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Preface
A	Practitioner's	Guide	to	Software	Test	Design	contains	today's	important	current	test	design
approaches	in	one	unique	book.	Until	now,	software	testers	had	to	search	through	a	number	of
books,	periodicals,	and	Web	sites	to	locate	this	vital	information.

Importance	of	Test	Design

"The	act	of	careful,	complete,	systematic,	test	design	will	catch	as	many	bugs	as	the	act
of	testing.	...	Personally,	I	believe	that	it's	far	more	effective."

-	Boris	Beizer

The	book	focuses	only	on	software	test	design,	not	related	subjects	such	as	test	planning,	test
management,	test	team	development,	etc.	While	those	are	important	in	software	testing,	they
have	often	overshadowed	what	testers	really	need—the	more	practical	aspects	of	testing,
specifically	test	case	design.	Other	excellent	books	can	guide	you	through	the	overall	process
of	software	testing.	One	of	my	favorites	is	Systematic	Software	Testing	by	Rick	Craig	and
Stefan	Jaskiel.

A	Practitioner's	Guide	to	Software	Test	Design	illustrates	each	test	design	approach	through
detailed	examples	and	step-by-step	instructions.	These	lead	the	reader	to	a	clear
understanding	of	each	test	design	technique.



Today's	Testing	Challenges
For	any	system	of	interesting	size	it	is	impossible	to	test	all	the	different	logic	paths	and	all	the
different	input	data	combinations.	Of	the	infinite	number	of	choices,	each	one	of	which	is	worthy
of	some	level	of	testing,	testers	can	only	choose	a	very	small	subset	because	of	resource
constraints.	The	purpose	of	this	book	is	to	help	you	analyze,	design,	and	choose	such	subsets,
to	implement	those	tests	that	are	most	likely	to	discover	defects.

It	is	vital	to	choose	test	cases	wisely.	Missing	a	defect	can	result	in	significant	losses	to	your
organization	if	a	defective	system	is	placed	into	production.

A	Practitioner's	Guide	to	Software	Test	Design	describes	a	set	of	key	test	design	strategies
that	improve	both	the	efficiency	and	effectiveness	of	software	testers.



Structure	and	Approach
A	Practitioner's	Guide	to	Software	Test	Design	explains	the	most	important	test	design
techniques	in	use	today.	Some	of	these	techniques	are	classics	and	well	known	throughout	the
testing	community.	Some	have	been	around	for	a	while	but	are	not	well	known	among	test
engineers.	Still	others	are	not	widely	known,	but	should	be	because	of	their	effectiveness.	This
book	brings	together	all	these	techniques	into	one	volume,	helping	the	test	designer	become
more	efficient	and	effective	in	testing.

Each	test	design	technique	is	approached	from	a	practical,	rather	than	a	theoretical	basis.
Each	test	design	technique	is	first	introduced	through	a	simple	example,	then	explained	in	detail.
When	possible,	additional	examples	of	its	use	are	presented.	The	types	of	problems	on	which
the	approach	can	be	used,	along	with	its	limitations,	are	described.	Each	test	design	technique
chapter	ends	with	a	summary	of	its	key	points,	along	with	exercises	the	reader	can	use	for
practice,	and	references	for	further	reading.	Testers	can	use	the	techniques	presented
immediately	on	their	projects.

A	Note	from	the	Author

I	love	a	good	double	integral	sign

as	much	as	the	next	tester,	but	we're	going	to	concentrate	on	the	practical,	not	the
theoretical.

Each	test	design	approach	is	described	in	a	self-contained	chapter.	Because	the	chapters	are
focused,	concise,	and	independent	they	can	be	read	"out	of	order."	Testers	can	read	the
chapters	that	are	most	relevant	to	their	work	at	the	moment.



Audience
This	book	was	written	specifically	for:

Software	test	engineers	who	have	the	primary	responsibility	for	test	case	design.	This
book	details	the	most	efficient	and	effective	methods	for	creating	test	cases.

Software	developers	who,	with	the	advent	of	Extreme	Programming	and	other	agile
development	methods,	are	being	asked	to	do	more	and	better	testing	of	the	software
they	write.	Many	developers	have	not	been	exposed	to	the	design	techniques
described	in	this	book.

Test	and	development	managers	who	must	understand,	at	least	in	principle,	the	work
their	staff	performs.	Not	only	does	this	book	provide	an	overview	of	important	test
design	methods,	it	will	assist	managers	in	estimating	the	effort,	time,	and	cost	of	good
testing.

Quality	assurance	and	process	improvement	engineers	who	are	charged	with	defining
and	improving	their	software	testing	process.

Instructors	and	professors	who	are	searching	for	an	excellent	reference	for	a	course	in
software	test	design	techniques.



Appreciation
The	following	reviewers	have	provided	invaluable	assistance	in	the	writing	of	this	book:	Anne
Meilof,	Chuck	Allison,	Dale	Perry,	Danny	Faught,	Dorothy	Graham,	Geoff	Quentin,	James
Bach,	Jon	Hagar,	Paul	Gerrard,	Rex	Black,	Rick	Craig,	Robert	Rose-Coutré,	Sid	Snook,	and
Wayne	Middleton.	My	sincere	thanks	to	each	of	them.	Any	faults	in	this	book	should	be
attributed	directly	to	them.	(Just	kidding!)



Some	Final	Comments
This	book	contains	a	number	of	references	to	Web	sites.	These	references	were	correct	when
the	manuscript	was	submitted	to	the	publisher.	Unfortunately,	they	may	have	become	broken	by
the	time	the	book	is	in	the	readers'	hands.

It	has	become	standard	practice	for	authors	to	include	a	pithy	quotation	on	the	title	page	of
each	chapter.	Unfortunately,	the	practice	has	become	so	prevalent	that	all	the	good	quotations
have	been	used.	Just	for	fun,	I	have	chosen	instead	to	include	on	each	chapter	title	page	a
winning	entry	from	the	2003	Bulwer-Lytton	Fiction	Contest	(http://www.bulwer-lytton.com).
Since	1982,	the	English	Department	at	San	Jose	State	University	has	sponsored	this	event,	a
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possible	novels.	It	was	inspired	by	Edward	George	Bulwer-Lytton	who	began	his	novel	Paul
Clifford	with:

"It	was	a	dark	and	stormy	night;	the	rain	fell	in	torrents—except	at	occasional	intervals,
when	it	was	checked	by	a	violent	gust	of	wind	which	swept	up	the	streets	(for	it	is	in
London	that	our	scene	lies),	rattling	along	the	housetops,	and	fiercely	agitating	the	scanty
flame	of	the	lamps	that	struggled	against	the	darkness."

My	appreciation	to	Dr.	Scott	Rice	of	San	Jose	State	University	for	permission	to	use	these
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Chapter	1:	The	Testing	Process



Overview
The	flock	of	geese	flew	overhead	in	a	'V'	formation—not	in	an	old-fashioned-looking
Times	New	Roman	kind	of	a	'V',	branched	out	slightly	at	the	two	opposite	arms	at	the	top
of	the	'V',	nor	in	a	more	modern-looking,	straight	and	crisp,	linear	Arial	sort	of	'V'
(although	since	they	were	flying,	Arial	might	have	been	appropriate),	but	in	a	slightly
asymmetric,	tilting	off-to-one-side	sort	of	italicized	Courier	New-like	'V'—and	LaFonte
knew	that	he	was	just	the	type	of	man	to	know	the	difference.	[1]

—	John	Dotson

[1]If	you	think	this	quotation	has	nothing	to	do	with	software	testing	you	are	correct.	For	an
explanation	please	read	"Some	Final	Comments"	in	the	Preface.



Testing
What	is	testing?	While	many	definitions	have	been	written,	at	its	core	testing	is	the	process	of
comparing	"what	is"	with	"what	ought	to	be."	A	more	formal	definition	is	given	in	the	IEEE
Standard	610.12-1990,	"IEEE	Standard	Glossary	of	Software	Engineering	Terminology"	which
defines	"testing"	as:

"The	process	of	operating	a	system	or	component	under	specified	conditions,	observing	or
recording	the	results,	and	making	an	evaluation	of	some	aspect	of	the	system	or
component."

The	"specified	conditions"	referred	to	in	this	definition	are	embodied	in	test	cases,	the	subject
of	this	book.

Key
Point At	its	core,	testing	is	the	process	of	comparing	"what	is"	with	"what	ought	to	be."

Rick	Craig	and	Stefan	Jaskiel	propose	an	expanded	definition	of	software	testing	in	their	book,
Systematic	Software	Testing.

"Testing	is	a	concurrent	lifecycle	process	of	engineering,	using	and	maintaining	testware	in
order	to	measure	and	improve	the	quality	of	the	software	being	tested."

This	view	includes	the	planning,	analysis,	and	design	that	leads	to	the	creation	of	test	cases	in
addition	to	the	IEEE's	focus	on	test	execution.

Different	organizations	and	different	individuals	have	varied	views	of	the	purpose	of	software
testing.	Boris	Beizer	describes	five	levels	of	testing	maturity.	(He	called	them	phases	but	today
we	know	the	politically	correct	term	is	"levels"	and	there	are	always	five	of	them.)

Level	0	-	"There's	no	difference	between	testing	and	debugging.	Other	than	in	support	of
debugging,	testing	has	no	purpose."	Defects	may	be	stumbled	upon	but	there	is	no	formalized
effort	to	find	them.

Level	1	-	"The	purpose	of	testing	is	to	show	that	software	works."	This	approach,	which	starts
with	the	premise	that	the	software	is	(basically)	correct,	may	blind	us	to	discovering	defects.
Glenford	Myers	wrote	that	those	performing	the	testing	may	subconsciously	select	test	cases
that	should	not	fail.	They	will	not	create	the	"diabolical"	tests	needed	to	find	deeply	hidden
defects.

Level	2	-	"The	purpose	of	testing	is	to	show	that	the	software	doesn't	work."	This	is	a	very
different	mindset.	It	assumes	the	software	doesn't	work	and	challenges	the	tester	to	find	its
defects.	With	this	approach,	we	will	consciously	select	test	cases	that	evaluate	the	system	in
its	nooks	and	crannies,	at	its	boundaries,	and	near	its	edges,	using	diabolically	constructed	test
cases.

Level	3	-	"The	purpose	of	testing	is	not	to	prove	anything,	but	to	reduce	the	perceived	risk	of



not	working	to	an	acceptable	value."	While	we	can	prove	a	system	incorrect	with	only	one	test
case,	it	is	impossible	to	ever	prove	it	correct.	To	do	so	would	require	us	to	test	every	possible
valid	combination	of	input	data	and	every	possible	invalid	combination	of	input	data.	Our	goals
are	to	understand	the	quality	of	the	software	in	terms	of	its	defects,	to	furnish	the	programmers
with	information	about	the	software's	deficiencies,	and	to	provide	management	with	an
evaluation	of	the	negative	impact	on	our	organization	if	we	shipped	this	system	to	customers	in
its	present	state.

Level	4	-	"Testing	is	not	an	act.	It	is	a	mental	discipline	that	results	in	low-risk	software	without
much	testing	effort."	At	this	maturity	level	we	focus	on	making	software	more	testable	from	its
inception.	This	includes	reviews	and	inspections	of	its	requirements,	design,	and	code.	In
addition,	it	means	writing	code	that	incorporates	facilities	the	tester	can	easily	use	to
interrogate	it	while	it	is	executing.	Further,	it	means	writing	code	that	is	self-diagnosing,	that
reports	errors	rather	than	requiring	testers	to	discover	them.



Current	Challenges
When	I	ask	my	students	about	the	challenges	they	face	in	testing	they	typically	reply:

Not	enough	time	to	test	properly

Too	many	combinations	of	inputs	to	test

Not	enough	time	to	test	well

Difficulty	in	determining	the	expected	results	of	each	test

Nonexistent	or	rapidly	changing	requirements

Not	enough	time	to	test	thoroughly

No	training	in	testing	processes

No	tool	support

Management	that	either	doesn't	understand	testing	or	(apparently)	doesn't	care	about
quality

Not	enough	time

This	book	does	not	contain	"magic	pixie	dust"	that	you	can	use	to	create	additional	time,	better
requirements,	or	more	enlightened	management.	It	does,	however,	contain	techniques	that	will
make	you	more	efficient	and	effective	in	your	testing	by	helping	you	choose	and	construct	test
cases	that	will	find	substantially	more	defects	than	you	have	in	the	past	while	using	fewer
resources.



Test	Cases
To	be	most	effective	and	efficient,	test	cases	must	be	designed,	not	just	slapped	together.	The
word	"design"	has	a	number	of	definitions:

1.	 To	conceive	or	fashion	in	the	mind;	invent:	design	a	good	reason	to	attend	the	STAR
testing	conference.	To	formulate	a	plan	for;	devise:	design	a	marketing	strategy	for
the	new	product.

2.	 To	plan	out	in	systematic,	usually	documented	form:	design	a	building;	design	a	test
case.

3.	 To	create	or	contrive	for	a	particular	purpose	or	effect:	a	game	designed	to	appeal	to
all	ages.

4.	 To	have	as	a	goal	or	purpose;	intend.

5.	 To	create	or	execute	in	an	artistic	or	highly	skilled	manner.

Key
Point

To	be	most	effective	and	efficient,	test	cases	must	be	designed,	not	just	slapped
together.

Each	of	these	definitions	applies	to	good	test	case	design.	Regarding	test	case	design,	Roger
Pressman	wrote:

"The	design	of	tests	for	software	and	other	engineering	products	can	be	as	challenging	as
the	initial	design	of	the	product	itself.	Yet	...	software	engineers	often	treat	testing	as	an
afterthought,	developing	test	cases	that	'feel	right'	but	have	little	assurance	of	being
complete.	Recalling	the	objectives	of	testing,	we	must	design	tests	that	have	the	highest
likelihood	of	finding	the	most	errors	with	a	minimum	amount	of	time	and	effort."

Well	designed	test	cases	are	composed	of	three	parts:

Inputs

Outputs

Order	of	execution

Key
Point Test	cases	consist	of	inputs,	outputs,	and	order	of	execution.

Inputs

Inputs	are	commonly	thought	of	as	data	entered	at	a	keyboard.	While	that	is	a	significant
source	of	system	input,	data	can	come	from	other	sources—data	from	interfacing	systems,
data	from	interfacing	devices,	data	read	from	files	or	databases,	the	state	the	system	is	in
when	the	data	arrives,	and	the	environment	within	which	the	system	executes.



Outputs

Outputs	have	this	same	variety.	Often	outputs	are	thought	of	as	just	the	data	displayed	on	a
computer	screen.	In	addition,	data	can	be	sent	to	interfacing	systems	and	to	external	devices.
Data	can	be	written	to	files	or	databases.	The	state	or	the	environment	may	be	modified	by	the
system's	execution.

All	of	these	relevant	inputs	and	outputs	are	important	components	of	a	test	case.	In	test	case
design,	determining	the	expected	outputs	is	the	function	of	an	"oracle."

An	oracle	is	any	program,	process,	or	data	that	provides	the	test	designer	with	the	expected
result	of	a	test.	Beizer	lists	five	types	of	oracles:

Kiddie	Oracles	-	Just	run	the	program	and	see	what	comes	out.	If	it	looks	about	right,	it
must	be	right.

Regression	Test	Suites	-	Run	the	program	and	compare	the	output	to	the	results	of	the
same	tests	run	against	a	previous	version	of	the	program.

Validated	Data	-	Run	the	program	and	compare	the	results	against	a	standard	such	as
a	table,	formula,	or	other	accepted	definition	of	valid	output.

Purchased	Test	Suites	-	Run	the	program	against	a	standardized	test	suite	that	has
been	previously	created	and	validated.	Programs	like	compilers,	Web	browsers,	and
SQL	(Structured	Query	Language)	processors	are	often	tested	against	such	suites.

Existing	Program	-	Run	the	program	and	compare	the	output	to	another	version	of	the
program.

Order	of	Execution

There	are	two	styles	of	test	case	design	regarding	order	of	test	execution.

Cascading	test	cases	-	Test	cases	may	build	on	each	other.	For	example,	the	first	test
case	exercises	a	particular	feature	of	the	software	and	then	leaves	the	system	in	a
state	such	that	the	second	test	case	can	be	executed.	In	testing	a	database	consider
these	test	cases:

1.	 Create	a	record

2.	 Read	the	record

3.	 Update	the	record

4.	 Read	the	record

5.	 Delete	the	record

6.	 Read	the	deleted	record



Each	of	these	tests	could	be	built	on	the	previous	tests.	The	advantage	is	that	each
test	case	is	typically	smaller	and	simpler.	The	disadvantage	is	that	if	one	test	fails,	the
subsequent	tests	may	be	invalid.

Independent	test	cases	-	Each	test	case	is	entirely	self	contained.	Tests	do	not	build	on
each	other	or	require	that	other	tests	have	been	successfully	executed.	The	advantage
is	that	any	number	of	tests	can	be	executed	in	any	order.	The	disadvantage	is	that	each
test	tends	to	be	larger	and	more	complex	and	thus	more	difficult	to	design,	create,	and
maintain.



Types	Of	Testing
Testing	is	often	divided	into	black	box	testing	and	white	box	testing.

Black	box	testing	is	a	strategy	in	which	testing	is	based	solely	on	the	requirements	and
specifications.	Unlike	its	complement,	white	box	testing,	black	box	testing	requires	no
knowledge	of	the	internal	paths,	structure,	or	implementation	of	the	software	under	test.

White	box	testing	is	a	strategy	in	which	testing	is	based	on	the	internal	paths,	structure,	and
implementation	of	the	software	under	test.	Unlike	its	complement,	black	box	testing,	white	box
testing	generally	requires	detailed	programming	skills.

An	additional	type	of	testing	is	called	gray	box	testing.	In	this	approach	we	peek	into	the	"box"
under	test	just	long	enough	to	understand	how	it	has	been	implemented.	Then	we	close	up	the
box	and	use	our	knowledge	to	choose	more	effective	black	box	tests.



Testing	Levels
Typically	testing,	and	therefore	test	case	design,	is	performed	at	four	different	levels:

Unit	Testing	-	A	unit	is	the	"smallest"	piece	of	software	that	a	developer	creates.	It	is
typically	the	work	of	one	programmer	and	is	stored	in	a	single	disk	file.	Different
programming	languages	have	different	units:	In	C++	and	Java	the	unit	is	the	class;	in	C
the	unit	is	the	function;	in	less	structured	languages	like	Basic	and	COBOL	the	unit	may
be	the	entire	program.

Key
Point The	classical	testing	levels	are	unit,	integration,	system,	and	acceptance.

Integration	Testing	-	In	integration	we	assemble	units	together	into	subsystems	and
finally	into	systems.	It	is	possible	for	units	to	function	perfectly	in	isolation	but	to	fail
when	integrated.	A	classic	example	is	this	C	program	and	its	subsidiary	function:
/*	main	program	*/
void	oops(int);
int	main(){
oops(42);	/*	call	the	oops	function	passing	an	integer	*/
return	0;
}

/*	function	oops	(in	a	separate	file)	*/
#include	<stdio.h>
void	oops(double	x)	{/*	expects	a	double,	not	an	int!	*/
printf	("%f\n",x);	/*	Will	print	garbage	(0	is	most	likely)	*/
}

If	these	units	were	tested	individually,	each	would	appear	to	function	correctly.	In	this
case,	the	defect	only	appears	when	the	two	units	are	integrated.	The	main	program
passes	an	integer	to	function	oops	but	oops	expects	a	double	length	integer	and	trouble
ensues.	It	is	vital	to	perform	integration	testing	as	the	integration	process	proceeds.

System	Testing	-	A	system	consists	of	all	of	the	software	(and	possibly	hardware,	user
manuals,	training	materials,	etc.)	that	make	up	the	product	delivered	to	the	customer.
System	testing	focuses	on	defects	that	arise	at	this	highest	level	of	integration.
Typically	system	testing	includes	many	types	of	testing:	functionality,	usability,	security,
internationalization	and	localization,	reliability	and	availability,	capacity,	performance,
backup	and	recovery,	portability,	and	many	more.	This	book	deals	only	with	functionality
testing.	While	the	other	types	of	testing	are	important,	they	are	beyond	the	scope	of
this	volume.

Acceptance	Testing	-	Acceptance	testing	is	defined	as	that	testing,	which	when
completed	successfully,	will	result	in	the	customer	accepting	the	software	and	giving	us
their	money.	From	the	customer's	point	of	view,	they	would	generally	like	the	most



exhaustive	acceptance	testing	possible	(equivalent	to	the	level	of	system	testing).	From
the	vendor's	point	of	view,	we	would	generally	like	the	minimum	level	of	testing	possible
that	would	result	in	money	changing	hands.	Typical	strategic	questions	that	should	be
addressed	before	acceptance	testing	are:	Who	defines	the	level	of	the	acceptance
testing?	Who	creates	the	test	scripts?	Who	executes	the	tests?	What	is	the	pass/fail
criteria	for	the	acceptance	test?	When	and	how	do	we	get	paid?

Not	all	systems	are	amenable	to	using	these	levels.	These	levels	assume	that	there	is	a
significant	period	of	time	between	developing	units	and	integrating	them	into	subsystems	and
then	into	systems.	In	Web	development	it	is	often	possible	to	go	from	concept	to	code	to
production	in	a	matter	of	hours.	In	that	case,	the	unit-integration-system	levels	don't	make	much
sense.	Many	Web	testers	use	an	alternate	set	of	levels:

Code	quality

Functionality

Usability

Performance

Security



The	Impossibility	Of	Testing	Everything
In	his	monumental	book	Testing	Object-Oriented	Systems,	Robert	Binder	provides	an	excellent
example	of	the	impossibility	of	testing	"everything."	Consider	the	following	program:
int	blech	(int	j)	{
											j	=	j	-1;											//	should	be	j	=	j	+	1
											j	=	j	/	30000;
											return	j;
										}

Note	that	the	second	line	is	incorrect!	The	function	blech	accepts	an	integer	j,	subtracts	one
from	it,	divides	it	by	30000	(integer	division,	whole	numbers,	no	remainder)	and	returns	the
value	just	computed.	If	integers	are	implemented	using	16	bits	on	this	computer	executing	this
software,	the	lowest	possible	input	value	is	-32768	and	the	highest	is	32767.	Thus	there	are
65,536	possible	inputs	into	this	tiny	program.	(Your	organization's	programs	are	probably
larger.)	Will	you	have	the	time	(and	the	stamina)	to	create	65,536	test	cases?	Of	course	not.
So	which	input	values	do	we	choose?	Consider	the	following	input	values	and	their	ability	to
detect	this	defect.

Input	(j) Expected	Result Actual	Result

1 0 0

42 0 0

40000 1 1

-64000 -2 -2

Oops!	Note	that	none	of	the	test	cases	chosen	have	detected	this	defect.	In	fact	only	four	of
the	possible	65,536	input	values	will	find	this	defect.	What	is	the	chance	that	you	will	choose	all
four?	What	is	the	chance	you	will	choose	one	of	the	four?	What	is	the	chance	you	will	win	the
Powerball	lottery?	Is	your	answer	the	same	to	each	of	these	three	questions?



Summary
Testing	is	a	concurrent	lifecycle	process	of	engineering,	using,	and	maintaining	testware
in	order	to	measure	and	improve	the	quality	of	the	software	being	tested.	(Craig	and
Jaskiel)

The	design	of	tests	for	software	and	other	engineering	products	can	be	as	challenging
as	the	initial	design	of	the	product	itself.	Yet	...	software	engineers	often	treat	testing
as	an	afterthought,	developing	test	cases	that	'feel	right'	but	have	little	assurance	of
being	complete.	Recalling	the	objectives	of	testing,	we	must	design	tests	that	have	the
highest	likelihood	of	finding	the	most	errors	with	a	minimum	amount	of	time	and	effort.
(Pressman)

Black	box	testing	is	a	strategy	in	which	testing	is	based	solely	on	the	requirements	and
specifications.	White	box	testing	is	a	strategy	in	which	testing	is	based	on	the	internal
paths,	structure,	and	implementation	of	the	software	under	test.

Typically	testing,	and	therefore	test	case	design,	is	performed	at	four	different	levels:
Unit,	Integration,	System,	and	Acceptance.



Practice
1.	 Which	four	inputs	to	the	blech	routine	will	find	the	hidden	defect?	How	did	you

determine	them?	What	does	this	suggest	to	you	as	an	approach	to	finding	other
defects?
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Chapter	2:	Case	Studies
They	had	but	one	last	remaining	night	together,	so	they	embraced	each	other	as	tightly	as
that	two-flavor	entwined	string	cheese	that	is	orange	and	yellowish-white,	the	orange
probably	being	a	bland	Cheddar	and	the	white	.	.	.	Mozzarella,	although	it	could	possibly
be	Provolone	or	just	plain	American,	as	it	really	doesn't	taste	distinctly	dissimilar	from	the
orange,	yet	they	would	have	you	believe	it	does	by	coloring	it	differently.

—	Mariann	Simms



Why	Case	Studies?
Two	case	studies	are	provided	in	the	appendices	of	this	book.	Appendix	A	describes	"Brown	&
Donaldson,"	an	online	brokerage	firm.	Appendix	B	describes	the	"Stateless	University
Registration	System."	Examples	from	these	case	studies	are	used	to	illustrate	the	test	case
design	techniques	described	in	this	book.	In	addition,	some	of	the	book's	exercises	are	based
on	the	case	studies.	The	following	sections	briefly	describe	the	case	studies.	Read	the	detailed
information	in	Appendix	A	and	B	when	required.



Brown	&	Donaldson
Brown	&	Donaldson	(B&D)	is	a	fictitious	online	brokerage	firm	that	you	can	use	to	practice	the
test	design	techniques	presented	in	this	book.	B&D	was	originally	created	for	Software	Quality
Engineering's	Web/eBusiness	Testing	course	(for	more	details	see	http://www.sqe.com).

Screen	shots	of	various	pages	are	included	in	Appendix	A.	Reference	will	be	made	to	some	of
these	throughout	the	book.	The	actual	B&D	Web	site	is	found	at	http://bdonline.sqe.com.	Any
resemblance	to	any	actual	online	brokerage	Web	site	is	purely	coincidental.

You	can	actually	try	the	B&D	Web	site.	First-time	users	will	need	to	create	a	BDonline	account.
This	account	is	not	real—any	transactions	requested	or	executed	via	this	account	will	not
occur	in	the	real	world,	only	in	the	fictitious	world	of	B&D.	Once	you	have	created	an	account,
you	will	bypass	this	step	and	login	with	your	username	and	password.	While	creating	a	new
account	you	will	be	asked	to	supply	an	authorization	code.	The	authorization	code	is	eight	1s.

This	Web	site	also	contains	a	number	of	downloadable	documents	from	the	B&D	case	study,
which	can	be	used	to	assist	you	in	developing	test	plans	for	your	own	Web	projects.

http://www.sqe.com
http://bdonline.sqe.com


Stateless	University	Registration	System
Every	state	has	a	state	university.	This	case	study	describes	an	online	student	registration
system	for	the	fictitious	Stateless	University.	Please	do	not	attempt	to	cash	out	your	stocks
from	Brown	&	Donaldson	to	enroll	at	Stateless	U.

The	document	in	Appendix	B	describes	the	planned	user	interface	for	the	Stateless	University
Registration	System	(SURS).	It	defines	the	user	interface	screens	in	the	order	in	which	they	are
typically	used.	It	starts	with	the	login	screen.	Then	it	provides	the	data	base	set-up	fields,	the
addition/change/deletion	of	students,	the	addition/change/deletion	of	courses,	and	the
addition/change/deletion	of	class	sections.	The	final	data	entry	screen	provides	the	selection	of
specific	course	sections	for	each	student.	Additional	administrative	functions	are	also	defined.
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Definition
Black	box	testing	is	a	strategy	in	which	testing	is	based	solely	on	the	requirements	and
specifications.	Unlike	its	complement,	white	box	testing,	black	box	testing	requires	no
knowledge	of	the	internal	paths,	structure,	or	implementation	of	the	software	under	test	(SUT).

The	general	black	box	testing	process	is:

The	requirements	or	specifications	are	analyzed.

Valid	inputs	are	chosen	based	on	the	specification	to	determine	that	the	SUT	processes
them	correctly.	Invalid	inputs	must	also	be	chosen	to	verify	that	the	SUT	detects	them
and	handles	them	properly.

Expected	outputs	for	those	inputs	are	determined.

Tests	are	constructed	with	the	selected	inputs.

The	tests	are	run.

Actual	outputs	are	compared	with	the	expected	outputs.

A	determination	is	made	as	to	the	proper	functioning	of	the	SUT.



Applicability
Black	box	testing	can	be	applied	at	all	levels	of	system	development—unit,	integration,	system,
and	acceptance.

As	we	move	up	in	size	from	module	to	subsystem	to	system	the	box	gets	larger,	with	more
complex	inputs	and	more	complex	outputs,	but	the	approach	remains	the	same.	Also,	as	we
move	up	in	size,	we	are	forced	to	the	black	box	approach;	there	are	simply	too	many	paths
through	the	SUT	to	perform	white	box	testing.



Disadvantages
When	using	black	box	testing,	the	tester	can	never	be	sure	of	how	much	of	the	SUT	has	been
tested.	No	matter	how	clever	or	diligent	the	tester,	some	execution	paths	may	never	be
exercised.	For	example,	what	is	the	probability	a	tester	would	select	a	test	case	to	discover
this	"feature"?
if	(name=="Lee"	&&	employeeNumber=="1234"	&&
				employmentStatus=="RecentlyTerminatedForCause")	{
				send	Lee	a	check	for	$1,000,000;
				}

Key
Point

When	using	black	box	testing,	the	tester	can	never	be	sure	of	how	much	of	the
system	under	test	has	been	tested.

To	find	every	defect	using	black	box	testing,	the	tester	would	have	to	create	every	possible
combination	of	input	data,	both	valid	and	invalid.	This	exhaustive	input	testing	is	almost	always
impossible.	We	can	only	choose	a	subset	(often	a	very	small	subset)	of	the	input	combinations.

In	The	Art	of	Software	Testing,	Glenford	Myers	provides	an	excellent	example	of	the	futility	of
exhaustive	testing:	How	would	you	thoroughly	test	a	compiler?	By	writing	every	possible	valid
and	invalid	program.	The	problem	is	substantially	worse	for	systems	that	must	remember	what
has	happened	before	(i.e.,	that	remember	their	state).	In	those	systems,	not	only	must	we	test
every	possible	input,	we	must	test	every	possible	sequence	of	every	possible	input.

Key
Point

Even	though	we	can't	test	everything,	formal	black	box	testing	directs	the	tester	to
choose	subsets	of	tests	that	are	both	efficient	and	effective	in	finding	defects.



Advantages
Even	though	we	can't	test	everything,	formal	black	box	testing	directs	the	tester	to	choose
subsets	of	tests	that	are	both	efficient	and	effective	in	finding	defects.	As	such,	these	subsets
will	find	more	defects	than	a	randomly	created	equivalent	number	of	tests.	Black	box	testing
helps	maximize	the	return	on	our	testing	investment.
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Chapter	3:	Equivalence	Class	Testing
On	the	fourth	day	of	his	exploration	of	the	Amazon,	Byron	climbed	out	of	his	inner	tube,
checked	the	latest	news	on	his	personal	digital	assistant	(hereafter	PDA)	outfitted	with
wireless	technology,	and	realized	that	the	gnawing	he	felt	in	his	stomach	was	not	fear
—no,	he	was	not	afraid,	rather	elated—nor	was	it	tension—no,	he	was	actually	rather
relaxed—so	it	was	in	all	probability	a	parasite.

—	Chuck	Keelan



Introduction
Equivalence	class	testing	is	a	technique	used	to	reduce	the	number	of	test	cases	to	a
manageable	level	while	still	maintaining	reasonable	test	coverage.	This	simple	technique	is	used
intuitively	by	almost	all	testers,	even	though	they	may	not	be	aware	of	it	as	a	formal	test	design
method.	Many	testers	have	logically	deduced	its	usefulness,	while	others	have	discovered	it
simply	because	of	lack	of	time	to	test	more	thoroughly.

Consider	this	situation.	We	are	writing	a	module	for	a	human	resources	system	that	decides
how	we	should	process	employment	applications	based	on	a	person's	age.	Our	organization's
rules	are:

0–16Don't	hire

16–18Can	hire	on	a	part-time	basis	only

18–55Can	hire	as	a	full-time	employee

55–99Don't	hire[*]

[*]Note:	If	you've	spotted	a	problem	with	these	requirements,	don't	worry.	They	are	written
this	way	for	a	purpose	and	will	be	repaired	in	the	next	chapter.

Observation

With	these	rules	our	organization	would	not	have	hired	Doogie	Houser,	M.D.	or	Col.	Harlan
Sanders,	one	too	young,	the	other	too	old.

Should	we	test	the	module	for	the	following	ages:	0,	1,	2,	3,	4,	5,	6,	7,	8,	...,	90,	91,	92,	93,
94,	95,	96,	97,	98,	99?	If	we	had	lots	of	time	(and	didn't	mind	the	mind-numbing	repetition	and
were	being	paid	by	the	hour)	we	certainly	could.	If	the	programmer	had	implemented	this
module	with	the	following	code	we	should	test	each	age.	(If	you	don't	have	a	programming
background	don't	worry.	These	examples	are	simple.	Just	read	the	code	and	it	will	make	sense
to	you.)
If	(applicantAge	==	0)	hireStatus="NO";
								If	(applicantAge	==	1)	hireStatus="NO";
								…
								If	(applicantAge	==	14)	hireStatus="NO";
								If	(applicantAge	==	15)	hireStatus="NO";
								If	(applicantAge	==	16)	hireStatus="PART";
								If	(applicantAge	==	17)	hireStatus="PART";
								If	(applicantAge	==	18)	hireStatus="FULL";
								If	(applicantAge	==	19)	hireStatus="FULL";
								…
								If	(applicantAge	==	53)	hireStatus="FULL";
								If	(applicantAge	==	54)	hireStatus="FULL";



								If	(applicantAge	==	55)	hireStatus="NO";
								If	(applicantAge	==	56)	hireStatus="NO";
								…
								If	(applicantAge	==	98)	hireStatus="NO";
								If	(applicantAge	==	99)	hireStatus="NO";

Given	this	implementation,	the	fact	that	any	set	of	tests	passes	tells	us	nothing	about	the	next
test	we	could	execute.	It	may	pass;	it	may	fail.

Luckily,	programmers	don't	write	code	like	this	(at	least	not	very	often).	A	better	programmer
might	write:
If	(applicantAge	>=	0	&&	applicantAge	<=16)
																		hireStatus="NO";
								If	(applicantAge	>=	16	&&	applicantAge	<=18)
																		hireStatus="PART";
								If	(applicantAge	>=	18	&&	applicantAge	<=55)
																		hireStatus="FULL";
								If	(applicantAge	>=	55	&&	applicantAge	<=99)
																		hireStatus="NO";

Given	this	typical	implementation,	it	is	clear	that	for	the	first	requirement	we	don't	have	to	test
0,	1,	2,	...	14,	15,	and	16.	Only	one	value	needs	to	be	tested.	And	which	value?	Any	one	within
that	range	is	just	as	good	as	any	other	one.	The	same	is	true	for	each	of	the	other	ranges.
Ranges	such	as	the	ones	described	here	are	called	equivalence	classes.	An	equivalence
class	consists	of	a	set	of	data	that	is	treated	the	same	by	the	module	or	that	should	produce
the	same	result.	Any	data	value	within	a	class	is	equivalent,	in	terms	of	testing,	to	any	other
value.	Specifically,	we	would	expect	that:

If	one	test	case	in	an	equivalence	class	detects	a	defect,	all	other	test	cases	in	the
same	equivalence	class	are	likely	to	detect	the	same	defect.

If	one	test	case	in	an	equivalence	class	does	not	detect	a	defect,	no	other	test	cases	in
the	same	equivalence	class	is	likely	to	detect	the	defect.

Key
Point

A	group	of	tests	forms	an	equivalence	class	if	you	believe	that:
They	all	test	the	same	thing.

If	one	test	catches	a	bug,	the	others	probably	will	too.

If	one	test	doesn't	catch	a	bug,	the	others	probably	won't	either.

Cem	Kaner	Testing	Computer	Software

This	approach	assumes,	of	course,	that	a	specification	exists	that	defines	the	various
equivalence	classes	to	be	tested.	It	also	assumes	that	the	programmer	has	not	done	something
strange	such	as:
If	(applicantAge	>=	0	&&	applicantAge	<=16)



																hireStatus="NO";
							If	(applicantAge	>=	16	&&	applicantAge	<=18)
																hireStatus="PART";
							If	(applicantAge	>=	18	&&	applicantAge	<=41)
																hireStatus="FULL";
							//	strange	statements	follow
							If	(applicantAge	==	42	&&	applicantName	==	"Lee")
																hireStatus="HIRE	NOW	AT	HUGE	SALARY";
							If	(applicantAge	==	42	&&	applicantName	<>	"Lee")
																hireStatus="FULL";
							//	end	of	strange	statements

							If	(applicantAge	>=	43	&&	applicantAge	<=55)
																hireStatus="FULL";
							If	(applicantAge	>=	55	&&	applicantAge	<=99)
																hireStatus="NO";

Using	the	equivalence	class	approach,	we	have	reduced	the	number	of	test	cases	from	100
(testing	each	age)	to	four	(testing	one	age	in	each	equivalence	class)—a	significant	savings.

Now,	are	we	ready	to	begin	testing?	Probably	not.	What	about	input	values	like	969,	-42,
FRED,	and	&$#!@?	Should	we	create	test	cases	for	invalid	input?	The	answer	is,	as	any	good
consultant	will	tell	you,	"it	depends."	To	understand	this	answer	we	need	to	examine	an
approach	that	came	out	of	the	object-oriented	world	called	design-by-contract.

Note
According	to	the	Bible,	the	age	of	Methuselah	when	he	died	was	969	years	(Gen
5:27).	Thanks	to	the	Gideons	who	made	this	data	easily	accessible	in	my	hotel	room
without	the	need	for	a	high	speed	Internet	connection.

In	law,	a	contract	is	a	legally	binding	agreement	between	two	(or	more)	parties	that	describes
what	each	party	promises	to	do	or	not	do.	Each	of	these	promises	is	of	benefit	to	the	other.

In	the	design-by-contract	approach,	modules	(called	"methods"	in	the	object-oriented	paradigm,
but	"module"	is	a	more	generic	term)	are	defined	in	terms	of	pre-conditions	and	post-conditions.
Post-conditions	define	what	a	module	promises	to	do	(compute	a	value,	open	a	file,	print	a
report,	update	a	database	record,	change	the	state	of	the	system,	etc.).	Pre-conditions	define
what	that	module	requires	so	that	it	can	meet	its	post-conditions.	For	example,	if	we	had	a
module	called	openFile,	what	does	it	promise	to	do?	Open	a	file.	What	would	legitimate
preconditions	of	openFile	be?	First,	the	file	must	exist;	second,	we	must	provide	the	name	(or
other	identifying	information)	of	the	file;	third,	the	file	must	be	"openable,"	that	is,	it	cannot
already	be	exclusively	opened	by	another	process;	fourth,	we	must	have	access	rights	to	the
file;	and	so	on.	Pre-conditions	and	postconditions	establish	a	contract	between	a	module	and
others	that	invoke	it.

