

SOFTWARE ENGINEERING
& TESTING

ii TABLE OF CONTENTS

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

The CD-ROM that accompanies this book may only be used on a single PC. This license does
not permit its use on the Internet or on a network (of any kind). By purchasing or using this book/
CD-ROM package (the “Work”), you agree that this license grants permission to use the products
contained herein, but does not give you the right of ownership to any of the textual content in the
book or ownership to any of the information or products contained on the CD-ROM. Use of third
party software contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the publisher or the owner of the software in
order to reproduce or network any portion of the textual material or software (in any media) that is
contained in the Work.

Jones and Bartlett Publishers, LLC (“the Publisher”) and anyone involved in the creation, writing,
or production of the accompanying algorithms, code, or computer programs (“the software”) or
any of the third party software contained on the CD-ROM or any of the textual material in the
book, cannot and do not warrant the performance or results that might be obtained by using the
software or contents of the book. The authors, developers, and the publisher have used their best
efforts to insure the accuracy and functionality of the textual material and programs contained
in this package; we, however, make no warranty of any kind, express or implied, regarding the
performance of these contents or programs. The Work is sold “as is” without warranty (except for
defective materials used in manufacturing the disc or due to faulty workmanship).

The authors, developers, and the publisher of any third party software, and anyone involved in the
composition, production, and manufacturing of this work will not be liable for damages of any kind
arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or
textual material contained in this publication. This includes, but is not limited to, loss of revenue or
profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book
and/or the CD-ROM, and only at the discretion of the Publisher.

The use of “implied warranty” and certain “exclusions” vary from state to state, and might not
apply to the purchaser of this product.

 TABLE OF CONTENTS iii

SOFTWARE ENGINEERING
& TESTING

An Introduction

B. B. AGARWAL
S. P. TAYAL
M. GUPTA

iv TABLE OF CONTENTS

World Headquarters
Jones and Bartlett Publishers Jones and Bartlett Publishers Jones and Bartlett Publishers
40 Tall Pine Drive Canada International
Sudbury, MA 01776 6339 Ormindale Way Barb House, Barb Mews
978-443-5000 Mississauga, Ontario L5V 1J2 London W6 7PA
info@jbpub.com Canada United Kingdom
www.jbpub.com

Jones and Bartlett’s books and products are available through most bookstores and
online booksellers. To contact Jones and Bartlett Publishers directly, call 800-832-0034,
fax 978-443-8000, or visit our website www.jbpub.com.

Substantial discounts on bulk quantities of Jones and Bartlett’s publications are available to
corporations, professional associations, and other qualified organizations. For details and
specific discount information, contact the special sales department at Jones and Bartlett via
the above contact information or send an email to specialsales@jbpub.com.

Copyright © 2010 by Jones and Bartlett Publishers, LLC
Original Copyright © 2008 by Laxmi Publications Pvt. Ltd.

All rights reserved. No part of the material protected by this copyright may be reproduced or
utilized in any form, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the copyright owner.

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this
book are trademarked or service marks of their respective companies. Any omission or misuse
(of any kind) of service marks or trademarks, etc., is not an attempt to infringe on the property
of others.

ISBN: 978-1-934015-55-1

Cover Design: Tyler Creative

Library of Congress Cataloging-in-Publication Data
Agarwal, B. B.
 Software engineering and testing / B.B. Agarwal, S.P. Tayal, M. Gupta.
 p. cm.
 ISBN 978-1-934015-55-1 (hardcover)
 ISBN 978-0-7637-8302-0 (e)
 1. Software engineering. 2. Computer software--Testing. I. Tayal, S.P.
II. Gupta, M. (Mahesh) 1975- III. Title.
 QA76.758.A3945 2010
 005.1--dc22
 2008055318
6048 0569
Printed in the United States of America
13 12 11 10 09 10 9 8 7 6 5 4 3 2 1

 TABLE OF CONTENTS v

TABLE OF CONTENTS

PART I: SOFTWARE ENGINEERING AND TESTING

Chapter 1. Introduction to Software Engineering 3

 1.1 Introduction to Software 3

 1.2 Types of Software 5

 1.3 Classes of Software 8

 1.4 Introduction to Software Engineering 9

 1.5 Software Components 11

 1.6 Software Characteristics 12

 1.7 Software Crisis 13

 1.8 Software Myths 15

 1.9 Software Applications 15

 1.10 Software-Engineering Processes 18

 1.11 Evolution of Software 20

 1.12 Comparison of Software Engineering and Related Fields 22

 1.13 Some Terminologies 25

 1.14 Programs Versus Software Products 26

Chapter 2. Software-Development Life-Cycle Models 29

 2.1 Software-Development Life-Cycle 29

 2.2 Waterfall Model 36

 2.3 Prototyping Model 41

 2.4 Spiral Model 44

 2.5 Evolutionary Development Model 46

 2.6 Iterative-Enhancement Model 47

 2.7 RAD Model 49

 2.8 Comparison of Various Process Models 50

v

vi TABLE OF CONTENTS

Chapter 3. Introduction to Software Requirements Specification 53

 3.1 Requirement Engineering 53

 3.2 Process of Requirements Engineering 55

 3.3 Information Modeling 61

 3.4 Data-Flow Diagrams 62

 3.5 Decision Tables 67

 3.6 SRS Document 70

 3.7 IEEE Standards for SRS Documents 73

 3.8 SRS Validation 75

 3.9 Components of SRS 75

 3.10 Characteristics of SRS 78

 3.11 Entity-Relationship Diagram 79

Chapter 4. Software Reliability and Quality Assurance 85

 4.1 Verification and Validation 85

 4.2 Software Quality Assurance 87

 4.3 Software Quality 89

 4.4 Capability Maturity Model (SEI-CMM) 96

 4.5 International Standard Organization (ISO) 99

 4.6 Comparison of ISO-9000 Certification and the SEI-CMM 106

 4.7 Reliability Issues 107

 4.8 Reliability Metrics 110

 4.9 Reliability Growth Modeling 112

 4.10 Reliability Assessment 115

Chapter 5. System Design 117

 5.1 System/Software Design 117

 5.2 Architectural Design 123

 5.3 Low-Level Design 125

 5.4 Coupling and Cohesion 136

 5.5 Functional-Oriented Versus The Object-Oriented Approach 143

 5.6 Design Specifications 144

 5.7 Verification for Design 145

 5.8 Monitoring and Control for Design 146

 TABLE OF CONTENTS vii

Chapter 6. Software Measurement and Metrics 149

 6.1 Software Metrics 149

 6.2 Halstead’s Software Science 151

 6.3 Function-Point Based Measures 154

 6.4 Cyclomatic Complexity 157

Chapter 7. Software Testing 161

 7.1 Introduction to Testing 161

 7.2 Testing Principles 162

 7.3 Testing Objectives 163

 7.4 Test Oracles 164

 7.5 Levels of Testing 165

 7.6 White-Box Testing/Structural Testing 173

 7.7 Functional/Black-Box Testing 175

 7.8 Test Plan 178

 7.9 Test-Case Design 179

Chapter 8. Software-Testing Strategies 181

 8.1 Static-Testing Strategies 181

 8.2 Debugging 186

 8.3 Error, Fault, and Failure 189

Chapter 9. Software Maintenance and Project Management 193

 9.1 Software as an Evolution Entity 193

 9.2 Software-Configuration Management Activities 193

 9.3 Change-Control Process 197

 9.4 Software-Version Control 199

 9.5 Software-Configuration Management 200

 9.6 Need for Maintenance 202

 9.7 Categories of Maintenance 203

 9.8 Maintenance Costs 204

 9.9 Software-Project Estimation 207

 9.10 Constructive Cost Model (COCOMO) 211

 9.11 Software-Risk Analysis and Management 215

viii TABLE OF CONTENTS

Chapter 10. Computer-Aided Software Engineering 223

 10.1 Case and its Scope 223

 10.2 Levels of Case 224

 10.3 Architecture of Case Environment 224

 10.4 Building Blocks for Case 226

 10.5 Case Support in Software Life-Cycle 227

 10.6 Objectives of Case 228

 10.7 Case Repository 229

 10.8 Characteristics of Case Tools 231

 10.9 Case Classification 231

 10.10 Categories of Case Tools 233

 10.11 Advantages of Case Tools 234

 10.12 Disadvantages of Case Tools 235

 10.13 Reverse Software Engineering 235

 10.14 Software Re-Engineering 240

Chapter 11. Coding 247

 11.1 Information Hiding 247

 11.2 Programming Style 248

 11.3 Internal Documentation 250

 11.4 Monitoring and Control for Coding 251

 11.5 Structured Programming 252

 11.6 Fourth-Generation Techniques 255

PART II: SOFTWARE DEVELOPMENT AND APPLICATIONS

Chapter 12. Introduction to Software Development 261

 12.1 Program Phase 262

 12.2 How to Write a Good Program 262

 12.3 Programming Tools 263

Chapter 13. Visual Basic 6.0 265

 13.1 Hardware and Sof tware Requirements for Visual Basic 266

 13.2 Application Types 266

 13.3 Compilation in Visual Basic 268

 TABLE OF CONTENTS ix

 13.4 Visual Basic Terminology 268

 13.5 Integrated Development Environment (IDE) 269

Chapter 14. Controls in Visual Basic 273

 14.1 Tool-Box Controls 276

Chapter 15. Variables and Operators in Visual Basic 297

 15.1 Variable Naming Conventions 297

 15.2 Variable Declaration 297

 15.3 Scope of Variables 298

 15.4 Logical Operators 298

 15.5 Logical Operators 299

 15.6 If-Else Statement 301

 15.7 Do While …. Statement 301

 15.8 For Loop 302

 15.9 With–End With Statement 302

Chapter 16. Functions in Visual Basic 303

Chapter 17. Introduction to Databases 315

 17.1 Tables 316

 17.2 Structure of a Database 317

 17.3 Keys 317

 17.4 Data Integrity 318

Chapter 18. MS Access 2000 319

 18.1 Creating a Database in MS Access 2000 319

 18.2 Data Types 324

 18.3 Field Properties 324

 18.4 Saving the Table 327

 18.5 Modif ying the Table 328

 18.6 Importing the Table 328

Chapter 19. Oracle 329

 19.1 Starting with Oracle 8 329

 19.2 How to Create a New User 331

x TABLE OF CONTENTS

 19.3 User Creation by Navigator 332

 19.4 Data Types in Oracle 335

 19.5 Syntax and Query in Oracle 336

 19.6 Functions 344

 19.7 Primary Keys 345

 19.8 Data Export 346

 19.9 Data Import 347

Chapter 20. SQL Server 2000 349

 20.1 What’s New in Microsoft SQL Server 2000? 349

 20.2 Starting Microsoft SQL Server 2000 349

 20.3 Installation of SQL Server 2000 351

 20.4 Creating a Database 353

 20.5 How to Create a Database Using Enterprise Manager 354

 20.6 Create a Database Using the Create Database Wizard

 in Enterprise Manager 358

 20.7 Creating a New Table 358

 20.8 Data Types 361

 20.9 Query Analyzer 368

 20.10 How to use Query Analyzer 368

 20.11 Generating an SQL Script 370

 20.12 How to use the Script 374

 20.13 Attaching a Database 376

 20.14 Detaching a Database 378

 20.15 Copy Database Wizard 380

 20.16 Importing and Exporting a Database 380

 20.17 SQL Server Service Manager 386

Chapter 21. Programming in Visual Basic with MS Access 2000 391

 21.1 Saving Projects and Forms 393

 21.2 Database Designing 399

 21.3 Use of App.Path 412

Chapter 22. Programming with Oracle and SQL Server 2000 413

 22.1 Table Creation 413

 TABLE OF CONTENTS xi

 22.2 Data Links 414

 22.3 Working with the Project 418

 22.4 Data Export at Runtime 420

 22.5 Working in a Project with an SQL Server 2000 Database 420

Chapter 23. Graphs 421

Chapter 24. Data Reports 425

 24.1 Data Report Creation 425

 24.2 Data Environment and the Connection 425

 24.3 Data Report Designing 430

 24.4 Data Report Controls 433

 24.5 Calling a Report 436

 24.6 Retrieval of Selected Data in the Data Report 436

 24.7 Index Number of Data Report Section 439

 24.8 Grouping in Data Reports 440

Chapter 25. Crystal Reports 447

 25.1 Advantages over Visual Basic Data Reports 448

 25.2 Starting with Crystal Report 8.5 448

 25.3 Creating Reports Using DSN of the SQL Server 2000 Database 451

 25.4 Creating Connection Using DSN 456

Chapter 26. Error Handling 465

 26.1 Key Handling 465

 26.2 Key Locking at Key Press Event 469

 26.3 Other Error-Handling Methods 470

 26.4 Some Common Errors 471

 26.5 Precautions 479

Chapter 27. Creating the Setup Package 481

 27.1 How to Create a Setup 481

 Index 493

4 SOF T WARE ENGINEERING AND TESTING

PART I

SOF TWARE ENGINEERING
AND TESTING

 The role of software engineering cannot be neglected in the field of software
development. The advent of computers introduced the need for software
and the quality of software introduced the need for software engineering.

Software engineering has come a long way since 1968, when the term was first used
at a NATO conference, and software itself has entered our lives in ways that few
had anticipated, even a decade ago. So a firm grounding in software-engineering
theory and practice is essential for understanding how to build good error-free
software at an inexpensive price and with less time and for evaluating the risks
and opportunities that software presents in our everyday lives.

1

Chapter 1
INTRODUCTION TO

SOF TWARE ENGINEERING

1.1 INTRODUCTION TO SOFTWARE

 Software is described by its capabilities. The capabilities relate to the functions
it executes, the features it provides, and the facilities it offers. Software written
for sales-order processing would have different functions to process different

types of sales orders from different market segments. The features, for example,
would be to handle multi-currency computing, updating of product, sales, and
tax status in MIS reports and books of accounts. The facilities could be printing
of sales orders, e-mails to customers, reports, and advice to the store departments
to dispatch the goods. The facilities and features could be optional and based on
customer choices.

 Software is developed keeping in mind certain hardware and operating system
considerations, known as the platform. Hence, software is described along with its
capabilities and the platform specifications that are required to run it.

3

4 SOF T WARE ENGINEERING AND TESTING

1.1.1 Definition of Software

 Software is a set of instructions used to acquire inputs and to manipulate them to
produce the desired output in terms of functions and performance as determined
by the user of the software. It also includes a set of documents, such as the software
manual, meant to help users understand the software system. Today’s software
is comprised of Source Code, Executables, Design Documents, Operations, and
System Manuals and Installation and Implementation Manuals.

 Software includes:

 (i) Instructions (computer programs) that when executed provide desired
functions and performance.

 (ii) Data structures that enable the programs to adequately manipulate
information.

 (iii) Documents that describe the operation and use of the programs.

OR

 The term software refers to the set of computer programs, procedures, and associated
documents (flowcharts, manuals, etc.) that describe the programs and how they are to be
used. To be precise, software is a collection of programs whose objective is to enhance the
capabilities of the hardware.

OR

 Definition of software given by the IEEE:

 Software is the collection of computer programs, procedure rules and associated
documentation and data.

1.1.2 Importance of Software

 Computer software has become a driving force.

 � It is the engine that drives business decisionmaking.

 � It serves as the basis for modern scientific investigation and engineering
problem-solving.

 � It is embedded in all kinds of systems, such as transportation, medical, tele-
communications, military, industrial processes, entertainment, office products,
etc.

 It is important as it affects nearly every aspect of our lives and has become
pervasive in our commerce, our culture, and our everyday activities. Software’s
impact on our society and culture is significant. As software importance grows, the
software community continually attempts to develop technologies that will make
it easier, faster, and less expensive to build high-quality computer programs.

 INTRODUCTION TO SOFTWARE ENGINEERING 5

1.2 TYPES OF SOFTWARE

 Computer software is often divided into two categories:

 1. System software. This software includes the operating system and all utilities
that enable the computer to function.

 2. Application software. These consist of programs that do real work for users.
For example, word processors, spreadsheets, and database management
systems fall under the category of applications software.

 System software are low-level programs that interact with the computer at
a very basic level and include the operating system and utilities for managing
resources. In contrast, application software includes database programs, word
processors, and spreadsheets. Application software sits above system software
because it needs the help of system software to run. Figure 1.1 gives an overview
of software classification and its types.

FIGURE 1.1 Types of Software

 The following is an overview of the different classes of software:

 1. Operating Systems. The operating system provides interface between the
user and the hardware. It manages hardware, such as memory, CPU, input/
output devices, files, etc., for the user. Most commonly used operating
systems include Microsoft Windows, DOS, XENIX, Mac OS, OS/2, Unix
MVS, etc.

 2. Utilities. Utilities are programs that perform the specification tasks related
to managing system resources. The operating system includes a number
of utilities for managing disk printers and other devices.

 3. Compilers and Interpreters. A complier is a program that translates
source code into object code. The compiler derives its name from the way
it works, looking at the entire piece of source code and collecting and

6 SOF T WARE ENGINEERING AND TESTING

reorganizing the instructions. Thus, a compiler differs from an interpreter,
which analyzes and executes each line of source code in succession,
without looking at the entire program. The advantage of interpreters is
that they can execute a program immediately. Compliers require some time
before an executable program emerges. However, programs produced
by compliers run much faster than the same programs executed by an
interpreter.

 4. Word Processors. A word processor is a program that enables you to
perform word-processing functions. Word processors use a computer to
create, edit, and print documents. Of all computer applications, word
processors are the most common.

 To perform word processing, you need a computer, the word-processing
software (word processor), and a printer. A word processor enables you to
create a document, store it electronically on a disk, display it on a screen,
modify it by entering commands and characters from the keyboard, and
print it on a printer.

 The great advantage of word processing over using a typewriter is that
you can make changes without retyping the entire document. If you
make a typing mistake, you simply back up the cursor and correct your
mistake. If you want to delete a paragraph, you simply remove it, without
leaving a trace. It is equally easy to insert a word, sentence, or paragraph
in the middle of a document. Word processors also make it easy to move
sections of text from one place to another within a document, or between
documents. When you have made all the changes you want, you can send
the file to a printer to get a hardcopy. Some of the commonly used word
processors are Microsoft Word, WordStar, WordPerfect, AmiPro, etc.

 5. Spreadsheets. A spreadsheet is a table of values arranged in rows and
columns. Each value can have a predefined relationship to the other
values. If you change one value, therefore, you may need to change other
values as well.

 Spreadsheet applications (often referred to simply as spreadsheets) are
computer programs that let you create and manipulate spreadsheets
electronically. In a spreadsheet application, each value sits in a cell. You
can define what type of data is in each cell and how different cells depend
on one another. The relationships between cells are called formulas, and
the names of the cells are called labels.

 Once you have defined the cells and the formulas for linking them together,
you can enter your data. You can then modify selected values to see how
all the other values change accordingly. This enables you to study various
what-if scenarios.

 INTRODUCTION TO SOFTWARE ENGINEERING 7

 There are a number of spreadsheet applications on the market, Lotus 1-2-3
and Excel being among the most famous. These applications support
graphic features that enable you to produce charts and graphs from the
data.

 Some spreadsheets are multi-dimensional, meaning that you can link one
spreadsheet to another. A three-dimensional spreadsheet, for example, is
like a stack of spreadsheets all connected by formulae. A change made in
one spreadsheet automatically affects other spreadsheets.

 6. Presentation Graphics. Presentation graphics enable users to create
highly stylized images for slide shows and reports. The software includes
functions for creating various types of charts and graphs and for inserting
text in a variety of fonts. Most systems enable you to import data from
a spreadsheet application to create the charts and graphs. Presentation
graphics are often called business graphics. Some of the popular presen-
tation graphics software include Microsoft PowerPoint, Lotus Freelance
Graphics, Harvard Presentation Graphics, etc.

 7. Database Management System (DBMS). A DBMS is a collection of
programs that enable you to store, modify, and extract information from
a database. There are many different types of DBMSs, ranging from small
systems that run on personal computers to huge systems that run on
mainframes. The following are some examples of database applications:
computerized library systems, automated teller machines, flight and
railway reservation systems, computerized inventory systems, etc.

 From a technical standpoint, a DBMS can differ widely. The terms
relational, network, flat, and hierarchical all refer to the way a DBMS
organizes information internally. The internal organization can affect how
quickly and flexibly you can extract information.

 Requests for information from a database are made in the form of a query,
which is a stylized question. Different DBMSs support different query
languages, although there is a semi-standardized query language called
SQL (structured query language). Sophisticated languages for managing
database systems are called fourth-generation languages, or 4GLs for
short.

 The information from a database can be presented in a variety of formats.
Most DBMSs include a report-writer program that enables you to output
data in the form of a report. Many DBMSs also include a graphics
component that enables you to output information in the form of graphs
and charts. Some examples of database management systems are IDMS,
IMS, DB2, Oracle, Sybase, Informix, Ingress, MS-SQL Server, MS Access,
etc.

8 SOF T WARE ENGINEERING AND TESTING

 8. Image Processors. Image processors or graphics programs enable you
to create, edit, manipulate, add special effects, view, and print and save
images, and include the following:

 (i) Paint Programs. A paint program is a graphics program that enables
you to draw pictures on the display screen, which is represented as
bitmaps (bit-mapped graphics). Most paint programs provide the tools
in the form of icons. By selecting an icon, you can perform functions
associated with the tool. In addition to these tools, paint programs
also provide easy ways to draw common shapes, such as straight
lines, rectangles, circles, and ovals.

 Sophisticated paint applications are often called image-editing pro-
grams. These applications support many of the features of draw pro-
grams, such as the ability to work with objects. Each object, however,
is represented as a bitmap rather than as a vector image.

 (ii) Draw Programs. A draw program is another graphics program that
enables you to draw pictures, then store the images in files, merge
them into documents, and print them. Unlike paint programs, which
represent images as bitmaps, draw programs use vector graphics,
which makes it easy to scale images to different sizes. In addition,
graphics produced with a draw program have no inherent resolution.
Rather, they can be represented at any resolution, which makes them
ideal for high-resolution output.

 (iii) Image Editors. An image editor is a graphics program that provides
a variety of special features for altering bit-mapped images. The
difference between image editors and paint programs is not always
clear-cut, but in general, image editors are specialized for modifying
bit-mapped images, such as scanned photographs, whereas paint
programs are specialized for creating images. In addition to offering
a host of filters and image transformation algorithms, image editors
also enable you to create and superimpose layers.

1.3 CLASSES OF SOFTWARE

 Software is classified into the following two classes:

 1. Generic Software. Generic software is designed for a broad customer market
whose requirements are very common, fairly stable, and well-understood by
the software engineer.

 These products are sold in the open market, and there could be several
competitive products on the market. Database products, browsers, ERP/CRM

 INTRODUCTION TO SOFTWARE ENGINEERING 9

and CAD/CAM packages, OS and system software are examples of generic
software.

 2. Customized Software. Customized products are those that are developed for
a customer where domain, environment, and requirements are unique to that
customer and cannot be satisfied by generic products.

 Legacy systems, software written for specific business processes that are
typical of the specific industry, are used when a customized software product is
needed. Process-control systems, traffic-management systems, hospital-management
systems, and manufacturing-process control systems require customized software.

 The developer manages a generic product and the customer manages a
customized product. In other words, requirements and specifications of a generic
product are controlled by the developer, whereas in the case of a customized
product, these are controlled by the customer and influenced by the practices of
that industry.

1.4 INTRODUCTION TO SOFTWARE ENGINEERING

 A few important definitions given by several authors and institutions are as
follows:

 IEEE Comprehensive Definition. Software Engineering is the application
of a systematic, disciplined, quantifiable approach to the development, operation and
maintenance of software, i.e., the application of engineering to software.

 Other Definitions. Software Engineering deals with cost-effective solutions to
practical problems by applying scientific knowledge in building software artifacts in the
service of mankind.

OR

 Software Engineering is the application of methods and scientific knowledge to create
practical cost-effective solutions for the design, construction, operation and maintenance
of software.

OR

 Software Engineering is a discipline whose aim is the production of fault free software
that satisfies the user’s needs and that is delivered on time and within budget.

OR

 The term Software Engineering refers to a movement, methods and techniques aimed
at making software development more systematic. Software methodologies, such as, OMG’s
UML and software tools (CASE tools) that help developers model application designs and
then generate code are all closely associated with Software Engineering.

10 SOF T WARE ENGINEERING AND TESTING

OR

 Software Engineering is an engineering discipline which is concerned with all aspects
of software production.

1.4.1 Software-Engineering Principles

 Software-engineering principles deal with both the process of software engineering
and the final product. The right process will help produce the right product, but
the desired product will also affect the choice of which process to use. A traditional
problem in software engineering has been the emphasis on either the process or
the product to the exclusion of the other. Both are important.

 The principles we develop are general enough to be applicable throughout
the process of software construction and management. Principles, however, are
not sufficient to drive software development. In fact, they are general and abstract
statements describing desirable properties of software processes and products. But,
to apply principles, the software engineer should be equipped with appropriate
methods and specific techniques that help incorporate the desired properties into
processes and products.

 In principle, we should distinguish between methods and techniques.
Methods are general guidelines that govern the execution of some activity; they are
rigorous, systematic, and disciplined approaches. Techniques are more technical
and mechanical than methods; often, they also have more restricted applicability.
In general, however, the difference between the two is not sharp. We will therefore
use the two terms interchangeably.

 Sometimes, methods and techniques are packaged together to form a
methodology. The purpose of a methodology is to promote a certain approach to
solving a problem by preselecting the methods and techniques to be used. Tools,
in turn, are developed to support the application of techniques, methods, and
methodologies.

 FIGURE 1.2 Relationship Between Principles, Techniques, Methodologies, and Tools

 INTRODUCTION TO SOFTWARE ENGINEERING 11

 Figure 1.2 shows the relationship between principles, methods, methodologies,
and tools. Each layer in the figure is based on the layer(s) below it and is more
susceptible to change, due to the passage of time. This figure shows clearly that
principles are the basis of all methods, techniques, methodologies, and tools.

1.5 SOFTWARE COMPONENTS

 A software component is a system element offering a predefined service and
is able to communicate with other components. Clemens Szyperski and David
Messerschmitt give the following five criteria for what a software component shall
be to fulfill the definition:

 � Multiple-use

 � Non-context-specific

 � Composable with other components

 � Encapsulated, i.e., non-investigable through its interfaces

 � A unit of independent deployment and versioning

 A simpler definition can be: A component is an object written to a specification.
It does not matter what the specification is, COM, Java Beans, etc., as long as the
object adheres to the specification. It is only by adhering to the specification that
the object becomes a component and gains features, such as reusability and so
forth.

 Software components often take the form of objects or collections of objects
(from object-oriented programming) in some binary or textual form, adhering
to some interface description language (IDL) so that the component may exist
autonomously from other components on a computer.

 When a component is to be accessed or shared across execution contexts or
network links, some form of serialization (also known as marshalling) is employed
to turn the component or one of its interfaces into a bitstream.

 It takes significant effort and awareness to write a software component that is
effectively reusable. The component needs:

 � to be fully documented;

 � to be more thoroughly tested;

 � to have robust input validity checking;

 � to pass back useful error messages as appropriate;

 � to be built with an awareness that it will be put to unforeseen uses;

 � a mechanism for compensating developers who invest the (substantial)
effort implied above.

12 SOF T WARE ENGINEERING AND TESTING

1.6 SOFTWARE CHARACTERISTICS

 The key characteristics of software are as follows:

 1. Most software is custom-built, rather than assembled from existing com-
ponents. Most software continues to be custom built, although recent devel-
opments tend to be component-based. Modern reusable components encap-
sulate both data and the processing applied to data, enabling the software
engineer to create new applications from reusable parts. For example, today
a GUI is built using reusable components that enable the creation of graphics
windows, pull-down menus, and a wide variety of interaction mechanisms.
The data structures and processing details required to build the interface are
contained in a library of reusable components for interface construction.

 2. Software is developed or engineered; it is not manufactured in the classical
sense. Although some similarities exist between software development and
hardware manufacturing, the two activities are fundamentally different. In both
activities, high quality is achieved through good design, but the manufacturing
phase for hardware can introduce quality problems that are nonexistent for
software. Both activities depend on people, but the relationship between
people applied and work accomplished is entirely different. Both require the
construction of a “product.” But the approaches are different. Software costs
are concentrated in engineering. This means that software projects cannot be
managed as if they were manufacturing projects.

 3. Software is flexible. We all feel that software is flexible. A program can be
developed to do almost anything. Sometimes, this characteristic may be
the best and may help us to accommodate any kind of change. Reuse of
components from libraries help in reduction of effort. Now-a-days, we reuse
not only algorithms but also data structures.

FIGURE 1.3 Bath-tub Curve

 INTRODUCTION TO SOFTWARE ENGINEERING 13

 4. Software doesn’t wear out. There is a well-known “bath-tub curve” in
reliability studies for hardware products. Figure 1.3 depicts the failure rate as
a function of time for hardware. The relationship is often called the “bath-tub
curve.”

 There are three phases for the life of a hardware product. The initial phase
is the burn-in phase, where failure intensity is high. The product is tested in the
industry before delivery. Due to testing and fixing faults, failure intensity will
come down initially and may stabilize after a certain time. The second phase is the
useful life phase where failure intensity is approximately constant and is called
the useful life of a product. After a few years, again failure intensity will increase
due to wearing out of components. This phase is called the wear-out phase. We do
not have this phase for software, as it does not wear out. The curve for software is
given in Figure 1.4.

FIGURE 1.4 Software Curve

 An important point is that software becomes reliable over time instead of
wearing out. It becomes obsolete, however, if the environment for which it was
developed changes. Hence, software may be retired due to environmental changes,
new requirements, new expectations, etc.

1.7 SOFTWARE CRISIS

 The software crisis has been with us since the 1970s. As per the latest IBM report,
“31% of the projects get cancelled before they are completed, 53% over-run
their cost-estimates by an average of 189% and for every 100 projects, there are 94
restarts.”

 During software development, then, many problems are raised and that set
of problems is known as the software crisis. When software is being developed,
problems are encountered associated with the development steps. Now we will

14 SOF T WARE ENGINEERING AND TESTING

discuss the problems and causes of the software crises encountered in different
stages of software development.

 Problems

 � Schedule and cost estimates are often grossly inaccurate.

 � The “productivity” of software people hasn’t kept pace with the demand for
their services.

 � The quality of software is sometimes less than adequate.

 � With no solid indication of productivity, we can’t accurately evaluate the
efficiency of new, tools, methods, or standards.

 � Communication between the customer and software developer is often poor.

 � Software maintenance tasks devour the majority of all software funds.

 Causes

 � The quality of the software is not good because most developers use historical
data to develop the software.

 � If there is delay in any process or stage (i.e., analysis, design, coding & testing)
then scheduling does not match with actual timing.

 � Communication between managers and customers, software developers,
support staff, etc., can break down because the special characteristics of software
and the problems associated with its development are misunderstood.

 � The software people responsible for tapping the potential often change when
it is discussed and resist change when it is introduced.

 Software Crisis from the Programmer’s Point-of-View

 � Problem of compatibility.

 � Problem of portability.

 � Problem in documentation.

 � Problem of piracy of software.

 � Problem in coordination of work of different people.

 � Problem of proper maintenance.

 Software Crisis form the User’s Point-of-View

 � Software cost is very high.

 � Hardware goes down.

 � Lack of specialization in development.

 INTRODUCTION TO SOFTWARE ENGINEERING 15

 � Problem of different versions of software.

 � Problem of views.

 � Problem of bugs.

1.8 SOFTWARE MYTHS

 The following are different myths about software:

 � If we get behind schedule, we can add more programmers and catch up.

 � If we decide to outsource the software project to a third party, we can just relax
and let that firm build it.

 � Project requirement continuously changes, but changes can be easily
accommodated because software is flexible.

 � The only deliverable work product for a successful project is the working
program.

 � Software with more features is better software.

 � Once we write the program and get it to work, our job is done.

 � Until we get the program running, we have no way of assessing its quality.

 � Software engineering will make us create voluminous and unnecessary
documentation and will invariably slow us down.

 � A general statement of objectives is sufficient to begin writing programs; we
can fill in the details later.

 � We already have a book that’s full of standards and procedures for building
software. Won’t that provide my people with everything they need to know?

1.9 SOFTWARE APPLICATIONS

 Software applications are grouped into eight areas for convenience as shown in
Figure 1.5.

 1. System Software. System software is a collection of programs used to run the
system as an assistance to other software programs. The compliers, editors,
utilities, operating system components, drivers, and interfaces are examples of
system software. This software resides in the computer system and consumes
its resources. A computer system without system software cannot function.

 System software directly interacts with the hardware, heavy usage by multiple
users, concurrent operations that require scheduling, resource sharing, and

16 SOF T WARE ENGINEERING AND TESTING

sophisticated process management, complex data structures, and multiple
external interfaces.

FIGURE 1.5 Software Applications

 2. Real-time Software. Real-time software deals with a changing environment.
First, it collects the input and converts it from analog to a digital, control
component that responds to the external environment and performs the action.

 The software is used to monitor, control, and analyze real-world events as they
occur. Examples include Rocket launching, games, etc.

 3. Embedded Software. Software, when written to perform certain functions
under control conditions and is further embedded into hardware as a part of
large systems, is called embedded software.

 The software resides in the Read-Only-Memory (ROM) and is used to control
the various functions of the resident products. The products could be a car,
washing machine, microwave oven, industrial processing products, gas
stations, satellites, and a host of other products, where the need is to acquire
input, analyze, identify status, and decide and take action that allows the
product to perform in a predetermined manner. Because of its role and
performance, it is also called intelligent software.

 4. Business Software. Software designed to process business applications is
called business software. Business software can be a data- and information-
processing application. It can drive the business process through transaction
processing in on-line or in real-time mode.

 This software is used for specific operations, such as accounting packages,
management information systems, payroll packages, and inventory manage-
ment. Business software restructures existing data in order to facilitate business

 INTRODUCTION TO SOFTWARE ENGINEERING 17

operations or management decision-making. It also encompasses interactive
computing. It is integrated software related to a particular field.

 5. Personal Computer Software. Word processing, spreadsheets, computer
graphics, multimedia, entertainment, database management, personal and
business financial applications, external networks, or database access are only
a few of hundreds of applications.

 6. Artificial-intelligence Software. Artificial-intelligence software uses non-
numerical algorithms, which use the data and information generated in the
system to solve complex problems. These problem scenarios are not generally
amenable to problem-solving procedures, and require specific analysis and
interpretation of the problem to solve it.

 Applications within this area include robotics, expert systems, pattern
recognition (image and voice), artificial neural networks, theorem proving
and game playing, and signal-processing software.

FIGURE 1.6 Application Areas of Artificial Intelligence

 7. Web-based Software. Web-based software includes the languages by which
web pages are processed, i.e., HTML, Java, CGI, Perl, DHTML, etc.

 8. Engineering and Scientific Software. The design and engineering of scien-
tific software deals with processing requirements in their specific fields. They
are written for specific applications using the principles and formulae of each
field.

 These software applications service the need for drawing, drafting, modeling,
lead calculations, specifications-building, and so on. Dedicated software is avail-
able for stress analysis or for analysis of engineering data, statistical data for inter-

18 SOF T WARE ENGINEERING AND TESTING

pretation, and decision-making. CAD/CAM/CAE packages, SPSS, MATLAB, and
circuit analyzers are typical examples of such software.

1.10 SOFTWARE-ENGINEERING PROCESSES

1.10.1 Process

 A process is a series of steps involving activities, constraints, and resources that produce
an intended output of some kind.

 Any process has the following characteristics:

 � The process prescribes all of the major process activities.

 � The process uses resources, subject to a set of constraints (such as a
schedule), and produces intermediate and final products.

 � The process may be composed of sub-processes that are linked in some
way. The process may be defined as a hierarchy of processes, organized so
that each sub-process has its own process model.

 � Each process activity has entry and exit criteria, so that we know when the
activity begins and ends.

 � The activities are organized in a sequence, so that it is clear when one
activity is performed relative to the other activities.

 � Every process has a set of guiding principles that explain the goals of each
activity.

 � Constraints or controls may apply to an activity, resource, or product.
For example, the budget or schedule may constrain the length of time an
activity may take or a tool may limit the way in which a resource may be
used.

1.10.2 What is a Software Process?

 A software process is the related set of activities and processes that are involved in developing
and evolving a software system.

OR

 A set of activities whose goal is the development or evolution of software.

OR

 A software process is a set of activities and associated results, which produce a software
product.

 INTRODUCTION TO SOFTWARE ENGINEERING 19

 These activities are mostly carried out by software engineers. There are four
fundamental process activities (covered later in the book), which are common to
all software processes. These activities are:

 1. Software specifications: The functionality of the software and constraints
on its operation must be defined.

 2. Software development: Software that meets the specifications must be
produced.

 3. Software validation: The software must be validated to ensure that it does
what the customer wants.

 4. Software evolution: The software must evolve to meet changing customer
needs.

 Different software processes organize these activities in different ways and are
described at different levels of detail. The timing of the activities varies, as does
the results of each activity. Different organizations may use different processes to
produce the same type of product. However, some processes are more suitable
than others for some types of applications. If an inappropriate process is used, this
will probably reduce the quality or the usefulness of the software product to be
developed.

 A software process can be characterized as shown in Figure 1.7. A common
process framework is established by defining a small number of framework
activities that are applicable to all software projects, regardless of their size or
complexity. A number of task sets—each a collection of software-engineering
work tasks, project milestones, software work products and deliverables, and
quality-assurance points—enable the framework activities to be adapted to the
characteristics of the software project and the requirements of the project team.
Finally, umbrella activities—such as software quality assurance, software-
configuration management and measurement—overlay the process model.
Umbrella activities are independent of any one framework activity and occur
throughout the process.

FIGURE 1.7 The Software Process

20 SOF T WARE ENGINEERING AND TESTING

 Thus, the software industry considers software development a process.
According to Booch and Rumbaugh, “A process defines who is doing what, when
and how to reach a certain goal.” Software engineering is a field, which combines
processes, methods, and tools for the development of software. The concept of
process is the main step in the software engineering approach. Thus, a software
process is a set of activities. When those activities are performed in specific sequence
in accordance with ordering constraints, the desired results are produced.

1.11 EVOLUTION OF SOFTWARE

 Software-engineering principles have evolved over the past more than 50
years from art to an engineering discipline. This can be shown with the help of
Figure 1.8.

FIGURE 1.8 Evolution of Art to an Engineering Discipline

 Development in the field of software and hardware computing made a
significant change in the twentieth century. We can divide the software development
process into four eras:

 1. Early Era. During the early eras general-purpose hardware became
commonplace. Software, on the other hand, was custom-designed for
each application and was relatively limited in distribution. Most software
was developed and ultimately used by the same person or organization.

 This era was from 1950 to 1960 and includes:

 � Limited distribution

 � Custom software

 � Batch orientation

 INTRODUCTION TO SOFTWARE ENGINEERING 21

 2. Second Era. The second era in the evolution of computer systems
introduced new concepts of human-machine interaction. Interactive
techniques opened a new world of applications and new levels of hardware
and software sophistication. Real-time software deals with the changing
environment and is multi-user in which many users can perform or work
with a software at the same time.

 This era was from 1960 to 1972 and includes:

 � Multi-users

 � Databases

 � Real-time software

 � Product software

 � Multi-programming

 3. Third Era. In the second era software was custom designed and limited in
distribution but in the third era software was consumer designed and the
distribution was not limited. The cost of the hardware was also very low
in this era.

 This era was from 1973 to 1985 and includes:

 � Embedded intelligence

 � Consumer impact

 � Distributed systems

 � Low-cost hardware

 4. Fourth Era. The fourth era in the evolution of computer systems moves us
away from individual computers and computer programs and toward the
collective impact of computers and software. As the fourth era progresses,
new technologies have begun to emerge.

 This era is from 1985 to present and includes:

 � Powerful desktop systems

 � Expert systems

 � Artificial intelligence

 � Network computers

 � Parallel computing

 � Object-oriented technology

22 SOF T WARE ENGINEERING AND TESTING

 At this time the concept of software making includes object-oriented technology,
network computing, etc.

1.12 COMPARISON OF SOFTWARE ENGINEERING AND RELATED
FIELDS

 The relationships between software engineering and the fields of computer science
and traditional engineering has been debated for decades. Software engineering
resembles all of these fields, but important distinctions exist.

1.12.1 Comparing Computer Science

 Many compare software engineering to computer science and information science
like they compare traditional engineering to physics and chemistry.

 About half of all software engineers earn computer science degrees. Yet on
the job, practitioners do applied software engineering, which differs from doing
theoretical computer science.

TABLE 1.1

Issue Software Engineering Computer Science

Ideal Constructing software applications
for real-world use for today

Finding eternal truths about
problems and algorithms for
posterity

Results Working applications (such as of-
fice suites and video games) that
deliver value to users

Computational complexity and
correctness of algorithms (such
as Shell sort) and analysis of
problems (such as the traveling
salesman problem)

Budgets and
Schedules

Projects (such as upgrading an of-
fice suite) have fixed budgets and
schedules

Projects (such as solving P =
NP?) have open-ended budgets
and schedules

Change Applications evolve as user needs
and expectations evolve, and as SE
technologies and practices evolve

When computer science prob-
lems are solved, the solution
will never change

Additional
Skills

Domain knowledge Mathematics

Notable
Educators and
Researchers

Barry Boehm, Fred Brooks, and
David Parnas

Edsger Dijkstra, Donald Knuth,
and Alan Turing

 INTRODUCTION TO SOFTWARE ENGINEERING 23

Notable
Practitioners

Dan Bricklin, Steve McConnell Not applicable

Practitioners in
U.S.

680,000 25,000

Practitioners in
Rest of World

1,400,000? 50,000?

1.12.2 Comparing Engineering

 The software-engineering community is about 60% as large as the rest of the
engineering community combined.

 Software engineers aspire to build low-cost, reliable, safe products; much like
engineers in other disciplines do. Software engineers borrow many metaphors and
techniques from other engineering disciplines, including requirements analysis,
quality control, and project-management techniques. Engineers in other disciplines
also borrow many tools and practices from software engineers. Yet, there are also
some differences between software engineering and other engineering disciplines.

TABLE 1.2

Issue Software Engineering Engineering

Foundations Based on computer science, in-
formation science, and discrete
math.

Based on science, mathematics,
and empirical knowledge.

Cost Compilers and computers are
cheap, so software engineering
and consulting are often more
than half of the cost of a proj-
ect. Minor software engineering
cost-overruns can adversely af-
fect the total project cost.

In some projects, construction and
manufacturing costs can be high, so
engineering may only be 15% of the
cost of a project. Major engineering
cost overruns may not affect the to-
tal project cost.

Replication Replication (copying CDs or
downloading files) is trivial.
Most development effort goes
into building new (unproven)
systems or changing old designs
and adding features.

Radically new or one-of-a-kind sys-
tems can require significant devel-
opment effort to create a new de-
sign or change an existing design.
Other kinds of systems may require
less development effort, but more
attention to issues such as manu-
facturability.

24 SOF T WARE ENGINEERING AND TESTING

Innovation Software engineers often apply
new and untested elements in
software projects.

Engineers generally try to apply
known and tested principles, and
limit the use of untested innova-
tions to only those necessary to cre-
ate a product that meets its require-
ments.

Duration Software engineers emphasize
projects that will live for years
or decades.

Some engineers solve long-range
problems (bridges and dams) that
endure for centuries.

Manage-
ment Status

Few software engineers manage
anyone.

Engineers in some disciplines, such
as civil engineering, manage con-
struction, manufacturing, or main-
tenance crews.

Blame Software engineers must blame
themselves for project prob-
lems.

Engineers in some fields can often
blame construction, manufactur-
ing, or maintenance crews for proj-
ect problems.

Practitioners
in U.S.

611,900 software engineers 1,157,020 total non-software engi-
neers

Age Software engineering is about
50 years old.

Engineering as a whole is thousands
of years old.

Title Regula-
tions

Software engineers are typically
self-appointed. A computer-
science degree is common but
not at all a formal require-
ment.

In many jurisdictions it is illegal to
call yourself an engineer without
specific formal education and/or
accreditation by governmental or
engineering association bodies.

Analysis
Methodol-
ogy

Methods for formally verify-
ing correctness are developed
in computer science, but they
are rarely used by software en-
gineers. The issue remains con-
troversial.

Some engineering disciplines are
based on a closed system theory
and can in theory prove formal cor-
rectness of a design. In practice, a
lack of computing power or input
data can make such proofs of cor-
rectness intractable, leading many
engineers to use a pragmatic mix
of analytical approximations and
empirical test data to ensure that a
product will meet its requirements.

 INTRODUCTION TO SOFTWARE ENGINEERING 25

Synthesis
Methodol-
ogy

SEs struggle to synthesize (build
to order) a result according to
requirements.

Engineers have nominally refined
synthesis techniques over the ages
to provide exactly this. However,
this has not prevented some nota-
ble engineering failures, such as the
collapse of the Tacoma Narrows
Bridge, the sinking of the Titanic,
and the Pentium FDIV bug. In ad-
dition, new technologies inevitably
result in new challenges that cannot
be met using existing techniques.

Research
during Proj-
ects

Software engineering is often
busy with researching the un-
known (e.g., to derive an algo-
rithm) right in the middle of a
project.

Traditional engineering nominally
separates these activities. A project
is supposed to apply research re-
sults in known or new clever ways to
build the desired result. However,
ground-breaking engineering proj-
ects, such as Project Apollo often
include a lot of research into the
unknown.

Codified Software engineering has just
recently started to codify and
teach best practices in the form
of design patterns.

Some engineering disciplines have
thousands of years of best prac-
tice experience handed over from
generation to generation via a
field’s literature, standards, rules,
and regulations. Newer disciplines,
such as electronic engineering and
computer engineering have codi-
fied their own best practices as they
have developed.

1.13 SOME TERMINOLOGIES

 The following are some of the terminologies frequently used in the field of software
engineering:

 1. Deliverables and Milestones. Different deliverables are generated during
software development. The examples are source code, user manuals, operating
procedure manuals, etc.

26 SOF T WARE ENGINEERING AND TESTING

 The milestones are the events that are used to ascertain the status of the
project. Finalization of specifications is a milestone. Completion of design
documentation is another milestone. The milestones are essential for project
planning and management.

 2. Product and Process. What is delivered to the customer is called the product.
It may include source-code specification documents, manuals, documentation,
etc. Basically, it is nothing but a set of deliverables only.

 A process is the way in which we produce software. It is the collection of
activities that leads to (a part of) a product. An efficient process is required to
produce good quality products.

 If the process is weak, the end product will undoubtedly suffer, but an obsessive
over-reliance on process is also dangerous.

 3. Measures, Metrics, and Indicators. In software engineering measures provide
a quantitative indication of amount, dimension, capacity, or size of a given
attribute of a product.

 Metrics are a quantitative measure of the degree to which a system, component,
or process possesses a given attribute of a product. An indicator is a combination
of metrics.

 Measurement occurs as the result of the collection of one or more data points
(e.g., a number of module reviews are investigated to collect measures of the
number of errors in each module).

1.14 PROGRAMS VERSUS SOFTWARE PRODUCTS

1.14.1 Programs

 A program is a subset of software and it becomes software only if documentation
and operating procedure manuals are prepared. A program is a combination of
source code and object code.

FIGURE 1.9 Program = Source Code + Object Code

 INTRODUCTION TO SOFTWARE ENGINEERING 27

1.14.2 Software Products

 A software product consists not only of the program code but also of all the
associated documents, such as the requirements specification documents, the
design documents, the test documents, and the operating procedures which
include user manuals and operational manuals.

FIGURE 1.10 Software = Program + Documentation + Operating Procedures

1.14.3 Programs Versus Software Products

 The various differences between a program product and a software product are
given in Table 1.3.

TABLE 1.3

S. No. Programs Software Products

1. Programs are developed by indi-
viduals for their personal use

A software product is usually developed
by a group of engineers working as a
team

2. Usually small in size Usually large in size

3. Single user Large number of users

4. Single developer Team of developers

5. Lack proper documentation Good documentation support

6. Adhoc development Systematic development

7. Lack of user interface Good user interface

8. Have limited functionality Exhibit more functionality

28 SOF T WARE ENGINEERING AND TESTING

EXERCISES

 1. Define software.
 2. What is software engineering?
 3. Describe the evolving role of software.
 4. What are the different myths and realities about software?
 5. Give the various application areas of software.
 6. What is the bath-tub curve?
 7. Discuss the characteristics of software.
 8. What characteristics of software make it different from other engineering products (for

example, hardware)?
 9. Explain some characteristics of software. Also discuss some software components.
 10. Explain the statement “software does not wear out”.
 11. Discuss the evolution of software engineering in the last 50 years.
 12. What are the different software components?
 13. What are the symptoms of the present software crisis? What factors have contributed to

the present software crisis? What are possible solutions to the present software crisis?
 14. What can you learn from a software crisis?
 15. What is a software crisis? Explain the problems of a software crisis.
 16. What are software myths?
 17. Explain in detail the software-engineering process.
 18. Distinguish between a program and a software product.
 19. Discuss the two well-known principles in software engineering used to tackle the

complexity of the development of large programs.
 20. What is the difference between software engineering and conventional engineering?

Chapter 2
SOF T WARE-DEVELOPMENT

LIFE-CYCLE MODELS

2.1 SOFTWARE-DEVELOPMENT LIFE-CYCLE

 The software-development life-cycle is used to facilitate the development of
a large software product in a systematic, well-defined, and cost-effective
way.

 An information system goes through a series of phases from conception to
implementation. This process is called the Software-Development Life-Cycle. Var-
ious reasons for using a life-cycle model include:

 � Helps to understand the entire process

 � Enforces a structured approach to development

 � Enables planning of resources in advance

 � Enables subsequent controls of them

 � Aids management to track progress of the system

 The software development life-cycle consists of several phases and these phas-
es need to be identified along with defining the entry and exit criteria for every
phase. A phase can begin only when the corresponding phase-entry criteria are

29

30 SOF T WARE ENGINEERING AND TESTING

satisfied. Similarly, a phase can be considered to be complete only when the cor-
responding exit criteria are satisfied. If there is no clear indication of the entry and
exit for every phase, it becomes very difficult to track the progress of the project.

 The software development life-cycle can be divided into 5-9 phases, i.e., it
must have a minimum of five phases and a maximum of nine phases. On average
it has seven or eight phases. These are:

 � Project initiation and planning/Recognition of need/Preliminary investi-
gation

 � Project identification and selection/Feasibility study

 � Project analysis

 � System design

 � Coding

 � Testing

 � Implementation

 � Maintenance

FIGURE 2.1 Software-Development Life-Cycle

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 31

 1. Recognition of Need. Recognition of need is nothing but the problem
definition. It is the decision about problems in the existing system and the
impetus for system change. The first stage of any project or system-devel-
opment life-cycle is called the preliminary investigation. It is a brief inves-
tigation of the system under consideration. This investigation provides
the organization’s computer steering committee and any project team a
set of terms or references for more detailed work. This is carried out by a
senior manager and will result in a study proposal. At this stage the need
for changes in the existing system are identified and shortcomings of the
existing system are detected. These are stated clearly providing the basis
for the initial or feasibility study.

 2. Feasibility Study. A feasibility study is a preliminary study which inves-
tigates the information needs of prospective users and determines the
resource requirements, costs, benefits, and feasibility of a proposed proj-
ect.

 The goal of feasibility studies is to evaluate alternative systems and to
propose the most feasible and desirable systems for development. The
feasibility of a proposed system can be evaluated in terms of four major
categories, as illustrated in Table 2.1.

 (i) Organizational Feasibility. Organizational feasibility is how well a pro-
posed information system supports the objectives of the organization
and is a strategic plan for an information system. For example, proj-
ects that do not directly contribute to meeting an organization’s stra-
tegic objectives are typically not funded.

 (ii) Economic Feasibility. Economic feasibility is concerned with whether
expected cost savings, increased revenue, increased profits, reductions
in required investments, and other types of benefits will exceed the
costs of developing and operating a proposed system. For example,
if a project can’t cover its development costs, it won’t be approved,
unless mandated by government regulations or other considerations.

 (iii) Technical Feasibility. Technical feasibility can be demonstrated if reliable
hardware and software capable of meeting the needs of a proposed
system can be acquired or developed by the business in the required
time.

 (iv) Operational Feasibility. Operational feasibility is the willingness and
ability of management, employees, customers, suppliers, and others
to operate, use, and support a proposed system. For example, if the
software for a new system is too difficult to use, employees may
make too many errors and avoid using it. Thus, it would fail to show
operational feasibility.

32 SOF T WARE ENGINEERING AND TESTING

TABLE 2.1 Key Features of Categories of Feasibility

Organizational Feasibility Economic Feasibility

How well the proposed system sup-
ports the strategic objectives of the
organization

Cost savings

Increased revenue

Decreased investment

Increased profits

Technical Feasibility Operational Feasibility

Hardware, software, and network ca-
pability, reliability and availability

End-user acceptance

Management support

Customer, supplier, and government re-
quirements

 3. Project Analysis. Project analysis is a detailed study of the various
operations performed by a system and their relationships within and
outside the system. Detailed investigation should be conducted with
personnel closely involved with the area under investigation, according
to the precise terms of reference arising out of the initial study reports. The
tasks to be carried out should be clearly defined such as:

 � Examine and document the relevant aspects of the existing system, its
shortcomings and problems.

 � Analyze the findings and record the results.

 � Define and document in an outline the proposed system.

 � Test the proposed design against the known facts.

 � Produce a detailed report to support the proposals.

 � Estimate the resources required to design and implement the system.

 The objectives at this stage are to provide solutions to stated problems,
usually in the form of specifications to meet the users requirements and
to make recommendations for a new computer-based system. Analysis is
an iterative and progressive process, examining information flows and
evaluating various alternative design solutions until a preferred solution
is available. This is documented as the system proposal.

 4. System Design. System design is the most creative and challenging phase
of the system-development life-cycle. The term design describes the final
system and process by which it is developed. Different stages of the design
phase are shown in Figure 2.2. This phase is a very important phase of the
life-cycle. This is a creative as well as a technical activity including the
following tasks:

 � Appraising the terms of reference

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 33

 � Appraising the analysis of the existing system, particularly problem
areas

 � Defining precisely the required system output

 � Determining data required to produce the output

 � Deciding the medium and opening the files

 � Devising processing methods and using software to handle files and
to produce output

 � Determining methods of data capture and data input

 � Designing the output forms

 � Defining detailed critical procedures

 � Calculating timings of processing and data movements

 � Documenting all aspects of design

 FIGURE 2.2 Cycle of Design Phase

 5. Coding. The goal of the coding phase is to translate the design of the
system into code in a given programming language. In this phase the
aim is to implement the design in the best possible manner. This phase
affects both testing and maintenance phases. Well-written code can reduce
the testing and maintenance effort. Hence, during coding the focus is on
developing programs that are easy to read and understand and not simply
on developing programs that are simple to write.

34 SOF T WARE ENGINEERING AND TESTING

 Coding can be subject to company-wide standards that may define the
entire layout of programs, such as headers for comments in every unit,
naming conventions for variables, classes and functions, the maximum
number of lines in each component, and other aspects of standardization.

 Structured programming helps the understandability of programs. The
goal of structured programming is to linearize the control flow in the
program. Single entry-single exit constructs should be used. The constructs
include selection (if-then-else) and iteration (while, repeat-unit).

 6. Testing. Testing is the major quality-control measure used during software
development. Its basic function is to detect errors in the software. Thus,
the goal of testing is to uncover requirement, design, and coding errors in
the program.

 Testing is an extremely critical and time-consuming activity. It requires
proper planning of the overall testing process. During the testing of
the unit, the specified test cases are executed and the actual results are
compared with the expected output. The final output of the testing phase
is the test report and the error report, or a set of such reports (one for each
unit tested). Each test report contains the set of test cases and the result
of executing the code with these test cases. The error report describes the
errors encountered and the action taken to remove the errors.

 Testing cannot show the absence of defects; it can show only software errors
present. During the testing phase emphasis should be on the following:

 � Tests should be planned long before testing begins.

 � All tests should be traceable to customer requirements.

 � Tracing should begin “in the small” and progress toward testing “in
the large.”

 � For most effective testing, independent, third parties should conduct
testing.

 7. Implementation. The implementation phase is less creative than system
design. It is mainly concerned with user training, site selection, and
preparation and file conversion. Once the system has been designed, it
is ready for implementation. Implementation is concerned with those
tasks leading immediately to a fully operational system. It involves
programmers, users, and operations management, but its planning and
timing is a prime function of a systems analyst. It includes the final testing
of the complete system to user satisfaction, and supervision of initial
operation of the system. Implementation of the system also includes
providing security to the system.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 35

 Types of Implementation

 There are three types of implementation:
 � Implementation of a computer system to replace a manual system.

 � Implementation of a new computer system to replace an existing
one.

 � Implementation of a modified application (software) to replace an
existing one using the same computer.

 8. Maintenance. Maintenance is an important part of the SDLC. If there is
any error to correct or change then it is done in the maintenance phase.
Maintenance of software is also a very necessary aspect related to software
development. Many times maintenance may consume more time than the
time consumed in the development. Also, the cost of maintenance varies
from 50% to 80% of the total development cost.

 Maintenance is not as rewarding or exciting as developing the systems. It
may have problems such as:

 � Availability of only a few maintenance tools.

 � User may not accept the cost of maintenance.

 � Standards and guidelines of project may be poorly defined.

 � A good test plan is lacking.

 � Maintenance is viewed as a necessary evil often delegated to junior
programmers.

 � Most programmers view maintenance as low-level drudgery.

 Types of Maintenance

 Maintenance may be classified as:

 (i) Corrective Maintenance. Corrective maintenance means repairing pro-
cessing or performance failures or making changes because of previ-
ously uncorrected problems.

 (ii) Adaptive Maintenance. Adaptive maintenance means changing the
program function. This is done to adapt to the external environment
change. For example, the current system was designed so that it
calculates taxes on profits after deducting the dividend on equity
shares. The government has issued orders now to include the dividend
in the company profit for tax calculation. This function needs to be
changed to adapt to the new system.

 (iii) Perfective Maintenance. Perfective maintenance means enhancing the
performance or modifying the programs to respond to the user’s

36 SOF T WARE ENGINEERING AND TESTING

additional or changing needs. For example, earlier data was sent from
stores to headquarters on magnetic media but after the stores were
electronically linked via leased lines, the software was enhanced to
send data via leased lines.

 As maintenance is very costly and very essential, efforts have been done
to reduce its costs. One way to reduce the costs is through maintenance
management and software modification audits. Software modification
consists of program rewriting and system-level-upgrading.

 (iv) Preventive Maintenance. Preventive maintenance is the process by which
we prevent our system from being obsolete. Preventive maintenance
involves the concept of re-engineering and reverse engineering in
which an old system with an old technology is re-engineered using
new technology. This maintenance prevents the system from dying
out.

2.2 WATERFALL MODEL

 The waterfall model is a very common software development process model. The
waterfall model was popularized in the 1970s and permeates most current soft-
ware-engineering textbooks and standard industrial practices. Its first appearance
in the literature dates back to the late 1950s as the result of experience gained in the
development of a large air-defense software system called SAGE (Semi-Automat-
ed Ground Environment).

 The waterfall model is illustrated in Figure 2.3. Because of the cascade from
one phase to another, this model is known as the waterfall model or software life-
cycle.

 As the figure shows, the process is structured as a cascade of phases, where the
output of one phase constitutes the input to the next one. Each phase, in turn, is
structured as a set of activities that might be executed by different people concur-
rently.

 The phases shown in the figure are the following:

 � Feasibility study
 � Requirements analysis and specification
 � Design and specification
 � Coding and module testing
 � Integration and system testing

 � Delivery

 � Maintenance

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 37

FIGURE 2.3 Waterfall Model

 1. Feasibility Study. The first phase is the feasibility study. The purpose of
this phase is to produce a feasibility study document that evaluates the
costs and benefits of the proposed application. To do so, it is first necessary
to analyze the problem, at least at a global level. Obviously, the more we
understand the problem, the better we can identify alternative solutions,
their costs, and their potential benefits to the user. Therefore, ideally, one
should perform as much analysis of the problem as is needed to do a well-
founded feasibility study. The feasibility study is usually done within
limited time bounds and under pressure. Often, its result is an offer to the
potential customer. Since we cannot be sure that the offer will be accepted,
economic reasons prevent us from investing too many resources into
analyzing the problem.

 In sum, the feasibility study tries to anticipate future scenarios of software
development. Its result is a document that should contain at least the
following items:

 � A definition of the problem.

 � Determination of technical and economic viability.

 � Alternative solutions and their expected benefits.

38 SOF T WARE ENGINEERING AND TESTING

 � Required resources, costs, and delivery dates in each proposed
alternative solution.

 At the end of this phase, a report called a feasibility study is prepared
by a group of software engineers. The client or the customer is also
consulted through a questionnaire. This report determines whether the
project is feasible or not. After being successful in the feasibility study, the
requirement analysis is carried out.

 2. Requirement Analysis and Specification. This phase exactly tells the
requirements and needs of the project. This is a very important and critical
phase in the waterfall model.

 The purpose of a requirements analysis is to identify the qualities required
of the application, in terms of functionality, performance, ease of use,
portability, and so on.

 The requirements describe the “what” of a system, not the “how.” This
phase produces a large document and contains a description of what
the system will do without describing how it will be done. The resultant
document is known as the software requirement specification (SRS)
document.

 An SRS document must contain the following:

 � Detailed statement of problem.

 � Possible alternative solution to problem.

 � Functional requirements of the software system.

 � Constraints on the software system.

 The SRS document must be precise, consistent, and complete. There is
no scope for any ambiguity or contradiction in the SRS document. An
SRS document may be organized as a problem statement, introduction
to the problem, functional requirements of the system, non-functional
requirements of the system, behavioral descriptions, and validation
criteria.

 3. Design and Specification. The goal of the design phase is to transform
the requirements specified in the SRS document into a structure that is
suitable for implementation in some programming language. In technical
terms, during the design phase the software architecture is derived
from the SRS document. Two distinctly different design approaches are
available: the traditional design approach and the object-oriented design
approach.

 (i) Traditional Design Approach. The traditional design approach is currently
being used by many software-development houses. Traditional design
consists of two different activities; first a structured analysis of the

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 39

requirements specification is carried out where the detailed structure
of the problem is examined. This is followed by a structured design
activity. During structured design, the results of structured analysis
are transformed into the software design.

 Structured design is undertaken once the structured analysis activ-
ity is complete. Structured design consists of two main activities: ar-
chitectural design (also called high-level design) and detailed design
(also called low-level design). High-level design involves decompos-
ing the system into modules, and representing the interfaces and the
invocation relationships among the modules. During detailed design,
internals of the individual modules are designed in greater detail (e.g.,
the data structures and algorithms of the modules are designed and
documented).

 (ii) Object-Oriented Design Approach. This is a new paradigm. Various
objects in the system are identified. After the identification of objects,
the relationships among them are also explored. The OOD approach
has several benefits, such as lower development time and effort and
better maintainability.

 4. Coding and Module Testing. Coding and module testing is the phase
in which we actually write programs using a programming language.
It was the only recognized development phase in early development
processes, but it is just one of several phases in a waterfall process. The
output of this phase is an implemented and tested collection of modules.

 Coding can be subject to company-wide standards, which may define
the entire layout of programs, such as the headers for comments in every
unit, naming conventions for variables and sub-programs, the maximum
number of lines in each component, and other aspects that the company
deems worthy of standardization.

 Module testing is also often subject to company standards, including
a precise definition of a test plan, the definition of testing criteria to
be followed (e.g., black-box versus white-box, or a mixture of the two),
the definition of completion criteria (when to stop testing), and the
management of test cases. Debugging is a related activity performed in
this phase.

