testing tools. The goal of this
paradigm is to directly operate a computer as if the end-user was performing the
actions from his or her chair. Terms frequently used to describe this operation are
“autopilot” and “robot mode.” It is a little strange for a programmer or end-user
to observe this tool paradigm in action for the fi rst time: the screen is changing,
the cursor is moving, menu entries are selected, data fi elds are being typed in …
with nobody sitting in front of the computer. In order to succeed at this autopilot
operation, the test tool must be able to record and play back actions from the key-
board, the mouse, and the computer monitor. These touchpoints are collectively
referred to as “foreground” touchpoints because their actions are observable by
the end-user. Figure 11.2 illustrates the location of the touchpoints for functional
test tools.

The functional touchpoint paradigm is implemented by tool software that
runs on the same computer as the AUT. This one-to-one relationship between the
tool computer and the test computer is necessary because the tool software must
directly “observe” the interactions on the keyboard, mouse, and screen. This also
represents a computer resource testing constraint. If you want to do functional
testing for one business transaction at a time, you need one computer. If you
want to do functional testing for two business transactions at the same time, you
need two computers. If you want to do functional testing for 20 business transac-
tions at the same time, you need 20 computers. There are no economies of scale.
Figure 11.3 illustrates this AUT–test tool computer relationship for functional
testing.

Functional test tool
touchpoints

(foreground to end-user)

Mouse

Screen

Keyboard

Figure 11.2 Touchpoint paradigam for functional test tools

11.4 Test Tool Touchpoint Paradigms 165

166 Chapter 11 Automated Testing Tools

11.4.2 Touchpoint Paradigm for Performance Test Tools

The second touchpoint paradigm is used by performance testing tools. The goal of
this paradigm is to capture the messages and message timing passed between client
computers and server computers that are all contributors to the AUT. The basis of this
paradigm is the client/server computing architecture popularized in the early 1980s
and made pervasive by the Internet. The client/server computing architecture distrib-
utes the computing workload from the end-user’s computer to one or more specialized
server computers. As an end-user operates the AUT, messages are periodically sent
back and forth between the end-user’s client computer and one or more server com-
puters elsewhere in a network. The nature of the messages is determined by the com-
munication protocol. The total response time of an application is the sum of the pro-
cessing times on all involved computers plus the sum of all communication times.

The performance touchpoint is referred to as a “background” touchpoint because
its action is not observable by the end-user. Figure 11.4 illustrates the location of the
touchpoint for performance test tools.

Functional test tool
touchpoints

(foreground to end-user)

Functional test tool
executes here

AUT
executes here

Figure 11.3 Computer necessary to execute functional tests

Networks

Performance test tool
touchpoints

(background to end-user)

Figure 11.4 Touchpoint paradigm for performance test tools

The performance touchpoint paradigm is implemented by tool soft ware
that runs on a different computer than the one used to run the AUT. This
makes the tool computer independent of the number of network- connected
computers running the AUT. In this case, the tool software “observes”
the interactions among the application computers by watching the network
 traffic. Theoretically, one performance tool computer could record and
play back an infinite number of client computer sessions to a very large
 number of servers. In reality, each client computer playback tool session re-
quires a small but measurable amount of tool computer memory. So the
 practical upper limit of the number of client computer sessions that one
 performance tool computer can support is in the range of 500 to a few thou-
sand, depending on the tool vendor’s design and available tool server memory.
This paradigm becomes even more attractive when you realize that once the
recording session has been completed, zero client computers are required for
the performance tool to play back the script and measure the workload on
the server(s). There are definitely testing resource economies of scale here.
Figure 11.5 illustrates this AUT–test tool computer relationship for performance
testing.

The really good news for testers is that the two touchpoint paradigms do not
confl ict. Both touchpoint paradigms can be invoked by using functional test tools
and performance test tools at the same testing time in the same testing environment.
Figure 11.6 illustrates how this dual paradigm can work.

Performance test tool
executes here

...
Server(s) running

the AUT

Intended
end-users

of the
AUT

Could be
100s

Could be
1,000s

Computers required for
performance test playback

Computers not required for
performance test playback

Performance test tool
touchpoint

Figure 11.5 Computer(s) necessary to execute performance tests

11.4 Test Tool Touchpoint Paradigms 167

168 Chapter 11 Automated Testing Tools

11.5 TEST TOOL EXECUTION PARADIGM

As test tools became more complex in the ways they were used and what they measured,
there arose a need for the tester to be able to manage the test tools better. Tool vendors
addressed this tester need by developing a test tool that manages test tools. Examples
of the capabilities designed into these test management tools include

test script library management

test execution harness management

expected values capture from script recordings

actual values capture from script executions

Test script library management is the capability to store and retrieve test script fi les
by some kind of naming convention and disk fi le structure. The source of the test scripts
can be an automated test execution tool record session or a manually prepared script
using some kind of text editor. If the test execution tool supports data-driven testing,
then the test script library management capability will also provide naming conven-
tions and disk fi le structures to store and retrieve the execution-time data fi les. Designs
used to accomplish test script library management vary from vendor to vendor.

Test execution harness management is the capability to launch the test execution
tools selectively for record and playback. Depending on the tool vendor’s design, this
capability can be simple or elaborate. Simple test execution management is performed
by a sequential list that causes test script A to be executed, then test script B to be exe-
cuted, then test script C to be executed, and so on. The tester clicks some kind of “start
the test executions” button, and the harness dutifully performs the list of test execu-
tions. Complex test execution management adds alarm clocks and dependency fl ow
to the simple execution list. Alarm clocks allow the tester to indicate that the next test
execution sequence will start at 2 A.M. on Sunday so that the results can be reviewed

•
•
•
•

Performance test tool
executes here

Server(s) running
the AUT

Computers required for
performance test playback

Computers not required for
performance test playback

Performance test tool
touchpoint

Functional test
tool touchpoints

Functional test
tool executes here

Client running
the AUT

Figure 11.6 Test computer environment using both touchpoint paradigms

fi rst thing Monday morning. Dependency fl ow allows the tester to indicate that “if
script A completes successfully, then start script B, otherwise skip script B and start
script C.” Dependency in this context means that the execution of a subsequent test
script is dependent on the success or failure of an earlier test script in the list.

The last two capabilities of a test management tool address a concept that was not
introduced in the prior test tool discussions. The concept is that behavior validation
requires the comparison of two kinds of information: expected results and actual
results. Expected results are defi ned to be the documented correct behavior or re-
sponse to a specifi c set of conditions and inputs. Actual results are defi ned to be the
behavior or experienced response exhibited to a specifi c set of conditions and inputs.
Actual results may or may not match expected results. If actual results do match the
expected results, the test is normally considered successful (pass). If actual results do
not match the expected results, the test is normally considered unsuccessful (fail).

In order for a test management tool to be capable of capturing expected val-
ues from initial test script recordings, there needs to be some kind of complex
tool-to-tool communication in which values captured during recording will be the
expected value set. Sometimes the expected values are the keyboard entries that an
end user types during script recording. Sometimes the expected values appear on
the test computer screen after the end user has completed a particular action. Some-
times the expected values are hidden from the end user in some kind of data fi le or
database. Sometimes the expected values have been predetermined and, in a manner
similar to data-driven test preparation, the expected values are made available to the
test management tool independent of the script recording activity.

In order for a test management tool to be capable of capturing actual values from
subsequent test script playback, there needs to be some kind of complex tool-to-tool
communication. This communication enables predetermined variables, screen areas,
and data fi les or databases to be interrogated during test script playback for actual
values to compare with the expected values. Once the actual values are collected
from a test execution, the actual values are automatically compared with the ex-
pected values, and the success or failure of the comparison is indicated for the test
execution just completed. Many test management tools that provide this expected
values/actual values comparison also allow for the collection and comparison of
actual values from multiple playback sessions with the same expected values.

The complexity and intimacy with which the test management tool must interact with
function test execution tools and performance execution test tools has caused tool vendors
to redesign their separate tool products into tool suites. These tool suites provide better
intertool communication and operability while presenting the tester with a consistent look-
and-feel of the tools individually. One of the welcomed byproducts of such a tool suite de-
sign is a lower tool training threshold before the tester becomes profi cient in the tool suite.

11.6 THE BENEFITS THAT TESTING TOOLS CAN PROVIDE

Based on the previous sections in this chapter, you may conclude incorrectly that it is
a good idea for a tester to always use automated testing tools. This would cause the
tester to worry fi rst about which test tool to use. Quite the contrary, one of the early-

11.6 The Benefi ts that Testing Tools can Provide 169

170 Chapter 11 Automated Testing Tools

development lifecycle decisions a test team leader must make is whether to include
automated testing tools in the test environment plans. Only after the appropriateness
of test tool usage has been determined does the question of tool choice arise. The re-
mainder of this chapter deals only with identifying development project circumstances
that determine the appropriateness or inappropriateness of automated test tool use.

11.6.1 Repeatability—a Return on Investment Issue

If a particular test script will be executed three or more times, a test tool can begin to
provide an economy of scale. The effort, resources, and cost to build the automated
test script the fi rst time are substantially higher than a single manual test that per-
forms the same script steps. The second time the automated script is executed, none
of the build costs are incurred. The second manual test of the same test script costs
as much as the fi rst manual test to perform.

After three or more test executions of the same script, the accumulated
cost of performing these executions using a test tool is less than the accumulated cost
of performing these same executions manually. The more times the automated
test script is repeated beyond three times, the less expensive the total execution ef-
fort becomes relative to the same manual testing activity. Because manual testing of-
fers no economies of scale, the total cost of manual testing continues to grow linearly
by the same incremental cost for each subsequent test execution.

11.6.2 Repeatability Precision—a Technology Issue

One of the most frustrating and time-consuming situations for a software developer
is for a tester to report a suspected defect that the developer cannot recreate. This
situation can arise from a number of different causes, the most common of which is
incomplete manual test case execution script documentation. In other words, the tes-
ter cannot tell the developer the exact sequence of actions and events that led to the
defect discovery. The developer must use trial and error to fi ll in the tester’s informa-
tion gaps and try the most likely actions and events to recreate the suspected defect.

Another possible cause of defect recreation diffi culty for the developer lies with
the tester’s ability to follow directions. The manual test execution script may be very
crisp and clear about the steps to be completed and the expected results. Testers,
being human, may inadvertently skip a step or complete only part of the step action
because the instruction continued on the next page. The likelihood of this human
element creeping into test execution increases with the number of times the tester
must repeat the test due to a false sense of familiarity with the steps.

Automated testing tools directly address both of these repeatability precision
issues. Every action to be taken by a testing tool is included in the tool’s test script.
The state of test data prior to script execution is defi ned in the test case. The testing
tool executes its script with well-defi ned test data without human intervention. The
combination of explicit script, explicit data state, and human non-intervention guar-
antees repeatable test results with very high precision. This precision translates into
more expedient developer diagnosis of discovered defects.

11.6.3 Hidden Action and Results Verification—a
Technology Issue

Although many application responses are revealed directly to the end-user, there
may be many application responses that are hidden from the end user’s view. Exam-
ples of revealed responses are new screen messages indicating “successful submis-
sion,” new screens indicating successful submission with processing details, or new
screens with requested search results. An example of hidden responses is a control
item in a screen object like a “submit” button that becomes hidden from the end user
afterwards to inhibit duplicated submissions.

Another example of hidden responses is database changes resulting from the
end user submitting some kind of response (search request, purchase order, and so
on). The revealed response is “successful submission.” The hidden response is a set
of database updates that may not be directly displayed to the end user or viewable
by the end user. Developers go to great lengths to keep these actions and results
hidden from the end user, either because revealing them will not help the end user
do a better job or because revealing them will allow the end user to put the appli-
cation in unexpected states of processing with potentially disastrous results to the
business.

Testing tool designers are aware of this duality: end user versus developer view
of the application responses. Knowing that both views are necessary for complete
testing results, the testing tool designers have produced testing tools that can observe
and act on both views of the AUT.

11.6.4 Timing Point Precision and Distribution—a
Technology Issue

One of the test tool capabilities arguably most benefi cial for software develop-
ment in the 21st century is precision timing points. Prior to having this capability,
testers were relegated to using a stopwatch, a wall clock, or a sweep second hand
on their wristwatch. If the application activity took 15 or 20 min to complete as
was common in the 1970s, then chronometers provided suffi cient timing point
precision.

As application response speeds became much faster, the Rule of 8 (see Chapter 9)
refl ected new sub-minute response time measurement needs. The tester needed and
was provided with tool timing point precision to the millisecond. This leap in preci-
sion afforded the tester extremely precise response time measurements for both the
total application process and subprocesses previously unattainable from stopwatch
accuracy. The testing benefi t of subprocess timing point precision is the ability to
identify bottlenecks in the response path as illustrated in the Round Trip Perfor-
mance Testing section of Chapter 9.

The trend toward distributed computing in the 1980s led to an additional chal-
lenge for performance testers. The application was no longer spending time just
on the end-user computer and a large host computer. The application time was
distributed across a number of specialized midsize computers called servers. Even

11.6 The Benefi ts that Testing Tools can Provide 171

172 Chapter 11 Automated Testing Tools

if application response times had remained in the multiple-minute range, the tester
would have been challenged to apply a stopwatch to several servers that would
most likely be dispersed geographically, one of the primary advantages of distrib-
uted computing. The advent of viable Internet business applications has caused the
span of these geographically distributed computing environments to stretch around
the world. Test tools can and do provide millisecond response time measurements
across these widely distributed computing environments without the tester leaving
his chair.

11.6.5 Achievement of Impossible Manual Tests—a
Return on Investment Issue

Choosing to do manual performance testing in preference to tool testing is likened
to going hunting for elephants with a rock instead of a rifl e. Although stopwatch
timing may not be the most precise way to measure an application’s response times,
stopwatch timing can still get the job done if no testing tools are available. The true
limitation of this approach resides in the size and complexity of the workload to be
tested as described in Chapter 9.

Consider the situation of a workload to be tested in the range of 10–100 active
business transactions and no test tools available. This situation can be tested manu-
ally by calling in the entire offi ce staff on a Saturday, give them manual scripts to
run, feed them pizza and beer, and have them pound on the system all day. The
results are not particularly precise or repeatable, but the job does get done. The
authors know of large companies who still do “Saturday Special” timing of their
applications.

Any performance workload requirement beyond 100 active business transac-
tions cannot be tested manually. The good news is that performance test tools have
matured to the point that they can test workloads well beyond the 100 transaction
breakpoint for manual testing. It is commonplace to achieve performance tool test-
ing of workloads in the thousands of transactions. Some of the more specialized
Internet performance testing tools can drive workloads of 500,000 transactions
or more.

11.6.6 Reusability (Regression Testing)—a Return on
Investment Issue

Test tools have been designed from the beginning to easily and reliably reuse test
scripts. As testing processes have matured, this reusability feature has greatly en-
abled the concept and practice of regression testing described in Chapters 7 and 8.

If the tester manages and maintains all test scripts produced for the fi rst ver-
sion of an application, then this set of test scripts for Version 1 can be applied to
an early copy of Version 2. Code untouched by Version 2 should pass the Version 1
script tests. Code touched to accommodate Version 2 changes should also pass the
Version 1 script tests. New code for Version 2 will require test script additions or

modifi cations for whatever new functionality that Version 2 provides. Functionality
in Version 1 no longer supported in Version 2 will require test script retirement.

11.7 THE LIABILITIES THAT TESTING TOOLS
CAN IMPOSE

Before the test manager can calculate a prospective test tool’s return on investment,
he or she needs to be aware of all the costs that should be included in the calculation
denominator. Some of the costs are obvious. Some of the costs are hidden.

11.7.1 Testing Tool Costs—a Financial, Resources,
and Skills Issue

The most obvious cost of a testing tool is its price tag. This price tag can range from
several thousand dollars to almost a million dollars. Many tools have a base price
and some form of usage price. The usage price can be expressed in terms of licenses
by (1) the number of computers that will run the test tool, (2) the number of testers
who will use the tool, or (3) the peak number of sessions to be run at any given time.
To determine the total price tag of the test tool for your project, you will need fairly
detailed test plans that can be used to predict the number of licenses to buy. Buy too
few licenses and you impact your testing schedule. Buy too many licenses and you
have spent too much money on tools.

A less obvious cost of test tools is the computer equipment that they may require.
Many of the functional test tools run on the same hardware as the application. Addi-
tional equipment purchases for these tools are not automatically required. The com-
bination of computing resources for both the application and the test tool may cause
the test team to need larger capacity computers after all. All of the performance test
tools require additional hardware at least for the tool server. Because performance
tool server resources are not infi nite, the workloads you plan to test may require two
or more performance tool servers and ancillary network equipment.

A scheduling cost often overlooked is the test tool installation in the testing
environment. Normally, the testing environment is being set up while the testers are
deep into planning. The decision to use a testing tool will add tool installation time
to the testing environment setup schedule. The result is that when the testers expect
the testing environment to be available for test execution, the testing environment
may still be busy with test tool installation.

A resource cost often overlooked is the skill set for the chosen testing tool. The
testing environment setup activities will require a tool expert to install the chosen
tool and verify its correct operation. Later in the testing execution activities, the
same kind of tool expert will have to be consulted to determine whether the source
of a possible defect is really incorrect tool usage by testers. Once the testing tool is
available in the testing environment, there is a skill set issue for the test team. The
testers who will use the testing tool must have either prior experience with that tool
or be sent to training specifi c for that tool.

11.7 The Liabilities that Testing Tools can Impose 173

174 Chapter 11 Automated Testing Tools

11.7.2 One-off Testing Setup Costs

We previously stated that the return on investment from testing tools occurs after
three or more repeat uses of the same test scripts. This saving is mostly due to econo-
mies of scale (repetition). The fi rst time a test tool test script is written and validated,
it is an expensive proposition in both time and resources. The only successful argu-
ment for using a testing tool in a one-off situation is that the test results are critical to
the success of the software or that the testing cannot be accomplished manually.

11.7.3 Boundaries of Testing Tool Capabilities

There is a dimension of tool capabilities often missed during tool evaluation and
selection. This dimension is fl exibility with respect to application changes. Some of
the most powerful tool capabilities are viable only if the software does not change
from build to build or release to release. In these cases when the software changes,
many if not all of the test scripts must be recorded again!

Here is an example of both sides of this capability-with-change issue. Classically,
functional test tools for Windows record what is happening on the screen in one of
the two ways. The fi rst way is by the pixel coordinates of the objects of interest (data
fi eld, button, and text message) on the screen. The object coordinates are very precise
and allow some amazing scripting capabilities; however, if the programmer moves a
scripted object one pixel in any direction, the script will no longer execute correctly.

The second way is by standard properties of the objects of interest on the screen.
This method of object recording is independent of the object’s screen coordinates.
This means that the programmer can move a scripted object from one side of the
screen to another and the script will execute correctly. This second way of record-
ing objects loses its fl exibility in the long run when the object properties change in
subsequent release modifi cations. In either event, test tool scripts require a level of
ongoing maintenance not usually required by manual test scripts.

11.8 PUTTING AUTOMATED TESTING TOOLS
IN PERSPECTIVE

Anybody who has attempted do-it-yourself projects around home comes to appreci-
ate the value of the right tool for the right job. Similarly, with the plethora of auto-
mated test tools in the marketplace, it becomes important to know the right test tool
for the right test case.

Rather than trying to gain experience in all the available tools, the suggestion is
to understand the touchpoint paradigms of the different groups of tools. As soon as a
tester identifi es the tool paradigm most appropriate for the test situation, the number
of tool choices shrink dramatically. As new tools emerge in the marketplace, testers
can use touchpoint paradigm understanding to place the new tool in a group of com-
parable, familiar tools for further feature comparison.

11.9 SUMMARY

Automated testing tools are a collection of software products designed specifi -
cally to assist software testers and software testing managers with different as-
pects of a testing project. The current commercial tool market has over 300 prod-
ucts. Each of these tools offers to assist the tester with one or more of the tester’s
activities. So far, no one tool has been proven to offer assistance with all tester
activities.

There are testing situations in which the use of automated testing tools is inap-
propriate, disadvantageous, and expensive. There are also testing situations in which
the use of automated testing tools is appropriate, advantageous, and cost-effective.
Automated test tools that execute the AUT are designed to be used in a unique way.
This unique way is referred to as “record/playback.”

There are only two touchpoint paradigms that underlie the large number of
available test tool products. A test tool touchpoint is the location of a test tool probe,
either hardware or software, of the computer under test in order to measure some
specifi c operational aspect of this test computer.

The fi rst touchpoint paradigm is used by functional testing tools. The goal of
this paradigm is to directly operate a computer as if the end-user was performing
the actions from his or her chair. The second touchpoint paradigm is used by per-
formance testing tools. The goal of this paradigm is to capture the messages and
message timing passed between client computers and server computers that are all
contributors to the AUT. The really good news for testers is that the two touchpoint
paradigms do not confl ict. Both touchpoint paradigms can be invoked by using func-
tional test tools and performance test tools at the same testing time in the same test-
ing environment.

Based on the previous sections in this chapter, you may conclude incorrectly
that it is a good idea for a tester to always use automated testing tools. This would
cause the tester to worry fi rst about which test tool to use. Quite the contrary, one of
the early development lifecycle decisions a test team leader must make is whether
to include automated testing tools in the test environment plans. Only after the ap-
propriateness of test tool usage has been determined does the question of tool choice
arise.

KEY TERMS AND CONCEPTS

Automated testing tool
Eclipse
Hyades
Record/playback
Script file
Test script command

language
Data-driven test execution

Test tool touchpoints
Foreground testing
Background testing
Test tool server
Test script library

management
Test execution harness

management

Expected values versus
actual values

Pass/fail
Hidden results
Screen object coordinates

versus screen object
properties

Key Terms and Concepts 175

176

LEARNING OBJECTIVES

to describe what successful test results tell about testing effectiveness

to demonstrate how to exploit defect discovery beyond correcting individual defects

12.1 INTRODUCTION

This chapter describes the kinds of test execution results you might want to collect,
the ways you might want to consider analyzing these results, and the interpretations
you may place on your analysis outcome.

You are almost fi nished with your testing tasks. You have completed your test
planning as described in Chapters 4 and 5. You have set up a testing environment as
described in Chapter 10. With or without automated testing tools described in Chapter
11, you have started executing your testing scenarios designed in Chapters 6–9. With
or without test management tools described in Chapter 11, you have started collecting
the results of your test executions.

12.2 TEST CASES ATTEMPTED VERSUS
SUCCESSFUL

The fi rst step in discussing test execution results is to expect that you have done a
thorough job of test planning. If you have unintentionally omitted certain application
functions or business activities or structural components or performance aspects of
your application from your test planning, then your test coverage will be inadequate.
No amount of test execution of your planned coverage will give you test results
for the “un”-covered testing. The extent of “un”-covered testing usually becomes

•
•

Chapter 12

Analyzing and Interpreting
Test Results

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

apparent when customers start calling your HelpDesk with defects that eluded your
testing. Customer-discovered software defects will be included in our analysis later
in this chapter.