Testing-by-contract	is	based	on	the	design-by-contract	philosophy.	Its	approach	is	to	create
test	cases	only	for	the	situations	in	which	the	pre-conditions	are	met.	For	example,	we	would



not	test	the	openFile	module	when	the	file	did	not	exist.	The	reason	is	simple.	If	the	file	does
not	exist,	openFile	does	not	promise	to	work.	If	there	is	no	claim	that	it	will	work	under	a
specific	condition,	there	is	no	need	to	test	under	that	condition.

For	More
Information

See	Bertrand	Meyer's	book	Object-Oriented	Software	Construction	for
more	on	design-by-contract.

At	this	point	testers	usually	protest.	Yes,	they	agree,	the	module	does	not	claim	to	work	in	that
case,	but	what	if	the	preconditions	are	violated	during	production?	What	does	the	system	do?
Do	we	get	a	misspelled	word	on	the	screen	or	a	smoking	crater	where	our	company	used	to
be?

A	different	approach	to	design	is	defensive	design.	In	this	case	the	module	is	designed	to
accept	any	input.	If	the	normal	preconditions	are	met,	the	module	will	achieve	its	normal
postconditions.	If	the	normal	pre-conditions	are	not	met,	the	module	will	notify	the	caller	by
returning	an	error	code	or	throwing	an	exception	(depending	on	the	programming	language
used).	This	notification	is	actually	another	one	of	the	module's	postconditions.	Based	on	this
approach	we	could	define	defensive	testing:	an	approach	that	tests	under	both	normal	and
abnormal	pre-conditions.

Insight
A	student	in	one	of	my	classes,	let's	call	him	Fred,	said	he	didn't	really	care	which
design	approach	was	being	used,	he	was	going	to	always	use	defensive	testing.
When	I	asked	why,	he	replied,	"If	it	doesn't	work,	who	will	get	the	blame	-	those
responsible	or	the	testers?"

How	does	this	apply	to	equivalence	class	testing?	Do	we	have	to	test	with	inputs	like	-42,
FRED,	and	&$#!@?	If	we	are	using	design-by-contract	and	testing-by-contract	the	answer	is
No.	If	we	are	using	defensive	design	and	thus	defensive	testing,	the	answer	is	Yes.	Ask	your
designers	which	approach	they	are	using.	If	they	answer	either	"contract"	or	"defensive,"	you
know	what	style	of	testing	to	use.	If	they	answer	"Huh?"	that	means	they	are	not	thinking	about
how	modules	interface.	They	are	not	thinking	about	pre-condition	and	post-condition	contracts.
You	should	expect	integration	testing	to	be	a	prime	source	of	defects	that	will	be	more	complex
and	take	more	time	than	anticipated.



Technique
The	steps	for	using	equivalence	class	testing	are	simple.	First,	identify	the	equivalence	classes.
Second,	create	a	test	case	for	each	equivalence	class.	You	could	create	additional	test	cases
for	each	equivalence	class	if	you	have	the	time	and	money.	Additional	test	cases	may	make	you
feel	warm	and	fuzzy,	but	they	rarely	discover	defects	the	first	doesn't	find.

Insight

A	student	in	one	of	my	classes,	let's	call	her	Judy,	felt	very	uncomfortable	about
having	only	one	test	case	for	each	equivalence	class.	She	wanted	at	least	two	for
that	warm	and	fuzzy	feeling.	I	indicated	that	if	she	had	the	time	and	money	that
approach	was	fine	but	suggested	the	additional	tests	would	probably	be	ineffective.
I	asked	her	to	keep	track	of	how	many	times	the	additional	test	cases	found
defects	that	the	first	did	not	and	let	me	know.	I	never	heard	from	Judy	again.

Different	types	of	input	require	different	types	of	equivalence	classes.	Let's	consider	four
possibilities.	Let's	assume	a	defensive	testing	philosophy	of	testing	both	valid	and	invalid	input.
Testing	invalid	inputs	is	often	a	great	source	of	defects.

If	an	input	is	a	continuous	range	of	values,	then	there	is	typically	one	class	of	valid	values	and
two	classes	of	invalid	values,	one	below	the	valid	class	and	one	above	it.	Consider	the	Goofy
Mortgage	Company	(GMC).	They	will	write	mortgages	for	people	with	incomes	between
$1,000/month	and	$83,333/month.	Anything	below	$1,000/month	you	don't	qualify.	Anything
over	$83,333/month	you	don't	need	GMC,	just	pay	cash.

For	a	valid	input	we	might	choose	$1,342/month.	For	invalids	we	might	choose	$123/month	and
$90,000/month.

	
Figure	3-1:	Continuous	equivalence	classes 	If	an	input	condition	takes	on
discrete	values	within	a	range	of	permissible	values,	there	are	typically	one	valid	and	two
invalid	classes.	GMC	will	write	a	single	mortgage	for	one	through	five	houses.	(Remember,
it's	Goofy.)	Zero	or	fewer	houses	is	not	a	legitimate	input,	nor	is	six	or	greater.	Neither	are
fractional	or	decimal	values	such	as	2	1/2	or	3.14159.



	
Figure	3-2:	Discrete	equivalence	classes 	For	a	valid	input	we	might
choose	two	houses.	Invalids	could	be	-2	and	8.

GMC	will	make	mortgages	only	for	a	person.	They	will	not	make	mortgages	for
corporations,	trusts,	partnerships,	or	any	other	type	of	legal	entity.

	
Figure	3-3:	Single	selection	equivalence	classes 	For	a	valid	input	we
must	use	"person."	For	an	invalid	we	could	choose	"corporation"	or	"trust"	or	any	other
random	text	string.	How	many	invalid	cases	should	we	create?	We	must	have	at	least
one;	we	may	choose	additional	tests	for	additional	warm	and	fuzzy	feelings.

GMC	will	make	mortgages	on	Condominiums,	Townhouses,	and	Single	Family
dwellings.	They	will	not	make	mortgages	on	Duplexes,	Mobile	Homes,	Treehouses,	or
any	other	type	of	dwelling.

	
Figure	3-4:	Multiple	selection	equivalence	class 	For	valid	input	we
must	choose	from	"Condominium,"	"Townhouse,"	or	"Single	Family."	While	the	rule
says	choose	one	test	case	from	the	valid	equivalence	class,	a	more	comprehensive
approach	would	be	to	create	test	cases	for	each	entry	in	the	valid	class.	That
makes	sense	when	the	list	of	valid	values	is	small.	But,	if	this	were	a	list	of	the	fifty
states,	the	District	of	Columbia,	and	the	various	territories	of	the	United	States,



would	you	test	every	one	of	them?	What	if	the	list	were	every	country	in	the	world?
The	correct	answer,	of	course,	depends	on	the	risk	to	the	organization	if,	as	testers,
we	miss	something	that	is	vital.

Now,	rarely	will	we	have	the	time	to	create	individual	tests	for	every	separate
equivalence	class	of	every	input	value	that	enters	our	system.	More	often,	we	will
create	test	cases	that	test	a	number	of	input	fields	simultaneously.	For	example,	we
might	create	a	single	test	case	with	the	following	combination	of	inputs:

Key
Point

Rarely	will	we	have	the	time	to	create	individual	tests	for	every
separate	equivalence	class	of	every	input	value.

Table	3-1:	A	test	case	of	valid	data	values.

Monthly	Income Number	of	Dwellings Applicant Dwelling	Types Result

$5,000 2 Person Condo Valid

Each	of	these	data	values	is	in	the	valid	range,	so	we	would	expect	the	system	to
perform	correctly	and	for	the	test	case	to	report	Pass.

It	is	tempting	to	use	the	same	approach	for	invalid	values.

Table	3-2:	A	test	case	of	all	invalid	data	values.	This	is	not	a	good
approach.

Monthly	Income Number	of	Dwellings Applicant Dwelling	Types Result

$100 8 Partnership Treehouse Invalid

If	the	system	accepts	this	input	as	valid,	clearly	the	system	is	not	validating	the	four
input	fields	properly.	If	the	system	rejects	this	input	as	invalid,	it	may	do	so	in	such	a
way	that	the	tester	cannot	determine	which	field	it	rejected.	For	example:	ERROR:
653X-2.7	INVALID	INPUT

In	many	cases,	errors	in	one	input	field	may	cancel	out	or	mask	errors	in	another
field	so	the	system	accepts	the	data	as	valid.	A	better	approach	is	to	test	one	invalid
value	at	a	time	to	verify	the	system	detects	it	correctly.

Table	3-3:	A	set	of	test	cases	varying	invalid	values	one	by	one.

Monthly	Income Number	of	Dwellings Applicant Dwelling	Types Result

$100 1 Person SingleFam Invalid

$1,342 0 Person Condo Invalid

$1,342 1 Corporation Townhouse Invalid



$1,342 1 Person Treehouse Invalid

For	additional	warm	and	fuzzy	feelings,	the	inputs	(both	valid	and	invalid)	could	be
varied.

Table	3-4:	A	set	of	test	cases	varying	invalid	values	one	by	one	but	also
varying	the	valid	values.

Monthly	Income Number	of	Dwellings Applicant Dwelling	Types Result

$100 1 Person Single	Family Invalid

$1,342 0 Person Condominium Invalid

$5,432 3 Corporation Townhouse Invalid

$10,000 2 Person Treehouse Invalid

Another	approach	to	using	equivalence	classes	is	to	examine	the	outputs	rather	than
the	inputs.	Divide	the	outputs	into	equivalence	classes,	then	determine	what	input
values	would	cause	those	outputs.	This	has	the	advantage	of	guiding	the	tester	to
examine,	and	thus	test,	every	different	kind	of	output.	But	this	approach	can	be
deceiving.	In	the	previous	example,	for	the	human	resources	system,	one	of	the
system	outputs	was	NO,	that	is,	Don't	Hire.	A	cursory	view	of	the	inputs	that	should
cause	this	output	would	yield	{0,	1,	...,	14,	15}.	Note	that	this	is	not	the	complete
set.	In	addition	{55,	56,	...,	98,	99}	should	also	cause	the	NO	output.	It's	important
to	make	sure	that	all	potential	outputs	can	be	generated,	but	don't	be	fooled	into
choosing	equivalence	class	data	that	omits	important	inputs.



Examples
Example	1

Referring	to	the	Trade	Web	page	of	the	Brown	&	Donaldson	Web	site	described	in	Appendix	A,
consider	the	Order	Type	field.	The	designer	has	chosen	to	implement	the	decision	to	Buy	or
Sell	through	radio	buttons.	This	is	a	good	design	choice	because	it	reduces	the	number	of	test
cases	the	tester	must	create.	Had	this	been	implemented	as	a	text	field	in	which	the	user
entered	"Buy"	or	"Sell"	the	tester	would	have	partitioned	the	valid	inputs	as	{Buy,	Sell}	and	the
invalids	as	{Trade,	Punt,	...}.	What	about	"buy",	"bUy",	"BUY"?	Are	these	valid	or	invalid
entries?	The	tester	would	have	to	refer	back	to	the	requirements	to	determine	their	status.

Insight Let	your	designers	and	programmers	know	when	they	have	helped	you.	They'llappreciate	the	thought	and	may	do	it	again.

With	the	radio	button	implementation	no	invalid	choices	exist,	so	none	need	to	be	tested.	Only
the	valid	inputs	{Buy,	Sell}	need	to	be	exercised.

Example	2

Again,	referring	to	the	Trade	Web	page,	consider	the	Quantity	field.	Input	to	this	field	can	be
between	one	and	four	numeric	characters	(0,	1,	...,	8,9)	with	a	valid	value	greater	or	equal	to	1
and	less	than	or	equal	to	9999.	A	set	of	valid	inputs	is	{1,	22,	333,	4444}	while	invalid	inputs	are
{-42,	0,	12345,	SQE,	$#@%}.

Insight
Very	often	your	designers	and	programmers	use	GUI	design	tools	that	can	enforce
restrictions	on	the	length	and	content	of	input	fields.	Encourage	their	use.	Then	your
testing	can	focus	on	making	sure	the	requirement	has	been	implemented	properly
with	the	tool.

Example	3

On	the	Trade	page	the	user	enters	a	ticker	Symbol	indicating	the	stock	to	buy	or	sell.	The	valid
symbols	are	{A,	AA,	AABC,	AAC,	...,	ZOLT,	ZOMX,	ZONA,	ZRAN).	The	invalid	symbols	are
any	combination	of	characters	not	included	in	the	valid	list.	A	set	of	valid	inputs	could	be	{A,	AL,
ABE,	ACES,	AKZOY)	while	a	set	of	invalids	could	be	{C,	AF,	BOB,	CLUBS,	AKZAM,	42,
@#$%).

For	More
Information

Click	on	the	Symbol	Lookup	button	on	the	B&D	Trade	page	to	see	the
full	list	of	stock	symbols.

Example	4



Rarely	will	we	create	separate	sets	of	test	cases	for	each	input.	Generally	it	is	more	efficient	to
test	multiple	inputs	simultaneously	within	tests.	For	example,	the	following	tests	combine
Buy/Sell,	Symbol,	and	Quantity.

Table	3-5:	A	set	of	test	cases	varying	invalid	values	one	by	one.

Buy/Sell Symbol Quantity Result

Buy A 10 Valid

Buy C 20 Invalid

Buy A 0 Invalid

Sell ACES 10 Valid

Sell BOB 33 Invalid

Sell ABE -3 Invalid



Applicability	and	Limitations
Equivalence	class	testing	can	significantly	reduce	the	number	of	test	cases	that	must	be
created	and	executed.	It	is	most	suited	to	systems	in	which	much	of	the	input	data	takes	on
values	within	ranges	or	within	sets.	It	makes	the	assumption	that	data	in	the	same	equivalence
class	is,	in	fact,	processed	in	the	same	way	by	the	system.	The	simplest	way	to	validate	this
assumption	is	to	ask	the	programmer	about	their	implementation.

Equivalence	class	testing	is	equally	applicable	at	the	unit,	integration,	system,	and	acceptance
test	levels.	All	it	requires	are	inputs	or	outputs	that	can	be	partitioned	based	on	the	system's
requirements.



Summary
Equivalence	class	testing	is	a	technique	used	to	reduce	the	number	of	test	cases	to	a
manageable	size	while	still	maintaining	reasonable	coverage.

This	simple	technique	is	used	intuitively	by	almost	all	testers,	even	though	they	may	not
be	aware	of	it	as	a	formal	test	design	method.

An	equivalence	class	consists	of	a	set	of	data	that	is	treated	the	same	by	the	module
or	that	should	produce	the	same	result.	Any	data	value	within	a	class	is	equivalent,	in
terms	of	testing,	to	any	other	value.



Practice
1.	 The	following	exercises	refer	to	the	Stateless	University	Registration	System	Web

site	described	in	Appendix	B.	Define	the	equivalence	classes	and	suitable	test	cases
for	the	following:

1.	 ZIP	Code—five	numeric	digits.

2.	 State—the	standard	Post	Office	two-character	abbreviation	for	the	states,
districts,	territories,	etc.	of	the	United	States.

3.	 Last	Name—one	through	fifteen	characters	(including	alphabetic	characters,
periods,	hyphens,	apostrophes,	spaces,	and	numbers).

4.	 User	ID—eight	characters	at	least	two	of	which	are	not	alphabetic	(numeric,
special,	nonprinting).

5.	 Student	ID—eight	characters.	The	first	two	represent	the	student's	home
campus	while	the	last	six	are	a	unique	six-digit	number.	Valid	home	campus
abbreviations	are:	AN,	Annandale;	LC,	Las	Cruces;	RW,	Riverside	West;
SM,	San	Mateo;	TA,	Talbot;	WE,	Weber;	and	WN,	Wenatchee.
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Chapter	4:	Boundary	Value	Testing
The	Prince	looked	down	at	the	motionless	form	of	Sleeping	Beauty,	wondering	how	her
supple	lips	would	feel	against	his	own	and	contemplating	whether	or	not	an	Altoid	was
strong	enough	to	stand	up	against	the	kind	of	morning	breath	only	a	hundred	years'	nap
could	create.

—	Lynne	Sella



Introduction
Equivalence	class	testing	is	the	most	basic	test	design	technique.	It	helps	testers	choose	a
small	subset	of	possible	test	cases	while	maintaining	reasonable	coverage.	Equivalence	class
testing	has	a	second	benefit.	It	leads	us	to	the	idea	of	boundary	value	testing,	the	second	key
test	design	technique	to	be	presented.

In	the	previous	chapter	the	following	rules	were	given	that	indicate	how	we	should	process
employment	applications	based	on	a	person's	age.	The	rules	were:

0–16 Don't	hire

16–18Can	hire	on	a	part-time	basis	only

18–55Can	hire	as	a	full-time	employee

55–99Don't	hire

Notice	the	problem	at	the	boundaries—the	"edges"	of	each	class.	The	age	"16"	is	included	in
two	different	equivalence	classes	(as	are	18	and	55).	The	first	rule	says	don't	hire	a	16-year-
old.	The	second	rule	says	a	16-year-old	can	be	hired	on	a	part-time	basis.

Boundary	value	testing	focuses	on	the	boundaries	simply	because	that	is	where	so	many
defects	hide.	Experienced	testers	have	encountered	this	situation	many	times.	Inexperienced
testers	may	have	an	intuitive	feel	that	mistakes	will	occur	most	often	at	the	boundaries.	These
defects	can	be	in	the	requirements	(as	shown	above)	or	in	the	code	as	shown	below:

Key
Point

Boundary	value	testing	focuses	on	the	boundaries	because	that	is	where	so	many
defects	hide.

If	(applicantAge	>=	0	&&	applicantAge	<=16)
																hireStatus="NO";
						If	(applicantAge	>=	16	&&	applicantAge	<=18)
																hireStatus="PART";
						If	(applicantAge	>=	18	&&	applicantAge	<=55)
																hireStatus="FULL";
						If	(applicantAge	>=	55	&&	applicantAge	<=99)
																hireStatus="NO";

Of	course,	the	mistake	that	programmers	make	is	coding	inequality	tests	improperly.	Writing	>
(greater	than)	instead	of	≥	(greater	than	or	equal)	is	an	example.

The	most	efficient	way	of	finding	such	defects,	either	in	the	requirements	or	the	code,	is
through	inspection.	Gilb	and	Graham's	book,	Software	Inspection,	is	an	excellent	guide	to	this
process.	However,	no	matter	how	effective	our	inspections,	we	will	want	to	test	the	code	to
verify	its	correctness.

Perhaps	this	is	what	our	organization	meant:

0–15Don't	hire



16–17Can	hire	on	a	part-time	basis	only

18–54Can	hire	as	full-time	employees

55–99Don't	hire

What	about	ages	-3	and	101?	Note	that	the	requirements	do	not	specify	how	these	values
should	be	treated.	We	could	guess	but	"guessing	the	requirements"	is	not	an	acceptable
practice.

The	code	that	implements	the	corrected	rules	is:
If	(applicantAge	>=	0	&&	applicantAge	<=15)
																hireStatus="NO";
						If	(applicantAge	>=	16	&&	applicantAge	<=17)
																hireStatus="PART";
						If	(applicantAge	>=	18	&&	applicantAge	<=54)
																hireStatus="FULL";
						If	(applicantAge	>=	55	&&	applicantAge	<=99)
																hireStatus="NO";

The	interesting	values	on	or	near	the	boundaries	in	this	example	are	{-1,	0,	1},	{15,	16,	17},
{17,	18,	19},	{54,	55,	56},	and	{98,	99,	100}.	Other	values,	such	as	{-42,	1001,	FRED,	%$#@}
might	be	included	depending	on	the	module's	documented	preconditions.



Technique
The	steps	for	using	boundary	value	testing	are	simple.	First,	identify	the	equivalence	classes.
Second,	identify	the	boundaries	of	each	equivalence	class.	Third,	create	test	cases	for	each
boundary	value	by	choosing	one	point	on	the	boundary,	one	point	just	below	the	boundary,	and
one	point	just	above	the	boundary.	"Below"	and	"above"	are	relative	terms	and	depend	on	the
data	value's	units.	If	the	boundary	is	16	and	the	unit	is	"integer"	then	the	"below"	point	is	15	and
the	"above"	point	is	17.	If	the	boundary	is	$5.00	and	the	unit	is	"US	dollars	and	cents"	then	the
below	point	is	$4.99	and	the	above	point	is	$5.01.	On	the	other	hand,	if	the	value	is	$5	and	the
unit	is	"US	dollars"	then	the	below	point	is	$4	and	the	above	point	is	$6.

Key
Point

Create	test	cases	for	each	boundary	value	by	choosing	one	point	on	the
boundary,	one	point	just	below	the	boundary,	and	one	point	just	above	the
boundary.

Note	that	a	point	just	above	one	boundary	may	be	in	another	equivalence	class.	There	is	no
reason	to	duplicate	the	test.	The	same	may	be	true	of	the	point	just	below	the	boundary.

You	could,	of	course,	create	additional	test	cases	farther	from	the	boundaries	(within
equivalence	classes)	if	you	have	the	resources.	As	discussed	in	the	previous	chapter,	these
additional	test	cases	may	make	you	feel	warm	and	fuzzy,	but	they	rarely	discover	additional
defects.

Boundary	value	testing	is	most	appropriate	where	the	input	is	a	continuous	range	of	values.
Returning	again	to	the	Goofy	Mortgage	Company,	what	are	the	interesting	boundary	values?
For	monthly	income	the	boundaries	are	$1,000/month	and	$83,333/month	(assuming	the	units
to	be	US	dollars).

	
Figure	4-1:	Boundary	values	for	a	continuous	range	of	inputs.

Test	data	input	of	{$999,	$1,000,	$1,001}	on	the	low	end	and	{$83,332,	$83,333,	$83,334}	on
the	high	end	are	chosen	to	test	the	boundaries.

Because	GMC	will	write	a	mortgage	for	one	through	five	houses,	zero	or	fewer	houses	is	not	a
legitimate	input	nor	is	six	or	greater.	These	identify	the	boundaries	for	testing.



	
Figure	4-2:	Boundary	values	for	a	discrete	range	of	inputs.

Rarely	will	we	have	the	time	to	create	individual	tests	for	every	boundary	value	of	every	input
value	that	enters	our	system.	More	often,	we	will	create	test	cases	that	test	a	number	of	input
fields	simultaneously.

Table	4-1:	A	set	of	test	cases	containing	combinations	of	valid	(on	the	boundary)
values	and	invalid	(off	the	boundary)	points.

Monthly	Income Number	of	Dwellings Result Description

$1,000 1 Valid Min	income,	min	dwellings

$83,333 1 Valid Max	income,	min	dwellings

$1,000 5 Valid Min	income,	max	dwellings

$83,333 5 Valid Max	income,	max	dwellings

$1,000 0 Invalid Min	income,	below	min	dwellings

$1,000 6 Invalid Min	income,	above	max	dwellings

$83,333 0 Invalid Max	income,	below	min	dwellings

$83,333 6 Invalid Max	income,	above	max	dwellings

$999 1 Invalid Below	min	income,	min	dwellings

$83,334 1 Invalid Above	max	income,	min	dwellings

$999 5 Invalid Below	min	income,	max	dwellings

$83,334 5 Invalid Above	max	income,	max	dwellings

Plotting	"monthly	income"	on	the	x-axis	and	"number	of	dwellings"	on	the	y-axis	shows	the
"locations"	of	the	test	data	points.



	
Figure	4-3:	Data	points	on	the	boundaries	and	data	points	just	outside	the	boundaries.

Note	that	four	of	the	input	combinations	are	on	the	boundaries	while	eight	are	just	outside.	Also
note	that	the	points	outside	always	combine	one	valid	value	with	one	invalid	value	(just	one	unit
lower	or	one	unit	higher).



Examples
Boundary	value	testing	is	applicable	to	the	structure	(length	and	character	type)	of	input	data	as
well	as	its	value.	Consider	the	following	two	examples:

Example	1

Referring	to	the	Trade	Web	page	of	the	Brown	&	Donaldson	Web	site	described	in	Appendix	A,
consider	the	Quantity	field.	Input	to	this	field	can	be	between	one	and	four	numeric	characters
(0,1,	...,	8,9).	A	set	of	boundary	value	test	cases	for	the	length	attribute	would	be	{0,	1,	4,	5}
numeric	characters.

Example	2

Again,	on	the	Trade	page,	consider	the	Quantity	field,	but	this	time	for	value	rather	than
structure	(length	and	character	type).	Whether	the	transaction	is	Buy	or	Sell,	the	minimum
legitimate	value	is	1	so	use	{0,	1,	2}	for	boundary	testing.	The	upper	limit	on	this	field's	value	is
more	complicated.	If	the	transaction	is	Sell,	what	is	the	maximum	number	of	shares	that	can	be
sold?	It	is	the	number	currently	owned.	For	this	boundary	use	{sharesOwned-1,	sharesOwned,
sharesOwned+1}.	If	the	transaction	is	Buy,	the	maximum	value	(number	of	shares	to	be
purchased)	is	defined	as
shares	=	(accountBalance	-	commission)	/	sharePrice

assuming	a	fixed	commission.	Use	{shares-1,	shares,	shares+1}	as	the	boundary	value	test
cases.



Applicability	and	Limitations
Boundary	value	testing	can	significantly	reduce	the	number	of	test	cases	that	must	be	created
and	executed.	It	is	most	suited	to	systems	in	which	much	of	the	input	data	takes	on	values
within	ranges	or	within	sets.

Boundary	value	testing	is	equally	applicable	at	the	unit,	integration,	system,	and	acceptance
test	levels.	All	it	requires	are	inputs	that	can	be	partitioned	and	boundaries	that	can	be	identified
based	on	the	system's	requirements.



Summary
While	equivalence	class	testing	is	useful,	its	greatest	contribution	is	to	lead	us	to
boundary	value	testing.

Boundary	value	testing	is	a	technique	used	to	reduce	the	number	of	test	cases	to	a
manageable	size	while	still	maintaining	reasonable	coverage.

Boundary	value	testing	focuses	on	the	boundaries	because	that	is	where	so	many
defects	hide.	Experienced	testers	have	encountered	this	situation	many	times.
Inexperienced	testers	may	have	an	intuitive	feel	that	mistakes	will	occur	most	often	at
the	boundaries.

Create	test	cases	for	each	boundary	value	by	choosing	one	point	on	the	boundary,	one
point	just	below	the	boundary,	and	one	point	just	above	the	boundary.	"Below"	and
"above"	are	relative	terms	and	depend	on	the	data	value's	units.



Practice
1.	 The	following	exercises	refer	to	the	Stateless	University	Registration	System	Web

site	described	in	Appendix	B.	Define	the	boundaries,	and	suitable	boundary	value	test
cases	for	the	following:

1.	 ZIP	Code—five	numeric	digits.

2.	 First	consider	ZIP	Code	just	in	terms	of	digits.	Then,	determine	the	lowest
and	highest	legitimate	ZIP	Codes	in	the	United	States.	For	extra	credit	[1],
determine	the	format	of	postal	codes	for	Canada	and	the	lowest	and	highest
valid	values.

3.	 Last	Name—one	through	fifteen	characters	(including	alphabetic	characters,
periods,	hyphens,	apostrophes,	spaces,	and	numbers).	For	extra	credit	[2]
create	a	few	very	complex	Last	Names.	Can	you	determine	the	"rules"	for
legitimate	Last	Names?	For	additional	extra	credit	[3]	use	a	phonebook	from
another	country—try	Finland	or	Thailand.

4.	 User	ID—eight	characters	at	least	two	of	which	are	not	alphabetic	(numeric,
special,	nonprinting).

5.	 Course	ID—three	alpha	characters	representing	the	department	followed	by
a	six-digit	integer	which	is	the	unique	course	identification	number.	The
possible	departments	are:

PHY	-	Physics

EGR	-	Engineering

ENG	-	English

LAN	-	Foreign	languages

CHM	-	Chemistry

MAT	-	Mathematics

PED	-	Physical	education

SOC	-	Sociology

[1]There	actually	is	no	extra	credit,	so	do	it	for	fun.

[2]There	actually	is	no	extra	credit,	so	do	it	for	fun.

[3]There	actually	is	no	extra	credit,	so	do	it	for	fun.
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Chapter	5:	Decision	Table	Testing
I'd	stumbled	onto	solving	my	first	murder	case,	having	found	myself	the	only	eyewitness,
yet	no	matter	how	frantically	I	pleaded	with	John	Law	that	the	perp	was	right	in	front	of
them	and	the	very	dame	they'd	been	grilling	-	the	sultry	but	devious	Miss	Kitwinkle,	who
played	the	grieving	patsy	the	way	a	concert	pianist	player	plays	a	piano	-	the	cops	just
kept	smiling	and	stuffing	crackers	in	my	beak.

—	Chris	Esco



Introduction
Decision	tables	are	an	excellent	tool	to	capture	certain	kinds	of	system	requirements	and	to
document	internal	system	design.	They	are	used	to	record	complex	business	rules	that	a
system	must	implement.	In	addition,	they	can	serve	as	a	guide	to	creating	test	cases.

Decision	tables	are	a	vital	tool	in	the	tester's	personal	toolbox.	Unfortunately,	many	analysts,
designers,	programmers,	and	testers	are	not	familiar	with	this	technique.



Technique
Decision	tables	represent	complex	business	rules	based	on	a	set	of	conditions.	The	general
form	is:

Table	5-1:	The	general	form	of	a	decision	table.

Rule	1 Rule	2 … Rule	p

Conditions

Condition-1

Condition-2

…

Condition-m

Actions

Action-1

Action-2

…

Action-n

Conditions	1	through	m	represent	various	input	conditions.	Actions	1	through	n	are	the	actions
that	should	be	taken	depending	on	the	various	combinations	of	input	conditions.	Each	of	the
rules	defines	a	unique	combination	of	conditions	that	result	in	the	execution	("firing")	of	the
actions	associated	with	that	rule.	Note	that	the	actions	do	not	depend	on	the	order	in	which	the
conditions	are	evaluated,	but	only	on	their	values.	(All	values	are	assumed	to	be	available
simultaneously.)	Also,	actions	depend	only	on	the	specified	conditions,	not	on	any	previous	input
conditions	or	system	state.

Perhaps	a	concrete	example	will	clarify	the	concepts.	An	auto	insurance	company	gives
discounts	to	drivers	who	are	married	and/or	good	students.	Let's	begin	with	the	conditions.	The
following	decision	table	has	two	conditions,	each	one	of	which	takes	on	the	values	Yes	or	No.

Table	5-2:	A	decision	table	with	two	binary	conditions.

Rule	1 Rule	2 Rule	3 Rule	4

Conditions

Married? Yes Yes No No

Good	Student? Yes No Yes No



Note	that	the	table	contains	all	combinations	of	the	conditions.	Given	two	binary	conditions	(Yes
or	No),	the	possible	combinations	are	{Yes,	Yes},	{Yes,	No},	{No,	Yes},	and	{No,	No}.	Each	rule
represents	one	of	these	combinations.	As	a	tester	we	will	verify	that	all	combinations	of	the
conditions	are	defined.	Missing	a	combination	may	result	in	developing	a	system	that	may	not
process	a	particular	set	of	inputs	properly.

Now	for	the	actions.	Each	rule	causes	an	action	to	"fire."	Each	rule	may	specify	an	action
unique	to	that	rule,	or	rules	may	share	actions.

Table	5-3:	Adding	a	single	action	to	a	decision	table.

Rule	1 Rule	2 Rule	3 Rule	4

Conditions

Married? Yes Yes No No

Good	Student? Yes No Yes No

Actions

Discount	($) 60 25 50 0

Decision	tables	may	specify	more	than	one	action	for	each	rule.	Again,	these	rules	may	be
unique	or	may	be	shared.

Table	5-4:	A	decision	table	with	multiple	actions.

Rule	1 Rule	2 Rule	3 Rule	4

Conditions

Condition-1 Yes Yes No No

Condition-2 Yes No Yes No

Actions

Action-1 Do	X Do	Y Do	X Do	Z

Action-2 Do	A Do	B Do	B Do	B

In	this	situation,	choosing	test	cases	is	simple—each	rule	(vertical	column)	becomes	a	test
case.	The	Conditions	specify	the	inputs	and	the	Actions	specify	the	expected	results.

While	the	previous	example	uses	simple	binary	conditions,	conditions	can	be	more	complex.

Table	5-5:	A	decision	table	with	non-binary	conditions.

Rule	1 Rule	2 Rule	3 Rule	4



Conditions

Condition-1 0–1 1–10 10–100 100–1000

Condition-2 <5 5 6	or	7 >7

Actions

Action-1 Do	X Do	Y Do	X Do	Z

Action-2 Do	A Do	B Do	B Do	B

In	this	situation	choosing	test	cases	is	slightly	more	complex—	each	rule	(vertical	column)
becomes	a	test	case	but	values	satisfying	the	conditions	must	be	chosen.	Choosing	appropriate
values	we	create	the	following	test	cases:

Table	5-6:	Sample	test	cases.

Test	Case	ID Condition-1 Condition-2 Expected	Result

TC1 0 3 Do	X	/	Do	A

TC2 5 5 Do	Y	/	Do	B

TC3 50 7 Do	X	/	Do	B

TC4 500 10 Do	Z	/	Do	B

If	the	system	under	test	has	complex	business	rules,	and	if	your	business	analysts	or	designers
have	not	documented	these	rules	in	this	form,	testers	should	gather	this	information	and
represent	it	in	decision	table	form.	The	reason	is	simple.	Given	the	system	behavior
represented	in	this	complete	and	compact	form,	test	cases	can	be	created	directly	from	the
decision	table.

In	testing,	create	at	least	one	test	case	for	each	rule.	If	the	rule's	conditions	are	binary,	a	single
test	for	each	combination	is	probably	sufficient.	On	the	other	hand,	if	a	condition	is	a	range	of
values,	consider	testing	at	both	the	low	and	high	end	of	the	range.	In	this	way	we	merge	the
ideas	of	Boundary	Value	testing	with	Decision	Table	testing.

Key
Point Create	at	least	one	test	case	for	each	rule.

To	create	a	test	case	table	simply	change	the	row	and	column	headings:

Table	5-7:	A	decision	table	converted	to	a	test	case	table.

Test	Case	1 Test	Case	2 Test	Case	3 Test	Case	4

Inputs

Condition-1 Yes Yes No No



Condition-2 Yes No Yes No

Expected	Results

Action-1 Do	X Do	Y Do	X Do	Z

Action-2 Do	A Do	B Do	B Do	B



Examples
Decision	Table	testing	can	be	used	whenever	the	system	must	implement	complex	business
rules.	Consider	the	following	two	examples:	Example	1

Referring	to	the	Trade	Web	page	of	the	Brown	&	Donaldson	Web	site	described	in	Appendix	A,
consider	the	rules	associated	with	a	Buy	order.

Table	5-8:	A	decision	table	for	the	Brown	&	Donaldson	Buy	order.

Rule	1 Rule	2 Rule	3 Rule	4 Rule	5 Rule	6 Rule	7 Rule	8

Conditions

Valid	Symbol No No No No Yes Yes Yes Yes

Valid	Quantity No No Yes Yes No No Yes Yes

Sufficient	Funds No Yes No Yes No Yes No Yes

Actions

Buy? No No No No No No No Yes

Admittedly,	the	outcome	is	readily	apparent.	Only	when	a	valid	symbol,	valid	quantity,	and
sufficient	funds	are	available	should	the	Buy	order	be	placed.	This	example	was	chosen	to
illustrate	another	concept.

Examine	the	first	four	columns.	If	the	Symbol	is	not	valid,	none	of	the	other	conditions	matter.
Often	tables	like	this	are	collapsed,	rules	are	combined,	and	the	conditions	that	do	not	affect
the	outcome	are	marked	"DC"	for	"Don't	Care."	Rule	1	now	indicates	that	if	the	Symbol	is	not
valid,	ignore	the	other	conditions	and	do	not	execute	the	Buy	order.

Table	5-9:	A	collapsed	decision	table	reflecting	"Don't	Care"	conditions.

Rule	1 Rule	2 Rule	3 Rule	4 Rule	5

Conditions

Valid	Symbol No Yes Yes Yes Yes

Valid	Quantity DC No No Yes Yes

Sufficient	Funds DC No Yes No Yes

Actions

Buy? No No No No Yes

Note	also	that	Rule	2	and	Rule	3	can	be	combined	because	whether	Sufficient	Funds	are



available	does	not	affect	the	action.

Table	5-10:	A	further	collapsed	decision	table	reflecting	"Don't	Care"	conditions.

Rule	1 Rule	2 Rule	3 Rule	4

Conditions

Valid	Symbol No Yes Yes Yes

Valid	Quantity DC No Yes Yes

Sufficient	Funds DC DC No Yes

Actions

Buy? No No No Yes

While	this	is	an	excellent	idea	from	a	development	standpoint	because	less	code	is	written,	it	is
dangerous	from	a	testing	standpoint.	It	is	always	possible	that	the	table	was	collapsed
incorrectly	or	the	code	was	written	improperly.	The	un-collapsed	table	should	always	be	used
as	the	basis	for	our	test	case	design.

Example	2

The	following	screen	is	from	the	Stateless	University	Registration	System.	It	is	used	to	enter
new	students	into	the	system,	to	modify	student	information,	and	to	delete	students	from	the
system.

	
Figure	5-1:	SURS	Student	Database	Maintenance	Screen.

To	enter	a	new	student,	enter	name,	address,	and	telephone	information	on	the	upper	part	of
the	screen	and	press	Enter.	The	student	is	entered	into	the	database	and	the	system	returns	a
new	StudentID.	To	modify	or	delete	a	student,	enter	the	StudentID,	select	the	Delete	or	Modify
radio	button	and	press	Enter.	The	decision	table	reflecting	these	rules	follows:

Table	5-11:	A	decision	table	for	Stateless	University	Registration	System.



Table	5-11:	A	decision	table	for	Stateless	University	Registration	System.

Rule
1

Rule
2

Rule
3

Rule
4

Rule
5

Rule
6

Rule
7

Rule
8

Rule
9

Rule
10

Rule
11

Rule
12

Rule
13

Rule
14

Rule

Conditions

Entered
Student
data

No No No No No No No No Yes Yes Yes Yes Yes Yes Yes

Entered
Student
ID

No No No No Yes Yes Yes Yes No No No No Yes Yes Yes

Selected
Modify No No Yes Yes No No Yes Yes No No Yes Yes No No Yes

Selected
Delete No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Actions

Create
new
student

No No No No No No No No Yes No No No No No

Modify
Student No No No No No No Yes No No No Yes No No No

Delete
Student No No No No No Yes No No No No No No No No

Rules	1	through	8	indicate	that	no	data	was	entered	about	the	student.	Rules	1	through	4
indicate	that	no	StudentID	was	entered	for	the	student,	thus	no	action	is	possible.	Rules	5
through	8	indicate	the	StudentID	was	entered.	In	these	cases	creating	a	new	Student	is	not
proper.	Rule	5	does	not	request	either	modification	or	deletion	so	neither	is	done.	Rules	6	and	7
request	one	function	and	so	they	are	performed.	Note	that	Rule	8	indicates	that	both
modification	and	deletion	are	to	be	performed	so	no	action	is	taken.