 Module testing is the main quality-control activity that is carried out in
this phase. Other such activities may include code inspections to check
adherence to coding standards and, more generally, to check for a
disciplined programming style, as well as checking of software qualities
other than functional correctness (e.g., performance), although this is often
better done at a later stage of coding.

40 SOF T WARE ENGINEERING AND TESTING

 5. Integration and System Testing. During the integration and system testing
phase, the modules are integrated in a planned manner. The different
modules making up a software product are almost never integrated in
one shot (can you guess the reason for this?). Integration is normally
carried out incrementally over a number of steps. During each integration
step, the partially integrated system is tested and a set of previously
planned modules are added to it. Finally, when all the modules have been
successfully integrated and tested, system testing is carried out.

 The objective of system testing is to determine whether the software system
performs per the requirements mentioned in the SRS document. This
testing is known as system testing. A fully developed software product is
system tested. The system testing is done in three phases: Alpha, Beta, and
Acceptance Testing.

 � Alpha Testing is conducted by the software-development team at the
developer’s site.

 � Beta Testing is performed by a group of friendly customers in the
presence of the software-development team.

 � Acceptance Testing is performed by the customers themselves. If the
software is successful in acceptance testing, the product is installed at
the customer’s site.

 6. Delivery and Maintenance. The delivery of software is often done
in two stages. In the first stage, the application is distributed among a
selected group of customers prior to its official release. The purpose of this
procedure is to perform a kind of controlled experiment to determine, on
the basis of feedback from users, whether any changes are necessary prior
to the official release. In the second stage, the product is distributed to the
customers.

 We define maintenance as the set of activities that are performed
after the system is delivered to the customer. Basically, maintenance
consists of correcting any remaining errors in the system (corrective
maintenance), adapting the application to changes in the environment
(adaptive maintenance), and improving, changing, or adding features
and qualities to the application (perfective maintenance). Recall that the
cost of maintenance is often more than 60% of the total cost of software
and that about 20% of maintenance costs may be attributed to corrective
and adaptive maintenance, while over 50% is attributable to perfective
maintenance. Based on this breakdown, we observed that evolution is
probably a better term than maintenance, although the latter is used more
widely.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 41

2.2.1 Advantages of Waterfall Model

 The various advantages of the waterfall model include:

 � It is a linear model.

 � It is a segmental model.

 � It is systematic and sequential.

 � It is a simple one.

 � It has proper documentation.

2.2.2 Disadvantages of Waterfall Model

 The various disadvantages of the waterfall model include:

 � It is difficult to define all requirements at the beginning of a project.

 � This model is not suitable for accommodating any change.

 � A working version of the system is not seen until late in the project’s life.

 � It does not scale up well to large projects.

 � It involves heavy documentation.

 � We cannot go backward in the SDLC.

 � There is no sample model for clearly realizing the customer’s needs.

 � There is no risk analysis.

 � If there is any mistake or error in any phase then we cannot make good
software.

 � It is a document-driven process that requires formal documents at the end of
each phase.

2.3 PROTOTYPING MODEL

 It always happens that a customer defines a set of general objectives for software
but does not identify detailed input, processing, or output requirements. In other
cases, the developer may be unsure of the efficiency of an algorithm, the adaptabil-
ity of an operating system, or the form that human/machine interaction should
take. In these and many other situations, a prototyping paradigm may offer the
best approach.

 Prototyping begins with communication. The developer and customer meet
and define the overall objectives for the software, identify whatever requirements
are known, and outline areas where further definition is mandatory. A quick de-
sign then occurs. The quick design focuses on the representation of those aspects

42 SOF T WARE ENGINEERING AND TESTING

of the software that will be visible to the customer/user (e.g., input approaches
and output formats). The quick design leads to the construction of a prototype.
The prototype is evaluated by the customer/user to refine requirements for the
software to be developed. Iteration occurs as the prototype is tuned to satisfy the
needs of the customer, while at the same time enabling the developer to better
understand what needs to be done.

 Ideally, the prototype serves as a mechanism for identifying software require-
ments. If a working prototype is built, the developer attempts to use existing pro-
gram fragments or applies tools that enable working programs to be generated
quickly.

FIGURE 2.4 Prototyping Model

2.3.1 Reasons for Using Prototyping Model

 There are several uses of a prototype. An important purpose is to illustrate the in-
put data formats, messages, reports, and the interactive dialogues to the customer.
This is valuable for gaining a better understanding of the customer’s needs. The
prototype model is very useful in developing the Graphical User Interface (GUI)
part of a system.

 The prototyping model can be used when the technical solutions are unclear to
the development team. Often, major design decisions depend on issues, such as the
response time of a hardware controller or the efficiency of a sorting algorithm, etc.
In such circumstances, a prototype may be the best or the only way to resolve the
technical issues. The third reason for developing a prototype is that it is impossible

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 43

to “get it right” the first time and one must plan to throw away the first product in
order to develop a good product later, as advocated.

2.3.2 Controlling Changes During Prototyping

 A major problem with prototyping is controlling changes to the prototype follow-
ing suggestions by the users. One approach has been to categorize changes as
belonging to one of three types:

 � Cosmetic (about 35% of changes)

 These are simply changes to the layout of the screen. They are:

 (a) Implemented.

 (b) Recorded.

 � Local (about 60% of changes)

 These involve changes to the way the screen is processed but do not affect
other parts of the system. They are:

 (a) Implemented.

 (b) Recorded.

 (c) Backed-up so that they can be removed at a later stage is necessary.

 (d) Inspected retrospectively.

 � Global (about 5% of changes)

 These are changes that affect more than one part of the processing. All
changes here have to be the subject of a design review before they can be
implemented.

2.3.3 Advantages of Prototyping Models

 � Suitable for large systems for which there is no manual process to define the
requirements.

 � User training to use the system.

 � User services determination.

 � System training.

 � Quality of software is good.

 � Requirements are not freezed.

2.3.4 Limitations of Prototyping Model

 � It is difficult to find all the requirements of the software initially.

 � It is very difficult to predict how the system will work after development.

44 SOF T WARE ENGINEERING AND TESTING

 These two limitations are removed in the prototyping model.

 The first limitation is removed by unfreezing the requirements before any de-
sign or coding can proceed.

 The second limitation is removed by making a throw-away prototype to un-
derstand the requirements.

2.4 SPIRAL MODEL

 The spiral model, originally proposed by Boehm, is an evolutionary software
model that couples the iterative nature of prototyping with the controlled and
systematic aspects of the linear segmental model.

 The goal of the spiral model of the software production process is to provide a
framework for designing such processes, guided by the risk levels in the projects
at hand. As opposed to the previously presented models, the spiral model may be
viewed as a metamodel, because it can accommodate any process-development
model. By using it as a reference, one may choose the most appropriate develop-
ment model (e.g., evolutionary versus waterfall). The guiding principle behind
such a choice is the level of risk; accordingly, the spiral model provides a view of
the production process that supports risk management.

 Let us present a few definitions. Risks are potentially adverse circumstances
that may impair the development process and the quality of products. Boehm
[1989] defines risk management as a discipline whose objectives are to identify, address,
and eliminate software risk items before they become either threats to successful software
operation or a major source of expensive software rework. The spiral model focuses on
identifying and eliminating high-risk problems by careful process design, rather
than treating both trivial and severe problems uniformly.

 The spiral model is recommended where the requirements and solutions
call for developing full-fledged, large, complex systems with many features and
facilities from scratch. It is used when experimenting on technology, trying out new
skills, and when the user is not able to offer requirements in clear terms. It is also
useful when the requirements are not clear and when the solution intended has
multi-users, multi-functions, multi-features, multi-location applications to be used
on multiple platforms, where seamless integration, interfacing, data migration,
and replication are the issues. The radial dimension of a cycle represents the
cumulative costs, and the angular dimension represents the progress made in
completing each cycle of the spiral.

 Each phase in this model is split into four sectors (or quadrants) as shown in
Figure 2.5.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 45

 FIGURE 2.5 The Spiral Model (From Boehm [1988])

 The first quadrant identifies the objectives of the phase and the alternative
solutions possible for the phase under consideration.

 In the second quadrant we evaluate different alternatives based on the
objectives and constraints. The evaluation is based on the risk perceptions for the
project.

 The third quadrant is the next step that emphasizes development of strategies
that resolve the uncertainties and risks. This may involve activities, such as
benchmarking, simulation, and prototyping.

 In the last or fourth quadrant we determine the objective that should be ful-
filled in the next cycle of our software development in order to build the complete
system.

2.4.1 Characteristics of Spiral Model

 The main characteristic of the Spiral Model is that it is cyclic and not linear like the
waterfall model (see Figure 2.5). Each cycle of the spiral consists of four stages, and
each stage is represented by one quadrant of the Cartesian diagram. The radius
of the spiral represents the cost accumulated so far in the process; the angular
dimension represents the progress in the process.

46 SOF T WARE ENGINEERING AND TESTING

2.4.2 Limitations of Spiral Model

 There are some limitations of the spiral model which include:
 � No strict standards for software development.

 � No particular beginning or end of a particular phase.

2.4.3 Advantages of Spiral Model

 There are some advantages of the spiral model which include:
 � It is risk-driven model. � It is very flexible.

 � Less documentation is needed. � It uses prototyping.

2.4.4 Disadvantages of Spiral Model

 The spiral model has some disadvantages that need to be resolved before it can be
a universally applied life-cycle model. The disadvantages include lack of explicit
process guidance in determining objectives, constraints, alternatives, relying on
risk assessment expertise, and providing more flexibility than required for many
applications.

2.5 EVOLUTIONARY DEVELOPMENT MODEL

 In the Evolutionary Model, development engineering effort is made first to estab-
lish correct, precise requirement definitions and system scope, as agreed by all the
users across the organization. This is achieved through application of iterative pro-
cesses to evolve a system most suited to the given circumstances. The process is
iterative as the software engineer goes through a repetitive process of requirement
called Analysis-Design-Testing through Prototype-Implementation-Assessment-
Evaluation until all users and stakeholders are satisfied.

 This model differs from the iterative enhancement model in the sense that this
does not require a useable product at the end of each cycle. In evolutionary devel-
opment, requirements are implemented by category rather than by priority.

2.5.1 Need of an Evolutionary Model

 The various reasons why there exists a need for an evolutionary model include:

 � Business and product requirements often change as development proceeds.

 � Tight market deadlines make completion of a comprehensive software product
impossible but a limited version must be introduced to meet competitive and
business pressures.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 47

 � A set of core product or system requirements is well understood, but the details
of product or system extensions have yet to be defined.

2.5.2 Uses of Evolutionary Model

 This model is useful for projects using new technology that is not well understood.
This is also used for complex projects where all functionality must be delivered at
one time, but the requirements are unstable or not well understood at the begin-
ning.

2.6 ITERATIVE-ENHANCEMENT MODEL

 The iterative-enhancement model combines elements of the linear sequential
model (applied repetitively) with the iterative philosophy of prototyping. In this
model, the software is broken down into several modules, which are incrementally
developed and delivered. First, the development team develops the core module
of the system and then it is later refined into increasing levels of capability of
adding new functionalities in successive versions.

FIGURE 2.6 Iterative-Enhancement Model

 Each linear sequence produces a deliverable increment of the software. For
example, word-processing software developed using the iterative paradigm might
deliver basis file management, editing, and document production functions in the

48 SOF T WARE ENGINEERING AND TESTING

first increment; more sophisticated editing and document production capabilities
in the second increment; spelling and grammar checking in the third increment; and
advanced page layout capability in the fourth increment. It should be noted that
the process flow for any increment could incorporate the prototyping paradigm.

 When an iterative-enhancement model is used, the first increment is often a
core product. That is, basic requirements are addressed, but many supplementary
features (some known, other unknown) remain undelivered. The core product is
used by the customer (or undergoes detailed review). As a result of use and/or
evaluation, a plan is developed for the next increment. The plan addresses the
modification of the core product to better meet the needs of the customer and the
delivery of additional features and functionality. This process is repeated following
the delivery of each increment, until the complete product is produced.

2.6.1 Advantages of Iterative-Enhancement Model

 The various advantages of following the approach of the iterative-enhancement
model are as follows:

 � The feedback from early increments improve the later stages.

 � The possibility of changes in requirements is reduced because of the shorter
time span between the design of a component and its delivery.

 � Users get benefits earlier than with a conventional approach.

 � Early delivery of some useful components improves cash flow, because you
get some return on investment early on.

 � Smaller sub-projects are easier to control and manage.

 � ‘Gold-plating,’ that is the requesting of features that are unnecessary and not
in fact used, is less as users will know that if a feature is not in the current
increment then it can be included in the next.

 � The project can be temporarily abandoned if more urgent work crops up.

 � Job satisfaction is increased for developers who see their labors bearing fruit at
regular, short intervals.

2.6.2 Disadvantages of Iterative-Enhancement Model

 The various disadvantages of the iterative-enhancement model include:

 � Software breakage, that is, later increments may require modifications to
earlier increments.

 � Programmers may be more productive working on one large system than on a
series of smaller ones.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 49

 � Some problems are difficult to divide into functional units (modules), which
can be incrementally developed and delivered.

2.7 RAD MODEL

 The RAD (Rapid Application Development Model) model is proposed when
requirements and solutions can be modularized as independent system or
software components, each of which can be developed by different teams. After
these smaller system components are developed, they are integrated to produce
the large software system solution. The modularization could be on a functional,
technology, or architectural basis, such as front-end-back-end, client side-server
side, and so on.

 RAD becomes faster if the software engineer uses the component’s technology
such that the components are really available for reuse. Since the development is
distributed into component-development teams, the teams work in tandem and
total development is completed in a short period (i.e., 60 to 90 days). Figure 2.7
shows the RAD model.

FIGURE 2.7 The RAD Model

 1. Business Modeling. It covers the following functions:

 � Where does information come from and go?

50 SOF T WARE ENGINEERING AND TESTING

 � Who processes it?

 � What information drives the business process?

 � What information is generated?

 2. Data Modeling. The information flow defined as part of the business-
modeling phase is refined into a set of data objects that are needed to
support the business. The characteristics of each object are identified and
the relationships between these objects are defined.

 3. Process Modeling. In this model, information flows from object to object
to implement a business function. To add, modify, delete, or retain a data
object, there is a need for description which is done in this phase.

 4. Application Generation. RAD assumes the use of fourth-generation
techniques. The RAD process works to reuse existing program components
or create reusable components. To facilitate the construction of the software
using the above cases, automated tools are used.

 5. Testing and Turnover. In this phase we have to test the programs, but
we use some already existing programs which are already tested, so the
time involved in testing is less. Only the new programs or components
must be tested.

2.7.1 Disadvantages of RAD Model

 The various disadvantages of the RAD model include:

 � For large, but scalable projects, RAD requires sufficient human resources to
create the right number of RAD teams.

 � If developers and customers are not committed to the rapid-fire activities
necessary to complete the system in a much abbreviated timeframe, RAD
projects will fail.

 � If a system cannot be properly modularized, building the components
necessary for RAD will be problematic.

 � If high performance is an issue, and performance is to be achieved through
tuning the interfaces to system components, the RAD approach may not
work.

 � RAD may not be appropriate when technical risks are high (for example, when
a new application makes heavy use of new technology).

2.8 COMPARISON OF VARIOUS PROCESS MODELS

 The comparison between various process models is given in Table 2.2.

 SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS 51

TABLE 2.2 Comparison of Process Models

Strengths Weaknesses Types of Projects

WATERFALL
Simple
Easy to execute
Intuitive and logical

All or nothing approach
Requirements frozen early
Disallows changes
Cycle time too long
May choose outdated
hardware technology
User feedback not allowed
Encourages requirement bloat-
ing

For well-understood prob-
lems

Short duration projects

Automation of existing
manual systems

PROTOTYPING

Helps in requirements
elicitation

Reduces risk

Leads to a better sys-
tem

Front heavy process

Possibly higher costs

Disallows later changes

Systems with novice users

When there are uncertainties
in requirements

ITERATIVE
ENHANCEMENT

Regular/quick deliver-
ies

Reduces risk

Accommodates
changes

Allows user feedback

Allows reasonable exit
points

Avoids requirement
bloating
Prioritizes require-
ments

Each iteration can have plan-
ning overhead

Costs may increase as work
done in one iteration may
have to be undone later

System architecture and struc-
ture may suffer as frequent
changes are made

For businesses where time is of
essence

Where risk of a long project
cannot be taken

Where requirements are not
known

SPIRAL

Controls project risks

Very flexible

Less documentation
needed

No strict standards for soft-
ware development

No particular beginning or
end of particular phase

Projects built on untested as-
sumptions

52 SOF T WARE ENGINEERING AND TESTING

EXERCISES

 1. Discuss the SDLC in brief.
 2. Give the basic phases in the software-development life-cycle.
 3. What are the different steps in the software-development life-cycle? What are the end

products at each step?
 4. What are the important activities that are carried out during the feasibility study

phase?
 5. Explain the different categories of maintenance in the software-development life-

cycle.
 6. What is the role of the testing phase in the software-development life-cycle?
 7. Draw the schematic diagram of the waterfall model of software development. Also

discuss its phases in brief.
 8. Explain the waterfall model in detail with the help of a diagram. State its advantages

and also its limitations.
 9. What is a prototype? Draw the schematic diagram of the prototyping model of software

development. Also discuss its phases in brief.
 10. What are the major advantages of first constructing a working prototype before

developing the actual product?
 11. Write a short description of the evolutionary development model. Also state its

advantages.
 12. Explain the iterative-enhancement model with the help of a suitable example.
 13. Which life-cycle model would you follow for developing software for each of the

following applications? Justify your selection of model with an appropriate reason:
 (i) A game
 (ii) A new text editor
 (iii) A compiler for a new language
 (iv) A software for hospital management
 14. How are the risks associated with a project handled in the spiral model of software

development?
 15. What are the major phases in the spiral model of software development? Explain.
 16. List the various models of software development and explain the RAD model in

detail.
 17. Compare the spiral model with the prototyping model by giving their advantages and

disadvantages.
 18. What is the need and use of the evolutionary development model?
 19. Discuss the advantages and disadvantages of various models of software engineering.
 20. Give a short comparison between the various software-development life-cycle

models.

Chapter 3
INTRODUCTION TO SOF TWARE
REQUIREMENTS SPECIFICATION

3.1 REQUIREMENT ENGINEERING

 A requirement is a feature of the system or a description of something the system is
capable of doing in order to fulfill the system’s purpose.

 Figure 3.1 illustrates the process of determining the requirements for a
software-based system.

 Requirements describe the “what” of a system, not the “how.” Requirements
engineering produces one large document, written in a natural language, and
contains a description of what the system will do without describing how it will
do it.

 Requirements engineering is the systematic use of proven principles,
techniques, and language tools for the cost-effective analysis, documentation,
and on-going evaluation of the user’s needs and the specifications of the external
behavior of a system to satisfy those user needs. It can be defined as a discipline,
which addresses requirements of objects all along a system-development process.

53

54 SOF T WARE ENGINEERING AND TESTING

FIGURE 3.1 The Process of Determining Requirements

 The input to requirements engineering is the problem statement prepared by
the customer. The output of the Requirements Engineering (RE) process is a system
requirements specification called the Requirement Definition and Description
(RDD). The system requirements specification forms the basis for designing
software solutions.

3.1.1 Types of Requirements

 There are various categories of the requirements. On the basis of their priority, the
requirements are classified into the following three types:

 � Those that should be absolutely met.

 � Those that are highly desirable but not necessary.

 � Those that are possible but could be eliminated.

 On the basis of their functionality, the requirements are classified into the
following two types:

 (i) Functional requirements. They define factors, such as I/O formats, storage
structure, computational capabilities, timing, and synchronization.

 (ii) Non-functional requirements. They define the properties or qualities of
a product including usability, efficiency, performance, space, reliability,
portability, etc.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 55

3.2 PROCESS OF REQUIREMENTS ENGINEERING

 Figure 3.2 illustrates the process steps of requirements engineering.

 FIGURE 3.2 Process Steps of Requirements Engineering

 Requirements engineering consists of the following processes:

 � Requirements gathering (elicitation).
 � Requirements analysis and modeling.
 � Requirements documentation.

 � Requirements review.

 � Requirements management.

3.2.1 Requirement Elicitation and Analysis

 Requirement Elicitation/Gathering. Requirement gathering is a communication
process between the parties involved and affected in the problem situation. The
tools in elicitation are meetings, interviews, video conferencing, e-mails, and
existing documents study and facts findings. More than 90% to 95% elicitation
should be complete in the initiation stage while the remaining 5% is completed
during the development life-cycle. The requirements are gathered from various
sources. The sources are:

 � Customer (Initiator)
 � End Users
 � Primary Users

 � Secondary Users

 � Stakeholders

 Requirement Analysis. Requirement analysis is a very important and essential
activity after elicitation. In this phase, each requirement is analyzed from the
point-of-view of validity, consistency, and feasibility for firm consideration in the
RDD and then in the SRS. Validity confirms its relevance to goals and objectives
and consistently confirms that it does not conflict with other requirements but
supports others where necessary. Feasibility ensures that the necessary inputs are

56 SOF T WARE ENGINEERING AND TESTING

available without bias and error, and technology support is possible to execute the
requirement as a solution. This portion of the analysis confirms the place of the
requirements in RDD on its own and along with others.

 The second portion of analysis attempts to find for each requirement, its
functionality, features, and facilities and the need for these under different
conditions and constraints. Functionality states “how to achieve the requirement
goal.” Features describe the attributes of functionality, and facilities provide its
delivery, administration, and communication to other systems.

 Process Model of Elicitation and Analysis

 A generic process model of the elicitation and analysis process is shown in
Figure 3.3. Each organization will have its own version or instantiation of this
general model depending on local factors, such as the expertise of the staff, the
type of system being developed, the standards used, etc.

FIGURE 3.3 Requirements Elicitation and Analysis Process Model

 The process activities are:

 1. Domain Understanding. Analysts must develop their understanding of
the application domain. For example, if a system for a supermarket is
required, the analyst must find out how supermarkets operate.

 2. Requirements Collection. This is the process of interacting with stake-
holders in the system to discover their requirements. Obviously, domain
understanding develops further during this activity.

 3. Classification. This activity takes the unstructured collection of require-
ments and organizes them into coherent clusters.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 57

 4. Conflict Resolution. Inevitably, where multiple stakeholders are involved,
requirements will conflict. This activity is concerned with findings and
resolving these conflicts.

 5. Prioritization. In any set of requirements some priorities will be more
important than others. This stage involves interaction with stakeholders
to discover the most important requirements.

 6. Requirements Checking. The requirements are checked to discover if
they are complete, consistent, and in accordance with what stakeholders
really want from the system.

3.2.2 Requirements Documentation

 Requirements documentation is a very important activity, which is written after the
requirements elicitation and analysis. This is the way to represent requirements in a
consistent format. The requirements document is called the Software Requirements
Specification (SRS).

 The SRS is a specification for a particular software product, program, or set
of programs that perform certain functions in a specific environment. It serves a
number of purposes depending on who is writing it. First, the SRS could be written
by the customer of a system. Second, the SRS could be written by a developer of the
system. The two scenarios create entirely different situations and establish entirely
different purposes for the document. In the first case, the SRS is used to define
the needs and expectations of the users. In the second case, the SRS is written
for a different purpose and serves as a contract document between customer and
developer.

 Thus, requirements must be written so they are meaningful not only to the
customers but also to designers on the development team.

 Requirements Definition Document

 The system documentation contains a record of the requirements in the customer’s
terms. This requirements definition document describes what the customer would
like to see.

 � First, we outline the general purpose of the system. References to other related
systems are included, and we incorporate any terms and abbreviations that
may be useful.

 � Next, we describe the background and objectives of system development.
For example, if a system is to replace an existing approach, we explain why
the existing system is unsatisfactory. Current methods and procedures are
outlined in enough detail so we can isolate those elements with which the
customer is happy from those that are disappointing.

58 SOF T WARE ENGINEERING AND TESTING

 � If the customer has a proposed new approach to solving the problem, we
outline a description of the approach. Remember, though, that the purpose
of the requirements document is to discuss the problem, not the solution; the
focus should be on how the system is to meet the customer’s needs.

 � Once we record this overview of the problem, we describe the detailed
characteristics of the proposed system. We define the system boundaries and
interfaces across it. The system functions are also explained. Also, we include
a complete list of data elements and classes and their characteristics.

 � Finally, we discuss the environment in which the system will operate. We
include requirements for support, security, and privacy and any special
hardware or software constraints should be addressed.

3.2.3 Requirements Review

 A requirements review is a manual process, which involves multiple readers from
both client and contractor staff checking the requirements document for anomalies
and omissions.

 A requirements review can be informal or formal.

 1. Informal Review. Informal reviews simply involve contractors discussing
requirements with as many system stakeholders as possible. It is surprising
how often communication between system developers and stakeholders
ends after elicitation and there is no conformation that the documented
requirements are what the stakeholders really said they wanted.
Many problems can be detected simply by talking about the system to
stakeholders before making a commitment to a formal review.

 2. Formal Review. In a formal requirements review, the development team
should ‘walk’ the client through the system requirements, explaining the
implications of each requirement. The review team should check each
requirement for consistency and should check the requirements as a whole
for completeness. Reviewers may also check for:

 (a) Verifiability: are the requirements as stated realistically testable?

 (b) Comprehensibility: is the requirement property understood by the
procurers or end-users of the system?

 (c) Traceability: is the origin of the requirement clearly stated? You may
have to go back to the source of the requirement to assess the impact
of a change. Traceability is important as it allows the impact of change
on the rest of the system to be assessed. We discuss it in more detail in
the following section.

 (d) Adaptability: is the requirement adaptable? That is, can the requirement
be changed without large-scale effects on other system requirements?

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 59

 Conflicts, contradictions, errors, and omissions in the requirements should be
pointed out during the review and formally recorded. It is then up to the users,
the system procurer, and the system developer to negotiate a solution to these
identified problems.

3.2.4 Requirements Management

 Requirements define the capability that the software system solution must deliver
and the intended results that must result on its application to business problems. In
order to generate such requirements, a systematic approach is necessary, through a
formal management process called Requirements Management.

 Requirements management is defined as a systematic approach to eliciting,
organizing, and documenting the requirements of the system, and a process that
establishes and maintains agreement between the customer and project team on
the changing requirements of the system.

 Classes of Requirements Management

 From an evolution perspective, requirements fall into two classes:

 1. Enduring requirements. These are relatively stable requirements which derive
from the core activity of the organization and which relate directly to the
domain of the system. For example, in a hospital there will always be
requirements concerned with patients, doctors, nurses, treatments, etc. These
requirements may be derived from domain models that show the entities and
relations which characterize an application domain.

FIGURE 3.4 Requirements Evolution

 2. Volatile requirements. These are requirements which are likely to change during
the system development or after the system has been put into operation.
Examples of volatile requirements are requirements resulting from government
health-care policies.

60 SOF T WARE ENGINEERING AND TESTING

 Requirements Management Planning

 Planning is an essential first stage in the requirements management process.
Requirements management is very expensive and, for each project, the planning
stage establishes the level of requirements management detail required. During
the requirements management stage, you have to decide on:

 1. Requirements identification. Each requirement must be uniquely identified so
that it can be cross-referred by other requirements and so that it may be used
in traceability assessments.

 2. A change management process. This is the set of activities that assess the impact
and cost of changes. We discuss it in more detail in the following section.

 3. Traceability policies. These policies define the relationships between requirements
and between the requirements and the system design that should be recorded
and how these records should be maintained.

 4. CASE tool support. Requirements management involves the processing of large
amounts of information about the requirements. Tools, which may be used,
range from specialist requirements management system to spreadsheets and
simple database systems.

 The process steps and their outputs which when implemented will lead to the
most acceptable RDD and SRS through requirements management are given in
Table 3.1.

TABLE 3.1 Process Steps for Requirements Management

Steps Outputs

Study the domain Domain knowledge improved for better
solutions.

Analyze the problems Increased understanding of the problem.

Understand user needs Real and genuine needs that need solving
identified.

Determine and define the system
and system scope

First prototype system model and its scope
definition.

Manage scope System scope: Feasible and deliverable.

Refine and evaluate the system
definition

Broader system scope defined in terms of
deliverables.

Build the right system A system accepted by the users.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 61

3.3 INFORMATION MODELING

 The Information Flow Model (IFM) is used to understand the sources and
destination of information flow, which is required to execute the business process
as shown in Figure 3.5.

FIGURE 3.5 Information Flow Model

 In IFM, information or data generators and processors are brought together
to explain the flow. This could be documents, e-mail, or voicemail. The contents
of the flow could be text, images, or diagrams. The purpose of the flow is to take
the process further to its logical conclusion. For example, a customer order is to be
processed for delivery or to be rejected, and necessary data or information input
has to be provided progressively in the process.

 IFM is generally a high-level model showing main flows, internal flows of
information from sources, such as product catalogs, and manufacturing schedules.
Customer profiles and accounting information are not shown. These are presumed
to be present.

62 SOF T WARE ENGINEERING AND TESTING

3.4 DATA-FLOW DIAGRAMS

 Data-Flow Diagrams (DFD) are also known as data-flow graphs or bubble charts.
A DFD serves the purpose of clarifying system requirements and identifying major
transformations. DFDs show the flow of data through a system. It is an important
modeling tool that allows us to picture a system as a network of functional
processes.

 Data-flow diagrams are well-known and widely used for specifying the
functions of an information system. They describe systems as collections of data
that are manipulated by functions. Data can be organized in several ways: they
can be stored in data repositories, they can flow in data flows, and they can be
transferred to or from the external environment.

 One of the reasons for the success of DFDs is that they can be expressed by
means of an attractive graphical notation that makes them easy to use.

3.4.1 Symbols Used for Constructing DFDs

 There are different types of symbols used to construct DFDs. The meaning of each
symbol is explained below:

 1. Function symbol. A function is represented using a circle. This symbol is called
a process or a bubble and performs some processing of input data.

 2. External entity. A square defines a source or destination of system data.
External entities represent any entity that supplies or receives information
from the system but is not a part of the system.

 3. Data-flow symbol. A directed arc or arrow is used as a data-flow symbol. A
data-flow symbol represents the data flow occurring between two processes
or between an external entity and a process in the direction of the data flow
arrow.

 4. Data-store symbol. A data-store symbol is represented using two parallel lines.
A logical file can represent either a data-store symbol, which can represent
either a data structure, or a physical file on disk. Each data store is connected

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 63

to a process by means of a data-flow symbol. The direction of the data-flow
arrow shows whether data is being read from or written into a data store.

 5. Output Symbol. It is used to represent data acquisition and production during
human-computer interaction.

3.4.2 Example DFD

 Example 3.1. Figure 3.6 shows how the symbols can be composed to form a DFD.
The DFD describes the arithmetic expression

(a + b) * (c + a * d)

 assuming that the data a, b, c, and d are read from a terminal and the result is
printed. The figure shows that the arrow can be “forked” to represent the fact that
the same datum is used in different places.

FIGURE 3.6 A DFD For Specifying the Arithmetic Expression (a + b)*(c + a*d)

 Example 3.2. Figure 3.7 describes a simplified information system for a public
library. The data and functions shown are not necessarily computer data and
computer functions. The DFD describes physical objects, such as books and shelves,
together with data stores that are likely to be, but are not necessarily, realized as
computer files. Getting a book from the shelf can be done either automatically—by

64 SOF T WARE ENGINEERING AND TESTING

a robot—or manually. In both cases, the action of getting a book is represented by
a function depicted by a bubble. The figure could even represent the organization
of a library with no computerized procedures.

FIGURE 3.7 A DFD Describing a Simplified Library Information System

 Figure 3.7 also describes the fact that, in order to obtain a book, the following
are necessary: an explicit user request consisting of the title and the name of the
author of the book and the user’s name; access to the shelves that contain the
books; a list of authors; and a list of titles. These provide the information necessary
to find the book.

3.4.3 Levels of a DFD

 There are different levels of a data-flow diagram. The initial level is called the
context level or fundamental system model or a 0-level DFD. If we expand the
0-level processes then we get the Ist-level DFD and if we further expand the Ist-
level processes then we get the 2nd-level DFD and so on.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 65

 Example 3.3. The 0th and 1st levels of the DFD of a Production Management
System are shown in Figure 3.8 (a) and (b).

 Let us discuss the data-flow diagram of the Production Management System.

FIGURE 3.8 (a) Level 0 DFD of PMS

FIGURE 3.8 (b) Level 1 DFD of PMS

66 SOF T WARE ENGINEERING AND TESTING

 Data-flow diagrams can be expressed using informal notations, as illustrated
in Figure 3.9 (a), or special symbols can be used to denote processing nodes, data
sources, data sinks, and data stores, as illustrated in Figure 3.9 (b).

FIGURE 3.9 (a) An Informal DFD or Bubble Chart

FIGURE 3.9 (b) A Formal DFD or Bubble Chart

3.4.4 General Guidelines and Rules for Constructing DFDs

 The following guidelines will help avoid constructing DFDs that are quite simply
wrong or incomplete.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 67

 � Remember that a DFD is not a flowchart.

 � All names should be unique.

 � Processes are always running; they do not start or stop.

 � All data flows are named.

 � Keep a note of all the processes and external entities. Give unique names to
them. Identify the manner in which they interact with each other.

 � Do number processes.

 � Avoid complex DFDs (if possible).

 � The DFD should be internally consistent.

 � Every process should have a minimum of one input and one output.

 � Only data needed to perform the process should be an input to the process.

 � The direction of flow is from source to destination.

3.5 DECISION TABLES

 Sometimes it is convenient to describe a system as a set of possible conditions
satisfied by the system at a given time, rules for reacting to stimuli when certain
sets of those conditions are met, and actions to be taken as a result.

 Decision tables provide a mechanism for recording complex decision logic.
Decision tables are widely used in data-processing applications and have
extensively developed literature. As illustrated in Table 3.2, a decision table is
segmented into four quadrants: condition stub, condition entry, action stub, and
action entry.

TABLE 3.2 Basic Elements of a Decision Table

Decision rules

Rule 1 Rule 2 Rule 3 Rule 4

(Condition stub) (Condition entries)

(Action stub) (Action entries)

 The condition stub contains all of the conditions being examined. Condition
entries are used to combine conditions into decision rules. The action stub describes

68 SOF T WARE ENGINEERING AND TESTING

the actions to be taken in response to decision rules, and the action entry quadrant
relates decision rules to actions.

TABLE 3.3 Limited-Entry Decision Table

1 2 3 4

Credit limit is satisfactory Y N N N

Pay experience is favorable - Y N N

Special clearance is obtained - - Y N

Perform approve order X X X

Go to reject order X

 Table 3.3 illustrates the format of a limited-entry decision table (entries are
limited to Y, N, -, and X). In a limited-entry decision table, Y denotes “yes,” N
denotes “no,” - denotes “don’t care,” and X denotes “perform action.” According
to Table 3.3, orders are approved if the credit limit is not exceeded, or if the credit
limit is exceeded but past experience is good, or if a special arrangement has been
made. If none of these conditions hold, the order is rejected.

 The (Y, N, -) entries in each column of the condition entry quadrant form a
decision rule. If more than one decision rule has identical (Y, N, -) entries, the
table is said to be ambiguous. Ambiguous pairs of decision rules that specify
identical actions are said to be redundant, and those specifying different actions
are contradictory. Contradictory rules permit specification of non-deterministic
and concurrent actions. Table 3.4 illustrates redundant rules (R3 and R4) and
contradictory rules (R2 and R3, and R2 and R4).

TABLE 3.4 An Ambiguous Decision Table

Decision rules

Rule 1 Rule 2 Rule 3 Rule 4

C1 Y Y Y Y

C2 Y N N N

C3 N N N N

A1 X

A2 X

A3 X X

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 69

 A decision table is complete if every possible set of conditions has a
corresponding action prescribed. There are 2**N combinations of conditions in a
table that has N conditions entries. Failure to specify an action for any one of the
combinations results in an incomplete decision table. For example, in Table 3.5 the
combination (N, N, N) for conditions C1, C2, and C3 has no action specifi ed. Note
also that the condition (Y, Y, N) specifi es both actions A1 and A2. These multiple
specifi ed actions may be desired, or they may indicate a specifi cation error.

TABLE 3.5 An Incomplete and Over-Specified Decision Table

C1 Y N

C2 Y N

C3 Y

A1 X

A2 X

A3 X

 Figure 3.5 illustrates the use of a Karnaugh map to check a decision table for
completeness and multiple specified actions. The specification is incomplete if
there are any blank entries in the Karnaugh map. The specification is multiply
specified if there are any multiple entries in the Karnaugh map.

3.5.1 Advantages of Decision Tables

 The various advantages of decision tables include:

 � Decision rules are clearly structured.

 � Mangers can be relieved from decision-making.

 � Consistency in decision-making.

 � Communication is easier between managers and analysts.

 � Documentation is easily prepared, changed, or updated.

 � Easy to use.

 � Easier to draw or modify compared to flowcharts.

 � Facilitate more compact documentation.

 � Easier to follow a particular path down one column than through complex
and lengthy flowcharts.

70 SOF T WARE ENGINEERING AND TESTING

3.5.2 Disadvantages of Decision Tables

 The various disadvantages of decision tables include:

 � Impose an additional burden.

 � Do not depict the flow.

 � Not easy to translate.

 � Cannot list all the alternatives.

3.6 SRS DOCUMENT

 An SRS document is generated as the output of requirements analysis. Require-
ments analysis involves obtaining a clear and thorough understanding of the
product to be developed. Thus, the SRS should be a consistent, correct, unambiguous,
and complete document. The developer of the system can prepare an SRS after
detailed communication with the customer. An SRS clearly defines the following:

 External interfaces of the system: They identify the information that is to flow
‘from and to’ to the system.

 Functional and non-functional requirements of the system: They are the findings of
the run-time requirements.

 The functional requirements of the system as documented in the SRS document
should clearly describe each function, which the system would support along with
the corresponding input and output data set.

 The non-functional requirements deal with the characteristics of the system
that cannot be expressed as functions. Examples of non-functional requirements
include aspects concerning maintainability, portability, and usability. The non-
functional requirements include aspects concerning maintainability, portability,
and usability. The non-functional requirements may also include reliability issues,
accuracy of results, human-computer interface issues, and constraints on the
system implementation.

 There are many ways to structure a requirements document. There is no single
method that is suitable for all projects. The IEEE and U.S. Department of Defense
have proposed a candidate format for representing the SRS. The general outline of
the SRS document is given below:

3.6.1 Organization of an SRS Document

 1. Introduction

 1.1 Purpose

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 71

 1.2 Scope

 1.3 Definitions, Acronyms, and Abbreviations

 1.4 References

 1.5 Overview

 2. The Overall Description

 2.1 Product Perspective

 2.1.1 System Interfaces

 2.1.2 Interfaces

 2.1.3 Hardware Interfaces

 2.1.4 Software Interfaces

 2.1.5 Communications Interfaces

 2.1.6 Memory Constraints

 2.1.7 Operations

 2.1.8 Site Adaptation Requirements

 2.2 Product Functions

 2.3 User Characteristics

 2.4 Constraints

 2.5 Operating Environment

 2.6 User Environment

 2.7 Assumptions and Dependencies

 2.8 Apportioning of Requirements

 3. Specific Requirements

 3.1 External Interfaces

 (i) User Interface

 (ii) Hardware Interface

 (iii) Software Interface

 (iv) Communication Interface

 3.2 Functions

 3.3 Performance Requirements

 3.4 Logical Database Requirements

 3.5 Design Constraints

 3.5.1 Standards Compliance

 3.6 Software System Attribute

72 SOF T WARE ENGINEERING AND TESTING

 3.6.1 Reliability

 3.6.2 Availability

 3.6.3 Security

 3.6.4 Maintainability

 3.6.5 Portability

 3.7 Organizing the Specific Requirements

 3.7.1 System Mode

 3.7.2 User Class

 3.7.3 Objects

 3.7.4 Feature

 3.7.5 Stimulus

 3.7.6 Response

 3.7.7 Functional Hierarchy

 3.8 Additional Comments

 4. Supporting Information

 4.1 Table of Contents and Index

 4.2 Appendixes

3.6.2 Uses for SRS Documents

 The following are a few major uses for SRS documents:

 � Project managers base their plans and estimates of schedule, effort, and
resources on it.

 � The development team needs it to develop the product.

 � The testing group needs it to generate test plans based on the described
external behavior.

 � The maintenance and product support staff need it to understand what the
software product is supposed to do.

 � The publications group writes documents, manuals, etc., from it.

 � Customers rely on it to know what product they can expect.

 � Training personnel can use it to help develop educational material for the
software product.

 � The maintenance and product support staff need it to understand what the
software product is supposed to do.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 73

3.7 IEEE STANDARDS FOR SRS DOCUMENTS

 IEEE standards documents are developed within the IEEE Societies and the
Standards Coordinating Committees of the IEEE Standards Association (IEEE-
SA) Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards
developed within the IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of the IEEE that have
expressed an interest in participating in the development of the standard. Use of
an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not
imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of the IEEE Standard.

 Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of
the art and comments received from users of the standard. Every IEEE Standard is
subjected to review at least every five years for revision. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its
contents, although still of some value, do not wholly reflect the present state of the
art.

 Users are cautioned to check to determine that they have the latest edition of
any IEEE Standard. Comments for revision of IEEE Standards are welcome from
any interested party, regardless of membership affiliation with IEEE. Suggestions
for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments.

3.7.1 IEEE Recommended Approaches for SRS

 This recommended practice describes recommended approaches for the
specification of software requirements. It is based on a model in which the result of
the software requirements specification process is an unambiguous and complete
specification document. It should help:

 1. Software customers to accurately describe what they wish to obtain;

 2. Software suppliers to understand exactly what the customer wants;

 3. Individuals to accomplish the following goals:

 (i) Develop a standard software requirements specification (SRS) outline for
their own organizations;

 (ii) Define the format and content of their specific software requirements
specifications;

 4. Develop additional local supporting items, such as an SRS quality checklist, or
an SRS writer’s handbook.

74 SOF T WARE ENGINEERING AND TESTING

3.7.2 Benefits of SRS

 To the customers, suppliers, and other individuals, a good SRS should provide
several specific benefits, such as the following:

 1. Establish the basis for agreement between the customers and the suppliers
on what the software product is to do.

 The complete description of the functions to be performed by the software
specified in the SRS will assist potential users in determining if the software
specified meets their needs or how the software must be modified to meet
their needs.

 2. Reduce the development effort. The preparation of the SRS forces the various
concerned groups in the customer’s organization to consider rigorously all of
the requirements before design begins and reduces later redesign, recoding,
and retesting. Careful review of the requirements in the SRS can reveal
omissions, misunderstandings, and inconsistencies early in the development
cycle when these problems are easier to correct.

 3. Provide a basis for estimating costs and schedules. The description of the
product to be developed as given in the SRS is a realistic basis for estimating
project costs and can be used to obtain approval for bids or price estimates.

 4. Provide a baseline for validation and verification. Organizations can develop
their validation and verification plans much more productively from a good
SRS. As a part of the development contract, the SRS provides a baseline against
which compliance can be measured.

 5. Facilitate transfer. The SRS makes it easier to transfer the software product
to new users or new machines. Customers thus find it easier to transfer the
software to other parts of their organization, and suppliers find it easier to
transfer it to new customers.

 6. Serves as a basis for enhancement. Because the SRS discusses the product but
not the project that developed it, the SRS serves as a basis for later enhancement
of the finished product. The SRS may need to be altered, but it does provide a
foundation for continued production evaluation.

3.7.3 IEEE Recommended Practice for Software Requirements Specification

 1. Overview

 2. References

 3. Definitions

 4. Considerations for producing a good SRS

 5. The parts of an SRS

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 75

3.8 SRS VALIDATION

 It is extremely important to detect errors in the requirements document before going
to other phases of system development. The major objective of SRS validation is to
ensure that user requirements are complete and correctly recorded in the SRS and
it is free from errors. It is also needed to check that the SRS itself is of good quality.
Some of the most common types of errors in the SRS include:

 1. Omission. Some user requirement is not included in the SRS. This error
directly affects the external completeness of the system.

 2. Inconsistency. Due to contradictions in requirements or incompatibility of
state requirements.

 3. Incorrect fact. Some facts recorded in the SRS are not correct.

 4. Ambiguity. Some requirements have multiple meanings.

 Besides improving the quality of the SRS, SRS validation should uncover and
rectify all possible types of errors.

3.9 COMPONENTS OF SRS

 The following requirements are used in the specification of the SRS:

 1. Functional requirements

 2. Performance requirements

 3. Design constraints

 4. External interface requirements

FIGURE 3.10 Components of SRS Document

 1. Functional Requirements. Functional requirements specify which outputs
should be produced from the given inputs. They describe the relationship
between the input and output of the system. For each functional requirement,

76 SOF T WARE ENGINEERING AND TESTING

a detailed description of all the data inputs and their sources, the units of
measure, and the range of valid inputs must be specified.

 All the operations to be performed on the input data to obtain should be
specified. This includes specifying the validity checks on the input and output
data, parameters affected by the operation, and equations or other logical
operations that must be used to transform the inputs into corresponding
outputs. For example, if there is a formula for computing the output, it should
be specified. Care must be taken not to specify any algorithms that are not
part of the system but that may be needed to implement the system. These
decisions should be left for the designer. In addition some abnormal input,
system behavior for invalid inputs, must be specified.

 2. Performance Requirements. This part of an SRS specifies the performance
constraints on the software system. All the requirements relating to the
performance characteristics of the system must be clearly specified. There are
two types of performance requirements: static and dynamic.

 Static requirements are those that do not impose constraints on the execution
characteristics of the system. These include requirements, such as the number of
terminals to be supported, the number of simultaneous users to be supported,
and the number of files that the system has to process and their sizes. These
are also called capacity requirements of the system.

 Dynamic requirements specify constraints on the execution behavior of the
system. These typically include response time and throughput constraints
on the system. Response time is the expected time for the completion of an
operation under specified circumstances. Throughput is the expected number
of operations that can be performed in a unit time. For example, the SRS may
specify the number of transactions that must be processed per unit time,
or what the response time for a particular command should be. Acceptable
ranges of the different performance parameters should be specified, as well as
acceptable performance for both normal and peak workload conditions.

 3. Design Constraints. There are a number of factors in the client’s environment
that may restrict the choices of a designer. Such factors include standards
that must be followed, resource limits, operating environment, reliability
and security requirements, and policies that may have an impact on the
design of the system. An SRS should identify and specify all such constraints,
including:

 (i) Standards Compliance. This specifies the requirements for the standards
the system must follow. The standards may include the report format and
accounting procedures. There may be audit-tracing requirements, which
require certain kinds of changes, or operations that must be recorded in an
audit file.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 77

 (ii) Hardware Limitations. The software may have to operate on some existing
or predetermined hardware, thus imposing restrictions on the design.
Hardware limitations can include the type of machines to be used,
operating system available on the system, languages supported, and
limits on primary and secondary storage.

 (iii) Reliability and Fault Tolerance. Fault-tolerance requirements can place a
major constraint on how the system is to be designed. Fault-tolerance
requirements often make the system more complex and expensive.
Recovery requirements must specify what the system should do if some
fault occurs. Recovery requirements are often an integral part of the design
constraints.

 (iv) Security. Security requirements are particularly significant in defense
systems and many database systems. Security requirements place
restrictions on the use of certain commands, control access to data, provide
different kinds of access requirements for different people, require the
use of passwords and cryptography techniques, and maintain a log of
activities in the system. Given the current security needs even of common
systems, they may also require proper assessment of security threats,
proper programming techniques, and use of tools to detect flaws, such as
buffer overflow.

 4. External Interface Requirements. All the interactions of the software with
people, hardware, and other software should be clearly specified. For the
user interface, the characteristics of each user interface of the software product
should be specified. User interface is becoming increasingly important and
must be given proper attention. A preliminary user manual should be created
with all user commands, screen formats, an explanation of how the system will
appear to the user, and feedback and error messages. Like other specifications
these requirements should be precise and verifiable. So, a statement like
“the system should be user friendly” should be avoided and statements like
“commands should be no longer than six characters” or “commands names
should reflect the function they perform” should be used.

 For hardware interface requirements, the SRS should specify the logical
characteristics of each interface between the software product and the
hardware components. If the software is to execute on existing hardware or
on predetermined hardware, all the characteristics of the hardware, including
memory restrictions, should be specified. In addition, the current use and load
characteristics of the hardware should be given.

 The interface requirement should specify the interface with other software the
system will use or that will use the system. This includes the interface with the
operating system and other applications. The message content and format of
each interface should be specified.

78 SOF T WARE ENGINEERING AND TESTING

3.10 CHARACTERISTICS OF SRS

 A good SRS document has certain characteristics that must be present. The
characteristics are:

 1. Correctness. An SRS is correct if every requirement included in the SRS
represents something required in the final system.

 2. Completeness. An SRS is complete when it is documented after:
 (i) The involvement of all types of concerned personnel.
 (ii) Focusing on all problems, goals, and objectives, and not only on functions

and features.
 (iii) Correct definition of scope and boundaries of the software and system.
 3. Unambiguous. An SRS is unambiguous if and only if every requirement

stated has one and only one interpretation. Requirements are often written in
a natural language. The SRS writer has to be especially careful to ensure that
there are no ambiguities. One way to avoid ambiguities is to use some formal
requirements specification language. The major disadvantage of using formal
languages is the large effort required to write an SRS, the high cost of doing
so, and the increased difficulty of reading and understanding formally stated
requirements (particularly by the users and clients).

 4. Verifiable. An SRS is verifiable if and only if there exists some cost-effective
process that can check whether the final product meets the requirements.

 5. Modifiable. An SRS is modifiable if its structure and style are such that any
necessary change can be made easily while preserving completeness and
consistency. The presence of redundancy is a major hindrance to modifiability,
as it can easily lead to errors. For example, assume that a requirement is
stated in two places and that the requirement later needs to be changed. If
only one occurrence of the requirement is modified, the resulting SRS will be
inconsistent.

 6. Traceable. The SRS is traceable if the origin of each of the requirements is clear
and if it facilitates the referencing of each requirement in future development
or enhancement documentation. Two types of traceability are recommended:

 (i) Backward traceability. This depends upon each requirement explicitly
referencing its source in earlier documents.

 (ii) Forward traceability. This depends upon each requirement in the SRS
having a unique name or reference number.

 7. Consistency. Consistency in the SRS is essential to achieve correct results
across the system. This is achieved by:

 (i) The use of standard terms and definitions.
 (ii) The consistent application of business rules in all functionality.

 (iii) The use of a data dictionary.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 79

 (iv) The lack of consistency results in an incorrect SRS and failure in deliverables
to customer.

 8. Testability. An SRS should be written in such a way that it is possible to create
a test plan to confirm whether specifications can be met and requirements can
be delivered. This is achieved by:

 (i) Considering functional and non-functional requirements.

 (ii) Determining features and facilities required for each requirement.

 (iii) Ensuring that ‘users’ and ‘stakeholders’ freeze the requirement.

 9. Clarity. An SRS is clear when it has a single interpretation for the author
(analysis), the user, the end user, the stakeholder, the developer, the tester,
and the customer. This is possible if the language of the SRS is unambiguous.
Clarity can be ascertained after reviewing the SRS by a third party. It can be
enhanced if the SRS includes diagrams, models, and charts.

 10. Feasibility. RDD-SRS needs to be confirmed on technical and operational
feasibility. The SRS often assumes the use of technology and tools based on
the information given by their vendors. It needs to be confirmed whether
the technology is capable enough to deliver what is expected in the SRS. The
operational feasibility must be checked through environment checking. It is
assumed that sources of data, user capability, system culture, work culture,
and other such aspects satisfy the expectation of the developer. These must be
confirmed before development launch.

3.11 ENTITY-RELATIONSHIP DIAGRAM

 The Entity-Relationship (E-R) data model was developed to facilitate database
design by allowing specification of an enterprise schema that represents the overall
logical structure of a database. It is a data-oriented model of a system, whereas a
DFD is a process-oriented model. It has three main components: data entities, their
relationships, and their associated attributes.

 1. Entity. It is the most elementary process of an organization about which data
is to be maintained. Every entity has a unique identity, which distinguishes
it from other entities. An entity type is the description of all entities to which
a common definition and common relationships and attributes apply. It is
represented by a rectangular box with the name of the entity written inside.
For example, invoice object has various elements, such as invoice number,
date, quantity, discount, total-price, etc.

80 SOF T WARE ENGINEERING AND TESTING

 2. Relationship. Entities are connected to each other by relationships. It indicates
how two entities are associated. A diamond notation with the name of the
relationship is represented as written inside.

 The number of entity types that participate in the relationship is called the
degree of the relationship (e.g., customer places order).

 The above two relationships have degree two because they involve two entity
types—customer and orders. The three most common relationships in the E-R
diagram are unary, i.e., degree one, binary, i.e., degree two, and ternary, i.e.,
degree three.

 Binary Relationship

 Cardinality and optionally: The cardinality represents the relationship between two
entities. Consider the one to many relationships between two entities, class and
student. Here, the cardinality of a relationship is the number of instances of entity
student that can be associated with each instance of entity class. This is shown in
Figure 3.11.

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 81

FIGURE 3.11 One to Many Cardinality Relationship

 3. Attribute. Each entity type has a set of attributes associated with it. An attribute
is a property or characteristic of an entity that is of interest to the organization.
It is represented by an oval-shaped box with the name of the attribute written
inside it. The notation for attribute is

3.11.1 Types of Attributes

 1. Simple Attribute. There is no need to sub-divide a simple attribute into
component attributes. For example, if there is no need to refer to the individual
components of an address (zip, street, and so on), then the whole address is
designated as a simple attribute.

 2. Composite Attribute. On the other hand, a composite attribute can be divided
into sub-parts. For example, an attribute name could be structured as a
composite attribute consisting of first_name, middle_initial, and last _name.

 3. Single Valued Attribute. The attribute in our examples all have a single value
for a particular entity. For instance, the loan_number attribute for a specific
loan entity refers to only one loan number. Such attributes are said to be single
valued.

 4. Multivalued Attribute. There may be instances where an attribute has a set of
values for a specific entity. Consider an employee entity set with the attribute
phone_number. An employee may have zero, one, or several phone numbers,
and different employees may have different numbers of phones. This type of
attribute is said to be multi-valued.

 5. Derived Attribute. The value for this type of attribute can be derived from the
values of other related attributes or entities. For instance, let us say that the
customer entity set has an attribute loans_ held, which represents how many
loans a customer has from the bank. We can derive the value for this attribute
by counting the number of loan entities associated with that customer.

82 SOF T WARE ENGINEERING AND TESTING

 The minimum cardinality of a relationship is the minimum number of
instances of the second entity (student, in this case) with each instance of the
first entity (class, in this case).

 In a situation where there can be no instance of the second entity, then it is called
an optional relationship. For example, if a college does not offer a particular
course then it will be considered optional with respect to the relationship
‘offers.’ This relationship is shown in Figure 3.12.

FIGURE 3.12 Minimum Cardinality Relationship

 When the minimum cardinality of a relationship is one, then the second entity
is called a mandatory participant in the relationship. The maximum cardinality
is the maximum number of instances of the second entity. The modified E-R
diagram is shown in Figure 3.13.

FIGURE 3.13 Modified E-R Diagram Representing Cardinalities

 The relationship cardinalities are shown in Figure 3.14.

FIGURE 3.14 Relationship Cardinalities

 INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION 83

EXERCISES

 1. What does the term requirements mean? Explain the process of determining the
requirements for a software-based system.

 2. Discuss the significance and use of requirement engineering. What are the problems in
the formulation of requirements?

 3. What are the crucial process steps of requirement engineering? Discuss with the help
of a diagram.

 4. Describe the various steps of requirements engineering. Is it essential to follow these
steps?

 5. Explain the importance of requirements. How many types of requirements are possible
and why?

 6. What is requirements elicitation? Discuss any two techniques in detail.
 7. List the requirements elicitation techniques. Which one is most popular and why?
 8. Explain requirements elicitation and the analysis process model with the help of a

suitable diagram.
 9. What is requirements management? What are the steps of planning in requirement

management?
 10. What is the traceability of a requirement? Why is traceability important?
 11. Explain why a many to many relationship is to be modeled as an associative entity.
 12. Explain the relationship between minimum cardinality and optional and mandatory

participation.
 13. Define:
 (i) Data-flow diagram
 (ii) Decision table
 (iii) E-R diagram
 14. What are the similarities between data-flow and E-R diagrams?
 15. Draw the E-R diagram for a hotel reception desk management.
 16. Draw a DFD for borrowing a book in a library if: “A borrower can borrow a book

if it is available, otherwise he can reserve the book if he so wishes. He can borrow a
maximum of three books.”

 17. What is an SRS? What are the components of an SRS?
 18. Discuss the characteristics of a good SRS document.
 19. What is SRS validation?
 20. List the seven desirable characteristics of a good Software Requirements Specification

(SRS) document.
 21. Discuss the organization of an SRS. List some important reasons for this organization.
 22. Define information modeling.
 23. What is a DFD? Explain some of the symbols used to draw a DFD.
 24. State some of the advantages and disadvantages of data-flow diagrams.
 25. Explain the IEEE standards for an SRS.
 26. According to IEEE standards what are several specific benefits a good SRS should

provide?

4 SOF T WARE ENGINEERING AND TESTING

Chapter 4
SOF T WARE RELIABILIT Y AND

QUALITY ASSURANCE

4.1 VERIFICATION AND VALIDATION

 Verification and validation (V and V) is the name given to the checking and
analysis process that ensures that software conforms to its specifications
and meets the needs of the customers who are paying for that software.

Variation and validation is a whole life-cycle process. It starts with requirements
reviews and continues through design reviews and code inspection to product
testing. There should be V and V activities at each stage of the software-
development process. These activities ensure that the results of process activities
are as specified.

 Verification and validation is not the same thing although they are easily
confused. The difference between them is succinctly expressed by Boehm (1979):

 � ‘Validation: Are we building the right product?’

 � ‘Verification: Are we building the product right?’

 These definitions tell us that the role of verification involves checking that the
software conforms to its specifications. You should check that the system meets its

85

86 SOF T WARE ENGINEERING AND TESTING

specified functional and non-functional requirements. Validation, however, is a
more general process; you should ensure that the software meets the expectations
of the customer. It goes beyond checking conformance of the system to its
specifications to showing that the software does what the customer expects.

 Within the V and V process, two techniques of system checking and analysis
may be used.

 1. Software inspections. Software inspection analyzes and checks system
representations, such as the requirements document, design diagrams,
and the program source code. They may be applied at all stages of the
process. Inspections may be supplemented by some automatic analysis of
the source text of a system or associated documents. Software inspections
and automated analyzes are static V and V techniques as they do not
require the system to be executed.

 2. Software testing. Software testing involves executing an implementation
of the software with test data and examining the outputs of the software
and its operational behavior to check that it is performing as required.
Testing is a dynamic technique of verification and validation because it
works with an executable representation of the system.

4.1.1 Verification

 Verification is the process of determining whether the output of one phase of software
development confirms to that of its previous phase.

OR

 Verification involves checking of functional and non-functional requirements to ensure
that the software confirms to its specifications.

4.1.2 Validation

 Validation is the process of determining whether a fully developed system confirms to its
requirement specifications.

OR

 Validation is an analysis process that is done after checking conformance of the system
to its specifications.

 Thus, the goal of the verification and validation process is to establish
confidence in the customer that the software system is ‘fit for the customer.’ It
doesn’t mean that the software system is free from errors.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 87

4.2 SOFTWARE QUALITY ASSURANCE

 The aim of the Software Quality Assurance (SQA) process is to develop a high-
quality software product. Software Quality Assurance is a set of activities designed to
evaluate the process by which software is developed and/or maintained.

 Quality assurance is a planned and systematic pattern of all actions necessary to
provide adequate confidence that the item or product conforms to established technical
requirements (IEE83).

 The purpose of a software quality assurance group is to provide assurance
that the procedures, tools, and techniques used during product development and
modification are adequate to provide the desired level of confidence in the work
products.

 The process of the SQA:

 1. Defines the requirements for software controlled system fault/failure
detection, isolation, and recovery;

 2. Reviews the software-development processes and products for software-
error prevention and/or controlled change to reduced functionality states;
and

 3. Defines the process for measuring and analyzing defects as well as
reliability and maintainability factors.

4.2.1 SQA Objectives

 The various objectives of SQA are as follows:

 � Quality management approach.

 � Measurement and reporting mechanisms.

 � Effective software-engineering technology.

 � A procedure to assure compliance with software-development standards
where applicable.

 � A multi-testing strategy is drawn.

 � Formal technical reviews that are applied throughout the software process.

4.2.2 SQA Goals

 The major goals of SQA are as follows:

 � SQA activities are planned.

 � Non-compliance issues that cannot be resolved within the software project are
addressed by senior management.

88 SOF T WARE ENGINEERING AND TESTING

 � Adherence of software products and activities to the applicable standards,
procedures, and requirements is verified objectively.

 � Affected groups and individuals are informed of SQA activities and results.

4.2.3 SQA Plan

 An SQA plan defines the quality processes and procedures that should be used.
This involves selecting and instantiating standards for products and processes and
defining the required quality attributes of the system.

 The SQA plan provides a roadmap for instituting software quality assurance.
Developed by the SQA group (or the software team if a SQA group does not exist),
the plan serves as a template for SQA activities that are instituted for each software
project.

 The quality plan should select those organizational standards that are
appropriate to a particular product and development process. New standards may
have to be defined if the project uses new methods and tools.

 An outline structure for a quality plan includes:

 1. Product introduction: A description of the product, its intended markets,
and the quality expectations for the product.

 2. Product plans: The critical release dates and responsibilities for the product
along with plans for distribution and product servicing.

 3. Process descriptions: The development and service processes that should be
used for product development and management.

 4. Quality goals: The quality goals and plans for the product including an
identification and justification of critical product quality attributes.

 5. Risks and risk management: The key risks that might affect product quality
and the actions to address these risks.

 Preparation of a Software Quality Assurance Plan for each software project
is a primary responsibility of the software quality assurance group. Topics in a
Software Quality Assurance Plan include:

 � Purpose-scope of plan;

 � List of references to other documents;

 � Management, including organization, tasks, and responsibilities;

 � Documentation to be produced;

 � Standards, practices, and conventions;

 � Reviews and audits;

 � Testing;

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 89

 � Problem reporting and corrective action;

 � Tools, techniques, and methodologies;

 � Code, media, and supplier control;

 � Records collection, maintenance, and retention;

 � Training;

 � Risk management—the methods of risk management that are to be used.

4.3 SOFTWARE QUALITY

 We examine the qualities that are pertinent to software products and software
production processes. These qualities will become our goals in the practice of
software engineering.

 The basic goal of software engineering is to produce quality software. Software
quality is a broad and important field of software engineering addressed by several
standardization bodies, such as ISO, IEEE, ANSI, etc.

4.3.1 Definition of Software Quality

 Software quality is the:

 Conformance to explicitly stated functional and performance requirements, explicitly
documented development standards, and implicit characteristics that are expected of all
professionally developed software.

 The above definition emphasizes three important points:

 1. Software requirements are the foundation from which quality is measured.
Lack of conformance to requirements is lack of quality.

 2. Specified standards define a set of development criteria that guide the
manner in which software is engineered. If the criteria are not followed,
lack of quality will almost surely result.

 3. There is a set of implicit requirements that often goes unmentioned. If
software conforms to its explicit requirements but fails to meet implicit
requirements, software quality is suspect.

4.3.2 Classification of Software Qualities

 There are many desirable software qualities. Some of these apply both to the
product and to the process used to produce the product. The user wants the
software products to be reliable, efficient, and easy to use. The producer of the
software wants it to be verifiable, maintainable, portable, and extensible. The

90 SOF T WARE ENGINEERING AND TESTING

manager of the software project wants the process of software development to be
productive and easy to control.