One planning key to successful test results analysis is the clear defi nition of
success for each test case. It is common for a test case to have a number of expected
results. If the actual results obtained from a test execution all match the expected
results, then the test case is normally considered “attempted and successful.” If only
some of the actual results obtained from a test execution match the expected results,
then the test case is normally considered “attempted but unsuccessful.” Test cases
that have not been executed are initially marked “unattempted.”

The “unattempted” versus “attempted …” status of each test case is tracked
by testing management because this is the most obvious testing progress indica-
tor. Ninety percent “unattempted” test cases indicates that the testing effort has just
begun. Ten percent “unattempted” test cases indicates that the testing effort may
be close to fi nished. The number of attempted test cases over time gives the test
manager an indication of how fast the testing is progressing relative to the size of
the test team. If you log 15 test cases attempts by your test team in the fi rst 2 weeks
of testing, this indicates an initial attempt rate of 1.5 test case attempts/day. If the
test plan calls for a total of 100 test cases to be attempted, then you can calculate an
initial estimate of 14 weeks for your test team to “attempt” all 100 test cases in the
plan. Here are the calculations.

15 test cases attempted / 10 test work days � 1.5 test case attempts/day
100 test cases to attempt / 1.5 test case attempts/day � 67 days (14 workweeks)

Calculation 12.1 Estimating test execution schedule—fi rst Draft

Some of the “attempts” will result in defect discoveries requiring time for correc-
tion and retesting. So the 14-week schedule really represents the expected completion of
just the fi rst round of testing execution. Depending on the number of “unsuccessful” test
cases encountered during the 14-week period, a second, third, and possibly fourth round
of correction and retesting may be necessary to achieve mostly “successful” results.

A test case may be “attempted but unsuccessful” because the actual results do
not match the expected results or because the software halted with an error mes-
sage before the test case was completed. The challenge to the test manager is to
prioritize the unsuccessful test case results for correction. If a test case encounters
an error that stops the test case before it can be completed, this is usually considered
a severe defect suffi cient to warrant immediate corrective action by the developers.
Once that corrective action has been taken and the test case rerun, the test case may
go to completion without further showstoppers and become marked as “attempted
and successful.” On the contrary, the test case may execute a few more steps and be
halted by another defect.

If the application under test allows the test case to go to completion but provides
actual results different from the expected results, the test manager needs to priori-
tize these unsuccessful test case results based on business risk to not correct. For
example, if a functional test case shows that a set of screen input values produces

12.2 Test Cases Attempted Versus Successful 177

178 Chapter 12 Analyzing and Interpreting Test Results

an incorrect screen output value critical to routine business, then the unsuccessful
test case presents a high business risk to not correct. An example of this kind of “at-
tempted but unsuccessful” results would be an incorrect loan payment amortization
schedule based on a loan principal value and annual interest rate. Testing can con-
tinue, but the application cannot be shipped or deployed to a business until the actual
results match the expected results.

A low business risk example would be a “submit” message that appears in green in
the lower right-hand corner of the screen instead of appearing in red in the upper left-
hand corner of the screen. The actual execution result is different from the expected
result, but the application is usable in business with the different outcome. The test
manager needs to discuss this test fi nding with the application development manager to
determine the priority of correcting the code that produces the “submit” message.

Testers tend to prioritize unsuccessful testing outcomes using the range of num-
bers from 1 to 4. Priority 1 is used to indicate the highest business risk. Priority 4 is
used to indicate the lowest business risk. Historically, testers use the term “severity”
instead of “priority” to convey relative business risk of unsuccessful tests. Figure 12.1a
demonstrates how a test case execution schedule might appear. Figure 12.1b shows
the analysis of the Figure 12.1a fi rst week’s test execution results.

Figure 12.1a A test schedule with first-week outcomes

12.3 DEFECT DISCOVERY FOCUSING ON
INDIVIDUAL DEFECTS

As we saw in the previous section, there are several possible reasons why the
execution of a test case can be considered unsuccessful. The remaining sections of
this chapter use the term “defect” for a confi rmed software error discovered by test
execution and requiring correction.

At its most basic level, testing discovers defects one at a time. Once the defect
has been corrected and retested, the particular area of software under test may
operate defect free throughout the remaining test case execution. More frequently,
the correction of one defect simply allows the test case to proceed to the next de-
fect in the software, resulting in a number of discovery/correction cycles that are
required before the test case can run to successful completion. It is also likely that
multiple test cases with different testing objectives in the same area of the software
will discover different sequences of defects. The implication is that a single suc-
cessful test case does not guarantee defect-free code in the area of the software
being tested.

The incremental discovery and correction retesting of software defects is
the primary way that software testers help software developers implement the
development requirements. The fewer the latent defects in the delivered software,
the closer the software comes to fulfi lling the requirements. The success of in-
cremental defect discovery is directly related to the management process used
to track defects from discovery to correction. If defects are discovered but not
reported to developers, then testing provides no real value to the development
effort. If the defects are discovered and reported to developers but the corrective

Figure 12.1b Analysis of first-week test execution outcomes

12.3 Defect Discovery Focusing on Individual Defects 179

180 Chapter 12 Analyzing and Interpreting Test Results

action not verifi ed, then testing still provides no real value to the development
effort. The success of incremental defect discovery requires defect tracking from
discovery through correction to retesting and verifi cation that correction has been
achieved.

Defect tracking can be accomplished with a variety of reporting tools ranging
from a simple spreadsheet to an elaborate defect management tool. Either way, the
organized entry and tracking of simple information pays great dividends toward the
success of defect correction efforts. Figure 12.2 demonstrates how an unsuccessful
test case attempt causes one or more defect log entries that can be tracked to correc-
tion with simple metrics.

Because the severity code is meant to be an aid in determining which de-
fects in the tracking log to correct next, at least three different kinds of sever-
ity codes can be found in use either singly or in combination. The first kind
of severity code indicates severity relative to testing, that is, “Is this a testing
showstopper?” The second kind of severity code indicates severity relative to
development, that is, “Is this a development showstopper?” The third kind of
severity code indicates severity relative to completing development, that is, “Is
this a shipping/deployment showstopper?” The trend is toward capturing all
three severity codes for each defect and use the one that makes the most sense
depending on how close the development project is to completion. The closer
the project comes to completion, the more important the shipping showstopper
severity code becomes.

Figure 12.2 Example defect tracking log from unsuccessful test case attempts

12.4 DEFECT DISCOVERY FOCUSING ON THE
DEFECT BACKLOG

The fi rst testing metric that we talked about at the beginning of this chapter was the
number and ratio of planned test cases versus attempted test cases to give us a sense
of how far we have progressed with our planned testing activities. The second testing
metric that we talked about is the number and ratio of attempted test cases versus
unsuccessful test cases to give us a sense of how defect free the testers are fi nding
the software at that point in the testing schedule.

Successful incremental defect tracking can provide a third testing metric nor-
mally called the defect backlog. If your testing has discovered 300 software defects
and development has successfully corrected 100 of these defects, then a backlog of
200 defects still needs to be corrected. The challenge for the development team is to
determine if there is enough time and programming and testing resources available
to reduce the defect backlog to zero before the development due date. Most times
the answer is “no.” The challenge then becomes one of the developers and testers
reviewing the defect backlog to identify more severe defects for correction fi rst. The
hope is that when development time runs out, the remaining defects in the defect
backlog are minor and will not adversely impact the software user’s business. The
residual uncorrected defect backlog typically becomes part of an interim fi x pack or
unfi nished work for the next release.

In simple terms, the defect backlog is the list of all defects on the defect tracking
log that have not been corrected by the reporting date, usually weekly. If the defect
tracking log in Figure 12.2 is updated with a week’s worth of developer correction
effort, the uncorrected defects become the defect backlog shown in Figure 12.3.

Figure 12.3 The defect backlog

12.4 Defect Discovery Focusing on the Defect Backlog 181

182 Chapter 12 Analyzing and Interpreting Test Results

The challenge for the backlog analysis team is that the backlog is a weekly
moving target as defects are corrected and new defects are discovered. It is not un-
common for new defects discovered late in the development cycle to be immediately
promoted to the top of the backlog as “must fi x” backlog list.

At this juncture, fi ery debates will arise over the quality of the software because
“software quality” has no industry standard defi nition or measurements. For the
 purposes of this textbook, software quality goals and measurements for the software
under test are included in the software requirements. The intended implication is that
if the developer writes software that unequivocally meets all the development re-
quirements and the tester successfully validates the software against all of the devel-
opment requirements, then the software is considered to be of good quality. It is rela-
tively easy to fi nd publications that document how pervasive poor-quality software
(using the above defi nition) is in the marketplace. [11] Those software products that
do achieve this verifi ed consistency with their development requirements are then
challenged to defi ne whether the requirements themselves are of good quality—a
whole different quality issue beyond the scope of this textbook.

12.5 DEFECT DISCOVERY FOCUSING ON
CLUSTERS OF DEFECTS

The metrics used to track the incremental discovery and correction of software de-
fects can be leveraged for valuable test analysis beyond one-by-one defect review and
backlog analysis. Consider the cost/benefi t trade-off from adding one more column
of information to the defect-tracking record: the identifi cation of the code that con-
tained the defect. We will call this the “code earmark.”

The cost of adding this code earmark is not high, but it is usually not free either.
First, the development team must agree on a standard way to identify the code in
which defect corrections are applied. Programming specifi cations usually contain
unique identifi ers for the modules, subroutines, and classes that can also serve as
code earmarks for defect tracking. Second, the development team must agree to take
the extra time and effort to report back to the defect tracking log the code earmark

Figure 12.4 Defect tracking log with code earmarks

for each defect that they correct. Up to this point, all of the defect tracking informa-
tion has come from the tester who discovers and logs the defect. Now a reporting
partnership is established where both test team and development team contribute
data to the defect tracking log for defect analysis. Figure 12.4 shows how Figure 12.3
defect tracking log might appear with a code earmark column included.

This augmented defect tracking log can be used for root cause analysis. There
are a number of good statistical textbooks available that provide the mathematical
basis and practical application of root cause analysis to software defect logs. [48]
The simplifi ed explanation of root cause analysis for testing is the mathematical
search for the “buggiest” code. This search can be accomplished by a simple fre-
quency count of corrected defect code earmarks, ordered with the most frequently
occurring code earmarks fi rst. Clusters or groupings of defects will arise by code
earmark. This kind of analysis is most helpful during the fi rst third to fi rst half of the
software development cycle when the software is least stable and more susceptible to
large numbers of corrections and updates.

Figure 12.5 shows the possible results of a ranked frequency count of 2,000
defects corrected by the end of the preliminary construction phase of a hypothetical
software project.

The analysis shows that three or four code earmarks were the primary contribu-
tors to the defect log during the Preliminary construction phase of development. It
would be very prudent for the testing team to urge a project team review of AP234,
AP745, and GL106 before proceeding with the Final construction phase. A review of
AR218 might pay dividends, but its defect contribution does not make as compelling
a case for review as the other three code earmarks. This becomes a judgment call
based on what else the testing team has learned about the AR module during testing.
All earmarks below AR218 on the report were an order of magnitude less frequently

Figure 12.5 Using the defect tracking log for root cause analysis

12.5 Defect Discovery Focusing on Clusters of Defects 183

184 Chapter 12 Analyzing and Interpreting Test Results

occurring. Additional code review for the less frequently occurring code earmarks
may not add much value.

There are three reasons for the recommendation to review the program code and
design behind the top three code earmarks. The fi rst and most obvious reason is the
dominant discovery of defects in these code earmarks over all other code earmarks.
The second, less obvious reason is that these three code earmarks account for 45.5%
of all defects discovered during the Preliminary construction phase. The third and
fi nal reason is that two of the three top offenders come from the same major program
module, the AP module. So a consolidated review of AP234 and AP745 could pay
extra dividends.

These clusters occur due to a variety of development process infl uences such
as incomplete or inaccurate design, inadequate code design, inadequate code writ-
ing, and inadequate debugging. More subtle infl uences are the coding standards that
might actually encourage bad coding habits, or programmers with inadequate pro-
gramming language skills for the complexity of the application.

Regardless of what might be causing the code earmark clustering in the defect
log, the motivation for the reviews is to determine if there are, in fact, many more
possible defects in the same earmark area that could be prevented or minimized
by a design review, a specifi cation review, or even a code walkthrough. Here is the
payoff for the developer who takes the time to identify code earmarks for the defect
log. The tester is able to say, “revisit this code one time thoroughly and you will
probably reduce the number of times you must revisit the same code for additional
corrections.”

For the sake of demonstration, assume that the project team agrees with the
testing team’s root cause analysis. The team takes a couple of days to walk through
the AP module and the GL module with AP234, AP745, and GL106 as their guide to
potential trouble areas in the code. Sure enough, a major design fl aw was discovered
in the AP module. Additionally, subroutines in the GL module were found to violate
programming standards regarding branching logic that left several dead end logic
paths.

As a result of the review, the start of the Final construction phase was postponed
3 weeks to allow the developers to implement the review recommendations and the
testers to rerun all their test cases for the AP and GL modules (regression testing).
As with all coding revisions, the regression testing discovered 50 more defects that
were added to the defect tracking log. Because none of the additional 50 defects
were showstoppers, they were considered part of the defect backlog that could be
corrected during the early part of the Final construction phase.

Halfway through the Final construction phase, the test team did another root
cause analysis. This time the analysis focused on defects discovered and corrected
thus far just in that phase. The test team was interested in seeing what effect the post-
Preliminary construction code correction cycle had on the defects of the next phase.
Recall that there is a human tendency to introduce new software defects during code
correction. The team was also interested in seeing if other coding earmarks now
arose as possible areas of review. Figure 12.6 shows the second root cause analysis
report.

Several conclusions can be drawn from the second root cause analysis. The
original top three code earmarks are no longer the major offenders. So the time and
effort that went into the review, programming revisions, and retesting defi nitely re-
duced the number of hidden defects. The new top three code earmarks represent only
4.7% of the total defects corrected indicating a more even distribution of earmarks
throughout the software observed as the software becomes stable. Therefore, there
will not be much benefi t expected from another 3-week effort to review, correct, and
retest these new code earmarks in preference to other development activities. The
fact that AP234 and GL106 are still on the list is neither alarming nor unexpected.
Programming that starts out troublesome usually continues to be troublesome at
some level for the duration of the development project.

Root cause analysis is normally less valuable during the middle-third of the
development than it is during the fi rst-third. There are two reasons for this reduced
analytical value. First, by midproject most of the code has been tested several dif-
ferent times, which will tend to reinforce the earlier identifi cation of particularly
defective code with few new surprises. Second, by midproject the developers have
little time or opportunity to fully review code design and structure that is well on its
way to being fi nished code.

During the last third of the development, code earmarks tend to be used to pri-
oritize the backlog of uncorrected defects rather than analyze the corrected defects.
Recall that the code earmark is expected to come from the developer who corrects
the code. By defi nition, the defect backlog has not been corrected; therefore, you do
not expect to fi nd code earmarks on the defect backlog entries. Consider doing a lit-
tle guesswork on the most severe backlog defects. Have a brief meeting in which the
developers are asked to guess which code earmark is most likely contributing each
backlogged severe defect. Use this code earmark guess to see if there are clusters
of high-priority backlogged defects based on code earmark. If clusters appear, then

Figure 12.6 Second root cause analysis of defect logs

12.5 Defect Discovery Focusing on Clusters of Defects 185

186 Chapter 12 Analyzing and Interpreting Test Results

suggest that the developers concentrate on the fi rst few in the cluster as their correc-
tion priority. Because the developers will be working on the most severe defects, no
valuable (and scarce at this time in the development) correction time is squandered.
After the fi rst couple of most severe defects have been corrected, compare the actual
code earmarks with the guesses. If the guesses are correct, continue to pursue the
remaining code earmarks in that most severe defect cluster. If the guesses are incor-
rect, attack the fi rst few defects in the next cluster. The risk is spending a little extra
time up front with the developers when they are under the most pressure to complete
the software. The benefi t is giving them some analytical road signs that could make
the remaining correction time and effort they have left most wisely spent from a
quality perspective.

Figure 12.7 demonstrates what such a defect backlog root cause analysis might
show for a backlog of 500 defects during Final construction.

In this example, the development team is already concentrating on correction
code around earmark AR477 because it has exhibited a Severity 1 defect. The
development team might be surprised that so many of the Severity 2 defects are
possibly colocated with the Severity 1 defect around earmark AR477 that they
are already attempting to correct. Another possible conclusion of this analysis is
for the test team to lend support to the development team that has been arguing
with project management about the correction diffi culties in this area of code due
to vague or confl icting design specifi cations. One more possible conclusion of this
analysis is what our Canadian friends would call “the dead moose on the table”: The
 development team has been in denial that the AR477 earmark code area has major
problems that present a real risk to the customer.

Figure 12.7 Defect backlog root cause analysis

12.6 PRIOR DEFECT DISCOVERY PATTERN
USEFULNESS

There is no current way to precisely predict beforehand how many or what kinds of
defects your test team will discover in new software. The quest for such a prediction
is often called looking for the “silver bullet.” The software engineering researcher
who fi nds the silver bullet will indeed strike gold!

Depending on the circumstances and maturity of the software development or-
ganization, predevelopment defect predictions can range from an educated guess to
reasonably accurate predictions. Project managers are understandably hesitant to
take any proactive steps based on educated guesses. Some historically based defect
prediction techniques can yield answers �/�10% of the actual defect totals at the
end of the project. Managers are more likely to take proactive steps based on his-
torical defect prediction techniques that have proven to be credible over a series of
projects.

The educated guess is used when the next software project is nothing like prior
projects for the development and testing teams. There is no project history basis for
gleaning predictions about the next project. The educated guess comes from the ex-
perts on the software development project that have “done something similar.” If this
explanation does not give you a warm, fuzzy feeling about the value of an educated
guess, then you understand the implications correctly. The most generous statement
one can make is that an educated guess in the absence of historical defect data is a
better starting point than nothing … but not by much.

12.6.1 Prior Project Defect History as a Starting Point

If there is project history either from similar software applications or from previous
releases of the same software application, then that project history can be leveraged
for next project defect predictions. The value of the project history for defect predic-
tion is directly proportional to the level of defect tracking detail that was captured in
the project history. As we have seen in the previous sections of this chapter, the prior
project can pick and choose what to include in the defect tracking log. As you would
intuitively expect, the more the details in the prior project defect tracking log, the
more useful that defect tracking log history becomes as a predictor for the next proj-
ect. We will examine the usefulness of minimal historical detail in this section and
conclude with a reference to a commercially available method that uses considerably
more historical detail for defect discovery prediction.

The minimum useful historical defect information is a prior project’s defect
log that uniquely identifi es each defect discovered and its date of discovery. An
informative curve can be drawn on a two-dimensional graph showing numbers
of defects discovered by week versus project week. Assume for the purposes of
demonstration that the prior project was completed in 24 months and produced a
software application containing 200,000 lines of code commonly referred to as
200KLOC. The defect log discovery curve by week might look something like
 Figure 12.8.

12.6 Prior Defect Discovery Pattern Usefulness 187

188 Chapter 12 Analyzing and Interpreting Test Results

This curve demonstrates characteristics of most testing project results. There
is an initial burst of defect discovery that peaks sometime in the fi rst third of the
 project. Then the defect discovery rate trails back down as the software becomes
more stable and exhibits fewer and fewer defects.

Point A is the peak (maximum) number of defects discovered during any week of
the project. Figure 12.8 shows us that the discovery peak for this project was 749 de-
fects. Point B is the week during the project in which the peak number of defects was
discovered. Figure 12.8 shows us that the discovery peak for this project occurred
during week 10. Point C is the week when the project was completed; in this example
it is week 24. Finally, Area C under the curve from the project start date to the project
completion date is the total number of defects discovered during the project. Figure
12.8 shows us that testing during this project discovered a total of 11,497 defects.

There is a body of research that suggests that the higher the defect discovery
peak (Point A) and the earlier in the testing the discovery peak occurs (Point B), the
fewer defects will be found by customers after project completion. [49] The impli-
cation is that if you compare defect curves from project to project and you see the
defect discovery peak getting higher and occurring sooner in the project, then you
are letting fewer and fewer defects get past the project completion to the customer.
Recall from Chapter 1 that the most expensive defects to fi x are customer-discovered
defects. Any trend you see in testing results from project to project that suggests
there will be fewer customer-detected defects also suggests that signifi cant software
support savings are being realized by your organization.

The same research suggests that if you extend the defect discovery curve beyond
project software completion Point C to Point D on the x-axis, then Area D under the
curve between Point C and Point D will approximate the number of defects found by
customers. Figure 12.9 shows how the defect curve in Figure 12.8 might be extended
to estimate Area D.

Figure 12.8 Prior development project defect tracking log

In this example, we have extended the prior defect history curve past the project
completion week to the x-axis. Project week 36 becomes our Point D. Area D under
the curve from Point C to Point D is 487 defects that customers might discover.
Before acting on the 487 customer defects as a prediction, we need to consider ad-
ditional information.

One additional graph from the prior development project defect tracking log
can shed additional light. Consider stratifying the defect log data in Figure 12.8
by development showstopper severity codes. A graph something like Figure 12.10
might appear.

The graph shows what you might already know. The more severe defects
tend to be encountered early in the development cycle when the code is quite
unstable. The severity of the defects declines as the code becomes stable. Gen-
erally speaking, the discovery of very severe defects at the end of the devel-
opment project is truly bad news for any immediate plans to complete the
software.

Figure 12.9 Prior development project defect tracking log extended beyond project completion

Figure 12.10 Prior project defect tracking log by development defect severity

12.6 Prior Defect Discovery Pattern Usefulness 189

190 Chapter 12 Analyzing and Interpreting Test Results

12.6.2 Leveraging Prior Project Defect History Before
the Next Project Starts

This brings us to a second useful piece of defect prediction information that be-
comes available between the time the prior development project was completed and
the time the next development project starts. This second piece of information is a
HelpDesk log of customer-discovered defects. The number of customer-discovered
defects will correlate somehow with the Area D prediction. This correlation may
be 1 to 1 or 100 to 1 or some other number in between. For the purposes of dem-
onstration, say there were 70 customer-discovered defects found in the Figure 12.9
release and reported to the HelpDesk. The customer defect discovery correlation is
calculated by

No. predicted
No. actual

� No. predicted per actual

For example:

487 Predicted from curve
70 Actual from the defect log

� 6.9 predicted defects per actual defect

The goal of the exercise is to be able to predict fairly accurately the number of
customer-discovered defects that can be expected from the next development proj-
ect as it concludes. The value of this prediction is the proactive economic implica-
tions for other parts of the organization like the HelpDesk and the software support
groups. If HelpDesk and Support know to prepare for an estimated 70 customer de-
fects in the next 6 months instead of 7,000 customer defects, then the HelpDesk and
Support can be smarter about near-term staffi ng and hours of operation. Remember
that this correlation of project defect discovery to customer defects is just an obser-
vation that can be useful.