Rules	9	through	16	indicate	that	data	was	entered	about	the	student.	Rules	9	through	12
indicate	that	no	StudentID	was	entered	so	these	rules	refer	to	a	new	student.	Rule	9	creates	a
new	student.	Rule	10	deletes	the	student.	Rule	11	allows	modification	of	the	student's	data.
Rule	12	requests	that	both	modification	and	deletion	are	to	be	performed	so	no	action	is	taken.
Rules	13	through	16	supply	student	data	indicating	a	new	student	but	also	provide	a	StudentID
indicating	an	existing	student.	Because	of	this	contradictory	input,	no	action	is	taken.	Often,
error	messages	are	displayed	in	these	situations.



Applicability	and	Limitations
Decision	Table	testing	can	be	used	whenever	the	system	must	implement	complex	business
rules	when	these	rules	can	be	represented	as	a	combination	of	conditions	and	when	these
conditions	have	discrete	actions	associated	with	them.



Summary
Decision	tables	are	used	to	document	complex	business	rules	that	a	system	must
implement.	In	addition,	they	serve	as	a	guide	to	creating	test	cases.

Conditions	represent	various	input	conditions.	Actions	are	the	processes	that	should	be
executed	depending	on	the	various	combinations	of	input	conditions.	Each	rule	defines	a
unique	combination	of	conditions	that	result	in	the	execution	("firing")	of	the	actions
associated	with	that	rule.

Create	at	least	one	test	case	for	each	rule.	If	the	rule's	conditions	are	binary,	a	single
test	for	each	combination	is	probably	sufficient.	On	the	other	hand,	if	a	condition	is	a
range	of	values,	consider	testing	at	both	the	low	and	high	end	of	the	range.



Practice
1.	 Attending	Stateless	University	is	an	expensive	proposition.	After	all,	they	receive	no

state	funding.	Like	many	other	students,	those	planning	on	attending	apply	for	student
aid	using	FAFSA,	the	Free	Application	for	Federal	Student	Aid.	The	following
instructions	were	taken	from	that	form.	Examine	them	and	create	a	decision	table	that
represents	the	FAFSA	rules.	(Note:	You	can't	make	up	stuff	like	this.)

Step	Four:	Who	is	considered	a	parent	in	this	step?

Read	these	notes	to	determine	who	is	considered	a	parent	for	purposes	of	this	form.
Answer	all	questions	in	Step	Four	about	them,	even	if	you	do	not	live	with	them.

Are	you	an	orphan,	or	are	you	or	were	you	(until	age	18)	a	ward/dependent	of	the
court?	If	Yes,	skip	Step	Four.	If	your	parents	are	both	living	and	married	to	each
other,	answer	the	questions	about	them.	If	your	parent	is	widowed	or	single,	answer
the	questions	about	that	parent.	If	your	widowed	parent	is	remarried	as	of	today,
answer	the	questions	about	that	parent	and	the	person	whom	your	parent	married
(your	stepparent).	If	your	parents	are	divorced	or	separated,	answer	the	questions
about	the	parent	you	lived	with	more	during	the	past	12	months.	(If	you	did	not	live
with	one	parent	more	than	the	other,	give	answers	about	the	parent	who	provided
more	financial	support	during	the	last	12	months,	or	during	the	most	recent	year	that
you	actually	received	support	from	a	parent.)	If	this	parent	is	remarried	as	of	today,
answer	the	questions	on	the	rest	of	this	form	about	that	parent	and	the	person	whom
your	parent	married	(your	stepparent).
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Chapter	6:	Pairwise	Testing
Anton	was	attracted	to	Angela	like	a	moth	to	a	flame	-	not	just	any	moth,	but	one	of	the
giant	silk	moths	of	the	genus	Hyalophora,	perhaps	Hyalophora	euryalus,	whose	great
red-brown	wings	with	white	basal	and	postmedian	lines	flap	almost	languorously	until	one
ignites	in	the	flame,	fanning	the	conflagration	to	ever	greater	heights	until	burning	down
to	the	hirsute	thorax	and	abdomen,	the	fat-laden	contents	of	which	provide	a	satisfying
sizzle	to	end	the	agony.

—	Andrew	Amlen



Introduction
As	they	used	to	say	on	Monty	Python,	"And	now	for	something	completely	different."

Consider	these	situations:

A	Web	site	must	operate	correctly	with	different	browsers—Internet	Explorer	5.0,	5.5,
and	6.0,	Netscape	6.0,	6.1,	and	7.0,	Mozilla	1.1,	and	Opera	7;	using	different	plug-ins
—RealPlayer,	MediaPlayer,	or	none;	running	on	different	client	operating	systems—
Windows	95,	98,	ME,	NT,	2000,	and	XP;	receiving	pages	from	different	servers—IIS,
Apache,	and	WebLogic;	running	on	different	server	operating	systems—Windows	NT,
2000,	and	Linux.

Web	Combinations

8	browsers

3	plug-ins

6	client	operating	systems

3	servers

3	server	OS

1,296	combinations.

A	bank	has	created	a	new	data	processing	system	that	is	ready	for	testing.	This	bank
has	different	kinds	of	customers—consumers,	very	important	consumers,	businesses,
and	non-profits;	different	kinds	of	accounts—checking,	savings,	mortgages,	consumer
loans,	and	commercial	loans;	they	operate	in	different	states,	each	with	different
regulations—California,	Nevada,	Utah,	Idaho,	Arizona,	and	New	Mexico.

Bank	Combinations

4	customer	types

5	account	types

6	states

120	combinations.

In	an	object-oriented	system,	an	object	of	class	A	can	pass	a	message	containing	a
parameter	P	to	an	object	of	class	X.	Classes	B,	C,	and	D	inherit	from	A	so	they	too	can
send	the	message.	Classes	Q,	R,	S,	and	T	inherit	from	P	so	they	too	can	be	passed
as	the	parameter.	Classes	Y	and	Z	inherit	from	X	so	they	too	can	receive	the	message.

OO	Combinations



4	senders

5	parameters

3	receivers

60	combinations.

Insight
Students	in	my	classes	often	have	a	very	difficult	time	thinking	of	bad	ways	to	do
things.	Cultivate	the	skill	of	choosing	poorly.	It	will	be	invaluable	in	evaluating	others'
ideas.

Can	You	Believe	This?

A	student	in	one	of	my	classes	shared	this	story:	His	organization	uses	a	process	they	call
"Post-Installation	Test	Planning."	It	sounds	impressive	until	you	decipher	it.	Whatever	tests
they	happen	to	run	that	happen	to	pass	are	documented	as	their	Test	Plan.

What	do	these	very	different	situations	all	have	in	common?	Each	has	a	large	number	of
combinations	that	should	be	tested.	Each	has	a	large	number	of	combinations	that	may	be	risky
if	we	do	not	test.	Each	has	such	a	large	number	of	combinations	that	we	may	not	have	the
resources	to	construct	and	run	all	the	tests,	there	are	just	too	many.	We	must,	somehow,
select	a	reasonably	sized	subset	that	we	could	test	given	our	resource	constraints.	What	are
some	ways	of	choosing	such	a	subset?	This	list	starts	with	the	worst	schemes	but	does
improve:

Don't	test	at	all.	Simply	give	up	because	the	number	of	input
combinations,	and	thus	the	number	of	test	cases,	is	just	too	great.

Test	all	combinations	[once],	but	delay	the	project	so	it	misses	its
market	window	so	that	everyone	quits	from	stress,	or	the	company
goes	out	of	business.

Choose	one	or	two	tests	and	hope	for	the	best.



Choose	the	tests	that	you	have	already	run,	perhaps	as	part	of
programmer-led	testing.	Incorporate	them	into	a	formal	test	plan	and
run	them	again.

Choose	the	tests	that	are	easy	to	create	and	run.	Ignore	whether	they
provide	useful	information	about	the	quality	of	the	product.

Make	a	list	of	all	the	combinations	and	choose	the	first	few.

Make	a	list	of	all	the	combinations	and	choose	a	random	subset.

By	magic,	choose	a	specially	selected,	fairly	small	subset	that	finds	a
great	many	defects—more	than	you	would	expect	from	such	a	subset.

This	last	scheme	sounds	like	a	winner	(but	it	is	a	little	vague).	The	question	is—what	is	the
"magic"	that	allows	us	to	choose	that	"specially	selected"	subset?

Insight Random	selection	can	be	a	very	good	approach	to	choosing	a	subset	but	mostpeople	have	a	difficult	time	choosing	truly	randomly.

The	answer	is	not	to	attempt	to	test	all	the	combinations	for	all	the	values	for	all	the	variables
but	to	test	all	pairs	of	variables.	This	significantly	reduces	the	number	of	tests	that	must	be
created	and	run.	Consider	the	significant	reductions	in	test	effort	in	these	examples:

If	a	system	had	four	different	input	parameters	and	each	one	could	take	on	one	of
three	different	values,	the	number	of	combinations	is	34	which	is	81.	It	is	possible	to
cover	all	the	pairwise	input	combinations	in	only	nine	tests.

If	a	system	had	thirteen	different	input	parameters	and	each	one	could	take	on	one	of



three	different	values,	the	number	of	combinations	is	313	which	is	1,594,323.	It	is
possible	to	cover	all	the	pairwise	input	combinations	in	only	fifteen	tests.

If	a	system	had	twenty	different	input	parameters	and	each	one	could	take	on	one	of
ten	different	values,	the	number	of	combinations	is	1020.	It	is	possible	to	cover	all	the
pairwise	input	combinations	in	only	180	tests.

There	is	much	anecdotal	evidence	about	the	benefit	of	pairwise	testing.	Unfortunately,	there	are
only	a	few	documented	studies:

In	a	case	study	published	by	Brownlie	of	AT&T	regarding	the	testing	of	a	local-area
network-based	electronic	mail	system,	pairwise	testing	detected	28	percent	more
defects	than	their	original	plan	of	developing	and	executing	1,500	test	cases	(later
reduced	to	1,000	because	of	time	constraints)	and	took	50	percent	less	effort.

A	study	by	the	National	Institute	of	Standards	and	Technology	published	by	Wallace	and
Kuhn	on	software	defects	in	recalled	medical	devices	reviewed	fifteen	years	of	defect
data.	They	concluded	that	98	percent	of	the	reported	software	flaws	could	have	been
detected	by	testing	all	pairs	of	parameter	settings.

Kuhn	and	Reilly	analyzed	defects	recorded	in	the	Mozilla	Web	browser	database.	They
determined	that	pairwise	testing	would	have	detected	76	percent	of	the	reported
errors.

Why	does	pairwise	testing	work	so	well?	I	don't	know.	There	is	no	underlying	"software
physics"	that	requires	it.	One	hypothesis	is	that	most	defects	are	either	single-mode	defects
(the	function	under	test	simply	does	not	work	and	any	test	of	that	function	would	find	the
defect)	or	they	are	double-mode	defects	(it	is	the	pairing	of	this	function/module	with	that
function/module	that	fails	even	though	all	other	pairings	perform	properly).	Pairwise	testing
defines	a	minimal	subset	that	guides	us	to	test	for	all	single-mode	and	double-mode	defects.
The	success	of	this	technique	on	many	projects,	both	documented	and	undocumented,	is	a
great	motivation	for	its	use.

Note
Pairwise	testing	may	not	choose	combinations	which	the	developers	and	testers	know
are	either	frequently	used	or	highly	risky.	If	these	combinations	exist,	use	the	pairwise
tests,	then	add	additional	test	cases	to	minimize	the	risk	of	missing	an	important
combination.



Technique
Two	different	techniques	are	used	to	identify	all	the	pairs	for	creating	test	cases—orthogonal
arrays	and	the	Allpairs	algorithm.

Orthogonal	Arrays

What	are	orthogonal	arrays?	The	origin	of	orthogonal	arrays	can	be	traced	back	to	Euler,	the
great	mathematician,	in	the	guise	of	Latin	Squares.	Genichi	Taguchi	has	popularized	their	use	in
hardware	testing.	An	excellent	reference	book	is	Quality	Engineering	Using	Robust	Design	by
Madhav	S.	Phadke.

Consider	the	numbers	1	and	2.	How	many	pair	combinations	(combinations	taken	two	at	a	time)
of	'1'	and	'2'	exist?	{1,1},	{1,2},	{2,1}	and	{2,2}.	An	orthogonal	array	is	a	two-dimensional	array
of	numbers	that	has	this	interesting	property—choose	any	two	columns	in	the	array.	All	the
pairwise	combinations	of	its	values	will	occur	in	every	pair	of	columns.	Let's	examine	an	L4(23)
array:

Table	6-1:	L4(23)	Orthogonal	Array

1 2 3

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

The	gray	column	headings	and	row	numbers	are	not	part	of	the	orthogonal	array	but	are
included	for	convenience	in	referencing	the	cells.	Examine	columns	1	and	2—do	the	four
combinations	of	1	and	2	all	appear	in	that	column	pair?	Yes,	and	in	the	order	listed	earlier.	Now
examine	columns	1	and	3—do	the	four	combinations	of	1	and	2	appear	in	that	column	pair?
Yes,	although	in	a	different	order.	Finally,	examine	columns	2	and	3—do	the	four	combinations
appear	in	that	column	pair	also?	Yes	they	do.	The	L4(23)	array	is	orthogonal;	that	is,	choose
any	two	columns,	all	the	pairwise	combinations	will	occur	in	all	the	column	pairs.

Important
Note

As	a	tester	you	do	not	have	to	create	orthogonal	arrays,	all	you	must	do	is
locate	one	of	the	proper	size.	Books,	Web	sites,	and	automated	tools	will
help	you	do	this.

A	note	about	the	curious	(but	standard)	notation:	L4	means	an	orthogonal	array	with	four	rows,
(23)	is	not	an	exponent.	It	means	that	the	array	has	three	columns,	each	with	either	a	1	or	a	2.



	
Figure	6-1:	Orthogonal	array	notation 	Let's	consider	a	larger	orthogonal
array.	Given	the	numbers	1,	2	and	3,	how	many	pair	combinations	of	1,	2,	and	3	exist?	{1,1},
{1,2},	{1,3},	{2,1},	{2,2},	{2,3},	{3,1},	{3,2},	and	{3,3}.	Below	is	an	L9(34)	array:

Table	6-2:	L9(34)	Orthogonal	Array

1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Examine	columns	1	and	2—do	the	nine	combinations	of	1,	2,	and	3	all	appear	in	that	column
pair?	Yes.	Now	examine	columns	1	and	3—do	the	nine	combinations	of	1,	2,	and	3	appear	in
that	column	pair?	Yes,	although	in	a	different	order.	Examine	columns	1	and	4—do	the	nine
combinations	appear	in	that	column	pair	also?	Yes	they	do.	Continue	on	by	examining	other
pairs	of	columns—2	and	3,	2	and	4,	and	finally	3	and	4.	The	L9(34)	array	is	orthogonal;	that
is,	choose	any	two	columns,	all	the	combinations	will	occur	in	all	of	the	column	pairs.

Tool

The	rdExpert	tool	from	Phadke	Associates	implements	the	orthogonal	array	approach.
See	http://www.phadkeassociates.com

Note	that	not	all	combinations	of	1s,	2s,	and	3s	appear	in	the	array.	For	example,	{1,1,2},
{1,2,1},	and	{2,2,2)	do	not	appear.	Orthogonal	arrays	only	guarantee	that	all	the	pair
combinations	exist	in	the	array.	Combinations	such	as	{2,2,2}	are	triples,	not	pairs.

http://www.phadkeassociates.com


The	following	is	an	L18(35)	orthogonal	array.	It	has	five	columns,	each	containing	a	1,	2,	or	3.
Examine	columns	1	and	2	for	the	pair	{1,1}.	Does	that	pair	exist	in	those	two	columns?	Wait!
Don't	look	at	the	array.	From	the	definition	of	an	orthogonal	array,	what	is	the	answer?	Yes,
that	pair	exists	along	with	every	other	pair	of	1,	2,	and	3.	The	pair	{1,1}	is	in	row	1.	Note	that
{1,1}	also	appears	in	row	6.	Returning	to	the	original	description	of	orthogonal	arrays,

An	orthogonal	array	is	a	two-dimensional	array	of	numbers	that	has	this	interesting
property—choose	any	two	columns	in	the	array.	All	the	pairwise	combinations	of	its
values	will	occur	in	every	column	pair.

This	definition	is	not	totally	complete.	Not	only	will	all	the	pair	combinations	occur	in	the
array,	but	if	any	pair	occurs	multiple	times,	all	pairs	will	occur	that	same	number	of	times.
This	is	because	orthogonal	arrays	are	"balanced."	Examine	columns	3	and	5—look	for	{3,2}.
That	combination	appears	in	rows	6	and	17.

Table	6-3:	L18(35)	Orthogonal	Array

1 2 3 4 5

1 1 1 1 1 1

2 1 2 3 3 1

3 1 3 2 3 2

4 1 2 2 1 3

5 1 3 1 2 3

6 1 1 3 2 2

7 2 2 2 2 2

8 2 3 1 1 2

9 2 1 3 1 3

10 2 3 3 2 1

11 2 1 2 3 1

12 2 2 1 3 3

13 3 3 3 3 3

14 3 1 2 2 3

15 3 2 1 2 1

16 3 1 1 3 2

17 3 2 3 1 2

18 3 3 2 1 1



In	orthogonal	arrays	not	all	of	the	columns	must	have	the	same	range	of	values	(1..2,	1..3,
1..5,	etc.).	Some	orthogonal	arrays	are	mixed.	The	following	is	an	L18(2137)	orthogonal
array.	It	has	one	column	of	1s	and	2s,	and	seven	columns	of	1s,	2s,	and	3s.

Table	6-4:	L18(2137)	Orthogonal	Array

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 2 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1

Reference

Neil	J.A.	Sloane	maintains	a	very	comprehensive	catalog	of	orthogonal	arrays	at
http://www.research.att.com/~njas/oadir/index.html

Using	Orthogonal	Arrays

The	process	of	using	orthogonal	arrays	to	select	pairwise	subsets	for	testing	is:
1.	 Identify	the	variables.

http://www.research.att.com/~njas/oadir/index.html


2.	 Determine	the	number	of	choices	for	each	variable.

3.	 Locate	an	orthogonal	array	which	has	a	column	for	each	variable	and	values	within	the
columns	that	correspond	to	the	choices	for	each	variable.

4.	 Map	the	test	problem	onto	the	orthogonal	array.

5.	 Construct	the	test	cases.

If	this	seems	rather	vague	at	this	point	it's	time	for	an	example.

Web-based	systems	such	as	Brown	&	Donaldson	and	the	Stateless	University	Registration
System	must	operate	in	a	number	of	environments.	Let's	execute	the	process	step-by-step
using	an	orthogonal	array	to	choose	test	cases.	Consider	the	first	example	in	the	introduction
describing	the	software	combinations	a	Web	site	must	operate	with.

1.	 Identify	the	variables.

The	variables	are	Browser,	Plug-in,	Client	operating	system,	Server,	and	Server
operating	system.

2.	 Determine	the	number	of	choices	for	each	variable.

Browser	-	Internet	Explorer	5.0,	5.5,	and	6.0,	Netscape	6.0,	6.1,	and	7.0,	Mozilla	1.1,
and	Opera	7	(8	choices).

Plug-in	-	None,	RealPlayer,	and	MediaPlayer	(3	choices).

Client	operating	system	-	Windows	95,	98,	ME,	NT,	2000,	and	XP	(6	choices).

Server	-	IIS,	Apache,	and	WebLogic	(3	choices).

Server	operating	system	-	Windows	NT,	2000,	and	Linux	(3	choices).

Multiplying	8	x	3	x	6	x	3	x	3	we	find	there	are	1,296	combinations.	For	"complete"	test
coverage,	each	of	these	combinations	should	be	tested.

3.	 Locate	an	orthogonal	array	that	has	a	column	for	each	variable	and	values
within	the	columns	that	correspond	to	the	choices	of	each	variable.

What	size	array	is	needed?	First,	it	must	have	five	columns,	one	for	each	variable	in
this	example.	The	first	column	must	support	eight	different	levels	(1	through	8).	The
second	column	must	support	three	levels	(1	through	3).	The	third	requires	six	levels.
The	fourth	and	the	fifth	each	require	three	levels.	The	perfect	size	orthogonal	array
would	be	816133	(one	column	of	1	through	8,	one	column	of	1	through	6,	and	three
columns	of	1	through	3).	Unfortunately,	one	of	this	exact	size	does	not	exist.	When
this	occurs,	we	simply	pick	the	next	larger	array.

Important
As	a	tester	you	do	not	have	to	create	orthogonal	arrays.	All	you



Note must	do	is	locate	one	of	the	proper	size	and	then	perform	the
mapping	of	the	test	problem	onto	the	array.

The	following	orthogonal	array	meets	our	requirements.	It's	an	L64(8243)	array.
Orthogonal	arrays	can	be	found	in	a	number	of	books	and	on	the	Web.	A	favorite
book	is	Quality	Engineering	Using	Robust	Design	by	Madhav	S.	Phadke.	In	addition,
an	excellent	catalog	is	maintained	on	the	Web	by	Neil	J.A.	Sloane	of	AT&T.	See
http://www.research.att.com/~njas/oadir/index.html.

The	requirement	of	8161	(one	column	of	1	through	8	and	1	column	of	1	through	6)	is
met	by	82	(two	columns	of	1	through	8).	The	requirement	of	33	(three	columns	of	1
through	3)	is	met	by	43	(three	columns	of	1	through	4).

The	number	of	combinations	of	all	the	values	of	all	the	variables	is	1,296	and	thus
1,296	test	cases	should	be	created	and	run	for	complete	coverage.	Using	this
orthogonal	array,	all	pairs	of	all	the	values	of	all	the	variables	can	be	covered	in	only
sixty-four	tests,	a	95	percent	reduction	in	the	number	of	test	cases.

Table	6-5:	L64(8243)	Orthogonal	Array

1 2 3 4 5

1 1 1 1 1 1

2 1 4 3 4 4

3 1 4 2 4 4

4 1 1 4 1 1

5 1 3 5 3 3

6 1 2 7 2 2

7 1 2 6 2 2

8 1 3 8 3 3

9 3 4 1 3 3

10 3 1 3 2 2

11 3 1 2 2 2

12 3 4 4 3 3

13 3 2 5 1 1

14 3 3 7 4 4

15 3 3 6 4 4

16 3 2 8 1 1

http://www.research.att.com/~njas/oadir/index.html


17 2 3 1 2 1

18 2 2 3 3 4

19 2 2 2 3 4

20 2 3 4 2 1

21 2 1 5 4 3

22 2 4 7 1 2

23 2 4 6 1 2

24 2 1 8 4 3

25 4 2 1 4 3

26 4 3 3 1 2

27 4 3 2 1 2

28 4 2 4 4 3

29 4 4 5 2 1

30 4 1 7 3 4

31 4 1 6 3 4

32 4 4 8 2 1

33 5 2 1 4 2

34 5 3 3 1 3

35 5 3 2 1 3

36 5 2 4 4 2

37 5 4 5 2 4

38 5 1 7 3 1

39 5 1 6 3 1

40 5 4 8 2 4

41 7 3 1 2 4

42 7 2 3 3 1

43 7 2 2 3 1

44 7 3 4 2 4

45 7 1 5 4 2

46 7 4 7 1 3



47 7 4 6 1 3

48 7 1 8 4 2

49 6 4 1 3 2

50 6 1 3 2 3

51 6 1 2 2 3

52 6 4 4 3 2

53 6 2 5 1 4

54 6 3 7 4 1

55 6 3 6 4 1

56 6 2 8 1 4

57 8 1 1 1 4

58 8 4 3 4 1

59 8 4 2 4 1

60 8 1 4 1 4

61 8 3 5 3 2

62 8 2 7 2 3

63 8 2 6 2 3

64 8 3 8 3 2

4.	 Map	the	test	problem	onto	the	orthogonal	array.

The	Browser	choices	will	be	mapped	onto	column	1	of	the	orthogonal	array.	Cells
containing	a	1	will	represent	IE	5.0;	cells	with	a	2	will	represent	IE5.5;	cells	with	a	3
will	represent	IE	6.0;	etc.	The	mapping	is:

1	↔	IE	5.0

2	↔	IE	5.5

3	↔	IE	6.0

4	↔	Netscape	6.0

5	↔	Netscape	6.1

6	↔	Netscape	7.0

7	↔	Mozilla	1.1



8	↔	Opera	7

Partially	filling	in	the	first	column	gives:

Table	6-6:	L64	(8243)	with	a	partial	mapping	of	its	first	column.

Browser 2 3 4 5

1 IE	5.0 1 1 1 1

2 1 4 3 4 4

3 1 4 2 4 4

4 1 1 4 1 1

5 1 3 5 3 3

6 1 2 7 2 2

7 1 2 6 2 2

8 1 3 8 3 3

9 IE	6.0 4 1 3 3

10 3 1 3 2 2

11 3 1 2 2 2

12 3 4 4 3 3

13 3 2 5 1 1

14 3 3 7 4 4

15 3 3 6 4 4

16 3 2 8 1 1

17 IE	5.5 3 1 2 1

18 2 2 3 3 4

19 2 2 2 3 4

20 2 3 4 2 1

21 2 1 5 4 3

22 2 4 7 1 2

23 2 4 6 1 2

24 2 1 8 4 3

25 Net	6.0 2 1 4 3



26 4 3 3 1 2

27 4 3 2 1 2

28 4 2 4 4 3

29 4 4 5 2 1

30 4 1 7 3 4

31 4 1 6 3 4

32 4 4 8 2 1

33 Net	6.1 2 1 4 2

34 5 3 3 1 3

35 5 3 2 1 3

36 5 2 4 4 2

37 5 4 5 2 4

38 5 1 7 3 1

39 5 1 6 3 1

40 5 4 8 2 4

41 Moz	1.1 3 1 2 4

42 7 2 3 3 1

43 7 2 2 3 1

44 7 3 4 2 4

45 7 1 5 4 2

46 7 4 7 1 3

47 7 4 6 1 3

48 7 1 8 4 2

49 Net	7.0 4 1 3 2

50 6 1 3 2 3

51 6 1 2 2 3

52 6 4 4 3 2

53 6 2 5 1 4

54 6 3 7 4 1

55 6 3 6 4 1



56 6 2 8 1 4

57 Opera	7 1 1 1 4

58 8 4 3 4 1

59 8 4 2 4 1

60 8 1 4 1 4

61 8 3 5 3 2

62 8 2 7 2 3

63 8 2 6 2 3

64 8 3 8 3 2

Is	it	clear	what	is	happening?	In	column	1	(which	we	have	chosen	to	represent	the
Browser)	every	cell	containing	a	1	is	being	replaced	with	"IE	5.0."	Every	cell
containing	a	2	is	being	replaced	with	"IE	5.5."	Every	cell	containing	an	8	is	being
replaced	with	"Opera	7,"	etc.

We'll	continue	by	completing	the	mapping	(replacement)	of	all	the	cells	in	column	1.
Note	that	the	mapping	between	the	variable	values	and	the	1s,	2s,	and	3s	is	totally
arbitrary.	There	is	no	logical	connection	between	"1"	and	IE	5.0	or	"7"	and	Mozilla	1.1.
But,	although	the	initial	assignment	is	arbitrary,	once	chosen,	the	assignments	and	use
must	remain	consistent	within	each	column.

Table	6-7:	L64	(8243)	with	a	full	mapping	of	its	first	column.

Browser 2 3 4 5

1 IE	5.0 1 1 1 1

2 IE	5.0 4 3 4 4

3 IE	5.0 4 2 4 4

4 IE	5.0 1 4 1 1

5 IE	5.0 3 5 3 3

6 IE	5.0 2 7 2 2

7 IE	5.0 2 6 2 2

8 IE	5.0 3 8 3 3

9 IE	6.0 4 1 3 3

10 IE	6.0 1 3 2 2

11 IE	6.0 1 2 2 2



12 IE	6.0 4 4 3 3

13 IE	6.0 2 5 1 1

14 IE	6.0 3 7 4 4

15 IE	6.0 3 6 4 4

16 IE	6.0 2 8 1 1

17 IE	5.5 3 1 2 1

18 IE	5.5 2 3 3 4

19 IE	5.5 2 2 3 4

20 IE	5.5 3 4 2 1

21 IE	5.5 1 5 4 3

22 IE	5.5 4 7 1 2

23 IE	5.5 4 6 1 2

24 IE	5.5 1 8 4 3

25 Net	6.0 2 1 4 3

26 Net	6.0 3 3 1 2

27 Net	6.0 3 2 1 2

28 Net	6.0 2 4 4 3

29 Net	6.0 4 5 2 1

30 Net	6.0 1 7 3 4

31 Net	6.0 1 6 3 4

32 Net	6.0 4 8 2 1

33 Net	6.1 2 1 4 2

34 Net	6.1 3 3 1 3

35 Net	6.1 3 2 1 3

36 Net	6.1 2 4 4 2

37 Net	6.1 4 5 2 4

38 Net	6.1 1 7 3 1

39 Net	6.1 1 6 3 1

40 Net	6.1 4 8 2 4

41 Moz	1.1 3 1 2 4



42 Moz	1.1 2 3 3 1

43 Moz	1.1 2 2 3 1

44 Moz	1.1 3 4 2 4

45 Moz	1.1 1 5 4 2

46 Moz	1.1 4 7 1 3

47 Moz	1.1 4 6 1 3

48 Moz	1.1 1 8 4 2

49 Net	7.0 4 1 3 2

50 Net	7.0 1 3 2 3

51 Net	7.0 1 2 2 3

52 Net	7.0 4 4 3 2

53 Net	7.0 2 5 1 4

54 Net	7.0 3 7 4 1

55 Net	7.0 3 6 4 1

56 Net	7.0 2 8 1 4

57 Opera	7 1 1 1 4

58 Opera	7 4 3 4 1

59 Opera	7 4 2 4 1

60 Opera	7 1 4 1 4

61 Opera	7 3 5 3 2

62 Opera	7 2 7 2 3

63 Opera	7 2 6 2 3

64 Opera	7 3 8 3 2

Now	that	the	first	column	has	been	mapped,	let's	proceed	to	the	next	one.	The	Plug-in
choices	will	be	mapped	onto	column	2	of	the	array.	Cells	containing	a	1	will	represent
None	(No	plug-in);	cells	with	a	2	will	represent	RealPlayer;	cells	with	a	3	will	represent
MediaPlayer;	cells	with	a	4	will	not	be	mapped	at	the	present	time.	The	mapping	is:

1	↔	None

2	↔	RealPlayer

3	↔	MediaPlayer



4	↔	Not	used	(at	this	time)

Filling	in	the	second	column	gives:

Table	6-8:	L64	(8243)	with	a	full	mapping	of	its	first	and	second	columns.

Browser Plug-In 3 4 5

1 IE	5.0 None 1 1 1

2 IE	5.0 4 3 4 4

3 IE	5.0 4 2 4 4

4 IE	5.0 None 4 1 1

5 IE	5.0 MediaPlayer 5 3 3

6 IE	5.0 RealPlayer 7 2 2

7 IE	5.0 RealPlayer 6 2 2

8 IE	5.0 MediaPlayer 8 3 3

9 IE	6.0 4 1 3 3

10 IE	6.0 None 3 2 2

11 IE	6.0 None 2 2 2

12 IE	6.0 4 4 3 3

13 IE	6.0 RealPlayer 5 1 1

14 IE	6.0 MediaPlayer 7 4 4

15 IE	6.0 MediaPlayer 6 4 4

16 IE	6.0 RealPlayer 8 1 1

17 IE	5.5 MediaPlayer 1 2 1

18 IE	5.5 RealPlayer 3 3 4

19 IE	5.5 RealPlayer 2 3 4

20 IE	5.5 MediaPlayer 4 2 1

21 IE	5.5 None 5 4 3

22 IE	5.5 4 7 1 2

23 IE	5.5 4 6 1 2

24 IE	5.5 None 8 4 3

25 Net	6.0 RealPlayer 1 4 3



26 Net	6.0 MediaPlayer 3 1 2

27 Net	6.0 MediaPlayer 2 1 2

28 Net	6.0 RealPlayer 4 4 3

29 Net	6.0 4 5 2 1

30 Net	6.0 None 7 3 4

31 Net	6.0 None 6 3 4

32 Net	6.0 4 8 2 1

33 Net	6.1 RealPlayer 1 4 2

34 Net	6.1 MediaPlayer 3 1 3

35 Net	6.1 MediaPlayer 2 1 3

36 Net	6.1 RealPlayer 4 4 2

37 Net	6.1 4 5 2 4

38 Net	6.1 None 7 3 1

39 Net	6.1 None 6 3 1

40 Net	6.1 4 8 2 4

41 Moz	1.1 MediaPlayer 1 2 4

42 Moz	1.1 RealPlayer 3 3 1

43 Moz	1.1 RealPlayer 2 3 1

44 Moz	1.1 MediaPlayer 4 2 4

45 Moz	1.1 None 5 4 2

46 Moz	1.1 4 7 1 3

47 Moz	1.1 4 6 1 3

48 Moz	1.1 None 8 4 2

49 Net	7.0 4 1 3 2

50 Net	7.0 None 3 2 3

51 Net	7.0 None 2 2 3

52 Net	7.0 4 4 3 2

53 Net	7.0 RealPlayer 5 1 4

54 Net	7.0 MediaPlayer 7 4 1

55 Net	7.0 MediaPlayer 6 4 1



56 Net	7.0 RealPlayer 8 1 4

57 Opera	7 None 1 1 4

58 Opera	7 4 3 4 1

59 Opera	7 4 2 4 1

60 Opera	7 None 4 1 4

61 Opera	7 MediaPlayer 5 3 2

62 Opera	7 RealPlayer 7 2 3

63 Opera	7 RealPlayer 6 2 3

64 Opera	7 MediaPlayer 8 3 2

Now	that	the	first	and	second	columns	have	been	mapped,	let's	proceed	to	map	the
next	three	columns	simultaneously.

The	mapping	for	Client	operating	system	is:
1	↔Windows	95

2	↔	Windows	98

3	↔	Windows	ME

4	↔	Windows	NT

5	↔	Windows	2000

6	↔	Windows	XP

7	↔	Not	used	(at	this	time)

8	↔	Not	used	(at	this	time)

The	mapping	for	Servers	is:
1	↔	IIS

2	↔	Apache

3	↔	WebLogic

4	↔	Not	used	(at	this	time)

The	mapping	for	Server	operating	system	is:
1	↔	Windows	NT

2	↔	Windows	2000



3	↔	Linux

4	↔	Not	used	(at	this	time)

Filling	in	the	remainder	of	the	columns	gives:

Table	6-9:	L64(8243)	with	a	full	mapping	of	all	its	columns.

Browser Plug-in Client	OS Server Server	OS

1 IE	5.0 None Win	95 IIS Win	NT

2 IE	5.0 4 Win	ME 4 4

3 IE	5.0 4 Win	98 4 4

4 IE	5.0 None Win	NT IIS Win	NT

5 IE	5.0 MediaPlayer Win	2000 WebLogic Linux

6 IE	5.0 RealPlayer 7 Apache Win	2000

7 IE	5.0 RealPlayer Win	XP Apache Win	2000

8 IE	5.0 MediaPlayer 8 WebLogic Linux

9 IE	6.0 4 Win	95 WebLogic Linux

10 IE	6.0 None Win	ME Apache Win	2000

11 IE	6.0 None Win	98 Apache Win	2000

12 IE	6.0 4 Win	NT WebLogic Linux

13 IE	6.0 RealPlayer Win	2000 IIS Win	NT

14 IE	6.0 MediaPlayer 7 4 4

15 IE	6.0 MediaPlayer Win	XP 4 4

16 IE	6.0 RealPlayer 8 US Win	NT

17 IE	5.5 MediaPlayer Win	95 Apache Win	NT

18 IE	5.5 RealPlayer Win	ME WebLogic 4

19 IE	5.5 RealPlayer Win	98 WebLogic 4

20 IE	5.5 MediaPlayer Win	NT Apache Win	NT

21 IE	5.5 None Win	2000 4 Linux

22 IE	5.5 4 7 IIS Win	2000

23 IE	5.5 4 Win	XP IIS Win	2000

24 IE	5.5 None 8 4 Linux



25 Net	6.0 RealPlayer Win	95 4 Linux

26 Net	6.0 MediaPlayer Win	ME IIS Win	2000

27 Net	6.0 MediaPlayer Win	98 IIS Win	2000

28 Net	6.0 RealPlayer Win	NT 4 Linux

29 Net	6.0 4 Win	2000 Apache Win	NT

30 Net	6.0 None 7 WebLogic 4

31 Net	6.0 None Win	XP WebLogic 4

32 Net	6.0 4 8 Apache Win	NT

33 Net	6.1 RealPlayer Win	95 4 Win	2000

34 Net	6.1 MediaPlayer Win	ME IIS Linux

35 Net	6.1 MediaPlayer Win	98 IIS Linux

36 Net	6.1 RealPlayer Win	NT 4 Win	2000

37 Net	6.1 4 Win	2000 Apache 4

38 Net	6.1 None 7 WebLogic Win	NT

39 Net	6.1 None Win	XP WebLogic 1	Win	NT

40 Net	6.1 4 8 Apache 4

41 Moz	1.1 MediaPlayer Win	95 Apache 4

42 Moz	1.1 RealPlayer Win	ME WebLogic Win	NT

43 Moz	1.1 RealPlayer Win	98 WebLogic Win	NT

44 Moz	1.1 MediaPlayer Win	NT Apache 4

45 Moz	1.1 None Win	2000 4 Win	2000

46 Moz	1.1 4 7 IIS Linux

47 Moz	1.1 4 Win	XP IIS Linux

48 Moz	1.1 None 8 4 Win	2000

49 Net	7.0 4 Win	95 WebLogic Win	2000

50 Net	7.0 None Win	ME Apache Linux

51 Net	7.0 None Win	98 Apache Linux

52 Net	7.0 4 Win	NT WebLogic Win	2000

53 Net	7.0 RealPlayer Win	2000 IIS 4

54 Net	7.0 MediaPlayer 7 4 Win	NT



55 Net	7.0 MediaPlayer Win	XP 4 Win	NT

56 Net	7.0 RealPlayer 8 IIS 4

57 Opera	7 None Win	95 IIS 4

58 Opera	7 4 Win	ME 4 Win	NT

59 Opera	7 4 Win	98 4 Win	NT

60 Opera	7 None Win	NT IIS 4

61 Opera	7 MediaPlayer Win	2000 WebLogic Win	2000

62 Opera	7 RealPlayer 7 Apache Linux

63 Opera	7 RealPlayer Win	XP Apache Linux

64 Opera	7 MediaPlayer 8 WebLogic Win	2000

Were	it	not	for	the	few	cells	that	remain	unassigned,	the	mapping	of	the	orthogonal
array,	and	thus	the	selection	of	the	test	cases,	would	be	completed.	What	about	the
unassigned	cells—first,	why	do	they	exist?;	second,	what	should	be	done	with	them?