 In this section, we consider two different classifications of software-related
qualities: internal versus external and product versus process.

 External versus Internal Qualities

 We can divide software qualities into external and internal qualities. The external
qualities are visible to the users of the system: the internal qualities are those that
concern the developers of the system. In general, users of the software only care
about the external qualities, but it is the internal qualities, which deal largely with
the structure of the software, that help developers achieve the external qualities.
For example, the internal quality of verifiability is necessary for achieving the
external quality of reliability. In many cases, however, the qualities are related
closely and the distinction between internal and external is not sharp.

 Product and Process Qualities

 We use a process to produce the software product. We can also attribute some
qualities to the process, although process qualities often are closely related to
product qualities. For example, if the process requires careful planning of system
test data before any design and development of the system starts, products
reliability will increase. Some qualities, such as efficiency, apply both to the product
and to the process.

 It is interesting to examine the word product here. It usually refers to what is
delivered to the customer. Even though this is an acceptable definition from the
customer’s perspective, it is not adequate for the developer who requires a general
definition of a software product that encompasses not only the object code and the
user manual that are delivered to the customer but also the requirements, design,
source code, test data, etc. In fact, it is possible to deliver different subsets of the
same product to different customers.

4.3.3 Software Quality Attributes

 Software quality is comprised of six main attributes (called characteristics) as
shown in Figure 4.1. These six attributes have detailed characteristics which are
considered the basic ones and which can and should be measured using suitable
metrics. At the top level, for software products, these attributes can be defined as
follows:

 1. Functionality: The capability to provide functions which meet stated and
implied needs when the software is used.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 91

FIGURE 4.1 Software Quality Attributes

 2. Reliability: The capability to maintain a specified level of performance.

 3. Usability: The capability to be understood, learned, and used.

 4. Efficiency: The capability to provide appropriate performance relative to the
amount of resources used.

 5. Maintainability: The capability to be modified for purposes of making
corrections, improvements, or adaptation.

 6. Portability: The capability to be adapted for different specified environments
without applying actions or means other than those provided for this purpose
in the product.

4.3.4 McCall’s Quality Factors

 McCall, Richards, and Walters [MCC77] propose a useful categorization of factors
that affect software quality. These software quality factors, shown in Figure 4.2,
focus on three important aspects of a software product: its operational charac-
teristics, its ability to undergo change, and its adaptability to new environments.

FIGURE 4.2 McCall’s Software Quality Factors

 One attempt to identify specific product qualities that are appropriate to
software has been that of James A. McCall. He grouped software qualities into
three sets of quality factors:

92 SOF T WARE ENGINEERING AND TESTING

 � Product operation qualities;

 � Product revision qualities; and

 � Product transition qualities.

 The definitions below are those given by McCall, but the reader may come
across others. These are not all inclusive: sometimes other qualities might be of
interest.

 Product Operation Quality Factors

 � Correctness: The extent to which a program satisfies its specifications and
fulfills the user’s objectives.

 � Reliability: The extent to which a program can be expected to perform its
intended function with required precision.

 � Efficiency: The amount of computer resources required by the software.

 � Integrity: The extent to which access to software or data by unauthorized
persons can be controlled.

 � Usability: The effort required for learning, operating, preparing input, and
interpreting output.

 Product Revision Quality Factors

 � Maintainability: The effort required to locate and fix an error in an operational
program.

 � Testability: The effort required to test a program to ensure it performs its
intended function.

 � Flexibility: The efforts required to modify an operational program.

 Product Transition Quality Factors

 � Portability: The effort required for transferring a program from one hardware
configuration and software system environment to another.

 � Reusability: The extent to which a program can be used in other applications.

 � Interoperability: The efforts required to couple one system to another.

4.3.5 Software Quality Criteria

 The software quality criteria of various quality factors are depicted in Table 4.1.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 93

TABLE 4.1 Software Quality Criteria

Quality Factor Software Quality Criteria

Correctness Traceability, consistency, completeness

Reliability Error tolerance, consistency, accuracy, simplicity

Efficiency Execution efficiency, storage efficiency

Integrity Access control, access audit

Usability Operability, training, communicativeness, input/output volume,
input/output area

Maintainability Consistency, simplicity, conciseness, modularity, self-descriptiveness

Testability Simplicity, modularity, instrumentation, self-descriptiveness

Flexibility Modularity, generality, expandability, self-descriptiveness

Portability Modularity, self-descriptiveness, machine independence, software
system independence

Reusability Generality, modularity, software system independence, machine
independence, self-descriptiveness

Interoperability Modularity, communications commonality, data commonality

4.3.6 Representative Qualities

 In this section, we present the most important qualities of software products and
processes.

 1. Correctness. A program is functionally correct if it behaves according to the
specification of the functions it should provide (called functional requirements
specifications). It is common simply to use the term “correct” rather than
“functionally correct”; similarly, in this context, the term “specifications”
implies “functional requirements specification.” We will follow this convention
when the context is clear.

 The definition of correctness assumes that a specification of the system is
available and that it is possible to determine unambiguously whether or not
a program meets the specifications. With most current software systems, no
such specification exists. If a specification does exist, it is usually written in an
informal style using natural language.

 2. Reliability. Informally, software is reliable if the user can depend on it. The
specialized literature on software reliability defines reliability in terms of
statistical behavior—the probability that the software will operate as expected
over a specified time interval.

94 SOF T WARE ENGINEERING AND TESTING

 Figure 4.3 illustrates the relationship between reliability and correctness. This
figure shows that the set of all reliable programs includes the set of correct
programs, but not vice versa.

FIGURE 4.3 Relationship Between Correctness and

Reliability in the Ideal Case

 3. Robustness. A program is robust if it behaves “reasonably,” even in
circumstances that were not anticipated in the requirements specification—
for example, when it encounters incorrect input data or some hardware
malfunction (say, disk crash).

 Obviously, robustness is a difficult-to-define quality; after all, if we could state
precisely what we should do to make an application robust, we would be able
to specify its “reasonable” behavior completely. The robustness would become
equivalent to correctness (or reliability in the sense of Figure 4.3).

 4. Performance. Performance is important because it affects the usability of the
system. If a software system is too slow, it reduces the productivity of the
users, possibly to the point of not meeting their needs. If a software system
uses too much disk space, it may be too expensive to run. If a software system
uses too much memory, it may affect the other applications that are run on the
same system, or it may run slowly while the operating system tries to balance
the memory usage of the different applications. Performance is also important
because it affects the scalability of a software system.

 5 Verifiability. A software system is verifiable if its properties can be verified
easily. For example, it is important to be able to verify the correctness or the
performance of a software system.

 Verifiability is usually an internal quality, although it sometimes becomes an
external quality also. For example, in many security-critical applications, the
customer requires the verifiability of certain properties. The highest level of
the security standard for a trusted computer system requires the verifiability
of the operating system kernel.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 95

 6. Repairability. A software system is repairable if it allows the correction of
its defects with a limited amount of work. In many engineering products,
repairability is a major design goal. For example, automobile engines are built
with the parts that are most likely to fail as the most accessible. In computer
hardware engineering, there is a subspecialty called Repairability, Availability,
and Serviceability (RAS).

 7. Evolvability. Like other engineering products, software products are modified
over time to provide new functions or to change existing functions. Indeed,
the fact that software is so malleable makes modifications extremely easy to
apply to an implementation.

 8. Understandability. Some software systems are easier to understand than
others. Of course, some tasks are inherently more complex than others.

 Given tasks of inherently similar difficulty, we can follow certain guidelines
to produce more understandable designs and to write more understandable
programs. For example, abstraction and modularity enhance a system’s under-
standability.

 9. Interoperability. “Interoperability” refers to the ability of a system to coexist
and cooperate with other systems.

 With interoperability, a vendor can produce different products and allow
the user to combine them if necessary. This makes it easier for the vendor
to produce the products, and it gives the user more freedom in exactly what
functions to pay for and to combine. Interoperability can be achieved through
standardization of interfaces.

 10. Productivity. Productivity is a quality of the software-production process; it
measures the efficiency of the process and, as we said before, is the performance
quality applied to the process. An efficient process results in faster delivery of
the product.

 Productivity offers many trade-offs in the choice of a process. For example, a
process that requires specialization of individual team members may lead to
productivity in producing a certain product, but not in producing a variety of
products. Software reuse is a technique that leads to the overall productivity of
an organization that is involved in developing many products, but developing
reusable modules is harder than developing modules for one’s own use, thus
reducing the productivity of the group that is developing reusable modules as
part of their product development.

 11. Timeliness. Timeliness is a process-related quality that refers to the ability to
deliver a product on time.

96 SOF T WARE ENGINEERING AND TESTING

 Timeliness requires careful scheduling, accurate estimation of work, and
clearly specified and verifiable milestones.

 12. Visibility. A software-development process is visible if all of its steps and its
current status are documented clearly. Another term used to characterize this
property is transparency. The idea is that the steps and the status of the project
are available and easily accessible for external examination.

4.3.7 Importance of Software Quality

 We would expect quality to be a concern of all producers of goods and services.
However, the special characteristics of software, and in particular, its intangibility
and complexity, make special demands.

 1. Increasing Criticality of Software. The final customer or user is naturally
anxious about the general quality of software, especially its reliability. This
is increasingly the case as organizations become more dependent on their
computer systems and software is used more and more in areas which are
safety critical; for example, to control aircraft.

 2. The Intangibility of Software. This makes it difficult to know whether a
particular task in a project has been completed satisfactorily. The results of
these tasks can be made tangible by demanding that the developers produce
‘deliverables’ that can be examined for quality.

 3. Accumulating Errors During Software Development. As computer system
development is made up of a number of steps where the output from one
step is the input to the next, the errors in the earlier deliverables will be added
to those in the later steps leading to an accumulating detrimental effect, and
generally, the later in a project that an error is found the more expensive it will
be to fix. In addition, because the number of errors in the system is unknown
the debugging phases of a project are particularly difficult to control.

 For these reasons quality management is an essential part of effective overall
project management.

4.4 CAPABILITY MATURITY MODEL (SEI-CMM)

 SEI-CMM stands for Software Engineering Institute Capability Maturity Model.
The CMM was developed by the Software Engineering Institute (SEI) of the
Carnegie Mellon University in the USA, which is engaged in a long-term program
of software-process improvement.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 97

 It is a model that helps in judging the maturity of a software process of an
organization. It also helps to identify the main process that will help in increasing
the maturity of these processes. It has become a standard for assessing and
improving software processes.

 SEI-CMM can be used in two ways: capability evaluation and software-process
assessment. Capability evaluation and software-process assessment differ in
motivation, objective, and the final use of the result. Capability evaluation provides
a way to assess the software-process capability of an organization. The results of
capability evaluation indicate the likely contractor performance if the contractor
is awarded a work. Therefore, the results of the software-process capability
assessment can be used to select a contractor. On the other hand, software-process
assessment is used by an organization with the objective to improve its process
capability. Thus, this type of assessment is for purely internal use.

 Five levels of process maturing have been proposed for the software industry
by SEI-CMM, which indicate the sophistication and quality of their software
production practices. These levels are defined as follows:

 1. Level 1 (Initial). The software process is adhoc, and even chaotic at time.
The organization whose success depends on individual effort and whose
processes are not defined and documented come under this level.

 Organizations at this level can benefit most by improving project
management, quality assurance, and change control.

 2. Level 2 (Repeatable). Here basic management practices, such as tracking
costs, schedules, and functionality are established but not the procedures
for doing it. Here, the efforts done previously for the success of a project
may repeat.

 Some of the characteristics of a process at this level are: project commitments
are realistic and based on past experience with similar projects, costs and
schedules are tracked and problems resolved when they arise, formal
configuration control mechanisms are in place, and software project
standards are defined and followed.

 3. Level 3 (Defined). The organization-wide software process includes
management and engineering procedures. These procedures are well-
defined, documented, standardized, and integrated. All projects make use
of the documented and approved version of the organization process for
software development and maintenance. But the process and practices
are not analyzed quantitatively. In this process both the development and
management processes are formal. ISO 9000 aims at achieving this level.

98 SOF T WARE ENGINEERING AND TESTING

 4. Level 4 (Managed). At this level, the focus is on software metrics. Two
types of metrics are collected. Product metrics measure the characteristics
of the product being developed, such as its size, reliability, time complexity,
understandability, etc. Process metrics reflect the effectiveness of the
process being used, such as the average defect correction time, productivity,
the average number of defects found per hour of inspection, the average
number of failures detected during testing per LOC, and so forth. The
process metrics are used to check if a project performed satisfactorily.
Thus, the results of process measurements are used to evaluate project
performance rather than to improve the process.

 Software processes and products are quantitatively understood, measured,
and controlled using detailed procedures.

 5. Level 5 (Optimized). At this level, an organization is committed to
continuous process improvement. Process improvement is budgeted
and planned and is an integral part of the organization’s process. The
organizations have the means to identify weaknesses and strengthen the
process proactively, with the goal of preventing the occurrence of defects.
Best software-engineering and management practices are used throughout
the organization.

FIGURE 4.4 Software Engineering Institute Levels of Maturity

 Except for Level 1, each maturity level is characterized by several Key Process
Areas (KPAs) that indicate the areas an organization should focus on to improve
its software process at the next level.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 99

 This is shown in Table 4.2:

TABLE 4.2

MM level Characteristics Focus Key Process Areas

1 (Initial) Chaotic, unrepeatable,
high risk of non-
performance

Competent
people

Not applicable

2 (Repeatable) Methodical in umbrella
activities and processes.
Performance is repeated
but not improved

Project man-
agement

Configuration manage-
ment, quality assurance,
sub-contract management,
project tracking and over-
sight, project planning

3 (Defined) Improved performance
in cost, schedule quality,
and risk management

Definition of
processes

Peer reviews, inter-group
coordination, software
product engineering, train-
ing program, integrated
software management,
and organization process
definition

4 (Managed) Learns from project ex-
perience, and continuous
performance improve-
ment in all key areas of
the project

Product and
process quality

Quality management, pro-
cess measurement, and
analysis

5 (Optimized) All-around performance,
improvement through
learning. High per-
formance in all quality
attributes and risk
management through
RMMM

C o n t i n u o u s
process im-
provement

Process change mana-
gement, technology
innovation, and defect
prevention

4.5 INTERNATIONAL STANDARD ORGANIZATION (ISO)

4.5.1 Introduction to the ISO

 The International Organization for Standardization (ISO) is a group of worldwide
federations of national standards bodies from some 100 countries. The ISO is a
non-governmental organization established in 1947.

100 SOF T WARE ENGINEERING AND TESTING

 The ISO-9000 standard specifies quality-assurance elements in generic terms,
which can be applied to any business, regardless of the product or services being
offered. In order to register for one of the quality-assurance system models
contained in the ISO-9000, third-party auditors examine an organization’s quality
system and operations for compliance to the standard and for effective operations.
Upon successful audit, the organization receives a certificate from a registered body
represented by the auditors. Thereafter, semi-annual audits ensure conformance to
the standard.

 The ISO-9000 standard views an organization as a set of interrelated processes.
In order to pass the criteria for ISO-9000 compliance, the processes must address the
identified areas, and document and practice them. When a process is documented,
it is better understood, controlled, and improved. However, the ISO-9000 standard
does not specify how an organization should implement its quality system.
Therefore, the biggest challenge is to design and implement a quality-assurance
system that meets the standard and gels well with the products/services of the
organization.

 The ISO-9001 is a quality-assurance standard that is specific to software
engineering. It specifies 20 standards with which an organization must comply for
an effective implementation of the quality assurance system.

 The ISO-9000 series of standards is a set of documents dealing with quality
systems that can be used for quality assurance purposes. The ISO-9000 series is not
just a software standard. It is a series of five related standards that are applicable to
a wide variety of industrial activities, including design/development, production,
installation, and servicing.

4.5.2 ISO-9000 Mission

 The mission of the ISO is to promote the development of standardization and
related activities to facilitate the international exchange of goods and services,
and to develop cooperation in the spheres of intellectual, scientific, technological,
and economic activity. The ISO published its ISO-9000 standard in 1988. ISO-9000
consists of three standards for external quality assurance. These are ISO-9001, ISO-
9002, and ISO-9003.

 1. ISO-9001. The ISO-9001 is an international quality-management system. The
ISO-9001 is mainly related to the software industry. It lays down the standards
for designing, developing, servicing, and producing a standard quality of
goods. It is also applicable to most software-development organizations.

 2. ISO-9002. The ISO-9002 is basically related to manufacturing only and is
silent on designing issues. Examples of this category of industries include
steel- and car-manufacturing industries that buy the product and plant

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 101

designs from external sources and are involved in only manufacturing those
products. Therefore, the ISO-9002 is not applicable to software-development
organizations.

 3. ISO-9003. The ISO-9003 standard applies to the service industry. The
organizations who are involved in only installation of products, services, and
testing of products are eligible for the ISO-9003 certification.

4.5.3 Why is ISO certification required by the software industry?

 There are several reasons why the software industry must get an ISO certification.
Some of the important reasons include:

 � It is sign of customer confidence. This certification has become a standard for
international bidding.

 � It is a motivating factor for business organizations.

 � It makes processes more focused, efficient, and cost-effective.

 � It helps in designing high-quality repeatable software products.

 � It highlights weaknesses and suggests corrective measures for improvements.

 � It facilitates the development of optimal processes and total quality measure-
ment.

 � It emphasizes the need for proper documentation.

4.5.4 How does an organization obtain ISO-9000 certification?

 An organization intending to obtain ISO-9000 certification applies to a ISO-9000
registrar for registration. The ISO-9000 registration process consists of the following
stages:

 1. Application. Once an organization decides to go for ISO-9000 certification, it
applies to a registrar for registration.

 2. Pre-assessment. During this stage, the registrar makes a rough assessment of
the organization.

 3. Document Review and Adequacy of Audit. During this stage, the registrar
reviews the documents submitted by the organization and makes suggestions
for possible improvements.

 4. Compliance Audit. During this stage, the registrar checks whether the
suggestions made by it during review have been complied by the organization
or not.

 5. Registration. The registrar awards the ISO-9000 certificate after successful
completion of all previous phases.

102 SOF T WARE ENGINEERING AND TESTING

 6. Continued Surveillance. The registrar continues to monitor the organization,
though only periodically.

4.5.5 Benefits of ISO-9000 Certification

 Benefits of ISO-9000 certification include:

 1. Continuous Improvement. Business ISO-9000 certification forces an
organization to focus on “how they do business.” Each procedure and work
instruction must be documented and thus becomes the springboard for
continuous improvement.

 2. Eliminate Variation. Documented processes are the basis for repetition
and help eliminate variation within the process. As variation is eliminated,
efficiency improves. As efficiency improves, the cost of quality is reduced.

 3. Higher Real and Perceived Quality

 (i) With the development of solid corrective and preventative measures,
permanent, company-wide solutions to quality problems are found.

 (ii) This results in higher quality.

 4. Boost Employee Morale. Employee morale is increased as they are asked to
take control of their processes and document their work processes.

 5. Improved Customer Satisfaction. Customer satisfaction, and more importantly
customer loyalty, grows as a company transforms from a reactive organization
to a proactive, preventative organization. It becomes a company people want
to do business with.

 6. Increased Employee Participation. Reduced problems resulting from increased
employee participation, involvement, awareness, and systematic employee
training.

 7. Better Product and Services. Better products and services result from
continuous improvement processes.

 8. Greater Quality Assurance. Fosters the understanding that quality, in and of
itself, is not limited to a quality department but is everyone’s responsibility.

 9. Improved Profit Levels. Improved profit levels result as productivity improves
and rework costs are reduced.

 10. Improved Communication. Improved communications both internally and
externally which improves quality, efficiency, on-time delivery, and customer/
supplier relations.

 11. Reduced Cost. ISO standards result in reduced costs of the product.

 12. Competitive Edge. By offering higher customer services, ISO-9000 standards
add a competitive edge.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 103

4.5.6 Limitations of ISO-9000 Certification

 The limitations of ISO-9000 certification include:

 � ISO-9000 does not provide any guidelines for defining an appropriate
process.

 � ISO-9000 certification process is not foolproof and no international accrediting
agency exists.

 � ISO-9000 does not automatically lead to continuous process improvement, i.e.,
it does not automatically lead to TQM.

4.5.7 Uses of ISO

 ISO certification is used as a reference model for a contract between the external
independent parties. It must be remembered that ISO certification does not
guarantee a high-quality product. It focuses mainly on the processes. ISO is now
being used as the standard and basis of evaluation for international bidding. The
ISO-9000 specifies a set of guidelines for repeatable organizations. A repeatable
organization is one where the production process is person-independent.

4.5.8 Salient Features of ISO-9001 Requirements

 The salient features of ISO-9001 requirements include:

 � All documents concerned with the development of a software product should
be properly managed, authorized, and controlled.

 � Proper plans should be prepared and then progress against these plans should
be monitored.

 � Important documents should be independently checked and reviewed for
effectiveness and correctness.

 � The product should be tested against its specifications.

4.5.9 ISO-9126

 Over the years, various lists of software quality characteristics have been put
forward, such as those of McCall, described previously and of Boehm. A difficulty
has been the lack of agreed definitions of the qualities of good software. The term
‘maintainability’ has been used, for example, to refer to the ease with which an
error can be located and corrected in a piece of software, and also in a wider sense
to include the ease of making any changes. For some, ‘robustness’ has meant the
software’s tolerance of incorrect input, while for others it has meant the ability
to change program code without introducing unexpected errors. The ISO-9126
standard was published in 1991 to tackle the question of the definition of software

104 SOF T WARE ENGINEERING AND TESTING

quality. This 13-page document was designed as a foundation upon which further,
more detailed, standards could be built.

 ISO-9126 identifies six software quality characteristics:

 � Functionality, which covers the functions that a software product provides
to satisfy user needs;

 � Reliability, which relates to the capability of the software to maintain its
level of performance;

 � Usability, which relates to the effort needed to use the software;

 � Efficiency, which relates to the physical resources used when the software
is executed;

 � Maintainability, which relates to the effort needed to make changes to the
software;

 � Portability, which relates to the ability of the software to be transferred to
a different environment.

 The ISO-9126 has sub-characteristics for each of the primary characteristics.
It is indicative of the difficulties of gaining widespread agreement that these sub-
characteristics are outside the main standards and are provided for ‘information
only.’ They are useful as they clarify what is meant by the main characteristics.

 Characteristic Sub-characteristics

 Functionality Suitability

 Accuracy

 Interoperability

 Compliance

 Security

 Compliance refers to the degree to which the software adheres to
application-related standards or legal requirements. Typically these are auditing
requirements.

 Interoperability and security are good illustrations of the efforts of the ISO-
9126 to clarify terminology. ‘Interoperability’ refers to the ability of the software
to interact with other systems. The framers of the ISO-9126 have chosen this word
rather than compatibility because the latter causes confusion with the characteristic
referred to by the ISO-9126 as ‘replace ability’ (see below).

 Characteristic Sub-characteristics

 Reliability Maturity

 Fault tolerance

 Recoverability

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 105

 Maturity refers to the frequency of failure due to faults in a software product,
the implication being that the more the software has been used, the more faults will
have been uncovered and removed. It is also interesting to note that recoverability
has been clearly distinguished from security which describes the control of access
to a system.

 Characteristic Sub-characteristics

 Usability Understandability

 Learnability

 Operability

 Understandability is a pretty clear quality to grasp, although the definition
“attributes that bear on the users’ efforts for recognizing the logical concept and
its applicability” in our view actually makes it less clear!

 Note how learnability is distinguished from operability. A software tool
could be easy to learn but time-consuming to use because, perhaps, it uses a large
number of nested menus. This might be fine for a package used intermittently, but
not where the system is used for many hours each day. In this case, learnability has
been incorporated at the expense of operability.

 Characteristics Sub-characteristics

 Efficiency Time behavior

 Resource behavior

 Maintainability Analyzability

 Changeability

 Stability

 Testability

 Analyzability is the quality that McCall called diagnosability, the ease with
which the cause of a failure can be determined. Changeability is the quality that
others have called flexibility: the latter name is perhaps a better one as changeability
has a slightly different connotation in plain English—it implies that the suppliers
of the software are always changing it!

 Stability, on the other hand, does not mean that the software never changes: It
means that there is a low risk of a modification to the software having unexpected
effects.

 Characteristic Sub-characteristics

 Portability Adaptability

 Installability

 Conformance

 Replaceability

106 SOF T WARE ENGINEERING AND TESTING

 Conformance, as distinguished from compliance, relates to those standards
that have a bearing on portability. The use of a standard programming language
common to many software/hardware environments would be an example of
conformance. Replaceability refers to the factors that give ‘upwards compatibility’
between old software components and the new ones. Downwards compatibility is
specifically excluded from the definition.

 The ISO-9126 provides guidelines for the use of the quality characteristics.
Variation in the importance of different quality characteristics depending on
the type of product is stressed. Thus, reliability will be of particular concern
with safety critical systems while efficiency will be important for some real-time
systems. For interactive end-user systems, the key quality might be usability. Once
the requirements for the software product have been established the following
steps are suggested:

 � Quality metrics selection

 � Ratings level definition

 � Assessment criteria definition

4.6 COMPARISON OF ISO-9000 CERTIFICATION AND THE
SEI-CMM

 Comparison of some of the key characteristics of ISO-9000 certification and the
SEI-CMM model are as follows:

 � The emphasis of the SEI-CMM is on continuous process improvement,
whereas the ISO-9000 addresses the minimum criteria for an acceptable quality
system.

 � The Capability Maturity Model (CMM) is a five-level framework for measuring
software-engineering practices, as they relate to a process. On the other hand
the ISO-9000 defines a minimum level of generic attributes for a quality-
management program.

 � The ISO-9000 is awarded by an international standard body. Therefore, ISO-
9000 certification can be quoted by an organization in official documents, in
communication with external parties, and in tender quotations. However, SEI-
CMM assessment is purely for internal use.

 � The ISO-9000 standards were basically designed to audit manufacturing/
service organizations, whereas the CMM was developed specifically for the
software industry and thus addresses several issues specific to the software
industry.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 107

 � The SEI-CMM focuses strictly on software, while the ISO-9000 has a much
wider scope: hardware, software, processed materials, and services.

 � The SEI-CMM model provides a list of key process areas (KPAs) on which
an organization at any maturity level needs to concentrate to take it from
one maturity level to the next. Thus, it provides a way for achieving gradual
quality improvement.

 � The SEI-CMM model aims for achieving Total Quality Management (TQM),
which is beyond quality assurance, whereas the ISO-9000 aims at Level 3
(defined level) of the SEI-CMM model.

 � The ISO-9000 requires that procedures for handling, storage, packaging,
and delivery be established and maintained, while replication, delivery, and
installation are not covered in the SEI-CMM.

 � The ISO-9000 requires that the product be identified and traceable during all
stages of production, delivery, and installation while the SEI-CMM covers this
clause primarily in software-configuration management.

4.7 RELIABILITY ISSUES

4.7.1 Software Reliability

 Software reliability is defined as the probability of failure-free operation of a computer
program in a specified environment for a specified time.

OR

 Reliability of a software product essentially denotes its trustworthiness or dependability.

OR

 Reliability of a software product can also be defined as the probability of the product
working “correctly” over a given period of time.

 The expected curve for software is given in Figure 4.5.

FIGURE 4.5 Software Reliability Curve (Failure Rate Versus Time)

108 SOF T WARE ENGINEERING AND TESTING

 Software may be retired only if it becomes obsolete. Some of the contributing
factors are given below:

 � Change in environment

 � Change in infrastructure/technology

 � Major change in requirements

 � Increase in complexity

 � Extremely difficult to maintain

 � Deterioration in structure of the code

 � Slow execution speed

 � Poor graphical user interfaces

4.7.2 Software-Reliability Specifications

 Reliability is a complex concept, which should always be considered at the system
level rather than the individual component level. Because the components in a
system are interdependent, a failure in one component can be propagated through
the system and affect the operation of other components. In a computer-based
system, you have to consider three dimensions when specifying the overall system
reliability:

 1. Hardware Reliability. What is the probability of a hardware component failing
and how long does it take to repair that component?

 2. Software Reliability. How likely is it that a software component will produce
an incorrect output? Software failures are different from hardware failures in
that software does not wear out. It can continue operating correctly after an
incorrect result has been produced.

 3. Operator Reliability. How likely is it that the operator of a system will make
an error?

 The reliability of a system depends upon a number of factors rather than the
sum of all the probabilities (failure probabilities of each factor).

 PS = PA + PR + + PN,

 where

 PS = Probability of system failure

 PA = Probability of component A failure

 PB = Probability of component B failure

 PN = Probability of component N failure

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 109

 As the number of factors increase, the overall probability of system failure
increases.

4.7.3 Reliability Terminologies

TABLE 4.3 Reliability Terminologies

Term Description

System failure An event that occurs at some point in time when the system does
not deliver a service as expected by its users.

System error Erroneous system behavior where the behavior of the system
does not conform to its specifications.

System fault An incorrect system state, i.e., a system state that is unexpected
by the designers of the system.

Human errors or mistakes Human behavior that results in the introduction of faults into a
system.

4.7.4 Classification of Failures

 When a system specifies the reliability then the engineer should identify the failure
type and consider whether it should be treated differently in specification. Many
large systems are divided into small subsystems and each subsystem has different
reliability requirements. It is easy and cheap to assess the reliability requirements
of each subsystem separately.

TABLE 4.4 Failure Classifications

Failure Class Description

Recoverable The system can recover with or without operator intervention.

Transient Occurs only with certain inputs.

Unrecoverable The system cannot recover without operator intervention or the
system may need to be restarted.

Corrupting Failure corrupts system data.

Non-corrupting Failure does not corrupt system data.

Permanent Occurs for all input values while invoking a function of the system.

110 SOF T WARE ENGINEERING AND TESTING

4.8 RELIABILITY METRICS

 Reliability metrics are used to quantitatively express the reliability of a software product.

 Some reliability metrics, which can be used to quantify the reliability of a
software product are:

 1. MTTF (Mean Time to Failure). Components have an average lifetime
and this is reflected in the most widely used hardware reliability metric,
Mean Time to Failure (MTTF). The MTTF is the mean time for which a
component is expected to be operational.

 The MTTF is the average time between observed system failures. An
MTTF of 500 means that one failure can be expected every 500 time units.
The time units are totally dependent on the system and it can even be
specified in the number of transactions, as is the case of database query
systems.

 MTTF is relevant for systems with long transactions, i.e., where system
processing takes a long time. MTTF should be longer than transaction
length. For example, it is suitable for computer-aided design systems
where a designer will work on a design for several hours as well as for
word-processor systems.

 2. MTTR (Mean Time to Repair). Once failure occurs, some time is required
to fix the error. MTTR measures the average time it takes to track the errors
causing the failure and then to fix them.

OR

 MTTR is the average time to replace a defective component.

 Once a hardware component fails then the failure is usually permanent
so the Mean Time to Repair (MTTR) reflects the time taken to repair or
replace the component.

 3. MTBF (Mean Time Between Failures). We can combine the MTTF and
MTTR metrics to get the MTBF metric:

 MTBF = MTTF + MTTR

 Thus, a MTBF of 300 hours indicates that once a failure occurs, the next
failure is expected to occur only after 300 hours. In this case, the time
measurements are real time and not the execution time as in MTTF.

 4. POFOD (Probability of Failure on Demand). POFOD is the likelihood
that the system will fail when a service request is made. A POFOD of 0.001
means that one out of a thousand service requests may result in failure.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 111

 POFOD is an important measure for safety critical systems and should
be kept as low as possible. It is relevant for many safety-critical systems
with the exception of management components, such as an emergency
shutdown system in a chemical plant.

 5. ROCOF (Rate of Occurrences of Failure). ROCOF is the frequency of
occurrence with which unexpected behavior is likely to occur. A ROCOF
of 2/100 means that two failures are likely to occur in each 100 operational
time units. This metric is sometimes called the failure intensity.

 It is relevant for operating systems and transaction-processing systems
where the system has to process a large number of similar requests that are
relatively frequent; for example, credit-card processing systems, airline-
booking systems, etc.

 6. AVAIL (Availability). Availability is the probability that the system is
available for use at a given time. An availability of 0.998 means that in
every 1000 time units, the system is likely to be available for 998 of these.

4.8.1 Measurements of Reliability and Availability

 Measurement of Reliability

 Most hardware-related reliability models are predicted on failure due to wear
rather than failure due to design defects. In hardware, failures due to physical wear
(e.g., effect of temperature corrosion) are more likely than a design-related failure.
There has been debate over the relationship between key concepts in hardware
reliability and their applicability to software. Although an irrefutable link has yet
to be established.

 If we consider a computer-based system, a simple measure of reliability is
mean-time-between-failure (MTBF) and it can be expressed as:

 MTBF = MTTF + MTTR,

 where

 MTTF = Mean Time to Failure

 MTTR = Mean Time to Repair.

 Measurement of Availability

 Many researchers argue that MTBF is a far more useful measure than defects/
KLOC or defects/FP because an end-user is concerned with failures, not with the
total error count. Because each error contained within a program does not have the

112 SOF T WARE ENGINEERING AND TESTING

same failure rate, the total error count provides little indication of the reliability
of a system. In addition to the reliability measure, we must develop a measure of
availability. Software availability is the probability that a program is operating
according to requirements at a given point in time and is defined as:

 Availability = ×MTTF 100%
(MTTF + MTTR)

.

 The MTBF reliability measure is equally sensitive to MTTF and MTTR. The
availability measure is somewhat more sensitive to MTTR.

4.9 RELIABILITY GROWTH MODELING

 A reliability growth model is a mathematical model of how software reliability
improves as errors are detected and repaired. A reliability growth model can be
used to predict when a particular level of reliability is likely to be attained. Thus,
reliability growth modeling can be used to determine when to stop testing to
attain a given reliability level. Although several reliability growth models have
been proposed as discussed in the following sections.

4.9.1 Jelinski-Moranda Model

 The Jelinski-Moranda model is the earliest and probably the best-known reliability
model. It proposes a failure intensity function in the form of

 λ (t) = φ (N – i + 1),

 where

 φ = Constant of proportionality

 N = Total number of errors present

 i = Number of errors found by time interval ti

 This model assumes that all failures have the same failure rate. It means that
failure rate is a step function and there will be an improvement in reliability after
fixing a fault. So, every failure contributes equally to the overall reliability.

 Here, failure intensity is directly proportional to the number of remaining
errors in a program. The relation between time and failure intensity is shown in
Figure 4.6.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 113

FIGURE 4.6 Relation Between T and λ

 The time interval t1, t2 ... tk may vary in duration depending upon the occurrence
of a failure.

 Between the (i – 1)th and ith failure, the failure intensity function is (N – i + 1)φ.

 Example 4.1. There are 50 errors estimated to be present in a program. We have
experienced 30 errors. Use the Jelinski-Moranda model to calculate the failure intensity
with a given value of φ = 0.03. What will be the failure intensity after the experience of
40 errors?

 Solution.

 N = 50 errors

 i = 30 failures

 φ = 0.03

 We know

 λ (t) = φ (N – i + 1)

 = 0.03 (50 – 30 + 1)

 = 0.63 failures/CPU hr.

 After 40 failures

 λ (t) = 0.03 (50 – 40 + 1)

 = 0.33 failures/CPU hr.

114 SOF T WARE ENGINEERING AND TESTING

 Hence, there is a continuous decrease in the failure intensity as the number of
failures experienced increases.

4.9.2 Little Wood and Verall’s Model

 This model allows for negative reliability growth to reflect the fact that when a
repair is carried out, it may introduce additional errors. It also models the fact that
as errors are repaired, the average improvement in reliability per repair decreases.
It treats an error’s contribution to reliability improvement as an independent
random variable having Gamma distribution. This distribution models the fact
that error corrections with large contributions to reliability growth are removed
first. This represents diminishing return as testing continues.

 There are more complex reliability growth models that give greater accurate
approximations to reliability growth. However, these models are beyond the scope
of this text.

4.9.3 Step Function Model

 The simplest reliability growth model is a step function model, where it is assumed
that the reliability increases by a constant increment each time an error is detected
and repaired. Such a model is shown in Figure 4.7.

FIGURE 4.7 Step Function Model of Reliability Growth

 However, this simple model of reliability, which implicitly assumes that
all errors contribute equally to reliability growth, is highly unrealistic since we
already know that corrections of different errors contribute differently to reliability
growth.

 SOFTWARE RELIABILITY AND QUALITY ASSURANCE 115

4.10 RELIABILITY ASSESSMENT

 In general, many properties of engineering artifacts, such as reliability, are measured
and verified in this way. For instance, the reliability of an electrical appliance may
be measured in terms of its probability of failure within a given time. This measure
is helpful whenever we cannot guarantee absence of failures absolutely. Software
reliability is the probability of the failure-free operation of a computer program for
a specified time in a specified environment.

 The process of measuring the reliability of a system is illustrated in
Figure 4.8.

FIGURE 4.8 The Reliability Measurement Process

 This process involves four stages:

 � Existing systems of the same type are studied to establish an operational
profile. An operational profile identifies different classes of system inputs
and the probability of these inputs in normal use.

 � A set of test data is constructed (sometimes with the help of test-data
generators) that reflects the operational profile.

 � The system is tested with these data and the number of failures is observed.
The times of these failures are also logged; the time units chosen should be
appropriate for the reliability metric used.

 � After a statistically significant number of failures have been observed,
the software reliability can then be computed. You can then work out the
appropriate reliability metric value.

 This approach to reliability measurement is not easy to apply in practice. The
principal difficulties that arise are due to:

 � Operational profile uncertainty. The operational profiles may not be an
accurate reflection of the real use of the system.

 � High costs of test-data generation. Defining a large amount of test data
takes a long time if it is not possible to generate this data automatically.

 � Statistical uncertainty when high reliability is specified. It is important
to generate a statistically significant number of failures to allow accurate
reliability measurements.

116 SOF T WARE ENGINEERING AND TESTING

EXERCISES

 1. State some of the software quality factors that are proposed by McCall.
 2. Define representative qualities.
 3. Describe the various classifications of software quality.
 4. How do you define reliability? Discuss various models for reliability allocation.
 5. What is software quality assurance?
 6. What are the goals of software quality assurance?
 7. What are the objectives of software quality assurance?
 8. Define an SQA plan.
 9. Why is it important for a software-development organization to obtain ISO-9000

certification?
 10. Discuss the main requirements of the ISO-9001 and compare it with the SEI-CMM.
 11. Discuss how reliability changes over the lifetime of a software product and a hardware

product.
 12. Define:
 (i) Software quality
 (ii) Reliability metrics
 (iii) Software reliability
 13. Compare:
 (i) ISO and SEI-CMM
 (ii) Software and hardware reliability
 14. Explain, in detail, the SEI-CMM model. Also, differentiate it with ISO.
 15. Give the shortcomings of ISO-9000 certification.
 16. Explain any two types of reliability growth models.
 17. What is software reliability and software availability? Also, discuss how they are

measured.
 18. What is software quality?
 19. Explain the steps an organization will take in order to obtain ISO-9000 certification.
 20. Answer the following questions:
 (i) Can a program be correct and still not be reliable? Explain.
 (ii) What is ISO-9000 certification?
 (iii) What are the salient features of ISO-9001 requirements?
 (iv) What is software reliability? Explain.

Chapter 5
SYSTEM DESIGN

5.1 SYSTEM/SOFTWARE DESIGN

 Design is a meaningful representation of something that is to be built. It can
be traced to a customer’s requirements and at the same time assessed for
quality against a set of predefined criteria for “good” design.

 A set of design concepts has evolved over the years. According to M.A. Jackson,
“The beginning of wisdom for a software engineer is to recognize the difference between
getting a program to work and getting it right.” The various design concepts discussed
in this chapter provide the necessary framework for “getting it right.”

5.1.1 Definition of Software Design

 The definitions of software design are as diverse as design methods. Some
important software design definitions are outlined below.

 According to Coad and Yourdon. Software Design is the practice of taking
a specification of externally observable behavior and adding details needed for actual
computer system implementation, including human interaction, task management, and
data management details.

117

118 SOF T WARE ENGINEERING AND TESTING

 According to Webster. In a sense, design is representation of an object being created.
A design information base that describes aspects of this object, and the design process can
be viewed as successive elaboration of representations, such as adding more information or
even backtracking and exploring alternatives.

 According to Stevens. Software Design is the process of inventing and selecting
programs that meet the objectives for software systems.

 Input includes an understanding of the following:

 � Requirements

 � Environmental constraints

 � Design criteria

 The output of the design effort is composed of the following:

 � Architecture design which shows how pieces are interrelated

 � Specifications for any new pieces

 � Definitions for any new data

5.1.2 Design Objectives/Properties

 The various desirable properties or objectives of software design are:

 1. Correctness. The design of a system is correct if the system built precisely
according to the design satisfies the requirements of that system. Clearly,
the goal during the design phase is to produce correct designs. However,
correctness is not the sole criterion during the design phase, as there can be
many correct designs. The goal of the design process is not simply to produce
a design for the system. Instead, the goal is to find the best possible design
within the limitations imposed by the requirements and the physical and
social environment in which the system will operate.

 2. Verifiability. Design should be correct and it should be verified for correctness.
Verifiability is concerned with how easily the correctness of the design can be
checked. Various verification techniques should be easily applied to design.

 3. Completeness. Completeness requires that all the different components of
the design should be verified, i.e., all the relevant data structures, modules,
external interfaces, and module interconnections are specified.

 4. Traceability. Traceability is an important property that can get design
verification. It requires that the entire design element be traceable to the
requirements.

 5. Efficiency. Efficiency of any system is concerned with the proper use of
scarce resources by the system. The need for efficiency arises due to cost

 SYSTEM DESIGN 119

considerations. If some resources are scarce and expensive, it is desirable that
those resources be used efficiently. In computer systems, the resources that
are most often considered for efficiency are processor time and memory. An
efficient system consumes less processor time and memory.

 6. Simplicity. Simplicity is perhaps the most important quality criteria for
software systems. Maintenance of a software system is usually quite expensive.
The design of the system is one of the most important factors affecting the
maintainability of the system.

5.1.3 Design Principles

 The three design principles are as follows:

 � Problem partitioning

 � Abstraction

 � Top-down and Bottom-up design

 1. Problem Partitioning. When solving a small problem, the entire problem can
be tackled at once. For solving larger problems, the basic principle is the time-
tested principle of “divide and conquer.” This principle suggests dividing into
smaller pieces, so that each piece can be conquered separately.

 For software design, therefore, the goal is to divide the problem into
manageably small pieces that can be solved separately. The basic rationale
behind this strategy is the belief that if the pieces of a problem are solvable
separately, the cost of solving the entire problem is more than the sum of the
cost of solving all the pieces.

 However, the different pieces cannot be entirely independent of each other
as they together form the system. The different pieces have to cooperate and
communicate to solve the larger problem. This communication adds complexity,
which arises due to partitioning and may not have existed in the original
problem. As the number of components increases, the cost of partitioning,
together with the cost of this added complexity, may become more than the
savings achieved by partitioning. It is at this point that no further partitioning
needs to be done. The designer has to make the judgment about when to stop
partitioning.

 Problem partitioning can be divided into two categories:

 (i) Horizontal partitioning

 (ii) Vertical partitioning

 (i) Horizontal Partitioning. Horizontal partitioning defines separate branches
of modular hierarchy for each major program function. The simplest

120 SOF T WARE ENGINEERING AND TESTING

approach to horizontal partitioning defines three partitions: input, data
transformation (often called processing), and output. Partitioning their
architecture horizontally provides a number of distinct benefits:

 � Software that is easier to test.

 � Software that is easier to maintain.

 � Software that is easier to extend.

 � Propagation of fewer side effects.

 Conversely, horizontal partitioning often causes more data to be passed
across module interfaces and can complicate the overall control of program
flow.

FIGURE 5.1 Horizontal Partitioning

 (ii) Vertical Partitioning. Vertical partitioning, often called factoring, suggests
that control and work should be distributed from top-down in the program
structure. Top-level modules should perform control functions and do
actual processing work. Modules that reside low in the structure should
be the workers, performing all input, compilation, and output tasks.

FIGURE 5.2 Vertical Partitioning

 SYSTEM DESIGN 121

 2. Abstraction. An abstraction of a component describes the external behavior of
that component without bothering with the internal details that produce the
behavior.

 Abstraction is an indispensable part of the design process and it is essential for
problem partitioning. Partitioning essentially is the exercise in determining
the components of a system. However, these components are not isolated from
each other, but interact with other components. In order to allow the designer
to concentrate on one component at a time, abstraction of other components is
used.

 Abstraction is used for existing components as well as components that are
being designed. Abstraction of existing components plays an important role
in the maintenance phase.

 During the design process, abstractions are used in a reverse manner not in
the process of understanding a system. During design, the components do not
exist, and in the design the designer specifies only the abstract specifications
of the different components. The basic goal of system design is to specify the
modules in a system and their abstractions. Once the different modules are
specified, during the detailed design the designer can concentrate on one
module at a time. The task in detailed design and implementation is essentially
to implement the modules so that the abstract specifications of each module
are satisfied.

 There are two common abstraction mechanisms for software systems:
Functional abstraction and data abstraction. In functional abstraction, a
module is specified by the function it performs. For example, a module to sort
an input array can be represented by the specification of sorting. Functional
abstraction is the basis of partitioning in function-oriented approaches. That
is, when the problem is being partitioned, the overall transformation function
for the system is partitioned into smaller functions that comprise the system
function.

 The second unit for abstraction is data abstraction. There are certain operations
required from a data object, depending on the object and the environment
in which it is used. Data abstraction supports this view. Data is not treated
simply as objects, but is treated as objects with some predefined operations
on them. The operations defined on a data object are the only operations that
can be performed on those objects. From outside an object, the internals of the
object are hidden; only the operations on the object are visible.

 3. Top-down and Bottom-up Design. A system consists of components, which
have components of their own; indeed a system is a hierarchy of components.
The highest-level components correspond to the total system.

122 SOF T WARE ENGINEERING AND TESTING

 To design such hierarchies there are two possible approaches: top-down and
bottom-up. The top-down approach starts from the highest-level component
of the hierarchy and proceeds through to lower levels. By contrast, a bottom-
up approach starts with the lowest-level component of the hierarchy and
proceeds through progressively higher levels to the top-level component.

 A top-down design approach starts by identifying the major components
of the system, decomposing them into their lower-level components and
iterating until the desired level of detail is achieved. Top-down design
methods often result in some form of stepwise refinement. Starting from an
abstract design, in each step the design is refined to a more concrete level,
until we reach a level where no more refinement is needed and the design can
be implemented directly. The top-down approach has been promulgated by
many researchers and has been found to be extremely useful for design. Most
design methodologies are based on the top-down approach.

FIGURE 5.3 Top-Down Approach

 A bottom-up design approach starts with designing the most basic or primitive
components and proceeds to higher-level components that use these lower-level
components. Bottom-up methods work with layers of abstraction. Starting from the
very bottom, operations that provide a layer of abstraction are implemented. The
operations of this layer are then used to implement more powerful operations and
still a higher layer of abstraction, until the stage is reached where the operations
supported by the layer are those desired by the system.

 A top-down approach is suitable only if the specifications of the system are clearly
known and the system development is from scratch. However, if a system is to be
built from an existing system, a bottom-up approach is more suitable, as it starts
from some existing components. So, for example, if an iterative enhancement type
of process is being followed, in later iterations, the bottom-up approach could be
more suitable (in the first iteration a top-down approach can be used).

 SYSTEM DESIGN 123

FIGURE 5.4 Bottom-Up Approach

5.2 ARCHITECTURAL DESIGN

 Large systems are always decomposed into subsystems that provide some related
set of services. The initial design process of identifying these subsystems and
establishing a framework for subsystem control and communication is called
architectural design.

 Architectural design represents the structure of data and program components
that are required to build a computer-based system. It considers the architectural
style that the system will take, the structure and properties of the components that
constitute the system, and the interrelationships that occur among all architectural
components of a system.

 Architectural design methods have a look into various architectural styles for
designing a system. These are:

 � Data-centric architecture

 � Data-flow architecture

 � Object-oriented architecture

 � Layered architecture

 Data-centric architecture involves the use of a central database operation of
inserting and updating it in the form of a table. Data-flow architecture is central
around the pipe and filter mechanism. This architecture is applied when input data
takes the form of output after passing through various phases of transformations.
These transformations can be via manipulations or various computations done

124 SOF T WARE ENGINEERING AND TESTING

on the data. In object-oriented architecture the software design moves around the
clauses and objects of the system. The class encapsulates the data and methods.
Layered architecture defines a number of layers and each layer performs tasks.
The outer-most layer handles the functionality of the user interface and the inner-
most layer mainly handles interaction with the hardware.

5.2.1 Objectives of Architectural Design

 The objective of architectural design is to develop a model of software architecture,
which gives an overall organization of the program module in the software
product. Software architecture encompasses two aspects of structures of the data
and hierarchical structures of the software components. Let us see how a single
problem can be translated to a collection of solution domains (see Figure 5.5).

FIGURE 5.5 Problems, Solutions, and Architecture

 Architectural design defines the organization of program components. It does
not provide the details of each component and its implementation. Figure 5.6
depicts the architecture of a financial accounting system.

FIGURE 5.6 Architecture of a Financial Accounting System

 SYSTEM DESIGN 125

 The objective of architectural design is also to control the relationship between
modules. One module may control another module or may be controlled by
another module. These characteristics are defined by the fan-in and fan-out of a
particular module. The organization of a module can be represented by a tree-like
structure.

 The number of levels of a component in the structure is called depth and the
number of components across the horizontal section is called width. The number
of components, which controls the component, is called fan-in, i.e., the number of
incoming edges to a component. The number of components that are controlled by
the module is called fan-out, i.e., the number of outgoing edges.

FIGURE 5.7 Fan-in and Fan-out

 S0 controls three components, hence, the fan-out is 3. S2 is controlled by two
components, namely, S1 and S2, hence, the fan-in is 2 (see Figure 5.7).

5.3 LOW-LEVEL DESIGN

5.3.1 Modularization

 A system is considered modular if it consists of discreet components so that each
component can be implemented separately, and a change to one component has
minimal impact on other components.

 There are many definitions of the term module. They range from “a module is
a FORTRAN subroutine” to “a module is an ADA package” to “a module is a work
assignment for an individual programmer.” All of these definitions are correct, in
the sense that modular systems incorporate collections of abstractions in which
each functional abstraction, each data abstraction, and each control abstraction
handles a local aspect of the problem being solved. Modular system consists of
well-defined, manageable units with well-defined interfaces among the units.
Desirable properties of a modular system include:

 � Each function in each abstraction has a single, well-defined purpose.

 � Each function manipulates no more than one major data structure.

126 SOF T WARE ENGINEERING AND TESTING

 � Functions share global data selectively. It is easy to identify all routines
that share a major data structure.

 � Functions that manipulate instances of abstract data types are encapsulated
with the data structure being manipulated.

 Modularity enhances design clarity, which in turn eases implementation,
debugging, testing, documenting, and maintenance of the software product.

 Modules that may be created during program modularizations are:

 � Process support modules: In these all the functions and data items that are
required to support a particular business process are grouped together.

 � Data abstraction modules: These are abstract types that are created by
associating data with processing components.

 � Functional modules: In these all the functions that carry out similar or
closely related tasks are grouped together.

 � Hardware modules: In these all the functions, which control particular
hardware are grouped together.

 Classification of Modules

 A module can be classified into three types depending on the activating
mechanism.

 � An incremental module is activated by an interruption and can be interrupted
by another interrupt during the execution prior to completion.

 � A sequential module is a module that is referenced by another module and
without interruption of any external software.

 � Parallel modules are executed in parallel with other modules.

 The main purpose of modularity is that it allows the principle of separation
of concerns to be applied in two phases: when dealing with the details of each
module in isolation (and ignoring the details of other modules) and when dealing
with the overall characteristics of all modules and their relationships in order to
integrate them into a coherent system. If the two phases are temporally executed
in the order mentioned, then we say that the system is designed bottom-up; the
converse denotes top-down design.

 Advantages of Modular Systems

 � Modular systems are easier to understand and explain because their parts are
functionally independent.

 � Modular systems are easier to document because each part can be documented
as an independent unit.

 � Programming individual modules is easier because the programmer can focus
on just one small, simple problem rather than a large complex problem.

 SYSTEM DESIGN 127

 � Testing and debugging individual modules is easier because they can be dealt
with in isolation from the rest of the program.

 � Bugs are easier to isolate and understand, and they can be fixed without fear
of introducing problems outside the module.

 � Well-composed modules are more reusable because they are more likely to
comprise part of a solution to many problems. Also, a good module should be
easy to extract from one program and insert into another.

 Modularity is an important property of most engineering processes and
products. For example, in the automobile industry, the construction of cars proceeds
by assembling building blocks that are designed and built separately. Furthermore,
parts are often reused from model to model, perhaps after minor changes. Most
industrial processes are essentially modular, made out of work packages that are
combined in simple ways (sequentially or overlapping) to achieve the desired
result.

5.3.2 Structure Charts

 The structure chart is one of the most commonly used methods for system design.
Structure charts are used during architectural design to document hierarchical
structures, parameters, and interconnections in a system.

 It partitions a system into black boxes. A black box means that functionality is
known to the user without the knowledge of internal design. Inputs are given to
a black box and appropriate outputs are generated by the black box. This concept
reduces complexity because details are hidden from those who have no need or
desire to know. Thus, systems are easy to construct and easy to maintain. Here, black
boxes are arranged in hierarchical format as shown in Figures 5.8 (a) and (b).

FIGURE 5.8 (a) Hierarchical Format of a Structure Chart

128 SOF T WARE ENGINEERING AND TESTING

FIGURE 5.8 (b) Format of a Structure Chart

 Modules at the top level call the modules at the lower level. The connections
between modules are represented by lines between the rectangular boxes. The
components are generally read from top to bottom, left to right. Modules are
numbered in a hierarchical numbering scheme. In any structure chart there is one
and only one module at the top called the root.

 Basic Building Blocks of a Structure Chart

 The basic building blocks of a structure chart are the following:

 1. Rectangular Boxes. A rectangular box represents a module. Usually a
rectangular box is annotated with the name of the module it represents.

 2. Arrows. An arrow connecting two modules implies that during program
execution, control is passed from one module to the other in the direction of
the connecting arrow.

 3. Data-flow Arrows. Data-flow arrows represent that the named data passes
from one module to the other in the direction of the arrow.

 4. Library Modules. Library modules are the frequently called modules and are
usually represented by a rectangle with double edges. Usually when a module
is invoked by many other modules, it is made into a library module.

 SYSTEM DESIGN 129

 5. Selection. The diamond symbol represents that one module out of several
modules connected with the diamond symbol are invoked depending on the
condition satisfied, which is written in the diamond symbol.

 6. Repetitions. A loop around the control-flow arrows denotes that the respective
modules are invoked repeatedly.

 Example 5.1. A software system called RMS calculating software reads
three integral numbers from the user in the range between –1000 and +1000 and
determines the root mean square (rms) of the three input numbers and then
displays it.

FIGURE 5.9 Structure Chart For Example 5.1

130 SOF T WARE ENGINEERING AND TESTING

5.3.3 Pseudo-Code

 “Pseudo” means imitation or false and “code” refers to the instructions written in a
programming language. Pseudo-code notation can be used in both the preliminary
and detailed design phases. Using pseudo-code, the designer describes system
characteristics using short, concise English language phrases that are structured
by keywords, such as If-Then-Else, While-Do, and End. Keywords and indentation
describe the flow of control, while the English phrases describe processing actions.
Pseudo-code is also known as program-design language or structured English. A
program-design language should have the following characteristics:

 � A fixed syntax of keywords that provide for all structured constructs, data
declarations, and modularity characteristics.

 � A free syntax of natural language that describes a processing feature.

 � A data-declaration facility.

 � A subprogram definition and calling techniques.

 Advantages of Pseudo-Code

 The various advantages of pseudo-code are as follows:

 � Converting a pseudo-code to a programming language is much easier compared
to converting a flowchart or decision table.

 � Compared to a flowchart, it is easier to modify the pseudo-code of program
logic whenever program modifications are necessary.

 � Writing of pseudo-code involves much less time and effort than the equivalent
flowchart.

 � Pseudo-code is easier to write than writing a program in a programming
language because pseudo-code as a method has only a few rules to follow.

 Disadvantages of Pseudo-Code

 The various disadvantages of pseudo-code are as follows:

 � In the case of pseudo-code, a graphic representation of program logic is not
available as with flowcharts.

 � There are no standard rules to follow in using pseudo-code. Different pro-
grammers use their own style of writing pseudo-code and hence communication
problems occur due to lack of standardization.

 � For a beginner, it is more difficult to follow the logic or write the pseudo-code
as compared to flowcharting.

 SYSTEM DESIGN 131

 The use of pseudo-code for detailed design specification is illustrated in
Figure 5.9 (a).

 INITIALIZE tables and counters; OPEN files

 READ the first text record

 WHILE there are more text records DO

 WHILE there are more words in the text record DO

 EXTRACT the next word

 SEARCH word_table for the extracted word

 IF the extracted word is found THEN

 INCREMENT the extracted word’s occurrence count

 ELSE

 INSERT the extracted word into the word_table

 ENDIF

 INCREMENT the words_processed counter

 ENDWHILE at the end of the text record

 ENDWHILE when all text records have been processed

 PRINT the word_table and the words_processed counter

 CLOSE files

 TERMINATE the program

FIGURE 5.9 (a) An Example of a Pseudo-Code Design Specification

 Pseudo-code consists of English-like statements describing an algorithm. It
is written using simple phrases and avoids cryptic symbols. It is independent of
high-level languages and is a very good means of expressing an algorithm. It is
written in a structured manner and indentation is used to increase clarity.

5.3.4 Flowcharts

 A flowchart is a convenient technique to represent the flow of control in a program.
A flowchart is a pictorial representation of an algorithm that uses symbols to show
the operations and decisions to be followed by a computer in solving a problem.
The actual instructions are written within symbols/boxes using clear statements.
These boxes are connected by solid lines having arrow marks to indicate the flow
of operation in a sequence.

 In fact, flowcharts are the plan to be followed when the program is written.
Expert programmers may write programs without drawing the flowcharts.
But for a beginner it is recommended that a flowchart should be drawn before
writing a program, which in turn will reduce the number of errors and omissions

132 SOF T WARE ENGINEERING AND TESTING

in the program. Flowcharts also help during testing and modifications in the
programs.

 Flowchart Symbols

 1. Terminal Symbol. Terminal symbols are used for two purposes: to define the
starting (START or BEGIN) point of the flowchart and to define the ending
point (END) of the flowchart.

 2. Input/Output Symbol. Input/output symbols are used to indicate the logical
positioning of input/output operations. The input operation is the entry of
computer data and the output operation is the displayed output operation.

 3. Processing Symbol. Processing symbols are used to indicate the arithmetic and
data-movement instructions. Therefore, all arithmetic processing of adding,
subtracting, multiplying, and dividing are represented with a processing
symbol box.

 4. Decision Symbol. Decision symbols have one entry point and there will be
at least two exit points depending upon the decision taken inside the symbol.
When a condition is tested, if the condition is true, the path for “yes” is
followed. If the condition is false, the path for “no” is followed.

 5. Flow Lines. Flow lines, which have arrowheads, are used to indicate the flow
of program logic in a flowchart. These arrows are used to indicate the direction
of the flow of control. This means these statements indicate the next statement
to be executed.

 SYSTEM DESIGN 133

 6. Connector Symbol. If a flowchart is discontinued at some point and continued
again in another place, the connector symbol is used. It is a circle with a number
written inside it. If a flowchart is discontinued at some point, a circle is drawn
pointing away from the chart. Another circle with the same number inside is
placed where the flowchart is continued.

 7. Hexagon (Flat). This is the preparation box. This box contains the loop-setting
statement, i.e., some iterative statement.

 Flowchart Drawing Rules

 Important rules and guidelines used for drawing flowcharts are:

 � Only conventional flowchart symbols should be used.

 � Arrows can be used to indicate the flow of control in the problem. However,
flow lines should not cross each other.

 � Processing logic should flow from top to bottom and from left to right.

 � Words in the flowchart symbols should be common statements and easy to
understand. These should be independent of programming languages.

 � Be consistent in using names and variables in the flowchart.

 � If the flowchart becomes large and complex then connector symbols should be
used to avoid crossing of flow lines.

 � Properly labeled connectors should be used to link the portions of the flowchart
on different pages.

 � Flowcharts should have start and stop points.

134 SOF T WARE ENGINEERING AND TESTING

 Advantages of Flowcharts

 The various advantages of flowcharts are as follows:

 � Synthesis. Flowcharts are used as working models in designing new programs
and software systems.

 � Documentation. Program documentation consists of activities, such as collecting,
organizing, storing, and maintaining all related records of a program.

 � Coding. Flowcharts guide the programmer in writing the actual code in a high-
level language, which is supposed to give an error-free program developed
expeditiously.

 � Debugguing. The errors in a program are detected only after its execution on
a computer. These errors are called bugs and the process of removing these
errors is called debugging. In the debugging process, a flowchart acts as an
important tool in detecting, locating, and removing bugs from a program.

 � Communication. A flowchart is a pictorial representation of a program.
Therefore, it is an excellent communication technique to explain the logic of a
program to other programmers/people.

 � Analysis. Effective analysis of a logical problem can be easily done with the
help of a related flowchart.

 � Testing. A flowchart is an important tool in the hands of a programmer, which
helps him in designing the test data for systematic testing of programs.

 Limitations of Flowcharts

 The various limitations of flowcharts are as follows:

 � The drawing of flowcharts is a very time-consuming process and laborious
especially for large, complex problems.

 � The redrawing of flowcharts is even more difficult and time consuming. It is
very difficult to include any new step in the existing flowchart; redrawing of
the flowchart is the only solution.

 � There are no standards, which specify the detail that should be included in
any flowchart.

 � If an algorithm has complex branches and loops, flowcharts become very
difficult to draw.

 � Sometimes flowcharts are not as detailed as desired.

 Example of a Flowchart

 As an example, consider an algorithm to find the average of n numbers. The
flowchart is shown in Figure 5.10 followed by the algorithm. Here n is the integer

 SYSTEM DESIGN 135

variable denoting the number of values considered for computing the average.
Count is another integer variable denoting the number of values that are processed
at any instant. The number is an integer variable for storing the values.

FIGURE 5.10 Flowchart to Find the Average of n Numbers

136 SOF T WARE ENGINEERING AND TESTING

5.3.5 Difference Between Flowcharts and Structure Charts

 A structure chart differs from a flowchart in the following ways:

 � It is usually difficult to identify different modules of the software from its
flowchart representation.

 � Data interchange among different modules is not represented in a flowchart.

 � Sequential ordering of tasks inherent in a flowchart is suppressed in a structure
chart.

 � A structure chart has no decision boxes.

 Unlike flowcharts, structure charts show how different modules within a
program interact and the data that is passed between them.

5.4 COUPLING AND COHESION

5.4.1 Coupling

 The coupling between two modules indicates the degree of interdependence
between them. If two modules interchange a large amount of data, then they are
highly interdependent. The degree of coupling between two modules depends on
their interface complexity. The interface complexity is basically determined by the
number of types of parameters that are interchanged while invoking the functions
of the module.

 Highly Coupled: When the modules are highly dependent on each other then
they are called highly coupled.

 Loosely Coupled: When the modules are dependent on each other but the
interconnection among them is weak then they are called loosely coupled.

FIGURE 5.11 Coupling

 SYSTEM DESIGN 137

 Uncoupled: When the different modules have no interconnection among them
then they are called uncoupled modules.