Another interesting implication is the cost of correction represented by the
 customer-discovered defects. Chapter 1 places the average cost of correcting a
customer-discovered defect at $14,000 per defect. If our customers found 70 de-
fects in the last release of our software, the cost of correction to our software
organization is

70 customer defects � $14,000 per correction � $980,000 in correction costs

When the customer defect logging system is established, consider requesting the
inclusion of some elements from the development defect log such as a severity code
when the call is received and a code earmark when the correction has been made by
Support. This additional information will allow you to analyze the customer defects
in the same way that we suggested analyzing the defect tracking log early in this
chapter.

Figure 12.11 represents the HelpDesk log that corresponds to the customer de-
fect discovery predictions in Figure 12.9.

From this analysis we see three code earmarks contributing the majority of the
customer-discovered defects. If we return to the defect backlog analysis in Figure 12.7
and compare results with the customer-discovered defects, we learn two valuable facts.

First, the backlog analysis correctly identifi ed concern with one particular code
earmark as a dominant source of development defects, namely AR477. The fact
that the same code earmark also appears as a dominant source of customer defects
confi rms the validity of the backlog analysis conclusions and, unfortunately, the fact
that development did not take suffi cient remedial action in AR477 before develop-
ment was completed.

Second, the customer defect analysis identifi ed code earmark GL431 that was
not observed in the backlog analysis. It would be instructive for the next development
project to determine the source of this surprise. The answer could be as simple as
incorrect code earmark guesses prior to the backlog analysis. The answer could be
as complex as incomplete test coverage whereby some aspect of the AR477 software
under development escaped rigorous testing. Both answers may indicate process im-
provements that can be made during the next development project.

12.6.3 Leveraging Prior Project Defect History As the
Next Project Starts

You have collected and graphed the prior project defect history and are ready to
start your next project. You have learned three things from your last project that can
be used as predictors for your next project effort: total defects, the defect discovery
curve, and contour of defect severity.

Figure 12.11 Root cause analysis of customer-identified defects

12.6 Prior Defect Discovery Pattern Usefulness 191

192 Chapter 12 Analyzing and Interpreting Test Results

First, you know the total defects discovered from the prior project testing results.
If the next development project is of comparable size and complexity, then the total
defects discovered last time is a reasonable initial predictor of the total defects you
will discover next time. The size of the total defects will give you a viable basis for
a fi rst estimate of your test effort and resources if you have already derived rules of
thumb for average numbers of defects discovered per test script, average numbers of
test scripts per test case, and average time it takes to write and validate each test sce-
nario. A word of warning at this point. The development manager, not understanding
the sources of your prediction, may take the initial predictors as absolute and liter-
ally require your test team to fi nd the same number of defects again. At most, this
attitude will become a self-fulfi lling prophesy, and the testers will fi nd creative but
not necessarily useful ways to discover that many defects. At least, this attitude will
inhibit you from making adjustments to your predictors as the development project
proceeds and you gain more information. Techniques for making these adjustments
midway through the project will be discussed shortly.

Second, you know the curve of the defect discovery from the prior project test-
ing results. As the test team begins executing testing scenarios and discovering de-
fects, you should start plotting the next project defect discoveries on the same graph
as the prior project curve as shown in Figure 12.12.

Because no two projects are identical, the plot of the current project defect dis-
covery will fall to either side of the prior project curve. Project A is an example of
the curve for your next project if you started fi nding more defects faster than you
did at the same time in your prior project. Recall that such a situation is a desirable
trend, implying that your testing approach this time may fi nd more defects over the
life of the development.

The real value of predictors is to cause you to ask the right questions, not have
the right answers. In this case, an early indication of more effective testing should
cause you to ask why. What was consciously done differently in either the planning
or test execution startup this time that is giving your testing effort this boost ? One
possible answer is an investment in automated testing tools that is paying off with a

Figure 12.12 Defect tracking log comparison

faster, more complete defect discovery than your prior manual testing approach. If
you cannot fi nd evidence for this unexpected testing boost, then consider the curve
difference nonpredictive at best and a warning that you may be getting a false indica-
tor of success from your defect log reports.

Project B in Figure 12.12 is an example of the curve for your next project if you
have started fi nding fewer defects later in the development cycle than you did in
your prior project. Recall that situation is an undesirable trend, implying that your
testing approach this time may be less effective in fi nding defects over the life of the
development. In this case, an early indication of less effective testing should cause
you to ask why. What was included in the prior project testing that may have been
omitted or missed in either the planning or test execution startup this time ? After
you have done this project-to-project comparison for several projects, a new exciting
explanation could arise for Plot B. If the whole development team has actually taken
the time and effort to fi nd ways to improve the software development steps, then it is
possible that Plot B is a clear, measurable indication that the development improve-
ment effort is paying off with fewer defects to be discovered by testing. If you cannot
fi nd evidence for either a testing lag or a testing boost, then consider the curve dif-
ference nonpredictive, but consider the trend worth further scrutiny.

12.6.4 Leveraging Prior Project Defect History as the
Next Project Continues

Continue to monitor and plot the defect discovery curve as the development project
reaches each subsequent milestone. Sometime during the development project, usu-
ally about one-third of the way into the project, the defect discovery rate (number of
defects discovered per week) will peak out and begin to decline. This point of infl ec-
tion in the discovery curve tends to be a prediction anchor point for most defect analy-
ses. Figure 12.13 includes the project curves from Figure 12.12 plotted to their defect
discovery peaks that have been observed during all three development projects.

Figure 12.13 Defect tracking log comparison

12.6 Prior Defect Discovery Pattern Usefulness 193

194 Chapter 12 Analyzing and Interpreting Test Results

Carrying the Project A analysis forward from the start of the project, we are
expecting the Project A trend to continue to reinforce our interpretation that testing
is doing a better job of fi nding defects during this project. Both coordinates of the
Project A peak tend to reinforce our positive interpretation: The Project A peak oc-
curs at a larger number of defects discovered—1213 defects for Project A compared
with 749 defects for the prior project. The Project A peak also occurs sooner in the
current than it did in the prior project: defect discoveries peaked at the 6-week mark
for Project A compared with the 9-week mark for the prior project.

Carrying the Project B analysis forward from the start of the project, we are expect-
ing the Project B trend to continue to reinforce our interpretation that testing is not neces-
sarily doing a better job of fi nding defects during this project. Both coordinates of the
Project B peak tend to reinforce our suspicions and begin to persuade us that the news is
worse than originally expected: Testing is not as effective as last project at discovering
defects. The Project B peak occurs at a smaller number of defects discovered: 607 defects
for Project B compared with 749 defects for the prior project. The Project B peak also
occurs later in the next project than it did in the prior project: Defect discoveries peaked
at the 12-week mark for Project B compared with the 9-week mark for the prior project.

The critical success factor for the development team is to decide to minimize these
undiscovered defects in a proactive, cost-conscious way. A starting point for minimizing
undiscovered defects before development completion is to fi nd ways to predict the ap-
proximate number of expected undiscovered defects. Recall from Figure 1.2 that these
undiscovered defects cost $14,000 on average to correct after the customer fi nds them.
The fi nancial argument for redoubling the testing and correction effort before project
completion would be different for a predicted 10–20 undiscovered defects (maximum
estimated correction cost around $280K) than it would be for a predicted 300–500
undiscovered defects (maximum estimated correction cost around $7million).

One way to predict the approximate number of expected undiscovered defects
is to extend the defect discovery curve in Figure 12.13 on out beyond the project
completion date as we did with Figure 12.9. Determine the approximate area under
the extended curve. The area under the extended curve represents a workable ap-
proximation. Figure 12.14 shows what the prior project, Project A, and Project B
curves might reveal about predicted customer-discovered defects.

Figure 12.14 Defect tracking log comparison

Project A drops below the prior project curve after the peak because the better
testing activity has left fewer defects to discover after the peak. The Project B curve
stays above the prior project curve after the peak for just the opposite reason that the
Project A curve dropped below. Project B testing is not fi nding as many defects as
quickly as the prior project. Therefore, Project B will continue to fi nd a large number
of defects long after the prior project defect discoveries peaked and began to decline.

Recall that the prior project curve in Figure 12.9 extended beyond project com-
pletion to “zero defects” on the x-axis predicted 487 customer-discovered defects.
The HelpDesk reported 70 customer-discovered defects, and for this reason, a pre-
diction ratio of 7 to 1 will be our fi rst guess for the next project.

Extending the Project A curve through the project completion date to “zero de-
fects,” we fi nd the area under the extended curve to predict two customer-discovered
defects. Applying the prior project prediction ratio of 7 to 1, we predict only one or
two customer-discovered defects to be reported to the HelpDesk after Project A is
completed. Applying our cost factors to get a grasp of the positive economic impli-
cations of this prediction, Project A testing results implies a $952,000 cost savings
to the company as a result of investing in better testing for the next project. The
negative economic implication is that even with improved testing, the development
organization can still expect to spend $28,000 on customer-discovered defects from
Project A. Here are the calculations behind these statements:

Prior project:

70 customer defects predicted * $14,000 � $980,000 in correction costs

Project A:

2 customer defects predicted * $14,000 � $ 28,000 in correction costs

Possible Project A savings to company � $952,000 in correction costs

Extending the Project B curve through the project completion date to “zero de-
fects,” we fi nd the area under the extended curve to predict 1377 customer-discovered
defects. Applying the prior project prediction ratio of 7 to 1, we predict 196 customer-
discovered defects to be reported to the HelpDesk after Project B is completed. Apply-
ing our cost factors to get a grasp of the positive economic implications of this predic-
tion, Project B testing results implies a $1,764,000 additional cost to the company over
the cost of the prior project customer corrections. This is due to the lack of emphasis
on improving development and testing for the next project. The total cost of correct-
ing customer-discovered defects rises to $2,744,000. There is no positive economic
implication from Project B. Here are the calculations behind these statements:

Project B

196 customer defects predicted * $14,000 � $2,744,000 in correction costs

Prior project:

70 customer defects predicted * $14,000 � $980,000 in correction costs

Possible Project B overrun to company � $1,764,000 in additional correction
 costs

12.6 Prior Defect Discovery Pattern Usefulness 195

196 Chapter 12 Analyzing and Interpreting Test Results

Another interesting conclusion can be drawn from the project defect curve com-
parisons. Sometimes it is instructive to ask the question, “What is the risk/reward of
shortening completion of the next project by 25%?” For projects like our examples
that are 24 weeks long, a 25% schedule reduction would set the completion date back
to week 16. The development team will raise a hewn cry that the project due dates
are too short now for them to do their best job. The project defect curve comparison
can inject some objectivity into the discussion.

Starting with the prior project, there were 70 customer-discovered defects. For the
sake of discussion, consider that the economics and resources necessary to correct 70
customer-discovered defects are an unwelcome cost but not a fi nancial showstopper.

If your next defect tracking log looks like Project A, then you can draw a vertical
line at week 16 on the x-axis and predict how many more customer defects will occur
because testing will be stopped short of the usual 24-week schedule. You can report back
that by completing Project A on week 16 will result in about 70 more customer-discov-
ered defects than the two defects originally predicted. The bottom line is the fact that
your improved testing enables your company to consider completing development proj-
ects faster with no substantial increase in risk from the prior project testing perspective.

If your next defect tracking log looks like Project B, then you can draw a verti-
cal line at week 16 on the x-axis and predict how many more customer defects will
occur because testing will be stopped short of the usual 24-week schedule. You can
report back that completing Project B on week 16 will result in about 650 customer-
discovered defects, up from the 196 predicted for the 24-week completion date. Both
numbers are substantially higher than the 70 from the prior project. The bottom-line
is the fact that your less effective testing prohibits your company from considering
completing development projects faster.

12.7 THE RAYLEIGH CURVE—GUNSIGHTS FOR
DEFECT DISCOVERY PATTERNS

The fi rst analytical hurdle for a software development project team is to capture,
analyze, and compare enough defect discovery history that the in-progress project
comparisons become credible. The second analytical hurdle is to fi nd independent
measures that indicate how close the project team is getting to industry-wide defect
discovery rates. There is a dearth of published defect discovery rates because com-
panies are reluctant to publicly admit any defect numbers because of its potentially
damaging effect on the corporate image.

The only helpful source of industry-wide defect rates over the last 10 years has
been a mathematical formula called the Rayleigh curve. If you are immediately
skeptical that a mathematical formula could predict your company’s defect patterns
taking into account all the nuances of how you develop and test software, your skep-
ticism is well founded and should not be suspended during this section. The reason
we examine the Rayleigh curve for defect analysis is because worthwhile results are
produced with intelligent use. “Intelligent use” is the key to success because any-
body can crank out a Rayleigh curve for a project using zero or less intelligence and
produce a meaningless curve.

The Rayleigh curve is a well-documented mathematical formula in a series
of engineering formulas called the Weibul distribution. Although purely abstract
in nature, the Weibul distribution seems to predict surprisingly well the behavior
of a number of physical phenomena ranging from the fl ow of rivers to the bounce
of ball bearings to the discovery rate of software defects. In the early 1990s, en-
gineering researchers applied the Rayleigh curve to software development project
defect discovery rates and found to their delight that the Rayleigh curve was more
predictive than any other method attempted to date. [48] Prediction accuracies
within �/� 10% were seen in several large research projects over a 3–5-year de-
fect discovery comparison. Because the Rayleigh curve is pure mathematics and
the actual defect discovery curve is purely behavioral (developer processes and
skills, tester processes and skills, development and testing environments, tools,
and so forth), then the key to successfully using the Rayleigh curve on your project
is to also apply a healthy dose of judgment, experience, and intelligence.

Here is one approach found effective in applying the Rayleigh curve to your testing
results by comparing it to the defect discovery curve plotted during your most recent proj-
ect. For the purposes of demonstration, consider Figure 12.15 to be your prior project.

The prior project curve has a familiar contour although it is not as smooth as
the idealized curves in previous examples. The main peak of 749 defect discoveries
occurs during week 10 of the project. There are a couple of secondary peaks that
appear at week 6 and week 15. These peaks are expected because the testing team
doubles their effort twice: at the end of the Preliminary construction phase and again
when all of the software components are integrated for the fi rst time during the Final
construction phase. Because these peaks are so pronounced and because they appear
very regularly across several prior projects, the testing team is convinced that their
testing has maximum effectiveness.

To compare the prior project defect discovery curve with the Rayleigh curve,
fi rst place an imaginary gunsight on the prior project defect discovery curve at the
discovery peak as in Figure 12.16.

Figure 12.15 Prior development project defect tracking log

12.7 The Rayleigh Curve—Gunsights for Defect Discovery Patterns 197

198 Chapter 12 Analyzing and Interpreting Test Results

Write down the gunsight x-coordinate as the number of weeks in the project, in
this case week 10. Write down the gunsight y-coordinate as the peak discovery rate,
in this case approximately 750 defects. The Rayleigh curve formula requires any two
of the following three inputs:

peak defect discovery rate

project week that the peak defect discovery occurred

total number of defects discovered

Notice that you have inputs 1 and 2 from the prior project curve gunsight; further-
more, you would like the Rayleigh curve to tell you input 3. Figure 12.17 shows you
the results of your inputs to the Rayleigh curve formula plotted on the same axis as
your prior project defect curve.

1.

2.

3.

Figure 12.16 Prior development project defect tracking log

Figure 12.17 Prior development project defect tracking log compared to a calibrated Rayleigh curve

Visually, the Rayleigh curve shows you that when the testing team doubles its
effort, they do indeed “push the envelope” or fi nd more defects in the software than
normally expected at that time in the project based on the Rayleigh formula. The
fact that the prior project curve then falls below the Rayleigh curve shows you that
the follow-up testing effort may have been less effective than expected at fi nding the
defects also based on the Rayleigh formula.

Now that you have a sense of what the curve comparison tells you, look at
the total defects discovered by each curve. The prior project discovered a total of
10,682 defects. The Rayleigh curve formula predicts 12,328 defects, 15% more
defects than the prior project found. The next question you ask is, “How can we
fi nd 15% more defects with our testing ?” You may fi nd one area of the soft-
ware that test planning consistently misses across the projects like security or
backup/recovery that could account for the majority of the 15% missed defects.
You may fi nd several areas of the software that test planning consistently misses
across the projects that collectively begin to approach the missing 15% of defect
discoveries. You may fi nd that your test planning is very comprehensive, but the
way you execute some of your tests may allow some defects to go undiscovered.
Finally, you may fi nd that your testing is planned well and executed well, leading
you to conclude that the Rayleigh curve is simply not predictive for your projects.
The purpose of the Rayleigh curve comparison is to prompt you to ask probing
questions about your testing effectiveness, then act on any fi ndings to improve
your testing.

Finally, we need to show you one example of a kind of prior project de-
fect curve that defi es Rayleigh curve comparison from the outset. Instead of
 looking like Figure 12.15, assume that your prior project defect curve looks like
Figure 12.18.

Figure 12.18 Prior development project defect tracking log with a gap in defect discovery

12.7 The Rayleigh Curve—Gunsights for Defect Discovery Patterns 199

200 Chapter 12 Analyzing and Interpreting Test Results

The challenge in comparing the Rayeigh curve to these results is the accu-
rate placement of the gunsight. Instead of a clearly defi ned peak, defect discovery
dropped off dramatically between weeks 9 and 13. The proper location of the gun-
sight becomes problematic in the area of the dotted box.

12.8 MORE DEFECT TRACKING METRICS

It is worthwhile to take inventory of the metrics that we have found to be helpful in
analyzing defect discovery trends and prioritizing defect backlogs.

Development metrics discussed and demonstrated

unique development defect identifi er

development defect discovery date

development defect severity

development defect correction date

development defect correction code earmark

HelpDesk metrics discussed and demonstrated

unique customer defect identifi er

customer defect discovery date

customer defect severity

support defect correction date

support defect correction code earmark

These metrics come from four sources: the test team, the development team, the
HelpDesk team, and the software support team. As simple as this list of metrics ap-
pears, the effort to establish uniform collection and reporting of this list is intensive
and nontrivial. Many software organizations think that the value of the results do not
justify the effort. Consider a small pilot project to establish the value of these metrics
to your organization. Then make an informed decision about continuing the metrics
collection and analysis on a progressively larger scale.

Some software organizations have proven to themselves that the value of the
results do justify extending the list of metrics further, thereby adding effort but also
providing additional analysis opportunities. One of the more successful techniques
for adding to the above list of metrics is IBM’s Orthogonal Defect Classifi cation
which is called “ODC.” [50] ODC is the result of IBM software defect research
started around 1994 and has become a mature technique. ODC suggests adding two
more metrics to the defect log that the testing team provides at defect discovery time
and four more at defect correction time. IBM has developed a complementary analy-
sis and reporting tool called JMYSTIQ (Java—managing your software to improve
quality) to help the ODC user analyze this formidable list of metrics over thousands
of defects. Expect further development of tools and techniques in software defect
analysis, a rich area of practical research that just might produce our silver bullet.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

12.9 PUTTING TEST RESULTS IN PERSPECTIVE

The analysis of testing results can benefi t a development project in two different
ways. The fi rst and most obvious way is to track individual defects to correction.
This tracking provides the development manager with the number of defects discov-
ered, the number of defects corrected, and the number of defects awaiting correction.
From these tracking reports, the development manager can make informed decisions
about the effort and advisability of correcting all known defects before the develop-
ment is declared completed.

The second and less obvious way that test results analysis benefi ts a development
project is by noting trends and trend comparisons that can indicate possible issues with
successful testing completion. These possible issues can take the form of unusually
buggy software components, testing effort that may not keep pace with the develop-
ment effort, and anticipation of numbers of defects that may escape the development
project and be discovered by end users. These analytical results represent additional
management decision inputs available while the software is being developed.

12.10 SUMMARY

This chapter describes the kinds of test execution results you might want to collect,
the ways you might want to consider analyzing these results, and the interpretations
you may place on your analysis outcome.

The fi rst step in discussing test execution results is to assume that you have done a
thorough job of test planning. If you have unintentionally omitted certain application
functions or business activities or structural components or performance aspects of
your application from your test planning, then your test coverage will be inadequate.

One planning key to successful test results analysis is the clear defi nition of suc-
cess for each test case. It is common for a test case to have a number of expected re-
sults. If the actual results obtained from a test execution all match the expected results,
then the test case is normally considered “attempted and successful.” If only some of
the actual results obtained from a test execution match the expected results, then the
test case is normally considered “attempted but unsuccessful.” A test case may be “at-
tempted but unsuccessful” because the actual results do not match the expected results
or because the software halted with an error message before the test case was com-
pleted. Test cases that have not been executed are initially marked “unattempted.”

The incremental discovery and correction retesting of software defects is the
primary way that software testers help software developers implement the develop-
ment requirements. The fewer the latent defects in the delivered software, the closer
the software comes to fulfi lling the requirements. The success of incremental defect
discovery is directly related to the management process used to track defects from
discovery to correction.

Successful incremental defect tracking can provide a third testing metric nor-
mally called the defect backlog. If your testing has discovered 300 software defects
and development has successfully corrected 100 of these defects, then a backlog of
200 defects still need to be corrected. The challenge for the development team is

12.10 Summary 201

202 Chapter 12 Analyzing and Interpreting Test Results

to determine if there is enough time and programming and testing resources avail-
able to reduce the defect backlog to zero before the development due date.

The metrics used to track the incremental discovery and correction of software
defects can be leveraged for valuable test analysis beyond one-by-one defect review
and backlog analysis. Consider the cost/benefi t tradeoff from adding one more col-
umn of information to the defect tracking record: the identifi cation of the code that
contained the defect.

This augmented defect tracking log can be used for root cause analysis. There
are a number of good statistical textbooks available that provide the mathematical
basis and practical application of root cause analysis to software defect logs. The
simplifi ed explanation of root cause analysis for testing is the mathematical search
for the “buggiest” code. This search can be accomplished by a simple frequency
count of corrected defect code earmarks, ordered with the most frequently occurring
code earmarks fi rst.

There is no current way to precisely predict beforehand how many or what kinds
of defects your test team will discover in a new software. Depending on the cir-
cumstances and maturity of the software development organization, predevelopment
defect predictions can range from an educated guess to reasonably accurate predic-
tions. If there is project history either from similar software applications or from
previous releases of the same software application, then that project history can be
leveraged for next project defect predictions.