The	unassigned	cells	exist	because	the	orthogonal	array	chosen	was	"too	big."	The
perfect	size	would	be	an	816133	array;	that	is,	one	column	that	varies	from	1	to	8;	one
column	that	varies	from	1	to	6;	and	three	columns	that	vary	from	1	to	3.	Unfortunately,
that	specific	size	orthogonal	array	does	not	exist.	Orthogonal	arrays	cannot	be
constructed	for	any	arbitrary	size	parameters.	They	come	in	fixed,	"quantum"	sizes.
You	can	construct	one	"this	big";	you	can	construct	one	"that	big";	but	you	cannot
necessarily	construct	one	in-between.	Famous	Software	Tester	Mick	Jagger	gives
excellent	advice	regarding	this,	"You	can't	always	get	what	you	want,	But	if	you	try
sometimes,	You	just	might	find,	you	get	what	you	need."

Famous	Software	Tester



If	the	perfect	size	array	does	not	exist,	choose	one	that	is	slightly	bigger	and	apply
these	two	rules	to	deal	with	the	"excess."	The	first	rule	deals	with	extra	columns.	If
the	orthogonal	array	chosen	has	more	columns	than	needed	for	a	particular	test
scenario,	simply	delete	them.	The	array	will	remain	orthogonal.	The	second	rule	deals
with	extra	values	for	a	variable.	In	the	current	example,	column	3	runs	from	1	to	8	but
only	1	through	6	is	needed.	It	is	tempting	to	delete	the	rows	that	contain	these	cells
but	DON'T.	The	"orthogonalness"	may	be	lost.	Each	row	in	the	array	exists	to	provide
at	least	one	pair	combination	that	appears	nowhere	else	in	the	array.	If	you	delete	a
row,	you	lose	that	test	case.	Instead	of	deleting	them,	simply	convert	the	extra	cells
to	valid	values.	Some	automated	tools	randomly	choose	from	the	set	of	valid	values
for	each	cell	while	others	choose	one	valid	value	and	use	it	in	every	cell	within	a
column.	Either	approach	is	acceptable.	Using	this	second	approach,	we'll	complete
the	orthogonal	array.	Note	that	it	may	be	difficult	to	maintain	the	"balanced"	aspect	of
the	array	when	assigning	values	to	these	extra	cells.

Table	6-10:	L64	(8243)	with	a	full	mapping	of	all	its	columns	including	the
"extra"	cells.

Browser Plug-in Client	OS Server Server	OS

1 IE	5.0 None Win	95 IIS Win	NT

2 IE	5.0 None Win	ME IIS Win	NT

3 IE	5.0 None Win	98 IIS Win	NT

4 IE	5.0 None Win	NT IIS Win	NT



5 IE	5.0 MediaPlayer Win	2000 WebLogic Linux

6 IE	5.0 RealPlayer Win	95 Apache Win	2000

7 IE	5.0 RealPlayer Win	XP Apache Win	2000

8 IE	5.0 MediaPlayer Win	98 WebLogic Linux

9 IE	6.0 None Win	95 WebLogic Linux

10 IE	6.0 None Win	ME Apache Win	2000

11 IE	6.0 None Win	98 Apache Win	2000

12 IE	6.0 None Win	NT WebLogic Linux

13 IE	6.0 RealPlayer Win	2000 IIS Win	NT

14 IE	6.0 MediaPlayer Win	95 IIS Win	NT

15 IE	6.0 MediaPlayer Win	XP IIS Win	NT

16 IE	6.0 RealPlayer Win	98 IIS Win	NT

17 IE	5.5 MediaPlayer Win	95 Apache Win	NT

18 IE	5.5 RealPlayer Win	ME WebLogic Win	NT

19 IE	5.5 RealPlayer Win	98 WebLogic Win	NT

20 IE	5.5 MediaPlayer Win	NT Apache Win	NT

21 IE	5.5 None Win	2000 IIS Linux

22 IE	5.5 None Win	95 IIS Win	2000

23 IE	5.5 None Win	XP IIS Win	2000

24 IE	5.5 None Win	98 IIS Linux

25 Net	6.0 RealPlayer Win	95 IIS Linux

26 Net	6.0 MediaPlayer Win	ME IIS Win	2000

27 Net	6.0 MediaPlayer Win	98 IIS Win	2000

28 Net	6.0 RealPlayer Win	NT IIS Linux

29 Net	6.0 None Win	2000 Apache Win	NT

30 Net	6.0 None Win	95 WebLogic Win	NT

31 Net	6.0 None Win	XP WebLogic Win	NT

32 Net	6.0 None Win	98 Apache Win	NT

33 Net	6.1 RealPlayer Win	95 IIS Win	2000

34 Net	6.1 MediaPlayer Win	ME IIS Linux



35 Net	6.1 MediaPlayer Win	98 IIS Linux

36 Net	6.1 RealPlayer Win	NT IIS Win	2000

37 Net	6.1 None Win	2000 Apache Win	NT

38 Net	6.1 None Win	95 WebLogic Win	NT

39 Net	6.1 None Win	XP WebLogic Win	NT

40 Net	6.1 None Win	98 Apache Win	NT

41 Moz	1.1 MediaPlayer Win	95 Apache Win	NT

42 Moz	1.1 RealPlayer Win	ME WebLogic Win	NT

43 Moz	1.1 RealPlayer Win	98 WebLogic Win	NT

44 Moz	1.1 MediaPlayer Win	NT Apache Win	NT

45 Moz	1.1 None Win	2000 IIS Win	2000

46 Moz	1.1 None Win	95 IIS Linux

47 Moz	1.1 None Win	XP IIS Linux

48 Moz	1.1 None Win	98 IIS Win	2000

49 Net	7.0 None Win	95 WebLogic Win	2000

50 Net	7.0 None Win	ME Apache Linux

51 Net	7.0 None Win	98 Apache Linux

52 Net	7.0 None Win	NT WebLogic Win	2000

53 Net	7.0 RealPlayer Win	2000 IIS Win	NT

54 Net	7.0 MediaPlayer Win	95 IIS Win	NT

55 Net	7.0 MediaPlayer Win	XP IIS Win	NT

56 Net	7.0 RealPlayer Win	98 IIS Win	NT

57 Opera	7 None Win	95 IIS Win	NT

58 Opera	7 None Win	ME IIS Win	NT

59 Opera	7 None Win	98 IIS Win	NT

60 Opera	7 None Win	NT IIS Win	NT

61 Opera	7 MediaPlayer Win	2000 WebLogic Win	2000

62 Opera	7 RealPlayer Win	95 Apache Linux

63 Opera	7 RealPlayer Win	XP Apache Linux

64 Opera	7 MediaPlayer Win	98 WebLogic Win	2000



5.	 Construct	the	test	cases.

Now,	all	that	remains	is	to	construct	a	test	case	for	each	row	in	the	orthogonal	array.
Note	that	the	array	specifies	only	the	input	conditions.	An	oracle	(usually	the	tester)	is
required	to	determine	the	expected	result	for	each	test.

Allpairs	Algorithm

Using	orthogonal	arrays	is	one	way	to	identify	all	the	pairs.	A	second	way	is	to	use	an	algorithm
that	generates	the	pairs	directly	without	resorting	to	an	"external"	device	like	an	orthogonal
array.

Reference

James	Bach	provides	a	tool	to	generate	all	pairs	combinations	at	http://www.satisfice.com.
Click	on	Test	Methodology	and	look	for	Allpairs.

Ward	Cunningham	provides	further	discussion	and	the	source	code	for	a	Java	program	to
generate	all	pairs	combinations	at	http://fit.c2.com/wiki.cgi?AllPairs.

James	Bach	presents	an	algorithm	to	generate	all	pairs	in	Lessons	Learned	in	Software
Testing.	In	addition,	he	provides	a	program	called	"Allpairs"	that	will	generate	the	all	pairs
combinations.	It	is	available	at	http://www.satisfice.com.	Click	on	"Test	Methodology"	and	look
for	Allpairs.	Let's	apply	the	Allpairs	algorithm	to	the	previous	Web	site	testing	problem.

After	downloading	and	unzipping,	to	use	Allpairs	create	a	tab-delimited	table	of	the	variables
and	their	values.	If	you	are	a	Windows	user,	the	easiest	way	is	to	launch	Excel,	enter	the	data
into	the	spreadsheet,	and	then	SaveAs	a	.txt	file.	The	following	table	was	created	and	saved	as
input.txt.

Table	6-11:	Input	to	the	Allpairs	program.

Browser Client	OS Plug-in Server Server	OS

IE	5.0 Win	95 None IIS Win	NT
IE	5.5 Win	98 Real	Player Apache Win	2000
IE	6.0 Win	ME Media	Player WebLogic Linux
Netscape	6.0 Win	NT
Netscape	6.1 Win	2000
Netscape	7.0 Win	XP
Mozilla	1.1
Opera	7

http://www.satisfice.com
http://fit.c2.com/wiki.cgi?AllPairs
http://www.satisfice.com


Then	run	the	Allpairs	program	by	typing:	allpairs	input.txt	>	output.txt	where	output.txt	will
contain	the	list	of	all	pairs	test	cases.	The	following	table	was	created:

Table	6-12:	Output	from	the	Allpairs	program.

Browser Client	OS Plug-in Server Server	OS

1 IE	5.0 Win	95 None IIS Win	NT
2 IE	5.0 Win	98 Real	Player Apache Win	2000
3 IE	5.0 Win	ME Media	Player WebLogic Linux
4 IE	5.5 Win	95 Real	Player WebLogic Win	NT
5 IE	5.5 Win	98 None IIS Linux
6 IE	5.5 Win	ME None Apache Win	2000
7 IE	6.0 Win	95 Media	Player Apache Linux
8 IE	6.0 Win	98 Real	Player IIS Win	NT
9 IE	6.0 Win	ME None WebLogic Win	2000
10 Netscape	6.0 Win	ME Real	Player IIS Linux
11 Netscape	6.0 Win	NT Media	Player IIS Win	2000
12 Netscape	6.0 Win	2000 None Apache Win	NT
13 Netscape	6.1 Win	NT None WebLogic Linux
14 Netscape	6.1 Win	2000 Media	Player IIS Win	2000
15 Netscape	6.1 Win	XP Real	Player Apache Win	NT
16 Netscape	7.0 Win	NT Real	Player Apache Win	NT
17 Netscape	7.0 Win	2000 Media	Player WebLogic Linux
18 Netscape	7.0 Win	XP Media	Player IIS Win	2000
19 Mozilla	1.1 Win	XP Media	Player WebLogic Win	NT
20 Mozilla	1.1 Win	98 Media	Player Apache Linux
21 Mozilla1.1 Win	95 Real	Player IIS Win	2000
22 Opera	7 Win	XP None WebLogic Linux
23 Opera	7 Win	98 Real	Player WebLogic Win	2000
24 Opera	7 Win	ME Media	Player Apache Win	NT
25 IE	5.5 Win	2000 Real	Player ~WebLogic ~Linux
26 IE	5.5 Win	NT Media	Player ~IIS ~Win	NT
27 Netscape	6.0 Win	95 ~None WebLogic ~Win	2000



28 Netscape	7.0 Win	95 None ~Apache ~Linux
29 Mozilla	1.1 Win	ME None ~IIS ~Win	NT
30 Opera	7 Win	NT ~Real	Player IIS ~Linux
31 IE	5.0 Win	NT ~None ~Apache ~Win	2000
32 IE	5.0 Win	2000 ~Real	Player ~IIS ~Win	NT
33 IE	5.0 Win	XP ~None ~WebLogic ~Linux
34 IE	5.5 Win	XP ~Real	Player ~Apache ~Win	2000
35 IE	6.0 Win	2000 ~None ~Apache ~Win	2000
36 IE	6.0 Win	NT ~Real	Player ~WebLogic ~Win	NT
37 IE	6,0 Win	XP ~Media	Player ~IIS ~Linux
38 Netscape	6.0 Win	98 ~Media	Player ~WebLogic ~Win	NT
39 Netscape	6.0 Win	XP ~Real	Player ~Apache ~Linux
40 Netscape	6.1 Win	95 ~Media	Player ~Apache ~Win	2000
41 Netscape	6.1 Win	98 ~None ~IIS ~Win	NT
42 Netscape	6.1 Win	ME ~Real	Player ~WebLogic ~Linux
43 Netscape	7.0 Win	98 ~None ~WebLogic ~Win	2000
44 Netscape	7.0 Win	ME ~Real	Player -US ~Win	NT
45 Mozilla	1.1 Win	NT ~None ~Apache ~Linux
46 Mozilla	1.1 Win	2000 ~Real	Player ~WebLogic ~Win	2000
47 Opera	7 Win	95 ~Media	Player ~IIS ~Win	NT
48 Opera	7 Win	2000 ~None ~Apache ~Win	2000

When	a	particular	value	in	the	test	case	doesn't	matter,	because	all	of	its	pairings	have	already
been	selected,	it	is	marked	with	a	~.	Bach's	algorithm	chooses	the	value	that	has	been	paired
the	fewest	times	relative	to	the	others	in	the	test	case.	Any	other	value	could	be	substituted	for
one	prefixed	with	a	~	and	all	pairs	coverage	would	still	be	maintained.	This	might	be	done	to
test	more	commonly	used	or	more	critical	combinations	more	often.	In	addition,	Bach's	program
displays	information	on	how	the	pairings	were	done.	It	lists	each	pair,	shows	how	many	times
that	pair	occurs	in	the	table,	and	indicates	each	test	case	that	contains	that	pair.

Because	of	the	"balanced"	nature	of	orthogonal	arrays,	that	approach	required	sixty-four	test
cases.	The	"unbalanced"	nature	of	the	all	pairs	selection	algorithm	requires	only	forty-eight	test
cases,	a	savings	of	25	percent.

Note	that	the	combinations	chosen	by	the	Orthogonal	Array	method	may	not	be	the	same	as
those	chosen	by	Allpairs.	It	does	not	matter.	What	does	matter	is	that	all	of	the	pair



combinations	of	parameters	are	chosen.	Those	are	the	combinations	we	want	to	test.

Proponents	of	the	Allpairs	algorithm	point	out	that	given	a	problem	with	100	parameters,	each
capable	of	taking	on	one	of	two	values,	101	test	cases	would	be	required	using	a	(balanced)
orthogonal	array	while	the	un-balanced	all	pairs	approach	requires	only	ten	tests.	Since	many
applications	have	large	numbers	of	inputs	that	take	on	only	a	few	values	each,	they	argue	the
all	pairs	approach	is	superior.

Tool

The	AETG	tool	from	Telcordia	implements	the	all-pairs	testing	approach.	See
http://aetgweb.argreenhouse.com.

Final	Comments

In	some	situations,	constraints	exist	between	certain	choices	of	some	of	the	variables.	For
example,	Microsoft's	IIS	and	Apple's	MacOS	are	not	compatible.	It	is	certain	that	the	pairwise
techniques	will	choose	that	combination	for	test.	(Remember,	it	does	select	all	the	pairs.)	When
creating	pairwise	subsets	by	hand,	honoring	these	various	constraints	can	be	difficult.	Both	the
rdExpert	and	AETG	tools	have	this	ability.	You	define	the	constraints	and	the	tool	selects	pairs
meeting	those	constraints.

Given	the	two	approaches	to	pairwise	testing,	orthogonal	arrays	and	the	Allpairs	algorithm,
which	is	more	effective?	One	expert,	who	favors	orthogonal	arrays,	believes	that	the	coverage
provided	by	Allpairs	is	substantially	inferior.	He	notes	that	the	uniform	distribution	of	test	points
in	the	domain	offers	some	coverage	against	faults	that	are	more	complex	than	double-mode
faults.	Another	expert,	who	favors	the	Allpairs	approach,	notes	that	Allpairs	does,	in	fact,	test
all	the	pairs,	which	is	the	goal.	He	claims	there	is	no	evidence	that	the	orthogonal	array
approach	detects	more	defects.	He	also	notes	that	the	Allpairs	tool	is	available	free	on	the
Web.	What	both	experts	acknowledge	is	that	no	documented	studies	exist	comparing	the
efficacy	of	one	approach	over	the	other.

The	exciting	hope	of	pairwise	testing	is	that	by	creating	and	running	between	1	percent	to	20
percent	of	the	tests	you	will	find	between	70	percent	and	85	percent	of	the	total	defects.	There
is	no	promise	here,	only	a	hope.	Many	others	have	experienced	this	significant	result.	Try	this
technique.	Discover	whether	it	works	for	you.

Cohen	reported	that	in	addition	to	reducing	the	number	of	test	cases	and	increasing	the	defect
find	rate,	test	cases	created	by	the	Allpairs	algorithm	also	provided	better	code	coverage.	A
set	of	300	randomly	selected	tests	achieved	67	percent	statement	coverage	and	58	percent
decision	coverage	while	the	200	all	pairs	test	cases	achieved	92	percent	block	coverage	and
85	percent	decision	coverage,	a	significant	increase	in	coverage	with	fewer	test	cases.

One	final	comment—it	is	possible	that	certain	important	combinations	may	be	missed	by	both
pairwise	approaches.	The	80:20	rule	tells	us	that	combinations	are	not	uniformly	important.	Use
your	judgment	to	determine	if	certain	additional	tests	should	be	created	for	those	combinations.

http://aetgweb.argreenhouse.com


In	the	previous	example	we	can	be	assured	that	the	distribution	of	browsers	is	not	identical.	It
would	be	truly	amazing	if	12.5	percent	of	our	users	had	IE	5.0,	12.5	percent	had	IE	5.5,	12.5
percent	had	IE	6.0,	etc.	Certain	combinations	occur	more	frequently	than	others.	In	addition,
some	combinations	exist	that,	while	used	infrequently,	absolutely	positively	must	work	properly
—"shut	down	the	nuclear	reactor"	is	a	good	example.	In	case	pairwise	misses	an	important
combination,	please	add	that	combination	to	your	test	cases.



Applicability	and	Limitations
Like	other	test	design	approaches	previously	presented,	pairwise	testing	can	significantly
reduce	the	number	of	test	cases	that	must	be	created	and	executed.	It	is	equally	applicable	at
the	unit,	integration,	system,	and	acceptance	test	levels.	All	it	requires	are	combinations	of
inputs,	each	taking	on	various	values,	that	result	in	a	combinatorial	explosion,	too	many
combinations	to	test.

Remember,	there	is	no	underlying	"software	defect	physics"	that	guarantees	pairwise	testing
will	be	of	benefit.	There	is	only	one	way	to	know—try	it.



Summary
When	the	number	of	combinations	to	test	is	very	large,	do	not	to	attempt	to	test	all
combinations	for	all	the	values	for	all	the	variables,	but	test	all	pairs	of	variables.	This
significantly	reduces	the	number	of	tests	that	must	be	created	and	run.

Studies	suggest	that	most	defects	are	either	single-mode	defects	(the	function	under
test	simply	does	not	work)	or	double-mode	defects	(the	pairing	of	this	function/module
with	that	function/module	fails).	Pairwise	testing	defines	a	minimal	subset	that	guides	us
to	test	for	all	single-mode	and	double-mode	defects.	The	success	of	this	technique	on
many	projects,	both	documented	and	undocumented,	is	a	great	motivation	for	its	use.

An	orthogonal	array	is	a	two-dimensional	array	of	numbers	that	has	this	interesting
property—choose	any	two	columns	in	the	array,	all	the	combinations	will	occur	in	every
column	pair.

There	is	no	underlying	"software	defect	physics"	that	guarantees	pairwise	testing	will
be	of	benefit.	There	is	only	one	way	to	know—try	it.



Practice
1.	 Neither	the	Brown	&	Donaldson	nor	the	Stateless	University	Registration	System	case

studies	contain	huge	numbers	of	combinations	suitable	for	the	pairwise	testing
approach.	As	exercises,	use	the	orthogonal	array	and/or	all	pairs	technique	on	the
other	two	examples	in	this	chapter.	Determine	the	set	of	pairwise	test	cases	using	the
chosen	technique.

1.	 A	bank	has	created	a	new	data	processing	system	that	is	ready	for	testing.
This	bank	has	different	kinds	of	customers—consumers,	very	important
consumers,	businesses,	and	non-profits;	different	kinds	of	accounts—
checking,	savings,	mortgages,	consumer	loans,	and	commercial	loans;	they
operate	in	different	states,	each	with	different	regulations—California,
Nevada,	Utah,	Idaho,	Arizona,	and	New	Mexico.

2.	 In	an	object-oriented	system,	an	object	of	class	A	can	send	a	message
containing	a	parameter	P	to	an	object	of	class	X.	Classes	B,	C,	and	D
inherit	from	A	so	they	too	can	send	the	message.	Classes	Q,	R,	S,	and	T
inherit	from	P	so	they	too	can	be	passed	as	the	parameter.	Classes	Y	and
Z	inherit	from	X	so	they	too	can	receive	the	message.
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Chapter	7:	State-Transition	Testing
Colonel	Cleatus	Yorbville	had	been	one	seriously	bored	astronaut	for	the	first	few	months
of	his	diplomatic	mission	on	the	third	planet	of	the	Frangelicus	XIV	system,	but	all	that
had	changed	on	the	day	he'd	discovered	that	his	tiny,	multipedal	and	infinitely	hospitable
alien	hosts	were	not	only	edible	but	tasted	remarkably	like	that	stuff	that's	left	on	the	pan
after	you've	made	cinnamon	buns	and	burned	them	a	little.

—	Mark	Silcox



Introduction
State-Transition	diagrams,	like	decision	tables,	are	another	excellent	tool	to	capture	certain
types	of	system	requirements	and	to	document	internal	system	design.	These	diagrams
document	the	events	that	come	into	and	are	processed	by	a	system	as	well	as	the	system's
responses.	Unlike	decision	tables,	they	specify	very	little	in	terms	of	processing	rules.	When	a
system	must	remember	something	about	what	has	happened	before	or	when	valid	and	invalid
orders	of	operations	exist,	state-transition	diagrams	are	excellent	tools	to	record	this
information.

These	diagrams	are	also	vital	tools	in	the	tester's	personal	toolbox.	Unfortunately,	many
analysts,	designers,	programmers,	and	testers	are	not	familiar	with	this	technique.



Technique

State-Transition	Diagrams

It	is	easier	to	introduce	state-transition	diagrams	by	example	rather	than	by	formal	definition.
Since	neither	Brown	&	Donaldson	nor	the	Stateless	University	Registration	System	has
substantial	state-transition	based	requirements	let's	consider	a	different	example.	To	get	to
Stateless	U,	we	need	an	airline	reservation.	Let's	call	our	favorite	carrier	(Grace	L.	Ferguson
Airline	&	Storm	Door	Company)	to	make	a	reservation.	We	provide	some	information	including
departure	and	destination	cities,	dates,	and	times.	A	reservation	agent,	acting	as	our	interface
to	the	airline's	reservation	system,	uses	that	information	to	make	a	reservation.	At	that	point,
the	Reservation	is	in	the	Made	state.	In	addition,	the	system	creates	and	starts	a	timer.	Each
reservation	has	certain	rules	about	when	the	reservation	must	be	paid	for.	These	rules	are
based	on	destination,	class	of	service,	dates,	etc.	If	this	timer	expires	before	the	reservation	is
paid	for,	the	reservation	is	cancelled	by	the	system.	In	state-transition	notation	this	information

is	recorded	as:	 	
Figure	7-1:	The	Reservation	is	Made.

The	circle	represents	one	state	of	the	Reservation—in	this	case	the	Made	state.	The	arrow
shows	the	transition	into	the	Made	state.	The	description	on	the	arrow,	giveInfo,	is	an	event
that	comes	into	the	system	from	the	outside	world.	The	command	after	the	"/"	denotes	an
action	of	the	system;	in	this	case	startPayTimer.	The	black	dot	indicates	the	starting	point	of
the	diagram.

Sometime	after	the	Reservation	is	made,	but	(hopefully)	before	the	PayTimer	expires,	the
Reservation	is	paid	for.	This	is	represented	by	the	arrow	labeled	PayMoney.	When	the
Reservation	is	paid	it	transitions	from	the	Made	state	to	the	Paid	state.



	
Figure	7-2:	The	Reservation	transitions	to	the	Paid	state.

Before	we	proceed	let's	define	the	terms	more	formally:

State	(represented	by	a	circle)—A	state	is	a	condition	in	which	a	system	is	waiting	for
one	or	more	events.	States	"remember"	inputs	the	system	has	received	in	the	past	and
define	how	the	system	should	respond	to	subsequent	events	when	they	occur.	These
events	may	cause	state-transitions	and/or	initiate	actions.	The	state	is	generally
represented	by	the	values	of	one	or	more	variables	within	a	system.

Transition	(represented	by	an	arrow)—A	transition	represents	a	change	from	one	state
to	another	caused	by	an	event.

Event	(represented	by	a	label	on	a	transition)—An	event	is	something	that	causes	the
system	to	change	state.	Generally,	it	is	an	event	in	the	outside	world	that	enters	the
system	through	its	interface.	Sometimes	it	is	generated	within	the	system	such	as
Timer	expires	or	Quantity	on	Hand	goes	below	Reorder	Point.	Events	are
considered	to	be	instantaneous.	Events	can	be	independent	or	causally	related	(event
B	cannot	take	place	before	event	A).	When	an	event	occurs,	the	system	can	change
state	or	remain	in	the	same	state	and/or	execute	an	action.	Events	may	have
parameters	associated	with	them.	For	example,	Pay	Money	may	indicate	Cash,
Check,	Debit	Card,	or	Credit	Card.

Action	(represented	by	a	command	following	a	"/")—An	action	is	an	operation	initiated
because	of	a	state	change.	It	could	be	print	a	Ticket,	display	a	Screen,	turn	on	a
Motor,	etc.	Often	these	actions	cause	something	to	be	created	that	are	outputs	of	the
system.	Note	that	actions	occur	on	transitions	between	states.	The	states	themselves
are	passive.

The	entry	point	on	the	diagram	is	shown	by	a	black	dot	while	the	exit	point	is	shown	by
a	bulls-eye	symbol.

This	notation	was	created	by	Mealy.	An	alternate	notation	has	been	defined	by	Moore	but	is
less	frequently	used.	For	a	much	more	in-depth	discussion	of	state-transition	diagrams	see
Fowler	and	Scott's	book,	UML	Distilled:	A	Brief	Guide	To	The	Standard	Object	Modeling
Language.	It	discusses	more	complex	issues	such	as	partitioned	and	nested	state-transition
diagrams.



Note	that	the	state-transition	diagram	represents	one	specific	entity	(in	this	case	a
Reservation).	It	describes	the	states	of	a	reservation,	the	events	that	affect	the	reservation,
the	transitions	of	the	reservation	from	one	state	to	another,	and	actions	that	are	initiated	by	the
reservation.	A	common	mistake	is	to	mix	different	entities	into	one	state-transition	diagram.	An
example	might	be	mixing	Reservation	and	Passenger	with	events	and	actions	corresponding
to	each.

From	the	Paid	state	the	Reservation	transitions	to	the	Ticketed	state	when	the	print
command	(an	event)	is	issued.	Note	that	in	addition	to	entering	the	Ticketed	state,	a	Ticket	is
output	by	the	system.

	
Figure	7-3:	The	Reservation	transitions	to	the	Ticketed	state.

From	the	Ticketed	state	we	giveTicket	to	the	gate	agent	to	board	the	plane.

	
Figure	7-4:	The	Reservation	transitions	to	the	Used	state.

After	some	other	action	or	period	of	time,	not	indicated	on	this	diagram,	the	state-transition
path	ends	at	the	bulls-eye	symbol.



	
Figure	7-5:	The	path	ends.

Does	this	diagram	show	all	the	possible	states,	events,	and	transitions	in	the	life	of	a
Reservation?	No.	If	the	Reservation	is	not	paid	for	in	the	time	allotted	(the	PayTimer
expires),	it	is	cancelled	for	non-payment.

	
Figure	7-6:	The	PayTimer	expires	and	the	Reservation	is	cancelled	for	nonpayment.

Finished	yet?	No.	Customers	sometimes	cancel	their	reservations.	From	the	Made	state	the
customer	(through	the	reservation	agent)	asks	to	cancel	the	Reservation.	A	new	state,
Cancelled	By	Customer,	is	required.



	
Figure	7-7:	Cancel	the	Reservation	from	the	Made	state.

In	addition,	a	Reservation	can	be	cancelled	from	the	Paid	state.	In	this	case	a	Refund	should
be	generated	and	leave	the	system.	The	resulting	state	again	is	Cancelled	By	Customer.

	
Figure	7-8:	Cancellation	from	the	Paid	state.

One	final	addition.	From	the	Ticketed	state	the	customer	can	cancel	the	Reservation.	In	that
case	a	Refund	should	be	generated	and	the	next	state	should	be	Cancelled	by	Customer.
But	this	is	not	sufficient.	The	airline	will	generate	a	refund	but	only	when	it	receives	the	printed
Ticket	from	the	customer.	This	introduces	one	new	notational	element—square	brackets	[]	that
contain	a	conditional	that	can	be	evaluated	either	True	or	False.	This	conditional	acts	as	a
guard	allowing	the	transition	only	if	the	condition	is	true.



	
Figure	7-9:	Cancellation	from	the	Ticketed	state.

Note	that	the	diagram	is	still	incomplete.	No	arrows	and	bulls-eyes	emerge	from	the	Cancelled
states.	Perhaps	we	could	reinstate	a	reservation	from	the	Cancelled	NonPay	state.	We	could
continue	expanding	the	diagram	to	include	seat	selection,	flight	cancellation,	and	other
significant	events	affecting	the	reservation	but	this	is	sufficient	to	illustrate	the	technique.

As	described,	state-transition	diagrams	express	complex	system	rules	and	interactions	in	a
very	compact	notation.	Hopefully,	when	this	complexity	exists,	analysts	and	designers	will	have
created	state-transition	diagrams	to	document	system	requirements	and	to	guide	their	design.

State-Transition	Tables

A	state-transition	diagram	is	not	the	only	way	to	document	system	behavior.	The	diagrams	may
be	easier	to	comprehend,	but	state-transition	tables	may	be	easier	to	use	in	a	complete	and
systematic	manner.	State-transition	tables	consist	of	four	columns—Current	State,	Event,
Action,	and	Next	State.

Table	7-1:	State-Transition	table	for	Reservation.

Current	State Event Action Next	State

null giveInfo startPayTimer Made

null payMoney -- null

null print -- null

null giveTicket -- null

null cancel -- null

null PayTimerExpires -- null

Made giveInfo -- Made

Made payMoney -- Paid



Made print -- Made

Made giveTicket -- Made

Made cancel -- Can-Cust

Made PayTimerExpires -- Can-NonPay

Paid giveInfo -- Paid

Paid payMoney -- Paid

Paid print Ticket Ticketed

Paid giveTicket -- Paid

Paid cancel Refund Can-Cust

Paid PayTimerExpires -- Paid

Ticketed giveInfo -- Ticketed

Ticketed payMoney -- Ticketed

Ticketed print -- Ticketed

Ticketed giveTicket -- Used

Ticketed cancel Refund Can-Cust

Ticketed PayTimerExpires -- Ticketed

Used giveInfo -- Used

Used payMoney -- Used

Used print -- Used

Used giveTicket -- Used

Used cancel -- Used

Used PayTimerExpires -- Used

Can-NonPay giveInfo -- Can-NonPay

Can-NonPay payMoney -- Can-NonPay

Can-NonPay print -- Can-NonPay

Can-NonPay giveTicket -- Can-NonPay

Can-NonPay cancel -- Can-NonPay

Can-NonPay PayTimerExpires -- Can-NonPay

Can-Cust givelnfo -- Can-Cust



Can-Cust payMoney -- Can-Cust

Can-Cust print -- Can-Cust

Can-Cust giveTicket -- Can-Cust

Can-Cust cancel -- Can-Cust

Can-Cust PayTimerExpires -- Can-Cust

The	advantage	of	a	state-transition	table	is	that	it	lists	all	possible	state-transition	combinations,
not	just	the	valid	ones.	When	testing	critical,	high-risk	systems	such	as	avionics	or	medical
devices,	testing	every	state-transition	pair	may	be	required,	including	those	that	are	not	valid.	In
addition,	creating	a	state-transition	table	often	unearths	combinations	that	were	not	identified,
documented,	or	dealt	with	in	the	requirements.	It	is	highly	beneficial	to	discover	these	defects
before	coding	begins.

Key
Point

The	advantage	of	a	state-transition	table	is	that	it	lists	all	possible	state-transition
combinations,	not	just	the	valid	ones.

Using	a	state-transition	table	can	help	detect	defects	in	implementation	that	enable	invalid	paths
from	one	state	to	another.	The	disadvantage	of	such	tables	is	that	they	become	very	large	very
quickly	as	the	number	of	states	and	events	increases.	In	addition,	the	tables	are	generally
sparse;	that	is,	most	of	the	cells	are	empty.

Creating	Test	Cases

Information	in	the	state-transition	diagrams	can	easily	be	used	to	create	test	cases.	Four
different	levels	of	coverage	can	be	defined:

1.	 Create	a	set	of	test	cases	such	that	all	states	are	"visited"	at	least	once	under	test.
The	set	of	three	test	cases	shown	below	meets	this	requirement.	Generally	this	is	a
weak	level	of	test	coverage.

	



Figure	7-10:	A	set	of	test	cases	that	"visit"	each	state.

2.	 Create	a	set	of	test	cases	such	that	all	events	are	triggered	at	least	once	under	test.
Note	that	the	test	cases	that	cover	each	event	can	be	the	same	as	those	that	cover
each	state.	Again,	this	is	a	weak	level	of	coverage.

	
Figure	7-11:	A	set	of	test	cases	that	trigger	all	events	at	least	once.

3.	 Create	a	set	of	test	cases	such	that	all	paths	are	executed	at	least	once	under	test.
While	this	level	is	the	most	preferred	because	of	its	level	of	coverage,	it	may	not	be
feasible.	If	the	state-transition	diagram	has	loops,	then	the	number	of	possible	paths
may	be	infinite.	For	example,	given	a	system	with	two	states,	A	and	B,	where	A
transitions	to	B	and	B	transitions	to	A.	A	few	of	the	possible	paths	are:	A→B

A→B→A

A→B→A→B→A→B

A→B→A→B→A→B→A	A→B→A→B→A→B→A→B→A→B

...

and	so	on	forever.	Testing	of	loops	such	as	this	can	be	important	if	they	may	result	in
accumulating	computational	errors	or	resource	loss	(locks	without	corresponding
releases,	memory	leaks,	etc.).

Key
Point

Testing	every	transition	is	usually	the	recommended	level	of	coverage
for	a	state-transition	diagram.

4.	 Create	a	set	of	test	cases	such	that	all	transitions	are	exercised	at	least	once	under
test.	This	level	of	testing	provides	a	good	level	of	coverage	without	generating	large
numbers	of	tests.	This	level	is	generally	the	one	recommended.



	
Figure	7-12:	A	set	of	test	cases	that	trigger	all	transitions	at	least	once.

Test	cases	can	also	be	read	directly	from	the	state-transition	table.	The	gray	rows	in	the
following	table	show	all	the	valid	transitions.

Table	7-2:	Testing	all	valid	transitions	from	a	State-transition	table.

Current	State Event Action Next	State

null giveInfo startPayTimer Made

null payMoney -- null

null print -- null

null giveTicket -- null

null cancel -- null

null PayTimerExpires -- null

Made giveInfo -- Made

Made payMoney -- Paid

Made print -- Made

Made giveTicket -- Made

Made cancel -- Can-Cust

Made PayTimerExpires -- Can-NonPay

Paid giveInfo -- Paid

Paid payMoney -- Paid

Paid print Ticket Ticketed

Paid giveTicket -- Paid



Paid cancel Refund Can-Cust

Paid PayTimerExpires -- Paid

Ticketed giveInfo -- Ticketed

Ticketed payMoney -- Ticketed

Ticketed print -- Ticketed

Ticketed giveTicket -- Used

Ticketed cancel Refund Can-Cust

Ticketed PayTimerExpires -- Ticketed

Used giveInfo -- Used

Used payMoney -- Used

Used print -- Used

Used giveTicket -- Used

Used cancel -- Used

Used PayTimerExpires -- Used

Can-NonPay giveInfo -- Can-NonPay

Can-NonPay payMoney -- Can-NonPay

Can-NonPay print -- Can-NonPay

Can-NonPay giveTicket -- Can-NonPay

Can-NonPay cancel -- Can-NonPay

Can-NonPay PayTimerExpires -- Can-NonPay

Can-Cust givelnfo -- Can-Cust

Can-Cust payMoney -- Can-Cust

Can-Cust print -- Can-Cust

Can-Cust giveTicket -- Can-Cust

Can-Cust cancel -- Can-Cust

Can-Cust PayTimerExpires -- Can-Cust

In	addition,	depending	on	the	system	risk,	you	may	want	to	create	test	cases	for	some	or	all	of
the	invalid	state/event	pairs	to	make	sure	the	system	has	not	implemented	invalid	paths.



Applicability	and	Limitations
State-Transition	diagrams	are	excellent	tools	to	capture	certain	system	requirements,	namely
those	that	describe	states	and	their	associated	transitions.	These	diagrams	then	can	be	used
to	direct	our	testing	efforts	by	identifying	the	states,	events,	and	transitions	that	should	be
tested.

State-Transition	diagrams	are	not	applicable	when	the	system	has	no	state	or	does	not	need	to
respond	to	real-time	events	from	outside	of	the	system.	An	example	is	a	payroll	program	that
reads	an	employee's	time	record,	computes	pay,	subtracts	deductions,	saves	the	record,	prints
a	paycheck,	and	repeats	the	process.



Summary
State-Transition	diagrams	direct	our	testing	efforts	by	identifying	the	states,	events,
actions,	and	transitions	that	should	be	tested.	Together,	these	define	how	a	system
interacts	with	the	outside	world,	the	events	it	processes,	and	the	valid	and	invalid	order
of	these	events.

A	state-transition	diagram	is	not	the	only	way	to	document	system	behavior.	They	may
be	easier	to	comprehend,	but	state-transition	tables	may	be	easier	to	use	in	a
complete	and	systematic	manner.

The	generally	recommended	level	of	testing	using	state-transition	diagrams	is	to	create
a	set	of	test	cases	such	that	all	transitions	are	exercised	at	least	once	under	test.	In
high-risk	systems,	you	may	want	to	create	even	more	test	cases,	approaching	all	paths
if	possible.