 Factors Affecting Coupling Between Modules

 The various factors which affect the coupling between modules are depicted in
Table 5.1.

TABLE 5.1 Factors Affecting Coupling

Interface Complexity Type of Connection Type of Communication

Low Simple Obvious To module by name Data

High Complicated Obscure To internal elements ControlHybrid

 Types of Couplings

 Different types of couplings include content, common, external, control, stamp,
and data. The strength of a coupling from the lowest coupling (best) to the highest
coupling (worst) is given in Figure 5.12.

FIGURE 5.12 The Types of Module Coupling

 1. Data Coupling. Two modules are data coupled if they communicate using
an elementary data item that is passed as a parameter between the two; for
example, an integer, a float, a character, etc. This data item should be problem
related and not used for a control purpose.

FIGURE 5.13 Data Coupling

138 SOF T WARE ENGINEERING AND TESTING

 When a non-global variable is passed to a module, modules are called data
coupled. It is the lowest form of a coupling. For example, passing the variable
from one module in C and receiving the variable by value (i.e., call by value).

 2. Stamp Coupling. Two modules are stamp coupled if they communicate using
a composite data item, such as a record, structure, object, etc. When a module
passes a non-global data structure or an entire structure to another module,
they are said to be stamp coupled. For example, passing a record in PASCAL
or a structure variable in C or an object in C++ language to a module.

 3. Control Coupling. Control coupling exists between two modules if data from
one module is used to direct the order of instruction execution in another. An
example of control coupling is a flag set in one module that is tested in another
module.

FIGURE 5.14 Control Coupling

 The sending module must know a great deal about the inner workings of the
receiving module. A variable that controls decisions in subordinate module C
is set in super-ordinate module A and then passed to C.

 4. External Coupling. It occurs when modules are tied to an environment
external to software. External coupling is essential but should be limited to a
small number of modules with structures.

 5. Common Coupling. Two modules are common coupled if they share some
global data items (e.g., Global variables). Diagnosing problems in structures
with considerable common coupling is time-consuming and difficult.
However, this does not mean that the use of global data is necessarily “bad.” It
does mean that a software designer must be aware of potential consequences
of common couplings and take special care to guard against them.

 6. Content Coupling. Content coupling exists between two modules if their
code is shared; for example, a branch from one module into another module.
It is when one module directly refers to the inner workings of another
module. Modules are highly interdependent on each other. It is the highest
form of coupling. It is also the least desirable coupling as one component
actually modifies another and thereby the modified component is completely
dependent on the modifying one.

 SYSTEM DESIGN 139

FIGURE 5.15 Couplings

 High coupling among modules not only makes a design difficult to understand
and maintain, but it also increases development effort as the modules having high
coupling cannot be developed independently by different team members. Modules
having high coupling are difficult to implement and debug.

5.4.2 Cohesion

 Cohesion is a measure of the relative functional strength of a module. The cohesion
of a component is a measure of the closeness of the relationships between
its components. A cohesive module performs a single task within a software
procedure, requiring little interaction with procedures being performed in other
parts of a program.

 A strongly cohesive module implements functionality that is related to one
feature of the solution and requires little or no interaction with other modules.
This is shown in Figure 5.16. Cohesion may be viewed as the glue that keeps the
module together. It is a measure of the mutual officity of the components of a
module.

FIGURE 5.16 Cohesion-strength of Relation within Modules

 Thus, we want to maximize the interaction within a module. Hence, an
important design objective is to maximize the module cohesion and minimize the
module coupling.

140 SOF T WARE ENGINEERING AND TESTING

 Types of Cohesion

FIGURE 5.17 The Types of Module Cohesion

 There are seven levels of cohesion in decreasing order of desirability, which are as
follows:

 1. Functional Cohesion. Functional cohesion is said to exist if different elements of
a module cooperate to achieve a single function (e.g., managing an employee’s
payroll). When a module displays functional cohesion, and if we are asked to
describe what the module does, we can describe it using a single sentence.

FUNCTION A Part 1

FUNCTION A Part 2

FUNCTION A Part 3

FIGURE 5.18 Functional Cohesion: Sequential with Complete,

Related Functions

 2. Sequential Cohesion. A module is said to possess sequential cohesion if the
elements of a module form the parts of a sequence, where the output from one
element of the sequence is input to the next.

FIGURE 5.19 Sequential Cohesion: Output of One Part is Input to Next

 3. Communicational Cohesion. A module is said to have communicational
cohesion if all the functions of the module refer to or update the same data

 SYSTEM DESIGN 141

structure; for example, the set of functions defined on an array or a stack.
All the modules in communicational cohesion are bound tightly because they
operate on the same input or output data. For example, the set of functions
defined on an array or a stack.

FIGURE 5.20 Communicational Cohesion: Access Same Data

 4. Procedural Cohesion. A module is said to possess procedural cohesion if the
set of functions of the module are all part of a procedure (algorithm) in which
a certain sequence of steps has to be carried out for achieving an objective; for
example, the algorithm for decoding a message.

FUNCTION A

FUNCTION B

FUNCTION C

FIGURE 5.21 Procedural Cohesion Related by Order of Function

 5. Temporal Cohesion. When a module contains functions that are related by
the fact that all the functions must be executed in the same time span, the
module is said to exhibit temporal cohesion. The set of functions responsible
for initialization, start-up, shutdown of some process, etc., exhibit temporal
cohesion.

TIME TO

TIME TO+A

TIME TO+2A

FIGURE 5.22 Temporal Cohesion Related by Time

 6. Logical Cohesion. A module is said to be logically cohesive if all elements
of the module perform similar operations; for example, error handling, data
input, data output, etc. An example of logical cohesion is the case where a

142 SOF T WARE ENGINEERING AND TESTING

set of print functions generating different output reports are arranged into a
single module.

FIGURE 5.23 Logical Cohesion Similar Functions

 7. Coincidental Cohesion. A module is said to have coincidental cohesion if it
performs a set of tasks that relate to each other very loosely. In this case, the
module contains a random collection of functions. It means that the functions
have been put in the module out of pure coincidence without any thought or
design. It is the worst type of cohesion.

FIGURE 5.24 Coincidental Cohesion Parts Unrelated

FIGURE 5.25 Cohesion

5.4.3 Relationship Between Coupling and Cohesion

 A software engineer must design the modules with the goal of high cohesion and
low coupling.

 SYSTEM DESIGN 143

 A good example of a system that has high cohesion and low coupling is the
‘plug and play’ feature of a computer system. Various slots in the motherboard of
the system simply facilitate to add or remove the various services/functionalities
without affecting the entire system. This is because the add-on components provide
the services in a highly cohesive manner. Figure 5.26 provides a graphical review
of cohesion and coupling.

FIGURE 5.26 View of Cohesion and Coupling

 Module design with high cohesion and low coupling characterizes a module
as a black box when the entire structure of the system is described. Each module
can be dealt with separately when the module functionality is described.

5.5 FUNCTIONAL-ORIENTED VERSUS THE OBJECT-ORIENTED
APPROACH

 Some of the differences between the functional-oriented and the object-oriented
approaches, which are very indispensable, are described in Table 5.2.

TABLE 5.2

S. No. Functional-oriented Approach Object-oriented Approach

1. In the functional-oriented design
approach, the basic abstractions,
which are given to the user, are real-
world functions, such as sort, merge,
track, display, etc.

In the object-oriented design approach,
the basic abstractions are not the
real-world functions, but are the data
abstraction where the real-world entities
are represented, such as picture, machine,
radar system, customer, student, employee,
etc.

144 SOF T WARE ENGINEERING AND TESTING

2. In function-oriented design, functions
are grouped together by which a
higher-level function is obtained. An
example of this technique is SA/SD.

In this design, the functions are grouped
together on the basis of the data they
operate on, such as in class person, function
displays are made member functions to
operate on its data members such as the
person name, age, etc.

3. In this approach, the state
information is often represented in a
centralized shared memory.

In this approach, the state information
is not represented in a centralized shared
memory but is implemented/distributed
among the objects of the system.

5.6 DESIGN SPECIFICATIONS

 Design specifications address different aspects of the design model and are
completed as the designer refines his representation of the software. First, the
overall scope of the design effort is described, which is derived from system
specification and the analysis model (software requirements specification).

 Then, data design is specified, which includes data structures, any external file
structures, internal data structures, and a cross-reference that connects data objects
to specific files.

 Then architectural design indicates how the program architecture has been
derived from the analysis model. Structure charts are used to represent the module
hierarchy.

 Interface design indicates the design of external and internal program interfaces
along with a detailed design of the human/machine interface. A detailed prototype
of a GUI may also be represented.

 Procedural design specifies components—separately addressable elements of
software—such as subroutines, functions, or procedures in the form of English-
language processing narratives. This narrative explains the procedural function of
a component (module).

 Design specification contains a requirements cross-reference. The purpose of
this cross-reference is:

 � To establish that all requirements are satisfied by the software design.

 � To indicate which components are critical to the implementation of specific
requirements.

 The final section of the design specification contains supplementary data,
such as algorithm descriptions, alternative procedures, tabular data, excerpts from

 SYSTEM DESIGN 145

other documents, and other relevant information presented as a special note or a
separate appendix.

TABLE 5.3

System objective Human-machine interface

Major software requirements design

Constraints, limitations

Data design

Data objects and resultant data
structures

File and database structures

External file structures

Logical structures

Specification and design

External interface design

Interfaces to external/systems

Internal design rules
Processing narrative

Interface description

Design language description

Modules used

Access method

Global data

File and data cross-reference

Data structures used

Comments

Requirements cross-reference

5.7 VERIFICATION FOR DESIGN

 The output of the system design phase, such as the output of other phases in the
development process, should be verified before proceeding with the activities of
the next phase. If the design is expressed in some formal notation for which analysis
tools are available, then through tools it can be checked for internal consistency
(e.g., those modules used by another are defined, the interface of a module is
consistent with the way others use it, data usage is consistent with declaration,
etc.). If the design is not specified in a formal, executable language, it cannot be
processed through tools, and other means for verification have to be used.

 There are two fundamental approaches to verification. The first consists of
experimenting with the behavior of a product to see whether the product performs
as expected (i.e., testing the product). The other consists of analyzing the product—
or any design documentation related to it—to deduce its correct operation as a
logical consequence of the design decisions. The two categories of verification
techniques are also classified as dynamic or static, since the former requires—by
definition—executing the system to be verified, while the latter does not. Not
surprisingly, the two techniques turn out to be nicely complementary.

146 SOF T WARE ENGINEERING AND TESTING

5.8 MONITORING AND CONTROL FOR DESIGN

 Software project management is crucial to the success of a project. The basic task
is to plan the detailed implementation of the development process to ensure that
the cost and quality objectives are met. It specifies what is needed to meet the
cost, quality, and schedule objectives. For this purpose we need monitoring and
control. Monitoring obtains information from the development process and exerts
the required control over it. Figure 5.27 shows where monitoring and control is
carried out in project management:

FIGURE 5.27 Phases of Project Management

 Monitoring and control systems are an important class of a real-time system.
They check sensors and provide information about the system’s environment and
take actions depending on the sensor reading. Monitoring systems take action
when some exceptional sensor value is detected. Control systems continuously
control hardware actuators depending on the value of associated sensors.

 Consider the following example: A burglar alarm system is to be implemented
for a building. This uses several different types of sensors. These include movement
detectors in individual rooms, window sensors on ground floor windows, which
detect if a window has been broken, and door sensors, which detect a door
opening on corridor doors. There are 50 window sensors, 30 door sensors, and 200
movement detectors in the system.

 When a sensor detects the presence of an intruder, the system automatically
calls the local police and, using a voice synthesizer, reports the location of the
alarm. It switches on lights in the rooms around the active sensor and sets off an
audible alarm. The alarm system is normally powered by the main power source
but is equipped with a battery backup. Power loss is detected using a separate
power circuit monitor that monitors the main voltage. It interrupts the alarm
system when a voltage drop is detected.

 SYSTEM DESIGN 147

EXERCISES

 1. What is system design?
 2. Explain, in detail, the three design principles in system design.
 3. What is abstraction? What are the verification metrics for system design?
 4. Define:
 (i) Problem partitioning
 (ii) Abstraction
 (iii) Top-down and bottom-up design
 5. Define architectural design.
 6. What are the objectives of architectural design?
 7. Explain the various design techniques that come under the category of low-level

design.
 8. Define:
 (i) Modularization (ii) Structure charts
 (iii) Pseudo-code (iv) Flowcharts
 9. Give any two important differences between the function-oriented and object-oriented

design approaches.
 10. Discuss the major advantages of the object-oriented design approach over the function-

oriented design approach.
 11. What is a flowchart? Explain some of its symbols. Also give a suitable example.
 12. Give the hierarchical format of a structure chart. Also, give the basic building blocks of

a structure chart.
 13. Explain the term design specification.
 14. Discuss the term verification in reference to system design.
 15. Enumerate the term monitoring and control in system design.
 16. Discuss some methods of monitoring and control of a software-development process.
 17. What is meant by the term coupling in software design? Is it true that in a good design,

the modules should have low coupling? Why?
 18. Explain the different types of coupling that two modules might exhibit.
 19. Explain the different types of cohesion that a module might exhibit.
 20. What is coupling and cohesion in reference to software design? How are these concepts

useful in arriving at a good design of a system?
 21. Is it true that whenever we increase the cohesion of different modules in our design,

coupling between these modules automatically decreases? Justify your answer with
the help of an appropriate example.

 22. What is a flowchart? How is the flow-charting technique useful for software
development?

 23. Discuss the major advantages of the object-oriented design (OOD) methodology over
the data flow-oriented design methodologies.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 6
SOFTWARE MEASUREMENT

AND METRICS

6.1 SOFTWARE METRICS

 Software metrics are quantifiable measures that could be used to measure different
characteristics of a software system or the software-development process.

 Metrics and measurements are necessary aspects of managing a software-
development project. For effective monitoring, management needs to get information
about the project: how far it has progressed, how much development has taken
place, how far behind schedule it is, and the quality of the development so far.
Based on this information, decisions can be made about the project. Without
proper metrics to quantify the required information, subjective opinion would
have to be used, which is often unreliable and goes against the fundamental goals
of engineering. Hence, we can say that metrics-based management is also a key
component in the software-engineering strategy to achieve its objectives.

6.1.1 Definition

 Software metrics can be defined as “The continuous application of measurement-based
techniques to the software-development process and its products to supply meaningful and

149

150 SOF T WARE ENGINEERING AND TESTING

timely management information, together with the use of those techniques to improve that
process and its products.”

 Metrics ensure that the final product is of high quality and the productivity
of the project stays high. In this sequence metrics for intermediate products of
requirements and design is to predict or get some idea about the metrics of the final
product. Several metrics have been designed for coding; namely, size, complexity,
style, and reliability.

6.1.2 Categories of Metrics

 There are three categories of software metrics, which are as follows:

 1. Product Metrics. Product metrics describe the characteristics of the product,
such as size, complexity, design features, performance, efficiency, reliability,
portability, etc.

 2. Process Metrics. Process metrics describe the effectiveness and quality of the
processes that produce the software product. Examples are:

 � Effort required in the process

 � Time to produce the product

 � Effectiveness of defect removal during development

 � Number of defects found during testing

 � Maturity of the process

 3. Project Metrics. Project metrics describe the project characteristics and
execution. Examples are:

 � Number of software developers

 � Staffing pattern over the life-cycle of the software

 � Cost and schedule

 � Productivity

6.1.3 Attributes of Effective Software Metrics

 Hundreds of metrics have been proposed for computer software, but not all
provide practical support to the software engineer. Some demand measurement
that is too complex, others are so esoteric that few real-world professionals have
any hope of understanding them, and others violate the basic intuitive notions of
what high-quality software really is.

 Ejiogu defines a set of attributes that should be encompassed by effective
software metrics. The derived metric and the measures that lead to it should be:

 SOF TWARE MEASUREMENT AND METRICS 151

 � Simple and computable: It should be relatively easy to learn how to derive the
metric, and its computation should not demand inordinate effort or time.

 � Empirically and intuitively persuasive: The metrics should satisfy the engineer’s
intuitive notions about the product attribute under consideration.

 � Consistent and objective: The metric should always yield results that are
unambiguous.

 � Consistent in the use of units and dimensions: The mathematical computation of
the metric should use measures that do not lead to bizarre combinations of
units.

 � Programming-language independent: Metrics should be based on the analysis
model, the design model, or the structure of the program itself.

 � An effective mechanism for high-quality feedback: That is, the metric should lead to
a higher-quality end product.

6.2 HALSTEAD’S SOFTWARE SCIENCE

 Software science is an approach—based on Halstead’s theories—measuring
software qualities on the basis of objective code measures. It is based on information
theory, which in turn is based on the following measurable quantities, defined for
a given program coded in any programming language:

 � 1, the number of unique, distinct operators appearing in the program;

 � 2, the number of unique, distinct operands appearing in the program;

 � N1, the total number of occurrences of operators in the program;

 � N2, the total number of occurrences of operands in the program.

 The terms “operator” and “operand” have intuitive meanings and are to be
defined for different programming languages. The distinction is that the operator
works on the operand.

 Once we have defined 1 and 2 precisely, we can define the program
vocabulary and the program length N as

 = 1 + 2

 and

 N = N1 + N2.

 At this point, we can already consider some relations between the above
quantities. A first obvious relation is

 1 < = N.

152 SOF T WARE ENGINEERING AND TESTING

 Using these definitions, Halstead suggests the equation

 Ñ = 1 log2 1 + 2 log2 2,

 where the “hat” has been placed on N to distinguish the quantity obtained, the
calculated length, with this equation from the value of the length N obtained by
direct observation.

 We decided to quote Halstead’s reasoning directly since, in spite of its intuitive
attractiveness, it suffers from flaws that make it questionable. The major flaw is
that a program is not a “single ordered set of n [distinct!] elements,” but a string,
with possible repetitions.

 Disregarding this observation, Ñ is an estimate of the length of the program
and not actual measured value of the length of the program. So, when we compare
Ñ versus N on the same sample codes or programs our published algorithms
shows (N Ñ)/N is less than 10%.

 Program level ‘L’ is a measure of the ‘Level of abstraction’ of the formulation
of an algorithm. Another important measure Halstead’s theory introduces is the
effort ‘E’ defined as

 Effort = E =
V

.
L

 Halstead argues that E may be interpreted as the number of mental
discriminations required to implement a program and also as the effort required
to read and understand the program.

 In conclusion, Halstead’s theory tries to provide a formal definition for such
qualitative, empirical, and subjective software qualities as program complexity,
eases of understanding, and level of abstraction, based on the count of some low-
level quantities, such as the number of operators and operands appearing in a
program. The goal is to be able to predict the level of these qualities a program will
have before the start of a project and then measure the level mechanically to assess
the quality of the resulting product.

 Example 6.1. Table 6.1 illustrates a simple Fortran routine and the associated
values of N1, N2, n1, and n2. Halstead defines several quantities using these
numbers. For example, program length N is defined as N1 + N2; (N1 + N2 = 50 in
Table 6.1).

 Halstead’s estimator of program length is:

 N = n1 log2 n1 + n2 log2 n2.

 For example, in Table 6.1

 N = 10 (3.2) + 7 (2.8)
 = 52.9.

 SOF TWARE MEASUREMENT AND METRICS 153

 Program volume is defined as

 V = (N1 + N2) log2 (n1 + n2).
 Subroutine sort(X, N)

 Dimension X(N)

 If (N, I.T. 2) RETURN

 Do 20 I = 2, N

 Do 10 J = 1, 1

 IF (X (1), GE X (J)) GOTO 10

 SAVE = X (I)

 X (I) = X (J)

 X (J) = SAVE

 10 continue

 20 continue

 RETURN

 END

TABLE 6.1 Operator and Operand Count for a Fortran Routine

 Operand Count Operator Count

1 X 6 1 End of statement 7

2 I 5 2 Array subscript 6

3 J 4 3 = 5

4 N 2 4 Lf () 2

5 2 2 5 DO 2

6 save 2 6 2

n2 = 7 I 1 7 End of program 1

22 = N2 8. LT. 1

3. GE. 1

n1 = 10 goto 10 1

28 = N1

 and language level (the level of language abstraction) is

 L = (2*n2)/(n1*N2).

 Program effort is defined as V ;
L

 E = (n1*N2*(N1 + N2)*log2 (n1 + n2)) / (2*n2).

154 SOF T WARE ENGINEERING AND TESTING

 Program effort is interpreted to be the number of mental discriminations
required to implement the program. Alternatively, it can be interpreted as the effort
required for reading and understanding a program. Experiments have shown that
Halstead’s effort metric is well-correlated with the observed effort required to
debug and modify small programs. Program effort thus appears to be a measure
of interest for software maintenance.

6.3 FUNCTION-POINT BASED MEASURES

6.3.1 Function Points

 Function points and feature points are methods of estimating the “amount
of functionality” required for a program, and are thus used to estimate project
completion time. The basic idea involves counting inputs, outputs, and other
features of a description of functionality.

6.3.2 Function-Point Metric

 The function-point metric was proposed by Allan Albrecht (1983) when he worked
for IBM. Function-oriented software metrics use a measure of the functionality
delivered by the application as a normalization value. Since functionality cannot
be measured directly, it must be derived indirectly using other direct measures.
Function points are derived using an empirical relationship based on direct
measures of the software’s information domain and assessments of software
complexity.

 Function points are computed by completing Table 6.2.

 TABLE 6.2 Function-Point Contribution of an Element

Function type Simple Average Complex

External input 3 4 6

External output 4 5 7

Logical internal file 7 10 15

External interface file 5 7 10

External inquiry 3 4 6

 The different function types mentioned in Table 6.2 are discussed as follows:

 � External types are input transactions that update internal computer files.

 � External output types are transactions where data is output to the user.
Typically, these would be printed reports.

 SOF TWARE MEASUREMENT AND METRICS 155

 � Logical internal file types are the standing files used by the system. The
term ‘file’ does not sit easily with modern information systems. It refers to
a group of data that is usually accessed together. It might be made up of
one or more record types.

 � External interface file types allow for output and input that might pass to
and from other computer applications.

 � External inquiry types note the U.S. spelling of inquiry and are transactions
initiated by the user that provide information but do not update the
internal files. The user inputs some information that directs the system to
the details required.

6.3.3 Special Features

 � The function-point approach is independent of the language, tools, or
methodologies used for implementation, i.e., they do not take into consideration
programming languages, database-management systems, processing hardware,
or any other database technology.

 � Function points can be estimated from requirement specifications or design
specifications, thus making it possible to estimate development effort in early
phases of development.

 � Function points are directly linked to the statement of requirements; any
change of requirements can easily be followed by the estimate.

 � Function points are based on the system user’s external view of the system;
non-technical users of the software system have a better understanding of
what function points are measuring.

6.3.4 Advantages of Function Points

 � Are not restricted to code.

 � Are language independent.

 � The necessary data is available early in a project and thus only a detailed
specification is needed.

 � Are more accurate than estimated LOC.

 � Can be used to easily estimate the size of a software product directly from the
problem specification.

6.3.5 Drawbacks of Function Points

 � Subjective counting—different people can come up with different estimates
for the same problem.

156 SOF T WARE ENGINEERING AND TESTING

 � Hard to automate and difficult to compute.

 � Ignore quality of output.

 � Oriented to traditional data-processing applications.

6.3.6 Feature-Point Metrics

 A function-point extension called feature points is a superset of the function-point
measure that can be applied to systems and engineering software applications.
Therefore, its size should be larger compared to simpler functions.

 Proponents of function-point and feature-point metrics claim that these
metrics are language-independent and can be easily computed from the SRS
document during project planning, whereas opponents claim that these metrics
are subjective and require a slight of hand. An example of the subjective nature of
the function-point metric can be that the way one would group logically related
data items could be very subjective. For example, if a data employee details consist
of the employee name and his address, one person can consider it a single unit of
data while someone else can consider the address as one unit and name as another.
Therefore, different engineers can arrive at different function-point measures for
the same problem.

 Example 6.2. Compute the function-point value for a project with the following
information-domain characteristics.

 Number of user Inputs: 32

 Number of User output: 60

 Number of User Inquiries: 24

 Number of files: 8

 Number of external interface: 2

 Assume that all complexity adjustment values are average.

 Solution.

 Measurement Parameter Count Weighting Factor

(Average)

Number of user inputs 32 4 = 128

Number of user outputs 60 5 = 300

Number of user inquires 24 4 = 96

Number of files 8 10 = 80

Number of external interfaces 2 7 = 14

Count total 618

 SOF TWARE MEASUREMENT AND METRICS 157

 Function point (FP) = Count Total × (0.65 + 0.01 × S (fi)

 FP = 618 (0.65 + 0.01 30)

 = 618 (0.65 + 0.3)

 = 618 (0.95)

 = 587.10

6.4 CYCLOMATIC COMPLEXITY

 Cyclomatic complexity is a software metric that provides a quantitative measure of
the logical complexity of a program. When used in the context of the basis path-
testing method, the value computed for cyclomatic complexity defines the number
of independent paths in the basis set of a program, and provides us with an upper
bound for the number of tests that must be conducted to ensure that all statements
have been executed at least once.

FIGURE 6.1 Flowchart

158 SOF T WARE ENGINEERING AND TESTING

FIGURE 6.2 Flowgraph

 An independent path must move along at least one edge that has not been
traversed before the path is defined

 Example 6.3. A set of independent paths for the flowgraph illustrated in Figure
6.2 is

 Path 1: 1-11

 Path 2: 1-2-3-4-5-10-1-11

 Path 3: 1-2-3-6-8-9-10-1-11

 Path 4: 1-2-3-6-7-9-10-1-11

 Note that each new path introduces a new edge. The path 1-2-3-4-5-10-1-2-3-
6-8-9-10-1-11 is not considered to be an independent path because it is simply a
combination of already specified paths and does not traverse any new edges.

 Cyclomatic complexity has a foundation in graph theory and is computed in
one of three ways:

 1. The number of regions corresponds to the cyclomatic complexity.

 2. Cyclomatic complexity, V (G), for a flowgraph G, is defined as

 V (G) = E N + 2,

 where

 E = Number of flowgraph edges

 N = Number of flowgraph nodes.

 SOF TWARE MEASUREMENT AND METRICS 159

 3. Cyclomatic complexity, V (G) for a flowgraph G, is also defined as

 V (G) = P + 1,

 where

 P = Number of predicate nodes contained in flow graphs G.

 The cyclomatic complexity of Figure 6.2 (b) can be computed using each of
the algorithms just noted.

 � The flowgraph has four regions:

 V(G) = 11 edges 9 nodes + 2 = 4

 V(G) = 3 predicate nodes + 1 = 4.

 Therefore, the cyclomatic complexity of the flowgraph shown is 4. The value
V (G) provides us with an upper bound for the number of independent
paths that comprise the basis set, and by implication, an upper bound
on the number of tests that must be designed and executed to guarantee
coverage of all program statements.

EXERCISES

 1. Explain cyclomatic complexity with an example.
 2. How can you compute the cyclomatic complexity of a program? How is cyclomatic

complexity useful in program testing?
 3. What is Halstead’s size measure for two modules? Compare this size with the size

measured in the LOC.
 4. Consider the size measure as the number of bytes needed to store the object code of a

program. How useful is this size measure? Is it closer to the LOC or Halstead metric?
Explain clearly with the help of an example.

 5. How can you correlate the complexity measurement with the size of a module?
 6. Define:
 (a) Product metrics
 (b) Process metrics
 (c) Project metrics
 7. What are the different attributes of effective software metrics?
 8. What is the difference between function-point metrics and feature-point metrics?
 9. Explain the different types of software metrics.
 10. Explain the special features of function-point metrics.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 7
SOF TWARE TESTING

7.1 INTRODUCTION TO TESTING

 Testing is a set of activities that can be planned in advance and conducted
systematically. For this reason a template for software testing—a set of steps
into which we can place specific test-case design techniques and testing

methods—should be defined for the software process.

 A number of software-testing strategies have been proposed in the literature.
All provide the software developer with a template for testing and all have the
following generic characteristics:

 � To perform effective testing, a software team should conduct effective
formal technical reviews. By doing this, many errors will be eliminated
before testing commences.

 � Testing begins at the component level and works “outward” toward the
integration of the entire computer-based system.

 � Different testing techniques are appropriate at different points in time.

 � Testing is conducted by the developers of the software and (for large
projects) an independent test group.

 � Testing and debugging are different activities, but debugging must be
accommodated in any testing strategy.

161

162 SOF T WARE ENGINEERING AND TESTING

 A strategy for software testing must accommodate low-level tests that are
necessary to verify that a small source-code segment has been correctly implemented
as well as high-level tests that validate major system functions against customer
requirements. A strategy must provide guidance for the practitioner and a set of
milestones for the manager. Because the steps of the test strategy occur at a time
when deadline pressure begins to rise, progress must be measurable and problems
must surface as early as possible. Software testing has been defined as:

 � The process of analyzing a software item to detect the differences between
existing and required conditions (i.e., bugs) and to evaluate the features of
the software items.

 � The process of analyzing a program with the intent of finding errors.

OR
 Testing is the process of executing a program with the intent of finding errors.

7.2 TESTING PRINCIPLES

 There are many principles that guide software testing. Before applying methods
to design effective test cases, a software engineer must understand the basic
principles that guide software testing. The following are the main principles for
testing:

 1. All tests should be traceable to customer requirements. This is in order to
uncover any defects that might cause the program or system to fail to meet the
client’s requirements.

 2. Tests should be planned long before testing begins. Soon after the
requirements model is completed, test planning can begin. Detailed test cases
can begin as soon as the design model is designed.

 3. The Pareto principle applies to software testing. Stated simply, the Pareto
principle implies that 80 percent of all errors uncovered during testing will
likely be traceable to 20 percent of all program components. The problem, of
course, is to isolate these suspect components and to thoroughly test them.

 4. Testing should begin “in the small” and progress toward testing “in the
large.” The first tests planned and executed generally focus on individual
components. As testing progresses, focus shifts in an attempt to find errors in
integrated clusters of components and ultimately in the entire system.

 5. Exhaustive testing is not possible. The number of path permutations for
even a moderately-sized program is exceptionally large. For this reason, it is
impossible to execute every combination of paths during testing. It is possible,

 SOFTWARE TESTING 163

however, to adequately cover program logic and to ensure that all conditions
in the component-level design have been exercised.

 6. To be most effective, testing should be conducted by an independent third
party. The software engineer who has created the system is not the best person to
conduct all tests for the software. This is shown in Figure 7.1.

FIGURE 7.1 Who Tests the Software?

7.3 TESTING OBJECTIVES

 The testing objective is to test the code, whereby there is a high probability of
discovering all errors.

 This objective also demonstrates that the software functions are working
according to software requirements specification (SRS) with regard to functionality,
features, facilities, and performance. It should be noted, however, that testing
will detect errors in the written code, but it will not show an error if the code
does not address a specific requirement stipulated in the SRS but not coded in the
program.

 Testing objectives are:

 � Testing is a process of executing a program with the intent of finding an
error.

164 SOF T WARE ENGINEERING AND TESTING

 � A good test case is one that has a high probability of finding an as-yet-
undiscovered error.

 � A successful test is one that uncovers an as-yet-undiscovered error.

7.4 TEST ORACLES

 To test any program, we need to have a description of its expected behavior and a
method of determining whether the observed behavior conforms to the expected
behavior. For this we need a test oracle.

 A test oracle is a mechanism, different from the program itself, which can
be used to check the correctness of the output of the program for the test cases.
Conceptually, we can consider testing a process in which the test cases are given
to the test oracle and the program under testing. The output of the two is then
compared to determine if the program behaved correctly for the test cases, as
shown in Figure 7.2.

FIGURE 7.2 Test Oracles

 Test oracles are human beings, so they may make mistakes when there is a
discrepancy between the oracles and the results of a program. First we have to
verify the result produced by the oracle before declaring that there is a fault in the
program, that’s why testing is so cumbersome and expensive.

 The human oracles generally use the specifications of the program to decide
what the “correct” behavior of the program should be. To help the oracle to
determine the correct behavior, it is important that the behavior of the system be
unambiguously specified and the specification itself should be error-free.

 SOFTWARE TESTING 165

7.5 LEVELS OF TESTING

 There are three levels of testing, i.e., three individual modules in the entire software
system.

FIGURE 7.3 Levels of Testing

7.5.1 Unit Testing

 In unit testing individual components are tested to ensure that they operate
correctly. It focuses on verification effort. On the smallest unit of software design,
each component is tested independently without other system components.

 There are a number of reasons to do unit testing rather than testing the entire
product:

 � The size of a single module is small enough that we can locate an error
fairly easily.

 � The module is small enough that we can attempt to test it in some
demonstrably exhaustive fashion.

 � Confusing interactions of multiple errors in widely different parts of the
software are eliminated.

 Unit Test Consideration

 The tests that occur as part of unit tests are illustrated schematically in Figure 7.4.
The module interface is tested to ensure that information properly flows into and
out of the program unit under testing. The local data structure is examined to
ensure that data stored temporarily maintains its integrity during all steps in an

166 SOF T WARE ENGINEERING AND TESTING

algorithm’s execution. Boundary conditions are tested to ensure that the module
operates properly at the boundaries established to limit or restrict processing. All
independent paths through the control structure are exercised to ensure that all
statements in a module have been executed at least once. And finally, all error-
handling paths are tested.

FIGURE 7.4 Unit Tests

 Common errors in computation are:

 � Incorrect arithmetic precedence

 � Mixed code operations

 � Incorrect initialization

 � Precision inaccuracy

 � Incorrect symbolic representation of an expression

 Test cases in unit testing should uncover errors, such as:

 � Comparison of different data types

 � Incorrect logical operators or precedence

 � Expectation of equality when precision error makes equality unlikely

 � Incorrect comparison of variables

 � Improper loop termination

 � Failure to exit when divergent iteration is encountered

 � Improperly modified loop variables

 Unit-test Procedure

 The unit-test environment is illustrated in Figure 7.5.

 SOFTWARE TESTING 167

FIGURE 7.5 Unit-test Environment

 In most applications a driver is nothing more than a “main program” that
accepts test-case data, passes such data to the component (to be tested), and prints
relevant results. Stubs serve to replace modules that are subordinate (called by) to
the component to be tested. A stub uses the subordinate module’s interface, may
do minimal data manipulation, prints verification of entry, and returns control to
the module undergoing testing.

 Drivers and stubs represent overhead. That is, both are software that must
be written but that is not delivered with the final software product. If drivers
and stubs are kept simple, actual overhead is relatively low. Unfortunately, many
components cannot be adequately unit tested with “simple” overhead software.
In such cases, complete testing can be postponed until the integration test step
(where drivers or stubs are also used).

 Unit testing is simplified when a component with high cohesion is designed.
When only one function is addressed by a component, the number of test cases is
reduced and errors can be more easily predicted and uncovered.

7.5.2 Integration Testing

 The second level of testing is called integration testing. Integration testing is a
systematic technique for constructing the program structure while at the same
time conducting tests to uncover errors associated with interfacing.

 In this testing many unit-tested modules are combined into subsystems, which
are then tested. The goal here is to see if the modules can be integrated properly.

168 SOF T WARE ENGINEERING AND TESTING

 Objective of Integration Testing

 The primary objective of integration testing is to test the module interfaces in order
to ensure that there are no errors in the parameter passing, when one module
invokes another module. During integration testing, different modules of a system
are integrated in a planned manner using an integration plan. The integration plan
specifies the steps and the order in which modules are combined to realize the full
system. After each integration step, the partially integrated system is tested.

 Approaches to Integration Testing

 The various approaches used for integration testing are:

 1. Incremental Approach 2. Top-down Integration
 3. Bottom-up Integration 4. Regression Testing

 5. Smoke Testing 6. Sandwich Integration

 These approaches to integration testing are discussed as follows:

 1. Incremental Approach. The incremental approach means to first combine
only two components together and test them. Remove the errors if they are
there, otherwise combine another component to it and then test again, and so
on until the whole system is developed.

OR

 In incremental integration the program is constructed and tested in small increments,
where errors are easier to isolate and correct.

FIGURE 7.6 Incremental Approach

 According to Figure 7.6, in test sequence 1 tests T1, T2, and T3 are first run on
a system composed of module A and module B. If these are corrected or error-
free then module C is integrated, i.e., test sequence 2 and then tests T1, T2, and
T3 are repeated, if a problem arises in these tests, then they interact with the

 SOFTWARE TESTING 169

new module. The source of the problem is localized, thus it simplifies defect
location and repair. Finally, module D is integrated, i.e., test sequence 3 is then
tested using existing (T1 to T5) and new tests (T6).

 2. Top-Down Integration Testing. Top-down integration testing is an incremental
approach to construction of program structures. Modules are integrated by
moving downward through the control hierarchy beginning with the main-
control module.

FIGURE 7.7 Top-Down Integration Testing

 Considering Figure 7.7:

 (i) Depth-first integration: This would integrate all components on a major
control path of the structure. For example, M1, M2, and M5 would be
integrated first. Next, M8 or M6 would be integrated. Then, the central and
right-hand control paths are built.

 (ii) Breadth-first integration: This incorporates all components directly subordinate
at each level, moving across the structure horizontally. From Figure 7.7,
components M2, M3, and M4 would be integrated first. The next control
level M5, M6, and so on follows.

 The integration process is performed in a series of five steps:

 � The main-control module is used as a test driver and stubs are
substituted for all components directly subordinate to the main-
control module.

 � Depending on the integration approach selected (i.e., depth or
breadth first), subordinate stubs are replaced one at a time with actual
components.

 � Tests are conducted as each component is integrated.

170 SOF T WARE ENGINEERING AND TESTING

 � On completion of each set of tests, another stub is replaced with the
real component.

 � Regression testing may be conducted to ensure that new errors have
not been introduced.

 3. Bottom-Up Integration Testing. Bottom-up integration testing, as its name
implies, begins construction and testing with the components at the lowest
level in the program structure.

 A bottom-up integration strategy may be implemented with the following
steps:

 � Low-level components are combined into clusters (sometimes called
builds) that perform specific software subfunctions.

 � A driver (a control program for testing) is written to coordinate test case
input and output.

 � The cluster is tested.

 � Drivers are removed and clusters are combined moving upward in the
program stucture.

FIGURE 7.8 Bottom-Up Integration Testing

 Integration follows the pattern illustrated in Figure 7.8. Components are
combined to form clusters 1, 2, 3. Each of the clusters is tested using a driver
(shown as a dashed block). Components in clusters 1 and 2 are subordinate
to Ma. Drivers D1 and D2 are removed and the clusters are interfaced directly

 SOFTWARE TESTING 171

to Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with
module Mb. Both Ma and Mb will ultimately be integrated with component Mc
and so forth.

 As integration moves upward, the need for separate test drivers lessens. In fact,
if the top two levels of program structure are integrated top-down, the number
of drivers can be reduced and integration of clusters is greatly simplified.

 4. Regression Testing. Regression testing is the activity that helps to ensure that
changes (due to testing or for other reasons) do not introduce unintended
behavior or additional errors.

 The regression test suite contains three different classes of test cases:

 � Additional tests that focus on software functions.

 � A representative sample of tests that will exercise all software functions.

 � Tests that focus on the software components that have been changed.

 5. Smoke Testing. Smoke testing is an integration testing approach that is
commonly used when “shrink-wrapped” software products are developed.
Smoke testing is characterized as a rolling integration approach because
the software is rebuilt with new components and testing. Smoke testing
encompasses the following activities:

 � Software components that have been translated into code are integrated
into a “build.” A build includes all data files, libraries, reusable modules,
and engineered components that are required to implement one or more
product functions.

 � A series of tests is designed to expose errors that will keep the build from
properly performing its functions.

 � The build is integrated with other builds and the entire product (in its
current form) is smoke tested daily.

 Smoke testing provides a number of benefits when it is applied on complex
software engineering projects:

 � Integration risk is minimized.

 � Quality of end product is improved.

 � Error diagnosis and correction are simplified.

 � Progress is easier to assess.

 6. Sandwich Integration Testing. Sandwich integration testing is the combination
of both the top-down and bottom-up approach. So, it is also called mixed
integration testing. In it, the whole system is divided into three layers, just like
a sandwich: the target is in the middle and one layer is above the target and
one is below the target.

172 SOF T WARE ENGINEERING AND TESTING

 The top-down approach is used in the layer that is above the target and the
bottom-up approach is used in the layer that is below the target. Testing coverage
on the middle layer, chosen on the basis of the structure of the component hierarchy
and system characteristics, also combines the advantages of both the top-down
and bottom-up approach. It also requires drivers. The ability to plan and control
the sequence is hard in it. At the beginning the work parallelism is medium. Stubs
are also needed. The ability to test particular paths is medium.

7.5.3 System Testing

 Subsystems are integrated to make up the entire system. The testing process is
concerned with finding errors that result from unanticipated interactions between
subsystems and system components. It is also concerned with validating that the
system meets its functional and non-functional requirements.

 There are essentially three main kinds of system testing:

 � Alpha testing

 � Beta testing

 � Acceptance testing

 1. Alpha Testing. Alpha testing refers to the system testing carried out by the test
team within the development organization.

 The alpha test is conducted at the developer’s site by the customer under
the project team’s guidance. In this test, users test the software on the
development platform and point out errors for correction. However, the
alpha test, because a few users on the development platform conduct
it, has limited ability to expose errors and correct them. Alpha tests are
conducted in a controlled environment. It is a simulation of real-life usage.
Once the alpha test is complete, the software product is ready for transition
to the customer site for implementation and development.

 2. Beta Testing. Beta testing is the system testing performed by a selected group of
friendly customers.

 If the system is complex, the software is not taken for implementation directly.
It is installed and all users are asked to use the software in testing mode;
this is not live usage. This is called the beta test. Beta tests are conducted
at the customer site in an environment where the software is exposed to
a number of users. The developer may or may not be present while the
software is in use. So, beta testing is a real-life software experience without
actual implementation. In this test, end users record their observations,
mistakes, errors, and so on and report them periodically.

 SOFTWARE TESTING 173

 In a beta test, the user may suggest a modification, a major change, or
a deviation. The development has to examine the proposed change and
put it into the change management system for a smooth change from just
developed software to a revised, better software. It is standard practice to
put all such changes in subsequent version releases.

 3. Acceptance Testing. Acceptance testing is the system testing performed by the
customer to determine whether to accept or reject the delivery of the system.

 When customer software is built for one customer, a series of acceptance
tests are conducted to enable the customer to validate all requirements.
Conducted by the end-user rather than the software engineers, an
acceptance test can range from an informal ‘test drive’ to a planned and
systematically executed series of tests. In fact, acceptance testing can
be conducted over a period of weeks or months, thereby uncovering
cumulative errors that might degrade the system over time.

7.6 WHITE-BOX TESTING/STRUCTURAL TESTING

 A complementary approach to functional or black-box testing is called structural
or white-box testing. In this approach, test groups must have complete knowledge
of the internal structure of the software. We can say structural testing is an
approach to testing where the tests are derived from knowledge of the software’s
structure and implementation. Structural testing is usually applied to relatively
small program units, such as subroutines, or the operations associated with an
object. As the name implies, the tester can analyze the code and use knowledge
about the structure of a component to derive test data. The analysis of the code
can be used to find out how many test cases are needed to guarantee that all of the
statements in the program are executed at least once during the testing process. It
would not be advisable to release software that contains untested statements as the
consequence might be disastrous. This goal seems to be easy but simple objectives
of structural testing are harder to achieve than may appear at first glance.

FIGURE 7.9 Structural Testing

174 SOF T WARE ENGINEERING AND TESTING

 White-box testing is also known by other names, such as glass-box testing,
structural testing, clear-box testing, open-box testing, logic-driven testing, and
path-oriented testing.

 In white-box testing, test cases are selected on the basis of examination of the
code, rather than the specifications. White-box testing is illustrated in Figure 7.10.

FIGURE 7.10 White-box Testing

 Using white-box testing methods the software engineer can test cases that:

 � Guarantee that all independent paths within a module have been exercised
at least once.

 � Exercise all logical decision on their true and false sides.

 � Exercise all loops at their boundaries.

 � Exercise internal data structures to ensure their validity.

 The nature of software defects are:

 � Logical errors and incorrect assumptions are inversely proportional to the
probability that a program path will be executed.

 � We often believe that a logical path is not to be executed when, in fact, it
may be executed on a regular basis.

 � Typographical errors are random. When a program is translated into
programming language source code, it is likely that some typing errors
will occur.

7.6.1 Reasons White-box Testing is Performed

 White-box testing is carried out to test whether:

 SOFTWARE TESTING 175

 � All paths in a process are correctly operational.

 � All logical decisions are executed with true and false conditions.

 � All loops are executed with their limit values tested.

 � To ascertain whether input data structure specifications are tested and then
used for other processing.

7.6.2 Advantages of Structural/White-box Testing

 The various advantages of white-box testing include:

 � Forces test developer to reason carefully about implementation.

 � Approximates the partitioning done by execution equivalence.

 � Reveals errors in hidden code.

7.7 FUNCTIONAL/BLACK-BOX TESTING

 In functional testing the structure of the program is not considered. Test cases
are decided on the basis of the requirements or specifications of the program or
module and the internals of the module or the program are not considered for
selection of test cases.

 Functional testing refers to testing that involves only observation of the
output for certain input values, and there is no attempt to analyze the code, which
produces the output. The internal structure of the program is ignored. For this
reason, functional testing is sometimes referred to as black-box testing (also called
behavioral testing) in which the content of a black-box is not known and the
function of black box is understood completely in terms of its inputs and outputs.

 Black-box testing, also called behavioral testing, focuses on the functional
requirements of the software. Black-box testing enables the software engineer to
derive sets of input conditions that will fully exercise all functional requirements
for a program.

 Other names for black-box testing (BBT) include specifications testing,
behavioral testing, data-driven testing, functional testing, and input/output-
driven testing.

 In black-box testing, the tester only knows the inputs that can be given to the
system and what output the system should give. In other words, the basis for
deciding test cases in functional testing is the requirements or specifications of
the system or module. This form of testing is also called functional or behavioral
testing.

176 SOF T WARE ENGINEERING AND TESTING

 Black-box testing is not an alternative to white-box techniques; rather, it is a
complementary approach that is likely to uncover a different class of errors than
white-box methods.

 Black-box testing identifies the following kinds of errors:

 � Incorrect or missing functions.

 � Interface missing or erroneous.

 � Errors in data model.

 � Errors in access to external data source.

 When these errors are controlled then:

 � Function(s) are valid.
 � A class of inputs is validated.
 � Validity is sensitive to certain input values.
 � The software is valid and dependable for a certain volume of data or

transactions.

 � Rare specific combinations are taken care of.

 Black-box testing tries to answer the following questions:

 � How is functional validity tested?
 � How are system behavior and performance tested?
 � How are the boundaries of a data class isolated?
 � How will the specific combinations of data affect system operation?
 � What data rates and data volume can the system tolerate?
 � Is the system particularly sensitive to certain input values?

 � What effect will specific combinations of data have on system operation?

 By applying black-box techniques, we derive a set of test cases that satisfy the
following criteria:

 � Test cases that reduce by a count that is greater than one.

 � Test cases that tell us something about the presence or absence of classes
of errors.

7.7.1 Categories of Black-box Testing

 Functional testing falls into two categories:

 1. Positive Functional Testing: This testing entails exercising the application’s
functions with valid input and verifying that the outputs are correct.

 Continuing with the word-processing example, a positive test for the printing
function might be to print a document containing both text and graphics to a

 SOFTWARE TESTING 177

printer that is online, filled with paper and for which the correct drivers are
installed.

 2. Negative Functional Testing: This testing involves exercising application
functionality using a combination of invalid inputs, unexpected operating
conditions, and other out-of-bounds scenarios.

 (i) Continuing the word-processing example, a negative test for the printing
function might be to disconnect the printer from the computer while a
document is printing.

 (ii) What probably should happen in this scenario is a plain-English error
message appears, informing the user what happened, and instructing him
on how to remedy the problem.

 (iii) What might happen instead is the word-processing software simply hangs
up or crashes because the “abnormal” loss of communications with the
printer is not handled properly.

7.7.2 Example of Black-box Testing

 Figure 7.11 illustrates the model of a system, which is assumed in black-box testing.
This approach is equally applicable to systems that are organized as functions or
as objects. The tester presents inputs to the component or the system and examines
the corresponding outputs. If the outputs are not those predicted then the test has
successfully detected a problem with the software.

FIGURE 7.11 Black-box Testing

178 SOF T WARE ENGINEERING AND TESTING

 The key problem for the defect tester is to select inputs that have a high
probability of being members of the set Ie. In many cases, the selection of these
test cases is based on the previous experience of test engineers. They use domain
knowledge to identify test cases, which are likely to reveal defects. However, the
systematic approach to test data selection discussed in the next section may also
be used to supplement this heuristic knowledge.

7.7.3 Advantages of Black-box Testing

 The advantages of this type of testing include:

 � The test is unbiased because the designer and the tester are independent of
each other.

 � The tester does not need knowledge of any specific programming languages.

 � The test is done from the point-of-view of the user, not the designer.

 � Test cases can be designed as soon as the specifications are complete.

7.8 TEST PLAN

 A test plan is a document consisting of different test cases designed for different
testing objects and different testing attributes. The plan puts the tests in logical and
sequential order per the strategy chosen, top-down or bottom-up. The test plan is
a matrix of test and test cases listed in order of its execution.

 Table 7.1 shows the matrix of test and test cases within the test.

 Project Name Project ID

 Project Manager Q.A. Manager

TABLE 7.1 Test Plan

Test

Test ID Test 1 2 3 ... N Planned Date

ID Tester Name Completed Successful

 Test ID, test name, and test cases are designed well before the development
phase and have been designed for those who conduct the tests.

 SOFTWARE TESTING 179

 A test plan states:

 � The items to be tested.

 � At what level they will be tested at.

 � The sequence they are to be tested in.

 � How the test strategy will be applied to the testing of each item and the
test environment.

7.9 TEST-CASE DESIGN

 A test case is a set of instructions designed to discover a particular type of error or defect in
the software system by inducing a failure.

 The goal of selected test cases is to ensure that there is no error in the program
and if there is it then should be immediately depicted. Ideal test casement should
contain all inputs to the program. This is often called exhaustive testing.

 There are two criteria for the selection of test cases:

 � Specifying a criterion for evaluating a set of test cases.

 � Generating a set of test cases that satisfy a given criterion.

 Each test case needs proper documentation, preferably in a fixed format. There
are many formats; one format is suggested below:

 Test case name Test Case ID

Purpose of test Testing object (unit, application, module, etc.)

Test attribute

Tests focus (function, feature, process, interface, validation, verification, etc.)

Test type (alpha, beta, unit, integration, system)

Test process A set of instructions for conducting the test-initial stating
condition-inputs-specifications-output expected

Test results Expected and actual and comparison, error description, post-
process state

Action Correction, authorization, and feedback through retest

Action to initialize the pre-test status

EXERCISES

 1. What is testing? Explain the different types of testing performed during software
development.

180 SOF T WARE ENGINEERING AND TESTING

 2. Define the various principles of testing.
 3. What are test oracles?
 4. What are the different levels of testing? Explain.
 5. Suppose a developed software has successfully passed all the three levels of testing,

i.e., unit testing, integration testing, and system testing. Can we claim that the software
is defect-free? Justify your answer.

 6. What is stress testing? Why is stress testing applicable to only certain types of
systems?

 7. What is unit testing?
 8. What is integration testing? Which types of defects are uncovered during integration

testing?
 9. What is regression testing? When is regression testing done? How is regression testing

performed?
 10. What is system testing? What are the different kinds of system testing that are usually

performed on large software products?
 11. What is the difference between black-box testing and white-box testing?
 12. Do you agree with the statement: System testing can be considered a pure black-box

test? Justify your answer.
 13. What are drivers and stub modules in the context of unit testing of a software

product?
 14. Define sandwich testing.
 15. Why is regression testing important? When is it used?
 16. What is a test case? What is test-case design?
 17. What is the difference between
 (a) Verification and validation
 (b) Black-box testing and white-box testing
 (c) Top-down and bottom-up testing approaches
 (d) Alpha and beta testing
 18. What are test plans and test cases? Illustrate each with an example.
 19. Why does software testing need extensive planning? Explain.
 20. What is smoke testing?
 21. Differentiate between integration testing and system testing.
 22. Define structural testing. Give the various reasons structural testing is performed.
 23. Explain the two categories of black-box testing. Also state the advantages of black-box

testing.

Chapter 8
SOFTWARE-TESTING

STRATEGIES

8.1 STATIC-TESTING STRATEGIES

 Static testing is the systematic examination of a program structure for the
purpose of showing that certain properties are true regardless of the execution
path the program may take. Consequently, some static analyses can be used

to demonstrate the absence of some faults from a program. Static testing represents
actual behavior with a model based upon the program’s semantic features and
structure. Human comparison often consists of people exercising little discipline in
comparing their code against notions of intent that are only loosely and imprecisely
defined. But human comparisons may also be quite structured, rigorous, and
effective as is the case of inspections and walkthroughs, which are carefully defined
and administered processes orchestrating groups of people to compare code and
designs to careful specifications of intent. Static testing strategies include:

 � Formal technical reviews

 � Walkthroughs

 � Code inspections

 � Compliance with design and coding standards

181

182 SOF T WARE ENGINEERING AND TESTING

8.1.1 Formal Technical Reviews

 A review can be defined as:

 A meeting at which the software element is presented to project personnel, managers,
users, customers, or other interested parties for comment or approval.

 What is a software review? A software review can be defined as a filter for the
software-engineering process. The purpose of any review is to discover errors in the
analysis, design, and coding, testing and implementation phases of the software-
development cycle. The other purpose of a review is to see whether procedures are
applied uniformly and in a manageable manner.

 Objectives for Reviews

 Review objectives are used:

 � To ensure that the software elements conform to their specifications.

 � To ensure that the development of the software element is being done as per
plans, standards, and guidelines applicable for the project.

 � To ensure that the changes to the software elements are properly implemented
and affect only those system areas identified by the change specification.

 Types of Reviews

 Reviews are one of two types: informal technical reviews and formal technical
reviews.

 � Informal Technical Review: An informal meeting and informal desk
checking.

 � Formal Technical Review: A formal software quality assurance activity
through various approaches, such as structured walkthroughs, inspections,
etc.

 What is a Formal Technical Review?

 A formal technical review is a software quality assurance activity performed
by software-engineering practitioners to improve software product quality.
The product is scrutinized for completeness, correctness, consistency, technical
feasibility, efficiency, and adherence to established standards and guidelines by
the client organization.

 The FTR serves as a training ground, enabling junior engineers to observe
different approaches to software analysis, design, and implementation. Each FTR
is conducted as a meeting and will be successful only if it is properly planned,
controlled, and attended.

 SOFTWARE-TESTING STRATEGIES 183

 Objectives of a Formal Technical Review

 The various objectives of a formal technical review are as follows:

 � To uncover errors in logic or implementation.

 � To ensure that the software has been represented according to predefined
standards.

 � To ensure that the software under review meets the requirements.

 � To make the project more manageable.

 For the success of a formal technical review, the following are expected:

 � The schedule of the meeting and its agenda reach the members well in
advance.

 � Members review the material and its distribution.

 � The reviewer must review the material in advance.

 The Review Meeting

 The meeting should consist of two to five people and should be restricted to not
more than two hours (preferably). The aim of the review is to review the product/
work and the performance of people. When the product is ready, the producer
(developer) informs the project leader about the completion of the product and
requests for review. The project leader contacts the review leader for the review.
The review leader asks the reviewer to perform an independent review of the
product/work before the scheduled FTR.

 Results of FTR

 � Meeting decision

 1. Whether to accept the product/work without any modifications.

 2. Accept the product/work with certain changes.

 3. Reject the product/work due to error.

 � Review summary report

 1. What was reviewed?

 2. Who reviewed it?

 3. Findings of the review.

 4. Conclusion.

8.1.2 Code Walk-throughs

 A code walk-through is an informal analysis of code as a cooperative, organized
activity by several participants. The analysis is based mainly on the game of

184 SOF T WARE ENGINEERING AND TESTING

“playing the computer.” That is, participants select some test cases (the selection
could have been done previously by a single participant) and simulate execution
of the code by hand. This is the reason for the name walk-through: participants
“walk through the code” or through any design notation.

 In general, the following prescriptions are recommended:

 � Everyone’s work should be reviewed on a scheduled basis.

 � The number of people involved in the review should be small (three to
five).

 � The participants should receive written documentation from the designer
a few days before the meeting.

 � The meeting should last a predefined amount of time (a few hours).

 � Discussion should be focused on the discovery of errors, not on fixing
them, nor on proposing alternative design decisions.

 � Key people in the meeting should be the designer, who presents and
explains the rationale of the work, a moderator for the discussion, and a
secretary, who is responsible for writing a report to be given to the designer
at the end of the meeting.

 � In order to foster cooperation and avoid the feeling that the designers are
being evaluated, managers should not participate in the meeting.

8.1.3 Code Inspections

 A code inspection, originally introduced by Fagan (1976) at IBM, is similar to a
walk-through but is more formal. In Fagan’s experiment, three separate inspections
were performed: one following design, but prior to implementation; one following
implementation, but prior to unit testing; and one following unit testing. The
inspection following unit testing was not considered to be cost effective in
discovering errors; therefore, it is not recommended.

 The organization aspects of code inspection are similar to those of code walk-
through (i.e., the number of participants, duration of the meeting, psychological
attitudes of the participants, etc., should be about the same), but there is a difference
in goals.

 In code inspection, the analysis is aimed explicitly at the discovery of
commonly made errors. In such a case, it is useful to state beforehand the type
of errors for which we are searching. For instance, consider the classical error of
writing a procedure that modifies a formal parameter and calling the procedure
with a constant value as the actual parameter.

 The following is a list of some classical programming errors, which can be
checked for during code inspection:

 SOFTWARE-TESTING STRATEGIES 185

 � Use of uninitialized variables

 � Jumps into loops

 � Non-terminating loops

 � Incompatible assignments

 � Array indices out of bounds

 � Improper storage allocation and deallocation

 � Mismatches between actual and formal parameters in procedure calls

 � Use of incorrect logical operators or incorrect precedence among operators

 � Improper modification of loop variables

 � Comparison of equality of floating-point values, etc.

 Checklist for Code Inspections

 Inspections or reviews are more formal and conducted with the help of some kind
of checklist. The steps in the inspections or reviews are:

 � Is the number of actual parameters and formal parameters in agreement?

 � Do the type attributes of actual and formal parameters match?

 � Do the dimensional units of actual and formal parameters match?

 � Are the number of attributes and ordering of arguments to built-in functions
correct?

 � Are constants passed as modifiable arguments?

 � Are global variable definitions and usage consistent among modules?

 � Application of a checklist specially prepared for the development plan, SRS,
design and architecture

 � Nothing observation: ok, not ok, with comments on mistake or inadequacy

 � Repair-rework

 � Checklists prepared to countercheck whether the subject entity is correct,
consistent, and complete in meeting the objectives

8.1.4 Differences Between Walk-throughs and Inspections/Reviews

 � The basic difference between the two is that a walk-through is less formal and
has only a few steps, whereas inspections and reviews are more formal and
logically sequential with many steps.

 � Both processes are undertaken before actual development, and hence they are
conducted on documents, such as a development plan, SOW, RDD and SRS,

186 SOF T WARE ENGINEERING AND TESTING

design document, and broad WBS to examine their authenticity, completeness,
correctness, and accuracy.

 � Both are costly but the cost incurred is comparatively much lower than the
cost of repair at a much later stage in the development cycle.

 � Another difference between a walk-through and an inspection is that the
former is less formal and quick; whereas inspection is more formal, takes more
time, and is far more systematic.

8.2 DEBUGGING

8.2.1 Introduction/Definition

 Debugging means identifying, locating, and correcting the bugs usually by
running the program. It is an extensively used term in programming. These bugs
are usually logical errors.

 During the compilation phase the source files are accessed and if errors are
found, then that file is edited and the corrections are posted in the file. After the
errors have been detected and the corrections have been included in the source
file, the file is recompiled. This detection of errors and removal of those errors
is called debugging. The file is compiled again, so changes done last time get
included in the object file also by itself. This process of compilation, debugging,
and correction posting in the source file continues until all syntactical errors are
removed completely. If a program is very large and complex, the more the program
has to be corrected and compiled.

 Successful compilation of the program means that now the program is
following all the rules of the language and is ready to execute. All of the syntax
errors of the program are indicated by the complier at this stage.

8.2.2 Debugging Tactics/Categories

 The various categories for debugging are:

 � Brute-force debugging

 � Backtracking

 � Cause elimination

 � Program slicing

 � Fault-tree analysis

 The various categories for debugging mentioned above are discussed as
follows:

 SOFTWARE-TESTING STRATEGIES 187

 1. Brute-force Debugging. The programmer appends the print or write statement
which, when executed, displays the value of a variable. The programmer may
trace the value printed and locate the statement containing the error. Earlier
when the time for execution was quite high, programmers had to use the core
dumps. The core dumps are referred to as the static image of the memory and
this may be scanned to identify the bug.

 2. Backtracking. In this technique, the programmer backtracks from the place or
statement which gives the error symptoms for the first time. From this place,
all the statements are checked for possible cause of errors. Unfortunately, as
the number of source lines increases, the number of potential backward paths
may become unmanageably large.

 3. Cause Elimination. Cause elimination is manifested by induction or deduction
and introduces the concept of binary partitioning. Data related to the error
occurrence are organized to isolate potential causes.

 A list of all possible causes is developed and tests are conducted to eliminate
each. If initial tests indicate that a particular cause hypothesis shows promise,
the data are refined in an attempt to isolate the bug.

 4. Program Slicing. This technique is similar to backtracking. However, the
search space is reduced by defining slices. A slice of a program for a particular
variable at a particular statement is the set of source lines preceding this
statement that can influence the value of that variable.

 5. Fault-tree Analysis. Fault-tree analysis, a method originally developed for the
U.S. Minuteman missile program, helps us to decompose the design and look
for situations that might lead to failure. In this sense, the name is misleading;
we are really analyzing failures, not faults, and looking for potential causes
of those failures. We build fault trees that display the logical path from effect
to cause. These trees are then used to support fault correction or tolerance,
depending on the design strategy we have chosen.

8.2.3 Debugging Process

 Debugging is not testing but always occurs as a consequence of testing. Referring
to Figure 8.1, the debugging process begins with the execution of a test case.
Results are assessed and a lack of correspondence between expected and actual
performance is encountered. In many cases, the lack of corresponding data is a
symptom of an underlying cause as still hidden. Debugging attempts to match
symptom with cause, thereby leading to error correction.

 Debugging will always have one of two outcomes:

 � The cause will be found and corrected and removed or

 � The cause will not be found.

188 SOF T WARE ENGINEERING AND TESTING

FIGURE 8.1 The Debugging Process

8.2.4 Program Debugging

 People think that program testing and debugging are the same thing. Though closely
related, they are two distinct processes. Testing establishes the presence of errors
in the program. Debugging is the locating of those errors and correcting them.
Debugging depends on the output of testing which tells the programmer about the
presence or absence of errors.

 There are various debugging stages, as shown in Figure 8.2. The incorrect
parts of the code are located and the program is modified to meet its requirements.
After repairing, the program is tested again to ensure that the errors have been
corrected. Debugging can be viewed as a problem-solving process.

FIGURE 8.2 Debugging Stages

 There is no standard method to teach how to debug a program. The debugger
must be a skilled person who can easily understand the errors by viewing the
output. The debugger must have knowledge of common errors, which occur very
often in a program.

 After errors have been discovered, then correct the error. If the error is a
coding error, then that error can be corrected easily. But, if the error is some design

 SOFTWARE-TESTING STRATEGIES 189

mistake, then it may require effort and time. Program listings and the hard copy of
the output can be an aid in debugging.