KEY CONCEPTS

Attempted versus
unattempted test cases

Business risk to not
correct

Code earmarks

Customer defect
discovery correlation

Defect backlog
Defect log discovery

curve

Successful versus
unsuccessful test cases

Rayleigh curve
Root cause analysis
Severity codes

 203

LEARNING OBJECTIVE

to demonstrate the testing concepts, strategies, and techniques described in previous
chapters using a real software development project from beginning to end

13.1 INTRODUCTION

We have presented fundamental software testing concepts, strategies, and techniques
in the fi rst 12 chapters. The fi nal ingredient for successful software testing is your
knowing when and how to correctly apply these strategies and techniques.

The examples we have given you so far have been intentionally simple to clarify
the specifi c concepts, strategies, and techniques in a very limited context. Simply
lifting these examples out of context and applying them ad hoc to a software testing
situation will give you disappointing results. As with all technical professions, it
requires intelligence to determine which strategies and techniques can be successful
for the situation at hand. Stated another way, no two testing projects are identical;
therefore, no “cookbook approach” to testing can succeed for very long.

The challenge for this chapter is to walk you through a case study that will dem-
onstrate ways to make intelligent choices of strategies and techniques that are suc-
cessful time after time when there is no single formula for success. We will answer
that challenge by repeatedly applying the SPRAE method to a series of situations
that arise during a software development case study. As you read each subsequent
SPRAE discussion, you may fi nd yourself coming to a different conclusion. You are
encouraged to think through the outcome you might expect if you were to act on
your conclusion instead of ours. Because there is no single “right answer,” you may
determine that your conclusion is just as viable as ours. This is a good indication that
you have begun to internalize the topics in the earlier chapters.

•

Chapter 13

A Full Software Development
Lifecycle Testing Project

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

204 Chapter 13 A Full Software Development Lifecycle Testing Project

The case study chosen for this chapter contains some intentional simplicity. One
reason for this simplicity is ease of demonstration and discussion. Another reason
for this simplicity is to set the stage for Chapter 14 that will show how more complex
testing situations can be attacked successfully by decomposing the complex situ-
ation into the simpler, more familiar situations from this chapter. The case study
development activities follow the phased development methodology. Testing at each
stage is conducted using the SPRAE methodology. You will fi nd all of the case study
artifacts discussed in this chapter stored on the textbook publisher’s Web site as Case
Study B: The DriveSafeAmerica (DSA) System.

13.1.1 Case Study Background

The software development project chosen for Case Study B is a real software
development project in which one of the authors was a primary participant. The
company name, staff, and location have been changed to honor the company’s
confi dentiality.

Introductions are the fi rst order of business. DSA is a U.S. company in Denver
authorized by the State of Colorado to provide automobile driver training. The scope
of the driver training includes unlicensed driving students and licensed drivers who
are taking refresher training in lieu of paying traffi c ticket fi nes for moving violations.
DSA sells classroom driver training that provides the successful student with a
completion certifi cate that satisfi es the State of Colorado requirement for classroom
instructions prior to behind-the-wheel testing. The same completion certifi cate also
satisfi es the Colorado traffi c court obligation for refresher training in lieu of paying
certain traffi c ticket fi nes.

DSA is experiencing healthy business growth. From a modest start of 2,000
certifi cates issued the fi rst year of business to last year’s 32,144 certifi cates, DSA
has written over 62,000 certifi cates. The DSA business is doubling each year. If this
trend continues, DSA can expect to write over 64,000 certifi cates next year.

13.2 PRELIMINARY INVESTIGATION STAGE

Tom Thompson, the DSA President, is worried. His company is preparing and tracking
all DSA completion certifi cates manually. The completion certifi cates are fi lled in
from class rosters using a typewriter. A carbon copy of the completion certifi cates are
fi led away in cabinet drawers in the DSA home offi ce. When the company started,
one clerk could easily manage the 2,000 certifi cate production and archiving. As
the annual workload grew, Tom added more clerks, more typewriters, and more fi le
cabinets. He sees this year as a break point for the manual process. Not only does the
forecast workload increase call for a substantial increase in certifi cate preparation
staff but also for a substantial increase in certifi cate archive staff. The certifi cate
preparation staff increase can be offset by the expected proportional increased

revenue from the certifi cates. The certifi cate archive staff increase represents pure
overhead because by law there is no charge for searching the archives or mailing out
duplicate certifi cates to replace lost originals.

Tom meets with Frank Fouchet, the company Financial Manager, and Lisa
Lemoine, the company Operations Manager. They determine that it is time to
automate the certifi cate production and archiving process. The numbers tell them
that a computer-assisted certifi cate system might allow them to defer a prepara-
tion staff increase for several years and possibly allow them to reduce the current
archive staff while sustaining revenue growth and increasing profi t. As with all
automation projects, there is no “free lunch.” It will take money to save money.
DSA must invest some of its profi ts now in a computer system in order to realize
both the revenue growth and increased profi t later. Lisa also observes that there
will be costs and effort beyond the computer system implementation per se to con-
vert the current manual archives to computer-searchable archives. There may need
to be a transition period in which some certifi cates will be computer searchable
and printable while other certifi cates will remain searchable and printable only by
hand.

DSA contacts Computing Perspectives, Inc. (CPI), a local computer consulting
company, and requests a bid from CPI for a turn-key computer-assisted certifi cate
production system that will completely replace the DSA manual certifi cate system.
The CPI consultant team visits the DSA offi ces and interviews Tom, Frank, and Lisa
to understand the scope and requirements of the new system. Then, the CPI team
asks to see the written offi ce procedures and watch the certifi cate staff manually
produce completion certifi cates using these procedures. Afterwards, CPI replies
with a turn-key bid that includes

computer hardware

computer software

written guides for users and administrators

training for the administrators

The CPI team highlights the following specifi c risks that the automated certifi cate
system implementation will present to DSA business. Most of these risks have been
mitigated so far by the manual certifi cate system in place.

ability to produce State approved original certifi cates that conform to State of
Colorado legislation

ability to archive all DSA original certifi cates produced and mailed for the
legislated 3-year duration

ability to search the DSA certifi cate archive and either confi rm certifi cate
originals or print approved certifi cate duplicates

The CPI team also points out DSA risk due to the nature of the required manual-
to-automated system skills transition because the current certifi cate production
staff is not accustomed to doing more than word processing and spreadsheets on
computers.

•
•
•
•

•

•

•

13.2 Preliminary Investigation Stage 205

206 Chapter 13 A Full Software Development Lifecycle Testing Project

DSA accepts the CPI bid and sets the date to begin the formal development pro-
cess for the new automated DSA Certifi cate Processing System (DCPS).

13.3 ANALYSIS STAGE

13.3.1 Initial Meetings and Conclusions

CPI holds several Analysis stage meetings with the DSA management to formulate
an appropriate high-level technical approach for the DCPS. The following initial
analysis conclusions are reached:

The new certifi cate software will be implemented using an off-the-shelf da-
tabase management system that provides simple navigation menus, screen
management, structured data storage and retrieval, and formatted printing
of records.

No prior technical experience will be required to operate the new certifi cate
software.

Although there can be fl exibility in the screen designs and database structure,
the print format must align exactly with the Colorado State approved continu-
ous-form blank certifi cates already stockpiled in quantity by DSA.

In addition to the normal monitor, keyboard, mouse, and multifont printer, the
workstations will need largest available capacity hard disks for certifi cate ar-
chives and high-volume tape drives for regular archive backups and searches.

Because all the workstations will be located in a lockable DSA offi ce and
none of the workstations will be connected to computers outside of the DSA
offi ce, chassis lock and key is a suffi cient security measure to keep the DAS
certifi cate data safe from intrusion and theft.

 The workstations will be connected peer-to-peer for the simplest fi le-sharing
operations possible with the least amount of computer equipment possible (no
network servers) and no required technical staff (network administrators).

The only new computer hardware needed will be desktop PC workstations
that replace the current typewriter stations one for one.

This is the fi rst computer application for DSA beyond simple clerical activities, so
everything about the system will be new to DSA management and staff. They will not
have any experience with prior computer systems that can be leveraged when designing
or learning the DCPS. The only computer experience on the project will come from
CPI and the previous business systems that CPI teams have implemented.

You are the test team manager for CPI. You have been included in all the Analy-
sis stage meetings to date as an observer. This meeting participation allows you to
gain an initial understanding of the issues and decisions around the DCPS. During
the Analysis meetings, you reach for a blank testing strategy chessboard and start
making notes. As the fi rst round of Analysis stage meetings with DSA concludes,
your testing strategy chessboard looks like Figure 13.1.

1.

2.

3.

4.

5.

6.

7.

Your testing strategy chessboard indicates a high number of new support systems
required for the DCPS, which, in turn, represents a substantial implementation risk
to the development team. Of all the possible support systems, only Security is a
trusted technology because it is a physical lock and key used frequently in everyday
life. If any one of the other support systems cannot deliver the specifi ed kind of
functionality at its level, then the DCPS will fail to deliver its overall business
functionality.

Your testing strategy chessboard also indicates that there is a critical sequence
of early testing activities prerequisite to a successful Design stage. The chessboard
is intentionally laid out to dramatize the priority of testing from bottom to top when
any of the support systems below the application under test are not trusted.

Following this priority, the operating system with its central processing unit
speed and memory capacity must be the fi rst support system to identify and evaluate
(validate by testing) against the DCPS requirements. The next support system to
identify and evaluate will be data resources, which for this project means the hard
disk capacity for the certifi cate archives, the archive backup capability, and the
database that will support all master fi le activities. The last support system to iden-
tify and evaluate will be connectivity necessary for the certifi cate workstations to
swap/share/aggregate weekly data fi les of printed certifi cates. Notice that signifi cant
failure of any of these support systems to pass the required evaluation tests could
cause major redesign of the application before the fi rst line of application code is
written. With all the support systems passing their evaluation tests, the development
team is in position to start the application level Design stage activities.

You alert the development project manager that from a successful testing per-
spective you will need the Analysis stage to produce detailed requirements for the
new support systems as well as the application itself; furthermore, you will need to
test these new support systems requirements very early in the Design stage. Your
request will be a little surprising to the development manager because the manager

Software platform by
layer of operation

Operating system
(cycles and memory)

Security (local and remote)

Data resources
(disk space, data mgmt)

Connectivity
(private, public)

Application under
development

Phased development
methodology

Preliminary
investigation +

Analysis
+ Design

Preliminary
construction

 Final
construction

Post
implementation

Ship or
Install

Software testing techniques

 Static tests White box Black box Workload

New (1)

New (2)

New (3)

New (4)

Lock and key

Figure 13.1 First cut testing strategy chessboard for the DSA certificate processing system

13.3 Analysis Stage 207

208 Chapter 13 A Full Software Development Lifecycle Testing Project

is so intensely focused on the functional requirements and probably has not real-
ized the full impact of improperly chosen support system components on successful
functionality.

There is one troublesome issue for the test team that arises from the initial anal-
ysis conclusions. Conclusion #3 contains a hard and fast application print format
requirement. Absolutely everything else about the DCPS and its support systems
may function perfectly; however, if the system cannot correctly print the results on
approved completion certifi cate forms, then DSA is in violation of the law.

The normal approach for developing new application reports is for the develop-
ment team to design the reports in the Design stage and write the report programs in
the Preliminary construction stage. The timing of report development and testing is
usually much closer to the end of the Preliminary construction stage than the begin-
ning because report development tries to leverage the application program structure
and data fi le structures after they are written and stable, as well as have valid data
loaded for report testing. Then, the testers execute the report programs during the
later part of the Preliminary construction stage and compare actual report results
against expected results.

Initial analysis Conclusion #3 mandates a test strategy that validates the tech-
nical reporting capability of the database management system during the Design
stage, well before the Preliminary construction stage is begun. If the reporting ca-
pability of the database management system chosen for the DCPS is found to be in-
adequate during the Design stage, the dollar and time impact of changing technical
approaches during the Design stage is substantially lower than making the same dis-
covery at the end of the Preliminary construction stage. You alert the development
project manager that database management report testing will need to be advanced
in the schedule to the beginning of the Design stage along with the new support
systems.

This is about as far as you can go with your test planning until the devel-
opment team documents the requirements. Once the requirements are written,
your test team can static test the requirements for completeness and correctness.
Then, your test team can begin to apply the SPRAE method to each require-
ment (Specifi cation) to complete your testing strategy and draft your test plans
 (Premeditation).

13.3.2 Requirements Writing and Review—Use Cases

CPI begins the requirements research and documentation in earnest. The primary
sources of requirement information are the DSA manual procedures, the continuous-
form completion certifi cates, and the DSA class rosters showing who completed the
classes. Refer to Case Study B Document Repository on the publisher’s Web site to
see a blank completion certifi cate and a blank DSA class roster.

From this information and further discussions with Lisa and her certifi cate
support staff, CPI develops the following DCPS use cases.

Sky-level use cases—DSA procedures to remain manual

Use case-01: DSA Roster Sign-In
Use case-02: DSA Roster Completion

Sea-level use cases—DSA procedures to be automated

Use case-03: DSA Roster Input
Use case-04: DSA Certificate Printing
Use case-05: DSA Certificate Record Searching
Use case-06: DSA Certificate Printing—requests for Duplicates
Use case-07: DSA Certificate Records—weekly Management
Use case-08: DSA Certificate Records—yearly Management

When the development team publishes the use cases, you compare the
requirements to your testing strategy chessboard and detect that none of the new
support system risks or requirements have been formally documented. You urgently
request the development team to draft an architecture design that captures the
known support system requirements. They comply with your request by drafting an
architecture design for the support system components.

13.3.3 Requirements Static Testing

You and your test team closely review each use case and the architecture design,
comparing them with the DSA manual procedures, DSA blank completion certifi -
cate, the DSA class roster, and the Preliminary investigation stage meeting results.
Your testing goal is to confi rm the completeness and correctness of each use case
individually, all use cases collectively, and the architecture design for subsequent
Design stage use. Once you complete the requirement static testing, you have cor-
rectly established the “S” (Specifi cation) in the SPRAE testing method as the basis
for all subsequent testing activities in this development project.

13.3.4 Using Static Testing Results to Correct
or Improve the Requirements

You and your test team carefully read and review all of the requirements documents
in static testing walkthrough meetings. During each meeting, you log which areas of
the requirements cause questions to arise among the test team. The questions may be
answered by clarifi cation from DSA management or the CPI development team and
no further action need be taken. The questions may be answered by the identifi cation
of needed requirement revisions. The questions may be answered by the identifi ca-
tion of needed new requirements. At the end of each meeting, you and your team
specifi cally think about and log anything you suspect is missing or incorrect.

The goal of the review meetings is to determine what, if any, changes are needed
before the requirements are considered valid for Design stage activity. You invite
the DSA management team, the CPI development team, and your test team to a

13.3 Analysis Stage 209

210 Chapter 13 A Full Software Development Lifecycle Testing Project

series of review meetings to discuss the test team’s static testing review results for
the requirements. Depending on which area of the system is reviewed fi rst, second,
and so forth, you may need to extend an invitation to specialists in the topic covered
by the requirements. For example, when data entry is the review meeting topic, it
would be very helpful to have one of the more experienced DSA data entry opera-
tors/certifi cate writers included in the meeting discussion. Similarly, when database
searching is the review meeting topic, it would be very helpful to have one of the
more experienced CPI database designers included in the meeting discussion.

Here is an example of what might happen during one of the static test review meet-
ings. On the surface, it looks like the instructor certifi cation code listed on the class ros-
ters is incidental to entering and printing each student’s completion certifi cate. When
the situation is discussed with Lisa Lemoine, the DSA Operations Manager, she indi-
cates that DSA has several legal obligations to the State regarding DSA instructors.

First, each DSA course instructor must be certifi ed by the State of Colorado
before the instructor can deliver driver training and vouch for successful student
completion. The State of Colorado assigns each instructor a unique code after the
instructor passes the State examination. DSA must track the certifi cation code for
each instructor and ensure that the instructor successfully completes initial certifi ca-
tion and recertifi cation every 2 years. The penalty for out-of-certifi cation instructors
vouching for successful student completion is a fi ne of $25,000 for each instance. So
far, DSA has not been fi ned for out-of-certifi cation instructors. A penalty that DSA
has incurred is a fi ne of $1,000 for each instructor name on a completion certifi cate
that does not match exactly the instructor name on the State instructor certifi cation
document. DSA has paid an average of $5,000 per year in non-matching instructor
names on completion certifi cates for a total of $10,000 in fi nes. This problem will
most likely reoccur as long as DSA workstation employees must retype the full in-
structor name onto each completion certifi cate.

CPI suggests a modest extension to the current system design to provide an in-
structor code lookup feature. Once the absolutely correct instructor names and codes
have been entered into a system fi le, the workstation operator need only enter a valid
instructor code and a guaranteed correct instructor name can be provided to the input
process via automated lookup. Furthermore, if the instructor code is stored on the stu-
dent completion master record in lieu of the instructor name, there is a possible disk
storage savings because the instructor code is much shorter than any instructor name.
Although the lookup action will require a small amount of additional processing per
student completion master record, the value of the increased accuracy of instructor
name spelling is expected to more than offset the additional processing cost. As a re-
sult of this static test discussion, the following additional use cases are documented:

Use case-09: DSA Instructor Certifi cation Input

Use case-10: DSA Instructor Certifi cation Update

You know when to stop your requirements review meetings by the completion of
your static test review item list. When all review items have review resolutions, you
are fi nished with the review meetings. There can be at least three different kinds of
review resolutions:

The requirement is correct as stated; no further action is needed.

The requirement is correct but needs additional written clarifi cation.

The requirement needs content update or new documentation that may im-
pact other requirements.

Before reading further in this chapter body, please review the Analysis stage
documents provided in Case Study B. Case Study B contains four sets of documents,
one set for each development stage. All of the primary documents in each set are
suffi xed by the development stage number and name as

You will fi nd six primary documents in each stage except Analysis (no user interface
documentation). These six primary documents are

Use case suite (high-level description with lists of use cases)

Use cases (each use case documented in detail)

Design architecture (support systems and data fl ow)

Test plan (high-level description with lists of test cases)

Test cases (test case skeletons—see Case Study A for details)

User interface (menus and screens)

Most of the high-level primary documents have links to related detailed documents.
Here is a roadmap of that primary document linkage:

Use case suite links to use cases

Design architecture does not link to other primary documents.

Design user interface does not link to other primary documents.

Test plan links to test cases.

Each test case links to its related use case(s), its design architecture, or its user
 interface.

All of the primary documents for the developers except use cases have been omit-
ted from the testing case study. Please refer to any reputable textbook on software
development for examples of the omitted documents.

Revisiting the impact of UC-09 on the data volumetrics in the Analysis archi-
tecture design, we see that storing the instructor certifi cation code in lieu of the

1.

2.

3.

Development stage Primary document filename suffix

Preliminary investigation (none in this case study)
Analysis -2analysis
Design -3design
Preliminary construction -4precnst
Final construction -5fincnst
Installation (none in this case study)

13.3 Analysis Stage 211

212 Chapter 13 A Full Software Development Lifecycle Testing Project

instructor name reduces the original estimate of the 3-year completion certifi cate
master fi le by about 57 Mbytes in hard disk storage. The offsetting increase in hard
disk storage due to the new certifi ed instructor master fi le is only 140 Kbytes. The
real downside is expected to be the additional processing time necessary to validate
instructor certifi cation codes on each student completion input and convert instructor
certifi cation codes to instructor names for all certifi cate printing.

13.3.5 Completion of the Test Strategy

Your last testing step in the Analysis stage is to begin the “P” (Premeditation) in
the SPRAE testing method by completing your test strategy. Based on the bathtub
model of test planning, you know that your test plans will start with details from the
development team’s Design stage. Figure 13.2 shows a likely test strategy based on
the ten use cases and draft architecture design.

This strategy shows that the fi rst concern will be the speed and capacity of the
workstation hardware as described in the draft architecture design.

The second concern will be the functionality of the database management system
as described in the draft architecture design. Of particular concern is the architecture
support of use case-04 for printing student completion records on the approved
completion certifi cate form. These concerns will drive the choice of the database
management system before any detailed design work can be started by the development
team. All other use cases have quite a bit of latitude in their actual implementation.

The third concern is the speed of architecture connectivity that will adequately
support use cases -07 and -08.

The fourth and fi nal concern is the set of use cases -03 to -06 that defi ne the
software application primary functionality to be developed. This row of the test
strategy will follow familiar testing patterns for new applications under test.

Software platform by
layer of operation

Operating system
(cycles and memory)

Security (local and remote)

Data resources
(disk space, data mgmt)

Connectivity
(private, public)

Application under
development

PDM

Preliminary
investigation +

Analysis
+ Design

Preliminary
construction

 Final
construction

Post
implementation

Ship or
Install

Software testing techniques

 Static tests White box Black box Workload

New (1)

New (2)

New (3)

New (4)

Lock and key

Figure 13.2 Testing strategy chessboard for the DSA certificate processing system

Successful static testing of all requirements represents a key step in com-
pleting the Analysis stage before the Design stage is started. Part way through
the requirements static testing, the development team can get the irresistible urge
to start the Design stage with the tested but uncorrected requirements. Know-
ing that 85% of software development defects come from bad requirements, the
CPI project executive defers all Design stage development activities until the
requirements static testing is completed. The static testing emergence of new use
cases -09 and -10 along with their positive impact of reducing the major fi le size
requirements reaffi rms the value of thorough static testing before design work
is begun.

13.4 DESIGN STAGE

With the Analysis stage completed, the Design stage is begun. CPI initiates several
concurrent activities that must dovetail before the design is completed. Here are the
activities initiated by CPI in priority order:

(a) a search for database management software that provides

printing the completion certifi cate forms specifi ed in the the draft
architecture design to support use cases -04 and -06,
master fi le and index fi le size support specifi ed in the draft architec-
ture design, and
general user navigation capabilities in the draft architecture design.

(b) a search for workstation hardware that has the fi le storage capability,
backup capacity, and connectivity specifi ed in the draft architecture de-
sign and runs the chosen database management system.

(c) technology independent logical design of the DCPS functionality (nor-
mally the only priority of the Design stage).

13.4.1 Support Systems Design

The search for database management software is undertaken by a joint team of
senior members from the development team and the test team. With a list of most
promising database management software packages, the team takes the following
repeated evaluation approach until a package is found that meets all of the support
requirements. First, the developers hand build a small fi le of real DSA certifi cates
using the database package. Then, the developers use the database package to write a
certifi cate report program. The developers and testers together use the report program
to align and print the hand-built data onto the blank DSA completion forms. If the
forms cannot be printed correctly, then the database management package is rejected
before the other capabilities are attempted. If the forms can be printed correctly, then
the developers and testers move on to write and test representative menus, data entry
screens, and control screens.

1.

2.

3.