Practice
1.	 This	exercise	refers	to	the	Stateless	University	Registration	System	Web	site

described	in	Appendix	B.	Below	is	a	state-transition	diagram	for	the	"enroll	in	a
course"	and	"drop	a	course"	process.	Determine	a	set	of	test	cases	that	you	feel
adequately	cover	the	enroll	and	drop	process.

The	following	terms	are	used	in	the	diagram:	Events
create	-	Create	a	new	course.

enroll	-	Add	a	student	to	the	course.

drop	-	Drop	a	student	from	the	course.

Attributes
ID	-	The	student	identification	number.

max	-	The	maximum	number	of	students	a	course	can	hold.

#enrolled	-	The	number	of	students	currently	enrolled	in	the	course.

#waiting	-	The	number	of	students	currently	on	the	Wait	List	for	this	course.

Tests
isEnrolled	-	Answers	"is	the	student	enrolled	(on	the	Section	List)?"

onWaitList	-	Answers	"is	the	student	on	the	WaitList?"

Lists
SectionList	-	A	list	of	students	enrolled	in	the	class.

WaitList	-	A	list	of	students	waiting	to	be	enrolled	in	a	full	class.

Symbols
++	Increment	by	1.

--	Decrement	by	1.



	
Figure	7-13:	State-transition	diagram	for	enroll	and	drop	a	course	at	Stateless	U.
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Chapter	8:	Domain	Analysis	Testing
Standing	in	the	concessions	car	of	the	Orient	Express	as	it	hissed	and	lurched	away	from
the	station,	Special	Agent	Chu	could	feel	enemy	eyes	watching	him	from	the	inky
shadows	and	knew	that	he	was	being	tested,	for	although	he	had	never	tasted	a	plug	of
tobacco	in	his	life,	he	was	impersonating	an	arms	dealer	known	to	be	a	connoisseur,	so
he	knew	that	he,	the	Chosen	One,	Chow	Chu,	had	no	choice	but	to	choose	the	choicest
chew	on	the	choo-choo.

—	Loren	Haarsma



Introduction
In	the	chapters	on	Equivalence	Class	and	Boundary	Value	testing,	we	considered	the	testing	of
individual	variables	that	took	on	values	within	specified	ranges.	In	this	chapter	we	will	consider
the	testing	of	multiple	variables	simultaneously.	There	are	two	reasons	to	consider	this:

We	rarely	will	have	time	to	create	test	cases	for	every	variable	in	our	systems.	There
are	simply	too	many.

Often	variables	interact.	The	value	of	one	variable	constrains	the	acceptable	values	of
another.	In	this	case,	certain	defects	cannot	be	discovered	by	testing	them	individually.

Domain	analysis	is	a	technique	that	can	be	used	to	identify	efficient	and	effective	test	cases
when	multiple	variables	can	or	should	be	tested	together.	It	builds	on	and	generalizes
equivalence	class	and	boundary	value	testing	to	n	simultaneous	dimensions.	Like	those
techniques,	we	are	searching	for	situations	where	the	boundary	has	been	defined	or
implemented	incorrectly.

Key
Point

Domain	analysis	is	a	technique	that	can	be	used	to	identify	efficient	and	effective
test	cases	when	multiple	variables	should	be	tested	together.

In	two	dimensions	(with	two	interacting	parameters)	the	following	defects	can	occur:

A	shifted	boundary	in	which	the	boundary	is	displaced	vertically	or	horizontally

A	tilted	boundary	in	which	the	boundary	is	rotated	at	an	incorrect	angle

A	missing	boundary

An	extra	boundary

Figure	8-1	is	adapted	from	Binder.	It	illustrates	these	four	types	of	defects	graphically.



	
Figure	8-1:	Two	dimensional	boundary	defects.

Certainly	there	can	be	interactions	between	three	or	more	variables,	but	the	diagrams	are	more
difficult	to	visualize.



Technique
The	domain	analysis	process	guides	us	in	choosing	efficient	and	effective	test	cases.	First,	a
number	of	definitions:

An	on	point	is	a	value	that	lies	on	a	boundary.

An	off	point	is	a	value	that	does	not	lie	on	a	boundary.

An	in	point	is	a	value	that	satisfies	all	the	boundary	conditions	but	does	not	lie	on	a
boundary.

An	out	point	is	a	value	that	does	not	satisfy	any	boundary	condition.

Choosing	on	and	off	points	is	more	complicated	that	it	may	appear.

When	the	boundary	is	closed	(defined	by	an	operator	containing	an	equality,	i.e.,	≤,	≥	or
=)	so	that	points	on	the	boundary	are	included	in	the	domain,	then	an	on	point	lies	on
the	boundary	and	is	included	within	the	domain.	An	off	point	lies	outside	the	domain.

When	the	boundary	is	open	(defined	by	an	inequality	operator	<	or	>)	so	that	points	on
the	boundary	are	not	included	in	the	domain,	then	an	on	point	lies	on	the	boundary	but
is	not	included	within	the	domain.	An	off	point	lies	inside	the	domain.

Confused?	At	this	point	examples	are	certainly	in	order.

	
Figure	8-2:	Examples	of	on,	off,	in,	and	out	points	for	both	closed	and	open	boundaries.

On	the	left	is	an	example	of	a	closed	boundary.	The	region	defined	consists	of	all	the	points
greater	than	or	equal	to	10.	The	on	point	has	the	value	10.	The	off	point	is	slightly	off	the
boundary	and	outside	the	domain.	The	in	point	is	within	the	domain.	The	out	point	is	outside	the
domain.

On	the	right	is	an	example	of	an	open	boundary.	The	region	defined	consists	of	all	the	points
greater	than	(but	not	equal	to)	10.	Again,	the	on	point	has	a	value	of	10.	The	off	point	is	slightly
off	the	boundary	and	inside	the	domain.	The	in	point	is	within	the	domain.	The	out	point	is
outside	the	domain.

Having	defined	these	points,	the	1x1	("one-by-one")	domain	analysis	technique	instructs	us	to
choose	these	test	cases:



For	each	relational	condition	(≥,	>,	≤,	or	<)	choose	one	on	point	and	one	off	point.

For	each	strict	equality	condition	(=)	choose	one	on	point	and	two	off	points,	one
slightly	less	than	the	conditional	value	and	one	slightly	greater	than	the	value.

Note	that	there	is	no	reason	to	repeat	identical	tests	for	adjacent	domains.	If	an	off	point	for
one	domain	is	the	in	point	for	another,	do	not	duplicate	these	tests.

Binder	suggests	a	very	useful	table	for	documenting	1x1	domain	analysis	test	cases	called	the
Domain	Test	Matrix.

Table	8-1:	Example	Domain	Test	Matrix.

Note	that	test	cases	1	through	8	test	the	on	points	and	off	points	for	each	condition	of	the	first
variable	(X1)	while	holding	the	value	of	the	second	variable	(X2)	at	a	typical	in	point.	Test	cases
9	through	16	hold	the	first	variable	at	a	typical	in	point	while	testing	the	on	and	off	points	for
each	condition	of	the	second	variable.	Additional	variables	and	conditions	would	follow	the
same	pattern.



Example
Admission	to	Stateless	University	is	made	by	considering	a	combination	of	high	school	grades
and	ACT	test	scores.	The	shaded	cells	in	the	following	table	indicate	the	combinations	that
would	guarantee	acceptance.	Grade	Point	Averages	(GPAs)	are	shown	across	the	top	while
ACT	scores	are	shown	down	the	left	side.	Stateless	University	is	a	fairly	exclusive	school	in
terms	of	its	admission	policy.

Explanation

The	ACT	Assessment	is	an	examination	designed	to	assess	high	school	students'	general
educational	development	and	their	ability	to	complete	college-level	work.

The	Grade	Point	Average	is	based	on	converting	letter	grades	to	numeric	values	A	=	4.0
(Best)

B	=	3.0

C	=	2.0	(Average)

D	=	1.0

Table	8-2:	Stateless	University	Admissions	Matrix.

This	table	can	be	represented	as	the	solution	set	of	these	three	linear	equations:	ACT	≤	36	(the
highest	score	possible)	GPA	≤	4.0	(the	highest	value	possible)	10*GPA	+	ACT	≥	71

(The	third	equation	can	be	found	by	using	the	good	old	y=mx+b	formula	from	elementary
algebra.	Use	points	{ACT=36,	GPA=3.5}	and	{ACT=31,	GPA=4.0}	and	crank—that's	math
slang	for	solve	the	pair	of	simultaneous	equations	obtained	by	substituting	each	of	these	two
points	into	the	y=mx+b	equation.)



	
Figure	8-3:	Stateless	University	Admissions	Matrix	in	graphical	form.

The	following	test	cases	cover	these	three	boundaries	using	the	1x1	domain	analysis	process.

Table	8-3:	1x1	Domain	Analysis	test	cases	for	Stateless	University	admissions.

Test	cases	1	and	2	verify	the	GPA	≤	4.0	constraint.	Case	1	checks	on	the	GPA	=	4.0	boundary
while	case	2	checks	just	outside	the	boundary	with	GPA	=	4.1.	Both	of	these	cases	use	typical
values	for	the	ACT	and	GPA/ACT	constraints.

Test	cases	3	and	4	verify	the	ACT	≤	36	constraint.	Case	3	checks	on	the	ACT	=	36	boundary
while	case	4	checks	just	outside	the	boundary	with	ACT	=	37.	Both	of	these	cases	use	typical
values	for	the	GPA	and	GPA/ACT	constraints.

Test	cases	5	and	6	verify	the	10*GPA	+	ACT	≥	71	constraint.	Case	5	checks	on	the	GPA	=	3.7
and	ACT	=	34	boundary	while	case	6	checks	just	outside	the	boundary	with	GPA=3.8	and	ACT
=	32.	Both	of	these	cases	use	typical	values	for	the	GPA	and	ACT	constraints.



Applicability	and	Limitations
Domain	analysis	is	applicable	when	multiple	variables	(such	as	input	fields)	should	be	tested
together	either	for	efficiency	or	because	of	a	logical	interaction.	While	this	technique	is	best
suited	to	numeric	values,	it	can	be	generalized	to	Booleans,	strings,	enumerations,	etc.



Summary
Domain	analysis	facilitates	the	testing	of	multiple	variables	simultaneously.	It	is	useful
because	we	rarely	will	have	time	to	create	test	cases	for	every	variable	in	our	systems.
There	are	simply	too	many.	In	addition,	often	variables	interact.	When	the	value	of	one
variable	constrains	the	acceptable	values	of	another,	certain	defects	cannot	be
discovered	by	testing	them	individually.

It	builds	on	and	generalizes	equivalence	class	and	boundary	value	testing	to	n
simultaneous	dimensions.	Like	those	techniques,	we	are	searching	for	situations	where
the	boundary	has	been	implemented	incorrectly.

In	using	the	1x1	domain	analysis	technique	for	each	relational	condition	(≥,	>,	≤,	or	<)
we	choose	one	on	point	and	one	off	point.	For	each	strict	equality	condition	(=)	we
choose	one	on	point	and	two	off	points,	one	slightly	less	than	the	conditional	value	and
one	slightly	greater	than	the	value.



Practice
1.	 Stateless	University	prides	itself	in	preparing	not	just	educated	students	but	good

citizens	of	their	nation.	(That's	what	their	advertising	brochure	says.)	In	addition	to
their	major	and	minor	coursework,	Stateless	U.	requires	each	student	to	take	(and
pass)	a	number	of	General	Education	classes.	These	are:

College	Algebra	(the	student	may	either	take	the	course	or	show	competency
through	testing).

Our	Nation's	Institutions—a	survey	course	of	our	nation's	history,	government,
and	place	in	the	world.

From	four	to	sixteen	hours	of	Social	Science	courses	(numbers	100–299).

From	four	to	sixteen	hours	of	Physical	Science	courses	(numbers	100–299)

No	more	than	twenty-four	combined	hours	of	Social	Science	and	Physical
Science	courses	may	be	counted	toward	graduation.

Apply	1	x	1	domain	analysis	to	these	requirements,	derive	the	test	cases,
and	use	Binder's	Domain	Test	Matrix	to	document	them.
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Chapter	9:	Use	Case	Testing
The	Insect	Keeper	General,	sitting	astride	his	giant	hovering	aphid,	surveyed	the
battlefield	which	reeked	with	the	stench	of	decay	and	resonated	with	the	low	drone	of	the
tattered	and	dying	mutant	swarms	as	their	legs	kicked	forlornly	at	the	sky	before	turning
to	his	master	and	saying,	'My	Lord,	your	flies	are	undone.'

—	Andrew	Vincent



Introduction
Up	until	now	we	have	examined	test	case	design	techniques	for	parts	of	a	system—input
variables	with	their	ranges	and	boundaries,	business	rules	as	represented	in	decision	tables,
and	system	behaviors	as	represented	in	state-transition	diagrams.	Now	it	is	time	to	consider
test	cases	that	exercise	a	system's	functionalities	from	start	to	finish	by	testing	each	of	its
individual	transactions.

Defining	the	transactions	that	a	system	processes	is	a	vital	part	of	the	requirements	definition
process.	Various	approaches	to	documenting	these	transactions	have	been	used	in	the	past.
Examples	include	flowcharts,	HIPO	diagrams,	and	text.	Today,	the	most	popular	approach	is
the	use	case	diagram.	Like	decision	tables	and	state-transition	diagrams,	use	cases	are	usually
created	by	developers	for	developers.	But,	like	these	other	techniques,	use	cases	hold	a
wealth	of	information	useful	to	testers.

Use	cases	were	created	by	Ivar	Jacobsen	and	popularized	in	his	book	Object-Oriented
Software	Engineering:	A	Use	Case	Driven	Approach.	Jacobsen	defines	a	"use	case"	as	a
scenario	that	describes	the	use	of	a	system	by	an	actor	to	accomplish	a	specific	goal.	By
"actor"	we	mean	a	user,	playing	a	role	with	respect	to	the	system,	seeking	to	use	the	system	to
accomplish	something	worthwhile	within	a	particular	context.	Actors	are	generally	people
although	other	systems	may	also	be	actors.	A	"scenario"	is	a	sequence	of	steps	that	describe
the	interactions	between	the	actor	and	the	system.	Note	that	the	use	case	is	defined	from	the
perspective	of	the	user,	not	the	system.	Note	also	that	the	internal	workings	of	the	system,
while	vital,	are	not	part	of	the	use	case	definition.	The	set	of	use	cases	makes	up	the	functional
requirements	of	a	system.

The	Unified	Modeling	Language	notion	for	use	cases	is:

	
Figure	9-1:	Some	Stateless	University	use	cases.

The	stick	figures	represent	the	actors,	the	ellipses	represent	the	use	cases,	and	the	arrows
show	which	actors	initiate	which	use	cases.

It	is	important	to	note	that	while	use	cases	were	created	in	the	context	of	object-oriented
systems	development,	they	are	equally	useful	in	defining	functional	requirements	in	other
development	paradigms	as	well.



The	value	of	use	cases	is	that	they:

Capture	the	system's	functional	requirements	from	the	user's	perspective;	not	from	a
technical	perspective,	and	irrespective	of	the	development	paradigm	to	be	used.

Can	be	used	to	actively	involve	users	in	the	requirements	gathering	and	definition
process.

Provide	the	basis	for	identifying	a	system's	key	internal	components,	structures,
databases,	and	relationships.

Serve	as	the	foundation	for	developing	test	cases	at	the	system	and	acceptance	level.



Technique
Unfortunately,	the	level	of	detail	specified	in	the	use	cases	is	not	sufficient,	either	for	developers
or	testers.	In	his	book	Writing	Effective	Use	Cases,	Alistair	Cockburn	has	proposed	a	detailed
template	for	describing	use	cases.	The	following	is	adapted	from	his	work:

Table	9-1:	Use	case	template.

Use	Case
Component Description

Use	Case	Number
or	Identifier A	unique	identifier	for	this	use	case

Use	Case	Name The	name	should	be	the	goal	stated	as	a	short	active	verb	phrase

Goal	in	Context A	more	detailed	statement	of	the	goal	if	necessary

Scope Corporate	|	System	|	Subsystem

Level Summary	|	Primary	task	|	Subfunction

Primary	Actor Role	name	or	description	of	the	primary	actor

Preconditions The	required	state	of	the	system	before	the	use	case	is	triggered

Success	End
Conditions The	state	of	the	system	upon	successful	completion	of	this	use	case

Failed	End
Conditions The	state	of	the	system	if	the	use	case	cannot	execute	to	completion

Trigger The	action	that	initiates	the	execution	of	the	use	case

Main	Success
Scenario

Step Action

1

2 	

...

Extensions Conditions	under	which	the	main	success	scenario	will	vary	and	a
description	of	those	variations

Sub-Variations Variations	that	do	not	affect	the	main	flow	but	that	must	be
considered

Priority Criticality

Response	Time Time	available	to	execute	this	use	case

Frequency How	often	this	use	case	is	executed

Channels	to Interactive	|	File	|	Database	|	...



Primary	Actor

Secondary	Actors Other	actors	needed	to	accomplish	this	use	case

Channels	to
Secondary	Actors Interactive	|	File	|	Database	|	...

Date	Due Schedule	information

Completeness
Level

Use	Case	identified	(0.1)|	Main	scenario	defined	(0.5)	|	All	extensions
defined	(0.8)	|	All	fields	complete	(1.0)

Open	Issues Unresolved	issues	awaiting	decisions



Example
Consider	the	following	example	from	the	Stateless	University	Registration	System.	A	student
wants	to	register	for	a	course	using	SU's	online	registration	system,	SURS.

Table	9-2:	Example	use	case.

Use	Case	Component Description

Use	Case	Number	or
Identifier SURS1138

Use	Case	Name Register	for	a	course	(a	class	taught	by	a	faculty	member)

Goal	in	Context

Scope System

Level Primary	task

Primary	Actor Student

Preconditions None

Success	End	Conditions The	student	is	registered	for	the	course—the	course	has
been	added	to	the	student's	course	list

Failed	End	Conditions The	student's	course	list	is	unchanged

Trigger Student	selects	a	course	and	"Registers"

Main	Success	Scenario	A:
Actor	S:	System

StepAction

1 A:	Selects	"Register	for	a	course"

2 A:	Selects	course	(e.g.	Math	1060)

3 S:	Displays	course	description

4 A:	Selects	section	(Mon	&	Wed	9:00am)

5 S:	Displays	section	days	and	times

6 A:	Accepts

7 S:	Adds	course/section	to	student's	course	list

Extensions

2a
Course	does	not	exist
S:	Display	message	and	exit

4a
Section	does	not	exist
S:	Display	message	and	exit

4b
Section	is	full



S:	Display	message	and	exit

6a Student	does	not	accept	S:	Display	message	and	exit

Sub-Variations

Student	may	use

Web

Phone

Priority Critical

Response	Time 10	seconds	or	less

Frequency Approximately	5	courses	x	10,000	students	over	a	4-week
period

Channels	to	Primary	Actor Interactive

Secondary	Actors None

Channels	to	Secondary
Actors N/A

Date	Due 1	Feb

Completeness	Level 0.5

Open	Issues None

Hopefully	each	use	case	has	been	through	an	inspection	process	before	it	was	implemented.
To	test	the	implementation,	the	basic	rule	is	to	create	at	least	one	test	case	for	the	main
success	scenario	and	at	least	one	test	case	for	each	extension.

Because	use	cases	do	not	specify	input	data,	the	tester	must	select	it.	Typically	we	use	the
equivalence	class	and	boundary	value	techniques	described	earlier.	Also	a	Domain	Test	Matrix
(see	the	Domain	Analysis	Testing	chapter	for	an	example)	may	be	a	useful	way	of	documenting
the	test	cases.

It	is	important	to	consider	the	risk	of	the	transaction	and	its	variants	under	test.	Less	risky
transactions	merit	less	testing.	More	risky	transactions	should	receive	more	testing.	For	them
consider	the	following	approach.

Key
Point

Always	remember	to	evaluate	the	risk	of	each	use	case	and	extension	and	create
test	cases	accordingly.

To	create	test	cases,	start	with	normal	data	for	the	most	often	used	transactions.	Then	move	to
boundary	values	and	invalid	data.	Next,	choose	transactions	that,	while	not	used	often,	are	vital
to	the	success	of	the	system	(i.e.,	Shut	Down	The	Nuclear	Reactor).	Make	sure	you	have	at
least	one	test	case	for	every	Extension	in	the	use	case.	Try	transactions	in	strange	orders.
Violate	the	preconditions	(if	that	can	happen	in	actual	use).	If	a	transaction	has	loops,	don't	just
loop	through	once	or	twice—be	diabolical.	Look	for	the	longest,	most	convoluted	path	through



the	transaction	and	try	it.	If	transactions	should	be	executed	in	some	logical	order,	try	a
different	order.	Instead	of	entering	data	top-down,	try	bottom-up.	Create	"goofy"	test	cases.	If
you	don't	try	strange	things,	you	know	the	users	will.

Free	Stuff	Download	Holodeck	from	http://www.sisecure.com/holodeck/holodeck-
trial.aspx.

Most	paths	through	a	transaction	are	easy	to	create.	They	correspond	to	valid	and	invalid	data
being	entered.	More	difficult	are	those	paths	due	to	some	kind	of	exceptional	condition—low
memory,	disk	full,	connection	lost,	driver	not	loaded,	etc.	It	can	be	very	time	consuming	for	the
tester	to	create	or	simulate	these	conditions.	Fortunately,	a	tool	is	available	to	help	the	tester
simulate	these	problems—Holodeck,	created	by	James	Whittaker	and	his	associates	at	Florida
Institute	of	Technology.	Holodeck	monitors	the	interactions	between	an	application	and	its
operating	system.	It	logs	each	system	call	and	enables	the	tester	to	simulate	a	failure	of	any
call	at	will.	In	this	way,	the	disk	can	be	"made	full,"	network	connections	can	"become
disconnected,"	data	transmission	can	"be	garbled,"	and	a	host	of	other	problems	can	be
simulated.

A	major	component	of	transaction	testing	is	test	data.	Boris	Beizer	suggests	that	30	percent	to
40	percent	of	the	effort	in	transaction	testing	is	generating,	capturing,	or	extracting	test	data.
Don't	forget	to	include	resources	(time	and	people)	for	this	work	in	your	project's	budget.

NoteOne	testing	group	designates	a	"data	czar"	whose	sole	responsibility	is	to	provide	testdata.

http://www.sisecure.com/holodeck/holodeck-trial.aspx


Applicability	and	Limitations
Transaction	testing	is	generally	the	cornerstone	of	system	and	acceptance	testing.	It	should	be
used	whenever	system	transactions	are	well	defined.	If	system	transactions	are	not	well
defined,	you	might	consider	polishing	up	your	resume	or	C.V.

While	creating	at	least	one	test	case	for	the	main	success	scenario	and	at	least	one	for	each
extension	provides	some	level	of	test	coverage,	it	is	clear	that,	no	matter	how	much	we	try,
most	input	combinations	will	remain	untested.	Do	not	be	overconfident	about	the	quality	of	the
system	at	this	point.



Summary
A	use	case	is	a	scenario	that	describes	the	use	of	a	system	by	an	actor	to	accomplish
a	specific	goal.	An	"actor"	is	a	user,	playing	a	role	with	respect	to	the	system,	seeking
to	use	the	system	to	accomplish	something	worthwhile	within	a	particular	context.	A
scenario	is	a	sequence	of	steps	that	describe	the	interactions	between	the	actor	and
the	system.

A	major	component	of	transaction	testing	is	test	data.	Boris	Beizer	suggests	that	30
percent	to	40	percent	of	the	effort	in	transaction	testing	is	generating,	capturing,	or
extracting	test	data.	Don't	forget	to	include	resources	(time	and	people)	for	this	work	in
your	project's	budget.

While	creating	at	least	one	test	case	for	the	main	success	scenario	and	at	least	one	for
each	extension	provides	some	level	of	test	coverage,	it	is	clear	that,	no	matter	how
much	we	try,	most	input	combinations	will	remain	untested.	Do	not	be	overconfident
about	the	quality	of	the	system	at	this	point.



Practice
1.	 Given	the	"Register	For	A	Course"	use	case	for	the	Stateless	University	Registration

System	described	previously,	create	a	set	of	test	cases	so	that	the	main	success
scenario	and	each	of	the	extensions	are	tested	at	least	once.	Choose	"interesting"
test	data	using	the	equivalence	class	and	boundary	value	techniques.
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Section	II:	White	Box	Testing	Techniques

Chapter	List

Chapter	10:	Control	Flow	Testing

Chapter	11:	Data	Flow	Testing

Part	Overview



Definition
White	box	testing	is	a	strategy	in	which	testing	is	based	on	the	internal	paths,	structure,	and
implementation	of	the	software	under	test	(SUT).	Unlike	its	complement,	black	box	testing,
white	box	testing	generally	requires	detailed	programming	skills.

The	general	white	box	testing	process	is:

The	SUT's	implementation	is	analyzed.

Paths	through	the	SUT	are	identified.

Inputs	are	chosen	to	cause	the	SUT	to	execute	selected	paths.	This	is	called	path
sensitization.	Expected	results	for	those	inputs	are	determined.

The	tests	are	run.

Actual	outputs	are	compared	with	the	expected	outputs.

A	determination	is	made	as	to	the	proper	functioning	of	the	SUT.



Applicability
White	box	testing	can	be	applied	at	all	levels	of	system	development—unit,	integration,	and
system.	Generally	white	box	testing	is	equated	with	unit	testing	performed	by	developers.	While
this	is	correct,	it	is	a	narrow	view	of	white	box	testing.

White	box	testing	is	more	than	code	testing—it	is	path	testing.	Generally,	the	paths	that	are
tested	are	within	a	module	(unit	testing).	But	we	can	apply	the	same	techniques	to	test	paths
between	modules	within	subsystems,	between	subsystems	within	systems,	and	even	between
entire	systems.



Disadvantages
White	box	testing	has	four	distinct	disadvantages.	First,	the	number	of	execution	paths	may	be
so	large	than	they	cannot	all	be	tested.	Attempting	to	test	all	execution	paths	through	white	box
testing	is	generally	as	infeasible	as	testing	all	input	data	combinations	through	black	box	testing.

Second,	the	test	cases	chosen	may	not	detect	data	sensitivity	errors.	For	example:
p=q/r;

may	execute	correctly	except	when	r=0.

y=2*x	//	should	read	y=x2

will	pass	for	test	cases	x=0,	y=0	and	x=2,	y=4

Third,	white	box	testing	assumes	the	control	flow	is	correct	(or	very	close	to	correct).	Since	the
tests	are	based	on	the	existing	paths,	nonexistent	paths	cannot	be	discovered	through	white
box	testing.

Fourth,	the	tester	must	have	the	programming	skills	to	understand	and	evaluate	the	software
under	test.	Unfortunately,	many	testers	today	do	not	have	this	background.



Advantages
When	using	white	box	testing,	the	tester	can	be	sure	that	every	path	through	the	software
under	test	has	been	identified	and	tested.



Chapter	10:	Control	Flow	Testing
It	was	from	the	primeval	wellspring	of	an	antediluvian	passion	that	my	story	arises	which,
like	the	round	earth	flattened	on	a	map,	is	but	a	linear	projection	of	an	otherwise
periphrastic	and	polyphiloprogenitive,	non-planar,	non-didactic,	self-inverting	construction
whose	obscurantist	geotropic	liminality	is	beyond	reasonable	doubt.

—	Milinda	Banerjee



Introduction
Control	flow	testing	is	one	of	two	white	box	testing	techniques.	This	testing	approach	identifies
the	execution	paths	through	a	module	of	program	code	and	then	creates	and	executes	test
cases	to	cover	those	paths.	The	second	technique,	discussed	in	the	next	chapter,	focuses	on
data	flow.

Key
Point

Path:	A	sequence	of	statement	execution	that	begins	at	an	entry	and	ends	at	an
exit.

Unfortunately,	in	any	reasonably	interesting	module,	attempting	exhaustive	testing	of	all	control
flow	paths	has	a	number	of	significant	drawbacks.

The	number	of	paths	could	be	huge	and	thus	untestable	within	a	reasonable	amount	of
time.	Every	decision	doubles	the	number	of	paths	and	every	loop	multiplies	the	paths	by
the	number	of	iterations	through	the	loop.	For	example:
for	(i=1;	i<=1000;	i++)
						for	(j=1;	j<=1000;	j++)
							for	(k=1;	k<=1000;	k++)
								doSomethingWith(i,j,k);

executes	doSomethingWith()	one	billion	times	(1000	x	1000	x	1000).	Each	unique	path
deserves	to	be	tested.

Paths	called	for	in	the	specification	may	simply	be	missing	from	the	module.	Any	testing
approach	based	on	implemented	paths	will	never	find	paths	that	were	not	implemented.
if	(a>0)	doIsGreater();
					if	(a==0)	dolsEqual();
					//	missing	statement	-	if	(a<0)	dolsLess();

Defects	may	exist	in	processing	statements	within	the	module	even	through	the	control
flow	itself	is	correct.
//	actual	(but	incorrect)	code
					a=a+1;
					//	correct	code
					a=a-1;

The	module	may	execute	correctly	for	almost	all	data	values	but	fail	for	a	few.
int	blech	(int	a,	int	b)	{
							return	a/b;
					}

fails	if	b	has	the	value	0	but	executes	correctly	if	b	is	not	0.

Even	though	control	flow	testing	has	a	number	of	drawbacks,	it	is	still	a	vital	tool	in	the	tester's



toolbox.



Technique

Control	Flow	Graphs

Control	flow	graphs	are	the	foundation	of	control	flow	testing.	These	graphs	document	the
module's	control	structure.	Modules	of	code	are	converted	to	graphs,	the	paths	through	the
graphs	are	analyzed,	and	test	cases	are	created	from	that	analysis.	Control	flow	graphs
consist	of	a	number	of	elements:

Key
Point Control	flow	graphs	are	the	foundation	of	control	flow	testing.

Process	Blocks

A	process	block	is	a	sequence	of	program	statements	that	execute	sequentially	from	beginning
to	end.	No	entry	into	the	block	is	permitted	except	at	the	beginning.	No	exit	from	the	block	is
permitted	except	at	the	end.	Once	the	block	is	initiated,	every	statement	within	it	will	be
executed	sequentially.	Process	blocks	are	represented	in	control	flow	graphs	by	a	bubble	with
one	entry	and	one	exit.

Decision	Point

A	decision	point	is	a	point	in	the	module	at	which	the	control	flow	can	change.	Most	decision
points	are	binary	and	are	implemented	by	if-then-else	statements.	Multi-way	decision	points	are
implemented	by	case	statements.	They	are	represented	by	a	bubble	with	one	entry	and
multiple	exits.

Junction	Point



A	junction	point	is	a	point	at	which	control	flows	join	together.

The	following	code	example	is	represented	by	its	associated	flow	graph:

	
Figure	10-1:	Flow	graph	equivalent	of	program	code.

Levels	of	Coverage

In	control	flow	testing,	different	levels	of	test	coverage	are	defined.	By	"coverage"	we	mean	the
percentage	of	the	code	that	has	been	tested	vs.	that	which	is	there	to	test.	In	control	flow
testing	we	define	coverage	at	a	number	of	different	levels.	(Note	that	these	coverage	levels	are
not	presented	in	order.	This	is	because,	in	some	cases,	it	is	easier	to	define	a	higher	coverage
level	and	then	define	a	lower	coverage	level	in	terms	of	the	higher.)

Level	1
The	lowest	coverage	level	is	"100%	statement	coverage"	(sometimes	the	"100%"	is
dropped	and	is	referred	to	as	"statement	coverage").	This	means	that	every	statement
within	the	module	is	executed,	under	test,	at	least	once.	While	this	may	seem	like	a
reasonable	goal,	many	defects	may	be	missed	with	this	level	of	coverage.	Consider	the
following	code	snippet:
if	(a>0)	{x=x+1;}



					if	(b==3)	{y=0;}

This	code	can	be	represented	in	graphical	form	as:

	
Figure	10-2:	Graphical	representation	of	the	two-line	code	snippet.

These	two	lines	of	code	implement	four	different	paths	of	execution:

	
Figure	10-3:	Four	execution	paths.

While	a	single	test	case	is	sufficient	to	test	every	line	of	code	in	this	module	(for
example,	use	a=6	and	b=3	as	input),	it	is	apparent	that	this	level	of	coverage	will	miss
testing	many	paths.	Thus,	statement	coverage,	while	a	beginning,	is	generally	not	an
acceptable	level	of	testing.



Even	though	statement	coverage	is	the	lowest	level	of	coverage,	even	that	may	be	difficult	to
achieve	in	practice.	Often	modules	have	code	that	is	executed	only	in	exceptional
circumstances—low	memory,	full	disk,	unreadable	files,	lost	connections,	etc.	Testers	may	find
it	difficult	or	even	impossible	to	simulate	these	circumstances	and	thus	code	that	deals	with
these	problems	will	remain	untested.

Holodeck	is	a	tool	that	can	simulate	many	of	these	exceptional	situations.	According	to
Holodeck's	specification	it	"will	allow	you,	the	tester,	to	test	software	by	observing	the	system
calls	that	it	makes	and	create	test	cases	that	you	may	use	during	software	execution	to	modify
the	behavior	of	the	application.	Modifications	might	include	manipulating	the	parameters	sent	to
functions	or	changing	the	return	values	of	functions	within	your	software.	In	addition,	you	may
also	set	error-codes	and	other	system	events.	This	set	of	possibilities	allows	you	to	emulate
environments	that	your	software	might	encounter	-	hence	the	name	'Holodeck.'	Instead	of
needing	to	unplug	your	network	connection,	create	a	disk	with	bad	sectors,	corrupt	packets	on
the	network,	or	perform	any	outside	or	special	manipulation	of	your	machine,	you	can	use
Holodeck	to	emulate	these	problems.	Faults	can	easily	be	placed	into	any	software	testing
project	that	you	are	using	with	Holodeck."

Holodeck

To	download	Holodeck	visit	http://www.sisecure.com/holodeck/holodeck-trial.aspx.

Level	0
Actually,	there	is	a	level	of	coverage	below	"100%	statement	coverage."	That	level	is
defined	as	"test	whatever	you	test;	let	the	users	test	the	rest."	The	corporate
landscape	is	strewn	with	the	sun-bleached	bones	of	organizations	who	have	used	this
testing	approach.	Regarding	this	level	of	coverage,	Boris	Beizer	wrote	"testing	less
than	this	[100%	statement	coverage]	for	new	software	is	unconscionable	and	should	be
criminalized.	...	In	case	I	haven't	made	myself	clear,	...	untested	code	in	a	system	is
stupid,	shortsighted,	and	irresponsible."

Level	2
The	next	level	of	control	flow	coverage	is	"100%	decision	coverage."	This	is	also	called
"branch	coverage."	At	this	level	enough	test	cases	are	written	so	that	each	decision
that	has	a	TRUE	and	FALSE	outcome	is	evaluated	at	least	once.	In	the	previous
example	this	can	be	achieved	with	two	test	cases	(a=2,	b=2	and	a=4,	b=3).

http://www.sisecure.com/holodeck/holodeck-trial.aspx


	
Figure	10-4:	Two	test	cases	that	yield	100%	decision	coverage.

Case	statements	with	multiple	exits	would	have	tests	for	each	exit.	Note	that	decision
coverage	does	not	necessarily	guarantee	path	coverage	but	it	does	guarantee
statement	coverage.

Level	3
Not	all	conditional	statements	are	as	simple	as	the	ones	previously	shown.	Consider
these	more	complicated	statements:
if	(a>0	&&	c==1)	{x=x+1;}
					if	(b==3	||	d<0)	{y=0;}

To	be	TRUE,	the	first	statement	requires	a	greater	than	0	and	c	equal	1.	The	second
requires	b	equal	3	or	d	less	than	0.

In	the	first	statement	if	the	value	of	a	were	set	to	0	for	testing	purposes	then	the	c==1
part	of	the	condition	would	not	be	tested.	(In	most	programming	languages	the	second
expression	would	not	even	be	evaluated.)	The	next	level	of	control	flow	coverage	is
"100%	condition	coverage."	At	this	level	enough	test	cases	are	written	so	that	each
condition	that	has	a	TRUE	and	FALSE	outcome	that	makes	up	a	decision	is	evaluated
at	least	once.	This	level	of	coverage	can	be	achieved	with	two	test	cases	(a>0,	c=1,
b=3,	d<0	and	a≤0,	c≠1,	b≠3,	d≥0).	Condition	coverage	is	usually	better	than	decision
coverage	because	every	individual	condition	is	tested	at	least	once	while	decision
coverage	can	be	achieved	without	testing	every	condition.

Level	4
Consider	this	situation:
if(x&&y)	{conditionedStatement;}
					//	note:	&&	indicates	logical	AND

We	can	achieve	condition	coverage	with	two	test	cases	(x=TRUE,	y=FALSE	and
x=FALSE,	y=TRUE)	but	note	that	with	these	choices	of	data	values	the
conditionedStatement	will	never	be	executed.	Given	the	possible	combination	of
conditions	such	as	these,	to	be	more	complete	"100%	decision/condition"	coverage	can
be	selected.	At	this	level	test	cases	are	created	for	every	condition	and	every	decision.



Level	5
To	be	even	more	thorough,	consider	how	the	programming	language	compiler	actually
evaluates	the	multiple	conditions	in	a	decision.	Use	that	knowledge	to	create	test	cases
yielding	"100%	multiple	condition	coverage."
if	(a>0	&&	c==1)	{x=x+1;}
					if	(b==3	||	d<0)	{y=0;}
					//	note:	||	means	logical	OR

will	be	evaluated	as:

	
Figure	10-5:	Compiler	evaluation	of	complex	conditions.

This	level	of	coverage	can	be	achieved	with	four	test	cases:
a>0,	c=1,	b=3,	d<0
					a≤0,	c=1,	b=3,	d≥0
					a>0,	c≠1,	b≠3,	d<0
					a≤0,	c≠1,	b≠3,	d≥0

Achieving	100%	multiple	condition	coverage	also	achieves	decision	coverage,	condition
coverage,	and	decision/condition	coverage.	Note	that	multiple	condition	coverage	does
not	guarantee	path	coverage.

Level	7
Finally	we	reach	the	highest	level,	which	is	"100%	path	coverage."	For	code	modules
without	loops	the	number	of	paths	is	generally	small	enough	that	a	test	case	can
actually	be	constructed	for	each	path.	For	modules	with	loops,	the	number	of	paths	can
be	enormous	and	thus	pose	an	intractable	testing	problem.



	
Figure	10-6:	An	interesting	flow	diagram	with	many,	many	paths.

Level	6
When	a	module	has	loops	in	the	code	paths	such	that	the	number	of	paths	is	infinite,	a
significant	but	meaningful	reduction	can	be	made	by	limiting	loop	execution	to	a	small
number	of	cases.	The	first	case	is	to	execute	the	loop	zero	times;	the	second	is	to
execute	the	loop	one	time,	the	third	is	to	execute	the	loop	n	times	where	n	is	a	small
number	representing	a	typical	loop	value;	the	fourth	is	to	execute	the	loop	its	maximum
number	of	times	m.	In	addition	you	might	try	m-1	and	m+1.