8.2.5 Debugging Guidelines

 Some general guidelines for effective debugging include:

 � Many a times, debugging requires a thorough understanding of the program
design.

 � Debugging may sometimes even require a full redesign of the system.

 � One must be aware of the possibility that any error correction may introduce
new errors. Therefore, after every round of error-fixing, regression testing
must be carried out.

8.2.6 Characteristics of Bugs

 Some characteristics of bugs are as follows:

 � The symptom and the cause may be geographically remote.

 � The symptom may disappear when another error is corrected.

 � The symptom may actually be caused by non-errors.

 � The symptom may be caused by a human error.

 � The symptom may be a result of timing problems.

 � It may be difficult to accurately reproduce input conditions.

 � The symptom may be intermittent.

 � The symptom may be due to causes that are distributed across a number of
tasks running on different processors.

8.3 ERROR, FAULT, AND FAILURE

8.3.1 Errors

 An error is a discrepancy between the actual value of the output given by the
software and the specified correct value of the output for that given input. That
is, error refers to the difference between the actual output of the software and the
correct output. An error is also used to refer to the wrong decision in a given case
as compared to what is expected to be the right one. Error also refers to human
actions that result in software containing a defect or fault.

190 SOF T WARE ENGINEERING AND TESTING

 Types of Errors

 Errors can be classified into two categories:

 1. Syntax Error. A syntax error is a program statement that violates one or more
rules of the language in which it is written.

 2. Logic Error. A logic error deals with incorrect data fields, out-of-range terms,
and invalid combinations.

8.3.2 Faults

 A fault is a condition that causes a system to fail in performing its required function.

 A fault is the basic reason for software malfunction. It is also commonly called
a bug. Even though correct input is given to the system, when it fails then we say
the system has a fault or a bug, and needs repair.

 The number of faults in software is the difference between the number
introduced and the number removed.

 Faults are introduced when the code is being developed by programmers.
They may introduce the faults during original design or when they are adding new
features, making design changes, or repairing faults that have been identified.

 Faults removal obviously can’t occur unless you have some means of detecting
the fault in the first place. Thus, fault removal resulting from execution depends on
the occurrence of the associated failure. Occurrence depends both on the length of
time for which the software has been executing and on the execution environment
or operational profile. When different functions are executed, different faults
are encountered and the failures that are exhibited tend to be different; thus, are
environmental influence. We can often find faults without execution. They may be
found through inspection, compiler diagnostics, design or code reviews, or code
reading.

8.3.3 Failure

 Failure is the inability of the software to perform a required function to its specification.

 In other words, when software goes ahead in processing without showing
error or fault even though certain input and process specification are violated,
then it is called a software failure.

 A software failure occurs when the behavior of software is different from the
required behavior.

 A failure is produced only when there is a fault in the system. In other words,
faults have the potential to cause failures and their presence is a necessary but not
a sufficient condition for failure to occur.

 SOFTWARE-TESTING STRATEGIES 191

EXERCISES

 1. Explain, in brief, the various static-testing strategies.
 2. Give a comparative study of inspection, reviews, walk-throughs, and checklists.
 3. Define various testing strategies in detail.
 4. What is a code walk-through? List the important types of errors checked during a code

walk-through.
 5. How can design attributes facilitate debugging?
 6. What are the various debugging approaches? Discuss them with the help of

examples.
 7. Define the term “debugging.” Explain the various debugging techniques available.
 8. Why is it advantageous to detect as many errors as possible during code review than

during testing?
 9. Define a review. Also, explain the different types of reviews.
 10. What is a Formal Technical Review (FTR)? What are the objectives of a FTR?
 11. What is the role of a formal technical review as a quality-assurance activity? Discuss

the details of the review meeting, reporting, and record keeping.
 12. Enumerate the various steps involved in a inspection/review.
 13. What is the difference between a code walk-through and a code inspection/review?
 14. What are the guidelines used for effective debugging?
 15. Describe the debugging process with the help of a suitable diagram.
 16. What is program debugging?
 17. Enumerate some of the characteristics shown by bugs.
 18. What do you understand by the terms error, fault, and failure?
 19. What is the difference between a syntax error and logical error?

4 SOF T WARE ENGINEERING AND TESTING

Chapter 9
SOFTWARE MAINTENANCE AND

PROJECT MANAGEMENT

9.1 SOFTWARE AS AN EVOLUTION ENTITY

 Lehman and Belady have studied the characteristics of the evolution of
several software products [1980]. They have expressed their observations in
the form of laws. Their important laws are given below.

 1. Lehman’s first law: A software product must change continually or become
progressively less useful.

 2. Lehman’s second law: The structure of a program tends to degrade as more
and more maintenance is carried out on it.

 3. Lehman’s third law: Over a program’s lifetime, its rate of development is
approximately constant.

9.2 SOFTWARE-CONFIGURATION MANAGEMENT ACTIVITIES

 Configuration management is carried out through three principal activities:

193

194 SOF T WARE ENGINEERING AND TESTING

 1. Configuration identification,

 2. Configuration control, and

 3. Configuration accounting.

 Briefly, these three activities can be described as:

 � Configuration Identification: Which parts of the system must be kept track
of?

 � Configuration Control: Ensures that changes to a component happen
smoothly.

 � Configuration Accounting: Keeps track of what has been changed, when,
and why.

 1. Configuration Identification. The project manager normally classifies
the objects associated with a software’s development into three main
categories: controlled, pre-controlled, and uncontrolled. Controlled objects
are those that are already put under configuration control. You must
follow some formal procedures to change them. Pre-controlled objects
are not yet under configuration control, but will eventually be under
configuration control. Uncontrolled objects are not and will not be subject
to configuration control. Controllable objects include both controlled and
pre-controlled objects. Typical controllable objects include:

 � Requirement specifications documents

 � Designing documents

 � Tools used to build the system, such as compliers, linkers, lexical
analyzers, parsers, etc.

 � Source code for each module

 � Test cases

 � Problem reports

 The configuration-management plan written during the project-planning
phase lists all controlled objects.

 2. Configuration Control. Configuration control is the process of managing
changes to controlled objects. The configuration control system prevents
unauthorized changes to any controlled object. In order to change a
controlled object, such as a module, a developer can get a private copy
of the module from a reserve operation (see Figure 9.1). Configuration-
management tools allow only one person to reserve a module at any time.
Once an object is reserved it does not allow anyone else to reserve this
module until the reserved module is restored. Thus, by preventing more

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 195

than one engineer to simultaneously reserve a module, the problems
associated with concurrent access are solved.

 The CCB is a group of people responsible for configuration management.
The CCB evaluates the request based on its effect on the project, and the
benefit due to change.

 An important reason for configuration control is people need a stable
environment to develop a software product.

 Suppose you are trying to integrate module A, with modules B and C.
You cannot make progress if the developer of module C keeps changing
it; this is especially frustrating if a change to module C forces you to
recompile A.

 As soon as a document under configuration control is updated, the
updated version is frozen and is called a baseline, as shown in Figure 9.1.

FIGURE 9.1 Configuration Control

 3. Configuration Accounting. Configuration accounting can be explained
with two concepts:

 (i) Status Accounting. Once the changes in the baselines occur, some
mechanisms must be used to record how the system evolves and what
its current state is. This task is accomplished by status accounting.
Its basic function is to record the activities related to the other SCM
functions.

196 SOF T WARE ENGINEERING AND TESTING

 Configuration status reporting (sometimes called status accounting)
is an SCM task that answers the following questions:

 (a) What happened? (b) Who did it?

 (c) When did it happen? (d) What else will be affected?

 The flow of information for configuration status reporting (CSR) is
illustrated in Figure 9.1. Each time an SCI is assigned new or updated
identification, a CSR entry is made. Each time a change is approved
by the CCA (i.e., an ECO is issued), a CSR entry is made. Each time
a configuration audit is conducted, the results are reported as part of
the CSR task. The key elements under status accounting are shown in
Figure 9.2.

FIGURE 9.2 Status Accounting

 (ii) Configuration Audit. A software-configuration audit complements
the formal technical review by assessing a configuration object for
characteristics that are generally not considered during review. The
audit asks and answers the following questions:

 (a) Has the change specified in the ECO been made? Have any
additional modifications been incorporated?

 (b) Has a formal technical review been conducted to assess technical
correctness?

 (c) Has the software process been followed and have software-
engineering standards been properly applied?

 (d) Has the change been “highlighted” in the SCI? Have the change
date and change author been specified? Do the attributes of the
configuration object reflect the change?

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 197

 (e) Have SCM procedures for noting the change, recording it, and
reporting it been followed?

 (f) Have all related SCIs been properly updated?

 The SCM audit revolves around software-configuration items, change
requests, and the software quality-assurance plan.

FIGURE 9.3 Configuration Accounting

9.3 CHANGE-CONTROL PROCESS

 At any moment, the configuration-management team must know the state of any
component or document in the system. Consequently, configuration management
should emphasize communication among those whose actions affect the system.
Cashman and Holt (1980) suggest that we should always know the answers to the
following questions:

 � Synchronization: When was the change made?

 � Identification: Who made the change?

 � Naming: What components of the system were changed?

 � Authentication: Was the change made correctly?

 � Authorization: Who authorized that the change be made?

 � Routing: Who was notified of the change?

 � Cancellation: Who can cancel the request for a change?

 � Delegation: Who is responsible for the change?

 � Valuation: What is the priority of the change?

 Notice that these questions are management questions, not technical ones. We
must use procedures to manage change carefully.

 Change control combines human procedures and automated tools to provide
a mechanism for the control of change. The change-control process is illustrated
schematically in Figure 9.4.

198 SOF T WARE ENGINEERING AND TESTING

FIGURE 9.4 Change-Control Process

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 199

9.4 SOFTWARE-VERSION CONTROL

 During the process of software evolution, many objects are produced; for example,
files, electronic documents, paper documents, source code, executable code, and
bitmap graphics. A version control tool is the first stage towards being able to
manage multiple versions. Once it is in place, a detailed record of every version of
the software must be kept. This report includes:

 � The name of each source-code component, including the variations and
revisions.

 � The versions of the various compliers and linkers used.

 � The name of the software staff who constructed the component.

 � The date and the time at which it was constructed.

FIGURE 9.5 An Evolutionary Graph for a Different Versions of an Item

 The above evolutionary graph (Figure 9.5) depicts the evolution of a
configuration item during the development life-cycle. The initial version of the
item is given version number Ver 1.0. Subsequent changes to the item which could
be mostly fixing bugs or adding minor functionality is given as Ver 1.1 and Ver
1.2. After that, a major modification to Ver 1.2 is given a number Ver 2.0, and at the
same time, a parallel version of the same item without the major modification is
maintained and given a version number 1.3.

 Commercial tools are available for version control, which perform one or more
of the following tasks:

 � Source-code control

 � Revision control

 � Concurrent-version control

200 SOF T WARE ENGINEERING AND TESTING

 There are many commercial tools, such as Rational Clear Case, Microsoft
Visual Source Safe, and a number of other tools to help version control.

9.5 SOFTWARE-CONFIGURATION MANAGEMENT

 Software-configuration management deals with effectively tracking and controlling
the configuration of a software product during its life-cycle.

 Before we discuss configuration management, we must be clear about what
exactly is meant by a version and a revision of a software product. A new version
of software is created when there is significant change in functionality, technology,
or the hardware it runs on, etc. On the other hand, a new release is created if there
is only a bug fix, minor enhancements to the functionality, usability, etc.

 The configuration-management team is responsible for assuring that each
version or release is correct and stable before it is released for use, and that changes
are made accurately and promptly. Accuracy is critical, because we want to avoid
generating new faults while correcting existing ones. Similarly, promptness is
important, because fault detection and correction are proceeding at the same time
that the test team searches for additional faults. Thus, those who are trying to
repair system faults should work with components and documentation that reflect
the current state of the system.

 Thus, configuration management is the art of identifying, organizing, and controlling
modifications to the software being built by a programming team. The goal is to maximize
productivity by minimizing mistakes.

OR

 Software-configuration management (SCM) is a set of activities designed to control
change by identifying the work products that are likely to change, establishing relationships
among them, defining mechanisms different versions of these work products, controlling
the changes imposed, and auditing and reporting on the changes made.

 Configuration-management procedures define how to record and process
proposed system changes, how to relate these to system components, and
the methods used to identify different versions of the system. Configuration-
management tools are used to store versions of system components, build systems
from these components, and track the release of system versions to customers.

 The IEEE defines SCM as the process of identifying and defining the items in the
system, controlling the change of these items throughout their life-cycle, recording and
reporting the status of items and change requests, and verifying the completeness and
correctness of items.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 201

 Figure 9.6 shows a simple configuration-management procedure based on the
rebuilding and deployment process.

FIGURE 9.6 Simple Configuration-Management Environment

9.5.1 Versions and Releases

 A configuration for a particular system is sometimes called a version. Thus, the
initial delivery of a software package may consist of several versions, one for each
platform or situation in which the software will be used. For example, aircraft
software may be built so that version 1 runs on Navy planes, version 2 runs on Air
Force planes, and version 3 runs on commercial airliners.

 A new release of the software is an improved system intended to replace
the old one. Often, software systems are described as version n, release m, or
as version n.m, where the number reflects the system’s position as it grows and
matures. Version n is sometimes intended to replace version n-1, and release m
supersedes m-1.

 Version and Release Management

 Version and release management are the processes of identifying and keeping track
of different versions and releases of a system. New system versions should always
be created by the CM team rather than the system developers, even when they are
not intended for external release. This makes it easier to maintain consistency in
the configuration database as only the CM team can change version information.

 A system version is an instance of a system that differs, in some way, from
other instances. New versions of the system may have different functionality,
performance, or may repair system faults. Some versions may be functionally
equivalent but designed for different hardware or software configurations. If there
are only small differences between versions, one of these is sometimes called a
variant of the other.

202 SOF T WARE ENGINEERING AND TESTING

 A system release is a version that is distributed to customers. Each system
release should either include new functionality or be intended for a different
hardware platform. There are always many more versions of a system than releases
as versions are created within an organization for internal development or testing
that are never released to customers.

9.6 NEED FOR MAINTENANCE

 Software maintenance is the activity associated with keeping an operational
computer system continuously in tune with the requirements of users and data-
processing operations. The software maintenance process is expensive and risky
and is very challenging. There is a need for software maintenance due to the
following reasons:

 � Changes in user requirements with time

 � Program/System problems

 � Changing hardware/Software environment

 � To improve system efficiency and throughout

 � To modify the components

 � To test the resulting product to verify the correctness of changes

 � To eliminate any unwanted side effects resulting from modifications

 � To augment or fine-tune the software

 � To optimize the code to run faster

 � To review standards and efficiency

 � To make the code easier to understand and work with

 � To eliminate any deviations from specifications

9.6.1 Maintenance To-Do List

 � Correct errors

 � Correct requirements and design flaws

 � Improve the design

 � Make enhancements

 � Interface with other systems

 � Convert for use with other hardware

 � Migrate legacy systems

 � Retire systems

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 203

 � Major aspects

 � Maintain control over the system’s day-to-day functions

 � Maintain control over system modification

 � Perfect existing acceptable functions

 � Prevent system performance from degrading to unacceptable levels

9.7 CATEGORIES OF MAINTENANCE

 Maintenance may be classified into the four categories as follows:

 � Corrective - reactive modifications to correct discovered problems.

 � Adaptive - modifications to keep it usable in a changed or changing
environment.

 � Perfective - improve performance or maintainability.

 � Preventive - modifications to detect and correct latent faults.

 (i) Corrective Maintenance. Corrective maintenance means repairing processing
or performance failures or making changes because of previously uncorrected
problems.

 (ii) Adaptive Maintenance. Adaptive maintenance means changing the program
functions. This is done to adapt to external environment changes. For example,
the current system was designed so that it calculates taxes on profits after
deducting the dividend on equity shares. The government has issued orders
now to include the dividend in the company profit for tax calculation. This
function needs to be changed to adapt to the new system.

 (iii) Perfective Maintenance. Perfective maintenance means enhancing the
performance or modifying the programs to respond to the user’s additional or
changing needs. For example, earlier data was sent from stores to headquarters
on magnetic media but after stores were electronically linked via leased lines,
the software was enhanced to send data via leased lines.

 As maintenance is very costly and very essential, efforts have been done
to reduce its costs. One way to reduce the costs is through a maintenance
management and software-modification audit. Software modification consists
of program rewriting and system level-upgradation.

 (iv) Preventive Maintenance. Preventive maintenance is the process by which we
prevent our system from being obsolete. Preventive maintenance involves the
concept of re-engineering and reverse engineering in which an old system with
an old technology is re-engineered using new technology. This maintenance
prevents the system from dying out.

204 SOF T WARE ENGINEERING AND TESTING

9.8 MAINTENANCE COSTS

 In the 1970s, most of a software system’s budget was spent on development. The
ratio of development money to maintenance money was reversed in the 1980s,
and various estimates place maintenance at 40 to 60% of the full life-cycle cost of
a system (i.e., from development through maintenance to eventual retirement or
replacement). However, this cost may vary widely from one application domain to
another.

 It is advisable to invest more effort in early phases of the software life-cycle
to reduce maintenance costs. The defect repair ratio increases heavily from the
analysis phase to the implementation phase as shown in Table 9.1.

TABLE 9.1 Defect Repair Ratio

Phase Ratio

Analysis 1

Design 10

Implementation 100

 Therefore, more effort during development will certainly reduce the cost of
maintenance.

9.8.1 Factors Affecting Effort

 There are many other factors that contribute to the effort needed to maintain a
system. These factors include the following:

 � Application type

 � System novelty

 � Turnover and maintenance staff availability

 � System life-span

 � Dependence on a changing environment

 � Hardware characteristics

 � Design quality

 � Code quality

 � Documentation quality

 � Testing quality

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 205

9.8.2 Modeling Maintenance Effort

 As with development, we want to estimate the effort required to maintain a
software system.

 1. Belady and Lehman Model. Belady and Lehman (1972) were among the
first researchers to try to capture maintenance effort in a predictive model.
This model indicates that effort and costs can increase exponentially if a poor
software development approach is used, and the person or group that used
the approach is no longer available to perform maintenance.

 Belady and Lehman capture these effects in an equation:

 M = P + Ke(c – d).

 M is the total maintenance effort expanded for a system, and p represents
wholly productive efforts: analysis, evaluation, design, coding, and testing.
c is the complexity caused by the lack of structured design and documentation;
it is reduced by d, the degree to which the maintenance team is familiar with
the software. Finally, K is a constant determined by comparing this model with
the effort relationships on actual projects; it is called an empirical constant
because its value depends on the environment.

 The Belady-Lehman equation expresses a very important relationship among
the factors determining maintenance effort. In this relation, the value of ‘c’
is increased if the software system is developed without use of a software-
engineering process. Of course, ‘c’ will be higher for a large software product
with a high degree of systematic structure than a small one with the same
degree. If the software is maintained without an understanding of the structure,
the function and purpose of the software, then the value of ‘d’ will be low.

 The result is that the cost for maintenance increases exponentially. Thus, to
economize on maintenance, the best approach is to build the system using
good software-engineering practices and to give the maintainers time to
become familiar with the software.

 Example 9.1. The development effort for a software project is 500 person-months. The
empirically determined constant (K) is 0.3. The complexity of the code is quite high
and is equal to 8. Calculate the total effort expended (M) if

 (i) The maintenance team has good level of understanding of the project (d = 0.9).

 (ii) The maintenance team has poor understanding of project (d = 0.1).

 Solution.

 Development effort (P) = 500 PM

 K = 0.3

 C = 8.

206 SOF T WARE ENGINEERING AND TESTING

 (i) The maintenance team has good level of understanding (d = 0.9)

 M = P + Ke(c – d)

 = 500 + 0.3e(8 – 0.9)

 = 500 + 363.59 = 863.59 PM.

 (ii) The maintenance team has poor level of understanding (d = 0.1)

 M = P + Ke(c – d)

 = 500 + 0.3e(8 – 0.1)

 = 500 + 809.18 = 1309.18 PM.

 Hence, it is clear that effort increases exponentially if poor software-engineering
approaches are used and understandability of the project is poor.

 2. Boehm Model. Boehm proposed a formula for estimating maintenance costs
as part of his COCOMO model. Using data gathered from several projects,
this formula was established in terms of effort. Boehm used a quantity called
Annual Change Traffic (ACT), which is defined as:

 The fraction of a software product’s source instructions which undergo change during
a year either through addition, deletion, or modification.

 The ACT is clearly related to the number of change requests.

 ACT = +added deleted

total

KLOC KLOC
KLOC

,

 where KLOCadded is the total kilo lines of source code added during
maintenance. KLOCdeleted is the total KLOCdeleted during maintenance. Thus,
the code that is changed should be counted in both the code added and the
code deleted.

 The annual change traffic is multiplied with the total development cost to
arrive at the maintenance cost.

 Maintenance cost = ACT × development cost

 Most maintenance-cost estimation models, however, give only approximate
results because they do not take into account several factors, such as the
experience level of engineers and the familiarity of engineers with the product,
hardware requirements, software complexity, etc.

 Example 9.2. The Annual change traffic for a software system is 15% per year. The
development effort is 600 PMs. Compute an estimate for the Annual maintenance
effort (AME). If the lifetime of the project is 10 years, what is the total effort of the
project?

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 207

 Solution.

 The development effort = 600 PM.

 ACT = 15%.

 Total duration for which effort is to be calculated = 10 years.

 The maintenance effort is a fraction of the development effort and is assumed
to be constant.

 AME = ACT × SDE

 = 0.15 × 600 = 90 PM

 The maintenance effort for 10 years = 10 × 90 = 900 PM

 Total effort = 600 + 900 = 1500 PM.

9.9 SOFTWARE-PROJECT ESTIMATION

 Software-project estimation is the process of estimating various resources required
for the completion of a project. Effective software-project estimation is an important
activity in any software-development project. Underestimating software projects
and understaffing it often leads to low-quality deliverables, and the project misses
the target deadline leading to customer dissatisfaction and loss of credibility to the
company. On the other hand, overstaffing a project without proper control will
increase the cost of the project and reduce the competitiveness of the company.

 Software-project estimation mainly encompasses the following steps:

 1. Estimating the Size of the Project. There are many procedures available
for estimating the size of a project, which are based on quantitative
approaches, such as estimating lines of code or estimating the functionality
requirements of the project called function points.

 2. Estimating Efforts Based on Person-months or Person-hours. Person-
month is an estimate of the personal resources required for the project.

 3. Estimating Schedule in Calendar Days/Month/Year Based on Total
Person-months Required and Manpower Allocated to the Project. The
duration in calendar month = Total person-months/Total manpower
allocated.

 4. Estimating Total Cost of the Project Depending on the Above and
Other Resources. In a commercial and competitive environment,
software-project estimation is crucial for managerial decision-making.
Table 9.2 gives the relationship between various management functions
and software metrics/indicators. Project estimation and tracking help to

208 SOF T WARE ENGINEERING AND TESTING

plan and predict future projects and provide baseline support for project
management and supports decision-making.

TABLE 9.2 Software-Project Estimation

Activity Tasks Involved

Planning Cost estimation, planning for training of
manpower, project scheduling, and budgeting
the project.

Controlling Size metrics and schedule metrics help the
manager to keep control of the project during
execution.

Monitoring/improving Metrics are used to monitor progress of the
project and wherever possible sufficient
resources are allocated to improve it.

FIGURE 9.7 Software-project Estimation

9.9.1 Estimating Size

 Estimating the size of the software to be developed is the very first step to make an
effective estimation of the project. Customer requirements and system specifications
form a baseline for estimating the size of a software. At a later stage of the project,
system design documents can provide additional details for estimating the overall
size of the software.

 � The ways to estimate project size can be through past data from an earlier
developed system. This is called estimation by analogy.

 � The other way of estimation is through product feature/functionality. The
system is divided into several subsystems depending on functionality, and the
size of each subsystem is calculated.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 209

9.9.2 Estimating Effort

 Once the size of software is estimated, the next step is to estimate the effort based
on the size. The estimation of effort can be made from the organizational specifics of
the software-development life-cycle. The development of any application software
system is more than just the coding of the system. Depending on deliverable
requirements, the estimation of effort for a project will vary.

 Efforts are estimated in the number of person-months.

 � The best way to estimate effort is based on the organization’s own
historical data of development processes. Organizations follow a similar
development life-cycle when developing various applications.

 � If the project is of a different nature, which requires the organization to
adopt a different strategy for development, then different models based
on algorithmic approaches can be devised to estimate the required effort.

9.9.3 Estimating Schedule

 The next step in the estimation process is estimating the project schedule from
the effort estimated. The schedule for a project will generally depend on human
resources involved in a process. Efforts in person-months are translated to calendar
months.

 Schedule estimation in calendar months can be calculated using the following
model [McConnell]:

 Schedule in calendar months = 3.0*(person-months)1/3

 The parameter 3.0 is variable, used depending on the situation that works best
for the organization.

9.9.4 Estimating Cost

 Cost estimation is the next step for projects. The cost of a project is derived not only
from the estimates of effort and size but from other parameters, such as hardware,
travel expenses, telecommunication costs, training costs, etc. Figure 9.8 depicts the
cost-estimation process.

FIGURE 9.8 Cost-estimation Process

210 SOF T WARE ENGINEERING AND TESTING

 Figure 9.9 depicts the project-estimation process.

FIGURE 9.9 Project-estimation Process

 Once the estimation is complete, we may be interested to know how accurate the
estimates are. The answer to this is “we do not know until the project is complete.”
There is always some uncertainty associated with all estimation techniques. The
accuracy of project estimation will depend on the following:

 � Accuracy of historical data used to project the estimation.

 � Accuracy of input data to various estimates.

 � Maturity of an organization’s software-development process.

 The following are some of the reasons cost estimation can be difficult:

 � Software-cost estimation requires a significant amount of effort. Sufficient
time is usually not allocated for planning.

 � Software-cost estimation is often done hurriedly, without an appreciation
for the actual effort required and is far from realistic.

 � Lack of experience for developing estimates, especially for large projects.

 � An estimator uses the extrapolation technique to estimate, ignoring the
non-linear aspects of the software-development process.

9.9.5 Reasons for Poor/Inaccurate Estimation

 The following are some of the reasons for poor and inaccurate estimation:

 � Requirements are imprecise. Also, requirements change frequently.

 � The project is new and is different from past projects handled.

 � Non-availability of enough information about past projects.

 � Estimates are forced to be based on available resources.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 211

 � Cost and time tradeoffs.

 If we elongate the project, we can reduce overall costs. Usually, customers
and management do not like long project durations. There is always the shortest
possible duration for a project, but it comes at a cost.

 The following are some of the problems associated with estimates:

 � Estimating size is often skipped and a schedule is estimated, which is of
more relevance to management.

 � Estimating size is perhaps the most difficult step, which has a bearing on
all other estimates.

 � Let us not forget that even good estimates are only projections and subject
to various risks.

 � Organizations often give less importance to collection and analysis of
historical data of past development projects. Historical data is the best
input to estimate a new project.

 � Project managers often underestimate the schedule because management
and customers often hesitate to accept a prudent realistic schedule.

9.9.6 Project-estimation Guidelines

 Some guidelines for project estimation are as follows:

 � Preserve and document data pertaining to past projects.

 � Allow sufficient time for project estimation especially for bigger projects.

 � Prepare realistic developer-based estimates. Associate people who will work
on the project to reach a realistic and more accurate estimate.

 � Use software-estimation tools.

 � Re-estimate the project during the life-cycle of the development process.

 � Analyze past mistakes in the estimation of projects.

9.10 CONSTRUCTIVE COST MODEL (COCOMO)

 COCOMO stands for Constructive Cost Model. It was introduced by Barry Boehm
in 1981. It is perhaps the best known and most thoroughly documented of all
software-cost estimation models. It provides the following three levels of models:

 � Basic COCOMO: A single-value model that computes software-development
costs as a function of an estimate of LOC.

 � Intermediate COCOMO: This model computes development costs and effort
as a function of program size (LOC) and a set of cost drivers.

212 SOF T WARE ENGINEERING AND TESTING

 � Complete COCOMO: This model computes development effort and
costs which incorporates all characteristics of intermediate levels with
assessment of cost implications in each step of development (analysis,
design, testing, etc.).

 This model may be applied to three classes of software projects as given
below:

 � Organic: Small-size project. A simple software project where the develop-
ment team has good knowledge of the application.

 � Semi-detached: An intermediate-size project, and the project is based on
rigid and semi-rigid requirements.

 � Embedded: The project is developed under hardware, software, and
operational constraints. Examples are embedded software and flight-
control software.

9.10.1 Basic COCOMO Model

 The basic COCOMO model gives an approximate estimate of the project parameters.
The basic COCOMO estimation model is given by the following expressions:

 Effort = a1 × (KLOC)a2 PM

 Tdev = b1 × (Effort)b2 Months

 where KLOC is the estimated size of the software product expressed in Kilo Lines
and Code a1, a2, b1, b2 are constants of the software product.

 Tdev is the estimated time to develop the software, expressed in months.

 Effort is the total effort required to develop the software product, expressed in
person-months (PM).

 The person-month curve is shown in Figure 9.10.

FIGURE 9.10 Person-month Curve

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 213

 Estimation of Development Effort

 Organic: Effort = 2.4 (KLOC)1.05 PM

 Semi-detached: Effort = 3.0 (KLOC)1.12 PM

 Embedded: Effort = 3.6 (KLOC)1.20 PM

 Figure 9.11 (a) shows a plot of the estimated effort versus the size for various
product sizes.

FIGURE 9.11 (a) Effort Versus Size

 From Figure 9.11 (a), we can observe that the effort is almost linearly
proportional to the size of the software product.

 Estimation of Development Time

 Organic: Tdev = 2.5 (Effort)0.38 Months

 Semi-detached: Tdev = 2.5 (Effort)0.35 Months

 Embedded: Tdev = 2.5(Effort)0.32 Months

 Figure 9.11 (b) shows a plot of development time versus product size.

FIGURE 9.11 (b) Development Time Versus Product Size

214 SOF T WARE ENGINEERING AND TESTING

 From Figure 9.11(b), we can observe that the development time is a sub-linear
function of the size of the product.

9.10.2 Intermediate COCOMO Model

 The intermediate COCOMO model recognizes this fact and refines the initial
estimate obtained through the basic COCOMO expression by using a set of 15 cost
drivers (multipliers) based on various attributes of software development.

TABLE 9.3 COCOMO Intermediate Cost Drivers

Driver Type Code Cost Driver

Product attributes RELY

DATA

CPLX

Required software reliability

Database size

Product complexity

Computer attributes TIME

STOR

VIRT

TURN

Execution time constraints

Main storage constraints

Virtual machine volatility—degree to which the
operating system changes

Computer turnaround time

Personnel attributes ACAP

AEXP

PCAP

VEXP

LEXP

Analyst capability

Application experience

Programmer capability

Virtual machine (i.e., operation system) experience

Programming-language experience

Project attributes MODP

TOOL

SCED

Use of modern programming practices

Use of software tools

Required development schedule

9.10.3 Complete COCOMO Model

 The shortcomings of both basic and intermediate COCOMO models are that
they:

 � Consider a software product a single homogenous entity. However, most large
systems are made up of several smaller subsystems. Some subsystems may be
considered organic, some embedded, etc. For some, the reliability requirements
may be high, and so on.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 215

 � Consider the cost of each subsystem separately.

 � Consider the costs of the subsystems but add them separately to obtain total
cost.

 � Reduce the margin of error in the final estimate.

 A large amount of work has been done by Boehm to capture all significant
aspects of software development. It offers a means for processing all the project
characteristics to construct a software estimate. The complete model introduces
two more capabilities:

 1. Phase-Sensitive Effort Multipliers. Some phases (design, programming,
and integration/test) are more affected than others by factors defined by
the cost drivers. The complete model provides a set of phase-sensitive
effort multipliers for each cost driver. This helps in determining the
manpower allocation for each phase of the project.

 2. Three-Level Product Hierarchy. Three product levels are defined. These are
module, subsystem, and system levels. The ratings of the cost drivers are
done at appropriate levels; that is, the level at which it is most susceptible
to variation.

9.11 SOFTWARE-RISK ANALYSIS AND MANAGEMENT

 Risk analysis and management are a series of steps that help a software team to
understand and manage uncertainty. Many problems can plague a software project.
A risk is a potential problem—it might happen, it might not. But, regardless of the
outcome, it’s a really good idea to identify it, assess its probability of occurrence,
estimate its impact, and establish a contingency plan should the problem actually
occur.

 Risk is defined as an exposure to the chance of injury or loss. That is, risk
implies that there is a possibility that something negative may happen. In the
context of software projects, negative implies that there is an adverse effect on
cost, quality, or schedule.

9.11.1 Risk Management

 Risk management is the area that tries to ensure that the impact of risks on cost,
quality, and schedule is minimal.

 Risk management is a scientific process based on the application of game theory,
decision theory, probability theory, and utility theory. The Software Engineering
Institute (SEI) classifies the risk hierarchy as shown in Figure 9.12.

216 SOF T WARE ENGINEERING AND TESTING

FIGURE 9.12 Risk Hierarchy

 Risk scenarios may emerge out of management challenges and technical
challenges in achieving specific goals and objectives.

 Risk management must be performed regularly throughout the achievement
life-cycle. Risks are dynamic, as they change over time. Risk management should
not be regarded as an activity integral to the main process of achieving specific goals
and objectives. Risk and its management should not be treated as an activity outside
the main process of achievement. Risk is managed best when risk management is
implemented as a mainstream function in the software-development and goal-
achievement processes.

9.11.2 Management of Risks

 Risk management plays an important role in ensuring that the software product is
error-free. Firstly, risk management takes care that the risk is avoided, and if it is
not avoidable, then the risk is detected, controlled, and finally recovered.

 Risk-management Categories

 A priority is given to risk and the highest priority risk is handled first. Various
factors of the risk include who are the involved team members, what hardware
and software items are needed, where, when, and why. The risk manager does
scheduling of risks. Risk management can be further categorized as follows:

 1. Risk Avoidance

 � Risk anticipation

 � Risk tools

 2. Risk Detection

 � Risk analysis

 � Risk category

 � Risk prioritization

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 217

 3. Risk Control

 � Risk pending

 � Risk resolution

 � Risk not solvable

 4. Risk Recovery

 � Full

 � Partial

 � Extra/alternate feature

 Figure 9.13 depicts a risk-management tool.

FIGURE 9.13 Risk-management Tool

 From Figure 9.13, it is clear that the first phase is to avoid risk by anticipating
and using tools from previous project histories. In the case where there is no
risk, the risk manager stops. In the case of risk, detection is done using various
risk analysis techniques and further prioritizing risks. In the next phase, risk is
controlled by pending risks, resolving risks, and in the worst case (if the risk is not
solved), lowering the priority. Lastly, risk recovery is done fully, partially, or an
alternate solution is found.

218 SOF T WARE ENGINEERING AND TESTING

 1. Risk Avoidance

 � Risk Anticipation: Various risk anticipation rules are listed according to
standards from previous projects, experience, and also as mentioned by
the project manager.

 � Risk Tools: Risk tools are used to test whether the software is risk-free. The
tools have a built-in database of available risk areas and can be updated
depending upon the type of project.

 2. Risk Detection

 The risk-detection algorithm detects a risk and it can be categorically stated as
the following:

 � Risk Analysis: In this phase, the risk is analyzed with various hardware and
software parameters as probabilistic occurrence (pr), weight factor (wf)
(hardware resources, lines of code, people), and risk exposure (pr * wf).
Table 9.4 depicts a risk-analysis table.

TABLE 9.4 Risk-analysis Table

S.No. Risk Name Probability of
Occurrence (pr)

Weight
Factor (wf)

Risk Exposure
(pr*wf)

1. Stack overflow 5 15 75

2. No password
forgot option

7 20 140

.....

 The maximum value of risk exposure indicates that the problem has to be
solved as soon as possible and be given high priority. A risk-analysis table
is maintained as shown in Table 9.4.

 � Risk Category: Risk identification can come from various factors, such as
persons involved in the team, management issues, customer specification
and feedback, environment, commercial, technology, etc. Once the proper
category is identified, priority is given depending upon the urgency of the
product.

 � Risk Prioritization: Depending upon the entries of the risk-analysis table,
the maximum risk exposure is given high priority and has to be solved
first.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 219

 3. Risk Control. Once the prioritization is done, the next step is to control various
risks as follows:

 � Risk Pending: According to the priority, low-priority risks are pushed to the
end of the queue with a view of various resources (hardware, manpower,
software) and if it takes more time their priority is made higher.

 � Risk Resolution: The risk manager decides how to solve the risk.

 � Risk Elimination: This action leads to serious errors in the software.

 � Risk Transfer: If the risk is transferred to some part of the module, then the
risk-analysis table entries get modified. And again, the risk manager will
control high-priority risks.

 � Disclosures: Announce the smaller risks to the customer or display message
boxes as warnings so that the user take proper steps during data entry,
etc.

 � Risk not Solvable: If a risk takes more time and more resources, then it
is dealt with in its totality on the business side of the organization and
thereby the customer is notified, and the team member proposes an
alternate solution. There is a slight variation in the customer specifications
after consultation.

 4. Risk Recovery

 � Full: The risk-analysis table is scanned and if the risk is fully solved, then
the corresponding entry is deleted from the table.

 � Partial: The risk-analysis table is scanned and due to partially solved
risks, the entries in the table are updated and thereby priorities are also
updated.

 � Extra/alternate features: Sometimes it is difficult to remove risks, and in that
case, we can add a few extra features, that solve the problem. Therefore,
some coding is done to resolve the risk. This is later documented or the
customer is notified.

9.11.3 Sources of Risks

 There are two major sources of risk, which are as follows:

 1. Generic Risks. Generic risks are the risks common to all software projects.
For example, requirement misunderstanding, allowing insufficient time for
testing, losing key personnel, etc.

 2. Project-Specific Risks. A vendor may be promising to deliver particular
software by a particular date, but is unable to do it.

220 SOF T WARE ENGINEERING AND TESTING

9.11.4 Types of Risks

 There are three types of risks, which are discussed as follows:

 1. Product Risks. Product risks are risks that affect the quality or performance of
the software being developed. This originates from conditions, such as unstable
requirement specifications, not being able to meet the design specifications
affecting software performance, and uncertain test specifications. In view of
the software product risks, there is a risk of losing the business and facing
strained customer relations. For example, CASE tools under performance.

 2. Business Risks. Business risks are risks that affect the organization developing
or procuring the software. For example, technology changes and product
competition. The top five business risks are:

 � Building an excellent product or system that no one really wants (market
risks).

 � Building a product that no longer fits into the overall business strategy for
the company (strategic risk).

 � Building a product that the sales force doesn’t understand how to sell.

 � Losing the support of senior management due to a change in focus or a
change in people (management risk).

 � Losing budgetary or personnel commitment (budget risks).

 3 Project Risks. Project risks are risks that affect the project schedule or
resources. These risks occur due to conditions and constraints about resources,
relationships with vendors and contractors, unreliable vendors, and lack of
organizational support. Funding is the significant project risk management has
to face. It occurs due to initial budgeting constraints and unreliable customer
payments. For example, staff turnover, management change, hardware
uninvertibility.

EXERCISES

 1. What is software maintenance? Describe various categories of maintenance. Which
category consumes maximum effort and why?

 2. Some people feel that “maintenance is manageable.” What is your opinion about this
issue?

 3. Explain Boehm’s maintenance model with the help of a diagram.
 4. Describe various maintenance-cost estimation models.
 5. Define the Belady and Lehman model for the calculation of maintenance effort.

 SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT 221

 6. Annual change traffic (ACT) in a software system is 40% per year. The initial
development cost was Rs 25 lacs. The total life-time for the software is 12 years. What
is the total cost of the software system?

 7. Why is maintenance needed?
 8. What are the different types of maintenance that a software product might need? Why

is such maintenance required?
 9. What is software configuration? What is meant by software-configuration management?

How can you manage software configuration (only give the names of the principle
activities involved)?

 10. What is the difference between a revision and a version of a software product?
 11. Define the terms change control and version control. Why are these necessary?
 12. Explain how change and version control are achieved using a configuration-

management tool.
 13. Define:
 (a) Status accounting
 (b) Configuration audit
 14. What is software-configuration management? Also discuss, in brief, the various

software-configuration management activities.
 15. What is configuration identification?
 16. What are configuration-management activities? Draw the schematic diagram of a

change-control process.
 17. List three common types of risks that a typical software project might suffer from.
 18. Define “software version control.”
 19. Using a schematic diagram show the order in which the following are estimated using

COCOMO estimation techniques: cost, effort, duration, size.
 20. What are the various reasons for poor/inacurate estimation?
 21. Discuss the various types of COCOMO models. Explain the phase-wise distribution of

effort.
 22. Describe the basic COCOMO model in detail.
 23. Why does cost estimation play an important role in the software-development

process?
 24. What is risk? Is it economical to do risk management? What is the effect of this activity

on the overall cost of the project?
 25. What are the two major sources of risk? Explain the three categories of risks that a

software project might suffer from.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 10
COMPUTER-AIDED

SOF TWARE ENGINEERING

10.1 CASE AND ITS SCOPE

 CASE stands for Computer-Aided Software Engineering.

CASE is a tool that helps a software engineer maintain and develop software.
The workshop for software engineering is called an Integrated Project Support
Environment (IPSE) and the tool-set that fills the workshop is called CASE.

 CASE is an automated support tool for software engineers in any software-
engineering process.

 Software engineering mainly includes the following processes:

 � Translation of user needs into software requirements

 � Transaction of software requirements into design specifications

 � Implementation of design into code

 � Testing of the code

 � Documentation

223

224 SOF T WARE ENGINEERING AND TESTING

 CASE technology provides software-process support by automating some
process activities and by providing information about the software being
developed. Examples of activities, which can be automated using CASE,
include:

 � The development of graphical system models as part of the requirements
specification or the software design.

 � Understanding a design using a data dictionary, which holds information
about the entities and relations in a design.

 � The generation of user interfaces from a graphical interface description,
which is created interactively by the user.

 � Program debugging through the provision of information about an
executing program.

 � The automated translation of programs from an old version of a
programming language, such as COBOL, to a more recent version.

10.2 LEVELS OF CASE

 There are three different levels of CASE technology:

 1. Production Process Support Technology. This includes support for process
activities, such as specification, design, implementation, testing, and so on.

 2. Process Management and Technology. This includes tools to support process
modeling and process management. These tools are used for specific support
activities.

 3. Meta-CASE Technology. Meta-CASE tools are generators, which are used to
create production process-management support tools.

10.3 ARCHITECTURE OF CASE ENVIRONMENT

 The architecture of the CASE environment is illustrated in Figure 10.1.

 The important components of a modern CASE environment are the user
interface, the Tools Management System (tools-set), the Object Management
System (OMS), and the repository. These various components are discussed as
follows:

 1. User Interface. It provides a consistent framework for accessing different
tools; thus making it easier for the user to interact with different tools and
reduces learning time of how the different tools are used.

 COMPUTER-AIDED SOFTWARE ENGINEERING 225

FIGURE 10.1 Architecture of CASE Environment

 2. Tools-Management Services (Tools-set). The tools-set section holds the
different types of improved quality tools. The tools layer incorporates
a set of tools-management services with the CASE tool themselves. The
Tools Management Service (TMS) controls the behavior of tools within the
environment. If multitasking is used during the execution of one or more tools,
TMS performs multitask synchronization and communication, coordinates
the flow of information from the repository and object-management system
into the tools, accomplishes security and auditing functions, and collects
metrics on tool usage.

 3. Object-Management System (OMS). The object-management system maps
these (specification design, text data, project plan, etc.) logical entities into
the underlying storage-management system, i.e., the repository.

 Working in conjunction with the CASE repository, the OML provides
integration services a set of standard modules that couple tools with the
repository. In addition, the OML provides configuration management
services by enabling the identification of all configuration objects performing
version control, and providing support for change control, audits, and status
accounting.

226 SOF T WARE ENGINEERING AND TESTING

 4. Repository. The repository is the CASE database and the access-control
functions that enable the OMS to interact with the database. The word CASE
repository is referred to in different ways, such as project database, IPSE
database, data dictionary, CASE database, and so on.

10.4 BUILDING BLOCKS FOR CASE

 The building blocks for CASE are illustrated in Figur 10.2.

FIGURE 10.2 CASE Building Blocks

 1. Environment Architecture. The environment architecture, composed of the
hardware platform and operating system support including networking
and database management software, lays the groundwork for CASE but the
CASE environment itself demands other building blocks.

 2. Portability Services. A set of portability services provides a bridge between
CASE tools and their integration framework and the environment archit-
ecture. These portability services allow the CASE tools and their integration
framework to migrate across different hardware platforms and operating
systems without significant adaptive maintenance.

 3. Integration Framework. It is a collection of specialized programs that enables
individual CASE tools to communicate with one another and to create a
project database.

 4. Case Tools. Case tools are used to assist software-engineering activities (such
as analysis modeling, code generation, etc.) by either communicating with
other tools, the project database (integrated CASE environment), or as point
solutions.

 COMPUTER-AIDED SOFTWARE ENGINEERING 227

10.5 CASE SUPPORT IN SOFTWARE LIFE-CYCLE

 There are various types of support that CASE provides during the different
phases of a software life-cycle.

 1. Prototyping Support. The prototyping is useful to understand the
requirements of complex software products, to market new ideas and so on.
The prototyping CASE tools requirements are as follows:

 � Define user interaction

 � Define the system control flow

 � Store and retrieve data required by the system

 � Incorporate some processing logic

 A few features that are supported by prototyping tools include:

 � Developing the graphical user interface (GUI). The user should be
allowed to define all data entry forms, menus, and control.

 � They integrate well with the data dictionary of a CASE environment.

 � They should be able to integrate with the external user-defined modules
written in high-level languages.

 � The user should be able to define the sequence of states through which a
created prototype can run.

 � The prototype should support a mock-up run of the actual system and
management of the input and output data.

 2. Structured Analysis and Design. A CASE tool should support one or more of
the structured analysis and design techniques. It should also support making
of the fairly complex diagrams and preferably through a hierarchy of levels.
The tool must also check the incompleteness, inconsistencies, and anomalies
across the design and analysis through all levels of analysis hierarchy.

 Analysis and design tools enable a software engineer to create models of the
system to be built. The models contain a representation of data, function, and
behavior (at the analysis level) and characterizations of data, architectural,
component-level, and interface design. By performing consistency and
validity checking on the models, analysis and design tools provide a software
engineer with some degree of insight into the analysis representation and
help to eliminate errors before they propagate into the design, or worse, into
the implementation itself.

 3. Code Generation. A support expected from a CASE tool during the code-
generation phase includes the following:

 � The CASE tool should support generation of module skeletons or
templates in one or more popular programming languages.

228 SOF T WARE ENGINEERING AND TESTING

 � The tool should generate records, structures, and class definitions
automatically from the contents of the data dictionary in one or more
popular programming languages.

 � It should be able to generate database tables for a relational database-
management system.

 � The tools should generate code for the user interface from prototype
definitions for X-Windows and Windows-based applications.

 4. Test CASE Generator. The CASE tool for the test case generator should have
the following features:

 � It should support both design and requirement testing.

 � It should generate test set reports in ASCII format, which can be directly
imported into the test plan document.

 In the testing phase, test-management tools are used to control and coordinate
software testing for each of the major testing steps. Testing tools manage and
coordinate regression testing, perform comparisons that ascertain differences
between actual and expected output, and conduct batch testing of programs with
interactive human/computer interfaces. In addition to the functions noted, many
test-management tools also serve as generic test drivers. A test driver reads one
or more test cases from a testing file, formats the test data to conform to the needs
of the software being tested, and then invokes the software to be tested.

10.6 OBJECTIVES OF CASE

 1. Improve Productivity. Most organizations use CASE to increase the speeds
with which systems are designed and developed. Imagine the difficulties
carpenters would face without hammers and saws. Tools increase the analysts’
productivity by reducing the time needed to document, analyze, and construct
an information system.

 2. Improve Information System Quality. When tools improve processes, they
usually improve the results as well. They:

 � Ease and improve the testing process through the use of automated
checking.

 � Improve the integration of development activities via common method-
ologies.

 � Improve the quality and completeness of documentation.

 � Help standardize the development process.

 � Improve the management of the project.

 COMPUTER-AIDED SOFTWARE ENGINEERING 229

 � Simplify program maintenance.

 � Promote reversibility of modules and documentation.

 � Shorten the overall construction process.

 � Improve software portability across environments.

 � Through reverse engineering and re-engineering, CASE products extend
the files of existing systems.

 Despite the various driving forces (objectives) for the adoption of CASE,
there are many resisting forces that also preclude many organizations from
investing in CASE.

 3. Improve Effectiveness. Effectiveness means doing the right task (i.e.,
deciding the best task to perform to achieve the desired result). Tools can
suggest procedures (the right way) to approach a task. Identifying user
requirements, stating them in an understandable form, and communicating
them to all interested parties can be an effective development process.

 4. Organizations Reject CASE Because:

 � The start-up cost of purchasing and using CASE.

 � The high cost of training personnel.

 � The big benefits of using CASE come in the late stages of the SDLC.

 � CASE often lengthens the duration of the early stage of the project.

 � CASE tools cannot easily share information between tools.

 � Lack of methodology standards within organizations. CASE products
force analysts to follow a specific methodology for system development.

 � Lack of confidence in CASE products.

 � IS personnel view CASE as a threat to their job security.

 Despite these issues, in the long-term, CASE is very good. The functionality of
CASE tools is increasing and the costs are coming down. During the next several
years, CASE technologies and the market for CASE will begin to mature.

10.7 CASE REPOSITORY

 A CASE repository is a system-developer database. Synonyms include dictionary
and encyclopedia. It is a place where developers can store system models, detailed
descriptions and specifications, and other products of system development.

 Analysts use CASE repositories for five important reasons:

 � To manage the details in large systems.

230 SOF T WARE ENGINEERING AND TESTING

 � To communicate a common meaning for all system elements.

 � To document the features of the system.

 � To facilitate analysis of the details in order to evaluate characteristics and
determine where system changes should be made.

 � To locate errors and omissions in the system.

 To limit the amount of narrative needed to describe relationships between
data items and at the same time to show the structural relationship clearly,
analysts often use formal notation in the data dictionary, a component of a CASE
repository.

FIGURE 10.3 Case Repository

 A data dictionary can be developed manually or using automated systems.
Automated systems offer the advantage of automatically producing data elements,
data structures, and process listings; they also perform cross-reference checking
and error detection. The data dictionary is a repository of all data definitions
for all organizational applications and is used to manage and control access

 COMPUTER-AIDED SOFTWARE ENGINEERING 231

to the information repository, another component of the CASE repository. The
information repository provides automated tools used to manage and control
access to business information and application portfolios.

 The CASE repository is an idea central to I-CASE. Integrated-CASE tools
rely on common terminology, notations, and methods for system development
across all tools. Within an I-CASE environment, all diagrams, forms, reports, and
programs can be automatically updated by the single change to the data-dictionary
definition. Besides specific tool integration, there are two additional advantages
of using a comprehensive CASE repository that relate to project management and
reusability. The CASE repository provides a wealth of information to the project
manager and allows the manger to exert an appropriate amount of control over
the project. If all organizational systems were created using CASE technology
with a common repository, it would be possible to reuse significant portions of
prior systems in the deveopment of new ones.

10.8 CHARACTERISTICS OF CASE TOOLS

 All CASE tools have the following characteristics:

 � A graphic interface to draw diagrams, charts, models (uppercase, middlecase,
lowercase).

 � An information repository, a data dictionary for efficient information-
management selection, usage, application, and storage.

 � Common user interface for integration of multiple tools used in various
phases.

 � Automatic code generators.

 � Automatic testing tools.

10.9 CASE CLASSIFICATION

 CASE classifications help us understand the different types of CASE tools and
their role in supporting software process activities. There are various ways of
classifying CASE tools, each of which gives us a different perspective on these
tools. In this section, we discuss CASE tools from three of these perspectives,
namely:

 � A functional perspective where CASE tools are classified according to their
specific function.

232 SOF T WARE ENGINEERING AND TESTING

 � A process perspective where tools are classified according to the process
activities which they support.

 � An integration perspective where CASE tools are classified according to how
they are organized into integrated units which provide support for one or
more process activities.

10.9.1 List of CASE Tools

S.No. Application CASE Tool Purpose of Tool

1. Planning Excel spreadsheet, MS
Project, PERT/CPM
Network, Estimation
tools

Functional Application:
Planning, scheduling,
control

2. Editing Diagram editors, Text
editors, Word proces-
sors

Speed and Efficiency

3. Testing Test-data generators,
File comparators

Speed and Efficiency

4. Prototyping High-level modeling lan-
guage, User-interface
generators

Confirmation and cer-
tification of RDD and
SRS

5. Documentation Report generators,
Publishing imaging, PPT
presentation

Faster structural docu-
mentation with quality
of presentation

6. Programming and
Language-processing
integration

Program generators,
Code generators,
Compilers, Interpreters
interface, connectivity

Programming of high
quality with no errors,
system integration

7. Templates — Guided systematic de-
velopment

8. Re-engineering tools Cross-reference systems,
program re-structuring
systems

Reverse-engineering to
find structure, design,
and design information

9. Program analysis tools Cross-reference gen-
erators Static analyzers,
dynamic analyzers

Analyzes risks, func-
tions, features

 COMPUTER-AIDED SOFTWARE ENGINEERING 233

10.10 CATEGORIES OF CASE TOOLS

 The schematic diagram of CASE tools is dawn in Figure 10.4.

FIGURE 10.4 Categories of CASE Tools

 CASE tools are divided into the following two categories:

 1. Vertical CASE tools

 2. Horizontal CASE tools

 1. Vertical CASE Tools. Vertical CASE tools provide support for certain
activities within a single phase of the software life-cycle.

 There are two subcategories of vertical CASE tools:

 (i) First Category. It is the set of tools that are within one phase of the
life-cycle. These tools are important so that the development in each
phase can be done as quickly as possible.

 (ii) Second Category. It is a tool that is used in more than one phase,
but does not support moving from one phase to the next. These
tools ensure that the developer does move onto the next phase as
appropriate.

 2. Horizontal CASE Tools. These tools support the automated transfer
of information between the phases of a life-cycle. These tools include
project management, configuration-management tools, and integration
services.

 The above two categories of CASE tools can further be broken down into the
following:

 (a) Upper CASE Tools/Front-end CASE Tools. These CASE tools are
designed to support the analysis and design phases of the SDLC. All
analysis, design, and specification tools are front-end tools. These tools
also include computer-aided diagramming tools oriented towards

234 SOF T WARE ENGINEERING AND TESTING

a particular programming design methodology, and more recently
including object-oriented design.

 The general types of upper CASE tools are listed below:

 � Diagramming tools: Diagramming tools enable system process, data,
and control structures to be represented graphically. They strongly
support analysis and documentation of application requirements.

 � Form and report generator tools: They support the creation of system
forms and reports in order to show how systems will “look and feel”
to users.

 � Analysis tools: Analysis tools enable automatic checking for
incomplete, inconsistent, or incorrect specifications in diagrams,
forms, and reports.

 (b) Lower CASE or Back-end Tools. These CASE tools are designed to
support the implementation and maintenance phases of the SDLC. All
generator, translation, and testing tools are back-end tools.

 The general types of lower CASE tools are:

 � Code Generators: Code generators automate the preparation of
computer software. Code generation is not yet perfect. Thus, the best
generator will produce approximately 75 % of the source code for an
application. Hand-coding is still necessary.

 (c) Cross life-cycle CASE or Integrated Tools. These CASE tools are used to
support activities that occur across multiple phases of the SDLC. While
such tools include both front-end and back-end capabilities, they also
facilitate design, management, and maintenance of code. In addition, they
provide an efficient environment for the creation, storage, manipulation,
and documentation of systems.

 (d) Reverse-engineering Tools. These tools build bridges from lower CASE
tools to upper CASE tools. They help in the process of analyzing existing
applications and perform and database code to create higher level
representations of the code.

10.11 ADVANTAGES OF CASE TOOLS

 The major benefits of using CASE tools include the following:

 � Improved productivity

 � Better documentation

 � Improved accuracy

 COMPUTER-AIDED SOFTWARE ENGINEERING 235

 � Intangible benefits

 � Improved quality

 � Reduced lifetime maintenance

 � Opportunity to non-programmers

 � Reduced cost of software

 � Produce high-quality and consistent documents

 � Impact on the style of a working of company

 � Reduce the drudgery in a software engineer’s work

 � Increase speed of processing

 � Easy to program software

 � Improved coordination among staff members who are working on a large
software project

 � An increase in project control through better planning, monitoring, and
communication

10.12 DISADVANTAGES OF CASE TOOLS

 1. Purchasing of CASE Tools is Not an Easy Task. The cost of CASE tools is
very high. For this reason small software development firms do not invest in
CASE tools.

 2. Learning Curve. In general, programmer productivity may fall in the initial
phase of implementation as users need time to learn this technology.

 3. Tool Mix. It is important to make proper selection of CASE tools to get
maximum benefits from the tools, as the wrong selection may lead to the
wrong results.

10.13 REVERSE SOFTWARE ENGINEERING

10.13.1 Definition

 Reverse engineering is the process followed in order to find difficult, unknown, and
hidden information about a software system. It is becoming important, since several
software products lack proper documentation, and are highly unstructured, or
their structure has degraded through a series of maintenance efforts. Maintenance
activities cannot be performed without a complete understanding of the software
system.

236 SOF T WARE ENGINEERING AND TESTING

10.13.2 Purpose of Reverse Engineering

 The main purpose of reverse engineering is to recover information from the
existing code, or any other intermediate documents. Any activity that requires
program understanding at any level may fall within the scope of reverse
engineering.

10.13.3 Reverse-Engineering Process

 The reverse-engineering process is illustrated in Figure 10.5. The process
starts with an analysis phase. During this phase, the system is analyzed using
automated tools to discover its structure. In itself, this is not enough to re-create
the system design. Engineers then work with the system source code and its
structural model. They add information to this, which they have collected by
understanding the system. This information is maintained as a directed graph
that is linked to the program source code.

FIGURE 10.5 The Reverse-engineering Process

 Information-store browsers are used to compare the graph structure and the
code and to annotate the graph with extra information. Documents of various
types, such as program and data structure diagrams and traceability matrices can
be generated from the directed graph. Traceability matrices show where entities
in the system are defined and referenced. The process of document generation is
an iterative one as the design information is used to further refine the information
held in the system repository.

10.13.4 Reverse-Engineering Tasks

 Reverse engineering encompasses a wide array of tasks related to understanding
and modifying software systems. This array of tasks can be broken into a number
of classes. A few of these classes are briefly discussed below:

 1. Mapping between application and program domains. The task of the reverse
engineer is to reconstruct the mapping from the application domain to the
program domain as shown in Figure 10.6.

 COMPUTER-AIDED SOFTWARE ENGINEERING 237

FIGURE 10.6 Mapping Between Application and Domain Programs

 2. Mapping between concrete and abstract levels. The software-development
process goes from high-level abstraction to more detailed design and concrete
implementation. A reverse engineer has to move backward and create an
abstract representation of the implementation from the mass of concrete
details.

 3. Rediscovering high-level structures. A program is the embodiment of a well-
defined purpose and coherent high-level structure. However, the purpose
and structure may be lost over the course of time, and through maintenance
activities, such as bug-fixing, porting, modifying, and enhancement. One
of the tasks of reverse engineering is to detect the purpose and high-level
structure of a program when the original one may have changed and where,
in fact, there may be no such specific purpose left in the program.

 4. Finding missing links between program syntax and semantics. In the formal
world, the meaning of a syntactically correct program determines the output
for a specific input. But systems that require reverse engineering generally
would have lost their original semantics. The reverse-engineering process
should determine the semantics of a given program from its syntax.

 5. To extract reusable components. Based on the premise that the use of existing
program components can lead to an increase in productivity and improvement
in product quality, the concept of reuse has increasingly become popular
among software engineers.

10.13.5 Levels of Reverse Engineering

 Reverse engineers detect low-level implementation constructs and replace them
with their high-level counterparts. The process eventually results in an incremental
formation of an overall architecture of the program. It should, nonetheless, be
noted that the product of a reverse-engineering process does not necessarily have
to be at a higher level of abstraction.

238 SOF T WARE ENGINEERING AND TESTING

 If it is at the same level as the original system, the operation is commonly
known as “re-documentation.” If on the other hand, the resulting product is at
a higher level of abstraction, the operation is known as “design recovery” or
specification recvery as shown in Figure 10.7.

FIGURE 10.7 Levels of Abstraction

 1. Re-documentation. Re-documentation is the recreation of a semantically
equivalent representation within the same relative abstraction level. The
goals of this process are threefold:

 � Firstly, to create alternative views of the system as to enhance
understanding; for example, the generation of hierarchical data
flows or control-flow diagrams from source code.

 � Secondly, to improve current documentation. Ideally, such documen-
tation should have been produced during the development of the
system and updated as the system changed. This, unfortunately, is
not usually the case.

 � Thirdly, to generate documentation for a newly modified program.
This is aimed at facilitating future maintenance work on the system;
preventive maintenance.

 2. Design Recovery. Design recovery entails identifying and extracting
meaningful higher-level abstractions beyond those obtained directly
from examination of the source code. This may be achieved from a
combination of code, existing design documentation, personal experience,
and knowledge of the problem and application domains. The recovered
design, which is not necessarily the original design, can then be used for
redeveloping the system.

 COMPUTER-AIDED SOFTWARE ENGINEERING 239

10.13.6 Characteristics of Reverse Engineering

 The various characteristics of reverse software engineering are as follows:

 1. Abstraction Level. The abstraction level of a reverse-engineering process and
the tools used to affect it refers to the sophistication of the design information
that can be extracted from the source code. Ideally, the abstraction level
should be as high as possible. As the abstraction level increases the software
engineer is provided with information that will allow easier understanding
of the program.

 2. Completeness. The completeness of a reverse-engineering process refers to
the level of detail that is provided at an abstraction level. In most cases, the
completeness decreases as the abstraction level increases. For example, given
a source code listing, it is relatively easy to develop a complete procedural
design representation. Simple design representations may also be derived,
but it is far more difficult to develop a complete set of UML diagrams or
models.

 3. Interactivity. Interactivity refers to the degree to which the human is
“integrated” with automated tools to create an effective reverse-engineering
process. In most cases, as the abstraction level increases, interactivity must
increase or completeness will suffer.

 4. Directionality. If the directionality of the reverse-engineering process is
one-way, all information extracted from the source code is provided to the
software engineer who can then use it during any maintenance activity. If
directionality is two-way, the information is fed to a re-engineering tool that
attempts to restructure or regenerate the old program.

 5. Extract Abstractions. The core of reverse engineering is an activity called
extract abstractions. The engineer must evaluate the old program and from
the (often undocumented) source code, develop a meaningful specification
of the processing that is performed, the user interface that is applied, and the
program data structures or database that is used.

10.13.7 Application Areas of Reverse Engineering

 The different application areas of reverse software engineering include:

 � Program comprehension

 � Re-documentation

 � Recovery of design approach and design details at any level of abstraction

 � Identifying re-usable components

 � Identifying components that need restructuring

 � Recovery business rules

240 SOF T WARE ENGINEERING AND TESTING

10.14 SOFTWARE RE-ENGINEERING

10.14.1 Introduction to Re-Engineering

 Re-engineering means to re-implement systems to make them more maintainable.

 In re-engineering, the functionality and system architecture remains the
same but it includes re-documenting, organizing and restricting, modifying and
updating the system. It is a solution to the problems of system evolution. In other
words,

 Re-engineering essentially means having a re-look at an entity, such as a process,
task, designs, approach, or strategy using engineering principles to bring in radical and
dramatic improvements.