13.4 Design Stage 213

214 Chapter 13 A Full Software Development Lifecycle Testing Project

If all of these application capabilities pass the tests, then the fi nal evaluation
focuses on the maximum fi le size the database management package will build and
maintain. The database package vendor may claim maximum fi le size support be-
yond the application requirements. It is prudent business to actually test the database
package against the application requirements if the evaluator (CPI in this case) has
not seen that the database package supports fi les that are large elsewhere.

The maximum fi le size testing process is straightforward and will run many
hours. The tactic is to write a simple program that adds dummy records to a database
fi le through the database management package’s ADD function. The dummy records
have a unique record ID started at 1 and incremented by 1 until the desired number
of records have been stored based on the estimated maximum number of records
required for the new application. The dummy records can all be blank but should
approximate the expected record size for the new application. Anticipate fi le test
problems if your maximum number of records or maximum fi le size parameters are
within 10% of the database vendor’s published maximums. Commercial software
does not have a sterling track record when marketing claims meet technology
boundaries.

The database management software preferred by CPI is evaluated fi rst and soon
rejected because the wysiwyg (pronounced “wizzy wig,” standing for “what you see
is what you get”) report design tool of that software package cannot keep the print
registered on the blank DSA certifi cation form as the printing proceeded down the
form. The second choice database management system has less sophisticated devel-
opment tools (no on-screen report designers or screen designers), but it keeps the
printing registered within the entire length of the blank certifi cation form. The sec-
ond choice database management package candidate also provides all the remaining
required capabilities as verifi ed through developer and tester execution.

The search for appropriate workstation hardware is easier than the database
management software search because the workstation capabilities are commonly
available off-the-shelf. Pricing rather than capability of comparable workstations
becomes the workstation hardware selection yardstick.

13.4.2 Application Logical Design

While the database management software and workstation hardware are being eval-
uated, CPI also starts the logical design of the application. This is possible because
the logical design is dependent neither on the choice of database management soft-
ware nor the workstation hardware. The fi rst draft of the logical design is refl ected in
the Case Study B Design stage primary document about the user interface. As each
logical design component is completed, the CPI development team walks (static test-
ing) the CPI testing team through the design component to verify that it fulfi lls the
associated requirements.

Only some of the components in the new system are included in the user inter-
face design. The CPI developers choose representative components to design fi rst.
After the developers get confi rmation from DSA and the testing team that the logical

design of the representative components is on track, the developers design the re-
maining components.

13.4.3 Logical Design Static Testing

How do you go about static testing the application logical design? Because we now
have a basis for logical design, namely the requirements, the static testing approach
is cross-validation.

First, we validate the logical design against the requirements by asking the fol-
lowing kinds of questions.

Does every component of the logical design correctly represent its referenced
requirement in the use cases?

Are there logical design components that do not reference requirements? If so,
why have these components been included in the logical design or, conversely,
did we miss some requirements?

Does the logical design make sense in the context of the overall scope and
purpose of the application?

An example of the fi rst bullet can be demonstrated by comparing the simple
menu structure requirement in the use case suite supplemental requirements with the
user interface design menu/screen hierarchy. The simple menu requirement implies
that the completion certifi cate action screens should be found immediately behind
the main menu. The proposed menu/screen hierarchy locates the completion certifi -
cate action screens behind a secondary menu behind the main menu. When asked to
reconcile the two approaches, the development leader replies that the new secondary
menu structure for completion certifi cate action provides economies of main menu
screen real estate without any expected decrease in ease of use.

If this design change caused the completion certifi cate clerk to revisit unneces-
sary menus many times during the workday, then the longer screen navigation path
would not offset the main menu real estate considerations. The developers expect
the completion certifi cate clerk to navigate the menus once at the beginning of the
workday and stay in the completion certifi cate data entry screen most of the day.
Therefore, this interface design change does not really confl ict with the overall ar-
chitecture goal of a simple menu structure.

Second, we validate the requirements against the logical design by asking the
following question.

Have all requirements been represented by at least one logical design com-
ponent?

As with requirements static testing, we will expect a few user interface design static
testing defects to be discovered. These defects must be corrected in the documenta-
tion and retested before the Design stage can be considered completed. The com-
pleted, verifi ed logic design is the next documentation step that represents the “S”
in SPRAE.

•

•

•

•

13.4 Design Stage 215

216 Chapter 13 A Full Software Development Lifecycle Testing Project

13.4.4 Design Test Planning

When the logic design is drafted, the testing team starts writing the test plan, the
next step after the testing strategy in the “P” of SPRAE. As the logical design is
refi ned, the test plan is refi ned and the test cases are written. The Case Study B De-
sign stage section shows you what the test plan might look like by the time the logic
design is completed.

At the beginning of the logical design phase, the design details are sketchy at
best. Rather than trying to guess the design details and start writing test cases, con-
sider blocking out groups of test cases that you will most likely need to write as the
details become available. The authors have found two patterns of test case groups to
be useful as starting points.

The fi rst pattern of test cases is for the use cases. Regardless of the actors in-
volved, you can anticipate some kind of user process to be executed with some kind
of results captured in some kind of data fi le. Many times, the speed with which the
software allows you to complete the process is also of interest. Therefore, our fi rst
draft list of test cases for use cases is a group of four test cases per use case: FTPOS-
nn.m, FTNEG-nn.m, ST-nn.m, and PT-nn.m. The nn.m notation indicates use case
UC-nn process path m where m�0 is the main path or “happy path” and m�1 is the
fi rst alternate path, m � 2 is the second alternate path, and so forth.

The FTPOS-nn.m test case will use positive functional testing techniques
described in Chapter 7 to validate the operation of the input data fi elds and ac-
tions on each screen. The FTNEG-nn.m test case will use negative functional test-
ing techniques described in Chapter 7 to try to “break” the operation of the input
data fi elds and actions on each screen. The FTDAT-nn.m test cases will use data-
base testing techniques described in Chapter 7 to validate the associated use case
ADD, CHANGE, DELETE, and SEARCH data fi le activity hidden from the user’s
view. The PT-nn.m test cases will use performance testing techniques described in
Chapter 9 to verify that the search times are not linear with respect to the increasing
size of the master fi les; the backups can be accomplished within the available busi-
ness day window; and the record archiving can be accomplished within the available
business day window.

The second pattern of test cases is for the user interfaces and architecture design,
which may not be associated directly with any use cases. As we have seen from the
testing strategy, the test planning activity must pay attention to the support levels of
hardware and software in addition to the application software being developed.

Our draft list of test cases for the user interfaces is a group of test cases pre-
fi xed by UI for “user interface.” The draft list will contain test cases designated
IUFTPOS-nn for positive menu tests, IUFTNEG for negative menu tests, and
UIERMSG-nn for menu error message tests. The nn is an arbitrary sequential
number usually beyond the range of the use case numbering. For Case Study B, we
started numbering the user interface test cases at 20.

Our draft list of test cases for the architecture design is a group of test cases
prefi xed by ST for “structural test.” The draft list will contain test cases des-
ignated STHWR-nn for hardware test cases and STSWR-nn for software test

cases. The nn is an arbitrary sequential number usually beyond the range of the
use case numbering. For Case Study B, we started numbering the structural test
cases at 30.

The Case Study B Design stage test plan contains a draft schedule for writing
test cases to be executed in the Preliminary construction stage as the code becomes
available. To a great extent, the testing schedule is always dependent on the develop-
ment schedule because you cannot test what has not been written.

Where does the development schedule come from? Normally, the development
plan includes the order in which the new application components will be constructed
plus a construction effort estimate. Having developed a number of software applica-
tions, the CPI development team knows ways of prioritizing component development
that leverages each prior component completed to expedite the development of the
next component. Specifi cally, the CPI developers recommend the following priority
of component development for DCPS.

data entry screens

search screens

print screens

backup and archiving

menus

This priority allows the developers to achieve a certain amount of programming mo-
mentum. Once the data entry screens are fi nished, they can be used to enter enough
correct data to expedite the search screen coding and debugging. Once the search
screens are fi nished, there is suffi cient data reported to expedite the print screen
coding and debugging. The print screen output availability expedites the coding and
debugging of the backup, record transfer, and archiving features. Menus are last to
be constructed because they are needed only at the end of the development effort to
“package” all the action screens into a free-standing application that nonprogram-
mers can operate.

The priority list above does not track with the Case Study B Design stage test
plan schedule. What happened to the CPI developers’ priority recommendation ?
In this case, DSA intervenes with its business risk concerns. Because completion
certifi cate printing is the reason for the software development project, DSA presses
the CPI team to show early achievement of this printing capability in the software.
Instead of seeing proof of the software’s print capability later in the developer sched-
ule, DSA wants to see this proof very early in the developer schedule, perhaps as
early as week 2 or 3. Furthermore, the DSA management wants to operate the cer-
tifi cate print screens themselves as a fi nal verifi cation of the print capability. Here
are the development priorities fi nally negotiated between DSA and CPI to address
the certifi cate printing business risk.

print screens

data entry screens

search screens

1.

2.

3.

4.

5.

1.

2.

3.

13.4 Design Stage 217

218 Chapter 13 A Full Software Development Lifecycle Testing Project

backup and archiving

menus

This priority list and attendant developer effort estimates drive the testing schedule
you see in the test plan.

The testing schedule is represented by a development task followed by a series
of testing tasks. Almost all of the testing tasks extend beyond the development task
timelines because the testers cannot make a fi nal evaluation of this particular com-
ponent until after the developer is fi nished. At a more summary level, this project
is expected to take 10 calendar weeks of development effort, but the combined Pre-
liminary construction test plan and Final construction test plan show a 12 calendar
week effort.

The other aspect of the test plan worth mentioning is the test case list for each
development stage. This section of the test plan responds to the testing accountabil-
ity, the “A” in SPRAE, by delineating in advance what will be tested and in which
order. This minimizes the wasteful tendency to test “until you get tired of testing.”

As we document the list of performance test cases, some of the performance
test limits are immediately apparent from the use cases. For instance, the weekly
backup process must complete within a 4 hour window on Friday afternoons.
Other performance test limits are not mentioned in the use cases but have obvious
implications for the DSA business. Test case PT-03.0 is troublesome at this
juncture. PT-03.0 is supposed to measure how quickly a data entry screen can
be completed.

The business question for the testers is “How quickly must the data entry screen
be completed?” This question is directly related to the manual processing bottleneck
that prompted DSA to consider a computer system in the fi rst place. DSA recognizes
that all of the data entry staff are currently working at maximum capacity and any
increase in completed certifi cate production will require additional data entry staff to
handle the increased load. The point is that DSA does not need to do a time– motion
study to see that its data entry staff is maxed out. The fl ip side of this point is that the
test team needs to know the current manual process time–motion numbers in order
for performance testing to target computer response times fast enough to level the
staffi ng load for several years.

CPI meets with DSA to request a time–motion study of the manual system be-
fore it is replaced by the new computer system and before the new computer system
is completed. Here are the metrics that CPI requested from DSA.

Take several timing samples of the completion certifi cate typing process over
the next 3 weeks (before the data screen programs are due to be fi nished).

Consider sampling work levels of a few of the most profi cient data entry staff,
usually longest employed. Use these numbers as the upper range of certifi cate
production.

Consider sampling work levels of a few of the lesser profi cient data entry staff,
usually newer employees. Use these numbers as the lower range of certifi cate
production.

4.

5.

•

•

•

Consider performing the sampling on Tuesdays, Wednesdays, and Thursdays.
Mondays represent a work week startup challenge from the weekend and
might not portray the sustained work levels accurately. Fridays represent a
workweek closedown for the weekend and might introduce inaccuracies simi-
lar to Mondays.

Consider sampling a couple of times midmorning and midafternoon to get a
good representative day-long work level.

Consider timing the actual start/fi nish of four or fi ve completion certifi cates
in a row once the measurement has started. The average time for complet-
ing certifi cates will be the number that the new computer system data entry
screen must beat.

CPI also alerts DSA to reenforce the data clerks’ understanding that the time–
motion study is to gain measurements for “tuning” the new computer system, not for
evaluating their current job performance. Lacking that reenforcement, the data entry
clerks might view the study as “testing” them to see how much work they can do,
which will completely skew the results.

When DSA does the time–motion study, they fi nd out that the manual comple-
tion certifi cate typing takes from 10 min per certifi cate for experienced data entry
staff to 15 min per certifi cate for inexperienced data entry staff. The testing team
suggested that a fourfold decrease in time per certifi cate is a minimum goal to keep
the data entry staff size fl at for at least the next 2 years because the workload seems
to be doubling each year. Using the DSA time–motion study numbers, the PT-03.0
slowest data entry screen response time for an experienced data entry clerk is 2.5
min per certifi cate. An inexperienced data entry clerk needs to be able to complete
certifi cate entry using the same screen in no more than 3.75 min per certifi cate.
Because all DSA data entry clerks will be “inexperienced” on the new system, the
3.75 min per certifi cate goal is expected fi rst. If the data entry screen is designed for
ease of use, then the more experienced data entry clerk should be able to demon-
strate increased speeds approaching the 2.5 min per certifi cate in less than 2 weeks
of practice. All of these measurements and assumptions need to be documented in
PT-03.0 for execution measurement in the Preliminary construction stage.

13.5 PRELIMINARY CONSTRUCTION STAGE

13.5.1 Static Testing

With the Design stage completed, the Preliminary construction stage is begun. The
development team writes detailed specifi cations and starts coding the application in
the database management screen and process languages. Your testing involvement in
these activities is fairly indirect. You convince the development manager of the value
of static testing both the specifi cations and the code. Of the two, static testing the
code via walkthroughs is the most familiar kind of static testing to the developers.
The requirement continues to be the authority document for this testing. Someone

•

•

•

13.5 Preliminary Construction Stage 219

220 Chapter 13 A Full Software Development Lifecycle Testing Project

must validate the software specifi cations against the requirements they are supposed
to fulfi ll. Then someone must validate the software code against the software speci-
fi cations and, by implication, validate the code against requirements. With encour-
agement and support from the test team, the development team performs these static
tests. The more the testers are invited to participate in the developer testing, the more
the testers can learn about the system to be tested. This increased tester knowledge
tends to shorten the test case detail writing effort.

13.5.2 Test Environment Setup and Test Data
Preparation

While the developers are writing the program specifi cations, some of the testers are
writing test cases and other testers are setting up the testing environment and col-
lecting test data. See the Case Study B Preliminary construction stage architecture
design for the DCPS production environment and the test plan test environment. It
is decided to set up two of the new DSA workstations for the test environment: one
for clerk user testing and one for administrator user testing. This decision gives the
test team an exact copy of the intended production environment in which to test. If
automated test tools are to be used, now is the time to acquire the tools and install
them in the test environment. This approach provides the controllability and repeat-
ability of all DCPS testing in conformance with the “R” in SPRAE.

When the developers start writing code, the testers will start collecting and
creating test data. Because there is no DSA computer data to collect from prior
certifi cate printing, the testers will need to create all the computer readable test data
from scratch. The Case Study B Preliminary construction test plan calls for test data
to be created from the following DSA data sources:

current list of all certifi ed instructors who work for DSA

current list of all DSA class teach locations

copy of all DSA class rosters used last month to manually prepare completion
certifi cates.

copy of last year’s search log from municipal court and student requests that
resulted in requests for duplicate certifi cates

The fi rst application module to be tested is the print screen (DSA1.02S). So the
testers responsible for test data preparation create data fi les of certifi ed instructors
(data source 1), DSA class teach locations (data source 2), and DSA completion cer-
tifi cates (data source 3) during Weeks 1 and 2. The search log (data source 4) will
not be needed for testing until Week 4 when the search screen (DSA1.03S) is written.
These test data fi les must be hand-built and visually verifi ed from printouts because
none of the new system input or reporting functions will be available until later in
this development stage.

Usually the tester has a choice of test data building approaches: brute force or
equivalence classes. An example of brute force test data building for this application
would be to create a certifi ed instructor fi le of all 200 DSA instructors, a class location

1.

2.

3.

4.

fi le of all 75 locations, and a completed certifi cate fi le of all 1,267 certifi cates issued
last month. A total of 1,542 test data records would be manually built using the brute
force approach. An example of the equivalence class approach would be to start by
creating 20 certifi cates records representative of different ages, different sexes, dif-
ferent instructors, and different classroom locations. Then create only the 10 or so
instructor records needed to print the 20 certifi cate records. Then create only the 5
classroom location records needed to print the 20 certifi cate records. A total of 35
test data records would be manually built for fi rst testing using the equivalence class
approach. Once testing is begun, the number of certifi cate records can be increased,
the number of associated instructor records can be increased, and the number of
associated classroom location records can be increased to meet the specifi c volume
and variety testing needs. Lower volume, wider variety of records are needed fi rst
for functional testing. Higher volume, fairly similar records are needed second for
performance testing.

13.5.3 Functional Testing

Chapter 7 identifi es six functional testing techniques classifi ed as white box testing,
that is, testing with the source code available. These techniques are

Statement coverage technique

Branch (Single condition) coverage technique

Compound condition coverage technique

Path coverage technique

Loop coverage technique

Intuition and experience

As the developers write and debug the DCPS screen programs, the test team encour-
ages the developers to strive for 100% coverage of their code using each of the fi rst fi ve
techniques. The more coverage the developers achieve, the fewer defects are expected
to be discovered later by the testers. The intuition and experience techniques include

dates

zero length anything

buffer overfl ow

and any aspects of the chosen database management system known to be trouble-
some. Dates will play a major role in the DCPS from a data entry standpoint (student
birthdate, date class completed) and from a record management standpoint (comple-
tion records entered today, certifi cate records printed this week, instructors with
certifi cations about to expire, and so forth). Because most data entry fi elds are re-
quired, the “zero length anything activity” will apply more to data records and data
fi les than to data fi elds. Buffer overfl ow may not be a signifi cant area of risk for the
DCPS because the overwhelming majority of process activity is single thread, that
is, one user performing one task at a time on one workstation.

1.

2.

3.

4.

5.

6.

1.

2.

3.

13.5 Preliminary Construction Stage 221

222 Chapter 13 A Full Software Development Lifecycle Testing Project

Chapter 7 identifi es four functional testing techniques classifi ed as black box
testing, testing with the source code not available. These techniques are

Equivalence classes technique

Boundary value analysis technique

Expected results coverage technique

Intuition and experience

There will be ample opportunities to apply equivalence class techniques to the test-
ing of data entry screens (FTPOS-03.0, FTNEG-03.0, FTDAT-03.0, FTPOS-09.0,
FTNEG-09.0, and FTDAT-09.0). Student names and instructor names provide a
rich opportunity for testing allowable alpha and special character string classes as
a more cost-effective alternative than entering all the names in a phone book. Mail-
ing address zip codes represent another interesting test class of values. The tester
could attempt all 100,000 values in the range 00000–99999 or the tester could start
with 150 zip codes: three valid zip codes for each state (lowest, middle, and highest
value).

The DCPS will not be very rich in boundary value testing because it is neither a
true inventory control application that would have many opportunities to count and
calculate things nor a true fi nancial application with many opportunities to track
money. The two boundary value testing opportunities in the DCPS arise from the
completion student’s birth date. The birth date itself offers some interesting bound-
ary value testing around days in a month, months in a year, and days in February
for leap years and leap centuries. If the developer has not already included this kind
of date component check, it is appropriate for the tester to suggest a reasonableness
check on the student birth date.

Because there is no independent way of checking the validity of the birth date
beyond confi rming that it is a legitimate calendar date, you can use an age calcula-
tion that traps at least century entry errors. For example, if the State of Colorado
does not issue driver licenses before the student age of 14, then use the input birth
date and today’s system date to calculate the student’s age. If the student is 13 years
old or younger, display a warning message suspecting a lower boundary birth year
error. If the State of Colorado has a cap on the age of drivers, say 80 years old, or
the State can tell you the oldest living driver, then use that age as a birth year upper
boundary warning.

One testing area of the DCPS that could benefi t from expected results test think-
ing is search screen execution (FTPOS-05.0, FTNEG-05.0, and FTDAT-05.0). A
larger class of names will be allowed for searching than for data entry, especially if
wildcard characters are permitted. For example, if you are searching for a last name
that could be spelled Smith or Smyth or Smithe, a wild card search on “Sm?h?”
should fi nd all three spellings, so should “Sm*,” but the second search criterion
would return a much longer list: every name that starts with “Sm” regardless of
the remaining letters. Related expected results issues arise between data entry and
searching of last names when the question is asked, “How are trailing blanks treated

1.

2.

3.

4.

in the stored record name fi eld versus how are trailing blanks treated in a search
criterion?”

13.5.4 Structural Testing

The majority of the DCPS structural testing is focused on creating, printing, backing
up, and aggregating fi les of certifi cate records. Chapter 8 identifi ed six structural
testing techniques:

Interface testing

Security testing

Installation testing

Smoke test

Administration testing

Backup and recovery testing

Of the six techniques, security testing, installation testing, and smoke test do not
apply to the DCPS as it is currently designed. Security testing will arise if DSA
fi nds it needs more than physical lock-and-key security on the workstation chassis.
Installation testing and smoke test will probably never arise because the DCPS will
be installed by the CPI system developers and only on DSA workstations.

Taking the testing techniques in the order that they are expected to be used,
administration testing will be fi rst by virtue of use cases -07 and -08 whose actor is
administrator. The high-level goal of administration testing here will be to ask the
question, “Does the Admin Menu contain all the activities necessary to support the DCPS
on a daily, weekly, monthly, and yearly basis?” The low-level goal of administrative
testing will be to validate the functionality of the administrative processes provided.

Next, interface testing will occur as an extension of use cases -07 and -08 as
fi les of student completion records are selected and moved from local database fi les
to transfer fi les that can be sent from one workstation to another. These test cases
are represented by the FTXXX-08.0 series. If transfer fi les of student completion
records cannot be properly built, then there is no value in testing backups, transfers,
or archiving of bad transfer records.

Finally, backup and recovery testing will occur after the transfer fi le validation
is completed. These tests are represented by the FTXXX-07.0 series. They validate
the destination fi le updates caused by moving the transfer fi les via the administrative
screens. Notice that these tests involve two or more workstations (see the prelimi-
nary construction architecture design). The multiple workstation test requirement
introduces the additional test environment dimension of peer-to-peer connectivity.
The primary developer challenge is to make these backup and archive processes
rerunable if the process fails. For example, if the peer-to-peer transfer process fails
while testing FTPOS-08.0, the software must provide a retry capability without du-
plicating records on either the transfer fi le or the destination fi le.

1.

2.

3.

4.

5.

6.

13.5 Preliminary Construction Stage 223

224 Chapter 13 A Full Software Development Lifecycle Testing Project

13.5.5 Performance Testing

Although there are several data entry screens in the new application, the data entry
screens for use case-03 class roster input have the most critical performance role
with respect to previously identifi ed high business risk. This performance measure-
ment must validate that the new screens do enable the DSA data entry personnel to
complete each certifi cate entry faster than before with the manual system. The target
screen completion speed from our time–motion study at the end of the Analysis stage
is 2.5 min, a fourfold faster completion than the manual system. The fi rst set of test
case PT-03.0 execution results show a certifi cate screen completion time of 4.6 min,
a little over twice as fast as the manual system but not fast enough. The screen devel-
oper and performance tester walk through the data entry screen design and fi nd no
obvious ways to speed up the code. The screen code is really straightforward.