Before	beginning	control	flow	testing,	an	appropriate	level	of	coverage	should	be	chosen.

Structured	Testing	/	Basis	Path	Testing

No	discussion	on	control	flow	testing	would	be	complete	without	a	presentation	of	structured
testing,	also	known	as	basis	path	testing.	Structured	testing	is	based	on	the	pioneering	work	of
Tom	McCabe.	It	uses	an	analysis	of	the	topology	of	the	control	flow	graph	to	identify	test
cases.

The	structured	testing	process	consists	of	the	following	steps:

Derive	the	control	flow	graph	from	the	software	module.

Compute	the	graph's	Cyclomatic	Complexity	(C).

Select	a	set	of	C	basis	paths.

Create	a	test	case	for	each	basis	path.

Execute	these	tests.

Consider	the	following	control	flow	graph:



	
Figure	10-7:	An	example	control	flow	graph.

McCabe	defines	the	Cyclomatic	Complexity	(C)	of	a	graph	as

C	=	edges	-	nodes	+	2

Edges	are	the	arrows,	and	nodes	are	the	bubbles	on	the	graph.	The	preceding	graph	has	24
edges	and	19	nodes	for	a	Cyclomatic	Complexity	of	24-19+2	=	7.

In	some	cases	this	computation	can	be	simplified.	If	all	decisions	in	the	graph	are	binary	(they
have	exactly	two	edges	flowing	out),	and	there	are	p	binary	decisions,	then

C	=	p+1

Cyclomatic	Complexity	is	exactly	the	minimum	number	of	independent,	nonlooping	paths	(called
basis	paths)	that	can,	in	linear	combination,	generate	all	possible	paths	through	the	module.	In
terms	of	a	flow	graph,	each	basis	path	traverses	at	least	one	edge	that	no	other	path	does.

McCabe's	structured	testing	technique	calls	for	creating	C	test	cases,	one	for	each	basis	path.

IMPORTANT
!

Creating	and	executing	C	test	cases,	based	on	the	basis	paths,	guarantees
both	branch	and	statement	coverage.

Because	the	set	of	basis	paths	covers	all	the	edges	and	nodes	of	the	control	flow	graph,
satisfying	this	structured	testing	criteria	automatically	guarantees	both	branch	and	statement
coverage.

A	process	for	creating	a	set	of	basis	paths	is	given	by	McCabe:
1.	 Pick	a	"baseline"	path.	This	path	should	be	a	reasonably	"typical"	path	of	execution

rather	than	an	exception	processing	path.	The	best	choice	would	be	the	most
important	path	from	the	tester's	view.



	
Figure	10-8:	The	chosen	baseline	basis	path	ABDEGKMQS

2.	 To	choose	the	next	path,	change	the	outcome	of	the	first	decision	along	the	baseline
path	while	keeping	the	maximum	number	of	other	decisions	the	same	as	the	baseline
path.

	
Figure	10-9:	The	second	basis	path	ACDEGKMQS

3.	 To	generate	the	third	path,	begin	again	with	the	baseline	but	vary	the	second	decision
rather	than	the	first.



	
Figure	10-10:	The	third	basis	path	ABDFILORS

4.	 To	generate	the	fourth	path,	begin	again	with	the	baseline	but	vary	the	third	decision
rather	than	the	second.	Continue	varying	each	decision,	one	by	one,	until	the	bottom
of	the	graph	is	reached.

	
Figure	10-11:	The	fourth	basis	path	ABDEHKMQS



	
Figure	10-12:	The	fifth	basis	path	ABDEGKNQS

5.	 Now	that	all	decisions	along	the	baseline	path	have	been	flipped,	we	proceed	to	the
second	path,	flipping	its	decisions,	one	by	one.	This	pattern	is	continued	until	the	basis
path	set	is	complete.

	
Figure	10-13:	The	sixth	basis	path	ACDFJLORS



	
Figure	10-14:	The	seventh	basis	path	ACDFILPRS

Thus,	a	set	of	basis	paths	for	this	graph	are:
ABDEGKMQS

ACDEGKMQS

ABDFILORS

ABDEHKMQS

ABDEGKNQS

ACDFJLORS

ACDFILPRS

Structured	testing	calls	for	the	creation	of	a	test	case	for	each	of	these	paths.	This	set	of	test
cases	will	guarantee	both	statement	and	branch	coverage.

Note	that	multiple	sets	of	basis	paths	can	be	created	that	are	not	necessarily	unique.	Each	set,
however,	has	the	property	that	a	set	of	test	cases	based	on	it	will	execute	every	statement	and
every	branch.



Example
Consider	the	following	example	from	Brown	&	Donaldson.	It	is	the	code	that	determines
whether	B&D	should	buy	or	sell	a	particular	stock.	Unfortunately,	the	inner	workings	are	a	highly
classified	trade	secret	so	the	actual	processing	code	has	been	removed	and	generic
statements	like	s1;	s2;	etc.	have	substituted	for	them.	The	control	flow	statements	have	been
left	intact	but	their	actual	conditions	have	been	removed	and	generic	conditions	like	c1	and	c2
have	been	put	in	their	place.	(You	didn't	think	we'd	really	show	you	how	to	know	whether	to	buy
or	sell	stocks,	did	you?)

Note s1,	s2,	...	represent	Java	statements	while	c1,	c2,	...	represent	conditions.

boolean	evaluateBuySell	(TickerSymbol	ts)	{
					s1;
					s2;
					s3;
					if	(c1)	{s4;	s5;	s6;}
					else	{s7;	s8;}
					while	(c2)	{
									s9;
									s10;
									switch	(c3)	{
													case-A:
																s20;
																s21;
																s22;
																break;	//	End	of	Case-A
													case-B:
																s30;
																s31;
																if	(c4)	{
																					s32;
																					s33;
																					s34;
																}
																else	{
																					s35;
																}
																break;	//	End	of	Case-B
													case-C:
																s40;
																s41;
																break;	//	End	of	Case-C
													case-D:



																s50;
																break;	//	End	of	Case-D
													}	//	End	Switch
										s60;
										s61;
										s62;
										if	(c5)	{s70;	s71;	}
										s80;
										s81;
					}	//	End	While
					s90;
					s91;
					s92;
					return	result;

Figure	10-15:	Java	code	for	Brown	&	Donaldson's	evaluateBuySell	module.

The	following	flow	diagram	corresponds	to	this	Java	code:	 	
Figure	10-16:	Control	flow	graph	for	Brown	&	Donaldson's	evaluateBuySell	module.

The	cyclomatic	complexity	of	this	diagram	is	computed	by	edges	-	nodes	+	2

or

22-16+2	=	8



Let's	remove	the	code	and	label	each	node	for	simplicity	in	describing	the	paths.

	
Figure	10-17:	Control	flow	graph	for	Brown	&	Donaldson's	evaluateBuySell	module.

A	set	of	eight	basis	paths	is:
1.	 ABDP

2.	 ACDP

3.	 ABDEFGMODP

4.	 ABDEFHKMODP

5.	 ABDEFIMODP

6.	 ABDEFJMODP

7.	 ABDEFHLMODP

8.	 ABDEFIMNODP

Remember	that	basis	path	sets	are	not	unique;	there	can	be	multiple	sets	of	basis	paths	for	a
graph.

This	basis	path	set	is	now	implemented	as	test	cases.	Choose	values	for	the	conditions	that



would	sensitize	each	path	and	execute	the	tests.

Table	10-1:	Data	values	to	sensitize	the	different	control	flow	paths.

Test	Case C1 C2 C3 C4 C5

1 False False N/A N/A N/A

2 True False N/A N/A N/A

3 False True A N/A False

4 False True B False False

5 False True C N/A False

6 False True D N/A False

7 False True B True False

8 False True C N/A True



Applicability	and	Limitations
Control	flow	testing	is	the	cornerstone	of	unit	testing.	It	should	be	used	for	all	modules	of	code
that	cannot	be	tested	sufficiently	through	reviews	and	inspections.	Its	limitations	are	that	the
tester	must	have	sufficient	programming	skill	to	understand	the	code	and	its	control	flow.	In
addition,	control	flow	testing	can	be	very	time	consuming	because	of	all	the	modules	and	basis
paths	that	comprise	a	system.



Summary
Control	flow	testing	identifies	the	execution	paths	through	a	module	of	program	code
and	then	creates	and	executes	test	cases	to	cover	those	paths.

Control	flow	graphs	are	the	foundation	of	control	flow	testing.	Modules	of	code	are
converted	to	graphs,	the	paths	through	the	graphs	are	analyzed,	and	test	cases	are
created	from	that	analysis.

Cyclomatic	Complexity	is	exactly	the	minimum	number	of	independent,	nonlooping	paths
(called	basis	paths)	that	can,	in	linear	combination,	generate	all	possible	paths	through
the	module.

Because	the	set	of	basis	paths	covers	all	the	edges	and	nodes	of	the	control	flow
graph,	satisfying	this	structured	testing	criteria	automatically	guarantees	both	branch
and	statement	coverage.



Practice
1.	 Below	is	a	brief	program	listing.	Create	the	control	flow	diagram,	determine	its

Cyclomatic	Complexity,	choose	a	set	of	basis	paths,	and	determine	the	necessary
values	for	the	conditions	to	sensitize	each	path.

if	(c1)	{
										while	(c2)	{
														if	(c3)	{	s1;	s2;
																			if	(c5)	s5;
																			else	s6;
																			break;	//	Skip	to	end	of	while
														else
														if	(c4)	{	}
														else	{	s3;	s4;	break;}
										}	//	End	of	while
					}	//	End	of	if
					s7;
					if	(c6)	s8;	s9;
					s10;



References
	

Beizer,	Boris	(1990).	Software	Testing	Techniques	(Second	Edition).	Van	Nostrand
Reinhold.

Myers,	Glenford	(1979).	The	Art	of	Software	Testing.	John	Wiley	&	Sons.

Pressman,	Roger	S.	(1982).	Software	Engineering:	A	Practitioner's	Approach	(Fourth
Edition).	McGraw-Hill.

Watson,	Arthur	H.	and	Thomas	J.	McCabe.	Structured	Testing:	A	Testing	Methodology
Using	the	Cyclomatic	Complexity	Metric.	NIST	Special	Publication	500-235	available	at
http://www.mccabe.com/nist/nist_pub.php

http://www.mccabe.com/nist/nist_pub.php


Chapter	11:	Data	Flow	Testing
Holly	had	reached	the	age	and	level	of	maturity	to	comprehend	the	emotional	nuances	of
Thomas	Wolfe's	assertion	"you	can't	go	home	again,"	but	in	her	case	it	was	even	more
poignant	because	there	was	no	home	to	return	to:	her	parents	had	separated,	sold	the
house,	euthanized	Bowser,	and	disowned	Holly	for	dropping	out	of	high	school	to	marry
that	43-year-old	manager	of	Trailer	Town	in	Idaho—and	even	their	trailer	wasn't	a	place
she	could	call	home	because	it	was	only	a	summer	sublet.

—	Eileen	Ostrow	Feldman



Introduction
Almost	every	programmer	has	made	this	type	of	mistake:
main()	{
							int	x;
							if	(x==42){	...}
							}

The	mistake	is	referencing	the	value	of	a	variable	without	first	assigning	a	value	to	it.	Naive
developers	unconsciously	assume	that	the	language	compiler	or	run-time	system	will	set	all
variables	to	zero,	blanks,	TRUE,	42,	or	whatever	they	require	later	in	the	program.	A	simple	C
program	that	illustrates	this	defect	is:
#include	<stdio.h>
							main()	{
							int	x;
							printf	("%d",x);
							}

The	value	printed	will	be	whatever	value	was	"left	over"	in	the	memory	location	to	which	x	has
been	assigned,	not	necessarily	what	the	programmer	wanted	or	expected.

Data	flow	testing	is	a	powerful	tool	to	detect	just	such	errors.	Rapps	and	Weyuker,
popularizers	of	this	approach,	wrote,	"It	is	our	belief	that,	just	as	one	would	not	feel	confident
about	a	program	without	executing	every	statement	in	it	as	part	of	some	test,	one	should	not
feel	confident	about	a	program	without	having	seen	the	effect	of	using	the	value	produced	by
each	and	every	computation."

Key
Point

Data	flow	testing	is	a	powerful	tool	to	detect	improper	use	of	data	values	due	to
coding	errors.



Technique
Variables	that	contain	data	values	have	a	defined	life	cycle.	They	are	created,	they	are	used,
and	they	are	killed	(destroyed).	In	some	programming	languages	(FORTRAN	and	BASIC,	for
example)	creation	and	destruction	are	automatic.	A	variable	is	created	the	first	time	it	is
assigned	a	value	and	destroyed	when	the	program	exits.

In	other	languages	(like	C,	C++,	and	Java)	the	creation	is	formal.	Variables	are	declared	by
statements	such	as:
int	x;				//	x	is	created	as	an	integer
							string	y;	//	y	is	created	as	a	string

These	declarations	generally	occur	within	a	block	of	code	beginning	with	an	opening	brace	{
and	ending	with	a	closing	brace	}.	Variables	defined	within	a	block	are	created	when	their
definitions	are	executed	and	are	automatically	destroyed	at	the	end	of	a	block.	This	is	called
the	"scope"	of	the	variable.	For	example:
{											//	begin	outer	block
					int	x;					//	x	is	defined	as	an	integer	within	this	outer	block
				...;								//	x	can	be	accessed	here
							{								//	begin	inner	block
							int	y;			//	y	is	defined	within	this	inner	block
				...;								//	both	x	and	y	can	be	accessed	here
							}								//	y	is	automatically	destroyed	at	the	end	of
																//	this	block
							...;					//	x	can	still	be	accessed,	but	y	is	gone
				}				//	x	is	automatically	destroyed

Variables	can	be	used	in	computation	(a=b+1).	They	can	also	be	used	in	conditionals	(if
(a>42)).	In	both	uses	it	is	equally	important	that	the	variable	has	been	assigned	a	value	before
it	is	used.

Three	possibilities	exist	for	the	first	occurrence	of	a	variable	through	a	program	path:

1.~dthe	variable	does	not	exist	(indicated	by	the	~),	then	it	is	defined	(d)

2.~uthe	variable	does	not	exist,	then	it	is	used	(u)

3.~k the	variable	does	not	exist,	then	it	is	killed	or	destroyed	(k)

The	first	is	correct.	The	variable	does	not	exist	and	then	it	is	defined.	The	second	is	incorrect.	A
variable	must	not	be	used	before	it	is	defined.	The	third	is	probably	incorrect.	Destroying	a
variable	before	it	is	created	is	indicative	of	a	programming	error.

Now	consider	the	following	time-sequenced	pairs	of	defined	(d),	used	(u),	and	killed	(k):

ddDefined	and	defined	again—not	invalid	but	suspicious.	Probably	a	programming	error.

duDefined	and	used—perfectly	correct.	The	normal	case.



dkDefined	and	then	killed—not	invalid	but	probably	a	programming	error.

udUsed	and	defined—acceptable.

uuUsed	and	used	again—acceptable.

uk Used	and	killed—acceptable.

kdKilled	and	defined—acceptable.	A	variable	is	killed	and	then	redefined.

kuKilled	and	used—a	serious	defect.	Using	a	variable	that	does	not	exist	or	is	undefined	is
always	an	error.

kk Killed	and	killed—probably	a	programming	error.

Key
Point Examine	time-sequenced	pairs	of	defined,	used,	and	killed	variable	references.

A	data	flow	graph	is	similar	to	a	control	flow	graph	in	that	it	shows	the	processing	flow	through
a	module.	In	addition,	it	details	the	definition,	use,	and	destruction	of	each	of	the	module's
variables.	We	will	construct	these	diagrams	and	verify	that	the	define-use-kill	patterns	are
appropriate.	First,	we	will	perform	a	static	test	of	the	diagram.	By	"static"	we	mean	we
examine	the	diagram	(formally	through	inspections	or	informally	through	look-sees).	Second,	we
perform	dynamic	tests	on	the	module.	By	"dynamic"	we	mean	we	construct	and	execute	test
cases.	Let's	begin	with	the	static	testing.

Static	Data	Flow	Testing

The	following	control	flow	diagram	has	been	annotated	with	define-use-kill	information	for	each
of	the	variables	used	in	the	module.



	
Figure	11-1:	The	control	flow	diagram	annotated	with	define-use-kill	information
for	each	of	the	module's	variables.

For	each	variable	within	the	module	we	will	examine	define-use-kill	patterns	along	the	control
flow	paths.	Consider	variable	x	as	we	traverse	the	left	and	then	the	right	path:	

	
Figure	11-2:	The	control	flow	diagram	annotated	with	define-use-kill	information	for	the	x
variable.

The	define-use-kill	patterns	for	x	(taken	in	pairs	as	we	follow	the	paths)	are:

~define correct,	the	normal	case



define-definesuspicious,	perhaps	a	programming	error

define-use correct,	the	normal	case

Now	for	variable	y.	Note	that	the	first	branch	in	the	module	has	no	impact	on	the	y	variable.

	
Figure	11-3:	The	control	flow	diagram	annotated	with	define-use-kill	information
for	the	y	variable.

The	define-use-kill	patterns	for	y	(taken	in	pairs	as	we	follow	the	paths)	are:

~use major	blunder

use-defineacceptable

define-usecorrect,	the	normal	case

use-kill acceptable

define-kill probable	programming	error

Now	for	variable	z.



	
Figure	11-4:	The	control	flow	diagram	annotated	with	define-use-kill	information
for	the	z	variable.

The	define-use-kill	patterns	(taken	in	pairs	as	we	follow	the	paths)	are:

~kill programming	error

kill-use major	blunder

use-use correct,	the	normal	case

use-defineacceptable

kill-kill probably	a	programming	error

kill-define acceptable

define-usecorrect,	the	normal	case

In	performing	a	static	analysis	on	this	data	flow	model	the	following	problems	have	been
discovered:
x:	define-define
							y:	~use
							y:	define-kill
							z:	~kill
							z:	kill-use
							z:	kill-kill

Unfortunately,	while	static	testing	can	detect	many	data	flow	errors,	it	cannot	find	them	all.
Consider	the	following	situations:

1.	 Arrays	are	collections	of	data	elements	that	share	the	same	name	and	type.	For
example
int	stuff[100];

defines	an	array	named	stuff	consisting	of	100	integer	elements.	In	C,	C++,	and	Java



the	individual	elements	are	named	stuff[0],	stuff[1],	stuff[2],	etc.	Arrays	are	defined
and	destroyed	as	a	unit	but	specific	elements	of	the	array	are	used	individually.	Often
programmers	refer	to	stuff[j]	where	j	changes	dynamically	as	the	program	executes.
In	the	general	case,	static	analysis	cannot	determine	whether	the	define-use-kill	rules
have	been	followed	properly	unless	each	element	is	considered	individually.

2.	 In	complex	control	flows	it	is	possible	that	a	certain	path	can	never	be	executed.	In
this	case	an	improper	define-use-kill	combination	might	exist	but	will	never	be
executed	and	so	is	not	truly	improper.

3.	 In	systems	that	process	interrupts,	some	of	the	define-use-kill	actions	may	occur	at
the	interrupt	level	while	other	define-use-kill	actions	occur	at	the	main	processing
level.	In	addition,	if	the	system	uses	multiple	levels	of	execution	priorities,	static
analysis	of	the	myriad	of	possible	interactions	is	simply	too	difficult	to	perform
manually.

For	this	reason,	we	now	turn	to	dynamic	data	flow	testing.

Dynamic	Data	Flow	Testing

Because	data	flow	testing	is	based	on	a	module's	control	flow,	it	assumes	that	the	control	flow
is	basically	correct.	The	data	flow	testing	process	is	to	choose	enough	test	cases	so	that:

Every	"define"	is	traced	to	each	of	its	"uses"

Every	"use"	is	traced	from	its	corresponding	"define"

To	do	this,	enumerate	the	paths	through	the	module.	This	is	done	using	the	same	approach	as
in	control	flow	testing:	Begin	at	the	module's	entry	point,	take	the	leftmost	path	through	the
module	to	its	exit.	Return	to	the	beginning	and	vary	the	first	branching	condition.	Follow	that
path	to	the	exit.	Return	to	the	beginning	and	vary	the	second	branching	condition,	then	the	third,
and	so	on	until	all	the	paths	are	listed.	Then,	for	every	variable,	create	at	least	one	test	case	to
cover	every	define-use	pair.



Applicability	and	Limitations
Data	flow	testing	builds	on	and	expands	control	flow	testing	techniques.	As	with	control	flow
testing,	it	should	be	used	for	all	modules	of	code	that	cannot	be	tested	sufficiently	through
reviews	and	inspections.	Its	limitations	are	that	the	tester	must	have	sufficient	programming	skill
to	understand	the	code,	its	control	flow,	and	its	variables.	Like	control	flow	testing,	data	flow
testing	can	be	very	time	consuming	because	of	all	the	modules,	paths,	and	variables	that
comprise	a	system.



Summary
A	common	programming	mistake	is	referencing	the	value	of	a	variable	without	first
assigning	a	value	to	it.

A	data	flow	graph	is	similar	to	a	control	flow	graph	in	that	it	shows	the	processing	flow
through	a	module.	In	addition,	it	details	the	definition,	use,	and	destruction	of	each	of
the	module's	variables.	We	will	use	these	diagrams	to	verify	that	the	define-use-kill
patterns	are	appropriate.

Enumerate	the	paths	through	the	module.	Then,	for	every	variable,	create	at	least	one
test	case	to	cover	every	define-use	pair.



Practice
1.	 The	following	module	of	code	computes	n!	(n	factorial)	given	a	value	for	n.	Create

data	flow	test	cases	covering	each	variable	in	this	module.	Remember,	a	single	test
case	can	cover	a	number	of	variables.
int	factorial	(int	n)	{
									int	answer,	counter;
									answer	=	1;
									counter	=	1;

loop:
									if	(counter	>	n)	return	answer;
									answer	=	answer	*	counter;
									counter	=	counter	+	1;
									goto	loop;
}

2.	 Diagram	the	control	flow	paths	and	derive	the	data	flow	test	cases	for	the	following
module:
int	module(	int	selector)	{
int	foo,	bar;
switch	selector	{
case	SELECT-1:
							foo	=	calc_foo_method_1();
							break;
case	SELECT-2:
							foo	=	calc_foo_method_2();
							break;
case	SELECT-3:
							foo	=	calc_foo_method_3();
							break;
							}
switch	foo	{
case	FOO-1:
							bar	=	calc_bar_method_1();
							break;
case	FOO-2:
							bar	=	calc_bar_method_2();
							break;
							}
return	foo/bar;
}

Do	you	have	any	concerns	with	this	code?	How	would	you	deal	with	them?
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Paradigms
In	his	book,	Paradigms:	The	Business	of	Discovering	the	Future,	Joel	Barker	defines	a
paradigm	as	"a	set	of	rules	and	regulations	(written	or	unwritten)	that	does	two	things:	(1)	it
establishes	or	defines	boundaries,	and	(2)	it	tells	you	how	to	behave	inside	the	boundaries	in
order	to	be	successful."	Futurist	Marilyn	Ferguson	sees	a	paradigm	as	"a	framework	of	thought
...	a	scheme	for	understanding	and	explaining	certain	aspects	of	reality."

Paradigms	are	useful	because	they	help	us	make	sense	of	the	complexities	of	the	world	around
us.	In	this	way,	paradigms	sharpen	our	vision.	But	paradigms	can	blind	us	to	realities.
Paradigms	act	as	psychological	filters.	Data	that	does	not	match	our	paradigms	is	blocked.	In
this	way,	paradigms	cloud	our	vision.

In	software	testing	today,	two	very	different	paradigms	are	battling	for	adherents—scripted
testing	and	exploratory	testing.

Scripted	testing	is	based	on	the	sequential	examination	of	requirements,	followed	by	the	design
and	documentation	of	test	cases,	followed	by	the	execution	of	those	test	cases.	The	scripted
tester's	motto	is,	"Plan	your	work,	work	your	plan."

Exploratory	testing	is	a	very	different	paradigm.	Rather	than	a	sequential	approach,	exploratory
testing	emphasizes	simultaneous	learning,	test	design,	and	test	execution.	The	tester	designs
and	executes	tests	while	exploring	the	product.

Word	Of
Warning	!

In	the	following	chapters	the	scripted	and	exploratory	paradigms	are
defined	at	the	extreme	ends	of	the	spectrum.	Rarely	will	either	be	used	as
inflexibly	as	described.

The	next	two	chapters	describe	these	paradigms.	A	word	of	warning	though—each	paradigm	is
described	at	the	extreme	end	of	the	process	spectrum.	Rarely	will	either	paradigm	be	used	as
inflexibly	as	described.	More	often,	scripted	testing	may	be	somewhat	exploratory	and
exploratory	testing	may	be	somewhat	scripted.



Test	Planning
Planning	has	been	defined	as	simply	"figuring	out	what	to	do	next."	To	be	most	effective	and
efficient,	planning	is	important.	But	when	and	how	should	that	planning	be	done?	Scripted
testing	emphasizes	the	value	of	early	test	design	as	a	method	of	detecting	requirements	and
design	defects	before	the	code	is	written	and	the	system	put	into	production.	Its	focus	is	on
accountability	and	repeatability.	Exploratory	testing	challenges	the	idea	that	tests	must	be
designed	so	very	early	in	the	project,	when	our	knowledge	is	typically	at	its	minimum.	Its	focus
is	on	learning	and	adaptability.
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Chapter	12:	Scripted	Testing
Jane	was	toast,	and	not	the	light	buttery	kind,	nay,	she	was	the	kind	that's	been	charred
and	blackened	in	the	bottom	of	the	toaster	and	has	to	be	thrown	away	because	no	matter
how	much	of	the	burnt	part	you	scrape	off	with	a	knife,	there's	always	more	blackened
toast	beneath,	the	kind	that	not	even	starving	birds	in	winter	will	eat,	that	kind	of	toast.

—	Beth	Knutson



Introduction
For	scripted	testing	to	be	understood,	it	must	be	understood	in	its	historical	context.	Scripted
testing	emerged	as	one	of	the	component	parts	of	the	Waterfall	model	of	software
development.	The	Waterfall	model	defines	a	number	of	sequential	development	phases	with
specific	entry	and	exit	criteria,	tasks	to	be	performed,	and	deliverables	(tangible	work	products)
to	be	created.	It	is	a	classic	example	of	the	"plan	your	work,	work	your	plan"	philosophy.
Typical	Waterfall	phases	include:

1.	 System	Requirements	-	Gathering	the	requirements	for	the	system.

2.	 Software	Requirements	-	Gathering	the	requirements	for	the	software	portion	of	the
system.

3.	 Requirements	Analysis	-	Analyzing,	categorizing,	and	refining	the	software
requirements.

4.	 Program	Design	-	Choosing	architectures,	modules,	and	interfaces	that	define	the
system.

5.	 Coding	-	Writing	the	programming	code	that	implements	the	design.

6.	 Testing	-	Evaluating	whether	the	requirements	were	properly	understood	(Validation)
and	the	design	properly	implemented	by	the	code	(Verification).

7.	 Operations	-	Put	the	system	into	production.

Interesting	Trivia	A	Google	search	for	"plan	your	work"	and	"work	your	plan"	found	3,570
matches	including:

Football	recruiting

Business	planning

Building	with	concrete	blocks

Online	marketing

Industrial	distribution

The	Princeton	University's	Women's	Water	Polo	Team

And	thousands	more

This	model	was	first	described	in	1970	in	a	paper	entitled	"Managing	the	Development	of	Large
Scale	Systems"	by	Dr.	Winston	W.	Royce.	Royce	drew	the	following	diagram	showing	the
relationships	between	development	phases:



	
Figure	12-1:	The	Waterfall	life	cycle	model.

What	process	was	used	before	Waterfall?	It	is	a	process	known	as	"Code	&	Fix."
Programmers	simply	coded.	Slogans	like	"Requirements?	Requirements?	We	don't	need	no
stinkin'	Requirements!"	hung	on	the	walls	of	programmers'	offices.	Development	was	like	the
scene	in	the	movie	Raiders	of	the	Lost	Ark.	Our	hero,	Indiana	Jones,	is	hiding	from	the	bad
guys.	Indy	says,	"I'm	going	to	get	that	truck."	Marion,	our	heroine,	turns	to	him	and	asks,	"How
are	you	going	to	get	that	truck?"	Indy	replies,	"I	don't	know.	I'm	making	this	up	as	I	go."	If	we
substituted	"build	that	system"	for	"get	that	truck"	we'd	have	the	way	real	men	and	real	women
built	software	systems	in	the	good	old	days.

Curious	Historical	Note	Today,	Winston	Royce	is	known	as	the	father	of	the	Waterfall
model	of	software	development.	In	fact,	in	his	paper	he	was	actually	proposing	an	iterative
and	incremental	process	that	included	early	prototyping	-	something	many	organizations
are	just	now	discovering.

Today	we	take	a	different	view	of	scripted	testing.	Any	development	methodology	along	the
spectrum	from	Waterfall	to	Rapid	Application	Development	(RAD)	may	use	scripted	testing.
Whenever	repeatability,	objectivity,	and	auditability	are	important,	scripted	testing	can	be	used.

Repeatability	means	that	there	is	a	definition	of	a	test	(from	design	through	to	detailed
procedure)	at	a	level	of	detail	sufficient	for	someone	other	than	the	author	to	execute	it	in	an
identical	way.	Objectivity	means	that	the	test	creation	does	not	depend	on	the	extrordinary
(near	magical)	skill	of	the	person	creating	the	test	but	is	based	on	well	understood	test	design
principles.	Auditability	includes	traceability	from	requirements,	design,	and	code	to	the	test
cases	and	back	again.	This	enables	formal	measures	of	testing	coverage.

"Plan	your	work,	work	your	plan."	No	phrase	so	epitomizes	the	scripted	testing	approach	as
does	this	one,	and	no	document	so	epitomizes	the	scripted	testing	approach	as	does	IEEE	Std
829-1998,	the	"IEEE	Standard	for	Software	Test	Documentation."

This	standard	defines	eight	documents	that	can	be	used	in	software	testing.	These	documents
are:

Test	plan



Test	design	specification

Test	case	specification

Test	procedure	specification

Test	item	transmittal	report

Test	log

Test	incident	report

Test	summary	report

Figure	12-2	shows	the	relationships	between	these	documents.	Note	that	the	first	four
documents	that	define	the	test	plan,	test	designs,	and	test	cases	are	all	created	before	the
product	is	developed	and	the	actual	testing	is	begun.	This	is	a	key	idea	in	scripted	testing—plan
the	tests	based	on	the	formal	system	requirements.

	
Figure	12-2:	The	IEEE	829	Test	Documents 	Curiously,	the	IEEE	829
standard	states,	"This	standard	specifies	the	form	and	content	of	individual	test	documents.
It	does	not	specify	the	required	set	of	test	documents."	In	other	words,	the	standard	does
not	require	you	to	create	any	of	the	documents	described.	That	choice	is	left	to	you	as	a
tester,	or	to	your	organization.	But,	the	standard	requires	that	if	you	choose	to	write	a	test
plan,	test	case	specification,	etc.,	that	document	must	follow	the	IEEE	829	standard.



The	IEEE	829	standard	lists	these	advantages	for	its	use:

"A	standardized	test	document	can	facilitate	communication	by	providing	a	common
frame	of	reference.

The	content	definition	of	a	standardized	test	document	can	serve	as	a	completeness
checklist	for	the	associated	testing	process.

A	standardized	set	can	also	provide	a	baseline	for	the	evaluation	of	current	test
documentation	practices.

The	use	of	these	documents	significantly	increases	the	manageability	of	testing.
Increased	manageability	results	from	the	greatly	increased	visibility	of	each	phase	of
the	testing	process."



IEEE	829	Document	Descriptions
The	IEEE	829	standard	defines	eight	different	documents.	Each	document	is	composed	of	a
number	of	sections.

Test	Plan

The	purpose	of	the	test	plan	is	to	describe	the	scope,	approach,	resources,	and
schedule	of	the	testing	activities.	It	describes	the	items	(components)	and	features
(functionality,	performance,	security,	usability,	etc.)	to	be	tested,	tasks	to	be
performed,	deliverables	(tangible	work	products)	to	be	created,	testing	responsibilities,
schedules,	and	approvals	required.	Test	plans	can	be	created	at	the	project	level
(master	test	plan)	or	at	subsidiary	levels	(unit,	integration,	system,	acceptance,	etc.).
The	test	plan	is	composed	of	the	following	sections:

1.	 Test	plan	identifier	-	A	unique	identifier	so	that	this	document	can	be
distinguished	from	all	other	documents.

2.	 Introduction	-	A	summary	of	the	software	to	be	tested.	A	brief	description	and
history	may	be	included	to	set	the	context.	References	to	other	relevant
documents	useful	for	understanding	the	test	plan	are	appropriate.	Definitions
of	unfamiliar	terms	may	be	included.

3.	 Test	items	-	Identifies	the	software	items	that	are	to	be	tested.	The	word
"item"	is	purposely	vague.	It	is	a	"chunk"	of	software	that	is	the	object	of
testing.

4.	 Features	to	be	tested	-	Identifies	the	characteristics	of	the	items	to	be	tested.
These	include	functionality,	performance,	security,	portability,	usability,	etc.

5.	 Features	not	to	be	tested	-	Identifies	characteristics	of	the	items	that	will	not
be	tested	and	the	reasons	why.

6.	 Approach	-	The	overall	approach	to	testing	that	will	ensure	that	all	items	and
their	features	will	be	adequately	tested.

7.	 Item	pass/fail	criteria	-	The	criteria	used	to	determine	whether	each	test	item
has	passed	or	failed	testing.

8.	 Suspension	criteria	and	resumption	requirements	-	The	conditions	under	which
testing	will	be	suspended	and	the	subsequent	conditions	under	which	testing



will	be	resumed.

9.	 Test	deliverables	-	Identifies	the	documents	that	will	be	created	as	a	part	of
the	testing	process.

10.	 Testing	tasks	-	Identifies	the	tasks	necessary	to	perform	the	testing.

11.	 Environmental	needs	-	Specifies	the	environment	required	to	perform	the
testing	including	hardware,	software,	communications,	facilities,	tools,	people,
etc.

12.	 Responsibilities	-	Identifies	the	people/groups	responsible	for	executing	the
testing	tasks.

13.	 Staffing	and	training	needs	-	Specifies	the	number	and	types	of	people
required	to	perform	the	testing,	including	the	skills	needed.

14.	 Schedule	-	Defines	the	important	key	milestones	and	dates	in	the	testing
process.

15.	 Risks	and	contingencies	-	Identifies	high-risk	assumptions	of	the	testing	plan.
Specifies	prevention	and	mitigation	plans	for	each.

16.	 Approvals	-	Specifies	the	names	and	titles	of	each	person	who	must	approve
the	plan.

Test	Design	Specification

The	purpose	of	the	test	design	specification	is	to	identify	a	set	of	features	to	be	tested
and	to	describe	a	group	of	test	cases	that	will	adequately	test	those	features.	In
addition,	refinements	to	the	approach	listed	in	the	test	plan	may	be	specified.	The	test
design	specification	is	composed	of	the	following	sections:

1.	 Test	design	specification	identifier	-	A	unique	identifier	so	that	this	document
can	be	distinguished	from	all	other	documents.

2.	 Features	to	be	tested	-	Identifies	the	test	items	and	the	features	that	are	the
object	of	this	test	design	specification.

3.	 Approach	refinements	-	Specifies	the	test	techniques	to	be	used	for	this	test
design.

4.	 Test	identification	-	Lists	the	test	cases	associated	with	this	test	design.



Provides	a	unique	identifier	and	a	short	description	for	each	test	case.

5.	 Feature	pass/fail	criteria	-	The	criteria	used	to	determine	whether	each
feature	has	passed	or	failed	testing.

Test	Case	Specification

The	purpose	of	the	test	case	specification	is	to	specify	in	detail	each	test	case	listed	in
the	test	design	specification.	The	test	case	specification	is	composed	of	the	following
sections:

1.	 Test	case	specification	identifier	-	A	unique	identifier	so	that	this	document	can
be	distinguished	from	all	other	documents.

2.	 Test	items	-	Identifies	the	items	and	features	to	be	tested	by	this	test	case.

3.	 Input	specifications	-	Specifies	each	input	required	by	this	test	case.

4.	 Output	specifications	-	Specifies	each	output	expected	after	executing	this
test	case.

5.	 Environmental	needs	-	Any	special	hardware,	software,	facilities,	etc.	required
for	the	execution	of	this	test	case	that	were	not	listed	in	its	associated	test
design	specification.

6.	 Special	procedural	requirements	-	Defines	any	special	setup,	execution,	or
cleanup	procedures	unique	to	this	test	case.

7.	 Intercase	dependencies	-	Lists	any	test	cases	that	must	be	executed	prior	to
this	test	case.

Test	Procedure	Specification

The	purpose	of	the	test	procedure	specification	is	to	specify	the	steps	for	executing	a
test	case	and	the	process	for	determining	whether	the	software	passed	or	failed	the
test.	The	test	procedure	specification	is	composed	of	the	following	sections:



1.	 Test	procedure	specification	identifier	-	A	unique	identifier	so	that	this
document	can	be	distinguished	from	all	other	documents.

2.	 Purpose	-	Describes	the	purpose	of	the	test	procedure	and	its	corresponding
test	cases.

3.	 Special	requirements	-	Lists	any	special	requirements	for	the	execution	of	this
test	procedure.

4.	 Procedure	steps	-	Lists	the	steps	of	the	procedure.	Possible	steps	include:
Set	up,	Start,	Proceed,	Measure,	Shut	Down,	Restart,	Stop,	and	Wrap	Up.

Test	Item	Transmittal	Report	(a.k.a.	Release	Notes)

The	purpose	of	the	test	item	transmittal	report	is	to	specify	the	test	items	being
provided	for	testing.	The	test	item	transmittal	report	is	composed	of	the	following
sections:

1.	 Transmittal	report	identifier	-	A	unique	identifier	so	that	this	document	can	be
distinguished	from	all	other	documents.

2.	 Transmitted	items	-	Lists	the	items	being	transmitted	for	testing	including	their
version	or	revision	level.

3.	 Location	-	Identifies	the	location	of	the	transmitted	items.

4.	 Status	-	Describes	the	status	of	the	items	being	transmitted.	Include	any
deviations	from	the	item's	specifications.

5.	 Approvals	-	Specifies	the	names	and	titles	of	all	persons	who	must	approve
this	transmittal.

Test	Log

The	purpose	of	the	test	log	is	to	provide	a	chronological	record	about	relevant	details
observed	during	the	test	execution.	The	test	log	is	composed	of	the	following	sections:



1.	 Test	log	identifier	-	A	unique	identifier	so	that	this	document	can	be
distinguished	from	all	other	documents.

2.	 Description	-	Identifies	the	items	being	tested	and	the	environment	under
which	the	test	was	performed.

3.	 Activity	and	event	entries	-	For	each	event,	lists	the	beginning	and	ending	date
and	time,	a	brief	description	of	the	test	execution,	the	results	of	the	test,	and
unique	environmental	information,	anomalous	events	observed,	and	the
incident	report	identifier	if	an	incident	was	logged.