 The re-engineering approach attacks five parameters, namely: management
philosophy, pride, policy, procedures, and practices to bring in radical
improvements impacting cost, quality, service, and speed. When re-engineering
principles are applied to business process then it is called Business Process Re-
engineering (BRP).

10.14.2 Principles of Software Re-engineering

 The principles of re-engineering when applied to software-development
processes are called software re-engineering. It affects positively software cost,
quality, service to the customer, and speed of delivery. Software, whether a
product or system, deals with business processes making them faster, smarter,
and automatic in response to delivery and execution. In software re-engineering,
we may resort to one or more of the following:

 � Redefining software scope and goals.

 � Redefining RDD and SRS by way of additions, deletions, and extensions of
functions and features.

 � Redesigning the application design and architecture using new technology,
upgrades, and platforms, interfacing to new technologies to make the process
faster, smarter, and automatic.

 � Resorting to data restructuring, improving database design, code restructuring
to make the size smaller and more efficient in operations.

 � Rewriting the documentation to make it more user friendly.

10.14.3 Re-engineering Process

 Figure 10.8 illustrates a possible re-engineering process. The input to the process
is a legacy program and the output is a structured, modularized version of the

 COMPUTER-AIDED SOFTWARE ENGINEERING 241

same program. At the same time as program re-engineering, the data for the
system may also be re-engineered.

FIGURE 10.8 Re-engineering Process

 The re-engineering process includes the following activities:

 � Source-code translation: In source-code translation the programming
language of an old program is converted into the modern version of the
same language or to a new language.

 � Reverse engineering: In reverse engineering the program is analyzed and
important and useful information is extracted from it which helps to
document its functionality.

 � Program structure improvement: In program structure improvement the
control structure of the program is analyzed and modified to make it
easier to read and understand.

 � Program modularization: In program modularization redundancy of
any part is removed and related parts are grouped together.

 � Data re-engineering: In data re-engineering the data processed by the
program is changed to reflect program changes.

10.14.4 Software Re-engineering Process Model

 Re-engineering of information systems is an activity that will absorb information
technology resources for many years. That’s why every organization needs a
pragmatic strategy for software re-engineering.

 Re-engineering is a rebuilding activity. To implement re-engineering princi-
ples we apply a software re-engineering process model. The re-engineering
paradigm shown in Figure 10.9 is a cyclical model.

242 SOF T WARE ENGINEERING AND TESTING

FIGURE 10.9 Software Re-engineering Process Model

 There are six activities in the model:

 1. Inventory analysis

 2. Document restructuring

 3. Reverse engineering

 4. Code restructuring

 5. Data restructuring

 6. Forward engineering

 The activities of the software re-engineering process model are described as
follows:

 1. Inventory Analysis. Every software organization should have an
inventory of all applications. The inventory can be nothing more than
a spreadsheet model containing information that provides a detailed
description (e.g., size, age, business criticality) of every active application.
By sorting this information according to business criticality, longevity,
current maintainability, and other locally important criteria, candidates
for re-engineering appear. Resources can then be allocated to candidate
applications for re-engineering work.

 It is important to note that the inventory should be revisited on a regular
cycle. The status of applications (e.g., business criticality) can change as
a function of time and as a result, priorities for re-engineering will shift.

 2. Document Restructuring. Weak documentation is the trademark of many
legacy systems. But what do we do about it? What are our options?

 (i) Creating documentation is far too time consuming: If the system works,
we’ll live with what we have. In some cases, this is the correct
approach. It is not possible to recreate documentation for hundreds

 COMPUTER-AIDED SOFTWARE ENGINEERING 243

of computer programs. If a program is relatively static, is coming
to the end of its useful life, and is unlikely to undergo significant
change, let it be!

 (ii) Documentation must be updated, but we have limited resources: We’ll
use a “document when touched” approach. It may not be necessary
to fully re-document an application. Rather, those portions of the
system that are currently undergoing change are fully documented.
Over time, a collection of useful and relevant documentation will
evolve.

 (iii) The system is business critical and must be fully re-documented: Even in
this case, an intelligent approach is to pare documentation down to
an essential minimum.

 (iv) Each of these options is viable. A software organization must choose the
one that is most appropriate for each case.

 3. Reverse Engineering. Reverse engineering for software is quite similar.
In most cases, however, the program to be reverse engineered is not a
competitor’s. Rather, it is the company’s own work (often done many
years earlier). The “secrets” to be understood are obscure because no
specification was ever developed. Therefore, reverse engineering for
software is the process of analyzing a program in an effort to create a
representation of the program at a higher level of abstraction than source
code. Reverse-engineering is a process of design recovery. Reverse-
engineering tools extract data and architectural and procedural design
information from an existing program.

 4. Code Restructuring. The most common type of re-engineering is code
restructuring. Some legacy systems have relatively solid program
architecture, but individual modules were coded in a way that makes
them difficult to understand, test, and maintain. In such cases the code
within the suspect modules can be restructured.

 To accomplish this activity, the source code is analyzed using a
restructuring tool. Violations of structured programming constructs are
noted, and code is then restructured (this can be done automatically).
The resultant restructured code is reviewed and tested to ensure that
no anomalies have been introduced. Internal code documentation is
updated.

 5. Data Restructuring. A program with weak data architecture will be
difficult to adapt and enhance. In fact, for many applications, data
architecture has more to do with the long-term viability of a program
than the source code itself.

244 SOF T WARE ENGINEERING AND TESTING

 Unlike code restructuring, which occurs at a relatively low level of
abstraction, data structuring is a full-scale re-engineering activity. In
most cases, data restructuring begins with a reverse-engineering activity.
Current data architecture is dissected, and necessary data models are
defined. Data objects and attributes are identified, and existing data
structures are reviewed for quality.

 6. Forward Engineering. Applications would be rebuilt using an automated
“re-engineering engine.” The old program would be fed into the engine
analyzed, restructured, and then regenerated in a form that exhibited the
best aspects of a software quality. CASE vendors have introduced tools
that provide a limited subset of these capabilities that address specific
application domains. Forward engineering, also called renovation or
reclamation, not only recovers design information from existing software,
but also uses this information to alter or reconstitute the existing system
in an effort to improve its overall quality.

10.14.5 Factors Affecting Re-engineering Costs

 Factors that affect re-engineering costs include:

 1. Quality of software to be re-engineered: There is the inverse relationship between
the quality and the cost of the software.

 2. Tools available for re-engineering: It is not cost effective to re-engineer a software
system unless you can use CASE tools to automate most of the program
changes.

 3. Availability of expert staff: The re-engineering staff is not the same as the
maintaining staff, and this will increase costs.

 4. Extent of data conversion required: There is a direct relationship between the
volume of data to be converted and the cost of the software.

10.14.6 Differences Between Forward Engineering and Re-engineering

 Chikofsky and Cross (1990) call conventional development forward engineering
to distinguish it from software re-engineering. This distinction is illustrated in
Figure 10.10. Forward engineering starts with a system specification and involves
the design and implementation of a new system. Re-engineering starts with an
existing system and the development process for the replacement is based on the
understanding and transformation of the original system.

 COMPUTER-AIDED SOFTWARE ENGINEERING 245

FIGURE 10.10 Forward Engineering and Re-Engineering

10.14.7 Advantages and Disadvantages

 Re-engineering a software system has two key advantages over more radical
approaches to system evolution.

 (i) Reduced risk: There is a high risk in redeveloping software that is essential
for an organization. Errors may be made in the system specification; there
may be development problems, etc.

 (ii) Reduced costs: The costs of re-engineering is significantly less than the costs
of developing new software. Ulrich (1990) quotes an example of a commercial
system where the re-implementation costs were estimated at 550 million. The
system was successfully re-engineered for $12 million. If these figures are
typical, it is about four times cheaper to re-engineer than to rewrite.

 The main disadvantages of software re-engineering are that there are practical
limits to the extent that a system can be improved by re-engineering. It isn’t
possible, for example, to convert a system written using a functional approach
to an object-oriented system. Major architectural changes of radical reorganizing
of the system-data management cannot be carried out automatically, so involve
high additional costs. Although re-engineering can improve maintainability,
the re-engineered system will probably not be as maintainable as a new system
developed using modern software engineering methods.

EXERCISES

 1. Explain Computer-Aided Software Engineering (CASE) and the various types of
CASE tools.

 2. Explain the three most used CASE tools?
 3. What are the advantages and disadvantages of CASE tools?

246 SOF T WARE ENGINEERING AND TESTING

 4. What are the different categories of CASE tools?
 5. Explain how CASE supports a software-life-cycle.
 6. Explain the building blocks of CASE.
 7. What are the important characteristics of CASE tools?
 8. What are the main advantages of using CASE tools? Describe some of the important

features that a future generation CASE tool should support.
 9. What is a CASE tool and a CASE environment? Why do integration tools increase the

power of tools? Explain using some examples.
 10. Give the main advantages of using CASE tools.
 11. What is CASE? If a large complex software solution is required, why is the CASE

approach recommended? How does the CASE approach affect the following:
 (i) Requirements
 (ii) Risk
 (iii) Report generation
 (iv) Documentation
 (v) Programming efforts
 12. Draw the schematic diagram of the architecture of a CASE environment and explain

how the different tools are integrated.
 13. Suggest potential benefits and practical problems of integrating CASE tools.
 14. Give the architecture of a CASE environment.
 15. Define re-engineering.
 16. Define reverse engineering.
 17. Discuss the levels of reverse engineering.
 18. Differentiate between re-engineering and new development.
 19. What are appropriate reverse engineering tools? Discuss any two tools in detail.
 20. Give the differences between reverse engineering and re-engineering?

Chapter 11
CODING

11.1 INFORMATION HIDING

 In the application of the information-hiding principle, the data structure is not
directly used by other modules; it is used only through access functions.

 The advantage of information hiding and decoupling data structures from the
processing module is that such a system is easy to maintain, be there is a change
in structure or process. That is, if the data structure is changed, the modification
is limited to the structure and access function, and modules are not affected at
all. The same is true when the structure is left intact but the process needs to be
changed.

 In object-oriented programming, the principle of information hiding is
extensively used. In this approach, information that is not needed in that module
is hidden from the module. The advantage is that the module controls the data
hidden in it. Other modules are not allowed to access or modify the data.

 It is defined as information captured in the data structure that should be hidden
from the rest of the system. If it is used and some data structure is changed, then
its effect is limited to the access to change information hiding that is supported by
the object-oriented language.

247

248 SOF T WARE ENGINEERING AND TESTING

 Example:
 class person

 {

 private:

 int name, age, qualification;

 public:

 void person (int n, int a, int q)

 {

 name = n;

 age = a;

 qualification = q;

 }

 void display()

 {

 cout <<”name=”<< name;

 cout <<”Age= “<< age;

 cout<< “Qualification = “ << qualification;

 }

 };

 In the above example, the information is hidden with the help of a “private”
access specifier, which is used for hiding the information accessed by the other
classes. In this the variable’s name, age, and qualifications are initialized under the
“private” keyword, so they are only accessed by the class “person,” i.e., the three
data items name, age, qualifications are hidden with the help of the class concept.

 Information hiding can reduce the coupling between modules and make
the system more maintainable. Information hiding is also an effective tool for
managing the complexity of developing software—by using information hiding
we have separated the concern of managing the data from the concern of using the
data to produce some desired results.

11.2 PROGRAMMING STYLE

 The aim of a programming style is to optimize the code with desired results. This
must be presented in the best possible manner. Now we will list some general
rules with respect to programming style.

 1. Naming. In a program, you are required to name the module, processes,
and variables and so on. The naming style should not be cryptic and non-
representative.

 CODING 249

 The name should represent the entity completely without confusion. Avoid
cryptic names, unknown acronyms, or names totally unrelated to the entity.
For example, purchase order should be named PO and not PRO, POrder,
Vendor PO, and so on.

 2. Control Constructs. It is desirable that as many single-entry and single-
exist constructs as possible be used. In every language there are few control
constructs, and we should use a few standard control constructs rather than
using a wide variety of control constructs.

 3. Information Hiding. Only access functions to data should be made visible
and data should be hidden behind these functions.

 4. Gotos. Gotos should be used sparingly and in a disciplined manner. Only
when the alternative using gotos is more complex then gotos should be used.
In any case, alternatives must be thought of before finally using a goto. If a
goto must be used, forward transfers (or a jump to a later statement) are more
acceptable than a backward jump.

 5. User-defined Type. Modern languages allow users to define types, such as the
enumerated type. When such facilities are available, these should be exploited
where applicable.

 6. Nesting. In control constructs, ‘if-then-else’ statements are used extensively to
construct a control, based on given conditions. If the condition is satisfied one
action is proposed; if not, then another action is proposed. If this condition-
based nesting is too deep, the code becomes very complex. Let us use the
example of pricing a product for a customer. Nesting in this control is as
follows:

 If customer type large then price P1

 else medium then price P2

 else small then price P3

 Instead of this, we can exercise the control in the following manner:
 if customer type large then price P1

 if customer type medium then price P2

 if customer type small then price P3

 In both cases, the control construct will produce the same result.

 7. Module Size. The module size should be uniform. Its size should not be too
small or too big. If the module is too large, it is not functionally cohesive and
if it is too small it might lead to unnecessary overhead. Module size should be
based on the principle of cohesion and coupling.

 8. Program Layout. A good layout is one that helps to read the program faster
and to understand it better. The layout should be organized using proper
indentation, blank spaces, and parentheses to enhance readability.

250 SOF T WARE ENGINEERING AND TESTING

 9. Module Interface. A module with a complex interface (has multiple functions)
should be carefully examined and avoided. If a complex interface has more
than five parameters then it should be carefully examined and they must be
broken into multiple modules with a simpler interface.

 10. Robustness. A program is robust if it does something planned even for
exceptional conditions. A program might encounter exceptional conditions
in such forms as incorrect input, the incorrect value of some variable, and
overflow. If such situations do arise, the program should not just “crash”
or “core dump”; it should produce some meaningful message and exit
gracefully.

 11. Side Effects. When a module is invoked, it sometimes has side effects of
modifying the program state beyond the modification of parameters listed
in the module interface definition. Such side effects should be avoided
wherever possible and if a module has side effects, they should be properly
documented.

11.3 INTERNAL DOCUMENTATION

 Program documentation is one of two types: external, addressing information
about the program and internal, which has to be close to the program, program
statement, and program block to explain it, then and there. Internal documentation
of the program is done through the use of comments. All programming languages
provide a means of writing comments in the program. The comment is a text
written for the user, reader, or programmer to easily understand and it is executed
in any manner. A comment generally helps at the time of maintenance. It not only
explains the program, or program statement, but also provides points on caution,
condition of applicability, and assumptions considered important for programmers
to know before any action is taken for modification.

 Whether it is the entire program of the module or a block of programs
or a statement in the program, comments should provide information on the
following:

 � Functionality

 � Parameters and their role and usage

 � Attributers of inputs, i.e., assumptions values, range, max and min, etc.

 � Mention of global variables

 In addition to this information, referential data should be provided, such as:

 � When modified last

 CODING 251

 � Author of the program

 � Information on compilation and testing

 The main objective of internal documentation is to provide on-line help to
the user and programmer to get a quick understanding of the program and the
problem and to enable them to modify the program as fast as possible.

 Internal documentation is comprised of the aspects of programs which are
included in the syntax of the programming language. The important points are
the:

 � Meaningful names used to describe data items and procedures

 � Comments relating to the function of the program as a whole and of the
modules comprising the program

 � Clarity of style and formal, i.e., one instruction per line, indentation of
related groups of instructions, blank lines separating modules

 � Use of symbolic names instead of constants or literals in the procedural
code

11.4 MONITORING AND CONTROL FOR CODING

 Code reviews are mainly designed to detect defects that are originated during the
coding phase; they can also be used to detect defects in the detached design. It was
started with the purpose of detecting defects in the code.

 After the successful completion of code, code inspection and reviews are held.
Activities, such as code reading, symbolic execution, and static analysis should
be performed and defects found by these techniques should be corrected before
starting the code reviews. The main aim of this is to save human time and effort.

 Code defects can be divided into two groups: logic and control defects and
data operations and computations defects. Examples of logic and control defects
are unreachable code, incorrect predicate, infinite loops, improper nesting of loops,
unreferenced labels, etc.

 Examples of data operations and computations defects are incorrect access of
array components, missing validity tests for external data, improper initialization,
misuse of variables, etc.

 The following are some of the items that can be included in a checklist for a
code review:

 � When are the divisors tested for zero applicable?

 � Is important data tested for being validated?

 � Is the loop termination condition right?

252 SOF T WARE ENGINEERING AND TESTING

 � Are the number of loop executions “off by one”?

 � Are the pointers set to NULL where ever needed?

 � Are indexes initialized?

 � Are all variables used?

 � Are the arrays indexed within bounds?

 � Are all output variables assigned?

 � Are the local coding standards met?

 � Are all branch conditions right?

 � Are the labels unreferenced?

 � Do data definitions exploit the typing capabilities?

 � Do all pointers point to some object?

 � Will a loop always terminate?

 � Can statements placed in the loop be placed outside the loop?

11.5 STRUCTURED PROGRAMMING

 Structured programming refers to a general methodology of writing good
programs. A good program is one that has the following properties:

 1. It should perform all the desired actions.

 2. It should be reliable, i.e., perform the required actions within acceptable
margins of error.

 3. It should be clear, i.e., easy to read and understand.

 4. It should be easy to modify.

 5. It should be implemented within the specified schedule and budget.

 Structured programs have the single-entry, single-exit property. This feature
helps in reducing the number of paths for flow of control. If there are arbitrary
paths for the flow of control, the program will be difficult to read, understand,
debug, and maintain.

 A program is one of two types: static structure or dynamic structure. The static
structure is the structure of the text of the program, which is usually just a linear
organization of statements of the program. The dynamic structure of the program
is the sequence of statements executed during the execution of the program.

 Both static and dynamic structures are the sequence of statements. The only
difference is that the sequence of statements in a static structure is fixed, whereas in
a dynamic structure it is not fixed. That means the dynamic sequence of statements
can change from execution to execution. The static structure of a program can be

 CODING 253

easily understood. The dynamic structure of a program can be easily seen at the
time of execution.

11.5.1 Objectives of Structured Programming

 The goal of structured programming is to ensure that the static structures and the
dynamic structures are the same. That is, the objective of structured programming
is to write programs so that the sequence of statements executed during the
execution of a program is the same as the sequence of statements in the text of that
program. As the statements in a program text are linearly organized, the objective
of structured programming is to develop programs whose control flow during
execution is linearized and follows the linear organization of the program text.

 Clearly, no meaningful program can be written as a sequence of simple
statements without any branching or repetition (which also involves branching).
So, how is the objective of linearizing the control flow to be achieved? By making
use of structured constructs. In structured programming, a statement is not a
simple assignment statement, it is a structured statement.

11.5.2 Principles of Structured Programming

 All structured program design methods are based upon the two fundamental
principles stepwise refinement and three structured control constructs. The
objective of program design is to transform the required function of the program,
as stated in the program specification, into a set of instructions, which can easily
be translated into a chosen programming language. The process of stepwise
refinement is such an approach that the stated program function is broken down
into subsidiary functions in progressively increasing levels of detail until the
lowest level functions are achievable in the programming language.

 The second principle of structured program design is that any program can
be constructed using only three structured control constructs. The constructs
selection, iterations, and sequence are shown in Figure 11.1 (a, b, c, d).

 Any program independent of the technology platform can be written using
these constructs, i.e., selection, repetition, sequence. These structures are the basis
of structured programming.

 The sequence construct is shown in Figure 11.1 (b) connecting two boxes of
tasks by an arrow. The selection construct is shown in Figure 11.1 (a), where process
is selected as the condition of the states indicated by the X and Y comparison.

 An iteration is a program component which has only one part, occurring zero
or more times. The number of times the subcomponent will be executed depends
upon when the condition becomes false. This situation can occur on first entry or
after a number of repetitions of the program.

254 SOF T WARE ENGINEERING AND TESTING

FIGURE 11.1 Basics of Structured Programming: Selection, Iterations, and Sequence

 Figure 11.1 (c and d) show repeat constructs of two types.

 The fourth category of construct is nesting, made of the three basic constructs
discussed so far. Figure 11.2 shows the nesting construct.

 When we nest the construct, we are changing the layers of procedural design.

FIGURE 11.2 Nesting Construct

 CODING 255

11.5.3 Key Features of Structured Programming

 The key feature of a structured program is that it has a single-entry and a single-
exit. We can therefore study the program statement by statements and in sequence.
The most commonly used single entry and single exit statements are:

 Selection: if customer type is X

 then price is $100

 else price is $90

 Iteration: While customer type is X do use price formula P1. Repeat P1
until type is X.

 Sequencing: Task 1, Task 2, Task 3.

 Extensive use of these statements in the program construct creates a linear
flow. If readability and verification are the essence of a good construct, then a
structured program is the method to achieve it.

11.5.4 Advantages of Structured Programming

 The advantage of structured programming is that it is very convenient to put logic
systematically into the program. Due to the ease of handling complex logic, the
user, reader, and programmer understand the program easily.

 Another distinct advantage of structured programming is that it is easy to
verify, conduct reviews, and test the structured programs in an orderly manner. If
errors are found, they are easy to locate and correct.

11.6 FOURTH-GENERATION TECHNIQUES

 Fourth-Generation Technique (4GT) includes the application of tools and tech-
niques for expeditious development of software solutions. Besides expeditious
development, fourth-generation techniques help to control effort, resources, and
cost of development. Commonly used fourth-generation techniques in develop-
ment models are mentioned here. They are:

 � Report Generation

 � Database Query Languages

 � Data Manipulation

 � Screen Definition and Interaction

 � Code Generation

 � Connectivity, such as ODBC, JDBC, and Interfacing

 � Web-engineering Tools

256 SOF T WARE ENGINEERING AND TESTING

 � Graphics, Spreadsheet Generation Capability

 � CASE Tools

 The application of 4GT tools calls for a specific environment and also
the requisite specifications of requirement, design, and architecture. These
specifications help successful application of these tools.

 The 4GT paradigm for software engineering focuses on the ability to specify
software using specialized language forms or a generic notation that describes the
problem to be solved in terms that the customer can understand.

 For small applications, it may be possible to move directly from the
requirements gathering step to implementation using a non-procedural fourth-
generation language (4GL). However, for larger efforts, it is necessary to develop
a design strategy for the system, even if a 4GL is to be used.

 To transform a 4GT implementation into a product, the developer must
conduct thorough testing, develop meaningful documentation, and perform all
other solution integration activities that are required in other software-engineering
paradigms. In addition, the 4GT-developed software must be built in a manner
that enables maintenance to be performed expeditiously.

11.6.1 Use of Fourth-Generation Techniques

 4GT has a number of query languages, report writers, generators, program
and application generators, and high-end object-oriented languages. Extensive
use of 4GTs saves a lot of software-specific coding and allows rapid prototype
development.

11.6.2 Advantages of 4GT

 The advantage of the 4GT model is a dramatic reduction in software development
time and greatly improved productivity for people who build software.

11.6.3 Disadvantages of 4GT

 With very few exceptions, the current application domain for 4GT is limited to
business-information system applications. The use of 4GT for large software
development efforts demands as much or more analysis, design, and testing to
achieve substantial timesaving that can be achieved through the elimination of
coding.

11.6.4 Difference Between 3GLs and 4GLs

 The various differences between 3GLs and 4GLs are given in Table 11.1.

 CODING 257

TABLE 11.1 Differences Between 3GLs and 4GLs

Third-generation languages Fourth-generation languages

Professional programmers are required to
use this language.

May be used by a non-programming end user
as well as a professional programmer.

Requires specification for how to perform
tasks.

Requires specification for what task is to be
performed (system determines how to perform
the task).

All alternatives must be specified. Default alternatives are built in; an end user
needs not specify these alternatives.

Requires a large number of procedural
instructions.

Requires far fewer instructions.

Code may be difficult to read, understand,
and maintain.

Code is easy to understand and maintain
because of English-like commands.

Language developed for batch operation. Language developed primarily for on-line use.

Can be difficult to learn. Easy to learn.

Difficult to debug. Easy to debug.

Typically file-oriented. Typically database-oriented.

EXERCISES

 1. What is “information hiding” in programming?
 2. Describe the various programming styles in software engineering.
 3. What is “structured programming”? How do modern programming languages, such

as PASCAL and C facilitate writing structured programs?
 4. What are the advantages of writing structured programs versus unstructured

programs?
 5. Discuss some methods of monitoring and control of the software development

process.
 6. Enumerate the term monitoring and control in the context of coding in software

development.
 7. What is a fourth-generation language? How does it differ from a third-generation

language?

 8. What is a fourth-generation programming technique? What are its advantages and
disadvantages compared to the third-generation technique?

 9. Applications developed using 4GLs would normally be more efficient and run faster
compared to applications developed using 3GLs. Discuss.

4 SOF T WARE ENGINEERING AND TESTING

PART II

SOF TWARE DEVELOPMENT
AND APPLICATIONS

 Programming has always been considered an art. The mastery of software
can be both easy and difficult. It depends on how much you are planning to
learn. If you are learning only for personal use, then it is very easy.

 Programmers, for decades, have struggled with volumes of code in an
attempt to make their programs easy to use along with possessing the required
functionality.

 This part has been written to make you aware of the software options available
and how they can be used for software development, and it also offers concepts,
tools, and knowledge fortifiers, which aim to make your learning of Visual
Programming with Visual Basic complete.

259

4 SOF T WARE ENGINEERING AND TESTING

Chapter 12
INTRODUCTION TO SOF TWARE

DEVELOPMENT

 A sequence of commands used to generate a desired result is a program.
The output depends upon the input given. We may have different sets of
commands to achieve the same result.

 A program is written in a computer language. There are several languages and
GUIs that can be used to write a program, i.e., Cobol, Fortran, C, C++, Java, Visual
Basic, and Visual Basic.NET, but we will discuss here only Visual Basic.

 Before writing a program you must clearly understand the actual problem
or requirement, and then you will write the program instructions to generate the
desired output.

 Let us write a small program to multiply two numbers. The different steps
involved are:

 Step 1: Input first number
 Step 2: Input second number
 Step 3: Processing (multiplying) the input numbers
 Step 4: Store the processed data
 Step 5: Display the stored result

261

262 SOF T WARE ENGINEERING AND TESTING

12.1 PROGRAM PHASE

 The different phases involved in writing a complete program are:

 1. Identification of the exact problem

 2. Development of a mathematical model

 3. Design of an algorithm

 4. Testing of the algorithm

 5. Coding

 6. Testing of the program

 7. Documentation

12.2 HOW TO WRITE A GOOD PROGRAM

 Use the following instructions to write a good program:

 1. Readability: The program should be written in such a manner that it can
be understood by other programmers easily. Follow some standards when
writing the program. Never create your own style if other programmers have
to work on the same program at the same time or later. Always use explanatory
comments while writing the program. Variables should be named in such a
manner that their use in the program can be understood easily. A long program
should be divided into small sections and subroutines. There should be proper
use of functions to avoid lengthy programs.

 2. Design: Program design is the most important phase because it affects all
the phases. The efficiency of the program depends upon the design. There
should be simplicity and adaptability in the program and it should fulfill all
the requirements of the user and must give the desired output.

 3. Efficiency: Program efficiency is very important in program development. The
program should be very efficient during the compilation and execution stage;
otherwise, it will consume much time during compilation and execution.

 4. Debugging: The errors that occur during compilation and execution of the
program are called bugs, and tracing of an error once its existence has been
confirmed is called debugging. The time spent in debugging may vary from
50% to 90% of total programming time. The debugging time is longer for a
novice and unskilled programmer, whereas for an experienced programmer it
may be less.

 Some common errors which cause bugs are:

 1. Errors in analysis

 INTRODUCTION TO SOF TWARE DEVELOPMENT 263

 2. Errors in correct algorithm

 3. Syntax errors

 4. Data errors

 5. Documentation errors

 6. Operating system errors

 7. Database connectivity errors

 8. Missing supporting or linked files

 9. Version support errors

 These errors may cause an incomplete compilation and execution, termination,
undesired output, or running in an infinite loop.

 5. Testing: The program should be thoroughly tested before implementing it. It
should give correct results and the desired output in all conditions. During
testing all the executions must be tested at least once.

 In Visual Basic the different levels of testing are:

 1. Event level – Lowest level of testing

 2. Form level – Testing of entire form

 3. Module level – Testing of all linked forms of different modules

 4. Project level – Testing of entire project

 5. Field level – Testing of project with real-time data

 6. Release level – Testing of package with setup

 7. User level – Testing at the user end

12.3 PROGRAMMING TOOLS

 Different tools used to generate program logic are:

 1. Algorithms: A sequence of logic used to accomplish a particular task. An
algorithm may be defined as an unambiguous procedure used to solve a
problem.

 2. Flowcharts: A graphical representation of an algorithm is called a flowchart.

 3. Pseudo-code: A structural representation of an algorithm is called pseudo-
code. It is used to represent the program logic which helps in understanding
the process.

 4. Data-flow Diagrams (DFD): The flow of data is represented by a DFD. Data-
flow diagrams are made at different levels. In the first level there is a simple
representation of data flow. In the second and third level the diagram is more
illustrative, deeper, and complex.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 13
VISUAL BASIC 6.0

 Visual Basic was first introduced in 1991. The introduction of Visual Basic
created a new milestone in the field of Windows-based application
development. It provides component-object model programming by

which other components can be added in the application. The term ‘Visual Basic’
is made up of two words: Visual and Basic. By the ‘Visual’ method we create a
Graphical User Interface (GUI). We can drag and drop the objects on the screen
and can set their properties instead of writing lengthy codes. The ‘Basic’ part refers
to the most popular programming language used: BASIC (Beginners All-purpose
Symbolic Instruction Code). Visual Basic was generated from the original BASIC
language. It is the easiest and fastest way to create an application. It provides a
complete set of tools for rapid development of an application. It is an Integrated
Development Environment where an application can be developed, tested, and
run. We can create a web page or Internet Information Server (IIS) in Visual Basic.
Many Windows applications use this language. Microsoft itself uses Visual Basic
for the development of its applications.

265

266 SOF T WARE ENGINEERING AND TESTING

13.1 HARDWARE AND SOFTWARE REQUIREMENTS FOR VISUAL
BASIC

S.No. Hardware/Software Minimum Requirements Recommended

1. Processor 150 Mhz. 300 Mhz.

2. RAM 16 MB 64 MB

3. Hard Disk 1GB 4 GB

4. Operating System Win 95 Any higher version of
Windows

13.1.1 Editions

 There are three editions of Visual Basic:

 1. Visual Basic learning edition: It includes all intrinsic controls, grid, tab and
data bound controls. It is an introductory edition for beginners.

 2. Professional edition: It includes all the features of the learning edition, ActiveX
controls, and internet controls. This edition is for computer professionals.

 3. Enterprise edition: It includes all the features of the professional edition,
Automation Manager, Component Manager, Database Management Tools,
and Microsoft Visual Source Safe. This edition is for commercial use.

13.2 APPLICATION TYPES

 When we start Visual Basic, we will find different types of projects that can be
developed.

 1. Standard EXE: This is the most widely used application.

 2. ActiveX EXE: It comes with the professional edition. ActiveX components
are code-building components without an interface. It can be saved as an
executable file and can be used in standard EXE projects.

 3. ActiveX DLL: This is the same as ActiveX EXE but can be saved as DLL files
(Dynamic Link Libraries).

 4. ActiveX control: This project is used to develop custom controls. We can
change the property and functionality of controls according to our needs and
also use this control in standard EXE projects.

 5. ActiveX Document EXE: This project is used in an environment where
hyperlinking is supported. For example, Internet Explorer.

 6. ActiveX Document DLL: The same as ActiveX Document EXE.

 VISUAL BASIC 6.0 267

FIGURE 13.1

 7. VB Application Wizard: This wizard helps to develop an application by selec-
ting options and generating codes automatically (not used by professionals).

 8. VB Wizard Manager: This is used to create a customized wizard. The wizard
performs the operation according to the information given by the user.

 9. Data Project: This is a project that creates a database application. It automatically
adds the database connectivity control to the project. It also adds ActiveX
Designers, such as Data Environment and Data Report to the project.

 10. DHTML Application: This is used to develop dynamic HTML pages in Visual
Basic.

268 SOF T WARE ENGINEERING AND TESTING

 11. IIS Application: The application that has to run on the web server is developed
in this type of project. With the Internet Information Server, the application
can be accessed by different users over the Internet.

 12. Addin: The customized commands can be created by this project. These
commands can be added in the Addin menu of the Standard EXE project.

 13. VB Enterprise Edition Control: This is just like the Standard EXE Project
without the options New, Existing, and Recent.

13.3 COMPILATION IN VISUAL BASIC

 When a Visual Basic project is compiled, it generates an executable file.
This executable file has pseudo-codes. When the executable file is run, the
VBRUN30.DLL file converts the pseudo-code into machine-code. The pseudo-
code is an intermediate code between Visual Basic code and machine-code.
The microprocessor understands only machine-code. In the Professional and
Enterprise editions of Visual Basic, the Visual Basic code can be directly compiled
into machine-code.

13.3.1 Limitations

 � The stack size is only 1 MB. The stack is the memory space where addresses of
functions, procedures, and variables are stored.

 � In a single form a maximum of 255 controls can be placed. If there is further
need for extra controls you can make control arrays. All controls of one array
are treated as a single control.

 � The size of the module can be a maximum of 64 KB. If the code exceeds, add
another module.

 � The maximum number of lines in a form or module is 65534.

 � The maximum number of characters in a line is 255.

13.4 VISUAL BASIC TERMINOLOGY

 The terms used in Visual Basic are:

 � Form: The screen where controls can be placed. No application is possible
without including the form in the project.

 � Control: Graphical objects, such as Label, Text Box, Command Button, etc.

 � Object: This term refers to form, control, data report, etc.

 VISUAL BASIC 6.0 269

 � Property: The different attributes of an object. For example, Backcolor,
Forecolor, Font, etc.

 � Method: The action performed on an object.

 � Event: Different events occur when an application is run.

13.5 INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Menu Bar

 The Menu Bar shows the list of commands that can be used in the active window.

FIGURE 13.2

270 SOF T WARE ENGINEERING AND TESTING

Tool Bar

 We can directly access the commands without using the Menu Bar with the help of
the Tool Bar. Some commonly used Tool Bars are:

 � Standard Tool Bar: Gives the facility to Open a New Project, Add a New Form,
Save Project, Cut, Copy, and Paste the objects and code both, and to run the
project.

 � Edit Tool Bar: Allows user to set and unset remarks and flags on the code line
with some other facilities.

 � Debug Tool Bar: Contains Run, Pause, and Break with some other options.

 � Form Editor Tool Bar: Contains the commands of the Format Menu.

 � Form Window: Allows user to place the controls on it to design the form.

 � Property Window: Shows and sets the properties of different objects.

FIGURE 13.3

 VISUAL BASIC 6.0 271

 � Tool Box: Contains various controls that can be dragged on the form to design
it. Some extra controls can be added in the Tool Box by right-clicking the Tool
Box and selecting the component option.

 � Project Explorer: Displays the components of the project, such as Forms,
Module, and Data Report.

 � Code Window: A Visual Basic code editor where a program is written.

 � Form Layout Window: Allows user to set the position of the form in
the application. The top-left corner of the desktop screen represents the
coordinates – 0, 0.

Data Types

Data Type Storage Size Storage Type Range

Byte 1 byte Single and unsigned
number

0-255

Boolean 2 bytes Stores True/False True or False

Integer 2 bytes Stores integer -32768 to 32767

Single 4 bytes Floating-point
numbers

For negative numbers:

-3.402823E38 to -1.401298E-45

For positive numbers-

401298E-45 to 3.402823E38

Double 8 bytes Floating-point
numbers

For negative numbers:

-1.79769313486232E308 to

-4.94065645841247E-324

For positive numbers:

4.94065645841247E-324 to
1.79769313486232E308

Decimal 12 bytes Decimal numbers +/-79228162514264337593543
950335 to

+/-7.9228162514264337593
543950335 (numbers with no
decimal place to numbers with
28 decimal places)

272 SOF T WARE ENGINEERING AND TESTING

Currency 8 bytes Currency in number
with 4 decimal places

- 922337203685477.5808 to
922337203685477.5807

String 10 bytes +
String length

Stores String 1 to 2 billion characters

Date 8 bytes Stores Date 1 Jan 100 to 31 Dec 9999

Variant For numbers
–16 bytes

For String -22
bytes + String
length

Can store any type of
data

Chapter 14
CONTROLS IN VISUAL BASIC

 Visual Basic provides a number of intrinsic and extrinsic controls. Before
starting the Visual Basic control let us take a look at the various properties
of the form itself.

 A form provides an interface for an application where the controls can be
dragged to design the application. In a form’s code window we can write the
procedures for different events of controls used in the form.

 Object Window

FIGURE 14.1
273

274 SOF T WARE ENGINEERING AND TESTING

 Code Window

FIGURE 14.2

 Form Properties

Property Setting Description

Name Gives a name to the Form

Appearance 0-Flat Form appears flat

1-3D Form appears three-dimensional

BackColor Changes back color of the form

BorderStyle 0-None Form appears without border and Control Box

1-Fixed single Form appears with border and only close
button

Form cannot be resized, maximized, or
minimized

 CONTROLS IN VISUAL BASIC 275

2-Sizable Form appears with border having maximize,
minimize, and close buttons

Caption Changes the caption of a Form

ControlBox True Form shows all controls, i.e., maximize,
minimize, and close buttons

False Form does not show maximize, minimize, or
close buttons, but shows top border

Enabled True Form becomes enabled

False Form becomes disabled

Font Font of the form can be changed. Any control
placed on the form will automatically set its
font property as the form’s font

Height Measures height of the form in twips

Icon Icon of the form can be changed by locating any
icon file

Left Distance of the form in twips from left of the
screen

MaxButton True Shows maximize button in the form

False Does not show maximize button

MDIChild True Makes the form child of the MDI Form (Multiple
Document Interface Form)

False Does not make the child of the MDI Form

MinButton True Minimize button becomes visible

False Minimize button becomes invisible

Moveable True Form can be moved using mouse after
execution

False Form cannot be moved

Picture A graphic can be displayed in the background
of the Form by locating any picture file

ShowInTaskbar True Form can be shown in the Task Bar

False Form does not appear in the Task Bar

276 SOF T WARE ENGINEERING AND TESTING

StartupPosition 0- Manual Form appears at the position given in Left and
Top property

1- Center
owner

Form appears at the center of the screen

2- Center
screen

Form appears just below the previous form

Top Distance in twips from the top of the screen

Visible True Form becomes visible

False Form becomes invisible

Width Assigns the width of the form

Text Shows text in the Text Box

WindowState 0- Normal Normal-sized window appears

1- Minimized Form is minimized and form icon appears in the
Task Bar

2- Maximized Form window is full screen

14.1 TOOL-BOX CONTROLS

 Tool Box

FIGURE 14.3

 CONTROLS IN VISUAL BASIC 277

 Pointer

 This is the first control in the Tool Box, mainly used to unselect the selected
control.

 Picture Box

 Used to display images.

Property Setting Description

Name Gives a name to the control

Alignment 0- None Picture Box appears at user-defined position,
i.e., Left and Top

1- Align Top Picture Box appears at the Top of the Form

2- Align Bottom Picture Box appears at the Bottom of the
Form

3- Align Left Picture Box appears at the Left side of the
Form

4- Align Right Picture Box appears at the Right side of the
Form

Appearance 0-Flat Picture Box becomes flat

1-3 D Picture Box becomes 3-D

AutoSize True Picture Box gets resized to the size of the
graphic

False Picture Box does not resize

BackColor Changes the back color of the control

BorderStyle 0- None Control with no border

1- Fixed Single Control with fixed border

Height Sets the height of the control

Left Distance in twips from left side of the Form

MouseIcon To locate the icon file if the MouseIcon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

278 SOF T WARE ENGINEERING AND TESTING

2- Cross Cross type mouse icon appears

3- I–Beam I Beam type mouse icon appears

99- Custom Mouse icon can be customized

Picture To locate and display the picture file

ToolTipText Text to be shown when mouse pointer is over
the control

Top Distance in twips from top of the Form

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 Label

Property Setting Description

Alignment 0- Left Justify Caption of the control is left aligned

1- Right Justify Caption of the control is right aligned

2- Center Caption of control is center aligned

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

AutoSize True Size of the control gets resized according to the
length of the caption

False Size of the control is fixed

BackColor Sets the back color of the control

BackStyle 0- Transparent Back color of the control is transparent

1- Opaque Back color of the control is opaque and can be
set to any color

BorderStyle 0- None Control without border

1- Fixed Single Control with fixed border

Caption Caption that is displayed with the control

Font Sets the font of the control

 CONTROLS IN VISUAL BASIC 279

Forecolor Sets the fore color of the control

Height Sets the height of the control

Left Distance in twips from left side of the form

MouseIcon To locate the icon file if the MouseIcon property
is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

2- Cross Cross type mouse icon appears

3- I–Beam I Beam type mouse icon appears

99- Custom Mouse icon can be customized

ToolTipText Text to be shown when mouse pointer is over
the control

Top Distance in twips from top of the Form

Visible True Control becomes visible

 Text Box

Property Setting Description

Alignment 0- Left Justify Text of the control is left aligned

1- Right Justify Text of the control is right aligned

2- Center Text of the control is center aligned

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BackColor Sets the back color of the control

BorderStyle 0- None Control without border

1- Fixed Single Control with fixed border

Enabled True Text Box becomes enabled

 False Text Box becomes disabled

Font Sets the font of the control

ForeColor Sets the fore color of the control

280 SOF T WARE ENGINEERING AND TESTING

Height Sets the height of the control

Left Distance in twips from left side of the
Form

Locked True No text can be entered during run-time

False Text can be entered during run-time

MaxLength Maximum length of the text that can be
entered

MultiLine True Text can be entered in more than one
line

False Text can be entered only in one line

PasswordChar If ‘*’ is given it appears in Text Box in
place of all the characters entered

Scroll Bars 0- None No scroll bar appears (default setting)

1- Horizontal Horizontal scroll bar appears (If multiline
property is True)

2- Vertical Vertical scroll bar appears (If multiline
property is True)

3- Both Both scroll bars appear (If multiline
property is True)

TabIndex Sets the order of movement of the cursor
when pressing Tab key

(Index number starts from 0)

TabStop True Cursor moves to that control if the Tab
key is pressed

False Cursor does not move to that control if
the Tab key is pressed

Text The text that appears in the Text Box

ToolTipText Text to be shown when mouse pointer is
over the control

Top Distance in twips from the top of the
Form

Visible True Control becomes visible

 CONTROLS IN VISUAL BASIC 281

False Control becomes invisible

Width Sets the width of the control

 Frame

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BackColor Sets the back color of the control

BorderStyle 0- None Control without a border

1- Fixed Single Control with a fixed border

Caption Caption that is displayed with the
control

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

ForeColor Sets the fore color of the control

Height Sets the height of the control

Index Sets the control array

Left Distance in twips from left side of the
Form

MouseIcon To locate the icon file if the MouseIcon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

2- Cross Cross type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

282 SOF T WARE ENGINEERING AND TESTING

ToolTipText Text to be shown when mouse pointer is
over the control

Top Distance in twips from the top of the
Form

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 Command Button

Property Setting Description

Appearance 0-Flat Control appears flat

1-3 D Control has 3-D appearance

BackColor Sets the back color of the control

Cancel True Command Button can be executed by
pressing Esc key

False Esc key does not work to execute
Command Button

Caption Caption that is displayed with the
control

Default True Command Button can be executed by
pressing the Enter key

False Enter key does not work to execute the
Command Button

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

ForeColor Sets the fore color of the control

Height Sets the height of the control

Index Sets the control array

 CONTROLS IN VISUAL BASIC 283

Left Distance in twips from left side of the
Form

MouseIcon To locate the icon file if the MouseIcon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

 1- Arrow Arrow type mouse icon appears

 2- Cross Cross type mouse icon appears

 3- I-Beam I-Beam type mouse icon appears

 99- Custom Mouse icon can be customized

Picture To locate and display the picture file

Style 0- Standard Standard setting, does not show image

1-Graphical Image appears in the control if an image
is set in the Picture property

TabIndex Sets the order of movement of cursor on
pressing Tab key (Index starts from 0)

TabStop True Cursor moves to that control if the Tab
key is pressed

False Cursor does not move to that control if
the Tab key is pressed

ToolTipText Text to be shown when mouse pointer is
over the control

Top Distance in twips from top of the Form

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 Check Box

Property Setting Description

Alignment 0- Left Justify Caption of the control is left aligned

1- Right Justify Caption of the control is right aligned

284 SOF T WARE ENGINEERING AND TESTING

2- Center Caption of control is center aligned

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

Caption Caption that is displayed with the control

DisabledPicture Sets picture when the control is disabled
(if Style property is set to Graphical)

DownPicture Sets picture when the control is pressed

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

Forecolor Sets the fore color of the control

Height Sets the height of the control

Index Sets the control array

Left Distance in twips from left side of the
Form

MouseIcon To locate the icon file if the mouse icon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

2- Cross Cross-type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

Picture To locate and display the picture file

Style 0- Standard Standard setting, does not show image

 1-Graphical Image appears in the control if an image is
set in the Picture property

TabIndex Sets the order of movement of the cursor
upon pressing the Tab key

(Index starts from 0)

 CONTROLS IN VISUAL BASIC 285

TabStop True Cursor moves to that control if the Tab key
is pressed

 False Cursor does not move to that control if the
Tab key is pressed

ToolTipText Text to be shown when mouse pointer is
over the control

Top Distance in twips from top of the Form

Value 0- Unchecked Check Box is unchecked

1- Checked Check Box is checked

 2- Grayed Check Box is grayed

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 Option Button

Property Setting Description

Alignment 0- Left Justify Caption of the control is left aligned

1- Right Justify Caption of the control is right aligned

2- Center Caption of control is center aligned

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

Caption Caption that is displayed with the control

DisabledPicture Sets picture when the control is disabled (if
Style property is set to Graphical)

DownPicture Sets picture when the control is pressed

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

Fore color Sets the fore color of the control

286 SOF T WARE ENGINEERING AND TESTING

Height Sets the height of the control

Index Sets the control array

Left Distance in twips from left side of the
Form

MouseIcon To locate the icon file if the mouse icon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow-type mouse icon appears

2- Cross Cross-type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

Picture To locate and display the picture file

Style 0- Standard Standard setting, does not show image

1-Graphical Image appears in the control if an image is
set in the Picture property

TabIndex Sets the order of movement of the cursor
upon pressing the Tab key (Index starts
from 0)

TabStop True Cursor moves to that control if the Tab key
is pressed

False Cursor does not move to that control if the
Tab key is pressed

ToolTipText Text to be shown when mouse pointer is
over the control

Top Distance in twips from top of the Form

Value True Option Button is selected

False Option Button is unselected

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 CONTROLS IN VISUAL BASIC 287

 Combo Box

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BackColor Sets the back color of the control

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

Forecolor Sets the fore color of the control

Height Sets the height of the control

Left Distance in twips from left side of the
Form

List Adds items in a Combo Box

Locked True View only, no item can be selected

MouseIcon To locate the icon file if the mouse icon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

2- Cross Cross type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

Sorted True Items in the Combo Box are displayed in
alphabetical order

 False Items in the Combo Box do not display in
alphabetical order

Style 0- Dropdown
Combo

Can write and view list, and select the item

1- Simple Combo No list view, selection by only Up and
Down arrow key, can write

288 SOF T WARE ENGINEERING AND TESTING

2- Dropdown List No write, selection by list view

TabIndex Sets the order of movement of the cursor
upon pressing the Tab key (Index starts
from 0)

TabStop True Cursor moves to that control if the Tab key
is pressed

False Cursor does not move to that control if the
Tab key is pressed

Text The text that appears in the Combo Box

Top Distance in twips from top of the Form

Visible True Control becomes visible

False Control becomes invisible

Width Sets the width of the control

 List Box

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3-D Control has 3-D appearance

Backcolor Sets the back color of the control

Enabled True Control becomes enabled

False Control becomes disabled

Font Sets the font of the control

Forecolor Sets the fore color of the control

Height Sets the height of the control

Left Distance in twips from left side of the Form

List Adds items in a List Box

MultiSelect 0- None Only one item can be selected

 CONTROLS IN VISUAL BASIC 289

1- Simple More than one item can be selected by
mouse click

 2- Extended A range of items can be selected by mouse
dragging

Sorted True Items in the Combo Box are displayed in
alphabetical order

 False Items in the Combo Box do not display in
alphabetical order

Style 0- Standard Standard list appears

1- Checkbox List appears with check box

 Horizontal Scroll Bar

Property Setting Description

Name Gives a name to the control

Enabled True Control becomes enabled

False Control becomes disabled

LargeChange Scale of change in Scroll Bar value when
mouse is clicked on the Scroll Bar ribbon

Max 32767 Maximum value of the Scroll Bar

Min 0 Minimum value of the Scroll Bar

MouseIcon To locate the icon file if the mouse icon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow type mouse icon appears

2- Cross Cross type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

Value Current value of Scroll Bar pointer

290 SOF T WARE ENGINEERING AND TESTING

 Vertical Scroll Bar

Property Setting Description

Name Gives a name to the control

Enabled True Control becomes enabled

False Control becomes disabled

LargeChange Scale of change in Scroll Bar value when
mouse is clicked on the Scroll Bar ribbon

Max 32767 Maximum value of the Scroll Bar

Min 0 Minimum value of the Scroll Bar

MouseIcon To locate the icon file if the mouse icon
property is set to 99-Custom

MousePointer 0- Default Default mouse icon appears

1- Arrow Arrow-type mouse icon appears

2- Cross Cross-type mouse icon appears

3- I-Beam I-Beam type mouse icon appears

99- Custom Mouse icon can be customized

Value Current value of the Scroll Bar pointer

 Timer

 Used to generate an event at a regular interval. The interval is defined at the
interval property of the Timer.

Property Setting Description

Name Gives a name to the control

Enabled True Timer gets enabled

False Timer gets disabled

Interval (any time interval in milliseconds starting
from 0)

 CONTROLS IN VISUAL BASIC 291

 Drive List Box

 Displays current active drives on the system.

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BackColor Sets the back color of the control

Enabled True Control gets enabled

False Control gets disabled

Left Distance in twips from left side of the
Form

TabIndex Sets the order of movement of cursor
on pressing the Tab key (Index starts
from 0)

TabStop True Cursor moves to that control if the Tab
key is pressed

False Cursor does not move to that control if
the Tab key is pressed

Visible True Control becomes visible

False Control becomes invisible

 Dir List Box

 Displays all folders of the currently selected drive.

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BackColor Sets the back color of the control

Enabled True Control gets enabled

False Control gets disabled

292 SOF T WARE ENGINEERING AND TESTING

Left Distance in twips from left side of the
Form

TabIndex Sets the order of movement of the
cursor upon pressing the Tab key
(Index starts from 0)

TabStop True Cursor moves to that control if the
Tab key is pressed

False Cursor does not move to that control
if the Tab key is pressed

Visible True Control becomes visible

False Control becomes invisible

 File List Box

 Display all files of the currently selected folder.

Property Setting Description

Name Gives a name to the control

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

Archives True Displays archived attribute files

 False Does not display archived attribute
files

BackColor Sets the back color of the control

Enabled True Control gets enabled

False Control gets disabled

Hidden True Shows hidden files

False Does not show hidden files

Left Distance in twips from left side of the
form

Normal True Displays Normal attribute files

False Does not display Normal attribute
files

 CONTROLS IN VISUAL BASIC 293

Pattern Sets type of files to be displayed
(* For all files)

ReadOnly True Displays read-only files

False Does not display read-only files

System True Displays system files

False Does not display system files

TabIndex Sets the order of movement of the
cursor upon pressing the Tab key
(Index starts from 0)

TabStop True Cursor moves to that control if the
Tab key is pressed

False Cursor does not move to that control
if the Tab key is pressed

Visible True Control becomes visible

False Control becomes invisible

 Shape

 Draws different types of shapes, e.g., rectangle, circle, oval, square, etc.

Property Setting Description

BackColor Sets the back color of the control

BackStyle 0- Transparent Back color is transparent

1- Opaque Back color is opaque

BorderColor Sets the border color of the control

BorderStyle 0- Transparent Border is transparent

1- Solid Border is solid

2- Dash Border with dashes

3- Dot Border with dots

4- Dash- Dot Border with dashes and dots

5- Dash- Dot-Dot Border with dashes, dots, and dots

6- Inside solid Border is solid

294 SOF T WARE ENGINEERING AND TESTING

BorderWidth 1 Sets width of the border (min. value
is 1)

Shape 0- Rectangle Shape is a rectangle

1- Square Shape is a square

2- Oval Shape is a oval

3- Circle Shape is a circle

4- Rounded
Rectangle

Shape is a rounded rectangle

5- Rounded Square Shape is a rounded square

 Line

 Draws a single line of a different style.

Property Setting Description

BorderColor Sets the border color of the
control

BorderStyle 0- Transparent Border is transparent

1- Solid Border is solid

2- Dash Border with dashes

3- Dot Border with dots

4- Dash- Dot Border with dashes and dots

5- Dash- Dot-Dot Border with dashes, dots, and
dots

6- InsideSolid Border is solid

BorderWidth 1 Sets width of the border (min.
value is 1)

Visible True Control becomes visible

 False Control becomes invisible

 X1 Position of start point of the line
from left of the Form

 CONTROLS IN VISUAL BASIC 295

 X2 Position of end point of line from
left of the Form

 Y1 Position of start point of line from
top of the Form

 Y2 Position of end point of line from
top of the Form

 Image

 Displays graphics of JPEG, GIF, Bitmap, and icon files. Graphics can be resized to
fit in the Image Box.

Property Setting Description

Appearance 0- Flat Control appears flat

1- 3 D Control has 3-D appearance

BorderStyle 0- None Control without border

1- Fixed Single Control with fixed border

Picture Sets picture from the image file

Stretch True Image is resized to fit in the Picture Box

False Image displays with its original size

Visible True Control becomes visible

False Control becomes invisible

 Form Events

 � Activate: When the Form gets focused, the Activate event occurs.

 � Deactivate: When the Form loses focus, the Deactivate event occurs.

 � Initialize: When the Form is created, the Initialize event occurs.

 � Load: When the application is run and the Form is loaded in the memory, the
Load event occurs.

 � QueryUnload: This event occurs just before the Form is unloaded.

 � Terminate: This event occurs after the Unload event.

296 SOF T WARE ENGINEERING AND TESTING

 Control Events

 � Click: When an object is clicked.

 � DblClick: When an object is double-clicked.

 � GotFocus: When an object receives focus.

 � LostFocus: When an object loses focus.

 � Change: This event occurs when a user enters or changes the text in the Text
Box or Combo Box.

 � DropDown: When a list of the Combo Box begins to drop down, this event
occurs.

 � Scroll: When the scroll bar of a control is scrolled, this event occurs.

 � ItemCheck: When any item of the List Box is checked or unchecked, this
event occurs. This event is generated only when its Style property is set to
1-Checkbox.

 � Timer: The event occurs each time after the time specified in milliseconds in
the Interval property of the Timer control.

 � KeyPress: The event occurs when any key is pressed on the keyboard. This
event works with Text Box and Combo Box.

 � MouseOver: When the mouse pointer comes over an object the MouseOver
event occurs.

Chapter 15
VARIABLES AND OPERATORS IN

VISUAL BASIC

15.1 VARIABLE NAMING CONVENTIONS

 1. Must begin with a character.

 2. Maximum length of variable is 255 characters.

 3. Should not contain spaces or special characters except the underscore (_).

15.2 VARIABLE DECLARATION

 To declare the variable private use DIM
 DIM < variable name > as < Data Type >

 For example, DIM productname as String

 DIM quantity as Integer

 To declare the variable public use PUBLIC
 PUBLIC < variable name > as < Data Type >

297

298 SOF T WARE ENGINEERING AND TESTING

 For example, PUBLIC productname as String

 PUBLIC quantity as Integer

15.3 SCOPE OF VARIABLES

Type of
Declaration

Section of
Declaration

Scope

DIM Procedure Can be accessed by that particular procedure
only where the variable has been declared.

DIM General declaration
section of the form

Can be accessed by all the procedures of the
form and the value can also be transferred
from one procedure to another.

DIM General declaration
section of module

Can be accessed by all the procedures and
the value can be used in that procedure only
where it has been assigned to the variable. The
value of the variable cannot be transferred to
another procedure.

PUBLIC General declaration
section of module

The variable and value both can be accessed
in any procedure of all the forms.

 Duplicate declaration of the variable is not allowed in the current scope.

15.4 LOGICAL OPERATORS

Operator Function of Operator Example Return Value

+ Adds two numbers A=10+10 20

– Subtracts right number from left
number

A=20–10 10

* Multiplies two numbers A=20*10 200

/ Divides left number by right
number

A=20/6 3.33

\ Divides left number by right number
and returns only integer number

A=20\6 3

 VARIABLES AND OPERATORS IN VISUAL BASIC 299

MOD Divides two numbers and returns
remainder

A=20 mod 6 2

^ Used to express the power of an
exponent

A=10^10 100

& Used to concatenate two strings Myname=
“Mahesh” & “Gupta”

“Mahesh
Gupta”

15.5 LOGICAL OPERATORS

 1. AND

 Checks both the expressions and returns True if both the expressions are true. If
one of the expressions is False or Null, it returns False.

1st Expression 2nd Expression Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

TRUE NULL NULL

FALSE NULL FALSE

NULL FALSE FALSE

NULL TRUE FALSE

NULL NULL NULL

 2. EQV

 Checks whether two expressions are identical or not. If both expressions are
identical, returns True, otherwise returns False. If any expression is Null, the return
value is also Null.

1st Expression 2nd Expression Result

TRUE TRUE TRUE

FALSE FALSE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

300 SOF T WARE ENGINEERING AND TESTING

 3. NOT

 Used to reverse the expression.

Expression Result

TRUE FALSE

FALSE TRUE

NULL NULL

 4. OR

 If either of the two expressions is True, the result is True.

1st Expression 2nd Expression Result

TRUE TRUE TRUE

FALSE FALSE FALSE

NULL NULL NULL

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE NULL NULL

NULL TRUE NULL

NULL FALSE NULL

 5. XOR

 If only one expression is True, the result is True.

1st Expression 2nd Expression Result

TRUE FALSE TRUE

FALSE TRUE TRUE

TRUE TRUE FALSE

FALSE FALSE FALSE

 VARIABLES AND OPERATORS IN VISUAL BASIC 301

15.6 IF-ELSE STATEMENT

 Case 1

 If <Condition> Then

 <Statement 1>

 <Statement 2>

 Else

 <Statement 3>

 End If

 Checks the condition, if True, it executes Statement 1 and Statement 2;
otherwise, Statement 3 is executed.

 Case 2

 If <Condition 1> Then

 <Statement 1>

 ElseIf <Condition 2> then

 <Statement 2>

 End If

 All conditions are evaluated sequentially. If True, the corresponding statement
is executed.

15.7 DO WHILE …. STATEMENT

 Case 1

 Do While <Condition>
 <Statement>

 Loop

 Performs the Do While loop and the Statement is executed while the condition
is True.

 Case 2

 Do While Not <Condition>

 <Statement>

 Loop

 Performs the loop until the condition becomes True.

 You can use Exit Do to terminate the Do While Loop.
 Do While <Condition>

 <Statement>

 Exit Do

 Loop

302 SOF T WARE ENGINEERING AND TESTING

15.8 FOR LOOP

 For <Counter>=<Start> To <End>

 <Statement>

 Next

 The Counter is incremented by 1 each time the loop is performed. The loop is
performed until the value of the Counter becomes equal to the < End > value. You
can exit the For Loop by using the Exit For statement.

 The Counter is incremented by 1 by default. You can increment it by any
number by specifying Step < no.>

 Look at the example given.

 For N=1 to 100 Step 2

 <Statement>

 Next

 In this For statement, Counter N will be incremented by two until the value
of N reaches 100, which means the loop will be performed 50 times. You can also
decrement the Counter by using a negative number of steps. Consider the above
example to decrement the Counter.

 For N=1 to 100 Step -2

 <Statement>

 Next

15.9 WITH–END WITH STATEMENT

 Executes all the statements within the With–End With Block on a single object.
 With <Object Name>

 <Statement>

 End With

 Example:
 With Text1

 .Text = “Ishita”

 .BackColor = VbRed

 .ForeColor = VbBlack

 End With

Chapter 16
FUNCTIONS IN VISUAL BASIC

 Functions may be inbuilt or user-defined. We will discuss here only inbuilt
Visual Basic functions.

 1. Asc ()

 Returns an ASCII value of the first character in the string.

 Example:

Expression Return Value

Result = Asc(“M”) 77

Result = Asc(“Mahesh”) 77

Result = Asc(“m”) 109

 2. CBool ()

 Converts its arguments to a Boolean function and returns False for a zero value
and True for all other values.

303

304 SOF T WARE ENGINEERING AND TESTING

 Example:

Expression Return Value

Result = CBool (0) False

Result = CBool (1) True

Result = CBool (2) True

 3. Cbyte ()

 Converts an argument to a byte.

 4. Ccur ()

 Converts an argument to a currency data type.

 Example:
 Dim No as double

 Dim Result as currency

 No = 1000.123456

 Result = CCur(No) ‘Return Value is 1000.1234 (Currency Type)

 5. CDate ()

 Converts a string to a date type.

 6. Cdec ()

 Converts an argument to a decimal type.

 7. CDbl ()

 Converts an argument to a double type.

 8. Chr ()

 Converts an ASCII value to its character representation.

 Example:

Expression Return Value

Result = Chr(77) M

Result = Chr(32) < Space Character >

Result = Chr(122) z

 FUNCTIONS IN VISUAL BASIC 305

 9. CInt ()

 Converts a character to an integer.

 Example:

Expression Return Value

Result = CInt(“2”) 2

Result = CInt(“2.84”) 3

Result = CInt(“2.13”) 2

 The fractional value is rounded off.

 10. CLng ()

 Converts a character to a long.

 11. CSng ()

 Converts an argument to a single.

 12. CStr ()

 Converts an argument to a string.

 13. CVar ()

 Converts an argument to a variant.

 14. Date ()

 Returns current system date.

 Example 1:
 Print Date ‘current system date will be displayed on the form

 Example 2:
 Dim D as date

 D = date ‘D will return current system date

 15. DateAdd ()

 Adds Day, Month, or Year in the given date and returns a new date.

306 SOF T WARE ENGINEERING AND TESTING

 Example:

Expression Return Value

Result = DateAdd (“m”, 2, Date) Adds two months to current system date

Result = DateAdd (“yyyy”, 1, Date) Adds one year to current system date

Result = DateAdd (“D”, 10, Date) Adds 10 days to current system date

Result = DateAdd (“Ww”, 3, Date) Adds 3 weeks to current system date

Result = DateAdd (“q”, 2, Date) Adds 2 Quarters to current system date

 16. DateDiff ()

 DateDiff (Interval, Date1, Date2)

 Example:
 DateDiff (“D”, “01–01–05”,“11–01–05”) ‘ Returns 10

 Use the following intervals:

 m – Month
 YYYY – Year
 q – Quarter
 Ww – Week

 17. DatePart ()

 Returns a specified part of a given date.
 DatePart (Interval, Date)

 Use the following intervals:

Symbol Description

Yyyy To extract Year from date

Y To extract Day of year from date

Q To extract Quarter from date

M To extract Month from date

D To extract Day from date

W To extract Weekday from date

Ww To extract Week from date

 FUNCTIONS IN VISUAL BASIC 307

 18. Day ()

 Returns the Day number from the date.
 Result = Day (Date) ‘Returns current day from system date

 19. Format ()

 Changes the output of an expression according to the format given.