At the tester’s suggestion and with DSA’s permission, the developer and tester sit
down side-by-side with one of the senior DSA entry staff members and more closely
observe the typing of a dozen or more completion certifi cates. The tester notices
that the DSA employee makes extensive use of the typewriter’s Tab key to move the
typewriter to the next fi eld on the certifi cates. Refl ecting on the current operation of
the data entry screen, the developer realizes that the user is forced to move his or her
hands from the keyboard to the mouse in order to position the screen cursor on the
next data entry fi eld. After further discussion, the developer decides to add code to
the data entry screen that provides directed tabbing through the screen in class roster
data fi eld sequence.

When the new tabbing code is added, the test team fi rst performs a regression
test on the data entry screen using test cases FTPOS-03.0 and FTDAT-03.0 to ensure
that the added code does not disturb any of the validated functionality. The test team
then reruns the data entry performance test case PT-03.0 and fi nds that the new, tab-
enable screen can be completed in 3.5 min. This is faster than before but still shy of
the needed fourfold speed increase. The developer and tester returned to the DSA
manual data entry employee and observed some more certifi cate typing.

The tester observes that numeric fi elds on the typewriter do not require the Shift
key, whereas the data entry screen does. Furthermore, there are several screen fi elds
that accepted only digits (class date, instructor code, address zip, and social security
number). The developer agrees to add code to the data entry screen that placed an au-
tomatic NumLock on those number-only screen fi elds to eliminate the user’s need to
manually press the NumLock key for those fi elds. Again, the test team regresses the
functional tests and reruns the performance tests. This time the new, tab-enabled,
auto-NumLocked screen is completed in 2.0 min, a fi vefold speed increase!

13.5.6 Defect Tracking and Analysis

As coding is completed and test execution is begun, software defects are discovered
and tracked to correction. The relatively small size of the DCPS allows the
developers to correct defects usually within 36 hours of detection and logging. With

larger software projects completed over several months, it would not be surprising to
experience a 5–10 day correction cycle. The intent should be to have all of the severe
defects corrected and most of the important defects corrected by the Preliminary
construction stage completion date.

CPI previously developed several software applications that are about the same
size and complexity as the DCPS using about the same size project team. As a result,
CPI has defect history that can be used as an expected pattern for the DCPS defect
discoveries. As we saw in Chapter 12, if the DCPS defect log tends to follow the
CPI project defect histories, then we gain a certain level of comfort that the testing
is proceeding well. If, on the contrary, the DCPS defect log diverges from the CPI
project defect histories, then we begin to ask “why?” Figure 13.3 shows the CPI de-
fect histories and the DCPS defect log progress as of Week 5, a little more than half
way through Preliminary construction.

Before raising any issues from the comparison, you fi rst need to recognize that
both plots represent small numbers of defects discovered on any given day. This recog-
nition should temper the issues and conclusions that you derive from the comparison.

The most obvious conclusion you can draw from the defect discovery compari-
son is that DSA testing is fi nding fewer defects and fi nding them later, normally not
a desirable situation. After conducting discussions with the developers, you surmise
that the later defect peak might be attributable to the fact that the print screen was
developed and tested before the data entry screen in the DSA project. It is reasonable
to expect that most defects will be found in the screens with the largest number of
input or output data fi elds; therefore, the delayed defect discovery peak might be at-
tributable to the delayed testing of the data entry screen relative to other CPI project
screen development sequences. Recall that DSA did request a change in the intended
sequence of software development.

0

5

10

15

20

25

30

4037343128252219161310741

Project days

N
um

be
r

of
 d

ef
ec

ts
 d

is
co

ve
re

d
pe

r
pr

oj
ec

t d
ay

CPI history

DSA project

Figure 13.3 Comparison of CPI defect history with DSA project defect log

13.5 Preliminary Construction Stage 225

226 Chapter 13 A Full Software Development Lifecycle Testing Project

Regardless of the sequence of screen development and testing, you would expect
to see the same or very similar defect detection peak in both plots. The comparison is
trending toward the DSA having a lower defect discovery peak (20) than the other CPI
projects (25). Although the relative difference is 20%, the actual difference is only
fi ve defects, which may be too small a difference to prompt further investigation.

At day 26 the plots intersect. Based on the lag in the peak of DSA discoveries, it
is reasonable to expect the DSA plot to remain higher (larger number of defects dis-
covered per day) than the CPI projects for the remaining DSA project days. Although
this trend strongly implies missed defects by DSA project end, it does not indicate
what kinds of missed defects there might be. A root cause analysis of the 334 defects
discovered so far might shed some light on the expected nature of the missed defects.
Figure 13.4 shows a rough analysis of the code earmarks for these 334 defects on the
DSA defect log.

As stated before, the screens with the largest number of input or output fi elds
such as the certifi cates data entry screen (DSA1.01S) are expected to contribute
the largest number of defects. Having said that, the screen with the second larg-
est number of defects is expected to be the certifi cate search screen (DSA1.03S)
or instructor data entry screen (DSA2.01S), but neither code earmark appears at
the top of the list. Instead, the screen with the second highest number of defects is
the certifi cate print screen (DSA1.02S). The picture becomes even more puzzling
with the weekly certifi cates backup (DSA3.01S) and weekly certifi cates transfer
(DSA3.02 S) screens having the third and fourth highest defect counts. When you
discuss your analysis results with the development team, you discover that they have

DSA1.01S 122
70
61
56
25

334

37%
21%
18%
17%
7%

DSA1.02S

Code earmarks
Defects

corrected per
code earmark

Percent defects
corrected per
code earmark

DSA3.01S
DSA3.02S
All others
Total

334 total defects corrected to date

Root cause analysy of defects

Figure 13.4 DSA Project showing defect tracking log corrected as of a day 28

become worried about the basic certifi cate record processing fl ow design. The de-
sign is complex and not stabilizing quickly. If this design is faulty, it could contribute
to the defect counts for all the top scoring screens.

On a hunch, you check with the testers assigned to test case PT-04.0 and -07.0,
which measure the response times of certifi cate record counting, printing, and back-
ing up. The performance tester alerts you that when small numbers of certifi cate re-
cords are tested (less than 10), the process completes within the specifi ed maximum
response time. However, when a larger number of certifi cate records are tested, the
response time for each process becomes unacceptably slow as the number of records
increases. The specifi ed maximum response time is exceeded when the certifi cate
master fi le grows to 230 records, well before the 311 records per week expected dur-
ing next year.

The puzzle pieces begin to fall into place. The basic certifi cate record process-
ing fl ow design presents two signifi cant risks to CPI if only piecemeal action is taken
against the defects found so far. The fi rst risk is that the design code will not stabilize
regardless of the amount of effort the developers invest in trying to make it work.
The second risk is that when the design code stabilizes, it will always fail the per-
formance requirements. Based on these two risks, you recommend that a new basic
certifi cate record processing fl ow design be implemented in the Final construction
stage and that a moratorium be imposed on any further testing and correction of the
current design in the Preliminary construction stage.

This process of analyzing test results and inferring the usefulness (economy) of
further testing responds to the “E” in SPRAE. The test team begins to see patterns
of test execution results that imply continued program code instability. As a result,
the testers recommend stopping testing the unstable code in lieu of redesign or re-
programming. This tester recommendation provides economy of project resources
by minimizing any further time spent on code that may never stabilize suffi ciently
to be used in production.

13.5.7 Exiting the Preliminary Construction Stage

Several events occur during the Preliminary construction stage that will shape
the plans for the Final construction stage. The fi rst event is the root cause analysis
of the majority of the Preliminary construction defects. Based on the root cause
analysis conclusions, the development manager decides to have the basic certifi -
cate record processing fl ow redesigned in an attempt to stabilize the code. Because
the use cases state what needs to be fi nished and not how, the redesign does not
cause a requirement modifi cation, only a specifi cations modifi cation at the next
level of development detail. The authors recommend that a defect log entry be
made against the certifi cate record processing fl ow specifi cation in order to fully
document and track the redesign effort and outcome.

The next completion shaping event is CPI asking DSA for suggested approaches
to cut over to the new automated system from the manual system. The CPI project
team asked the DSA representatives about possible cutover plans during the Design

13.5 Preliminary Construction Stage 227

228 Chapter 13 A Full Software Development Lifecycle Testing Project

stage, but DSA deferred cutover discussions until DSA management could see the
new system in action. One of the customer relationship benefi ts of including DSA in
the data entry screen tests is to gain credibility that the new system could replace the
old system. With the DSA management fully “on board,” a meeting is held around
week 6 to defi ne the cutover plans.

During the static testing of use case-05: DSA certifi cate record searching, one
of the testers asks the question, “When and how should we transfer the current fi le
cabinets of completion certifi cates to the new computer system for historical search-
ing?” This question leads to a lively discussion. As long as there are manual records
to search, DSA incurs the overhead of staff to search them and 5 years worth of fi le
cabinet space to store them. With the new data entry process fi ve times faster than
the old typing process, the current data entry staff should be able to fi nish the weekly
class roster workload and have some time to spare initially for historical data entry.

The fi rst suggested approach is for DSA data entry personnel to start with the day
one DSA completion certifi cate and enter all of them in ascending numerical order as
time permits until all of the precutover certifi cates have been entered into the new com-
puter system. One of the CPI testers put on her “boundary analysis hat” and observed
that the oldest DSA certifi cates (fi rst 2 year’s worth) fall outside the 3-year retention
rule for searching and entering these certifi cates would be a waste of time and effort.

The suggested approach is amended to start with the fi rst certifi cates that are
less than 3 years old from the cutover date and proceed forward in time toward the
cutover date. Then the tester observed that some of the data entry effort under the
amended approach would still be wasted because the fi rst certifi cates that are less
than 3 years old from the cutover date fall outside the 3-year retention rule the month
or so after they are entered.

Finally, the CPI tester suggests that the historical data entry start from the last
completion certifi cates typed before the cutover and proceed back through the cer-
tifi cates in descending order. Using this approach, the certifi cates with the longest
retention time hence the most valuable to DSA are entered fi rst.

The third event occurred because of legislative changes in other states during the
development startup. The States of California, Arkansas, and New York notifi ed DSA
that their new laws required DSA to report all students who take DSA classes and re-
side in one of these three states. With CPI’s help DSA contacts the data processing de-
partment of each state and negotiates an electronic fi le format for sending this report
to each state. Each state wants a different format (naturally). Because California is
usually the trendsetter in new kinds of state legislation, DSA suspected that over time
most of the other 48 states will impose similar reporting demands on driver training
companies nationwide. Whatever solution CPI proposes must allow for later expan-
sion of the capability to encompass additional state reports with minimal effort.

The developers and testers meet to discuss the best overall approach to complete
the remaining work in the shortest schedule. The agreed approach will start with
the development and testing of the historical data entry screen. As the historical
data entry screen task is launched, a second task to address the redesign and
 redevelopment of the basic certifi cate record processing fl ow design will be started.
This second task is expected to take the lion’s share of the CPI development and
testing resources. The third task to develop and test the new out-of-state reporting

 capability will be started after the historical data entry screens are fi nished. When
all three Final construction tasks have been completed, an additional week of regre-
ssion testing will be scheduled to ensure that the three newly completed tasks have
not adversely affected any of the previously tested code.

Here is a recap of the additional use cases that impact the Final construction use
case suite, the test plan, and the test cases.

Use case-11: DSA Certifi cate Records—out-of-state Reporting

Use case-12: DSA Completion Records—historical Completions

Use case-13: DSA Completion Records—production Cutover

One fi nal suggestion is made by the testing team. Because the development and
testing of the current certifi cate record processing fl ow will be curtailed in prepara-
tion for the redesign, the Final construction stage can begin a week early, the last
planned week of the Preliminary construction stage. The revised development and
testing schedule are refl ected in the Final construction test plan.

13.6 FINAL CONSTRUCTION STAGE

13.6.1 Static Testing

The static testing of Final construction documentation follows the same pattern we
saw in Design and Preliminary construction. The fi rst documents tested will be the
new use cases and process fl ow in the architecture design. Then the programming
specifi cations derived from the requirements are static tested. Then the program-
ming code written from the specifi cations are static tested. The new static testing for
this stage will be the DSA end user documentation: User Guide and Administrator
Guide. Because CPI will install the new system, there will be no formal Installation
Guide for DSA.

The pivotal document for this stage will be the architecture design, which con-
tains the redesign of the basic certifi cate record processing fl ow. The tester’s job is
focused on asking hard questions like, “How do you know that this new design will
be more stable and works better than the original design?” If the developer does his
homework, he can give the tester very concrete reasons why the new design is better.
If the developer has not done his homework, then he will most likely become de-
fensive with answers like, “because I’m the design expert.” Specifi c defi ciencies are
discovered in the old design and, as a tester, you know it will take specifi c deliberate
action to correct these defi ciencies.

13.6.2 Functional Testing

As soon as the new and revised documentation is declared correct by static testing,
the Final construction stage programming, code debugging, and code testing be-
gin. The fi rst code to be functionally tested in this stage is the historical data entry
screen. Many parts of the completion data entry screen test script should be reusable

13.6 Final Construction Stage 229

230 Chapter 13 A Full Software Development Lifecycle Testing Project

here. Most of the data entry fi elds are the same. Hence, the same testing details will
apply. The two main differences will be the certifi cate number and instructor name
fi eld. In the completion data entry screen, the certifi cate number does not appear be-
cause the print program assigns the certifi cate number at print time based on the con-
tinuous forms being used. Additionally, the certifi cate number input value test must
be numeric only and fall within a specifi c value range (greater than 0 and less than
10,000,000,000). The instructor information is entered on the completion data entry
screen as an instructor code that is used to look up the instructor name from a table
of certifi ed instructors. The instructor information is entered on the historical data
entry screen as the instructor name that needs to be validated against the instructor
list instead of the instructor code. Finally, the historical data entry screen changes
the student name validation criteria somewhat because the name components are
entered in a different order than the completion data entry screen.

13.6.3 Structural Testing

The structural testing fi nished in the Final construction stage will be as complex
as it is critical. The Preliminary construction stage was halted a week earlier than
planned because the originally designed structural components that support the ba-
sic certifi cate record processing fl ow would not fully stabilize, and the parts that did
stabilize exhibited poor performance. The testing challenge is to adapt the test cases
to the redesign. The fact that the original design could not withstand the structural
testing before “going live” is a very desirable testing outcome. We have all experi-
enced software systems that seem to need many patches (not enhancements) over the
lifetime of the software. It is likely that the original testing of this software was not
suffi ciently rigorous to force the kind of redesign decision during development that
has occurred on the DSA project.

There is one more structural consideration worth highlighting at this point in the
project. We have a new requirement for student reports to out-of-state agencies. This
requirement could have been addressed by new structural components (fi le extracts,
fi le backups, and fi le transmissions) independent of the basic certifi cate record pro-
cessing fl ow redesign. In this case, there is a benefi t to delaying the development
and testing of the out-of-state reporting until after the process fl ow redesign is fi n-
ished. The out-of-state reporting designers might be able to convince the process
fl ow redesigners to adopt design strategies that make some aspects of the out-of-state
reporting easier to implement or faster to execute without sacrifi cing process fl ow
effectiveness.

13.6.4 Performance Testing

The performance testing activities during the Final construction stage will focus on
two main objectives. The fi rst objective is to ensure by performance regression test-
ing that none of the new or redesigned code adversely affects the response times of
the screens that achieved their performance goals in the Preliminary construction

stage. The Preliminary construction screens are not scheduled for many changes be-
yond menu additions. Therefore, the basic screen operation should perform the same
at the end of Final construction. Because the process fl ow redesign will probably
infl uence the way data fi les are built and updated, the original screen operation may
experience new fi le processing overhead. This new fi le processing overhead could
unexpectedly cause the screens to run too slow. If the screens are not regressed for
their performance objectives after the process fl ow redesign has been implemented,
unacceptable performance might be discovered after implementation by DSA.

The second objective is to collect fi rst time performance statistics on the rede-
signed process fl ow when it becomes stable. As with all performance testing, you
should expect the fi rst results to miss the mark. Be prepared from a testing perspec-
tive to characterize as much of the performance problem as many ways as possible
so that the developers can more quickly determine if the performance problem lies
with the redesign code or the redesign itself.

Unlike structural testing in this stage, the Preliminary construction perfor-
mance testing scripts should require very few changes because the overall response
time objectives and strategies for achieving them remain the same in the Final con-
struction stage.

13.6.5 Defect Tracking and Analysis

We continue to plot the defect discoveries for the overall project on the same axis
that we used during Preliminary construction. We are still looking for that peak
around 25 defects per day that we were not able to achieve because, we think, the
basic process fl ow instability interfered. Figure 13.5 shows the results of our defect
tracking as we approach the end of the Final construction stage.

13.6 Final Construction Stage 231

0

5

10

15

20

25

30

35

5651464136312621161161

Project days

N
um

be
r

of
 d

ef
ec

ts
 d

is
co

ve
re

d
pe

r
pr

oj
ec

t d
ay

CPI history

DSA project

Preliminary
construction
defect peak

Final
construction
defect peak

Figure 13.5 Comparison of CPI defect history with DSA project defect log

232 Chapter 13 A Full Software Development Lifecycle Testing Project

The fi rst peak of defect detection was already seen during Preliminary con-
struction. The peak quickly falls off as Preliminary construction activity is curtailed
early to prepare for the Final construction development. A small period around Day
32–Day 36 shows minimal defect detection as the CPI development team goes back
into “design mode” for the new requirements and process fl ow redesign. Most of the
defects found during this period are static defects in the new documentation.

The defect detection rate increases dramatically starting with Day 38 as testing
begins on the new historical data entry screen and the redesigned process fl ow. The
higher peak of 32 defects during Final construction is more in keeping with previous
CPI experience and higher than the 20 defect peak discovered during Preliminary
construction. After the Final construction peak at Day 44, the rate of defect discov-
ery drops as expected.

In summary, the Final construction defect pattern looks much more like prior
CPI projects. Unless the regression testing during the last week of Final construction
uncovers drastic problems, Final construction will be completed successfully around
Day 60 as planned. When the CPI development team meets with DSA management
after Day 60 and presents the development and testing results, DSA accepts the
system and schedules the “go live” date the fi rst week of the next calendar month in
accordance with use case 11: DSA completion records—production cutover.

13.7 IMPLEMENTATION STAGE

During the fi rst week of the next calendar month after Final construction, CPI installs the
new software system on all of the DSA workstations purchased and confi gured during
the Preliminary construction stage. The two workstations used as test environments
are included in the production software installation but are held back from production
by DSA at CPI’s request. The intent is to use these two test workstations, now with the
full production loads, as a quick way to diagnose any problems arising in the critical
fi rst couple of weeks of production. Everybody crosses their fi ngers and DSA “goes
live.” Two weeks later, DSA and CPI declare the system fully in production based on
use case 11 production results and DSA management’s own assessment. CPI testers
release the two test workstations to DSA for full production use. CPI developers are
scheduled to be “on call” until DSA has successfully completed a full month’s worth
of data entry, certifi cate printing, backups, and master fi le updating. CPI testers are
scheduled to return in 3 months to do a postimplementation performance checkup to
confi rm that the performance objectives are still being met.

13.8 POSTIMPLEMENTATION STAGE

One month after DSA “goes live,” the CPI project team meets at the CPI offi ces
and conducts a “postmortem” or “lessons learned” discussion of the DSA software
development. The primary focus for the developers is the contributing factors to the
original process workfl ow design failure and how these factors might be avoided the
next time.

The primary focus of the testers is the diffi culty they encountered as they adapted
some of the Preliminary construction test cases to the new but similar screens added
in Final construction. Testers also recalled that they had diffi culty with the regres-
sion testing because of rerun challenges with the test cases.

When the time comes for the testers to return to DSA for Postimplementation
testing, the testers request the use of one workstation, the time of one of the more
experienced DSA certifi cate preparation staff, and the time of the DSA Operations
Manager, Lisa Lemoine. Testers repeat their Final construction performance testing
with the DSA staff operating the workstations and software. In accordance with the
postimplementation test plan, the testers start by measuring the data entry screen
response times. Then the testers move on to measure the printing response times.
Finally, the testers measure the weekly certifi cate fi le transfers to the master fi le.
Each round of tests takes most of a workday. At the end of each day’s tests, the testers
show DSA the measurements collected over the day and how these measurements
compare with the Final construction testing measurements. At the end of the week,
the CPI testers and DSA staff agreed that the DCPS continues to operate as well as
it did the fi rst days after “going live.”

13.9 CASE STUDY CLOSURE

The software system that is the basis for this chapter’s case study was implemented in
1988 and was still in production in 2000 as originally implemented without any major
fi xes. The customer felt that the software achieved all of the original design objectives
with nominal disruption to business and continued to meet its business requirements
three times longer than the originally hoped 4-year return on investment period.

13.9.1 Summary

The challenge for this chapter is to walk you through a case study that will demonstrate
ways to make intelligent choices of strategies and techniques that are successful time
after time when there is no single formula for success. We will answer this challenge
by repeatedly applying the SPRAE method to a series of situations that arise during
a software development case study.

The case study chosen for this chapter contains some intentional simplicity. One
reason for this simplicity is ease of demonstration and discussion. Another reason
for this simplicity is to set the stage for Chapter 14 that will show how more complex
testing situations can be attacked successfully by decomposing the complex situation
into the simpler, more familiar situations from this chapter. The case study develop-
ment activities follow the phased development methodology. Testing at each stage is
conducted using the SPRAE methodology.

The software development project chosen for Case Study B is a real software
development project in which one of the authors was a primary participant. The
company name, staff, and location have been changed to honor the company’s
confi dentiality.

13.9 Case Study Closure 233

234 Chapter 13 A Full Software Development Lifecycle Testing Project

The resulting software system the basis for this chapter’s case study was imple-
mented in 1988 and was still in production in 2000 as originally implemented with-
out any major fi xes. The customer felt that the software achieved all of the original
design objectives with nominal disruption to business and continued to meet its busi-
ness requirements three times longer than the originally hoped 4-year ROI period.

13.9.2 Case Study—Disclaimer

We suspect that as you read the unfolding story of the case study, you attempted
to guess which computer equipment and software were involved in the certifi cate
processing system development project. We intentionally omitted suffi cient details
to confi rm your guesses. There are two reasons for these omissions. The fi rst reason
is that the best choice of hardware and software for the certifi cate processing system
may be the worst choice for your next project. The second reason is that the worst
choice hardware and software for the certifi cate processing system may be the best
choice for your next project. By not revealing either the details or the brand names
involved, we force you to consider the testing strategies and approaches that would
reveal the best choices instead of allowing you to jump to conclusions based on your
own experience. We would be glad to tantalize you with more case study details over
a couple of beers or a glass of good chardonnay.