Test	Incident	Report	(a.k.a.	Bug	Report)

The	purpose	of	the	test	incident	report	is	to	document	any	event	observed	during
testing	that	requires	further	investigation.	The	test	incident	report	is	composed	of	the
following	sections:

1.	 Test	incident	report	identifier	-	A	unique	identifier	so	that	this	document	can	be
distinguished	from	all	other	documents.

2.	 Summary	-	Summarizes	the	incident.

3.	 Incident	description	-	Describes	the	incident	in	terms	of	inputs,	expected
results,	actual	results,	environment,	attempts	to	repeat,	etc.

4.	 Impact	-	Describes	the	impact	this	incident	will	have	on	other	test	plans,	test
design	specifications,	test	procedures,	and	test	case	specifications.	Also
describes,	if	known,	the	impact	this	incident	will	have	on	further	testing.

Test	Summary	Report

The	purpose	of	the	test	summary	report	is	to	summarize	the	results	of	the	testing
activities	and	to	provide	an	evaluation	based	on	these	results.	The	test	summary	report
is	composed	of	the	following	sections:

1.	 Test	summary	report	identifier	-	A	unique	identifier	(imagine	that!)	so	that	this



document	can	be	distinguished	from	all	other	documents.

2.	 Summary	-	Summarizes	the	evaluation	of	the	test	items.

3.	 Variance	-	Reports	any	variances	from	the	expected	results.

4.	 Comprehensive	assessment	-	Evaluates	the	overall	comprehensiveness	of	the
testing	process	itself	against	criteria	specified	in	the	test	plan.

5.	 Summary	of	results	-	Summarizes	the	results	of	the	testing.	Identifies	all
unresolved	incidents.

6.	 Evaluation	-	Provides	an	overall	evaluation	of	each	test	item	including	its
limitations.

7.	 Summary	of	activities	-	Summarizes	the	major	testing	activities	by	task	and
resource	usage.

8.	 Approvals	-	Specifies	the	names	and	titles	of	each	person	who	must	approve
the	report.



Advantages	of	Scripted	Testing
1.	 Scripted	testing	provides	a	division	of	labor—planning,	test	case	design,	test	case

implementation,	and	test	case	execution	that	can	be	performed	by	people	with
specific	skills	and	at	different	times	during	the	development	process.

2.	 Test	design	techniques	such	as	equivalence	class	partitioning,	boundary	value	testing,
control	flow	testing,	pairwise	testing,	etc.	can	be	integrated	into	a	formal	testing
process	description	that	not	only	guides	our	testing	but	that	could	also	be	used	to
audit	for	process	compliance.

3.	 Because	scripted	tests	are	created	from	requirements,	design,	and	code,	all
important	attributes	of	the	system	will	be	covered	by	tests	and	this	coverage	can	be
demonstrated.

4.	 Because	the	test	cases	can	be	traced	back	to	their	respective	requirements,	design,
and	code,	coverage	can	be	clearly	defined	and	measured.

5.	 Because	the	tests	are	documented,	they	can	be	easily	understood	and	repeated
when	necessary	without	additional	test	analysis	or	design	effort.

6.	 Because	the	tests	are	defined	in	detail,	they	are	more	easily	automated.

7.	 Because	the	tests	are	created	early	in	the	development	process,	this	may	free	up
additional	time	during	the	critical	test	execution	period.

8.	 In	situations	where	a	good	requirements	specification	is	lacking,	the	test	cases,	at	the
end	of	the	project,	become	the	de	facto	requirements	specification,	including	the
results	that	demonstrate	which	requirements	were	actually	fulfilled	and	which	were
not.

9.	 Scripted	tests,	when	written	to	the	appropriate	level	of	detail,	can	be	run	by	people
who	would	otherwise	not	be	able	to	test	the	system	because	of	lack	of	domain
knowledge	or	lack	of	testing	knowledge.

10.	 You	may	have	special	contractual	requirements	that	can	only	be	met	by	scripted
testing.

11.	 There	may	be	certain	tests	that	must	be	executed	in	just	the	same	way,	every	time,	in
order	to	serve	as	a	kind	of	benchmark.

12.	 By	creating	the	tests	early	in	the	project	we	can	discover	what	we	don't	know.

13.	 By	creating	the	tests	early	we	can	focus	on	the	"big	picture."

In	his	book	Software	System	Testing	and	Quality	Assurance,	Boris	Beizer	summarizes	in	this
way:

"Testing	is	like	playing	pool.	There's	real	pool	and	kiddie	pool.	In	kiddie	pool,	you	hit	the



balls	and	whatever	pocket	they	happen	to	fall	into,	you	claim	as	the	intended	pocket.	It's
not	much	of	a	game	and	although	suitable	to	ten-year-olds	it's	hardly	a	challenge.	The
object	of	real	pool	is	to	specify	the	pocket	in	advance.	Similarly	for	testing.	There's	real
testing	and	kiddie	testing.	In	kiddie	testing,	the	tester	says,	after	the	fact,	that	the
observed	outcome	was	the	intended	outcome.	In	real	testing	the	outcome	is	predicted	and
documented	before	the	test	is	run."



Disadvantages	of	Scripted	Testing
1.	 Scripted	testing	is	very	dependent	on	the	quality	of	the	system's	requirements.	Will

the	requirements	really	be	complete,	consistent,	unambiguous,	and	stable	enough	as
the	foundation	for	scripted	testing?	Perhaps	not.

2.	 Scripted	testing	is,	by	definition,	inflexible.	It	follows	the	script.	If,	while	testing,	we
see	something	curious,	we	note	it	in	a	Test	Incident	Report	but	we	do	not	pursue	it.
Why	not?	Because	it	is	not	in	the	script	to	do	so.	Many	interesting	defects	could	be
missed	with	this	approach.

3.	 Scripted	testing	is	often	used	to	"de-skill"	the	job	of	testing.	The	approach	seems	to
be,	"Teach	a	tester	a	skill	or	two	and	send	them	off	to	document	mountains	of	tests.
The	sheer	bulk	of	the	tests	will	probably	find	most	of	the	defects."



Summary
"Plan	your	work,	work	your	plan."	Like	the	Waterfall	model,	no	phrase	so	epitomizes
the	scripted	testing	approach	as	does	this	one,	and	no	document	so	epitomizes	the
scripted	testing	approach	as	does	IEEE	Std	829-1998,	the	"IEEE	Standard	for
Software	Test	Documentation."

The	IEEE	Standard	829	defines	eight	documents	that	can	be	used	in	software	testing.
These	documents	are:	test	plan,	test	design	specification,	test	case	specification,	test
procedure	specification,	test	item	transmittal	report,	test	log,	test	incident	report,	and
test	summary	report.

The	advantages	of	scripted	testing	include	formal	documentation,	coverage,	and
traceability.
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Chapter	13:	Exploratory	Testing
As	she	contemplated	the	setting	sun,	its	dying	rays	casting	the	last	of	their	brilliant	purple
light	on	the	red-gold	waters	of	the	lake,	Debbie	realized	that	she	should	never	again	buy
her	sunglasses	from	a	guy	parked	by	the	side	of	the	road.

—	Malinda	Lingwall



Introduction
The	term	"exploratory	testing,"	coined	by	Cem	Kaner	in	his	book	Testing	Computer	Software,
refers	to	an	approach	to	testing	that	is	very	different	from	scripted	testing.	Rather	than	a
sequential	examination	of	requirements,	followed	by	the	design	and	documentation	of	test
cases,	followed	by	the	execution	of	those	test	cases,	exploratory	testing,	as	defined	by	James
Bach,	is	"simultaneous	learning,	test	design,	and	test	execution."	The	tester	designs	and
executes	tests	while	exploring	the	product.

In	an	article	for	StickyMinds.com	entitled	"Exploratory	Testing	and	the	Planning	Myth,"	Bach
wrote,	"Exploratory	Testing,	as	I	practice	it,	usually	proceeds	according	to	a	conscious	plan.
But	not	a	rigorous	plan	...	it's	not	scripted	in	detail."	James	adds,	"Rigor	requires	certainty	and
implies	completeness,	but	I	perform	exploratory	testing	precisely	because	there's	so	much	I
don't	know	about	the	product	and	I	know	my	testing	can	never	be	fully	complete."	James
continues,	"To	the	extent	that	the	next	test	we	do	is	influenced	by	the	result	of	the	last	test	we
did,	we	are	doing	exploratory	testing.	We	become	more	exploratory	when	we	can't	tell	what
tests	should	be	run,	in	advance	of	the	test	cycle."

Exploratory	Testing

To	the	extent	that	the	next	test	we	do	is	influenced	by	the	result	of	the	last	test	we	did,	we
are	doing	exploratory	testing.	We	become	more	exploratory	when	we	can't	tell	what	tests
should	be	run,	in	advance	of	the	test	cycle.

In	exploratory	testing,	the	tester	controls	the	design	of	test	cases	as	they	are	performed	rather
than	days,	weeks,	or	even	months	before.	In	addition,	the	information	the	tester	gains	from
executing	a	set	of	tests	then	guides	the	tester	in	designing	and	executing	the	next	set	of	tests.

Note	this	process	is	called	exploratory	testing	to	distinguish	it	from	ad	hoc	testing	which	(by	my
definition,	although	others	may	disagree)	often	denotes	sloppy,	careless,	unfocused,	random,
and	unskilled	testing.	Anyone,	no	matter	what	their	experience	or	skill	level,	can	do	ad	hoc
testing.	That	kind	of	testing	is	ineffective	against	all	but	the	most	defect-ridden	systems,	and
even	then	may	not	find	a	substantial	portion	of	the	defects.

Bach	suggests	that	in	today's	topsy-turvy	world	of	incomplete,	rapidly	changing	requirements
and	minimal	time	for	testing,	the	classical	sequential	approach	of	Test	Analysis	followed	by	Test
Design	followed	by	Test	Creation	followed	by	Test	Execution	is	like	playing	the	game	of
"Twenty	Questions"	by	writing	out	all	the	questions	in	advance.	Consider	the	following
discussion	from	a	testing	seminar	discussing	exploratory	testing:

Instructor:	Let's	play	a	game	called	"Twenty	Questions."	I	am	thinking	about
something	in	the	universe.	I'm	giving	you,	the	class,	twenty	questions	to	identify	what
I'm	thinking	about.	Each	question	must	be	phrased	in	a	way	that	it	can	be	answered
"Yes"	or	"No."	(If	I	let	you	phrase	the	question	in	any	form	you	could	ask	"What	are	you
thinking	about"	and	we	would	then	call	this	game	"One	Question.")	Ready?	Brian,	let's
begin	with	you.



Twenty	Questions:	The	Game

A	game	in	which	one	person	thinks	of	something	and	others	ask	up	to	20	questions
to	determine	what	has	been	selected.	The	questions	must	be	answerable	"Yes"	or
"No."

When	played	well,	each	question	is	based	on	the	previous	questions	and	their
answers.	Writing	the	questions	out	in	advance	prevents	using	the	knowledge
acquired	from	each	answer.

Brian:	Does	it	have	anything	to	do	with	software	testing?

Instructor:	No,	that	would	be	too	easy.

Michael:	Is	it	large?

Instructor:	No,	it's	not	large.

Rebecca:	Is	it	an	animal?

Instructor:	No.

Rayanne:	Is	it	a	plant?

Instructor:	Yes,	it	is	a	plant.

Henry:	Is	it	a	tree?

Instructor:	No,	it	is	not	a	tree.

Sree:	Is	it	big?

Instructor:	No,	I've	already	said	it	is	not	large.

Eric:	Is	it	green?

Instructor:	Yes,	it	is	green.

Cheryl:	Does	it	have	leaves?

Instructor:	Yes,	it	has	leaves.

Galina:	Is	it	an	outdoor	plant?

Instructor:	Yes,	it	generally	grows	outdoors.

Jae:	Is	it	a	flowering	plant?

Instructor:	No,	I	don't	believe	so	but	I'm	not	a	botanist.

Melanie:	Is	it	a	shrub?



Instructor:	No.

Patrick:	Is	it	a	cactus?

Instructor:	No,	it	is	not	a	cactus.

Angel:	Is	it	a	cucumber?

Instructor:	No,	perhaps	rather	than	guessing	individual	plants	it	would	be	more
effective	to	identify	categories.

Sundari:	Is	it	a	weed?

Instructor:	No,	good	try	though.

Lynn:	Is	it	a	perennial?

Instructor:	No,	I	don't	believe	so.	I	think	it	must	be	replanted	each	year.

Julie:	Does	it	grow	from	bulbs?

Instructor:	No.

Michelle:	Is	it	in	everyone's	yard?

Instructor:	No,	at	least	it's	not	in	mine.

Kristie:	Is	it	illegal?	(Laughter	in	the	class)

Instructor:	No,	it's	quite	legal.	Well,	we've	gone	through	the	class	once.	Brian,	let's	go
back	to	you.

Brian:	Is	it	poisonous?

Instructor:	No,	although	my	children	think	so.

Michael:	Is	it	eaten?

Instructor:	Yes,	it	is	eaten.

Rebecca:	Is	it	lettuce?

Instructor:	No,	not	lettuce.

Rayanne:	Is	it	spinach?

Instructor:	Yes,	it	is	spinach.	Very	good.

How	successful	would	we	be	at	this	game	if	we	had	to	write	out	all	the	questions	in	advance?
When	we	play	this	game	well,	each	question	depends	on	the	previous	questions	and	their



answers.	So	it	is	in	exploratory	testing.	Each	test	provides	us	with	information	about	the
product.	We	may	see	evidence	of	the	product's	correctness;	we	may	see	evidence	of	its
defects.	We	may	see	things	that	are	curious;	we're	not	sure	what	they	mean,	things	that	we
wonder	about	and	want	to	explore	further.	So,	as	we	practice	exploratory	testing,	we
concurrently	learn	the	product,	design	the	tests,	and	execute	these	tests.



Description
In	his	classic	time	management	book,	How	to	Get	Control	of	Your	Time	and	Your	Life,	Alan
Lakein	suggests	we	should	constantly	ask	ourselves:	What	is	the	most	important	thing	I	can	do
with	my	time	right	now?	Exploratory	testers	ask	an	equivalent	question:	What	is	the	most
important	test	I	can	perform	right	now?

Key	Question

What	is	the	most	important	test	I	can	perform	right	now?

A	possible	exploratory	testing	process	is:

Creating	a	conjecture	(a	mental	model)	of	the	proper	functioning	of	the	system

Designing	one	or	more	tests	that	would	disprove	the	conjecture

Executing	these	tests	and	observing	the	outcomes

Evaluating	the	outcomes	against	the	conjecture

Repeating	this	process	until	the	conjecture	is	proved	or	disproved

Another	process	might	be	simply	to	explore	and	learn	before	forming	conjectures	of	proper
behavior.

Exploratory	testing	can	be	done	within	a	"timebox,"	an	uninterrupted	block	of	time	devoted	to
testing.	These	are	typically	between	sixty	and	120	minutes	in	length.	This	is	long	enough	to
perform	solid	testing	but	short	enough	so	that	the	tester	does	not	mentally	wander.	In	addition,
a	timebox	of	this	length	is	typically	easier	to	schedule,	easier	to	control,	and	easier	to	report.

When	performing	"chartered	exploratory	testing,"	a	charter	is	first	created	to	guide	the	tester
within	the	timebox.	This	charter	defines	a	clear	mission	for	the	testing	session.	The	charter	may
define:

What	to	test

What	documents	(requirements,	design,	user	manual,	etc.)	are	available	to	the	tester

What	tactics	to	use

What	kinds	of	defects	to	look	for

What	risks	are	involved

This	charter	is	a	guideline	to	be	used,	not	a	script	to	be	followed.	Because	of	this	approach,
exploratory	testing	makes	full	use	of	the	skills	of	testers.	Bach	writes,	"The	more	we	can	make
testing	intellectually	rich	and	fluid,	the	more	likely	we	will	hit	upon	the	right	tests	at	the	right
time."



Key
Point The	charter	is	a	guideline	to	be	used,	not	a	script	to	be	followed.

Charters	focus	the	exploratory	tester's	efforts	within	the	timebox.	Possible	charters	include:

Thoroughly	investigate	a	specific	system	function

Define	and	then	examine	the	system's	workflows

Identify	and	verify	all	the	claims	made	in	the	user	manual

Understand	the	performance	characteristics	of	the	software

Ensure	that	all	input	fields	are	properly	validated

Force	all	error	conditions	to	verify	each	error	message

Check	the	design	against	user	interface	standards

It	is	possible	to	perform	exploratory	testing	without	a	charter.	This	is	called	"freestyle
exploratory	testing."	In	this	process	testers	use	their	skills	to	the	utmost	as	they	concurrently
learn	the	product	and	design	and	execute	tests.

Exploratory	testers	are	skilled	testers.	(Of	course,	we	want	testers	to	be	skilled	no	matter
what	testing	process	we	are	using!)	The	exploratory	testing	approach	respects	those	skills	and,
in	fact,	depends	on	them.	Good	exploratory	testers	are:

Good	modelers,	able	to	create	mental	models	of	the	system	and	its	proper	behavior.

Careful	observers,	able	to	see,	hear,	read,	and	comprehend.

Skilled	test	designers,	able	to	choose	appropriate	test	design	techniques	in	each
situation.	Bach	emphasizes,	"An	exploratory	tester	is	first	and	foremost	a	test
designer."

Able	to	evaluate	risk	and	let	it	guide	their	testing.

Critical	thinkers,	able	to	generate	diverse	ideas,	integrate	their	observations,	skills,	and
experiences	to	concurrently	explore	the	product,	design	the	tests,	and	execute	the
tests.

Careful	reporters,	able	to	rigorously	and	effectively	report	to	others	what	they	have
observed.

Self	managed,	able	to	take	the	lead	in	testing	rather	than	execute	a	plan	devised	by
others.

Not	distracted	by	trivial	matters.



Testers	without	these	skills	can	still	perform	useful	exploratory	testing	if	they	are	properly
supervised	and	coached.

In	general,	processes	that	have	weak,	slow,	or	nonexistent	feedback	mechanisms	often	do	not
perform	well.	Scripted	testing	is	a	prime	example	of	a	slow	feedback	loop.	Exploratory	testing
provides	a	tight	feedback	loop	between	both	test	design	and	test	execution.	In	addition,	it
provides	tight	feedback	between	testers	and	developers	regarding	the	quality	of	the	product
being	tested.



Advantages	of	Exploratory	Testing
1.	 Exploratory	testing	is	valuable	in	situations	where	choosing	the	next	test	case	to	be

run	cannot	be	determined	in	advance,	but	should	be	based	on	previous	tests	and	their
results.

2.	 Exploratory	testing	is	useful	when	you	are	asked	to	provide	rapid	feedback	on	a
product's	quality	on	short	notice,	with	little	time,	off	the	top	of	your	head,	when
requirements	are	vague	or	even	nonexistent,	or	early	in	the	development	process
when	the	system	may	be	unstable.

3.	 Exploratory	testing	is	useful	when,	once	a	defect	is	detected,	we	want	to	explore	the
size,	scope,	and	variations	of	that	defect	to	provide	better	feedback	to	our
developers.

4.	 Exploratory	testing	is	a	useful	addition	to	scripted	testing	when	the	scripted	tests
become	"tired,"	that	is,	they	are	not	detecting	many	errors.



Disadvantages	of	Exploratory	Testing
1.	 Exploratory	testing	has	no	ability	to	prevent	defects.	Because	the	design	of	scripted

test	cases	begins	during	the	requirements	gathering	and	design	phases,	defects	can
be	identified	and	corrected	earlier.

2.	 If	you	are	already	sure	exactly	which	tests	must	be	executed,	and	in	which	order,
there	is	no	need	to	explore.	Write	and	then	execute	scripted	tests.

3.	 If	you	are	required	by	contract,	rule,	or	regulation	to	use	scripted	testing	then	do	so.
Consider	adding	exploratory	tests	as	a	complementary	technique.



Summary
Exploratory	testing	is	defined	as	"simultaneous	learning,	test	design,	and	test
execution."	The	tester	designs	and	executes	tests	while	exploring	the	product.

In	exploratory	testing,	the	tester	controls	the	design	of	test	cases	as	they	are
performed	rather	than	days,	weeks,	or	even	months	before.	In	addition,	the	information
the	tester	gains	from	executing	a	set	of	tests	then	guides	the	tester	in	designing	and
executing	the	next	set	of	tests.

Exploratory	testing	is	vital	whenever	choosing	the	next	test	case	to	be	run	cannot	be
determined	in	advance	but	should	be	chosen	based	on	previous	tests	and	their	results.



References
	

Bach,	James.	"Exploratory	Testing	and	the	Planning	Myth."
http://www.stickyminds.com/r.asp?F=DART_2359,	19	March	2001.

Bach,	James.	"Exploratory	Testing	Explained."	v.1.3	16	April	2003.
http://www.satisfice.com/articles/et-article.pdf

Kaner,	Cem,Jack	Falk,	and	Hung	Q.	Nguyen	(1999).	Testing	Computer	Software.	John
Wiley	&	Sons.

Kaner,	Cem,James	Bach,	and	Bret	Pettichord	(2002).	Lessons	Learned	in	Software
Testing:	A	Context-Driven	Approach.	John	Wiley	&	Sons.

Weinberg,	Gerald	M.	(1975).	An	Introduction	to	General	Systems	Thinking.	John	Wiley
&	Sons.

http://www.stickyminds.com/r.asp?F=DART_2359
http://www.satisfice.com/articles/et-article.pdf


Chapter	14:	Test	Planning
John	Stevenson	lives	in	Vancouver	with	his	wife	Cindy	and	their	two	kids	Shawn	and
Cassie,	who	are	the	second	cousins	of	Mary	Shaw,	who	is	married	to	Richard	Shaw,
whose	grandmother	was	Stewart	Werthington's	housekeeper,	whose	kids	Damien	and
Charlie	went	to	the	Mansfield	Christian	School	for	Boys	with	Danny	Robinson,	whose
sister	Berta	Robinson	ran	off	with	Chris	Tanner,	who	rides	a	motorcycle	and	greases	his
hair	and	their	kid	Christa	used	to	go	out	with	my	pal	Tom	Slipper,	who	is	the	main
character	of	this	story,	but	not	the	narrator	'cause	I	am	(Tommy	couldn't	write	to	save	his
life).

—	Emma	Dolan



Introduction
Mort	Sahl,	the	brilliant	social	commentator	of	the	1960s,	often	began	his	act	by	dividing	the
world	into	the	"right	wing,"	the	"left	wing,"	and	the	"social	democrats."	The	previous	two
chapters	have	described	the	right	and	left	wings.	Now	it's	time	for	the	social	democrats.

Scripted	testing	is	based	on	the	sequential	examination	of	requirements,	followed	by	the
design	and	documentation	of	test	cases,	followed	by	the	execution	of	those	test	cases.	The
scripted	tester's	motto	is,	"Plan	your	work,	work	your	plan."	Exploratory	testing	is	a	very
different	paradigm.	Rather	than	a	sequential	approach,	exploratory	testing	emphasizes
concurrent	product	learning,	test	design,	and	test	execution.	The	tester	designs	and	executes
tests	while	exploring	the	product.



Technique
Planning	has	been	defined	simply	as	"figuring	out	what	to	do	next."	Most	of	us	would	admit	that
to	be	effective	and	efficient,	planning	is	important.	But	when	and	how	should	that	planning	be
done?	Scripted	testing	emphasizes	the	value	of	early	test	planning	and	design	as	a	method	of
detecting	requirements	and	design	defects	before	the	code	is	written	and	the	system	put	into
production.	Exploratory	testing	challenges	the	idea	that	tests	must	be	designed	so	very	early	in
the	project,	when	our	knowledge	is	typically	at	its	minimum.	In	his	article,	"Exploratory	Testing
and	the	Planning	Myth,"	published	on	StickyMinds.com,	James	Bach	discusses	the	planning	of
plays	that	are	run	in	a	football	game.	He	examines	when	the	plays	can	or	should	be	planned.
Let's	consider	this	sport	to	learn	more	about	planning.

But	first,	an	apology	or	explanation.	In	this	chapter	the	term	"football"	refers	to	the	game	of	the
same	name	as	played	in	the	United	States	and	Canada	and	exported,	with	only	marginal
success,	to	the	rest	of	the	world.	"Football"	does	not	refer	to	that	marvelous	game	played
world-wide	that	North	Americans	call	"soccer."

For	More
Information

To	learn	more	about	the	game	of	football	as	played	in	North	America
see	ww2.nfl.com/basics/history_basics.html

When	are	football	plays	planned?	Our	first	thought	might	be	in	the	huddle	just	before	the	play
begins,	but	the	following	list	shows	more	possibilities:

Planned	Football	Play

Before	the	game	begins	-	the	first	n	plays	are	chosen	and	executed	without	regard	to
their	success	or	failure	to	evaluate	both	teams'	abilities

Before	each	play	-	in	the	huddle,	based	on	an	overall	game	plan,	field	position,	teams'
strengths	and	weaknesses,	and	player	skills	and	experience

At	the	line	of	scrimmage	-	depending	on	the	defensive	lineup

At	the	start	of	a	play	-	play	action	-	run	or	pass	depending	on	the	defense

http://www.ww2.nfl.com/basics/history_basics.html


During	the	play	-	run	for	your	life	when	all	else	has	failed

Adaptive	Planning

Adaptive	planning	is	not	an	industry	standard	term.	Other	possible	terms	are:

Dynamic

Flexible

Just-In-Time

Responsive

Pliable

Progressive

Purposeful	planning

We	could	define	the	terms	"classical	planning"	and	"adaptive	planning"	to	indicate	these
different	approaches.	The	relationship	between	classical	planning	and	adaptive	planning	in
football	is:

Table	14-1:	Classical	planning	vs.	Adaptive	planning.

Classical	Planning Before	the	game	begins	(the	first	ten	plays	are	scripted)

Adaptive	Planning

Before	each	play	(in	the	huddle)

At	the	line	of	scrimmage	(depending	on	the	defensive	setup)

At	the	start	of	a	play	(play	action	-	run	or	pass)

During	the	play	(scramble	when	all	else	has	failed)

Let's	now	leave	football	and	consider	software	test	planning.	(While	we'd	rather	stay	and	watch
the	game,	we've	got	software	to	test.)

Table	14-2:	Classical	test	planning	vs.	Exploratory	test	planning.

Classical	Test
Planning

As	requirements,	analysis,	design,	and	coding	are	being	done—long	before
system	is	built	and	the	testing	can	begin

Adaptive	Test
Planning

Choose	a	strategy	(depending	on	our	current	knowledge)

Before	each	screen	/	function	/	flow	is	to	be	tested

At	the	start	of	an	individual	test	(choose	different	strategies)

During	the	test	(as	we	observe	things	we	don't	expect	or	understand)



A	reasonable	planning	heuristic	would	be:

We	plan	as	much	as	we	can	(based	on	the	knowledge	available),

When	we	can	(based	on	the	time	and	resources	available),

But	not	before.

Aside	from	these	new	labels,	haven't	good	planners	always	done	this?	Is	this	concept	really
new?

A	remarkable	little	book	simply	titled	Planning,	published	by	the	United	States	Marine	Corps	in
1997,	describes	the	concepts	of	adaptive	planning	in	detail.

The	Marine	Corps	defines	planning	as	encompassing	two	basic	functions—"envisioning	a
desired	future	and	arranging	a	configuration	of	potential	actions	in	time	and	space	that	will	allow
us	to	realize	that	future."	But,	to	the	Marines,	planning	is	not	something	done	early	which	then
becomes	cast	in	concrete.	"We	should	think	of	planning	as	a	learning	process—as	mental
preparation	which	improves	our	understanding	of	a	situation."	Plans	are	not	concrete	either.
"Since	planning	is	an	ongoing	process,	it	is	better	to	think	of	a	plan	as	an	interim	product	based
on	the	information	and	understanding	known	at	the	moment	and	always	subject	to	revision	as
new	information	and	understanding	emerge."

The	authors	of	Planning	list	these	planning	pitfalls	to	avoid:

Attempting	to	forecast	events	too	far	into	the	future.	By	planning	we	may	fool	ourselves
into	thinking	we	are	controlling.	There	is	a	difference.

Trying	to	plan	in	too	much	detail.	Helmuth	von	Moltke,	German	Army	Chief	of	Staff
during	World	War	I	said,	"No	plan	survives	contact	with	the	enemy."	In	exactly	that
same	way,	no	test	plan	survives	contact	with	the	defects	in	the	system	under	test.

Institutionalizing	planning	methods	that	lead	us	to	inflexible	or	lockstep	thinking	in	which
both	planning	and	plans	become	rigid.	Rather	than	"Plan	your	work	and	work	your	plan"
as	our	mantra,	we	should	constantly	"Plan	our	work,	work	our	plan,	re-evaluate	our
work,	re-evaluate	our	plan."

Thinking	of	a	plan	as	an	unalterable	solution	to	a	problem.	Rather,	it	should	be	viewed
as	an	open	architecture	that	allows	us	to	pursue	many	alternatives.	"We	will	rarely,	if
ever,	conduct	an	evolution	exactly	the	way	it	was	originally	developed."

Ignoring	the	need	for	a	feedback	mechanism	to	identify	shortcomings	in	the	plan	and
make	necessary	adjustments.	This	is	a	component	of	planning	which	often	does	not
receive	adequate	emphasis.	"Many	plans	stop	short	of	identifying	the	signals,
conditions,	and	feedback	mechanisms	that	will	indicate	successful	or	dysfunctional
execution."

Adaptive	planning,	as	described	above,	acknowledges	and	deals	with	these	pitfalls.



The	following	excerpt	from	Planning	summarizes	these	concepts	well:
"Planning	is	a	continuous	process	involving	the	ongoing	adjustment	of	means	and	ends.
We	should	also	view	planning	as	an	evolutionary	process	involving	continuous
adjustment	and	improvement.	We	can	think	of	planning	as	solution-by-evolution	rather
than	solution-by-engineering.	We	should	generally	not	view	planning	as	trying	to	solve	a
problem	in	one	iteration	because	most	...	problems	are	too	complex	to	be	solved	that
way.	In	many	cases,	it	is	more	advisable	to	find	a	workable	solution	quickly	and
improve	the	solution	as	time	permits.	What	matters	most	is	not	generating	the	best
possible	plan	but	achieving	the	best	possible	result.	Likewise,	we	should	see	each	plan
as	an	evolving	rather	than	a	static	document.	Like	planning,	plans	should	be	dynamic;	a
static	plan	is	of	no	value	to	an	adaptive	organization	in	a	fluid	situation."



Summary
James	Bach	asks,	"What	if	it	[the	plan]	comes	into	existence	only	moments	before	the
testing?"	Why	must	the	plan	be	created	so	very	early	in	the	project,	when	our
knowledge	is	typically	at	its	minimum?

In	adaptive	planning	we	plan	as	much	as	we	can	(based	on	the	knowledge	available),
when	we	can	(based	on	the	time	and	resources	available),	but	not	before.

Key
Point

The	use	of	scripted	testing	does	not	preclude	the	use	of	exploratory
testing.	The	use	of	exploratory	testing	does	not	preclude	the	use	of
scripted	testing.	Smart	testers	use	whatever	tool	in	their	toolbox	is
required.

Since	planning	is	an	ongoing	process,	it	is	better	to	think	of	a	plan	as	an	interim	product
based	on	the	information	and	understanding	known	at	the	moment	and	always	subject
to	revision	as	new	information	and	understanding	emerge.

The	use	of	scripted	testing	does	not	preclude	the	use	of	exploratory	testing.	The	use	of
exploratory	testing	does	not	preclude	the	use	of	scripted	testing.	As	Rex	Black	wrote,
"Smart	testers	use	whatever	tool	in	their	toolbox	is	required.	No	paradigms	here.	No
worldviews	here.	No	screwdrivers	vs.	hammers.	Let's	do	whatever	makes	sense	given
the	problem	at	hand."



Practice
1.	 In	what	areas	could	you	use	adaptive	planning	where	you	now	use	classical	planning?

With	what	benefit?	What	would	the	challenges	be?	Who	would	support	you	in	this	new
process?	Who	would	oppose	your	efforts?	Why?

2.	 In	what	movies	about	the	Marine	Corps	were	the	process	of	planning	and	the	value	of
plans	emphasized	over	action?	Can	you	explain	why?
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The	Bookends
Two	questions,	like	bookends,	frame	our	software	testing:

Where	do	we	start?

When	do	we	stop?

Where	do	we	start	testing?	Of	all	the	places	to	look	for	defects,	where	should	we	begin?	One
answer	is	with	a	defect	taxonomy.	A	taxonomy	is	a	classification	of	things	into	ordered	groups
or	categories	that	indicate	natural,	hierarchical	relationships.	Taxonomies	help	identify	the	kinds
of	defects	that	often	occur	in	systems,	guide	your	testing	by	generating	ideas,	and	audit	your
test	plans	to	determine	the	coverage	you	are	obtaining	with	your	test	cases.	In	time,	they	can
help	you	improve	your	development	process.

And	stopping.	How	do	we	logically	decide	when	we	have	tested	enough	and	the	software	is
ready	for	delivery	and	installation?	Boris	Beizer	has	written,	"There	is	no	single,	valid,	rational
criterion	for	stopping."	If	he	is	correct,	how	do	we	make	that	decision?

The	next	two	chapters	address	these	important	issues.



Chapter	15:	Defect	Taxonomies
'Failure'	was	simply	not	a	word	that	would	ever	cross	the	lips	of	Miss	Evelyn	Duberry,
mainly	because	Evelyn,	a	haughty	socialite	with	fire-red	hair	and	a	coltish	gate,	could
pronounce	neither	the	letters	'f'	nor	'r'	as	a	result	of	an	unfortunate	kissing	gesture	made
many	years	earlier	toward	her	beloved	childhood	parrot,	Snippy.

—	David	Kenyon



Introduction
What	is	a	taxonomy?	A	taxonomy	is	a	classification	of	things	into	ordered	groups	or	categories
that	indicate	natural,	hierarchical	relationships.	The	word	taxonomy	is	derived	from	two	Greek
roots:	"taxis"	meaning	arrangement	and	"onoma"	meaning	name.	Taxonomies	not	only	facilitate
the	orderly	storage	of	information,	they	facilitate	its	retrieval	and	the	discovery	of	new	ideas.
Taxonomies	help	you:

Guide	your	testing	by	generating	ideas	for	test	design

Audit	your	test	plans	to	determine	the	coverage	your	test	cases	are	providing

Understand	your	defects,	their	types	and	severities

Understand	the	process	you	currently	use	to	produce	those	defects	(Always	remember,
your	current	process	is	finely	tuned	to	create	the	defects	you're	creating)

Improve	your	development	process

Improve	your	testing	process

Train	new	testers	regarding	important	areas	that	deserve	testing

Explain	to	management	the	complexities	of	software	testing

Key
Point

A	taxonomy	is	a	classification	of	things	into	ordered	groups	or	categories	that
indicate	natural,	hierarchical	relationships.

In	his	book	Testing	Object-Oriented	Systems,	Robert	Binder	describes	a	"fault	model"	as	a	list
of	typical	defects	that	occur	in	systems.	Another	phrase	to	describe	such	a	list	is	a	defect
taxonomy.	Binder	then	describes	two	approaches	to	testing.	The	first	uses	a	"non-specific	fault
model."	In	other	words,	no	defect	taxonomy	is	used.	Using	this	approach,	the	requirements	and
specifications	guide	the	creation	of	all	of	our	test	cases.	The	second	approach	uses	a	"specific
fault	model."	In	this	approach,	a	taxonomy	of	defects	guides	the	creation	of	test	cases.	In	other
words,	we	create	test	cases	to	discover	faults	like	the	ones	we	have	experienced	before.	We
will	consider	two	levels	of	taxonomies—project	level	and	software	defect	level.	Of	most
importance	in	test	design	are	the	software	defect	taxonomies.	But	it	would	be	foolish	to	begin
test	design	before	evaluating	the	risks	associated	with	both	the	product	and	its	development
process.

Note	that	none	of	the	taxonomies	presented	below	are	complete.	Each	could	be	expanded.
Each	is	subjective	based	on	the	experience	of	those	who	created	the	taxonomies.



Project	Level	Taxonomies

SEI	Risk	Identification	Taxonomy

The	Software	Engineering	Institute	has	published	a	"Taxonomy-Based	Risk	Identification"	that
can	be	used	to	identify,	classify,	and	evaluate	different	risk	factors	found	in	the	development	of
software	systems.

Table	15-1:	The	SEI	Taxonomy-Based	Risk	Identification	taxonomy.

Class Element Attribute

Product	Engineering

Requirements

Stability

Completeness

Clarity

Validity

Feasibility

Precedent

Scale

Design

Functionality

Difficulty

Interfaces

Performance

Testability

Code	and	Unit	Test

Feasibility

Testing

Coding/Implementation

Integration	and	Test

Environment

Product

System

Engineering	Specialties

Maintainability

Reliability

Safety

Security



Human	Factors

Specifications

Development	Environment

Development	Process

Formality

Suitability

Process	Control

Familiarity

Product	Control

Development	System

Capacity

Suitability

Usability

Familiarity

Reliability

System	Support

Deliverability

Management	Process

Planning

Project	Organization

Management	Experience

Program	Interfaces

Management	Methods

Monitoring

Personnel	Management

Quality	Assurance

Configuration	Management

Work	Environment

Quality	Attitude

Cooperation

Communication

Morale

Resources

Schedule

Staff

Budget

Facilities



Program	Constraints

Contract

Types	of	Contract

Restrictions

Dependencies

Program	Interfaces

Customer

Associate	Contractors

Subcontractors

Prime	Contractor

Corporate	Management

Vendors

Politics

If,	as	a	tester,	you	had	concerns	with	some	of	these	elements	and	attributes,	you	would	want
to	stress	certain	types	of	testing.	For	example:

If	you	are	concerned	about: You	might	want	to	emphasize:

The	stability	of	the	requirements Formal	traceability

Incomplete	requirements Exploratory	testing

Imprecisely	written	requirements Decision	tables	and/or	state-transition	diagrams

Difficulty	in	realizing	the	design Control	flow	testing

System	performance Performance	testing

Lack	of	unit	testing Additional	testing	resources

Usability	problems Usability	testing

ISO	9126	Quality	Characteristics	Taxonomy

The	ISO	9126	Standard	"Software	Product	Evaluation—Quality	Characteristics	and	Guidelines"
focuses	on	measuring	the	quality	of	software	systems.	This	international	standard	defines
software	product	quality	in	terms	of	six	major	characteristics	and	twenty-one	subcharacteristics
and	defines	a	process	to	evaluate	each	of	these.	This	taxonomy	of	quality	attributes	is:

Table	15-2:	The	ISO	9126	Quality	Characteristics	taxonomy.