Expression Return Value

Result = Format (Date,”dd-MM-yy”) 01-02-05 (If current Date is Feb. 1,
2005)

Result = Format (Date,”dd-MMM-yy”) 01-Feb-05

Result = Format (Date,”dd-MMM-yyyy”) 01-Feb-2005

Result = Format (Time, “hh:mm:ss”) 12:05:15 (If current Time is 12 Hrs.
5 Min and 15 Sec. PM)

Result = Format (Time,”h:m:s”) 12:5:15

Result = Format(Time,”h:m:s AM PM”) 12:5:15 PM

Result = Format (1928, ”##.00”) 1928.00

Result = Format (192.8, ”##.00”) 192.80

Result = Format (1928, “##,###.00”) 1,928.00

Result = Format (“INDIA”, “<”) india

Result = Format (“India”, “>”) INDIA

 20. Hour ()

 Extracts hour from time.
 Result = Hour (Time)

 21. IIf ()

 Checks the condition, if found true, the first expression is returned; otherwise, the
second expression is returned.

 Result = IIf (Marks > 33, “Pass”, “Fail”)

 22. Instr ()

 Returns the position of the first string within the second.

308 SOF T WARE ENGINEERING AND TESTING

 Result = Instr (Startpos, String 1, String 2)

 Startpos : Start position in String 1 from where String 2

 has to be searched.

 String 1 : String in which String 2 has to be searched.

 String 2 : String to be searched.

 23. Isarray ()

 Returns True if a variable is an array; otherwise, returns False.
 Result = Isarray (Variable)

 24. InputBox ()

 Shows a dialogue box with a Text Box, an OK button, and a Cancel button. The
Input given by a user is returned as a string: InputBox (Prompt, Title, Default,
Xpos, Ypos).

 Prompt : The message to be displayed in the dialogue box. It can have a
maximum of 1024 characters and can be displayed in multi-lines
in the dialogue box by using chr (13) or chr (10).

 Title : The caption which is to be displayed in the title bar of the Text
Box.

 Default : The default string that is displayed in the Text Box.

 Xpos : Position of the Input Box from the left side of the screen.

 Ypos : Position of the Input Box from the top of the screen. If the X and Y
position is not specified, the InputBox appears at the center of the
screen. Title, Default, Xpos, and Ypos are optional.

 25. IsDate ()

 Returns True if the argument is date type; otherwise, returns False.
 IsDate (Variable name)

 26. IsEmpty ()

 Returns True if a variable is not initialized.
 IsEmpty (Variable name)

 27. IsNull ()

 Returns True if the expression has no data; otherwise, returns False.

 FUNCTIONS IN VISUAL BASIC 309

 28. IsNumeric ()

 Returns True if an expression is a valid number.

 29. Ltrim ()

 Returns a string with no leading spaces.
 Result = Ltrim (“ World”) ‘Returns “World”

 30. Rtrim ()

 Returns a string with no trailing spaces.
 Result = Rtrim (“World ”) ‘Returns ”World”

 31. Trim ()

 Returns a string without leading and trailing spaces.
 Result = Trim (“ World ”) ‘Returns “World”

 32. MsgBox ()

 Displays a message box with command buttons and waits for a response from the
user.

 MsgBox (Prompt, Buttons, Title)

 Prompt : The message to be displayed in the dialogue box. The message can
be a maximum of 1024 characters. The message can be displayed in
more than one line by using the chr(13) or chr(10) characters.

 Button : The button that is displayed in the dialogue box. It may be the
OK Button, Cancel Button, Retry Button, Ignore Button, etc. If no
button is specified, the OK Button is displayed by default.

 We can use any combination of the buttons or icons from the following list.

Syntax Description

VbOKOnly OK Button is displayed

VbOKCancel Two Buttons, OK and Cancel, are displayed

VbyesNO Yes and No Buttons are displayed

VbyesNoCancel Yes, No, and Cancel Buttons are displayed

VbRetryCancel Retry and Cancel Buttons are displayed

VbAbortRetryIgnore Abort, Retry, and Ignore Buttons are displayed

310 SOF T WARE ENGINEERING AND TESTING

VbMsgBoxHelpButton Help Button is displayed

VbCritical Displays Critical message icon

VbExclamation Displays an icon with exclamation mark

VbQuestion Displays a question mark icon

VbInformation Displays an information icon

VbDefaultButton1 First Button is default

VbDefaultButton2 Second Button is default

VbDefaultButton3 Third Button is default

VbDefaultButton4 Fourth Button is default

VbSystemModal All applications are terminated until user responds

VbMsgBoxRight Displays Text with right alignment

 Return Value of Command Buttons

Button Type Return Value

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

 You can use a combination of buttons and icons by using the ‘+’ character.

 Example:

 MsgBox (“Do you want to print”, VbYesNo + VbQuestion, “Print”)

 33. Month ()

 Returns the month from the given date.
 Result = Month (date)

 FUNCTIONS IN VISUAL BASIC 311

 34. Now ()

 Returns the current date and time.
 Result = Now

 35. Second ()

 Returns the second from date.
 Result = Second (date)

 36. Sqr ()

 Returns the square root of a number.

 37. String ()

 Returns a string of the given characters and length specified.
 Result = String (10, “–”) ‘Returns “--------”

 38. Str ()

 Converts a number to a string.
 Result = Str (123.10) ‘Returns “123.10”

 39. Time ()

 Returns current system time.

 40. Val ()

 Converts a string to a number.
 Result = Val (“123”) ‘Returns “123”

 Result = Val (“1234Hello”) ‘Returns “1234”

 41. Weekday ()

 Returns number of the weekday from a date.
 Result = Weekday (date)

 42. Year ()

 Returns year from a date.
 Result = year (#1-Jan–2005#) ‘Returns “2005”

312 SOF T WARE ENGINEERING AND TESTING

 43. MonthName ()

 Converts month number into month name.
 Result = MonthName (month (#01-05-2005#)) ‘Returns “May”

 44. Cos ()

 Returns cosine of a given angle.

 45. Fix ()

 Returns the integer part of a number.

 46. Lcase ()

 Converts a string of uppercase to lowercase.
 Result = Lcase (“WORLD”) ‘Returns “world”

 47. Ucase ()

 Converts a string of lowercase to uppercase.
 Result = Ucase (“world“) ‘Returns “WORLD”

 48. Left ()

 Returns specified number of characters from left side of a string.
 Result = Left (“World”, 4) ‘Returns “Worl”

 49. Right ()

 Returns specified number of characters from right of a string.
 Result = Right (“World“, 4) ‘Returns “orld”

 50. Len ()

 Returns length of a string.
 Result = Len (“World”) ‘Returns “5”

 51. Log ()

 Returns natural logarithm of a given number.

 FUNCTIONS IN VISUAL BASIC 313

 52. Minute ()

 Returns 0-59 representing the minute part of a time.
 Result = minute (Time)

 53. Replace ()

 Replaces a character in a string with another character specified.
 Result = Replace (“LAN”, “L”, “M”) ‘Returns “MAN”

 54. Round ()

 Rounds off the decimal part and returns an integer value.
 Result = Round (19.51) ‘Returns 20

 Result = Round (19.50) ‘Returns 20

 Result = Round (19.49) ‘Returns 19

 55. Sgn ()

 Returns a number indicating the sign of a given number.
 Result = Sgn (100) ‘Returns 1

 Result = Sgn (-100) ‘Returns -1

 Result = Sgn (0) ‘Returns 0

 56. Space ()

 Returns a string containing a specified number of spaces.
 Result = Space (5) ‘Returns a string with 5 spaces

 57. Sin ()

 Returns sine of a given angle.

 58. Tan ()

 Returns tangent of a given angle.

 59. WeekdayName ()

 Returns the weekday name corresponding to a given value.

 Result = WeekdayName (2) ‘Returns “Monday”

 Sunday is the first weekday.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 17
INTRODUCTION TO DATABASES

 Adatabase is an organized collection of data where each data is related
to each other. The data contains useful information in the form of text,
numbers, and dates. You can retrieve any information stored in a database

at any time to make your decision quickly.

 A Database Management System (DBMS) is the management of the data, i.e.,
storing, processing, and retrieving of data. The Relational Database Management
System (RDBMS) is the management of all related data.

 Some commonly used RDBMSs are:

S. No. RDBMS Company Name

1. Oracle 8/8i/9i/11i ORACLE Corporation

2. Microsoft SQL Server 7.0/2000 Microsoft Corporation

3. Sybase SQL Server Sybase Incorporation

4. Informix Server Informix Software Incorporation

 The database is made up of several tables.

315

316 SOF T WARE ENGINEERING AND TESTING

17.1 TABLES

 A table is a group of data having similar information. All the data belong to the
same group. These data are further subdivided into several columns named Fields.
Each field may have different data types and sizes but they are related to each
other. The size of the field indicates the maximum amount of data that can be
entered into that field.

 Let’s use an example of a school. Suppose a school has two departments:

 1. Admission

 2. Library

 The Admission department does the admission of new students and collects
the following information about the student:

 Name

 Father’s Name

 Date of Birth

 Address

 Monthly income

 Name, Father’s Name, and Address are stored in an alphanumeric format.
Date of Birth is stored in a date type format and monthly income is stored in
numeric format.

 The Library department purchases new books and maintains the record of the
books. The book’s information is stored in the following columns:

 Book Name

 Subject

 Author

 Publication

 Date of purchase

 Book Name, Subject, Author, and Publication, are stored in alphanumeric
format, date of purchase is stored in date type format, and book cost is stored in
numeric format.

 Now we create a database for the school.

 INTRODUCTION TO DATABASES 317

17.2 STRUCTURE OF A DATABASE

 A Field may be alphanumeric, numeric, or a date type.

Field Name Field type Field size

Name Alphanumeric 50

Fname Alphanumeric 50

Dob Date 8

Address Alphanumeric 100

Income Numeric 8

Field Name Field type Field size

Bookname Alphanumeric 50

Subject Alphanumeric 20

Author Alphanumeric 50

Publication Alphanumeric 50

Purchase_date Date 8

Cost Numeric 8

17.3 KEYS

 The main role of keys is to maintain data integrity in a database or table. Keys are
one of the following types:

 1. Candidate Key: The column that has a unique value in all the rows is a
candidate key. The candidate key may be more than one in a table.

 2. Primary Key: If any column is made a primary key, the data entered in that
column must be unique across the entire column. The primary key column
cannot be left blank. The primary key is one of the candidate keys.

 3. Alternate Key: All candidate keys which are not primary keys are referred to
as alternate keys.

318 SOF T WARE ENGINEERING AND TESTING

 4. Composite Key: If there is more than one field used as primary keys, the sets
of these keys are called composite keys.

 5. Foreign Key: When a primary key of one table also exists in another table, it
is referred as a foreign key for the second table. The foreign key is used for
making a relation between both the tables.

17.4 DATA INTEGRITY

 For a successful database operation there must be data integrity. There are three
types of data integrity.

 1. Entity Integrity: Ensures that each record is unique and can be identified by a
primary key, because a primary key field contains a unique value.

 2. Domain Integrity: Ensures column level validation, i.e., each value of the field
is validated before entering, whether it is correct or not, and only the correct
value is allowed to be entered.

 3. Referential Integrity: Ensures that for each value of a foreign key, a primary
key exists in the master table.

Chapter 18
MS ACCESS 2000

18.1 CREATING A DATABASE IN MS ACCESS 2000

 When starting MS Access a dialogue box with three option buttons appears.

FIGURE 18.1

319

320 SOF T WARE ENGINEERING AND TESTING

 � Blank Access Database is used to create a new database by defining field
name, data type, and field size.

 � Access database wizard is used to create a database using a wizard.

 � Open an existing file is used to open an already created database.

18.1.1 Access Database Wizard

 To create the database with a wizard, first select the Database wizard option, then
click the OK button. You will see the screen given below:

FIGURE 18.2

 Select any type of database and click the OK button. You will see a screen called
File New Database. Enter the filename in the box and click the Create button. Now
follow the instructions and options given and click the Next button and lastly click
the Finish button.

 After gathering the information MS Access creates a database with the extension
.mdb. The database contains different tables, forms, queries, and reports.

 MS ACCESS 2000 321

FIGURE 18.3

18.1.2 Blank Access Database

 This option is used to create a customized database. To create a new database,
select this option and click the OK button. On the next screen you will see a File
New Database window. Give any valid filename in the File Name box and click
the Create button to save the database file with the .mdb extension. You can select
any path to save your database file by selecting the Save in box (see Figure 7.3).

 The next window that appears is given below:

FIGURE 18.4

322 SOF T WARE ENGINEERING AND TESTING

 On the left side of the window, seven types of objects are given. Select the first
object, i.e., Table (by default it is already selected) and click the New button. The
options that come with the New Table dialogue box are (see Figure 7.4):

 � Datasheet View: You can create a table by entering the data. Twenty fields
are given in the table from field1 to field20. The data type of all the fields
are by default text, but once you save the data, the data type of the fields
are changed according to the data entered. You can rename the field by
double-clicking the field name.

 � Table Wizard: Creates a table using a wizard.

 � Design View: A customized table can be created using Design View.

 � Import Table: A table can be imported from another database using this
option.

 � Link Table: The table can be linked with another database and you can
work with these options.

FIGURE 18.5

 Select the Create table in the Design View option. As you select this option, on
the tool bar the Open and Design buttons get enabled. Now click the Open button
on the tool bar that gives a window to design the table.

 MS ACCESS 2000 323

FIGURE 18.6

 Give a field name in the Field Name column and select a data type from the
Data Type column. A table with the following fields is shown in Figure 18.7.

Field Name Data Type Field Size

Name Text 50

Age Number 3

Date_of _birth Date 8

Monthly_income Currency 8

FIGURE 18.7

324 SOF T WARE ENGINEERING AND TESTING

 You can insert a new field between two existing fields. To do this select a field
above which you want to insert a new field and then right-click. Now select the
Insert Rows option. A field can also be deleted. To delete select the row you want
to delete and right-click and select the Delete Rows option.

18.2 DATA TYPES

 1. Autonumber: The data you enter in the table is automatically given a sequence
of numbers starting from one.

 2. Text: Stores data up to 255 characters. Data may contain text, numbers, special
characters, and spaces.

 3. Memo: Stores large amounts of text type data.

 4. Number: Stores numeric data.

 5. Currency: Stores money-type data with four decimal places.

 6. Date/Time: Stores date, time, or both.

 7. Yes/No: Stores boolean values, i.e., Yes or No, True or False.

 8. OLEObject: Stores OLE (Object Linking and Embedding) objects, i.e., pictures,
sound, or any other type of data.

 9. Lookup Wizard: A field can be created from which a user can select a value.

18.3 FIELD PROPERTIES

 1. Field Size

 For Text and Memo Data Types

 This property is used to set the field size of the text field. The text field can contain
a maximum of 255 characters. The field size of a text field is 50 by default, but it
can be changed according to the amount of data that this field will store. To save
disk space do not give the size of the field more than the amount of data to be
inserted.

 Memo field can store 1.2 GB of data. It does not have the field size property.

 For Number Data Types

 1. Byte: Stores numbers from 0 to 255 without decimal places.

 2. Integer: Stores numbers from –32000 to +32000 without decimal places.

 MS ACCESS 2000 325

 3. Long Integer: Stores numbers from –2 billion to +2 billion without decimal
places.

 4. Single: Stores numbers from –3.4*1038 to +3.4*1038 with 6 decimal places.

 5. Double: Stores numbers from –1.79*10308 to +1.79*10308 with 10 decimal
places.

 For Currency Data Types

 Field size is fixed for the currency data type. It can store 15 digits to the left of the
decimal point and 4 digits to the right of the decimal point.

 2. Format

 For Text and Memo Data Types

 To set the format of the text field, you can use this property.

Symbol Description

@ If Character is required

& If Character is not required

> Characters are converted into uppercase

< Characters are converted into lowercase

 For Number, Autonumber, and Currency Field

 1. General Number: The number is displayed in the same format as it is
entered.

 2. Currency: The number is displayed in currency format, i.e., with a comma
after 3 digits and with two decimal places. A dollar sign is displayed before the
first digit.

 3. Euro: The same as currency type but a Euro sign is displayed instead of a
dollar sign.

 4. Fixed: One digit is displayed before the decimal place and 2 digits are displayed
after the decimal place.

 5. Standard: The same as the currency data type but without a currency sign.

 6. Percent: Numbers are displayed in % form, i.e., 1 as 100%, 2 as 200%, and .2 as
20%.

 7. Scientific: Numbers are displayed in their scientific notations, i.e., 100 as
1.00E+02 and 16900 as 1.69E+04.

326 SOF T WARE ENGINEERING AND TESTING

 For Date Field

 1. General Date: If a date is entered, it displays the date and if a time is entered,
it displays time. But if both are entered it displays both.

 2. Long Date: The date is displayed in the format weekday, month name, day,
year.

 Example: Monday, January 1, 2005.

 3. Medium Date: The date is displayed in the format Month/Day/Year.

 Example: 1/1/2005.

 4. Long Time: The time is displayed in the format Hour : Minute : Second AM/
PM.

 Example: 12:10:54 AM.

 5. Medium Time: Time is displayed in hours and minutes. Seconds are not
displayed.

 Example: 12:10 AM.

 6. Short Time: Time is displayed as a 24-hour clock.

 For Yes/No Field

 Three types of formats are given in the list:

 1. Yes and No

 2. True and False

 3. On and Off

 3. Input Mask

 This property is used to specify the format in which data is entered. The Text,
Number, Date/Time, and Currency fields have this type of property.

Input Mask Character Description

To input number, plus sign, minus sign, and space
(Not Required)

0 To input number (Required)

9 To input number or space (Not Required)

L To input a letter (Required)

A To input a letter or number (Required)

 MS ACCESS 2000 327

a To input a letter or number (Not Required)

? To input a letter (Not Required)

C To input any character (Not Required)

& To input any character (Required)

> To input character in uppercase

< To input character in lowercase

 4. Caption

 This is a common property for all fields. When a table is opened, the caption is
displayed as the heading of the field.

 5. Default Value

 The value entered in this property is set as default for that field but this value can
be changed. All fields except Autonumber and OLE object have this property.

 6. Validation Rules and Validation Text

 A validation rule is an expression to test the data entered. If the entered data do not
follow the validation rule the validation text is displayed.

 7. Required

 This property makes the field ‘Rrequired’ or ‘Not Required.’

 8. Allow Zero Length

 A string with zero length can be entered in the field if this property is set to ‘Yes.’

 9. Index

 Creates an index of a field.

18.4 SAVING THE TABLE

 When you first save the table it asks you to enter a table name. If no name is
entered the table is saved with the table name Table 1. Before saving the table it
asks the user to define a primary key if no primary key is defined.

328 SOF T WARE ENGINEERING AND TESTING

18.5 MODIFYING THE TABLE

 To modify the table structure select the table which you want to modify and then
click the Design Command button. The table structure is displayed. Make the
changes where you want and save the table again.

18.6 IMPORTING THE TABLE

 To import the table from another database, right-click and select the import option.
A dialogue window is displayed to select the database file (.mdb) from where you
want to import the tables. Select the database file and open it. A list of tables is
displayed. Now select the tables you want to import and click the OK button. The
selected tables are copied in your database.

Chapter 19
ORACLE

 The Oracle database has been developed by the Oracle Corporation. There
are different versions, such as Oracle7/8/8i/9i/11i. Oracle is a Relational
Database Management System (RDBMS) that works on a client server basis

in a multi-user environment. Oracle has two parts:

 1. Oracle Server tool

 2. Oracle Client tool

 The Oracle Server tool is installed on a server, whereas the Oracle Client tool
is installed on the client machine.

 The main functions of the Oracle Server are as follows:
 � Database security
 � Data-sharing management
 � Maintaining data integrity
 � Updating the database
 � Retrieving information from the database

19.1 STARTING WITH ORACLE 8

 1. Install Oracle 8 on the system.

 2. Go to Start → Programs → Oracle for Windows 95 → SQL Plus 8.0.

329

330 SOF T WARE ENGINEERING AND TESTING

FIGURE 19.1

 3. Click the SQL Plus submenu and you will see a log-on window.

FIGURE 19.2

 ORACLE 331

 4. Give the username and password. In the host string box give the server name
with which you want to connect. If you do not specify the host string Oracle
searches for the user in the system.

 Some default users are given and you can log on by using these usernames
and passwords.

USERNAME PASSWORD

System Manager

Scott Tiger

 Give the username system and password manager and click the OK button. It
will start the Oracle database.

FIGURE 19.3

 Color figures available on the CD.

 Now you can see a blue icon at the right side of the taskbar. When you are
connected to Oracle a SQL> prompt appears.

19.2 HOW TO CREATE A NEW USER

 You can create your own user name instead of working as a default user. It’s a
good practice to create your own user name and make all the tables with that user
name. You can create a new user at the SQL> prompt or by using the Navigator.

 User creation at the SQL> prompt

 Write the following syntax:
 SQL > create user mahesh identified by gupta;

 (a new user is created with the Username – mahesh and

 Password – gupta)

 SQL > grant connect, dba, resource to mahesh;

 (Provides grants to the user – mahesh)

 SQL > connect mahesh/gupta;

 (connects to the user mahesh)

332 SOF T WARE ENGINEERING AND TESTING

FIGURE 19.4

19.3 USER CREATION BY NAVIGATOR

 1. Go to Start → Programs → Oracle8 Personal Edition → Oracle8 Navigator.

FIGURE 19.5

 ORACLE 333

 2. Click the Oracle8 Navigator submenu and you will see a Navigator window.

 3. Go to the Oracle8 Personal Edition → Local Database → User and right-click
User and select the New option (see the figure).

FIGURE 19.6

 4. In the General tab give the username and password (see the figure).

FIGURE 19.7

334 SOF T WARE ENGINEERING AND TESTING

 5. Go to the Role/Privilege tab (see the figure).

FIGURE 19.8

 6. Add the DBA and RESOURCE Role from the Remaining list to the Granted list
and click the OK button. This will create a new user (see the figure).

FIGURE 19.9

 ORACLE 335

FIGURE 19.10

19.4 DATA TYPES IN ORACLE

 1. Char: Stores alphanumeric data. Maximum size is 255 characters. If the length
of the data inserted is less than the field size specified, it reserves the disk
space for the rest of the field length.

 2. Varchar/Varchar2: Stores alphanumeric data up to 2000 characters. The disk
space is not reserved if the data inserted is less than the field length specified.

 3. Long: Stores characters up to 2 GB.

 4. Number: Stores numeric data up to 10125 digits. Numbers with 38 places after
the decimal can be stored.

 5. Raw: Stores binary data up to 255 characters. It can also store digitized
images.

 6. Long Raw: Stores binary data up to 2 GB.

336 SOF T WARE ENGINEERING AND TESTING

19.5 SYNTAX AND QUERY IN ORACLE

 Table Creation

 Table Name – Student

Field Name Field Type Field Size

Name Varchar2 30

Age Number 2

Class Varchar2 10

Admission_date Date

Father_monthly_income Number 8.2

 Table with Data

Name Age Class Admission_date Father_monthly_income

Anshul 12 Seventh 02-mar-03 20000

Shiprali 10 Fifth 12-apr-04 15000

Ishita 8 Third 02-apr-04 12000

Dinesh 15 Tenth 15-mar-01 18000

Komal 15 Tenth 25-mar-01 10000

Kavita 8 Third 22-apr-04 12000

Nishita 18 Twelfth 12-apr-04 22000

Nishant 15 Tenth 18-mar-01 14000

Ritika 12 Seventh 10-mar-01 8000

 SQL> create table student (Name varchar2(30), Age number(2),

Class varchar2(10), Admission_date date, Father_monthly_income

number(8.2));

 Each statement is terminated with a semicolon.

 ORACLE 337

 To View All the Tables of the Currently Connected User

 Syntax

 SQL> select * from tab;

 This statement will show all tables of the user.

 To View the Structure of a Table

 Syntax

 SQL > desc student;

 OR
 SQL > describe student;

 This statement will show the structure of the table student.

 Creation of a Table From Another Table

 Syntax

 SQL > create table studentnew as select * from student;

 Here studentnew is a new table to be created. The structure of the table
studentnew will be the same as the table student. Data from the old table student
will also be copied into the new table studentnew. If you do not want to copy the
data into the table and want a table without any record, you can give a condition
that is not being fulfilled.

 Syntax

 SQL> create table studentnew as select * from student where Age < 0;

 You can create a new table with only a few selected fields from another table.

 Syntax

 SQL> create table studentnew (name,age,class) as select

name,age,class from student;

 Editing SQL Statements

 In Oracle once the SQL statement is executed it cannot be modified. Yet there
is another way to modify the SQL statement. It can be opened in Windows
Notepad to edit it. To open the previously executed statement, type ‘ed’ at the
SQL> prompt and press the Enter key.

 SQL> ed

338 SOF T WARE ENGINEERING AND TESTING

 You will see Windows Notepad with the previously executed statement.

 Follow these steps:

 1. Modify the statement or check the statement to remove any errors.

 2. Remove the forward slash (/) from the end of the last line.

 3. Save the file.

 4. Exit Notepad.

 5. Type a forward slash (/) at the SQL> prompt and press the Enter key.

 This will execute the statement corrected in Notepad.

 Renaming a Table

 To rename the table studentnew to studentold:

 Syntax

 SQL> rename studentnew to studentold;

 Deleting a Table

 Syntax

 SQL> drop table studentold;

 Modifying the Structure of a Table

 There are some restrictions in modifying the structure of a table:

 1. A column cannot be dropped.

 2. The column name cannot be changed.

 3. The size of the column cannot be decreased if data exists.

 4. The data type of the column cannot be changed if data exists.

 Modifying the Data Type and Size of the Column

 Syntax

 SQL> alter table student modify(Class number(14));

 This statement changes the data type from varchar2 to number and size
10 to 14.

 ORACLE 339

 To Add a New Column in a Table

 Syntax

 SQL> alter table student add(date_of_birth date,address

varchar2(50));

 Data Insertion in a Table

 Character and date values are inserted with single quotes (‘) at the beginning and
at the end, whereas numeric values are inserted without single quotes. The date
value is inserted in the format ‘dd-mmm-yy’, i.e., ‘01-APR-05.’

 Syntax

 SQL> insert into student values (‘Anshul’,12,’Seventh’,’02-MAR-

03’,20000);

 Data Selection

 To select all the records from a table:

 Syntax

 SQL> select * from student;

 To select few fields from a table:

 Syntax

 SQL> select Name,Age,Class from student;

 This statement will show only Name, Age, and Class of all records from the
table student.

 Conditional Searching

 The records can be selected on the basis of a given condition by using ‘Where’
followed by the condition statement.

 To search all the records of the student table where the name is ‘Dinesh’:

 Syntax

 SQL> select * from student where name = ’Dinesh’;

340 SOF T WARE ENGINEERING AND TESTING

 To search all the records of the student table where age is less than 12 and
father_monthly_income is less than 20000:

 Syntax

 SQL> select * from student where age <12 and father_monthly_

income < 20000;

 To select all the records from the student table where age is less than 12 and
class is not Fifth:

 Syntax

 SQL> select * from student where age < 12 and class <> ’Fifth’;

 Here ‘<>’ refers to the ‘not equal to’ operator.

 To select records in ascending order of name:

 Syntax

 SQL> select * from student order by name;

 To select records in descending order of name:

 Syntax

 SQL> select * from student order by name desc;

 Records can be arranged in ascending or descending order on the basis of more
than one field. For example, if you want to arrange the records in ascending order
of name and under name you want to arrange them in the order of admission_
date, look at the following syntax:

 Syntax

 SQL> select * from student order by name,admission_date;

 To select unique records from the table:

 Syntax

 SQL> select distinct * from student;

 To select unique columns from the table:

 Syntax

 SQL> select distinct Class from student;

 ORACLE 341

 Insertion of Data from Another Table

 To insert all data in a table from another table:

 Syntax

 SQL > insert into studentnew select * from student;

 To insert selected data in a table from another table:

 Syntax

 SQL > insert into studentnew select * from student where admission_

date < ’01-APR-05’;

 To insert a selected column in a table from another table:

 Syntax

 SQL > insert into studentnew (name,age) select name,age from

student;

 Modifying a Record

 To modify the name of an existing record:

 Syntax

 SQL > update student set name =’Mahesh’ where name = ’Dinesh’;

 To modify more than one column:

 Syntax

 SQL > update student set name = ’Mahesh’, age = 14 where name =

’Dinesh’;

 To increment the father_monthly_income by 2000 for a given student:

 Syntax

 SQL > update student set father_monthly_income = father_monthly_

income + 2000 where name = ’Ishita’;

 Deleting Records

 To delete all records from a table:

342 SOF T WARE ENGINEERING AND TESTING

 Syntax

 SQL> delete from student;

 To delete selected records from a table:

 Syntax

 SQL> delete from student where age < 12;

 Use of NOT

 To select all records from the student table except class ‘Tenth’ and ‘Third’:

 Syntax

 SQL> select * from student where not (Class = ’Tenth’ or Class =

’Third’);

 Use of BETWEEN

 To select all records from the student table where father_monthly_income is
between 15000 and 20000:

 Syntax

 SQL> select * from student where father_monthly_income between

15000 and 20000;

 Use of LIKE

 LIKE is used to compare two strings:

 % Sign is used to match string

 _ Sign is used to match character

 To select all records from the student table where the name starts with the
letter ‘A’:

 Syntax

 SQL> select * from student where name like ‘A%’;

 To select all records from the student table where the name ends with the
letter ‘A’:

 Syntax

 SQL> select * from student where name like ‘%A’;

 ORACLE 343

 To select all records from the student table where the name starts with the
letter ‘A’ and ends with the letter ‘A’:

 Syntax

 SQL> select * from student where name like ‘%A%’;

 To select all records from the student table where the second character of the
name is ‘h’:

 Syntax

 SQL> select * from student where name like ‘_h%’;

 Use of IN

 To select all records from the student table where the class is ‘Tenth’ or ‘Fifth’:

 Syntax

 SQL> select * from student where class in (‘Tenth’,’Fifth’);

 Use of NOT IN

 To select all records from the student table where the class is neither ‘Tenth’ nor
‘Fifth’:

 Syntax

 SQL> select * from student where class not in (‘Tenth’, ’Fifth’);

 Grouping of Data

 Sometimes you may need the data in a group. Suppose you want to see all the
values of the column without duplicacy and want to make them groups.

 To group the class in the student table:

 Syntax

 SQL> select class from student group by class;

 To create one group under another group: (for example, to group the
admission_date under the class)

 Syntax

 SQL> select class,admission_date from student group by

class,admission_date;

 Oracle syntax is not case sensitive.

344 SOF T WARE ENGINEERING AND TESTING

19.6 FUNCTIONS

 1. Abs() — Returns the absolute value of an integer, i.e., converts a negative
value into a positive value.

 Example: Select abs(field name) from tablename;

 2. Avg() — Returns the average value and ignores null values.

 Example: Select avg(field name) from tablename;

 3. Count() — Returns the total number of rows in a table.

 Example: Select count(*) from tablename;

 4. Initcap() — Returns a string with the first letter in a capital letter.

 Example: Select initcap(‘mahesh’) from dual;

 The function returns a string ‘Mahesh.’

 Dual is an Oracle work table where you can perform any operation.

 5. Length() — Returns the length of the column value.

 Example: Select length (field name) from tablename;

 6. Ltrim() — Removes leading spaces from a string.

 Example: Select ltrim(‘Ajay’) from tablename;

 The function returns ‘Ajay.’

 7. Lower() — Converts capital letters into small letters.

 Example: Select lower(‘HELLO’) from dual;

 The function returns ‘hello.’

 8. Max() — Returns the maximum value of the column.

 Example: Select max(father_monthly_income) from student;

 The function returns 22000.

 9. Min() — Returns the minimum value of the column.

 Example: Select min(father_monthly_income) from student;

 The function returns 8000.

 10. Round() — Rounds off the number to given decimal places. If no decimal
place is defined an integer is returned without decimal places.

 Example 1: Select round(10.21) from dual;

 The function returns 10.

 Example 2: Select round(10.85) from dual;

 The function returns 11.

 Example 3: Select round(10.855, 2) from dual;

 The function returns 10.86.

 ORACLE 345

 11. Rtrim() — Removes trailing spaces from a string.

 Example: Select rtrim(‘Ajay ‘) from dual;

 The function returns ‘Ajay.’

 12. Sqrt() — Returns the square root of a number.

 Example: Select sqrt(100) from dual;

 The function returns 10.

 13. Substr() — Returns a string containing a specified number of characters from
a given position. If the number of characters to be extracted is not specified, it
returns a string from a given position to the last position.

 Example 1: Select substr(‘Bombay’,4,2) from dual;

 The function returns ‘ba’.

 Example 2: Select substr(‘Bombay’,4) from dual;

 The function returns ‘bay.’

 14. Sum() — Returns the sum of the given column.

 Example: Select sum(father_monthly_income) from student;

 The function returns 131000.

 15. Sysdate() — Returns current system date.

 Example: Select sysdate from dual;

19.7 PRIMARY KEYS

 Adding a Primary Key

 If you want to set any column as a primary key, you can indicate it during table
creation.

 Example: To create a table ‘Employee’ with fields id, name, and address, set
the id field as the primary key.

 Syntax

 SQL> create table employee (id varchar2(5) primary key, name

varchar2(50), address varchar2(100));

 Adding a Primary Key in an Existing Table

 You can set a primary key in an existing table, provided that there are no duplicate
values in that column.

346 SOF T WARE ENGINEERING AND TESTING

 Syntax

 SQL> alter table employee add primary key(id);

 Deleting a Primary Key

 You can unset the primary key constraint from a field.

 Syntax

 SQL> alter table employee drop primary key;

19.8 DATA EXPORT

 � Run the file c:\orawin95\bin\exp80.exe

 � A DOS Window will appear. Give the username and password and press
<ENTER>.

FIGURE 19.11

 ORACLE 347

 The following messages will appear; reply at each prompt:

Export file: EXPDAT.DMP > Give the filename in which the data is to
be exported. To give the default filename
‘EXPDAT.DMP’ press <ENTER>.

(1)E(ntire database), (2)U(sers),
or (3)T(ables): (2)U >

Enter 1 if you want to export all databases
with all users. Enter 2 if you want to export
selected users. Enter 3 if you want to export
selected tables.

Export grants (yes/no): yes > Press <ENTER> (by default yes is given)

Export table data (yes/no): yes > Press <ENTER> (give yes if you want to
export tables with data; otherwise, give no,
by default yes is given).

Compress extents (yes/no): yes > Press <ENTER>.

User to be exported: (RETURN)
to quit >

Give username to be exported.

User to be exported: (RETURN)
to quit >

Press <ENTER> if you do not want to export
other users.

 This will export all/given users/tables with/without data with the given
filename .dmp in the folder c:\orawin95\bin.

 You can use this file to import data for another user. Rename this file as
expdat.dmp before importing if you have changed the export file name during
export.

19.9 DATA IMPORT

 � First create the user for which you want to import data.

 � Copy the file expdat.dmp to the folder c:\orawin95\bin.

 � Run the file c:\orawin95\bin\Imp80.exe.

 � A DOS window will appear. Give the username and password and press
<ENTER>.

348 SOF T WARE ENGINEERING AND TESTING

FIGURE 19.12

 The following messages will appear; reply at each prompt:

Enter insert buffer size (minimum
is 4096) 30720>

Press <ENTER>.

List the contents of import file
only (yes/no): no>

Press <ENTER> (by default no is given).

Ignore create error due to object
existence (yes/no): no >

Press <ENTER> (by default no is given).

Import grants (yes/no): yes > Press <ENTER> (by default yes is given).

Import table data (yes/no): yes > Press <ENTER> (give yes if you want to import
tables with data; otherwise, give no, by default
yes is given).

Import entire export file (yes/
no): no >

Give yes if you want to import all the tables of the
user; otherwise, give no and give the table names
one by one, by default no is given).

 This will import all/given tables with/without data from the file expdat.dmp
to the current user.

Chapter 20
SQL SERVER 2000

20.1 WHAT’S NEW IN MICROSOFT SQL SERVER 2000?

 Microsoft SQL Server 2000 includes several new features that make it
an excellent database platform for large-scale Online Transactional
Processing (OLTP), data warehousing, and e-commerce applications.

Microsoft SQL Server 2000 extends the performance, reliability, quality, and ease-
of-use of Microsoft SQL Server version 7.0. It is a much more powerful database
than MS Access.

20.1.1 SQL Query Analyzer

 SQL Query Analyzer includes a stored procedure debugger. It can be used for
creating objects, such as database, tables, views, and stored procedures.

20.2 STARTING MICROSOFT SQL SERVER 2000

 Before Running SQL Server 2000 Setup

 � Create one or more domain user accounts, if installing SQL Server 2000
on a computer running Microsoft Windows NT or Microsoft Windows

349

350 SOF T WARE ENGINEERING AND TESTING

2000 and you want SQL Server 2000 to communicate with other clients
and servers.

 � Log on to the operating system under a user account that has local
administrative permissions or assign the appropriate permissions to the
domain user account.

 � Shut down all services dependent on SQL Server. This includes any service
using ODBC, such as Microsoft Internet Information Services (IIS).

 � Shut down Microsoft Windows NT Event Viewer and registry viewers
(Regedit.exe or Regedt32.exe).

20.2.1 Operating System Requirements

 The following table shows the operating systems that must be installed to use the
various editions or components of Microsoft SQL Server 2000.

SQL Server edition
or component

Operating System Requirements

Standard Edition Microsoft Windows NT Server 4.0, Windows 2000 Server,
Microsoft Windows NT Server Enterprise Edition, Windows
2000 Advanced Server, and Windows 2000 Data Center
Server.

Personal Edition Microsoft Windows Me, Windows 98, Windows NT
Workstation 4.0, Windows 2000 Professional, Microsoft
Windows NT Server 4.0, Windows 2000 Server, and all the
more advanced Windows operating systems.

Developer Edition Microsoft Windows NT Workstation 4.0, Windows 2000
Professional, and all other Windows NT and Windows
2000 operating systems.

Client Tools Only Microsoft Windows NT 4.0, Windows 2000 (all versions),
Windows Me, and Windows 98.

Connectivity Only Microsoft Windows NT 4.0, Windows 2000 (all versions),
Windows Me, Windows 98, and Windows 95.

 Microsoft Windows NT Server 4.0, Service Pack 5 (SP5), or later must be installed as
a minimum requirement for all SQL Server 2000 editions.

 SQL Server 2000 is not supported on Windows NT 4.0 Terminal Server.

 For installation of SQL Server 2000 Personal Edition on Windows 98
computers without a network card, Windows 98 Second Edition is required.

 SQL SERVER 2000 351

20.3 INSTALLATION OF SQL SERVER 2000

FIGURE 20.1

FIGURE 20.2

352 SOF T WARE ENGINEERING AND TESTING

 When you select SQL Server 2000 Components on the first screen, three
options appear on the Install Components screen:

 Install Database Server

 Starts SQL Server Setup, with screens for selecting installation options.

 Install Analysis Services

 Installs Analysis Services on computers processing OLAP cubes.

 Install English Query

 Installs English Query on computers running English Query applications.

20.3.1 Choosing Components and Options to Install

 You may have a database server, an internet server, or require a database on a
client computer. If running database client/server applications, you may or may
not require a database on your computer. You may need tools to administer a
database server or you may want to run applications that access an instance of
SQL Server.

20.3.2 Installing SQL Server on a Database Server

 If installing a database server, install either SQL Server 2000 Enterprise Edition
or SQL Server 2000 Standard Edition. If installing a personal database on your
workstation, install SQL Server 2000 Personal Edition. These installations
typically include the database engine, the client database-management tools, and
the client connectivity components.

 On a database server, you can install a default instance of SQL Server 2000
relational database engine. You can also install one or more named instances of
the SQL Server 2000 database engine. Other than specifying an instance name,
the setup options are similar to those for installing a default instance.

20.3.3 Using SQL Server with Client/Server Applications

 For a computer running database client/server applications, such as Microsoft
Visual Basic applications that connect directly to an instance of SQL Server, you
have several options:

 � If you require a personal database on your client computer, install the
Personal Edition of SQL Server. This setup typically installs the client tools
and client connectivity components along with the database engine.

 SQL SERVER 2000 353

 � If you do not require a database on your computer but need to administer an
instance of SQL Server on a database server or plan to develop SQL Server
applications, install the option for Client Tools Only. This option includes the
client connectivity components.

 � If you want to run applications that access instances of SQL Server on
database servers, install the Connectivity Only components.

20.3.4 Other SQL Server Components

 For distributing SQL Server 2000 with applications, use the SQL Server 2000
Desktop Engine, a stand-alone database engine that independent software
vendors can package with their applications.

 The Desktop Engine has no graphical user interface and is not related to the SQL Server
7.0 Desktop Edition.

20.4 CREATING A DATABASE

20.4.1 Before Creating a Database, Consider That:

 � The user who creates the database becomes the owner of the database.

 � A maximum of 32,767 databases can be created on a server.

 � The name of the database must follow the rules for identifiers.

 Three types of files are used to store a database:

 Primary files

 These files contain the startup information for the database. The primary files are
also used to store data. Every database has one primary file.

 Secondary files

 These files hold all the data that does not fit in the primary data file. Databases
do not need secondary data files if the primary file is large enough to hold all
the data in the database. Some databases may be large enough to need multiple
secondary data files or they may use secondary files on separate disk drives to
spread the data across multiple disks.

 Transaction log

 These files hold the log information used to recover the database. There must be
at least one transaction log file for each database, although there may be more
than one. The minimum size for a log file is 512 kilobytes (KB).

354 SOF T WARE ENGINEERING AND TESTING

 Microsoft SQL Server 2000 data and transaction log files must not be placed on
compressed file systems or a remote network drive (shared network directory).

 It is recommended that you specify a maximum size to which the file is permitted
to grow. This prevents the file from growing as data is added, until disk space is
exhausted. To specify a maximum size for the file, go to the Restrict filegrowth (MB)
option in the Properties dialogue box in the SQL Server Enterprise Manager.

20.5 HOW TO CREATE A DATABASE USING ENTERPRISE
MANAGER

 1. Expand the Microsoft SQL Servers in the Console Root and then expand the
SQL Server Group.

FIGURE 20.3

 2. Go to the Local group and right-click Databases and then click the New
Database option.

 SQL SERVER 2000 355

FIGURE 20.4

 3. Enter a name for the new database in General properties.

FIGURE 20.5

356 SOF T WARE ENGINEERING AND TESTING

 4. Go to the Data Files tab and select the path by clicking the Location button to
save the data files and then click the OK button.

 Click this button to select the storage path.

FIGURE 20.6

FIGURE 20.7

 SQL SERVER 2000 357

 5. Go to the Transaction Files tab and select the path by clicking the Location
button to save the log files and then click the OK button.

FIGURE 20.8

 6. A new database will be created with the name specified and the new database
will appear in the database list.

FIGURE 20.9

358 SOF T WARE ENGINEERING AND TESTING

 The primary database and transaction log files are created using the
database name you specified as the prefix; for examples, Mahesh_Data.MDF
and Mahesh_Log.LDF. The primary file contains the system tables for the
database.

 7. To change the default values for the new primary database file, click the
General tab. To change the default value for the new transaction log file, click
the Transaction Log tab.

 8. To change the default values provided in the filename, location, initial size
(MB), and file group (not applicable for the transaction log) columns, click
the appropriate box to change and enter the new value.

 9. To specify how the file should grow, select these options:

 � To allow the currently selected file to grow as more data space is needed,
select Automatically grow file.

 � To specify that the file should grow by fixed increments, select In
megabytes and specify a value.

 � To specify that the file should grow by a percentage of the current file
size, select By percent and specify a value.

 10. To specify the file-size limit, select these options:

 � To allow the file to grow as much as necessary, select Unrestricted
filegrowth.

 � To specify the maximum size the file should be allowed to grow to, select
Restrict file growth (MB) and specify a value.

20.6 CREATE A DATABASE USING THE CREATE DATABASE WIZARD
IN ENTERPRISE MANAGER

 1. Expand the Microsoft SQL Servers and the SQL Server Group and then
expand the Server in which you want to create the database.

 2. On the Tools menu, click Wizards.

 3. Expand Database.

 4. Double-click Create Database Wizard.

 5. Complete the steps in the wizard.

20.7 CREATING A NEW TABLE

 Go to the database Mahesh in SQL Server and select Tables. Twenty system tables
will be displayed in the list. You can create new tables in the currently connected
database.

 SQL SERVER 2000 359

FIGURE 20.10
 To create a new table, right-click at the right side of the window and select

the option New Table.

FIGURE 20.11

360 SOF T WARE ENGINEERING AND TESTING

 A screen, as shown in the following figure, will be displayed.

FIGURE 20.12

 Give the Column Name in the first column, select Data Type in the second
column, and specify Column Length in the third column and check or uncheck
the Allow Nulls column to specify whether the Null values are allowed in this
column. If the Length column is active, enter another value if you want to change
the maximum data length that the data type can store.

FIGURE 20.13

 SQL SERVER 2000 361

 You can give a default value to any column in its Default property. Now save
the table after designing the structure.

20.8 DATA TYPES

S.No. Data Type Length Description

1 Bigint 8 Accepts numbers up to 19 digits.

2 Binary 50 Accepts binary numbers.

3 Bit 1 Accepts numbers up to 1 digit only.

4 Char 10 Accepts characters up to 10 digits.

5 Datetime 8 Accepts date in the format ‘dd-mm-yy.’

6 Decimal 9 Accepts only integers without scale (does not
accept decimal numbers).

7 Float 8 Accepts numbers with scale.

8 Image 16 Accepts binary numbers.

9 Int 4 Accepts numbers up to 10 digits.

10 Money 8 Accepts numbers up to 19 digits, out of which 4
are used to store decimal numbers.

11 Nchar 10 Accepts characters.

12 Ntext 16 Accepts characters.

13 Numeric 9 Accepts numbers.

14 Nvarchar 50 Accepts characters.

15 Real 4 Accepts numbers and converts the numbers above
8 digits into exponent form.

16 Smalldatetime 4 Accepts dates in the format ‘dd-mm-yy.’

17 Smallint 2 Accepts numbers up to 5 digits.

18 Smallmoney 4 Accepts numbers with scale.

19 Sql_variant Accepts binary numbers.

20 Text 16 Accepts characters.

362 SOF T WARE ENGINEERING AND TESTING

21 Timestamp 8 Accepts binary numbers.

22 Tinyint 1 Accepts numbers up to 3 digits.

23 Uniqueidentifier 16 Stores 16 bytes binary values that operate as
globally unique identifiers (GUIDs).

24 Varbinary 50 Accepts binary numbers.

25 Varchar 50 Accepts characters.

 The data types that can have variable lengths are binary, char, nchar,
nvarchar, varbinary, and varchar. The length of an image, binary, and varbinary
data type is defined in bytes. The length of the numeric data types is the number
of bytes required to hold the number of digits allowed for that data type. The
length of the character string and Unicode data types is defined in characters.

20.8.1 Viewing the Structure of the Table

 To view the structure of the table, double-click the table or select the table and
press the Enter key.

FIGURE 20.14

 SQL SERVER 2000 363

20.8.2 Modifying the Structure of an Existing Table

 To modify the structure of an existing table, right-click the table and select the
Design Table option.

FIGURE 20.15

FIGURE 20.16

 Make the changes in the table structure and save the table.

364 SOF T WARE ENGINEERING AND TESTING

20.8.3 Dropping a Table

 To drop a table, right-click the table and select the Delete option.

FIGURE 20.17

 Click the Drop All button to drop the selected table.

FIGURE 20.18

 SQL SERVER 2000 365

20.8.4 Opening a Table

 There are three ways to view the contents of a table:

 1. You can view all records of the table by selecting the option Return all rows.

FIGURE 20.19

FIGURE 20.20

366 SOF T WARE ENGINEERING AND TESTING

 2. You can view as many records from the top as you need, by specifying the
number of records. To do this select the option Return Top.

FIGURE 20.21

FIGURE 20.22

 SQL SERVER 2000 367

 3. Selected records can be viewed using the Query option.

FIGURE 20.23

 Write the query in the given box. To run the query press the F5 key or click
the Run button.

FIGURE 20.24

368 SOF T WARE ENGINEERING AND TESTING

20.9 QUERY ANALYZER

 SQL Query Analyzer is a graphical user interface for designing and testing SQL
statements. SQL Query Analyzer offers:

 � A free-form text editor for SQL statements.

 � Color-coding of SQL syntax to improve the readability of complex
statements.

 � Object browser and object search tools for easily finding objects in a
database.

 � Templates used to speed development of the SQL statements for creating SQL
Server objects. Templates are scripting files that include the basic structure of
the SQL statements needed to create objects in a database.

 � Results are shown in either a grid or a free-form text window.

20.10 HOW TO USE QUERY ANALYZER

 Go to Microsoft SQL Server → Query Analyzer and give the Server name to
connect with (SQL Query Analyzer can also be called from SQL Server Enterprise
Manager → Tools). Now select the database.

FIGURE 20.25

 SQL SERVER 2000 369

FIGURE 20.26

 Write the query in the query window and press the F5 button to run the
query.

FIGURE 20.27

370 SOF T WARE ENGINEERING AND TESTING

20.11 GENERATING AN SQL SCRIPT

 A SQL script can be generated to create tables from one database to another
database. To generate a script, take the following steps:

 1. Go to the Tools menu and select the option Generate SQL Script…

FIGURE 20.28

 2. In the next screen click the Show All button to display all the tables of the
database Mahesh in the object list.

FIGURE 20.29

 SQL SERVER 2000 371

 3. Select the table from left side of the object list for which you want to create
the script and add it to the right side of the object list. You can create a script
for a single table or for all tables of the database.

FIGURE 20.30

 4. If you want to add all the tables click the All Tables checkbox.

FIGURE 20.31

372 SOF T WARE ENGINEERING AND TESTING

 5. Go to the Formatting tab and click the first checkbox Generate the CREATE
<object> command for each object, if you want to generate only a create table
script. Click the second checkbox Generate the DROP <object> command
for each object, if you want to drop the table first (if it exists), then create
another table with the same name.

FIGURE 20.32

FIGURE 20.33

 SQL SERVER 2000 373

 6. Click the OK button to continue.

 7. Give a filename to save the script and click the Save button.

FIGURE 20.34

FIGURE 20.35

374 SOF T WARE ENGINEERING AND TESTING

FIGURE 20.36

20.12 HOW TO USE THE SCRIPT

 1. Go to Microsoft SQL Server → Query Analyzer and give the server name to
connect with. Now select the database in which you want to run the script
file to create the tables.

 2. Go to File → Open menu and select the script file which you want to run.

FIGURE 20.37

 SQL SERVER 2000 375

FIGURE 20.38

 3. Press the F5 button to execute the query.

FIGURE 20.39

376 SOF T WARE ENGINEERING AND TESTING

20.13 ATTACHING A DATABASE

 Specify the name of the MDF (master data file) of the database to attach. Microsoft
SQL Server cannot attach a database if more than 16 files are specified. To attach a
database file with SQL Server take the following steps:

 Right-click Databases and go to All Tasks and select the Attach Database option.

FIGURE 20.40

FIGURE 20.41

 SQL SERVER 2000 377

 Click the Browse(---) button to search for the MDF file of the database to
attach. Select the MDF file and click the OK button.

FIGURE 20.42

FIGURE 20.43

378 SOF T WARE ENGINEERING AND TESTING

 Click the Verify button to check that the selected MDF file is correct. In the
Original File Name(s) column there is a list of all files in the database to attach.
This includes data files and log files. In the Current File(s) Location column there
is the path of all files. The current location of the MDF file must be in the column
for Attach to work. If the SQL Server cannot find the files in the specified location,
the Attach process fails. For example, if you have changed the default location of
the file before you detached it, you must specify the current location for Attach
to be successful. In the Attach as box specify the name for the database you are
attaching. The database name should not match any existing database names. In
the Specify database owner box, specify the database owner name.

FIGURE 20.44

20.14 DETACHING A DATABASE

 Keep the following guidelines in mind when detaching a database.

 1. Stop connection

 Stop if there is any connection to the selected database. You cannot detach a
database while users are connected.

 2. Database being replicated

 See if the database is being replicated. You cannot detach a database while it is
being replicated.

 3. Status

 View the status of the database. This will tell you whether the database is ready
to be detached or not, based on the criteria in the previous options.

 Now take the following steps;

 Right-click Databases and go to All Tasks and select the Detach Database
option.

 SQL SERVER 2000 379

FIGURE 20.45

FIGURE 20.46

380 SOF T WARE ENGINEERING AND TESTING

 Check database status and click the OK button.

FIGURE 20.47

20.15 COPY DATABASE WIZARD

 Users can run the Copy Database Wizard to copy or move databases and their
objects to another server.

 Go to Microsoft SQL Servers → SQL Server Group → Server → Databases.
Right-click the databases and select All Tasks → Copy Database wizard. Follow
the instructions that comes on each screen and complete the process.

20.16 IMPORTING AND EXPORTING A DATABASE

 Microsoft SQL Server 2000 has several components that support importing and
exporting data.

20.16.1 Data Transformation Services

 Data Transformation Services (DTS) can be used to import and export data
between two different OLEDB and ODBC data sources. A single DTS package can
cover multiple tables. DTS packages are not limited to transferring data straight
from one table to another; the package can specify a query as the source of the
data. Take the following steps to Import or Export data:

 Step 1

 Right-click the database in which you want to import or export the tables of other
databases. If you want to import the tables select the option All Tasks → Import
Data and if you want to export the tables in another database select the option
All Tasks → Export Data. Follow the necessary steps.

 SQL SERVER 2000 381

FIGURE 20.48

 Step 2

 Click the Next button.

FIGURE 20.49

382 SOF T WARE ENGINEERING AND TESTING

 Step 3

 Select the data source from the data source list.

FIGURE 20.50

 Step 4

 If you want to import the tables of an MS Access database into the SQL Server
database, select Microsoft Access from the data source list and give the path of
the .mdb file in the filename box.

 Click the Next button to continue.

FIGURE 20.51

 SQL SERVER 2000 383

 Step 5

 Select where you want to import the tables.
 Select the data source from the destination list.
 Select the server name from the server list.
 Select the database from the database list.
 Click the Next button.

FIGURE 20.52

 Step 6

 Click the Next button to continue.

FIGURE 20.53

384 SOF T WARE ENGINEERING AND TESTING

 Step 7

 Select table name in the Source column which you want to import. If you want to
import all the tables, click the Select All button.

 Click the Next button to continue.

FIGURE 20.54

 Step 8

 Click the Next button to continue.

FIGURE 20.55

 SQL SERVER 2000 385

 Step 9

 Click the Finish button to finish the import process.

FIGURE 20.56

FIGURE 20.57

386 SOF T WARE ENGINEERING AND TESTING

20.17 SQL SERVER SERVICE MANAGER

 You can Start, Stop, or Pause the currently running database.

 Go to Programs → Microsoft SQL Server → Service Manager.

FIGURE 20.58

 In the server list, a list of active SQL Server database servers on the network
is displayed. This list only displays instances of SQL Servers on Windows NT.
This functionality is not available on computers running Microsoft Windows 95
or Windows 98.

20.17.1 Authentication

 Specify the type of authentication to use when connecting to the database server.

Windows NT
Authentication

Specifies that the SQL Server will use the Windows NT user information
to validate the user. This option is only available when connecting to an
instance of SQL Server on Windows NT. The client needs to be part of a
Windows NT domain or workgroup. The user needs to be validated as a
Windows NT user before access is granted.

 SQL SERVER 2000 387

SQL Server
Authentication

Specifies the use of standard SQL Server security validation. This is
the default and only available option for an instance of SQL Server on
the Windows 95 or Windows 98 operating system. It is optional for an
instance of SQL Server on Windows NT. The log-in must be added to the
SQL Server before a user can log in.

Login name Specify a log-in name.

Password Specify the password for the log-in name.

20.17.2 Creating a Connection with Visual Basic

 Follow these steps to connect the MDI form of Visual Basic with the SQL Server
2000 database.

 1. Open the Design View of the MDI form.

 2. Add ADODC control in the Toolbox and draw it in MDI form.

FIGURE 20.59

388 SOF T WARE ENGINEERING AND TESTING

 3. Right-click ADODC control and go to the properties option. Select the Use
Connection String option and click the Build button.

 4. From the list of OLEDB providers, select Microsoft OLEDB Provider for SQL
Server and click the Next button.

FIGURE 20.60

 5. In the Connection window, select the server name from the server list.
Select the option Windows NT Integrated security or give the username
and password. Now select the database name and click the Test Connection
button. A message box with the message ‘Test connection succeeded’ will
appear. Click the OK button and then click the OK button again.

 SQL SERVER 2000 389

FIGURE 20.61

 6. Copy the string that comes in the Use Connection String box, and click the
OK button.

FIGURE 20.62

 7. Go to the MDI form’s Form load event and paste the string.

 8. Further processes are just like MS Access or Oracle connectivity.

4 SOF T WARE ENGINEERING AND TESTING

Chapter 21
PROGRAMMING IN VISUAL BASIC

WITH MS ACCESS 2000

 An application can be developed with a or without a database. If you have
to develop an application that does not save the input data, you don’t need
to use a database, but if you have to save the input data, you must use a

database. There are different types of databases. The database selection depends
upon two things—first is the amount of input data and second is whether the
application is single-user or multi-user, i.e., the application will run on a stand-
alone system or it will run on a server with many clients. Each database is network
compatible. If your application is small and only a few users will work on it, you
should use MS Access 2000. If the data input and the number of users is much
higher, use SQL Server 2000. But if the application requires a large amount of data
flow and the number of users is also high, you should use Oracle 8/8i/9i/11i.

 Now we are going to develop a new project in Visual Basic 6.0. The database
we will use is MS Access. The details of the project are given below:

 Name of Project: School
 No. of forms: 3
 The first form is the MDI form
 The second form is for student record entry
 The third form is for student report

391

392 SOF T WARE ENGINEERING AND TESTING

MDI Form

FIGURE 21.1

 To add a new MDI form in the project:

 Go to the Menu bar and select Project → Add MDI Form option.

 Set the property of the MDI form as given:

 Caption: Student

 WindowState: 2- Maximized

 Use the Menu Editor to design the Menu bar on the MDI Form.

FIGURE 21.2

 Go to the Menu bar Project → Project1 Properties and select the Startup Object
as the MDI Form.

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 393

21.1 SAVING PROJECTS AND FORMS

 Make a separate folder in the drive to save projects and forms. In this folder make
sub-folders. Save different types of files in different sub-folders.

Sub-folder Name Description

Form To save form files with the .frm extension.

Project To save project files with the .vbp extension. Some temporary
files with the extension.tmp are created automatically in that
folder where you have saved the project files. Keep removing these
files to save disk space. Although these files are automatically
removed from your folder when you close the project, in the
case of an improper Shut Down or an illegal operation these
files may remain on your folder.

Report To save your Data Report or Crystal Report files.

OCX If you have added some OCX controls in your project, save all
OCX files in this folder.

Image To save image files.

Module To save the module file with the .bas extension.

FIGURE 21.3

21.1.1 Design of Student Entry Form

 Add a new form in the project and set the property of the newly added form,
Form1, as given:

394 SOF T WARE ENGINEERING AND TESTING

 Caption: Student Entry

 BorderStyle: 1- Fixed Single

 MDIChild: True

 Design the Student Entry form as shown in figure.

FIGURE 21.4

 Add four text boxes in the form and change the name of text boxes as given:

Text Box Name

Text1 Txtname

Text2 Txtage

Text3 Txtclass

Text4 Txtincome

 Add five label controls in the form and change the caption properties of the labels
as given:

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 395

Label Caption

Label1 Name

Label2 Age

Label3 Class

Label4 Admission Date

Label5 Father’s Monthly Income

 Add a new control DTPicker in the project to select or enter the admission
date. To enter the DTPicker control in the project, right-click Tool Box and go to
components option. A list of controls will be populated. Scroll through the list and
select Microsoft Windows Common Controls – 2 6.0 (SP4) and click Apply and
then the Close button. You can see this in the figure. The control is added in the
Tool Box.

FIGURE 21.5

396 SOF T WARE ENGINEERING AND TESTING

 Now draw the control in the form.

 Add five command buttons in the form. Change the Caption and Name
property of these command buttons as follows:

Command Button Name Caption

Command 1 CmdNew New

Command 2 CmdSave Save [Change the Default property to True]

Command 3 CmdEdit Edit

Command 4 CmdDelete Delete

Command 5 CmdCancel Cancel [Change the Cancel property to True]

 If you set the Default property of a Command button to True, you can execute
this Command button either with the mouse or by pressing the Enter Key, whereas
if you set the Cancel property of a Command button to True, it can be executed by
pressing the Esc key on your keyboard.

21.1.2 Design of Student Report Form

 Add a new form in your project. To add a new form go to Menu Bar and select the
option Project → Add Form.

FIGURE 21.6

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 397

 Change the property of Form2 as given:

 Name: Student_Report

 Caption: Student Report

 BorderStyle: 1- Fixed Single

 MDIChild: True

 Draw two DTPicker controls. First select Admission Date From and second
select Admission Date To and rename them as DTPfrom and DTPto, respectively.
Add two Command buttons. First to show all student records and second to show
the admissions between two selected dates. Change the Caption of Command1 to
All Record and rename it Cmdall. Change the Caption of Command2 to Admission
Date wise and rename it Cmddatewise. Now Add a new control MSFlexGrid in
the project. MSFlexGrid is used to display the data. To add this control right-click
the Tool Box and select the components option. Select Microsoft FlexGrid Control
6.0 (SP3) and add it in the project.

FIGURE 21.7

398 SOF T WARE ENGINEERING AND TESTING

 Draw the control in the form. To change the properties of the FlexGrid, right-
click the control. A property page is displayed. In the General tab set the Cols
property to 6 and the Allow User Resizing property to 1-Columns. By changing
the Cols property to 6, we will have 6 columns in the FlexGrid and by changing the
AllowUserResizing property to 1-Columns, we can resize the columns. There are 4
types of options for the AllowUserResizing property (see Figure 21.8).

Property Value Description

0- None Does not allow the user to resize columns or rows

1- Columns Allows user to resize the columns

2- Rows Allows user to resize the rows

3- Both Allows user to resize the columns and rows

FIGURE 21.8

 Now go to Style tab and in the Format box write the column names separated
by the pipe (|) sign as shown.

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 399

FIGURE 21.9

 Example: Id | Student Name | Age | Class | Admission Date | Property page
|Father’s Monthly Income

21.2 DATABASE DESIGNING

 Create a new database called SchoolData.mdb and save it in your project folder.
Make a table called School.

 Structure of the Table:

Field Data type

ID Number

NAME Text

AGE Number

STD_CLASS Text

ADMISSION_DATE Date/Time

FATHER_MONTHLY_INCOME Currency

400 SOF T WARE ENGINEERING AND TESTING

 Set the field ID as the primary key. To set the primary key, right-click the ID
column and select the Set as Primary Key option.

21.2.1 Modules

 To add a module to the project, go to the Menu bar and select Project → Add
Module option. Save this module in the module sub-folder which you have created
already. The variables you declare or the functions you write in the module can be
accessed globally in the entire project.

FIGURE 21.10

21.2.2 Database Connectivity

 Follow the given steps to connect the MDI form with the MS Access 2000
database.

 1. Open the Design View of the MDI form.

 2. Right-click the Tool Box and select the components option.

 3. From the list of the controls, select Microsoft ADO Data control 6.0 (OLEDB)
and add it to your Project (see Figure 10.10).