 235

LEARNING OBJECTIVE

to demonstrate a repeatable approach to simplifying the test planning of complex
applications

14.1 INTRODUCTION

This chapter describes an approach to testing complex applications that builds
on the strategies, tactics, and techniques that you used in Chapter 13 for simple
application testing. This approach is basically “divide and conquer.” Divide the
complex application into manageable application components that can be conquered
by familiar testing techniques.

As with most technical approaches, you run the risk of extremes when you do the
dividing. Divided application components can still be too large for manageable test
planning and execution. Divided application components can become too small for
effective test planning and execution. Finding the right division of application compo-
nents is defi nitely a skill sharpened by experience rather than by any rote procedure.

If you have been attracted to reading this chapter, then you probably have been
asked at one time or another to test an application with an architecture that looks
something like Figure 14.1.

The testing task looks daunting because there appear to be so many moving parts.
We will discuss some underlying similarities among the application components that
you can leverage to reduce the testing task from daunting to challenging.

14.2 1-TIER APPLICATIONS

Where do you start your test planning for a complex application ? Start at a familiar starting
point: the testing strategy chessboard. The testing strategy chessboard served us well with

•

Chapter 14

Testing Complex Applications

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

236 Chapter 14 Testing Complex Applications

our test planning and execution of Case Study B because the application is what we call
a “1-tier” application. This term means that although multiple workstations are involved,
each workstation is the same hardware platform running the same version of the applica-
tion software. Figure 14.2 shows the architecture of the Case Study B 1-tier application.

Figure 14.1 Architecture for a complex application

Peer-to-peer / local area network

Workstation Workstation Workstation Workstation Workstation

Workstation Workstation Workstation Workstation Workstation

T
I
E
R

1

Figure 14.2 Architecture of a simple 1-tier application

The network connectivity is simple peer-to-peer, another way of saying that
each workstation does the same business tasks even though certain designated
workstations house the master fi le of all completion certifi cates. The interworkstation
communication is strictly to aggregate new certifi cate records weekly and store them
in one place for later searching and archiving. As a point of review, Figure 14.3
shows the testing strategy chessboard that we used for our Case Study B 1-tier test
planning and execution.

Recall that the test planning started at the top layer in the tier and went down as
needed into the support layers. Then the test execution started at the bottom layer in
the tier and went up to confi rm that each successive layer could deliver the required
cumulative support functionality.

The bottom-line is that you have seen how to plan and test 1-tier applications.
We now add a tier to the application complexity and the test planning.

14.3 2-TIER APPLICATIONS

The classic example of a 2-tier application is any client/server application. Figure 14.4
shows a typical client/server architecture.

The main difference between Figure 14.2 and Figure 14.4 is that there are two
distinctly different groups of computers with distinctly different tasks. A useful
approach is to fi rst consider developing a separate testing strategy chessboard for

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 1 workstation functionality:

 Log on/log off
 Menus
 Data entry
 Data storage
 Business rules
 Data display
 Reporting
 Backups
 Archiving

Figure 14.3 Test strategy example for a simple 1-tier application

14.3 2-Tier Applications 237

238 Chapter 14 Testing Complex Applications

each tier. The client tier testing strategy chessboard will refl ect the client computer
support structures and the client application that normally provides the user inter-
face functionality, that is, logon screens, data entry screens, data search screens, and
data report screens. The server tier testing strategy chessboard will refl ect the server
computer support structures and the server application that normally provides the
business rules and data management, that is, customer fi les with customer discounts
and payment terms, inventory fi les with pricing and quantities on hand, purchase
orders, and payment records.

The actual way the client/server application will distribute functional and
nonfunctional responsibilities between the two tiers will differ from application
to application. It will be the development team’s responsibility to determine the
distribution of responsibilities during the Preliminary design stage. This distribution
must then be refl ected in the specifi c kinds of tier testing planning done by the test
team. Another way to state the situation is to say that client test strategies from prior
application development are not guaranteed to be completely appropriate for the new
client design. The statement is also true for the server test strategies.

The benefi t of splitting the testing strategy into two separate chessboards is
to provide more effi cient test planning and execution focus. For example, this ap-
proach narrows the client tier test team to focus on data presentation functionality
to the exclusion of data management. Similarly, this approach narrows the server
test team focus on data management and business rules to the exclusion of data
presentation functionality. Both test teams can readily identify the parts of the sys-
tem they can ignore from a testing perspective early in the planning process. This
simplifi es and reduces the total effort each test team must invest to be successful
by minimizing testing effort overlap. Figure 14.5 shows how these two chessboards
might look.

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

T
I
E
R

1

T
I
E
R

2

Local area network (LAN)/wide area network (WAN)

Servers

Figure 14.4 Architecture for a fairly simple 2-tier application

Somehow, we must account for the connectivity between the client tier and the
server tier. The planning discussion has initially ignored this linkage in order to start
the planning activities as simple as possible. Turning to the linkage testing issue,
consider stacking the tier 1 client testing strategy on top of the tier 2 server testing
strategy with an additional connectivity layer of testing between the two tiers as
shown in Figure 14.6.

The order of stacking these strategies deliberately suggests that the server test
execution should be started before the client execution if we are to follow the bottom-
up execution strategy of 1-tier applications. At fi rst blush, this would appear to be the
more challenging execution order for the test team. Using data management as an
example, it seems like it would be signifi cantly easier for the test team to test purchase
orders on the tier 2 server database structures if the purchase order screen is already

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 1—client workstation functionality:

 Menus
 Data entry
 Data display

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 2—server functionality:

 Log on/log off
 Data storage
 Business rules
 Reporting
 Backups
 Archiving

Figure 14.5 First step in 2-tier test planning

14.3 2-Tier Applications 239

240 Chapter 14 Testing Complex Applications

available on the tier 1 client. The problem with testing the client fi rst and the server
second arises as soon as the fi rst defect is discovered. The diagnostic challenge is to
determine which tier (if not both tiers or both tiers and the connectivity) is the source
of the defect. Extraordinary resources from both the test team and the development
team can be consumed diagnosing defects under these circumstances.

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Tier 1— client functionality:

 Menus
 Data entry
 Data display

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 2—server functionality:

 Log on/log off
 Data storage
 Business rules
 Reporting
 Backups
 Archiving

Tier 1–Tier 2
connectivity

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Figure 14.6 Second step in 2-tier test planning

Alternatively, consider the situation when the tier 2 server is tested fi rst. The
server data management functionality can be tested directly. This usually involves
building simple test harnesses that support business function activity via native Data
Manipulation Language (DML) calls. The most common form of DML for accessing
and manipulating databases is the ANSI Standard Query Language (SLQ), which
is supported by all major database management systems such as Oracle, DB2,
Sybase, Informix, Microsoft SQL Server, Microsoft Access, and others. The extra
effort needed to build and run the test harness is more than offset by identifying
application database design defects long before the client software attempts to use
the databases.

Once the application database design has been validated on the server, the
test team then moves the test harness from the server to a client. This positions
the test team to validate the tier-to-tier connectivity next. The SQL commands
that worked correctly on the server should now produce the same results on a
client if the tier-to-tier connectivity layer is working correctly. If defects arise dur-
ing the tier-to-tier connectivity testing, the diagnosis effort can focus just on the
connectivity components because the server side has been validated and is known
to work correctly.

Once the server side and tier-to-tier connectivity have been validated, then
the test team is ready to test the client side user screens and functions. If de-
fects arise now, the diagnosis effort can focus just on the client side application
software because both the server side and tier-to-tier connectivity have been
validated and known to work correctly. This represents a relatively advanta-
geous situation of introducing only one new variable at a time compared to the
relatively disadvantageous situation where the testing is started on the client
side; a defect is discovered, and none of the tiers can be excluded from the
diagnosis.

The development team receives an additional benefit of this tier 2-to-tier
1 server-to-client testing strategy. Recall that the test team uses a testing
harness and SQL to test the server side. When the development team writes
the client side application code, they will eventually need to use some de-
rivative of the test SQL. Whether the chosen development language supports
SQL calls directly or SQL calls by means of Application Program Interfaces
(APIs), the same business task must be accomplished from the user screen
that was accomplished by the test harness. So the development team is given
a substantial programming starting point with the tested and verified harness
SQL.

14.4 3-TIER APPLICATIONS

The classic example of a 3-tier application is any Internet business application.
Figure 14.7 shows a reasonably mature Internet business application example.

14.4 3-Tier Applications 241

242 Chapter 14 Testing Complex Applications

The main difference between Figure 14.4 and Figure 14.7 is that there are more
distinctly different groups of computers with distinctly different tasks. The identifi -
cation of the different groups becomes more diffi cult as the number of different tasks
multiplies and, in some cases, overlap. We suggest an approach to identifying these
groups that works well but is not the only successful way. As long as the rationale
behind your approach is technically consistent and reasonably unambiguous, your
test planning can succeed.

We suggest grouping the Figure 14.7 components into three tiers: browser tier,
security tier, and application tier. Figure 14.8 shows the grouping of components into
these three tiers.

The browser tier in the 3-tier example is analogous to the client tier in the 2-tier
example. It provides the end-user screen interface for running the application. The
security tier in the 3-tier example is analogous to expanded tier-to-tier connectivity
functionality in the 2-tier example. The application tier in the 3-tier example is
analogous to the server tier in the 2-tier example.

As we saw with the 2-tier example, the secret of test planning success is the test
team’s involvement in and understanding of the development team’s functional design
of each tier. For example, some development teams might design the web home page
server as mainly a security function like logging onto the web application, basically

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

Client
workstation

T
I
E
R

1

T
I
E
R

2

T
I
E
R

3

LAN / WAN

I
n
t
e
r
n
e
t

LAN / WAN

Servers

Servers

Figure 14.7 Architecture for a complex 3-tier application

a tier 2 activity. Other development teams might design the web home page server as
a logon function and some of the search/view application functions, basically a tier
3 activity. One design is not inherently better than the other. Each design requires
commensurate test planning.

We take the fi rst test planning step for 3-tier applications similar to our fi rst step
with 2-tier applications: Develop a separate strategy for each tier. Figure 14.9 shows
how these separate tier strategies might look.

The second test planning step for 3-tier applications also follows the second
planning step with 2-tier applications: Stack the tiers with a sandwiched tier-to-tier
connectivity layer. Also, following the 2-tier planning model, we will place the ap-
plication (third tier) on the bottom of the strategy followed by the security (second
tier) next followed by the end user (fi rst tier) on top. Figure 14.10 shows the com-
pleted second step in our 3-tier test planning.

The 3-tier test execution approach will be to complete the third tier testing fi rst,
the second tier testing second, and the fi rst tier testing last. As with the 2-tier testing,
test harnesses will probably be needed for the lower layer tiers to simulate/emulate
the tiers above for testing purposes. Any useful information that the developers can
glean from the testing harnesses about the design and coding of higher layers is an
added testing contribution to the project.

 Browser Browser Browser Browser Browser

 Browser Browser Browser Browser Browser

Firewall

T
I
E
R

1

T
I
E
R

2

Databases

T
I
E
R

3

LAN / WAN

I
n
t
e
r
n
e
t

LAN / WAN

Web siteApplication security

Applications

Figure 14.8 Tier identification for a complex 3-tier application

14.4 3-Tier Applications 243

244 Chapter 14 Testing Complex Applications

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 1—browser functionality:

 Menus
 Data entry
 Data display

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 2—web access functionality:

 Firewall
 Web site
 Application log on/log off

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 3—application functionality:

 Data storage
 Business rules
 Reporting
 Backups
 Archiving

Figure 14.9 First step in 3-tier test planning

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Tier 1—browser functionality:

 Menus
 Data entry
 Data display

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Tier 2—web access functionality:

 Firewall
 Web site
 Application log on/log off

Application
under devel

Connectivity

Data
resources

Security

Operating
system

Prelim
analysis
and design

Prelim
construction

Final
construction

Ship or
Install

Postimplement

Tier 3—application functionality:

 Data storage
 Business rules
 Reporting
 Backups
 Archiving

Tier 1– Tier 2
Connectivity

Tier 2– Tier 3
connectivity

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Figure 14.10 Second step in 3-tier test planning

14.4 3-Tier Applications 245

246 Chapter 14 Testing Complex Applications

14.5 n-TIER APPLICATIONS

We return to the starting point of our discussion, the complex application in
Figure 14.1. We approach the test planning for this application by applying what
we have learned from the previous, increasingly complex applications. We start
by identifying the different testing tiers in the application with the develop-
ment team’s assistance. Figures 14.11–14.14 show one such possible planning
approach.

Application components that seem to provide the input/output functionality
of the application to the external world are “lassoed” fi rst as seen in Figure 14.11.
These components and their activities will be included in the tier 1 test strategy
chessboard.

Application components that seem to provide the security layers between the
external world and the web services are “lassoed” next as seen in Figure 14.12. These
components and their activities will be included in the tier 2 test strategy chess-
board.

Application components that seem to provide the basic web service lay-
ers between the security layer and the application are “lassoed” next as seen in
Figure 14.13. These components and their activities will be included in the tier 3 test
strategy chessboard.

Figure 14.11 Tier 1 identification for a complex n-tier application

Application components that seem to provide the business functionality lay-
ers on the other side of the web services are “lassoed” last as seen in Figure 14.14.
These components and their activities will be included in the tier 4 test strategy
chessboard.

From this tier identifi cation, we develop the individual tier testing strategy
chessboards. Then we stack the chessboards starting with tier 4, then tier 3, then tier
2, then tier 1 with tier-to-tier connectivity layers in between each pair of tiers.

Finally, we review the overall testing strategy with the development team to
confi rm that the strategy represents the most logical testing progression of the tiers
and their components. It is possible that this review may reveal some alternate ap-
proaches to the overall development that can take advantage of the test results as
they are completed. It is equally possible that one or more of the tier components
were not correctly described to the testers or some component activities have been
redefi ned. The design changes probably imply test planning changes. The good news
is that you have been able to address these development changes very early in your
test planning, minimizing disruption and rewriting of test cases later in the “throes
of battle.”

Figure 14.12 Tier 2 identification for a complex n-tier application

14.5 n-Tier Applications 247

248 Chapter 14 Testing Complex Applications

Figure 14.13 Tier 3 identification for a complex n-tier application

Figure 14.14 Tier 4 identification for a complex n-tier application

14.6 PUTTING TESTING COMPLEX APPLICATIONS
IN PERSPECTIVE

The advent of major commerce on the Internet has brought with it very complex,
business critical software applications. These applications challenge the software
tester to identify as many traditional testing approaches as possible that are still ap-
propriate and effective for e-commerce testing. Where traditional testing approaches
fail, the software tester is challenged to fi nd a minimum number of new, reusable
testing approaches that fi ll the traditional testing approach gap.

Because e-commerce is surely not the last frontier of software development, the
way we extend our traditional testing approaches to e-commerce applications may give
us a clue about the way we can approach the next software development frontiers and re-
sist the temptation to discard all of our traditional testing approaches and experience.

14.7 SUMMARY

This approach is basically “divide and conquer.” Divide the complex application
into manageable application components that can be conquered by familiar testing
techniques.

Where do you start your test planning for a complex application? Start at a fa-
miliar starting point: the testing strategy chessboard. Split the testing strategy into
multiple separate chessboards corresponding to major application components for
more effi cient test planning and execution focus. Finally, account for the connectiv-
ity among the separate chessboards by planning appropriate linkage testing.

KEY TERMS

1-Tier application
2-Tier application
3-Tier application
n-Tier application
Tier 1
Tier 2

Tier 3
Tier 4
Client tier
Server tier
Security tier
Web services tier

Tier-to-tier connectiv-
itty

Test harness
DML
SQL
API

Key Terms 249

250

LEARNING OBJECTIVES

to predict the kinds of opportunities that might arise for experienced software testing
professionals in the future

15.1 INTRODUCTION

It is time to gaze into our testing crystal ball and divine some of the new opportuni-
ties and directions that software testing will take in the next 10 years. First, we will
look at trends in software development to augur the implications for the software
testing profession. Then, we will look at trends in applications to prognosticate the
implications for software testing research.

15.2 FUTURE DIRECTIONS IN SOFTWARE
DEVELOPMENT THAT COULD INCREASE THE NEED
FOR TESTING PROFESSIONALS

There are two trends in software development that are of interest to software testing
professionals. The fi rst trend is “get the code out quickly, we can fi x it later.” This
trend seemed to start in the 1990s and was pushed to the extreme by the dot-com
boom. Recall how unstable the fi rst versions of this quick-release software were. How-
ever, because the concept and marketing were so exciting and innovative, companies
purchased the poor-quality software by the hundreds of licenses anyway.

Fast-forward 15 years. The patches and fi xpacks that used to be provided reluc-
tantly by these software vendors over a period of months are now boldly announced
by icons daily on my desktop computer. Some of the patches fi x problems so severe
that my current employer requires me to apply these patches immediately! We can

•

Chapter 15

Future Directions in Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

only conclude that this quick-release software development model is a long-term
technology failure.

Further devaluation of the quick-release software development model comes
from a simple observation. With the number of patches and fi xpacks increasing al-
most exponentially (from once a month to three times a day!), the authors fi nd the
software vendors’ response to this avalanche of software defects to be most interest-
ing and most telling about their technology priorities. Instead of a reemphasis on
quality (fewer bugs � fewer fi xes and fi xpacks � better quality software), they have
chosen to invest development dollars into software that alerts the software customer
quicker that a fi x needs to be applied and, if the customer chooses, the new software
will install the software fi xes either in the background or as the computer is shut
down so as to minimize interference with productive activities. These software ven-
dors have made a conscious decision to invest in more sophisticated fi x alert actions
as a priority over investing in development or testing models that produce software
with the need for fewer fi xes in the fi rst place.

Even with the public evidence of the quick-release software development technology
model failure, the phenomenal success of the associated business model is like the Siren
Song to other software development companies and software development organizations
within large corporations. One of the resonant lessons learned is that more and better
testing tends to mitigate the quick-release software development model failure. Through-
out the IT industry, we predict an increasing demand for experienced professional soft-
ware testers to mitigate this “Quick-Release Syndrome” in the software market. This
demand for experienced testers will easily exceed the availability of experienced testers
if colleges and universities do not start offering software testing curricula.

At some time in the future, the major software vendors who have enjoyed business
success with quick-release software products will implode. This situation is somehow
reminiscent of the children’s story that ends with an observant child remarking, “the
king has no clothes!” Entrepreneurs who fully understand and embrace the lessons
learned from the quick-release development technology model will have a real chance
to offer cost-effective software with signifi cantly better quality (fewer patches and
fi xpacks) to a market hungry for good-quality software. If they succeed, then the
software testing profession will really take wings. Quality software requires more
testing than just the “stop the bleeding” approach these quick-release proponents seem
to take. Testing will become an integral part of the entire software development and
deployment model from day one. We expect that the demand for experienced software
testing professionals under these circumstances will double or triple worldwide.

15.3 SOFTWARE TESTING CHALLENGES ALREADY
UPON US

Over the last 5 years, wireless communication devices have entered the mainstream
of computing environments. Only within the last couple of years has this industry
begun to standardize the messaging that can contain text, voice, music, and images.

15.3 Software Testing Challenges Already Upon Us 251

252 Chapter 15 Future Directions in Testing

The standardization challenges have been exacerbated by the diversity of computing
devices that support wireless communication.

The software development challenges to extend the current applications into
the wireless environment have been enormous. The plethora of viable devices run-
ning a wide range of successful applications attests to the software development
profession’s creativeness and persistence. The approach to software test planning
and execution described in this textbook is appropriate for the wireless environment
but with some warnings. At the moment, testing wireless applications is very work
intensive for two reasons. The fi rst reason is the complexity of the test environment
and test data needed. The second reason is the absence of tools in the market for
automatically managing and executing wireless test scripts.

Although the needs for wireless software testing are not academically rigorous
enough to be termed “testing research,” there is a clear need for pioneers to extend
current approaches and fi nd new approaches that assist the testing profession to keep
up with the wireless development technologies.

15.4 SOFTWARE TESTING NEAR FUTURE
CHALLENGES

The next quantum leap in software development after wireless applications is auto-
nomic computing. The term, as it is currently used in the industry, means a comput-
ing system that can “heal itself.” The concept is gaining in importance because of the
complexity of very large-scale computing platforms being designed for the scientifi c
arena. The challenges in writing operating systems for such “self-healing” systems
are signifi cant. These signifi cant challenges increase as “self-healing” applications
are designed to run on the “self-healing” operating systems.

Testing autonomic systems would be suffi ciently challenging if all we had to
achieve was validation that the “healing” process was correct, that is, the expected
“healing” matches the actual “healing.” Basic testing approaches will need to be
carefully extended to address the “healing” paradigm in a manner similar to the
wireless application testing extensions.

We believe that successfully testing autonomic systems will require a testing
paradigm shift to validate the feature of autonomic systems not present in other
software, namely the ability to “self-diagnose.” In order for the software to start a
“healing” process, the software must somehow detect that it is “injured.” It is this
detection process that will need either new testing approaches or a new testing par-
adigm … or both. We suggest that this is a fertile area for both practitioner and
academic software testing research.

15.5 SOFTWARE TESTING CHALLENGES TO COME

Stand back from the immediate and near-term software development challenges for a
minute and consider where the challenge combinations might take you. One possible

combination would be the remote testing of autonomic systems that are physically
inaccessible. Physical inaccessibility is used here to mean the system is operating in
an environment hostile to human beings. Two examples quickly come to mind.

The fi rst example is outer space such as earth orbiting satellites. Self-healing
communication of navigation or scientifi c satellites seem very desirable when con-
sidering the alternative cost of sending humans into orbit to repair a satellite. Some
of the software testing challenges would be suffi ciently valid testing before satellite
launch and a suffi ciently robust test monitoring after satellite launch.

The second example is inner space such as ocean going submersibles. Self-
healing exploration systems seem very desirable when considering the cost and time
required to bring a submersible vessel to the ocean surface from a depth of several
miles. Two of the software testing challenges would be suffi ciently valid testing be-
fore submersion and suffi ciently robust test monitoring during a dive.

One fi nal prediction arises out of a movie the late 1960s of “2001–
A Space Odyssey.” [53] One particularly interesting sequence shows the hero Dave
deactivating a series of memory cells in a runaway computer system named HAL
that control’s Dave’s spacecraft. As each successive memory module is deactivated,
HAL degenerates from a sophisticated, voice-activated, chess-playing, 3-D object
recognizing, and lip-reading mega computer to a nursery rhyme singing desktop
computer.