Quality	Characteristic Subcharacteristic

Suitability



Functionality
(Are	the	required	functions	available	in	the	software?)

Accuracy

Interoperability

Security

Reliability
(How	reliable	is	the	software?)

Maturity

Fault	tolerance

Recoverability

Usability
(Is	the	software	easy	to	use?)

Understandability

Learnability

Operability

Attractiveness

Efficiency
(How	efficient	is	the	software?)

Time	behavior

Resource	behavior

Maintainability
(How	easy	is	it	to	modify	the	software?)

Analyzability

Changeability

Stability

Testability

Portability
(How	easy	is	it	to	transfer	the	software	to	another	operating
environment?)

Adaptability

Installability

Coexistence

Replaceability

Each	of	these	characteristics	and	subcharacteristics	suggest	areas	of	risk	and	thus	areas	for
which	tests	might	be	created.	An	evaluation	of	the	importance	of	these	characteristics	should
be	undertaken	first	so	that	the	appropriate	level	of	testing	is	performed.	A	similar	"if	you	are
concerned	about	/	you	might	want	to	emphasize"	process	could	be	used	based	on	the	ISO
9126	taxonomy.

These	project	level	taxonomies	can	be	used	to	guide	our	testing	at	a	strategic	level.	For	help	in
software	test	design	we	use	software	defect	taxonomies.



Software	Defect	Taxonomies
In	software	test	design	we	are	primarily	concerned	with	taxonomies	of	defects,	ordered	lists	of
common	defects	we	expect	to	encounter	in	our	testing.

Beizer's	Taxonomy

One	of	the	first	defect	taxonomies	was	defined	by	Boris	Beizer	in	Software	Testing	Techniques.
It	defines	a	four-level	classification	of	software	defects.	The	top	two	levels	are	shown	here.

Table	15-3:	A	portion	of	Beizer's	Bug	Taxonomy.

1xxx Requirements

11xx Requirements	incorrect

12xx Requirements	logic

13xx Requirements,	completeness

14xx Verifiability

15xx Presentation,	documentation

16xx Requirements	changes

2xxx Features	And	Functionality

21xx Feature/function	correctness

22xx Feature	completeness

23xx Functional	case	completeness

24xx Domain	bugs

25xx User	messages	and	diagnostics

26xx Exception	conditions	mishandled

3xxx Structural	Bugs

31xx Control	flow	and	sequencing

32xx Processing

4xxx Data

41xx Data	definition	and	structure

42xx Data	access	and	handling

5xxx Implementation	And	Coding

51xx Coding	and	typographical



52xx Style	and	standards	violations

53xx Documentation

6xxx Integration

61xx Internal	interfaces

62XX External	interfaces,	timing,	throughput

7XXX System	And	Software	Architecture

71XX O/S	call	and	use

72XX Software	architecture

73XX Recovery	and	accountability

74XX Performance

75XX Incorrect	diagnostics,	exceptions

76XX Partitions,	overlays

77XX Sysgen,	environment

8XXX Test	Definition	And	Execution

81XX Test	design	bugs

82XX Test	execution	bugs

83XX Test	documentation

84XX Test	case	completeness

Even	considering	only	the	top	two	levels,	it	is	quite	extensive.	All	four	levels	of	the	taxonomy
constitute	a	fine-grained	framework	with	which	to	categorize	defects.

At	the	outset,	a	defect	taxonomy	acts	as	a	checklist,	reminding	the	tester	so	that	no	defect
types	are	forgotten.	Later,	the	taxonomy	can	be	used	as	a	framework	to	record	defect	data.
Subsequent	analysis	of	this	data	can	help	an	organization	understand	the	types	of	defects	it
creates,	how	many	(in	terms	of	raw	numbers	and	percentages),	and	how	and	why	these
defects	occur.	Then,	when	faced	with	too	many	things	to	test	and	not	enough	time,	you	will
have	data	that	enables	you	to	make	risk-based,	rather	than	random,	test	design	decisions.	In
addition	to	taxonomies	that	suggest	the	types	of	defects	that	may	occur,	always	evaluate	the
impact	on	the	customer	and	ultimately	on	your	organization	if	they	do	occur.	Defects	that	have
low	impact	may	not	be	worth	tracking	down	and	repairing.

Kaner,	Falk,	and	Nguyen's	Taxonomy

The	book	Testing	Computer	Software	contains	a	detailed	taxonomy	consisting	of	over	400
types	of	defects.	Only	a	few	excerpts	from	this	taxonomy	are	listed	here.



Table	15-4:	A	portion	of	the	defect	taxonomy	from	Testing	Computer	Software.

User	Interface	Errors

Functionality

Communication

Command	structure

Missing	commands

Performance

Output

Error	Handling

Error	prevention

Error	detection

Error	recovery

Boundary-Related	Errors

Numeric	boundaries

Boundaries	in	space,	time

Boundaries	in	loops

Calculation	Errors

Outdated	constants

Calculation	errors

Wrong	operation	order

Overflow	and	underflow

Initial	And	Later	States

Failure	to	set	a	data	item	to	0

Failure	to	initialize	a	loop	control	variable

Failure	to	clear	a	string

Failure	to	reinitialize

Control	Flow	Errors

Program	runs	amok

Program	stops

Loops

IF,	THEN,	ELSE	or	maybe	not

Errors	In	Handling	Or	Interpreting
Data

Data	type	errors

Parameter	list	variables	out	of	order	or	missing

Outdated	copies	of	data

Wrong	value	from	a	table

Wrong	mask	in	bit	field



Race	Conditions

Assuming	one	event	always	finishes	before
another

Assuming	that	input	will	not	occur	in	a	specific
interval

Task	starts	before	its	prerequisites	are	met

Load	Conditions
Required	resource	not	available

Doesn't	return	unused	memory

Hardware
Device	unavailable

Unexpected	end	of	file

Source	And	Version	Control
Old	bugs	mysteriously	reappear

Source	doesn't	match	binary

Documentation None

Testing	Errors

Failure	to	notice	a	problem

Failure	to	execute	a	planned	test

Failure	to	use	the	most	promising	test	cases

Failure	to	file	a	defect	report

Binder's	Object-Oriented	Taxonomy

Robert	Binder	notes	that	many	defects	in	the	object-oriented	(OO)	paradigm	are	problems
using	encapsulation,	inheritance,	polymorphism,	message	sequencing,	and	state-transitions.
This	is	to	be	expected	for	two	reasons.	First,	these	are	cornerstone	concepts	in	OO.	They
form	the	basis	of	the	paradigm	and	thus	will	be	used	extensively.	Second,	these	basic	concepts
are	very	different	from	the	procedural	paradigm.	Designers	and	programmers	new	to	OO
would	be	expected	to	find	them	foreign	ideas.	A	small	portion	of	Binder's	OO	taxonomy	is	given
here	to	give	you	a	sense	of	its	contents:

Table	15-5:	A	portion	of	Binder's	Method	Scope	Fault	Taxonomy.

Method	Scope Fault

Requirements Requirement	omission

Design

Abstraction Low	Cohesion

Refinement
Feature	override	missing

Feature	delete	missing

Encapsulation
Naked	access



Overuse	of	friend

Responsibilities
Incorrect	algorithm

Invariant	violation

Exceptions Exception	not	caught

Table	15-6:	A	portion	of	Binder's	Class	Scope	Fault	Taxonomy.

Class	Scope Fault

Design

Abstraction
Association	missing	or	incorrect

Inheritance	loops

Refinement
Wrong	feature	inherited

Incorrect	multiple	inheritance

Encapsulation
Public	interface	not	via	class	methods

Implicit	class-to-class	communication

Modularity
Object	not	used

Excessively	large	number	of	methods

Implementation Incorrect	constructor

Note	how	this	taxonomy	could	be	used	to	guide	both	inspections	and	test	case	design.	Binder
also	references	specific	defect	taxonomies	for	C++,	Java,	and	Smalltalk.

Whittaker's	"How	to	Break	Software"	Taxonomy

James	Whittaker's	book	How	to	Break	Software	is	a	tester's	delight.	Proponents	of	exploratory
testing	exhort	us	to	"explore."	Whittaker	tells	us	specifically	"where	to	explore."	Not	only	does
he	identify	areas	in	which	faults	tend	to	occur,	he	defines	specific	testing	attacks	to	locate
these	faults.	Only	a	small	portion	of	his	taxonomy	is	presented:

Table	15-7:	A	portion	of	Whittaker's	Fault	Taxonomy.

Fault	Type Attack

Inputs	and	outputs

Force	all	error	messages	to	occur

Force	the	establishing	of	default	values

Overflow	input	buffers

Data	and	computation
Force	the	data	structure	to	store	too	few	or	too	many	values

Force	computation	results	to	be	too	large	or	too	small



File	system	interface
Fill	the	file	system	to	its	capacity

Damage	the	media

Software	interfaces
Cause	all	error	handling	code	to	execute

Cause	all	exceptions	to	fire

Vijayaraghavan's	eCommerce	Taxonomy

Beizer's,	Kaner's,	and	Whittaker's	taxonomies	catalog	defects	that	can	occur	in	any	system.
Binder's	focuses	on	common	defects	in	object-oriented	systems.	Giri	Vijayaraghavan	has
chosen	a	much	narrower	focus—the	eCommerce	shopping	cart.	Using	this	familiar	metaphor,
an	eCommerce	Web	site	keeps	track	of	the	state	of	a	user	while	shopping.	Vijayaraghavan	has
investigated	the	many	ways	shopping	carts	can	fail.	He	writes,	"We	developed	the	list	of
shopping	cart	failures	to	study	the	use	of	the	outline	as	a	test	idea	generator."	This	is	one	of	the
prime	uses	of	any	defect	taxonomy.	His	taxonomy	lists	over	sixty	high-level	defect	categories,
some	of	which	are	listed	here:

Performance

Reliability

Software	upgrades

User	interface	usability

Maintainability

Conformance

Stability

Operability

Fault	tolerance

Accuracy

Internationalization

Recoverability

Capacity	planning

Third-party	software	failure

Memory	leaks

Browser	problems



System	security

Client	privacy

After	generating	the	list	he	concludes,	"We	think	the	list	is	a	sufficiently	broad	and	well-
researched	collection	that	it	can	be	used	as	a	starting	point	for	testing	other	applications."	His
assertion	is	certainly	correct.

A	Final	Observation

Note	that	each	of	these	taxonomies	is	a	list	of	possible	defects	without	any	guidance	regarding
the	probability	that	these	will	occur	in	your	systems	and	without	any	suggestion	of	the	loss	your
organization	would	incur	if	these	defects	did	occur.	Taxonomies	are	useful	starting	points	for	our
testing	but	they	are	certainly	not	a	complete	answer	to	the	question	of	where	to	start	testing.



Your	Taxonomy
Now	that	we	have	examined	a	number	of	different	defect	taxonomies,	the	question	arises—
which	is	the	correct	one	for	you?	The	taxonomy	that	is	most	useful	is	your	taxonomy,	the	one
you	create	from	your	experience	within	your	organization.	Often	the	place	to	start	is	with	an
existing	taxonomy.	Then	modify	it	to	more	accurately	reflect	your	particular	situation	in	terms	of
defects,	their	frequency	of	occurrence,	and	the	loss	you	would	incur	if	these	defects	were	not
detected	and	repaired.

Key
Point The	taxonomy	that	is	most	useful	is	your	taxonomy,	the	one	you	create.

Just	as	in	other	disciplines	like	biology,	psychology,	and	medicine,	there	is	no	one,	single,	right
way	to	categorize,	there	is	no	one	right	software	defect	taxonomy.	Categories	may	be	fuzzy
and	overlap.	Defects	may	not	correspond	to	just	one	category.	Our	list	may	not	be	complete,
correct,	or	consistent.	That	matters	very	little.	What	matters	is	that	we	are	collecting,	analyzing,
and	categorizing	our	past	experience	and	feeding	it	forward	to	improve	our	ability	to	detect
defects.	Taxonomies	are	merely	models	and,	as	George	Box,	the	famous	statistician,	reminds
us,	"All	models	are	wrong;	some	models	are	useful."

To	create	your	own	taxonomy,	first	start	with	a	list	of	key	concepts.	Don't	worry	if	your	list
becomes	long.	That	may	be	just	fine.	Make	sure	the	items	in	your	taxonomy	are	short,
descriptive	phrases.	Keep	your	users	(that's	you	and	other	testers	in	your	organization)	in	mind.
Use	terms	that	are	common	for	them.	Later,	look	for	natural	hierarchical	relationships	between
items	in	the	taxonomy.	Combine	these	into	a	major	category	with	subcategories	underneath.
Try	not	to	duplicate	or	overlap	categories	and	subcategories.	Continue	to	add	new	categories
as	they	are	discovered.	Revise	the	categories	and	subcategories	when	new	items	don't	seem
to	fit	well.	Share	your	taxonomy	with	others	and	solicit	their	feedback.	You	are	on	your	way	to	a
taxonomy	that	will	contribute	to	your	testing	success.



Summary
Taxonomies	help	you:

Guide	your	testing	by	generating	ideas	for	test	case	design

Audit	your	test	plans	to	determine	the	coverage	your	test	cases	are	providing

Understand	your	defects,	their	types	and	severities

Understand	the	process	you	currently	use	to	produce	those	defects	(Always
remember,	your	current	process	is	finely	tuned	to	create	the	defects	you're
creating)

Improve	your	development	process

Improve	your	testing	process

Train	new	testers	regarding	important	areas	that	deserve	testing

Explain	to	management	the	complexities	of	software	testing

Testing	can	be	done	without	the	use	of	taxonomies	(nonspecific	fault	model)	or	with	a
taxonomy	(specific	fault	model)	to	guide	the	design	of	test	cases.

Taxonomies	can	be	created	at	a	number	of	levels:	generic	software	system,
development	paradigm,	type	of	application,	and	user	interface	metaphor.
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Chapter	16:	When	to	Stop	Testing
The	ballerina	stood	on	point,	her	toes	curled	like	shrimp,	not	deep-fried	shrimp	because,
as	brittle	as	they	are,	they	would	have	cracked	under	the	pressure,	but	tender	ebi-kind-of-
shrimp,	pink	and	luscious	as	a	Tokyo	sunset,	wondering	if	her	lover	was	in	the	Ginza,
wooing	the	geisha	with	eyes	reminiscent	of	roe,	which	she	liked	better	than	ebi	anyway.

—	Brian	Tacang



The	Banana	Principle
In	his	classic	book	An	Introduction	to	General	Systems	Thinking,	Gerald	Weinberg	introduces
us	to	the	"Banana	Principle."	A	little	boy	comes	home	from	school	and	his	mother	asks,	"What
did	you	learn	in	school	today?"	The	boy	responds,	"Today	we	learned	how	to	spell	'banana'	but
we	didn't	learn	when	to	stop."	In	this	book	we	have	learned	how	to	design	effective	and	efficient
test	cases,	but	how	do	we	know	when	to	stop?	How	do	we	know	we	have	done	enough
testing?



When	to	Stop
In	The	Complete	Guide	to	Software	Testing,	Bill	Hetzel	wrote	regarding	system	testing,
"Testing	ends	when	we	have	measured	system	capabilities	and	corrected	enough	of	the
problems	to	have	confidence	that	we	are	ready	to	run	the	acceptance	test."	The	phrases
"corrected	enough"	and	"have	confidence,"	while	certainly	correct,	are	vague.

Regarding	stopping,	Boris	Beizer	has	written,	"There	is	no	single,	valid,	rational	criterion	for
stopping.	Furthermore,	given	any	set	of	applicable	criteria,	how	exactly	each	is	weighted
depends	very	much	upon	the	product,	the	environment,	the	culture	and	the	attitude	to	risk."
Again,	not	much	help	in	knowing	when	to	stop	testing.

Even	though	Beizer	says	there	is	no	single	criterion	for	stopping,	many	organizations	have
chosen	one	anyway.	The	five	basic	criteria	often	used	to	decide	when	to	stop	testing	are:

You	have	met	previously	defined	coverage	goals

The	defect	discovery	rate	has	dropped	below	a	previously	defined	threshold

The	marginal	cost	of	finding	the	"next"	defect	exceeds	the	expected	loss	from	that
defect

The	project	team	reaches	consensus	that	it	is	appropriate	to	release	the	product

The	boss	says,	"Ship	it!"

Coverage	Goals

Coverage	is	a	measure	of	how	much	has	been	tested	compared	with	how	much	is	available	to
test.	Coverage	can	be	defined	at	the	code	level	with	metrics	such	as	statement	coverage,
branch	coverage,	and	path	coverage.	At	the	integration	level,	coverage	can	be	defined	in	terms
of	APIs	tested	or	API/parameter	combinations	tested.	At	the	system	level,	coverage	can	be
defined	in	terms	of	functions	tested,	use	cases	(or	user	stories)	tested,	or	use	case	scenarios
(main	path	plus	all	the	exception	paths)	tested.	Once	enough	test	cases	have	been	executed	to
meet	the	previously	defined	coverage	goals,	we	are,	by	definition,	finished	testing.	For
example,	we	could	define	a	project's	stopping	criteria	as:

100%	statement	coverage

90%	use	case	scenario	coverage



When	this	number	of	tests	pass,	we	are	finished	testing.	(Of	course,	there	are	many	other
combinations	of	factors	that	could	be	used	as	stopping	criteria.)	Not	all	testers	approve	of	this
approach.	Glenford	Myers	believes	that	this	method	is	highly	counterproductive.	He	believes
that	because	human	beings	are	very	goal	oriented,	this	criterion	could	subconsciously
encourage	testers	to	write	test	cases	that	have	a	low	probability	of	detecting	defects	but	do
meet	the	coverage	criteria.	He	believes	that	more	specific	criteria	such	as	a	set	of	tests	that
cover	all	boundary	values,	state-transition	events,	decision	table	rules,	etc.	are	superior.

Defect	Discovery	Rate

Another	approach	is	to	use	the	defect	discovery	rate	as	the	criteria	for	stopping.	Each	week	(or
other	short	period	of	time)	we	count	the	number	of	defects	discovered.	Typically,	the	number	of
defects	found	each	week	resembles	the	curve	in	Figure	16-1.	Once	the	discovery	rate	is	less
than	a	certain	previously	selected	threshold,	we	are	finished	testing.	For	example,	if	we	had	set
the	threshold	at	three	defects/week,	we	would	stop	testing	after	week	18.

	
Figure	16-1:	Defect	Discovery	Rate

While	this	approach	appeals	to	our	intuition,	we	should	consider	what	other	situations	would
produce	a	curve	like	this—creation	of	additional,	but	less	effective	test	cases;	testers	on
vacation;	"killer"	defects	that	still	exist	in	the	software	but	that	hide	very	well.	This	is	one	reason
why	Beizer	suggests	not	depending	on	only	one	stopping	criterion.

Marginal	Cost

In	manufacturing,	we	define	"marginal	cost"	as	the	cost	associated	with	one	additional	unit	of
production.	If	we're	making	1,000	donuts,	what	is	the	additional	cost	of	making	one	more?	Not
very	much.	In	manufacturing,	the	marginal	cost	typically	decreases	as	the	number	of	units	made
increases.	In	software	testing,	however,	just	the	opposite	occurs.	Finding	the	first	few	defects
is	relatively	simple	and	inexpensive.	Finding	each	additional	defect	becomes	more	and	more
time	consuming	and	costly	because	these	defects	are	very	adept	at	hiding	from	our	test	cases.
Thus	the	cost	of	finding	the	"next"	defect	increases.	At	some	point	the	cost	of	finding	that
defect	exceeds	the	loss	our	organization	would	incur	if	we	shipped	the	product	with	that	defect.
Clearly,	it	is	(past)	time	to	stop	testing.

Not	every	system	should	use	this	criterion.	Systems	that	require	high	reliability	such	as



weapons	systems,	medical	devices,	industrial	controls,	and	other	safety-critical	systems	may
require	additional	testing	because	of	their	risk	and	subsequent	loss	should	a	failure	occur.

Team	Consensus

Based	on	various	factors	including	technical,	financial,	political,	and	just	"gut	feelings,"	the
project	team	(managers,	developers,	testers,	marketing,	sales,	quality	assurance,	etc.)	decide
that	the	benefits	of	delivering	the	software	now	outweigh	the	potential	liabilities	and	reach
consensus	that	the	product	should	be	released.

Ship	It!

For	many	of	us,	this	will	be	the	only	strategy	we	will	ever	personally	experience.	It's	often	very
disheartening	for	testers,	especially	after	many	arduous	hours	of	testing,	and	with	a	sure
knowledge	that	many	defects	are	still	hiding	in	the	software,	to	be	told	"Ship	it!"	What	testers
must	remember	is	that	there	may	be	very	reasonable	and	logical	reasons	for	shipping	the
product	before	we,	as	testers,	think	it	is	ready.	In	today's	fast-paced	market	economy,	often
the	"first	to	market"	wins	a	substantial	market	share.	Even	if	the	product	is	less	than	perfect,	it
may	still	satisfy	the	needs	of	many	users	and	bring	significant	profits	to	our	organization;	profits
that	might	be	lost	if	we	delayed	shipment.

Some	of	the	criteria	that	should	be	considered	in	making	this	decision	are	the	complexity	of	the
product	itself,	the	complexity	of	the	technologies	used	to	implement	it	and	our	skills	and
experience	in	using	those	technologies,	the	organization's	culture	and	the	importance	of	risk
aversion	in	our	organization,	and	the	environment	within	which	the	system	will	operate	including
the	financial	and	legal	exposure	we	have	if	the	system	fails.

As	a	tester,	you	may	be	frustrated	by	the	"Ship	It"	decision.	Remember,	our	role	as	testers	is
to	inform	management	of	the	risks	of	shipping	the	product.	The	role	of	your	organization's
marketing	and	sales	groups	should	be	to	inform	management	of	the	benefits	of	shipping	the
product.	With	this	information,	both	positive	and	negative,	project	managers	can	make
informed,	rational	decisions.



Some	Concluding	Advice
Lesson	185	in	Lessons	Learned	in	Software	Testing	states:

"Because	testing	is	an	information	gathering	process,	you	can	stop	when	you've
gathered	enough	information.	You	could	stop	after	you've	found	every	bug,	but	it	would
take	infinite	testing	to	know	that	you've	found	every	bug,	so	that	won't	work.	Instead,
you	should	stop	when	you	reasonably	believe	that	the	probability	is	low	that	the	product
still	has	important	undiscovered	problems.

"Several	factors	are	involved	in	deciding	that	testing	is	good	enough	(low	enough
chance	of	undiscovered	significant	bugs):

You	are	aware	of	the	kinds	of	problems	that	would	be	important	to	find,	if	they
existed.

You	are	aware	of	how	different	parts	of	the	product	could	exhibit	important
problems.

You	have	examined	the	product	to	a	degree	and	in	a	manner	commensurate
with	these	risks.

Your	test	strategy	was	reasonably	diversified	to	guard	against	tunnel	vision.

You	used	every	resource	available	for	testing.

You	met	every	testing	process	standard	that	your	clients	would	expect	you	to
meet.

You	expressed	your	test	strategy,	test	results,	and	quality	assessments	as
clearly	as	you	could."



Summary
Regarding	stopping,	Boris	Beizer	has	written,	"There	is	no	single,	valid,	rational	criterion
for	stopping.	Furthermore,	given	any	set	of	applicable	criteria,	how	exactly	each	is
weighted	depends	very	much	upon	the	product,	the	environment,	the	culture	and	the
attitude	to	risk."

The	five	basic	criteria	often	used	to	decide	when	to	stop	testing	are:

You	have	met	previously	defined	coverage	goals

The	defect	discovery	rate	has	dropped	below	a	previously	defined	threshold

The	marginal	cost	of	finding	the	"next"	defect	exceeds	the	expected	loss	from
that	defect

The	project	team	reaches	consensus	that	it	is	appropriate	to	release	the
product

The	boss	says,	"Ship	it!"
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Your	Testing	Toolbox
My	oldest	son	Shawn	is	a	glazier—he	installs	glass,	mirrors,	shower	doors,	etc.	He	is	an	artist
in	glass.	As	a	father,	I	decided	it	would	be	good	to	know	what	my	son	does	for	a	living,	so	I
rode	with	him	in	his	truck	for	a	few	hours	watching	him	work.

At	the	first	job	site	he	pulled	out	a	clipboard	with	a	work	order	that	told	him	what	was	needed.
He	hopped	out	and	walked	around	to	the	back	of	the	truck.	There,	he	grabbed	his	tool	bucket
(an	old	five-gallon	paint	bucket)	and	rooted	around	through	it.	He	pulled	out	some	tools,	walked
up	to	the	house,	did	his	magic,	came	back	to	the	truck,	put	the	tools	in	the	bucket,	and	away
we	went.	At	the	second	job	site	he	repeated	the	process.	Once	again,	he	pulled	out	the
clipboard,	hopped	out,	walked	around	to	the	back	of	the	truck,	grabbed	his	tool	bucket,	and
rooted	around	through	it.	He	pulled	out	some	tools,	but	different	tools	this	time,	walked	up	to
the	house,	did	his	magic,	came	back	to	the	truck,	put	the	tools	in	the	bucket,	and	away	we
went.	As	we	went	from	job	to	job	it	occurred	to	me	that	all	good	craftspeople,	including
software	testers,	need	a	bucket	of	tools.	In	addition,	good	craftspeople	know	which	tool	to	use
in	which	situation.	My	intent	in	writing	this	book	was	to	help	put	more	tools	in	your	personal
testing	tool	bucket	and	to	help	you	know	which	tool	to	use	in	which	situation.	Remember,	not
every	tool	needs	to	be	used	every	time.

Now,	it's	up	to	you.	The	next	level	of	skill	comes	with	practice.	Famous	educator	Benjamin
Bloom	created	a	taxonomy	for	categorizing	levels	of	competency	in	school	settings.	The	first
three	levels	are:

Knowledge

Comprehension

Application

This	book	has	focused	on	knowledge	and	comprehension.	The	"application"	is	up	to	you.

Best	wishes	in	your	testing	...
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Appendix	A:	Brown	&	Donaldson	Case	Study



Introduction
Brown	&	Donaldson	(B&D)	is	a	fictitious	online	brokerage	firm	that	you	can	use	to	practice	the
test	design	techniques	presented	in	this	book.	B&D	was	originally	created	for	Software	Quality
Engineering's	Web/eBusiness	Testing	course	(see	http://www.sqe.com).	The	actual	B&D	Web
site	is	found	at	http://bdonline.sqe.com.	Any	resemblance	to	any	actual	online	brokerage	Web
site	is	purely	coincidental.

http://www.sqe.com
http://bdonline.sqe.com


Login
The	Login	page	is	the	gateway	into	the	B&D	site.	It	requires	a	legitimate	username	and
password.



Market	News
The	Market	News	page	is	the	main	page	of	the	B&D	site.	It	contains	navigation	buttons	on	the
left	side	of	the	page,	stock	performance	charts	at	the	top,	and	news	stories	of	interest	to
B&D's	investors.



Trade
The	Trade	page	allows	a	B&D	client	to	buy	and	sell	stocks.	It	contains	a	buy/sell	button,	a	text
box	for	the	stock	ticker	symbol,	a	text	box	for	the	number	of	shares	to	be	bought	or	sold
(quantity),	and	boxes	indicating	the	type	of	trade.



Symbol	Lookup
The	Symbol	Lookup	page	is	reached	from	the	Trade	page.	It	is	used	when	the	B&D	client	is
unsure	of	the	stock	ticker	symbol	and	must	look	it	up.	It	contains	one	field	where	the	first	few
characters	of	the	organization's	name	are	entered.



Lookup	Results
The	Lookup	Results	page	is	the	result	of	the	previous	Symbol	Lookup	page.	It	displays	the
stock	symbols	that	matched	the	previous	search.



Holdings
Perhaps	the	most	important	page	on	the	B&D	site,	the	Holdings	page	displays	the	stocks
currently	owned	by	this	client.



Glossary
The	Glossary	page	can	be	used	to	look	up	terms	that	unfamiliar	to	the	B&D	client.



Appendix	B:	Stateless	University	Registration	System	Case
Study



System	Documentation
Stateless	University	Registration	System	(SURS)	User	Interface	Specification

May	1,	2002

Version	2.3

Prepared	By:

Otis	Kribblekoblis	
Super	Duper	Software	Company	(SDSC)

422	South	5th	Avenue
Anytown,	USA

Introduction

The	purpose	of	this	document	is	to	describe	the	planned	user	interface	for	the	Stateless
University	Registration	System.	It	will	be	revised	to	reflect	that	"as-built"	software	after	system
testing	has	begun.	It	is	a	customized	version	of	the	registration	system	delivered	to	Universal
Online	University	(UOU)	last	year.	Stateless	U	has	requested	some	major	modifications	to	the
UOU	version,	so	that	it	is	essentially	a	rewrite	of	the	software.	Some	of	the	modules	for
database	creation	and	backup	have	been	reused,	but	that	is	not	apparent	from	the	user
interface,	which	is	all	new.

This	manual	has	the	user	interface	screens	defined	in	the	order	in	which	they	are	customarily
used.	It	starts	with	the	login	screen.	Then	it	provides	the	data	base	set-up	fields:	the	addition	/
change	/	deletion	of	students,	the	addition	/	change	/	deletion	of	courses,	and	the	addition	/
change	/	deletion	of	class	sections.	The	final	data	entry	screen	provides	the	selection	of
specific	course	sections	for	each	student.	There	is	also	an	administrative	function	that	is
accessible	to	only	the	supervisor.	It	provides	access	to	the	administrative	functions	of	backup
and	restore	of	the	databases.	Each	screen	is	defined	in	a	separate	section	providing	the
following	information:

Functionality	supported

Formatting	requirements	for	each	data	entry	field

A	sample	screen	layout	(the	final	implemented	software	may	differ)

The	figure	below	summarizes	the	screens	and	their	navigation	options.





2.1	Log-in	and	Select	Function	Screen

2.1.1	Functions

Each	user	is	required	to	enter	a	User	ID	and	a	Password.	The	identification	of	the	status	of
the	user	(supervisor:	yes	or	no)	is	mandatory	at	the	time	of	log-in.	Only	Yes	or	No	may	be
selected	by	clicking	on	the	appropriate	box	(not	both).	After	a	successful	log-in	has	been
completed,	then	the	next	function	to	be	executed	can	be	selected.	Only	a	supervisor	may
access	the	Administrative	screen.	The	Exit	button	is	active	at	all	times.

2.1.2	Data	Entry	Formats

The	formats	for	the	fields	on	this	screen	are:	User	ID:	eight	characters	at	least	two	of	which
are	not	alphabetic	(can	be	numeric	or	special	characters).

Password:	eight	characters	at	least	two	of	which	are	not	alphabetic	(can	be	numeric	or	special
characters).

2.1.3	Screen	Format



3.1	Student	Database	Maintenance	Screen

3.1.1	Functions

This	screen	allows	the	entry	of	the	identifying	information	for	a	new	student	and	the	assignment
of	his/her	student	ID	number.	All	fields	are	required	to	be	filled	in	before	the	Enter	button	is
selected.	The	fields	may	be	entered	in	any	order.	The	backspace	key	will	work	at	any	time	in
any	field,	but	the	Reset	button	will	clear	all	of	the	fields	when	it	is	pressed.

If	the	Student	ID	is	entered	first,	then	the	Delete	(allows	a	student	to	be	removed	from	the
database)	and	Modify	(allows	the	modification	of	the	student's	contact	information—the	data
currently	in	the	database	will	be	displayed)	buttons	become	active.	The	Enter	button	will	cause
the	Delete	or	the	Modify	to	be	executed	and	the	fields	on	the	screen	to	be	cleared.

3.1.2	Data	Entry	Formats

The	formats	for	the	fields	(all	mandatory)	on	this	screen	are:	First	name:	one	to	ten	characters
Middle	name:	one	to	ten	characters	or	NMN	for	no	middle	name	Last	name:	one	to	fifteen
characters	(alpha,	period,	hyphen,	apostrophe,	space,	numbers)	Street	address:	four	to
twenty	alphanumeric	characters	City:	three	to	ten	alpha	characters	State:	two	alpha
characters	Zip:	the	standard	five	numerics	hyphen	four	numerics	Phone:	telephone	number	in
the	following	format	703.555.1212

Student	ID:	two	characters	representing	the	home	campus	and	a	six-digit	number	which	is
unique	for	each	student.	The	home	campus	designations	are:

AN	for	Annandale

LO	for	Loudoun

MA	for	Manassas

WO	for	Woodbridge

AR	for	Arlington

The	six-digit	number	is	generated	by	the	system	when	the	Enter	button	is	selected.	It	remains
displayed	until	the	Reset	button	is	depressed.	At	that	time,	all	fields	are	cleared	for	the	next	set
of	entries.

3.1.3	Screen	Layout





3.2	Course	Database	Maintenance	Screen

3.2.1	Functions

This	screen	allows	the	entry	of	the	identifying	information	for	a	new	course	and	the	assignment
of	the	course	ID	number.	All	fields	are	required	to	be	filled	in	before	the	Enter	button	is
pressed.	The	fields	may	be	entered	in	any	order.	The	backspace	key	will	work	at	any	time	in
any	field,	but	the	Reset	button	will	clear	all	of	the	fields	when	it	is	entered.	The	Back	button
causes	a	return	to	the	previous	screen.	The	Exit	button	causes	an	exit	from	this	application.

If	the	Course	ID	is	entered	first,	then	the	Delete	(allows	a	course	to	be	removed	from	the
database)	and	Modify	(allows	the	modification	of	an	existing	course's	information—the	data
currently	in	the	database	will	be	displayed)	buttons	become	active.	The	Enter	button	will	cause
the	Delete	or	the	Modify	to	be	executed	and	the	fields	on	the	screen	to	be	cleared.

3.2.2	Data	Entry	Formats

The	formats	for	the	fields	(all	are	mandatory)	on	this	screen	are:	Course	ID:	three	alpha
characters	representing	the	department	followed	by	a	six-digit	integer	which	is	the	unique
course	identification	number.	The	possible	departments	are:

PHY	-	Physics

EGR	-	Engineering

ENG	-	English

LAN	-	Foreign	languages

CHM	-	Chemistry

MAT	-	Mathematics

PED	-	Physical	education

SOC	-	Sociology

LIB	-	Library	science

HEC	-	Home	economics

Course	name:	a	free	format	alphanumeric	field	of	up	to	forty	characters	Course	description:
a	free	format	alphanumeric	field	of	up	to	250	characters

3.2.3	Screen	Layout





3.3	Class	Section	Database	Maintenance	Screen

3.3.1	Functions

This	screen	allows	the	entry	of	the	identifying	information	for	a	new	course	section.	All	fields
are	required	to	be	filled	in	before	the	Enter	button	is	pressed.	The	fields	may	be	entered	in	any
order.	The	backspace	key	will	work	at	any	time	in	any	field,	but	the	Reset	button	will	clear	all	of
the	fields	when	it	is	entered.	The	Back	button	causes	a	return	to	the	previous	screen.	The	Exit
button	causes	an	exit	from	this	application.

The	Course	ID	is	required	to	be	entered	first	(all	existing	sections	will	be	displayed	as	soon	as
it	is	entered),	followed	by	the	new	Section	#,	Dates	and	Time	fields.	The	Delete	(allows	a
section	to	be	removed	from	the	database)	and	Modify	(allows	the	modification	of	an	existing
section's	information)	buttons	become	active	after	the	Section	#	is	entered.	If	the	section	is
already	in	the	database,	the	current	information	will	be	displayed	as	soon	as	the	Section	#	field
is	filled	in.	The	Enter	button	will	cause	the	Delete	or	the	Modify	to	be	executed	and	the	fields
on	the	screen	to	be	cleared.

3.3.2	Data	Entry	Formats

The	formats	for	the	fields	(all	mandatory)	on	this	screen	are:	Course	ID:	three	alpha
characters	representing	the	department	followed	by	a	six-digit	integer	Section	#:	a	three-digit
integer	(leading	zeros	are	required)	assigned	by	the	user	Dates:	the	days	of	the	week	the
class	meets	(up	to	three	with	hyphens	in	between);	the	weekday	designations	are:

Sun

Mon

Tue

Wed

Thr

Fri

Sat

Time:	the	starting	and	ending	times	of	the	section	(using	military	time)	with	a	hyphen	in
between,	e.g.,	12:00–13:30.

3.3.3	Screen	Layout





3.4	Section	Selection	Entry	Screen

3.4.1	Functions

This	screen	allows	the	entry	of	the	selection	of	specific	course	sections	for	an	individual
student.	All	fields	are	required	to	be	filled	in	before	the	Enter	button	is	pressed.	The	fields	may
be	entered	in	any	order.	The	backspace	key	will	work	at	any	time	in	any	field,	but	the	Reset
button	will	clear	all	of	the	fields	when	it	is	entered.	The	Back	button	causes	a	return	to	the
previous	screen.	The	Exit	button	causes	an	exit	from	this	application.

The	Student	ID	is	required	to	be	entered	first,	followed	by	the	Course	ID	(all	available	sections
will	be	displayed	as	soon	as	it	is	entered).	Sections	are	selected	by	clicking	on	the	section	to
be	assigned.	The	Enter	button	will	cause	the	student	to	be	added	to	the	selected	section.
Entering	a	new	Course	ID	will	cause	a	new	list	of	available	sections	to	be	displayed,	allowing
another	course	section	to	be	selected	for	the	same	student.

3.4.2	Data	Entry	Formats

The	formats	for	the	fields	(all	mandatory)	on	this	screen	are:

Course	ID:	three	alpha	characters	representing	the	department	followed	by	a	six-digit	integer

Student	ID:	two	characters	representing	the	home	campus	and	a	six-digit	number	that	is
unique	for	each	student

Available	sections:	a	list	of	all	of	the	sections	that	are	not	full

3.4.3	Screen	Layout



3.5	Administrative	Screen

3.5.1	Functions

Only	the	supervisor	may	access	the	administrative	screen.	It	permits	one	of	the	following	three
activities	at	a	time:

Creation	of	a	backup	of	any	or	all	of	the	databases

Restore	of	a	backup	of	any	or	all	of	the	databases

Printing	of	a	report	of	any	or	all	of	the	databases

After	the	activity	(create	or	restore)	and	the	databases	have	been	selected,	the	name	of	the
backup	is	to	be	entered.

The	Back	and	Exit	buttons	are	active	at	all	times.

3.5.2	Data	Entry	Formats

The	formats	for	the	fields	on	this	screen	are:

Backup	ID:	aannnn	(required	only	for	backups,	not	reports)	Commentary:	a	free	format
character	field	200	characters	in	length	(required	only	for	backups,	not	reports)

3.5.3	Screen	Layout
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