What challenges the imagination is the implication that HAL “learned” all his
supercomputer abilities starting from the simple ability to sing the tune “Daisy,
Daisy.” There are a number of articles in the Artifi cial Intelligence research arena
that propose how such “learning” might occur. No overtly successful efforts have
been reported to date. Showing a bit of optimism in the hardware and software devel-
opers’ genius, we expect that “learning” computers will come into existence. At this
time, we can only wonder at the testing challenges posed by software that “learns.”

15.6 PUTTING FUTURE TESTING DIRECTIONS
IN PERSPECTIVE

Technology professionals always have a nagging question in the back of their mind,
“What is the useful lifetime of my current technical expertise?” Some technolo-
gies tend to grow and mature over time, offering the experienced professional a
long, prosperous career with appropriate continuing education. Other technologies
become a dead end because something leapfrogs them and becomes dominant in the
industry.

Software testing clearly falls in the former category of growth and maturity.
We see vast opportunity for basic software testing skills because the current and
foreseeable software development methods remain highly reliant on correct human
behavior. When (hopefully not if) software development methods truly mature, then
software testing professionals will have vast opportunity for developing more ad-
vanced software testing skills to match the challenge of new technology arenas.

Clearly, the software testing profession has a very promising future.

15.6 Putting Future Testing Directions in Perspective 253

254 Chapter 15 Future Directions in Testing

15.7 SUMMARY

First, we will look at trends in software development to augur the implications for
the software testing profession. Then, we will look at trends in applications to prog-
nosticate the implications for software testing research.

There are two trends in software development that are of interest to software
testing professionals. The fi rst trend is “get the code out quickly, we can fi x it later.”
With the number of patches and fi xpacks increasing almost exponentially (from once
a month to three times a day!), the authors fi nd the software vendors’ response to this
avalanche of software defects to be most interesting and most telling about their tech-
nology priorities. Instead of a reemphasis on quality (fewer bugs � fewer fi xes and
fi xpacks � better quality software), they have chosen to invest development dollars
into faster alerts that a fi x needs to be applied. Entrepreneurs who fully understand
and embrace the lessons learned from the quick-release development technology
model will have a real chance to offer cost-effective software with signifi cantly bet-
ter quality (fewer patches and fi xpacks) to a market hungry for good-quality soft-
ware. If they succeed, then the software testing profession will really take wings.

The software development challenges to extend the current applications into
the wireless environment have been enormous. The plethora of viable devices run-
ning a wide range of successful applications attests to the software development
profession’s creativeness and persistence.

The next quantum leap in software development after wireless applications is
autonomic computing. We believe that successfully testing autonomic systems will
require a testing paradigm shift to validate the feature of autonomic systems not
present in other software, namely the ability to “self-diagnose.”

There are a number of articles in the Artifi cial Intelligence research arena that
propose how software “learning” might occur. No overtly successful efforts have
been reported to date. Showing a bit of optimism in the hardware and software devel-
opers’ genius, we expect that “learning” computers will come into existence. At this
time, we can only wonder at the testing challenges posed by software that “learns.”

KEY CONCEPTS

“Get the code out quick-
ly, we can fix it later”

Software development
technology model

Software development
business model

Testing for and in hostile
environments

Software that is “self-
healing”

Software that “learns”
Wireless environment

 255

[1] Gregory Tassey, The Economic
Impacts of Inadequate Infrastructure
for Software Testing. National
Institutes of Standards and
Technology, May 2002.

[2] ibid.

[3] G. J. Meyers, The Art of Software
Testing, John Wiley & Sons, 1976.

[4] B. Beizer, Software Testing
Techniques. Van Nostrand Reinhold,
1990.

[5] Cem Kaner, Jack Falk, Hung Quoc
Nguyen, Testing Computer Software,
2nd edition. International Thompson
Computer Press, 1993 (ISBN 1-85032-
847-1).

[6] James A. Whittaker, How to Break
Software: A Practical Guide for
Testing. Addison-Wesley, 2003 (ISBN
0-201-79619-8).

[7] Cem Kaner, James Bach, Bret
Pettichord, Lessons Learned in
Software Testing. Wiley Computer
Publishing, 2002, 286 pp. (ISBN 0-
471-08112-4).

[8] James Schafter, All Corvettes Are
Red. Simon & Schuster, 1996, 384
pp. (ISBN 0-684-80854-4. Academic
permission granted to copy excerpts
from the following pages for class:
pages 243, 246, 254, 287, 295–296,
297).

[9] Elsa Walsh, Court secrecy masks
safety issue. The Washington Post,
1988, A1.

[10A] Basili and Boehm, Software Defect
Reduction Top 10 List, IEEE
Computer Society, vol. 34, (No. 1),
January 2001, pp. 135–137.

[10B] Capers Jones, Applied Software
Management: Assuring Productivity
and Quality, 2nd Edition, McGrah-Hill,
1996 (ISBN 13 978-0070328266.

[11] Mark Minasi, The Software
Conspiracy. McGraw-Hill, 2000,
271 pp. (ISBN 0-07-134806-9).

[12] James Martin, Rapid Application
Development. Prentice Hall, New
York, 1991.

[13] Raymond McLeod, Jr. Eleanor
Jordan, Business Systems
Development: A Project
Management Approach. John Wiley
& Sons, 2002, pp. 328–338.

[14] O. Flaatten, Donald J. McCubbrey,
P. Declan O’Riordan, Keith Burgess,
Per Foundations of Business
Analysis. Dryden Press, Fort Worth,
TX, 1991, pp. 210–218.

[15] McLeod and Jordan, ibid.

[16] Michael O’Leary, B-17 Flying
Fortress, Production Line to Front
Line, vol. 2 (Chapter 1). Osprey
Aviation, 1998 (ISBN 1-85532-814-
3).

[17] Edward L. Jones, SPRAE: A
Framework for Teaching Software
Testing in Undergraduate
Curriculum, NSF Grant EIA-
9906590, 2001.

References

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

[18] James A. Whittaker, What is software
testing? And why is it so hard? IEEE
Software (No. 1), 2000, 70–79.

[19] Website that contains the Software
Engineering Institute description
of their Capability Maturity Model
Integration (CMMi): www.sei.cmu.
edu/pub/documents/02.reports/pdf/
02tr011.pdf.

[20] James Bach, Rapid Software Testing,
Satisfi ce Inc., www.satisfi ce.com.

[21] The IEEE Computer Society web site
www.ieee.org.

[22] The Tigris Open Source Software
Community project ReadySET web
site http://readyset.tigris.org/.

[23] M. Ramachandran. Requirements-
Driven Software Test: A Process
Oriented Approach, Software
Engineering Notes 21(4), 1996, 66–70.

[24] Alistair Cockburn, Writing Effective
Use Cases. Addison-Wesley, 2001
(ISBN 0-201-702258).

[25] James A. Whittaker, How To Break
Software: A Practical Guide To
Testing. Addison-Wesley, 2003 (ISBN
0-201-79619-8).

[26] H.K. Leung, L.A. White, A Study of
Regression Testing. Proceedings of
the 6th International Conference on
Testing Computer Software. USPDI,
Washington, D.C., May 1989.

[27] G. Rothermel, M.J. Harrold,
Analyzing Regression Test Selection
Techniques, IEEE Transactions on
Software Engineering, 22(8), 1996,
529–551.

[28] John Watkins, Testing IT: An Off-
the-Shelf Software Testing Process.
Cambridge University Press, 2001
(Chapter 11, Regression Testing, ISBN
0-521-79546-X).

[29] A. Bertolino, M. Marre, Automatic
generation of path covers based on
the control fl ow analysis of computer
programs, IEEE Transactions on

Software Engineering, 21(12), 1994,
pp. 885–899.

[30] C.S. Chou, M.W. Du, Improved
Domain Strategies for Detecting Path
Selection Errors. In: Proceedings
of the Conference on Software
Maintenance, IEEE Computer Society,
Los Angeles, 1987, pp. 165–173.

[31] P.G. Frankl, E.J. Weyuker, Provable
improvements on branch testing. IEEE
Transactions on Software Engineering
19(10), 1993.

[32] R.D. Craig, S.P. Jaskiel, Systematic
Software Testing. SQE Publishing,
2002 (Chapter 5 section “White Box
Science’’, ISBN 1-58053-508-9).

[33] B. Beizer, Software Testing
Techniques, 2nd Edition. International
Thomson Press, 1990 (Chapter 3
“Flowgraphs and Path Testing’’, ISBN
1-85032-880-3).

[34] B. Biezerk, Black Box Testing. John
Wiley & Sons, 1995.

[35] R.D. Craig, S.P. Jaskiel, Systematic
Software Testing. SQE Publishing,
2002 (Chapter 5 section “Black Box
Art’’, ISBN 1-58053-508-9).

[36] B. Beizer, Software Testing
Techniques, 2nd Edition. International
Thomson Press, 1990 (Chapter 4,
Transaction-Flow Testing, ISBN 1-
85032-880-3).

[37] Ronald L. Rivest, Testing
Implementations of DES. MIT
Laboratory for Computer Science,
Cambridge, Mass., February 1985.

[38] Lawrence E. Bassham III, The
Advanced Encryption Standard
Algorithm Validation Suite (AESAVS).
National Institutes of Standards and
Technology, November 2002.

[39] Steven Splaine, Testing Web Security.
Wiley Publishing, Inc., 2002 (ISBN
0-471-23281-5).

[40] Ixia Introduces Gigabit Line Rate
Encryption Test Solution, Enterprise

References 256

Networks & Servers. PCI Publisher
(August 2004 Issue).

[41] Troell, Burns, Chapman, Goddard,
Soderlund, Ward, Data Encryption
Performance: Layer 2 vs. Layer 3
Encryption in High Speed Point-
to-Point Networks. The Rochester
Institute of Technology, October 2005.

[42] Tim Richardson, Cowboy computer
glitch blamed for construction slump.
The Register 2004.

[43] Eclipse organization homepage www.
eclipse.org.

[44] Hyades project homepage www.
eclipse.org/hyades.

[45] Mercury Interactive Software testing
tools and training homepage www.
merc-int.com.

[46] Rational Software testing tools, testing
processes, and training homepage
www.rational.com.

[47] Segue Software testing tools and
training homepage www.segue.com.

[48] Stephen H. Kan, Metrics and Models
in Software Quality Engineering, 2nd
Edition, Addison-Wesley, 2002, ISBN
0-201-72915-6.

[49] ibid, Chapter 7.

[50] IBM Center for Software Engineering,
T.J. Watson Research Laboratory,
http://www.watson.ibm.com/

[51] Please refer to Case Study B in website
http://www.wiley.com/WileyCDA/
Section/id-2925.html

[52] Computing Perspectives, Inc. is a Texas
corporation (#1054978-0) chartered to
provide computer consulting services.
The DriveSaveAmerica case study
is a customer project completed by
CPI and is used in this textbook with
the permission of Gerald D. Everett,
President of Computing Perspectives,
Inc.

[53] “2001 — A Space Odyssey”, a motion
picture by Stanley Kubrick, MGM,
1968.

257 References

 259

1-tier, 235, 236, 237, 239
-2Analysis, 211
2-tier, 237, 238, 242, 243
-3Design, 211
3-tier, 241, 242, 243, 244, 245
-4PreCnst, 211
-5FinCnst, 211
80/20 Rule, 19, 27
acceptance, 36, 50, 51, 54, 55, 115
accountability, 62, 63, 218
actor, 100, 101, 119, 223
actual, 85, 87, 88, 117, 160, 168, 169, 177,

178, 185, 190, 197, 201, 208, 212, 219,
226, 238, 252

artifact, 71, 72, 73, 204
AUT, 162, 163, 165, 166, 167, 168, 171, 175

backlog, 180, 181, 182, 184, 185, 186, 190,
191, 199, 201, 202

backup, 47, 125, 126, 127, 128, 153, 199,
206, 207, 213, 216, 217, 218, 223, 226,
230, 232, 237, 239, 240, 244, 245

baseline, 73, 84, 163
batch, 22, 45, 84, 103, 129, 130, 148
bathtub, 89, 152, 212
behavior, 86, 87, 150, 151, 152, 158, 163,

168, 169, 196, 197, 253
black box, 67, 68, 69, 70, 72, 74, 77, 81, 86,

93, 104, 110, 112, 113, 114, 115, 117, 119,
120, 123, 127, 222

boolean, 108, 109
bottleneck, 138, 140, 163, 218
bottom-up, 239
boundary, 2, 6, 13, 25, 110, 114, 115, 116,

120, 222, 228
branch, 108, 109, 110, 120, 184, 221
buffer, 112, 221

build, 64, 100, 106, 107, 120, 126, 154, 170,
174, 213, 214, 220, 235, 240, 241

candidate, 130, 135, 148, 214
checklist, 59, 60, 61, 62, 65, 73, 93
chessboard, 70, 72, 74, 75, 77, 79, 93, 206,

207, 209, 235, 237, 238, 245, 246, 249
cluster, 11, 121, 182, 183, 184, 185, 186
CMMI, 63
combination, 108, 109, 116, 117, 124, 125,

129, 148, 170, 173, 180, 252, 253
concurrent, 132, 213
condition, 108, 109, 110, 112, 118, 120, 151,

169, 221
confi g, 46
connectivity, 70, 71, 72, 74, 76, 77, 122, 153,

207, 212, 213, 223, 237, 238, 239, 240,
241, 242, 246, 249

constructs, 110, 163
correct, 11, 13, 16, 23, 81, 87, 88, 93, 112,

113, 114, 115, 117, 118, 119, 120, 123, 125,
126, 129, 130, 135, 144, 145, 146, 147,
148, 152, 153, 154, 155, 156, 157, 158,
162, 163, 163, 169, 173, 174, 175, 176, 177,
178, 179, 180, 181, 182, 183, 184, 185,
186, 190, 191, 194, 195, 196, 200, 201,
202, 203, 208, 209, 210, 211, 213, 215,
217, 224, 225, 226, 227, 229, 230, 241,
246, 252, 253

coverage, 107, 108, 109, 110, 112, 113, 115,
117, 120, 191, 201, 221, 222

cutover, 49, 54, 55, 56, 227, 228, 229, 232

data-driven, 163, 164, 168, 169
date, 110, 111, 112, 119, 120, 125, 155, 181,

187, 188, 194, 195, 196, 197, 200, 201, 206,
221, 222, 224, 225, 228, 230, 231, 232

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

Index

260 Index

debug, 16, 107, 110, 112, 153, 160, 184, 217,
221, 230

default, 119, 125, 152
defect, 17, 21, 23, 63, 67, 81, 82, 85, 87, 88,

93, 106, 107, 108, 110, 112, 113, 129, 148,
155, 156, 157, 163, 170, 173, 176, 177, 179,
180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 213,
215, 221, 224, 225, 226, 227, 231, 232,
239, 240, 241, 251, 254

Eclipse, 161
economy, 1, 62, 64, 154, 170, 227
effectiveness, 16, 40, 99, 176, 197, 199, 230
encryption, 124
environment, 50, 69, 72, 73, 81, 88, 94, 99,

125, 129, 134, 135, 136, 138, 148, 150,
151, 152, 153, 154, 155, 156, 157, 158,
161, 167, 168, 169, 172, 173, 175, 176, 197,
220, 223, 232, 251, 252, 254

epsilon, 114, 115
equivalence, 114, 115, 116, 120, 124, 220,

221, 222
error handling, 117, 118
estimate, 83, 155, 177, 188, 191, 194, 212,

214, 217, 218
exception, 121, 155, 158
expected, 14, 83, 85, 86, 87, 88, 89, 96, 99,

102, 103, 104, 110, 113, 115, 116, 117, 119,
120, 124, 126, 132, 134, 136, 144, 147,
153, 160, 168, 169, 170, 171, 177, 178, 185,
190, 192, 194, 197, 198, 201, 204, 208,
210, 212, 214, 215, 219, 221, 222, 223,
225, 226, 227, 229, 231, 252

fail, 85, 88, 102, 107, 111, 115, 117, 118, 119,
122, 126, 127, 133, 134, 157, 160, 168,
169, 207, 223, 227, 233, 247, 251

fi nalized, 80
fi ve-step, 61
fi x, 250, 251
framework, 29, 37, 47, 48, 61, 83, 161
function, 36, 37, 40, 41, 43, 44, 45, 46, 47,

50, 54, 55, 56, 57, 74, 75, 76, 81, 83, 99,
100, 101, 103, 106, 114, 119, 120, 121,
122, 126, 129, 135, 143, 144, 146, 147,
148, 160, 165, 166, 167, 168, 169, 173,
174, 175, 176, 177, 201, 207, 208, 212,

213, 214, 216, 220, 221, 222, 223, 224,
230, 237, 238, 239, 240, 241, 242, 244,
245, 246

fuzzy, 9, 187

gaps, 53, 91, 95, 170
goals, 4, 37, 39, 40, 46, 48, 57, 66, 86, 92,

121, 151, 182, 231
gunsight, 196, 197, 198, 199

Hyades, 161

IEEE, 90, 91
install, 30, 34, 35, 36, 37, 41, 50, 53, 54, 55,

56, 57, 67, 72, 73, 89, 90, 96, 125, 126,
128, 152, 173, 211, 220, 223, 229, 232, 251

interface, 46, 47, 48, 49, 54, 57, 76, 94, 95,
103, 123, 127, 160, 211, 214, 215, 216,
223, 237, 241, 242

internet, 6, 15, 19, 69, 75, 76, 84, 111, 112,
118, 131, 153, 166, 172, 241, 242, 243, 247

intuition, 117, 120, 123, 127, 221, 222

JAD, 48, 57

life cycle, 29, 61, 71, 72, 73, 77, 79, 89, 113,
120

method, 29, 61, 62, 65, 68, 71, 83, 161, 164,
174, 187, 197, 203, 204, 208, 209, 212,
233, 234, 253

mm/dd/yy, 110, 111

nonfunctional, 122, 238
n-tier, 243, 246, 247, 248

orthogonal, 200

paradigm, 19, 24, 104, 159, 162, 163, 165,
166, 167, 174, 175, 252, 254

pass, 88, 106, 135, 146, 147, 160, 169, 172,
175, 207, 210, 214

peak, 129, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 173, 187, 188, 189, 193,
194, 197, 198, 199, 225, 226, 231

performance, 69, 70, 72, 73, 74, 77, 81, 84,
103, 112, 124, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147,

Index 261

148, 156, 173, 175, 176, 201, 216, 218,
219, 221, 224, 227, 230, 231, 232, 233

permutation, 108, 164
post-implementation, 36, 56, 57, 73, 89, 90
predict, 19, 98, 107, 112, 138, 151, 173, 186,

187, 189, 190, 191, 192, 193, 194, 195,
196, 197, 199, 202, 250, 251, 253

ramp-down, 135, 148
ramp-up, 134, 135, 142, 143, 144, 148
Rayleigh, 196, 197, 198, 199
record, 98, 132, 136, 137, 162, 163, 164, 165,

166, 167, 168, 169, 174, 175, 182, 202,
206, 209, 210, 212, 214, 216, 217, 221,
223, 227, 228, 229, 230, 232, 237, 238

regression, 63, 74, 99, 106, 107, 120, 124,
126, 143, 146, 147, 172, 184, 224, 229,
231, 232, 233

repeat, 17, 18, 24, 26, 112, 117, 118, 147,
155, 157, 163, 170, 172, 174, 203, 213,
220, 233, 235

replay, 163, 164
requirement, 5, 6, 10, 11, 15, 18, 21, 22, 28,

57, 67, 71, 73, 78, 80, 83, 84, 88, 94, 95,
96, 99, 100, 103, 104, 106, 107, 112, 113,
115, 119, 120, 121, 125, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 148,
172, 179, 182, 201, 204, 205, 207, 208,
209, 210, 211, 213, 214, 215, 219, 220,
223, 227, 229, 230, 231, 233, 234

rerun, 81, 85, 88, 97, 123, 144, 145, 146, 153,
154, 155, 177, 184, 223, 224, 233

retest, 140, 143, 144, 147, 177, 179, 180, 184,
185, 201, 215

reusability, 172
ROI, 11, 234
root cause, 183, 184, 185, 186, 202, 226, 227
rule of 8, 130, 131, 171

script, 84, 88, 120, 161, 162, 163, 164, 167,
168, 169, 170, 172, 173, 174, 191, 230,
231, 252

security, 47, 51, 55, 70, 71, 72, 74, 76, 77, 94,
95, 103, 113, 125, 152, 199, 206, 207, 223,
224, 242, 243, 246

self-healing, 252, 253
severity, 118, 178, 180, 186, 189, 190, 191,

200

showstopper, 143, 144, 147, 177, 180, 184,
189, 196

simulation, 150, 151
SPRAE, 62, 66, 93, 99, 118, 203, 204, 208,

209, 212, 215, 216, 218, 220, 227, 233, 234
static, 66, 67, 70, 73, 74, 77, 93, 94, 95, 96,

97, 98, 99, 208, 209, 210, 213, 214, 215,
219, 220, 228, 229, 230, 231

structural, 103, 122, 123, 127, 143, 176, 201,
216, 217, 223, 230, 231

success, 81, 83, 84, 85, 87, 93, 95, 96, 98,
102, 105, 106, 120, 125, 134, 135, 136,
140, 147, 174, 176, 177, 178, 179, 180, 181,
182, 192, 194, 196, 197, 200, 201, 203,
204, 207, 208, 210, 213, 232, 233, 234,
238, 241, 242, 251, 252, 253, 254

test case, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 100, 101, 102, 103, 119, 126,
170, 174, 176, 177, 178, 179, 180, 181, 184,
201, 211, 216, 217, 218, 220, 223, 224,
227, 229, 230, 233, 247

Tigris, 90, 91

unstable, 189, 227, 250
unsuccessful, 81, 91, 169, 177, 178, 179, 180,

181, 201
untested, 108, 127, 153, 154, 157
use case, 100, 101, 102, 103, 107, 113, 119,

120, 208, 209, 210, 211, 212, 213, 215,
216, 217, 218, 223, 224, 227, 228, 229, 232

validate, 4, 5, 10, 21, 36, 54, 63, 73, 74, 80,
81, 82, 88, 99, 100, 101, 102, 103, 104,
105, 106, 110, 113, 119, 120, 122, 123,
125, 126, 127, 129, 148, 152, 155, 174,
182, 191, 207, 208, 212, 215, 216, 220,
223, 224, 230, 241, 252, 254

verify, 11, 20, 21, 26, 35, 36, 57, 74, 75, 98,
107, 112, 113, 115, 120, 124, 125, 126,
143, 144, 145, 163, 164, 173, 214, 216

virus, 112

walkthrough, 20, 36
Weibul, 196
white box, 66, 67, 68, 69, 70, 72, 74, 77, 81,

99, 107, 108, 109, 111, 112, 119, 120, 123,
127, 153, 221

wysiwyg, 214