 4. Draw the ADODC control in the MDI form.

 5. Right-click the ADODC control and select ADODC properties.

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 401

FIGURE 21.11

 6. In the General properties page, select the last option Use Connection String,
and click the Build button.

 7. From the list of OLEDB providers, select Microsoft Jet 4.0 OLEDB provider
and click the Next button.

FIGURE 21.12

402 SOF T WARE ENGINEERING AND TESTING

 8. Enter the path of the database file (Student.mdb) or click the button to browse
for the file.

FIGURE 21.13

FIGURE 21.14

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 403

FIGURE 21.15

 9. To test the connection, click the Test Connection button and click OK.

FIGURE 21.16

404 SOF T WARE ENGINEERING AND TESTING

 10. Copy the string that comes in the Use Connection String box and click OK.

FIGURE 21.17

 11. Go to module and declare a Connection type public variable.

 Syntax

 Public conn as New ADODB.Connection

 12. Go to MDI Form’s Form Load event and make the object of the variable conn
and open the connection.

 Syntax

 Set conn as New ADODB.Connection

 Conn. Open “ (Paste the Connection String copied earlier)”

 13. Delete the ADODC control from the MDI form.

 You don’t need to open the connection in each form. Make their MDIChild
property True to connect with the MDI form’s connection.

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 405

 Code for Module

 Public CONN As New ADODB.Connection

 Code for MDI Form

 Private Sub MDIForm_Load()

 1. Set CONN = New ADODB.Connection

 2. CONN.Open “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” &

App.Path & “\School.mdb;Persist

 Security Info=False”

 End Sub

 Private Sub Mnu_Student_Entry_Click()

 1. Student_Entry.Show

 End Sub

 Private Sub Mnu_Student_Report_Click()

 1. Student_Report.Show

 End Sub

 Code for Student Entry Form

 ‘General Declaration

 1. Dim RST As New ADODB.Recordset ‘DECLARATION OF RST VARIABLE AS

RECORDSET

 2. Public IDNO As String ‘Inputbox RETURNS A STRING

 Private Sub Cmddelete_Click()

 1. IDNO = InputBox(“Please Enter Student Id”, “Delete”)

 ‘EXIT FROM SUBROUTINE IF NO ID IS ENTERED

 2. If IDNO = “” Then

 3. Exit Sub

 4. End If

 ‘MAKE AN OBJECT OF THE VARIABLE TO STORE THE DATA

 5. Set RST = New ADODB.Recordset

 ‘CHECK WHETHER THE RECORD OF GIVEN ID EXIST

 6. RST.Open “SELECT * FROM STUDENT WHERE ID = “ & IDNO & “”, CONN,

adOpenDynamic, adLockOptimistic

406 SOF T WARE ENGINEERING AND TESTING

 7. If RST.EOF = True Then ‘ i.e. NO RECORD FOUND

 8. MsgBox “This Id does not exist”, vbCritical, “Edit”

 9. RST.Close ‘ CLOSE THE RECORDSET BEFORE EXIT

 10. Exit Sub

 11. End If

 ‘ASK FOR CONFIRMATION TO DELETE THE RECORD

 12. Dim X As Integer ‘MsgBox RETURNS AN INTEGER

 13. X = MsgBox(“Are you sure to Delete the record”, vbQuestion +

vbYesNo)

 14. If X = 7 Then ‘ i.e. ‘NO’ BUTTON IS CLICKED

 15. RST.Close ‘ CLOSE THE RECORDSET BEFORE EXIT

 16. Exit Sub

 17. Else

 18. CONN.Execute “DELETE FROM STUDENT WHERE ID = “ & IDNO & “”

 19. MsgBox “Record Deleted”, vbInformation, “Delete”

 20. End If

 21. RST.Close ‘CLOSE THE RECORDSET BEFORE ENDING SUBROUTINE

 End Sub

 Private Sub Cmdedit_Click()

 1. If Cmdedit.Caption = “Update” Then

 2. Call Update ‘CALLS UPDATE PROCEDURE TO SAVE THE RECORD AFTER

CHANGE

 3. Exit Sub

 4. End If

 5. IDNO = InputBox(“Please Enter Student Id”, “Edit”)

 ‘EXIT FROM SUBROUTINE IF NO ID IS ENTERED

 6. If IDNO = “” Then

 7. Exit Sub

 8. End If

 ‘MAKE AN OBJECT OF THE VARIABLE TO STORE THE DATA

 9. Set RST = New ADODB.Recordset

 ‘CHECK WHETHER THE RECORD OF GIVEN ID EXIST

 10. Set RST = New ADODB.Recordset

 11. RST.Open “SELECT * FROM STUDENT WHERE ID = “ & IDNO & “”, CONN,

adOpenDynamic, adLockOptimistic

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 407

 12. If RST.EOF = True Then ‘ i.e. NO RECORD FOUND

 13. MsgBox “This Id does not exist”, vbCritical, “Edit”

 14. RST.Close ‘ CLOSE THE RECORDSET BEFORE EXIT

 15. Exit Sub

 16. End If

 ‘ASK FOR CONFIRMATION TO MODIFY THE RECORD

 17. Dim X As Integer ‘MsgBox RETURNS AN INTEGER

 18. X = MsgBox(“Are you sure to edit the record”, vbQuestion +

vbYesNo)

 19. If X = 7 Then ‘ i.e. ‘NO’ BUTTON IS CLICKED

 20. RST.Close ‘ CLOSE THE RECORDSET BEFORE EXIT

 21. Exit Sub

 22. Else

 ‘DISPLAY THE DATA IF ‘YES’ BUTTON IS CLICKED

 23. Txtname = RST.Fields(“NAME”)

 24. Txtage = RST.Fields(“AGE”)

 25. Txtclass = RST.Fields(“STD_CLASS”)

 26. DtpAdmDate = RST.Fields(“ADMISSION_DATE”)

 27. Txtincome = RST.Fields(“FATHER_MONTHLY_INCOME”)

 28. End If

 29. RST.Close ‘CLOSE THE RECORDSET BEFORE ENDING SUBROUTINE

 30. Cmdedit.Caption = “Update” ‘CHANGE THE CAPTION TO CALL

‘Update’

 PROCEDURE

 End Sub

 Private Sub Cmdsave_Click()

 ‘CHECK NULL ENTRIES

 1. If Txtname = “” Then

 2. MsgBox “Please Enter Student Name”, vbExclamation, “Incomplete

Record”

 3. Txtname.SetFocus

 4. Exit Sub

 5. End If

 6. If Txtage = “” Then

 7. MsgBox “Please Enter Age”, vbExclamation, “Incomplete

Record”

408 SOF T WARE ENGINEERING AND TESTING

 8. Txtage.SetFocus

 9. Exit Sub

 10. End If

 11. If Txtclass = “” Then

 12. MsgBox “Please Enter Class”, vbExclamation, “Incomplete

Record”

 13. Txtclass.SetFocus

 14. Exit Sub

 15. End If

 16. If Txtincome = “” Then

 17. MsgBox “Please Enter Father’s Monthly Income”, vbExclamation,

“Incomplete Record”

 18. Txtincome.SetFocus

 19. Exit Sub

 20. End If

 ‘MAKE AN OBJECT OF THE VARIABLE TO STORE THE DATA

 21. Set RST = New ADODB.Recordset

 ‘INCREMENT THE ID

 22. Dim i As Integer

 23. RST.Open “SELECT MAX(ID) FROM STUDENT”, CONN, adOpenDynamic,

adLockOptimistic

 24. If IsNull(RST.Fields(0)) = False Then

 25. i = RST.Fields(0) + 1

 26. Else

 27. i = 1

 28. End If

 29. RST.Close

 ‘RECORD INSERTION IN THE TABLE

 30. CONN.Execute “INSERT INTO STUDENT VALUES(“ & i & “,’” & Txtname

& “‘,” & Txtage & “,’” & Txtclass & “‘,’” & DtpAdmDate & “‘,”

& Txtincome & “)”

 31. MsgBox “Student Record Saved”, vbInformation, “Save”

 ‘CLEAR THE TEXT BOX FOR NEW ENTRY

 32. Call Cmdnew_Click

 End Sub

 Private Sub Cmdcancel_Click()

 1. Unload Me

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 409

 End Sub

 Private Sub Cmdnew_Click()

 1. Txtname = “”

 2. Txtage = “”

 3. Txtclass = “”

 4. Txtincome = “”

 5. DtpAdmDate = Date

 6. Txtname.SetFocus

 End Sub

 Private Sub Form_Load()

 ‘DISPLAY THE FORM AT THE CENTER OF MDIFORM

 1. Me.Left = MDIForm1.Width \ 2 - Me.Width \ 2

 2. Me.Top = MDIForm1.ScaleHeight \ 2 - Me.Height \ 2

 ‘DISPLAY CURRENT DATE IN DTPICKER

 3. DtpAdmDate = Date

 End Sub

 Private Sub Update()

 ‘TO CHECK NULL ENTRIES

 1. If Txtname = “” Then

 2. MsgBox “Please Enter Student Name”, vbExclamation, “Incomplete

Record”

 3. Txtname.SetFocus

 4. Exit Sub

 5. End If

 6. If Txtage = “” Then

 7. MsgBox “Please Enter Age”, vbExclamation, “Incomplete

Record”

 8. Txtage.SetFocus

 9. Exit Sub

 10. End If

 11. If Txtclass = “” Then

 12. MsgBox “Please Enter Class”, vbExclamation, “Incomplete

Record”

 13. Txtclass.SetFocus

 14. Exit Sub

410 SOF T WARE ENGINEERING AND TESTING

 15. End If

 16. If Txtincome = “” Then

 17. MsgBox “Please Enter Father’s Monthly Income”, vbExclamation,

“Incomplete Record”

 18. Txtincome.SetFocus

 19. Exit Sub

 20. End If

 ‘RECORD UPDATION IN THE TABLE

 21. CONN.Execute “UPDATE STUDENT SET NAME = ‘“ & Txtname & “‘,AGE

= “ & Txtage & “,STD_CLASS = ‘“ & Txtclass & “‘,ADMISSION_DATE

= ‘“ & DtpAdmDate & “‘,FATHER_MONTHLY_INCOME = “ & Txtincome

& “ WHERE ID = “ & IDNO & “”

 22. MsgBox “Student Record Updated”, vbInformation, “Edit”

 ‘CLEAR THE TEXT BOX FOR NEW ENTRY

 23. Call Cmdnew_Click

 End Sub

 Code for Student Report Form

 ‘General Declaration

 1. Dim RST As New ADODB.Recordset ‘ DECLARATION OF RST VARIABLE

AS RECORDSET

 Private Sub Command1_Click()

 1. MSFlexGrid1.Clear

 2. MSFlexGrid1.Rows = 1

 3. MSFlexGrid1.Cols = 6

 4. MSFlexGrid1.FormatString = “Id |Student Name |Age |Class |

Admission Date |Father Monthly Income”

 5. Dim i As Integer

 ‘MAKE AN OBJECT OF THE VARIABLE TO STORE THE DATA

 6. Set RST = New ADODB.Recordset

 ‘SELECT THE RECORD

 7. RST.Open “SELECT * FROM STUDENT ORDER BY ADMISSION_DATE,ID”,

CONN,

 adOpenDynamic, adLockOptimistic

 8. If RST.EOF = True Then ‘ NO RECORD FOUND

 PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000 411

 9. MsgBox “No Record Found”, vbInformation, “Student”

 10. RST.Close

 11. Exit Sub ‘ EXIT FROM SUBROUTINE

 12. End If

 13. Do While Not RST.EOF = True

 14. MSFlexGrid1.AddItem RST!Id & Chr(9) & RST!Name & Chr(9) &

RST!AGE & Chr(9) & RST!STD_CLASS & Chr(9) & RST!ADMISSION_DATE

& Chr(9) & RST!FATHER_MONTHLY_INCOME

 15. RST.MoveNext

 16. Loop

 17. RST.Close

 End Sub

 Private Sub Command2_Click()

 1. MSFlexGrid1.Clear

 2. MSFlexGrid1.Rows = 1

 3. MSFlexGrid1.Cols = 6

 4. MSFlexGrid1.FormatString = “Id |Student Name |Age |Class

 |Admission Date |Father Monthly Income”

 ‘MAKE AN OBJECT OF THE VARIABLE TO STORE THE DATA

 5. Set RST = New ADODB.Recordset

 ‘SELECT THE RECORD BETWEEN TWO DATES

 6. RST.Open “SELECT * FROM STUDENT WHERE ADMISSION_DATE >= #” &

Format(DTPfrom, “dd-mmm-yy”) & “# and ADMISSION_DATE <= #” &

Format(DTPto, “dd-mmm-yy”) & “# ORDER BY ADMISSION_DATE,ID”,

CONN, adOpenDynamic, adLockOptimistic

 7. If RST.EOF = True Then ‘ NO RECORD FOUND

 8. MsgBox “No Record Found”, vbInformation, “Student”

 9. RST.Close

 10. Exit Sub ‘ EXIT FROM SUBROUTINE

 11. End If

 12. Do While Not RST.EOF = True

 13. MSFlexGrid1.AddItem RST!Id & Chr(9) & RST!Name & Chr(9) &

RST!AGE & Chr(9) & RST!STD_CLASS & Chr(9) & RST!ADMISSION_DATE
& Chr(9) & RST!FATHER_MONTHLY_INCOME

 14. RST.MoveNext

 15. Loop

412 SOF T WARE ENGINEERING AND TESTING

 16. RST.Close

 End Sub

 Private Sub Form_Load()

 1. DTPfrom = Date

 2. DTPto = Date

 End Sub

21.3 USE OF APP.PATH

 You can use App.Path to access a file if you are not sure about its location.
App.Path brings you to the path where your project or executable file is residing.
You can use this path to locate other files that you are using in your project.

 Look at the example given below to access the school.mdb file to open the
connection.

 If school.mdb is present in the same folder where your project or executable
file is residing, use the following code:

 Syntax

 1. CONN.Open “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” &

App.Path & “\School.mdb;Persist Security Info = False”

 If school.mdb is present in the folder DATA and this folder is present where
your project or executable file is residing, use the following code:

 Syntax

 1. CONN.Open “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” &

App.Path &”\.\DATA\School.mdb;Persist Security Info=False”

 If school.mdb is present in the folder DATA and this folder is present one
level up from the folder where your project or executable file is residings, use the
following code:

 Syntax

 1. CONN.Open “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” &

App.Path & “\..\DATA\School.mdb;Persist Security Info=False”

Chapter 22
PROGRAMMING WITH ORACLE AND

SQL SERVER 2000

 In the last chapter you learned how a project is developed in Visual Basic with
an MS Access database. Now we are going to work with an Oracle 8 database.
The project is the same that we developed with Access. We will discuss only

the changes that we have to make in the project while working with Oracle.

22.1 TABLE CREATION

 Make a new user school with the password student and under this user create a
table student. The structure of the table is given below:

Field name Data type

ID Number (Primary key)

Name Varchar

AGE Number

STD_CLASS Varchar

ADMISSION_DATE Date

FATHER_MONTHLY_INCOME Number

413

414 SOF T WARE ENGINEERING AND TESTING

22.2 DATA LINKS

 You can add a data link in the project to create, rename, delete, modify, and open
the tables.

 Steps to create data link:

 1. Click the Data View window (a yellow color box adjacent to Toolbox button in
the Toolbar).

FIGURE 22.1

 Color figures available on CD.

FIGURE 22.2. A New Data View Window Appears

 2. Right-click Data Links and select the Add a Data Link option.

 3. Select the option Microsoft OLE DB Provider for Oracle from the provider list
and click the Next.

 PROGRAMMING WITH ORACLE AND SQL SERVER 2000 415

FIGURE 22.3

 4. In the Connection tab give the username SCHOOL in and the password student.
Click the Allow saving password check box and click the Test Connection
button.

 A message box with the message Test connection succeeded will appear. Click
OK and then click the OK button at the bottom.

FIGURE 22.4

416 SOF T WARE ENGINEERING AND TESTING

 5. A data link is created with the name DataLink1. You can rename it to SCHOOL.

 6. Expand the SCHOOL data link and then expand the Tables option below the
data link. Right-click the Tables option and select the New Table option to
create a new table. Create a new table called Student if you have not created
one already. After designing the table click the cross button of the Table Design
window. It will ask to save the table before closing the window. Click Yes to
save the table (see Figure 22.5).

FIGURE 22.5

 7. When you expand the Tables option of the data link, it displays all the tables of
all the users. You can choose to display the tables of only those users to which
you are currently connected. To do this right-click the Tables option and select
the Filter by Owner option. A screen will appear to enter the user name. Give
the user name in uppercase letters.

FIGURE 22.6

 8. Right-click the table and select the option to open, design, or delete the table
as needed.

 PROGRAMMING WITH ORACLE AND SQL SERVER 2000 417

22.2.1 Creating a Connection

 Follow these steps to connect your MDI form with the Oracle database.
 1. Open the design view of the MDI form.
 2. Add the ADODC control in the Tool Box and draw it in the MDI form.
 3. Go to the ADODC properties and select the Use Connection String option and

click the Build button.
 4. From the list of OLEDB providers, select Microsoft OLEDB Provider for Oracle

and click Next.

FIGURE 22.7

FIGURE 22.8

418 SOF T WARE ENGINEERING AND TESTING

 5. In the connection window give the user name SCHOOL in the username
box and the password student. Check the Allow saving password check box
and click the Test Connection button. A message box with the message Test
connection succeeded will appear. Click OK and then click OK again at the
bottom (see Figure 22.8).

FIGURE 22.9

 6. Copy the string that comes in the Use Connection String box and click OK.

 7. Go to MDI Form’s Form load event and paste the string.

 Syntax

 Set conn as New ADODB.Connection

 Conn.open “<Paste the string>”

 8. Delete the ADODC Control from the MDI form and save the project.

22.3 WORKING WITH THE PROJECT

 We will work in the same project that we developed using MS Access. You have to
make some changes in the connectivity and programming to run the project with
an Oracle 8 database.

22.3.1 Required Modifications

 1. Change the database connection from MS Access to Oracle 8, as we have
described previously.

 PROGRAMMING WITH ORACLE AND SQL SERVER 2000 419

 2. Change the functions that do not support Oracle. For example, to convert the
characters from lowercase to uppercase and from uppercase to lowercase the
function Ucase and Lcase is used in MS Access whereas in Oracle the function
Upper and Lower is used for the same purpose.

 3. Oracle accepts dates in the format dd-mmm-yy, i.e., ‘01-Jan-05’. So you have
to change the date to the format ‘dd-mmm-yy’ in the query wherever you are
using dates.

 You can use the condate function given below to convert the date format. Write
this function in the module and use it wherever you use dates, whether you are
inserting dates in the table or are running a query.

22.3.2 Use of Condate Function

 To convert the format of current system date:
 ‘” & condate (sysdate) & “’ – in Oracle Sysdate function is used

to retrieve system date.

 To convert the format of a user-defined date:
 ‘” & condate(DTPicker1) & “’ – DTPicker is used to retrieve user

defined date.

 Syntax for condate function

 Public Function condate(I As Date) As String

 If Month(I) = 1 Then

 condate = Day(I) & “-jan-” & Year(I)

 ElseIf Month(I) = 2 Then

 condate = Day(I) & “-feb-” & Year(I)

 ElseIf Month(I) = 3 Then

 condate = Day(I) & “-mar-” & Year(I)

 ElseIf Month(I) = 4 Then

 condate = Day(I) & “-apr-” & Year(I)

 ElseIf Month(I) = 5 Then

 condate = Day(I) & “-may-” & Year(I)

 ElseIf Month(I) = 6 Then

 condate = Day(I) & “-jun-” & Year(I)

 ElseIf Month(I) = 7 Then

 condate = Day(I) & “-jul-” & Year(I)

 ElseIf Month(I) = 8 Then

 condate = Day(I) & “-aug-” & Year(I)

420 SOF T WARE ENGINEERING AND TESTING

 ElseIf Month(I) = 9 Then

 condate = Day(I) & “-sep-” & Year(I)

 ElseIf Month(I) = 10 Then

 condate = Day(I) & “-oct-” & Year(I)

 ElseIf Month(I) = 11 Then

 condate = Day(I) & “-nov-” & Year(I)

 ElseIf Month(I) = 12 Then

 condate = Day(I) & “-dec-” & Year(I)

 End If

 End Function

22.4 DATA EXPORT AT RUNTIME

 You can export all the tables of the user into a given file just by clicking a command
button. The arguments that you have to include in the statement are:

 1. Path of the file to be run

 2. Username/password

 3. Export file that is to be created

 4. WindowState

 The syntax is given below:
 P = Shell(“c:\orawin95\bin\exp80 SCHOOL/STUDENT file= c:\expdat.

dmp”, vbMaximizedFocus)

22.5 WORKING IN A PROJECT WITH AN SQL SERVER 2000
DATABASE

 You can use the same project that you used with Oracle 8 to run with an SQL Server
2000 database. The only change you have to make is to change the connectivity.
Create a database with name SCHOOL and create a table Student with the same
structure as was created in Oracle. Now change the connection from Microsoft
OLE DB Provider for Oracle’ to SQL Server.

 For more details about SQL Server 2000 see the chapter SQL Server 2000.

Chapter 23
GRAPHS

 Microsoft has included a chart control in Visual Basic 6.0. The chart control
can be used to present your data in graphical format. The graphical format
of data gives the user a quick overview of the data and information. In

this chapter we will learn how to generate the graph of the number of students
present in each class.

 Add a new control, Microsoft Chart Control 6.0 (SP4) (OLEDB), in the School project.

FIGURE 23.1

421

422 SOF T WARE ENGINEERING AND TESTING

 Add a new form in the project. Add Chart Control in the form and design the
form as follows:

FIGURE 23.2

 Add a Combo Box in the form and set its property as follows:

 Name: Cmbchart

 Style: 2- Dropdown list

 List: 2D Area

 2D Bar

 2D Line

 2D Pie

 2D Step

 3D Area

 3D Bar

 3D Line

 3D Step

 Add two command buttons: Command1 and Command2.

 GRAPHS 423

 Change the property of Command 1:

 Name: Cmdshow

 Caption: ShowGraph

 Change the property of Command 2:

 Name: Cmdcancel

 Caption: Cancel

 Cancel: True

 Write the Given Code

 General Declaration section

 ‘DECLARATION OF RECORDSET

 1. Dim rstch As New ADODB.Recordset

 Private Sub Cmdcancel_Click()

 1. Unload Me

 End Sub

 Private Sub Cmdshow_Click()

 1. Set rstch = New ADODB.Recordset

 ‘SHOW THE TITLE OF THE GRAPH

 2. MSChart1.TitleText = “Class wise No. of Students”

 ‘OPEN THE RECORDSET TO SELECT DATA

 3. rstch.Open “select std_class,count(*) from student group

by std_class order by std_class”, CONN, adOpenStatic,

adLockOptimistic

 4. If rstch.EOF = False Then

 ‘SET THE DATASOURCE FOR MSCHART1

 5. Set MSChart1.DataSource = rstch

 ‘SHOW THE LEGEND AT RIGHT SIDE OF THE GRAPH

 6. MSChart1.ShowLegend = True

 ‘GIVE NAME OF THE LEGEND

 7. MSChart1.ColumnLabel = “No. of Students”

424 SOF T WARE ENGINEERING AND TESTING

 ‘SELECT CHART TYPE

 8. If Cmbchart = “2D Bar” Then

 9. MSChart1.chartType = VtChChartType2dBar

 10. ElseIf Cmbchart = “3D Bar” Then

 11. MSChart1.chartType = VtChChartType3dBar

 12. ElseIf Cmbchart = “2D Area” Then

 13. MSChart1.chartType = VtChChartType2dArea

 14. ElseIf Cmbchart = “3D Area” Then

 15. MSChart1.chartType = VtChChartType3dArea

 16. ElseIf Cmbchart = “2D Pie” Then

 17. MSChart1.chartType = VtChChartType2dPie

 18. ElseIf Cmbchart = “2D Line” Then

 19. MSChart1.chartType = VtChChartType2dLine

 20. ElseIf Cmbchart = “2D Step” Then

 21. MSChart1.chartType = VtChChartType2dStep

 22. ElseIf Cmbchart = “3D Line” Then

 23. MSChart1.chartType = VtChChartType3dLine

 24. ElseIf Cmbchart = “3D Step” Then

 25. MSChart1.chartType = VtChChartType3dStep

 26. End If

 27. End If

 28. rstch.Close

 End Sub

FIGURE 23.3 Display of the Graph at Runtime

Chapter 24
DATA REPORTS

 Data reporting is a method used to display data in printed format. You can print
this report by attaching a printer. The data report can be saved as HTML or as a
text file.

24.1 DATA REPORT CREATION

 There are three steps to create a data report:

 1. Adding a data environment in the project and connecting to the database.

 2. Adding a report, binding it with the data environment, and designing the data
report.

 3. Calling the data report.

24.2 DATA ENVIRONMENT AND THE CONNECTION

 Open the project SCHOOL in the Access database in which you have already
worked.

425

426 SOF T WARE ENGINEERING AND TESTING

FIGURE 24.1

 Add a data environment in your project by selecting the project → Add Data
Environment menu (see Figure 24.1). Add only one data environment to connect
with one database.

 Open the data environment by double-clicking the Data Environment Designer in the
Project Explorer window. Go to Connection1, right-click it, and select the properties option
(see the figure).

FIGURE 24.2

 DATA REPORTS 427

 Select the provider Microsoft Jet 4.0 OLEDB Provider from the list of providers
and click Next. Browse for the database file with which you want to make the
connection and click the Test connection button to check the connection. Save the
Data Environment1 in the report folder, which you have already created in the
main folder School.

FIGURE 24.3

FIGURE 24.4

428 SOF T WARE ENGINEERING AND TESTING

 After establishing the data environment connection, right-click connection1
and select the Add command option (see the figure). The command stores the
connection to the table and the fields that we have to show on the data report.

FIGURE 24.5

FIGURE 24.6

 After selecting the Add Command option, a new command, Command1, is
added under the group connection1. Rename Command 1 as Std_Report. Right-
click the command Std_Report and select the Properties option (see Figure 24.5).

 Click the SQL Statement option button and write the SQL Statement
“Select* From Student” in the given text box and click Apply and then OK (see
Figure 24.6).

 DATA REPORTS 429

FIGURE 24.7

 Expand the command Std_Report. Now you can see all the fields of the table
Student under the command (see the figure).

FIGURE 24.8

430 SOF T WARE ENGINEERING AND TESTING

24.3 DATA REPORT DESIGNING

 Add a data report to the project.

 To do this go to the menu Project → Add Data Report. A new data report
called Data Report1 will be added in the Designer. Double-click the Data Report1
object in the Explorer Window. This will display the data report screen. Open the
Property Window and set the property of the Data Report 1 as follows:

Name DataReport_student

Caption Student Report

DataSource DataEnvironment1

DataMember Std_Report

WindowState 2-vbMaximized

FIGURE 24.9

 DATA REPORTS 431

FIGURE 24.10

 Now drag the fields from the command Std_Report of Data Environment1
and drop the fields in the detail section of the data report (see the figure).

FIGURE 24.11

432 SOF T WARE ENGINEERING AND TESTING

 Each field has two components. First, is a label and second is a text box. The
caption of the label is editable. You can change the caption of the label or you can
use it as a column heading. In the text box, data of that particular field is displayed
to which it is bound. If you place the label in the detail section, the caption of the
label will be displayed with each record. To avoid the repetitive display of the
label, you can place it in the Page Header section (see the figure).

FIGURE 24.12

 Draw a label from the Report Tool Box in the Report Header of the data report
and set the properties of the label as given below:

 Alignment 2- rptJustifyCenter

 Caption Student Report

 Font Arial, 14, Regular

 There are five sections in the data report:

 1. Report Header: Used to display the title of the report. The control placed
in this section is displayed one time in the report.

 2. Page Header: Used to display the controls at the top of each page of the
report.

 3. Detail Section: The controls placed in this section are displayed with each
record. This section is mainly used to display the data.

 DATA REPORTS 433

 4. Page Footer: The controls placed in the page footer are displayed at the
bottom of each page.

 5. Report Footer: This section is used to display the controls at the end of the
report.

24.4 DATA REPORT CONTROLS

 When you add a report, the data report controls are automatically added in the
control box. There are two types of controls in the Control Box – General and
DataReport. General controls are used in form designing, whereas Data Report
controls are used in data report designing. There are six types of Data Report
controls:

Control Properties Description

1. RptLabel Caption

Font

To display the caption.

To change the font of the caption.

2. RptTextBox CanGrow

DataField

DataFormat

DataMember

If property is set to True, it increases the
width of the text box to fit all data.

Name of the field to which the text box is
attached.

To change the display format of data.

Command name of the data environment in
which the data field is present.

3. Rpt Image Picture

PictureAlignment

SizeMode

Stores the path of image files.

Sets the alignment of the image.

Sets the size of the image.

4. Rpt Line BorderColor

BorderStyle

Changes the color of the line.

Changes the style of the line.

5. Rpt Shape BackColor

BackStyle

BorderColor

BorderStyle

Shape

Changes the back color of the shape.

Changes the back style of the shape.

Changes the border color of the shape.

Changes the border style of the shape.

Changes the shape to rectangle, square,
oval, circle, rounded rectangle, and rounded
square.

434 SOF T WARE ENGINEERING AND TESTING

6. RptFunction DataField

DataFormat

DataMember

FunctionType

Name of the field to which the function is
performed.

Changes the display format of data.

Command name of the data environment in
which the data field is present.

Performs different types of functions. For
example:

0- rptFuncSum - gives the sum of the numeric
field

1- rptFuncAve - gives the average value of the
field

2- rptFuncMin - gives the minimum value of
the field

3- rptFuncMax - gives the maximum value of
the field

4- rptFuncRcnt - gives the total number of
records in the report

 The RptTextBox can be used only in the detail section and Rpt Function can be used
only in the report footer.

 There are some extra controls in the data report that you can use to display the
current date, time, and page number. To add these extra controls in the data report
right-click data report and select the Insert Control option. Now you can add the
following controls:

 1. Current page number

 2. Total number of pages

 3. Current date (short format)

 4. Current date (long format)

 5. Current time (short format)

 6. Current time (long format)

 7. Report title

 Add current date control and current time control in the report header and
current page number in the page footer. Add the rptFunction in the report footer
and set the DataMember property Std_Report and bind data field property to
Father_monthly_income. Add a RptLabel in the report footer and change its
caption to Total.

 DATA REPORTS 435

FIGURE 24.13

FIGURE 24.14

436 SOF T WARE ENGINEERING AND TESTING

24.5 CALLING A REPORT

 A data report can be called on screen using the Show method.

 Syntax

 DataReport_Student.Show

FIGURE 24.15

 At the top-left corner of the Report the Print icon is given. Click it to print
the report. You can send the report directly to the printer by using Print Report
method.

 Syntax

 DataReport_Student.PrintReport

24.6 RETRIEVAL OF SELECTED DATA IN THE DATA REPORT

 Add a new form in the project and design the form and set the properties of the
form as given:

 DATA REPORTS 437

 Name Print_Student_Report

 Border Style 1- Fixed Single

 Caption Print Student Report

 MDIChild True

FIGURE 24.16

 Make a submenu Print Student Report in the MDI form’s menu and show the
form.

 Change the property of Command1

 Name: Cmdall

 Caption: Print All Record

 Change the property of Command2

 Name: Cmddatewise

 Caption: Print Admission Date wise

 Change the property of Command3

 Name: Cmdcancel

 Caption: Cancel

 Cancel: True

 Write the code in the Cmdall command button to display the records of all
students.

 Syntax

 Private Sub Cmdall_Click()

438 SOF T WARE ENGINEERING AND TESTING

 ‘OPEN THE DATAENVIRONMENT TO SELECT ALL RECORDS FROM THE TABLES

 1. DataEnvironment1.Recordsets.Item(“Std_Report”).Open “SELECT *

FROM STUDENT ORDER BY ADMISSION_DATE,ID”, CONN, adOpenDynamic,

adLockOptimistic

 ‘TO CALL THE REPORT

 2. DataReport_Student.Show

 End Sub

 Write the code in the Cmddatewise command button to display the records
between two selected dates.

 Syntax

 Private Sub Cmddatewise_Click()

 ‘OPEN THE DATAENVIRONMENT TO SELECT ALL RECORDS FROM THE TABLES

 1. DataEnvironment1.Recordsets.Item(“Std_Report”).Open “SELECT *

FROM STUDENT WHERE ADMISSION_DATE >= #” & Format(DTPfrom, “dd-

mmm-yy”) & “# and ADMISSION_DATE <= #” & Format(DTPto, “dd-mmm-

yy”) & “# ORDER BY ADMISSION_DATE,ID”, CONN, adOpenDynamic,

adLockOptimistic ‘TO DISPLAY THE DATEFROM AND DATETO IN THE

LABEL OF DATAREPORT

 2. DataReport_Student.Sections(1).Controls(“labelfrom”).Caption

= DTPfrom

 3. DataReport_Student.Sections(1).Controls(“labelto”).Caption =

DTPto

 ‘TO CALL THE REPORT

 4. DataReport_Student.Show

 End Sub

 Write the code in the Cmdcancel command button to unload the form.

 Syntax

 Private Sub Cmdcancel_Click()

 1. Unload Me

 End Sub

 Write the code in Form- Load() event to display the current date in DTPicker

 Syntax

 Private Sub Form_Load()

 1. DTPfrom = Date

 DATA REPORTS 439

 2. DTPto = Date

 End Sub

 Go to the code window of the DataReport_Student and write the code to close
the data environment at the terminate event of DataReport_Student.

 Syntax

 Private Sub DataReport_Terminate()

 1. DataEnvironment1.Recordsets.Item(“Std_Report”).Close

 End Sub

24.7 INDEX NUMBER OF DATA REPORT SECTION

 By using the index number of the different sections of the data report you can
change the property of the control at runtime. The index number of the data report
section without the group header and footer is given below:

Data Report Section Index Number

Report Header 1

Page Header 2

Detail 3

Page Footer 4

Report Footer 5

 The index number of the data report section with the group header and is as
follows:

Data Report Section Index Number

Report Header 1

Page Header 2

Group Header 3

Detail 4

Group Footer 5

Page Footer 6

Report Footer 7

440 SOF T WARE ENGINEERING AND TESTING

24.8 GROUPING IN DATA REPORTS

 A data report allows you to display data in groups. Grouping can be done in one
or more fields with aggregates on numeric field at each group footer.

 To create grouping on a data report add a new data report in the project and
save it in the Report folder with the name Data Report_Studentgroup.Dsr. Add a
new command in the Data Environment1 and rename it Groupreport. Go to the
Groupreport command properties and write the SQL statement in the given box
(see Figure 24.17).

FIGURE 24.17

 SQL Statement:

 Select * From Student

 DATA REPORTS 441

 Go to the Grouping tab and click the Group Command Object checkbox. Select
the field STD_ CLASS from the left list box and add it into the right list box (see
Figure 24.18).

 Click Apply and go to the Aggregates tab.

 Click the Add button to add the aggregate function. Now set the properties
for the new added function Aggregate. The first setting is to change the name
of the function. The second setting is to set the type of function that is to be
performed on the Aggregate1 function. In the third setting you have to select
whether you want to perform the function on the grouping or on the Grand Total.
The fourth and last setting is to select the field on which you want to perform the
function. Here, select the field father_monthly_income and click Apply and then
OK (see the figure).

FIGURE 24.18

442 SOF T WARE ENGINEERING AND TESTING

FIGURE 24.19

 Now look at the Data Environment1 groupreport command. The command is
divided into two different types of fields (see Figure 24.20).

 The first is a summary field and the second is a detail field. Summary fields
are used in the group header and footer sections of the data report, whereas detail
fields are used in the detail section of the data report.

 Set the properties of the DataReport_Studentgroup as follows:

Name Data Report_Student group

Caption Student Group Report

DataMember Groupreport_Grouping

DataSource DataEnvironment1

WindowState 2- vbMaximized

 DATA REPORTS 443

FIGURE 24.20

FIGURE 24.21

 Now right-click the DataReport_Student group and select the option Insert
Group Header/Footer (see Figure 24.21).

444 SOF T WARE ENGINEERING AND TESTING

 The group header and group footer will be added in the data report (see the
figure).

FIGURE 24.22

 Now drag the STD_CLASS field from the summary fields of the Groupreport
command into the group header section of the data report. Drag the Aggregate1
field from the summary fields into the group footer section. Drag all fields except
STD_CLASS from the details fields of the Groupreport command into the detail
section of the data report (see Figure 24.23).

 Now design the report as given in the figure (see Figure 24.24).

 To call the report at runtime, write the given syntax in the click event of the
command button.

 Syntax

 DataReport_Studentgroup.Show

 The report at runtime will be displayed as given in Figure 24.25.

 DATA REPORTS 445

FIGURE 24.23

FIGURE 24.24

446 SOF T WARE ENGINEERING AND TESTING

FIGURE 24.25

Chapter 25
CRYSTAL REPORTS

 Crystal Reports are specialized reports. The flexibility of Crystal Reports
doesn’t end with creating reports. Your report is designed to work with your
database to help you analyze and interpret important information. Crystal

Reports make it easy to create simple reports and also have the comprehensive tools
you need to produce complex reports that can be published in a variety of formats
including Microsoft Word, Excel, email, and even over the Web. Built-in Report
Experts guide you step-by-step through building reports and completing common
reporting tasks. Formulas, cross-tabs, sub-reports, and conditional formatting help
make sense of data and uncover important relationships that might otherwise be
hidden. Geographic maps and graphs communicate information visually when
words and numbers are simply not enough.

 Application and web developers can save time and meet their needs by
integrating the report processing power of Crystal Reports into their database
applications. Support for most popular development languages makes it easy to
add reporting to any application.

447

448 SOF T WARE ENGINEERING AND TESTING

25.1 ADVANTAGES OVER VISUAL BASIC DATA REPORTS

 � Flexible
 � Rich Functions
 � Formula Creation
 � Multiple Report Generation
 � Duplicate Record Suppression
 � Graph Generation
 � Easily Updateable
 � Query Passing
 � Supports Web Reporting

25.2 STARTING WITH CRYSTAL REPORT 8.5

 Create a table, Student.mdb, with the following fields:

FIGURE 25.1

 Go to Start → Programs → Crystal Report.

FIGURE 25.2

 CRYSTAL REPORTS 449

 The screen Crystal Report Gallery will be displayed. Now select document
type Using the Report Expert. Choose the Standard report format and click OK.

FIGURE 25.3

 The above Data Explorer will be displayed. Now select Database Files > Find
Database File.

FIGURE 25.4

 The open dialogue box will be displayed. Select the required database file.

450 SOF T WARE ENGINEERING AND TESTING

FIGURE 25.5

 The open Dialog Box will be displayed. Select the required database.

 Now click Add and Close.

FIGURE 25.6

 CRYSTAL REPORTS 451

 The above window will be displayed. Now expand the database field
Student.

 Drag the fields from the Student database into the detail section of the report
and save the report.

 You can preview the report with data by clicking the Preview button.

FIGURE 25.7

25.3 CREATING REPORTS USING DSN OF THE SQL SERVER 2000
DATABASE

 The SQL Server 2000 database is used for Windows 2000, XP, and higher versions.

25.3.1 How to Make a DSN

 Click Start → Settings → Control Panel → Administrative Tools → ODBC.

 The window (Figure 25.9) will be displayed.

 Now click the Add button.

452 SOF T WARE ENGINEERING AND TESTING

FIGURE 25.8

FIGURE 25.9

 CRYSTAL REPORTS 453

FIGURE 25.10

 In the above displayed window select SQL Server from the list and click
Finish.

FIGURE 25.11

454 SOF T WARE ENGINEERING AND TESTING

 Enter the DSN name in the Name text box.

 Select Server name from Server list.

 Click the Next button.

FIGURE 25.12

 Select login type which may be Windows NT authentications or SQL Server
authentication. Click Next.

FIGURE 25.13

 CRYSTAL REPORTS 455

 Select source database.

 Click Next.

FIGURE 25.14

 In this final window click Finish.

FIGURE 25.15

 Click OK.

456 SOF T WARE ENGINEERING AND TESTING

FIGURE 25.16

 Now your defined DSN name is displayed in the list.

25.4 CREATING CONNECTION USING DSN

 Go to File Menu and select Crystal Report and select

 File→New→As Blank Report.

 Select ODBC.

FIGURE 25.17

 CRYSTAL REPORTS 457

 Select School_DSN in the ODBC list and click Add.

FIGURE 25.18

25.4.1 Creation of Reports Using an SQL Server 2000 Database

 Launch Crystal Reports.

 To create a new report select the option As a Blank Report and click OK.

 In the Data Explorer Window double-click More Data Sources→OLE
DB→Make New Connection.

FIGURE 25.19

458 SOF T WARE ENGINEERING AND TESTING

 Now the Data Link Properties window will be displayed.

FIGURE 25.20

 From Provider tab select Microsoft OLE DB Provider for SQL Server.

 Click Next.

FIGURE 25.21

 CRYSTAL REPORTS 459

 Go to the Connection tab:

 1. Select server name

 2. Select login type

 3. Select the database name on the Server (in our case School)

 Click the Test connection button. The Test Connection Succeeded Message
Box will be displayed.

 Click OK.

FIGURE 25.22

 In the above displayed window click Add and then click Close.

FIGURE 25.23

460 SOF T WARE ENGINEERING AND TESTING

 The Field Explorer window will be displayed.

 Now drag and drop the student field values on the report form.

 Select report title, page number, and other required items from the special field
and drop them in the report.

 Click Refresh to view the report with data.

FIGURE 25.24

25.4.2 Inserting Formulas in the Report

 Right-click the Formula Field in the Field Explorer window:

 Click the New Option.

 Enter the formula name.

 CRYSTAL REPORTS 461

FIGURE 25.25

 Insert the desired formula. We have used the Average of Student’s Age.

 Click Save and Close.

 Now the Field Explorer window will be displayed with your formula. Drag
and drop this formula on the desired place in your report.

FIGURE 25.26

462 SOF T WARE ENGINEERING AND TESTING

25.4.3 Grouping of Fields

 Select the desired report.

 Select Insert→Summary.

 Insert the formula in the first combo box.

 Select grouping field in the second combo box and click OK.

 Drag and drop this formula in the desired place in your report. (See Figure
25.27.)

FIGURE 25.27

25.4.4 Connecting Crystal Reports with Visual Basic

 Start Visual Basic

 Select New→Standard Exe→Open.

 Go to Project→Component.

 CRYSTAL REPORTS 463

FIGURE 25.28

 In the Components tab select the Crystal Report Control component and then
click Apply and OK. The Crystal Report component will be displayed in the Tool
Box. Double-click this component to add it in your form.

 Write the following code in the command button click event:

 Private Sub Command1_Click ()

 ‘PHYSICAL PATH OF THE REPORT

 1. CrystalReport1.ReportFileName=App.Path &

“\STUDENTDETAILSREPORT.rpt”

 ‘DESIRED FORMULA TO FILTER INFORMATION FROM DATABASE

 2. CrystalReport1.SelectionFormula = “{STUDENT.ADMISSION_DATE}

>=#” & DTPicker1 & “ # and {STUDENT.ADMISSION_DATE}<=#” &

DTPicker2 & “#”

 ‘RETRIEVE FILTERED INFORMATION

 3. CrystalReport1.RetrieveDataFiles

 ‘ASSIGNING REPORT POSITION ON WINDOW

 4. CrystalReport1.WindowState = crptMaximized

 ‘ASSIGNING REPORT DESTINATION OR WINDOW TO DISPLAY THE

REPORT

464 SOF T WARE ENGINEERING AND TESTING

 5. CrystalReport1.Destination = crptToWindow

 ‘SHOWING REPORT

 6. CrystalReport1.Action = 1

 End Sub

FIGURE 25.29 Report View Generated by Crystal Reports

Chapter 26
ERROR HANDLING

 Error handling is one of the most important parts of software development.
An application with bugs may produce the incorrect output, termination
of an application, or a user’s irritation. We will discuss some methods and

precautions in this chapter that will help you to develop an error-free application.

26.1 KEY HANDLING

 To ensure that proper data is being inserted, lock other keys that may cause
errors.

 For example, if you do not want to allow the user to enter any alphanumeric
characters in the text box where you want only numeric characters, you can lock
the character keys. To lock the keys of the keyboard you must know the ASCII
value of each key.

Key ASCII Value VB Constant

A 65 VbKeyA

B 66 VbKeyB

C 67 VbKeyC

465

466 SOF T WARE ENGINEERING AND TESTING

D 68 VbKeyD

E 69 VbKeyE

F 70 VbKeyF

G 71 VbKeyG

H 72 VbKeyH

I 73 VbKeyI

J 74 VbKeyJ

K 75 VbKeyK

L 76 VbKeyL

M 77 VbKeyM

N 78 VbKeyN

O 79 VbKeyO

P 80 VbKeyP

Q 81 VbKeyQ

R 82 VbKeyR

S 83 VbKeyS

T 84 VbKeyT

U 85 VbKeyU

V 86 VbKeyV

W 87 VbKeyW

X 88 VbKeyX

Y 89 VbKeyY

Z 90 VbKeyZ

a 97

b 98

c 99

d 100

e 101

 ERROR HANDLING 467

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

p 112

q 113

r 114

s 115

t 116

u 117

v 118

w 119

x 120

y 121

z 122

0 48 VbKey0

1 49 VbKey1

2 50 VbKey2

3 51 VbKey3

4 52 VbKey4

5 53 VbKey5

6 54 VbKey6

468 SOF T WARE ENGINEERING AND TESTING

7 55 VbKey7

8 56 VbKey8

9 57 VbKey9

 ← 37 VbKeyLeft

↑ 38 VbKeyUp

→ 39 VbKeyRight

↓ 40 VbKeyDown

Back 8 VbKeyBack

Ctrl 17 VbKeyControl

. (Decimal/Dot) 46

/ 47 VbKeyDivide

35

Esc 27 VbKeyEscape

‘ 96

~ 126

! 33

@ 64

$ 36

% 37

^ 94

& 38

* 42

(40

) 41

- 45

_ (Under Score) 95

= 61

+ 43

 ERROR HANDLING 469

\ 92

| 124

, 44

< 60

> 62

? 63

<Enter> 13 VbKeyReturn

Num Lock 144 VbKeyNumLock

“ 34

, 39

: 58

; 59

Pause 19 VbKeyPause

Scroll Lock 145 VbScrollLock

Shift 16 VbKeyShift

<Space> 32 VbKeySpace

Tab 9 VbKeyTab

26.2 KEY LOCKING AT KEY PRESS EVENT

 Write the following code for different types of validation at the key press event of
a text box or combo box.

 1. Validation for Integers

 Syntax

 Private Sub Text1_KeyPress(KeyAscii As Integer)

 1. If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or (KeyAscii =

vbKeyBack) Then

 2. Exit Sub

 3. Else

 4. KeyAscii = 0

470 SOF T WARE ENGINEERING AND TESTING

 5. End If

 End Sub

 2. Validation for Characters

 Syntax

 Private Sub Text1_KeyPress(KeyAscii As Integer)

 1. If (KeyAscii >= 65 And KeyAscii <= 90) Or (KeyAscii >= 97 And

KeyAscii <= 122) Or (KeyAscii = vbKeyBack) Or (KeyAscii =

vbKeySpace) Then

 2. Exit Sub

 3. Else

 4. KeyAscii = 0

 5. End If

 End Sub

 3. Validation for Float Numbers

 Syntax

 Private Sub Text1_KeyPress(KeyAscii As Integer)

 1. If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or (KeyAscii =

vbKeyBack) Or (KeyAscii = 46)

 2. Then

 3. Exit Sub

 4. Else

 5. KeyAscii = 0

 6. End If

 End Sub

26.3 OTHER ERROR-HANDLING METHODS

 On Error GoTo

 When an error occurs in an application, the application may terminate. To overcome
this problem use the ‘On Error GoTo —’ statement and display a proper error
message with an error number. At the start of the procedure write ‘On Error GoTo
<label name>’ and at the end of the procedure define the label.

 Syntax

 Private Sub Command1_Click()

 1. On Error GoTo err1:

 -

 ERROR HANDLING 471

 - (Code)

 -

 -

 2. err1:

 ‘If any error occurs, the procedure returns an error number

greater than zero otherwise less than zero

 3. If Err.Number <> 0 Then

 X = MsgBox(“Error number : “ & Err.Number & vbCrLf & vbCrLf &

“ “ & Err.Description, vbExclamation)

 4. Exit Sub

 5. End If

 End Sub

 On Error Resume Next

 You may use the On Error Resume Next statement at the start of the procedure to
ignore the error, if it does not produce an incorrect result.

 Syntax

 Private Sub Command1_Click()

 1. On Error Resume Next

 -

 - (Code)

 -

 -

 End Sub

26.4 SOME COMMON ERRORS

 1. Not a valid path

FIGURE 26.1

 The path given to locate the file is incorrect or does not exist.

472 SOF T WARE ENGINEERING AND TESTING

 2. Object required

FIGURE 26.2

 Object or control is missing or the object name is misspelled.

 3. Expected: end of statement

FIGURE 26.3

 String is not properly terminated or there is some required character missing.

 4. Could not find file

FIGURE 26.4

 File is missing in the given path or the filename is misspelled.

 ERROR HANDLING 473

 5. Provider cannot be found

FIGURE 26.5

 Provider is specified incorrectly in the connection string or you have not installed
the database.

 6. Syntax error

FIGURE 26.6

 There is some syntax error in the statement. Check the spellings of all the commands
in the given line.

 7. Data type mismatch in criteria expression

FIGURE 26.7

 The data type of the value entered is not the same as the field type of that column
in the table.

474 SOF T WARE ENGINEERING AND TESTING

 8. Invalid property value

FIGURE 26.8

 An incorrect property has been set for a control or object.

 9. Cannot find input table or query

FIGURE 26.9

 Table does not exist in the database or you have misspelled the table name.

 10. Operation is not allowed when the object is open

FIGURE 26.10

 You are trying to reopen the connection, recordset, or any other object before
closing it.

 ERROR HANDLING 475

 11. Operation is not allowed when the object is closed

FIGURE 26.11

 You are trying to reclose the connection, recordset, or any other object which is
already closed.

 12. Item cannot be found in the collection

FIGURE 26.12

 The field name associated with the recordset does not exist or the field name is
misspelled.

 13. Number of query values and destination fields are not the same

FIGURE 26.13

 The number of columns that are inserted in the table are more or less than the
number of columns in the table.

476 SOF T WARE ENGINEERING AND TESTING

 14. Syntax error (missing operator) in query expression

FIGURE 26.14

 There is an operator missing in the statement or there is an invalid use of the
operator.

 15. Duplicate declaration in current scope

FIGURE 26.15

 The variable has been declared twice in the same procedure.

 16. Undefined function in expression

FIGURE 26.16

 The function used is not defined in the module or it has been declared private in
another module.

 ERROR HANDLING 477

 17. Invalid use of null

FIGURE 26.17

 There is an operation on a null value.

 18. Either BOF or EOF is true or the current record has been deleted

FIGURE 26.18

 The operation you are performing does not have a record.

 19. Syntax Error in INSERT INTO statement

FIGURE 26.19

478 SOF T WARE ENGINEERING AND TESTING

 You have missed one or both the brackets in the INSERT INTO statement or the
viable or control name through which you are inserting the value is misspelled or
does not exist.

 20. Expected expression

FIGURE 26.20

 This error occurs when there is an expression or command missing in the statement
line.

 21. Field cannot be a zero-length string

FIGURE 26.21

 Do not send a null value in the table; either enter a value or set the Allow Null
property of the field to true.

 ERROR HANDLING 479

 22. No value given for one or more required parameters

FIGURE 26.22

 There is some spelling mistake in the fieldname given in the statement or the field
does not exist in the table.

 23. Type mismatch

FIGURE 26.23

 The type of variable and the type of value you are assigning to it are different.

26.5 PRECAUTIONS

 1. Do not allow users to enter invalid characters.

 2. Set the MaxLength property of the text box equal to the field size, so that the
user cannot enter data larger than the field length.

480 SOF T WARE ENGINEERING AND TESTING

 3. Use the On Error GoTo statement to avoid termination of an application on
error.

 4. Use the App.path method instead of defining a fixed path for database
connectivity in MS Access.

 5. The data type of the input data should be the same as defined in the table for
that field.

 6. Do not forget to close the recordset after opening and performing the
operation.

 7. Close the data environment at the terminate event of the data report.

 8. Keep all the files and sub-folders related to the same project in a main folder.

 9. For proper connection, first install the database (Oracle, Access, SQL Server)
before installing Visual Studio.

 10. Use proper explanatory remarks while writing the program. This will help
you to find the error during debugging.

 11. Thoroughly test your project before implementation.

Chapter 27
CREATING THE SETUP PACKAGE

 To distribute your application and run your application on other systems it is
necessary that all the files that are linked to the application and all dll and
supporting files that are used in the application be present in other systems

also. There are two ways to run your application on another system. First, is to
install Visual Basic 6.0 on that system and copy your project, but this will take
much hard disk space and time to install. The second and better way is to create a
setup of the application and run the setup file. This will take less space and time
to install because the setup file contains only the required files that are necessary
to run the application.

27.1 HOW TO CREATE A SETUP

 Follow the given steps to create a setup of an application.

481

482 SOF T WARE ENGINEERING AND TESTING

FIGURE 27.1

 1. Create the .exe (executable) file of the project and save it in the same folder
where the project file is present. To create the .exe file, open the SCHOOL
project and go to the menu File → Make School.exe option. This will compile
the project and create the School.exe file in the selected folder. It’s good
practice to create the .exe file before creating the setup package because during
compilation an error may occur that you can rectify.

FIGURE 27.2

 CREATING THE SETUP PACKAGE 483

 2. Go to Start → Programs → Microsoft Visual Studio 6.0 → Microsoft Visual
Studio 6.0 Tools → Package & Deployment Wizard.

FIGURE 27.3

 3. Browse for the project file School.vbp and click the Package button. If this
gives the message to recompile the project, choose the No button to use the
existing executable file.

FIGURE 27.4

484 SOF T WARE ENGINEERING AND TESTING

 4. In the next screen, select Standard Setup Package from the list and click Next.

FIGURE 27.5

 5. Select the folder where you want to create the setup files and folder.

FIGURE 27.6

 CREATING THE SETUP PACKAGE 485

 6. If you have no dependency information about the files, click OK without
selecting its checkbox.

FIGURE 27.7

 7. Click OK to proceed with out-of-date dependency information of the files (see
Figure 27.8).

FIGURE 27.8

 8. Add the files which you want to include in your package. All the *.dll and *.ocx
files are automatically added. You have to add only database files (*.mdb), text
files (*.Txt), document files (*.doc), image files (*.jpg), or other files which have
not been added in the list. In this case add only the School.mdb file.

486 SOF T WARE ENGINEERING AND TESTING

FIGURE 27.9

 9. Choose the option single cab or multiple cab. The single cab option is used if
you want to copy the package on a CD, pen drive, or a large storage device.
Multiple cab is used if you want to copy the package on a floppy.

FIGURE 27.10

 CREATING THE SETUP PACKAGE 487

 10. Give the installation title School Management System and click Next.

FIGURE 27.11

 11. In the Start Menu Items window, you can add a new group/item, remove an
existing group/item, or rename a group/item. If a group or item is added,
select the item and click the Properties button to give the .exe filename to
which this new item will be attached.

FIGURE 27.12

488 SOF T WARE ENGINEERING AND TESTING

 12. In the Install Locations window, you can modify the install location for each of
the listed files by changing the macro assigned to the file. If desired, you can
add sub-folder information to the end of a macro. For example, & (AppPath)\
Database. Choose the file you want to modify, then change the information on
the install location column.

 13. Check the files if you want to install as shared. Click Next when the package
is installed and the checked files will be installed as shared files. The shared
files may be used by more than one program. They are only removed if every
program which uses them is removed (see Figure 27.13).

FIGURE 27.13

 CREATING THE SETUP PACKAGE 489

FIGURE 27.14

 14. Give the script the name School Management System. The script name is used
to save the settings that you have made to create this package. Click Finish.

FIGURE 27.15

490 SOF T WARE ENGINEERING AND TESTING

 15. After generating the cab files a Packaging Report window will be displayed
to save the packaging report. If you want to save this report click the Save
Report button, otherwise click Close.

FIGURE 27.16

 16. The setup and cab files created will be displayed in the package folder as given
in the figure.

FIGURE 27.17

 CREATING THE SETUP PACKAGE 491

REFERENCES

 1. Software Engineering — Roger Pressman

 2. Mastering in Visual Basic — Evangelos Petrouteous

 3. Visual Basic Objects — John Smiley

 4. Visual Basic Databases — John Smiley

 5. Visual Basic Examples — John Smiley

 6. Visual Basic Developer’s Guide to the Win32API — Steve Brown

 7. Ground up Visual Basic 6.0 — Garrey Connell

 8. Database Developers Guide with VB 6.0 — Roger Jennings

 9. Mastering Access 2000 — Simpson

 10. Teach Yourself Access for windows 95 — Seigel

 11. Access 2000. No Experience Required — Robinson

 12. Access 2000 from A TO Z — Julie Kelly, Stephen L. Nelson

 13. Oracle 8 — Evan Bayross

 14. Mastering Crystal Report — BPB

4 SOF T WARE ENGINEERING AND TESTING

INDEX

493

A

Abstraction, 121

Abstraction level, 239

Acceptance testing, 40, 173

Access database wizard, 320-321

Accumulating errors during software, 96

ActiveX control, 266

ActiveX DLL, 266

ActiveX document DLL, 266

ActiveX document EXE, 266

ActiveX EXE, 266

Adaptability, 58, 105

Adaptive maintenance, 35, 40, 203

Adding a primary key in an existing table,
345-346

Addins in VB, 268

Advantages of 4GT, 256

Advantages of black-box testing, 178

Advantages of CASE tools, 234-235

Advantages of decision tables, 69

Advantages of flowcharts, 134

Advantages of function points, 155

Advantages of iterative-enhancement model, 48

Advantages of modular systems, 126-127

Advantages of prototyping models, 43

Advantages of pseudo-code, 130

Advantages of spiral model, 46

Advantages of structural/white-box testing, 175

Advantages of structured programming, 255

Advantages of waterfall model, 41

Algorithms, 263

Allow zero length, 327

Alpha testing, 40, 172

Alternate key (in a database), 317

Ambiguity, 75

Ambiguous decision table, 68

Analysis, 134

Analysis tools, 234

Analyzability, 105

Application areas of reverse engineering, 239

Application generation, 50

Application software, 5

Architectural design, 123-125

 Objectives of architectural design, 124-125

Architecture of CASE environment, 224-226

 User interface, 224

494 SOF T WARE ENGINEERING AND TESTING

 Tools-management services (tools-set), 225

 Object-management system (OMS), 225

 Repository, 226

Arrows (in structure charts), 128

Artificial-intelligence software, 17

Attaching a database, 376-378

Attributes, 81-82, 250

Attributes of effective software metrics, 150-151

Authentication, 386-387

AVAIL (Availability), 111

B

Backtracking, 187

Backward traceability, 78

BASIC, 265

Basic building blocks of a structure chart,
128-129

Basic COCOMO model, 212-214

Basic elements of a decision table, 67

Bath-tub curve, 12-13

Belady and Lehman model, 205-206

Benefits of ISO-9000 certification, 102

Benefits of SRS, 74

Beta testing, 40, 172

Binary relationship, 80

Black-box testing example, 177

Blank Access database, 321-324

Boehm model, 206-207

Bottom-up design, 121-122

Bottom-up integration testing, 170-170

Boxes (in structure charts), 128

Branching, 253

Breadth-first integration, 169

Brute-force debugging, 187

Building blocks for CASE, 226

 Environment architecture, 226

 Portability services, 226

 Integration framework, 226

 CASE tools, 226

Builds, 171

Business modeling, 49-50

Business software, 16-17

C

Calling a report in Visual Basic, 436

Candidate key (in a database), 317

Capability maturity model (SEI-CMM), 96-99,
106

Caption in MS Access, 327

Cardinality, 80

CASE building blocks, 226

CASE classification, 231-232

CASE database, 226

CASE repository, 226, 229-231

CASE support in software life-cycle, 227-228

 Prototyping support, 227

 Structured analysis and design, 227

 Code generation, 227-228

 Test CASE generator, 228

CASE tool support, 60

CASE tools, 226, 232-235

Categories of black-box testing, 176-177

Categories of CASE tools, 233-234

 Vertical CASE tools, 233

 Horizontal CASE tools, 233

 Upper CASE tools/Front-end CASE tools,
233-234

 Lower CASE or Back-end tools, 234

 INDEX 495

 Cross life-cycle CASE or integrated tools,
234

 Reverse-engineering tools, 234

Categories of maintenance, 203

 Corrective maintenance, 203

 Adaptive maintenance, 203

 Perfective maintenance, 203

 Preventative maintenance, 203

Categories of metrics, 149

Cause elimination, 187

CCB, 195

Changeability, 105

Change-control process, 197-198

Changing management processes, 60

Characteristics of bugs, 189

Characteristics of SRS, 78-79

 Correctness, 78

 Completeness, 78

 Unambiguous, 78

 Verifiable, 78

 Modifiable, 78

 Traceable, 78

 Consistency, 78-79

 Traceability, 79

 Clarity, 79

 Feasibility, 79

Check boxes, 283-285

Checklist for code inspections, 185

Choosing components and options, 352

Clarity, 79

Classes of requirements management, 59

Classes of software, 8-9

 Generic software, 8-9

 Customized software, 9

Classification of failures, 109

Classification of modules, 126

Classification of software qualities, 89-90

Clusters, 170-171

Code defects, 251

Code generation, 227-228

Code generators, 234

Code inspections, 184-186, 251

Code reading, 251

Code restructuring, 243

Code reviews, 251-252

Code walk-throughs, 183-184

Code window, 271, 274

Coding and module testing, 39

Cohesion, 139-142

Cohesion-strength of relation within modules,
139

Combo box in VB, 287-288

Command button, 282-283

Common coupling, 138

Common errors in computation, 166

Communication, 134

Communicational cohesion, 140-141

Comparison of ISO-9000 certification and the
SEI-CMM, 106-107

Comparison of various process models, 50-51

Compilation in Visual Basic, 268

 Limitations, 268

Compilation phase, 186

Compilers and interpreters, 5

Complete COCOMO model, 214-215

Completeness, 69, 78, 118, 239

Compliance, 104

Components of SRS, 75-77

 Functional requirements, 75-76

 Performance requirements, 76

 Design constraints, 76-77

496 SOF T WARE ENGINEERING AND TESTING

 Standards compliance, 76

 Reliability and fault tolerance, 77

 Security, 77

 External interface requirements, 77

Composite attribute, 81

Composite key (in a database), 318

Comprehensibility, 58

Computation defects, 251

Computer attributes, 214

Computer science, 22-23

Computer-aided software engineering (CASE),
223-235

Concurrent-version control, 199

Conditional searching, 339

Configuration accounting, 195-197

Configuration audit, 196-197

Configuration control, 194-195

Configuration control system, 194

Configuration identification, 194

Configuration-management environment, 201

Configuration-management plan, 194

Configuration-management team, 200

Configuration-management tools, 194

Conflict resolution, 57

Conformance, 105

Connecting Crystal Reports with Visual Basic,
462-464

Connector symbol, 133

Consistency, 78-79

Constructive cost model (COCOMO), 211-215

 Basic COCOMO model, 212-214

 Intermediate COCOMO model, 214

 Complete COCOMO model, 214-215

 Phase-sensitive effort multipliers, 215

 Three-level product hierarchy, 215

Content coupling, 138

Control constructs, 249

Control coupling, 138

Control events, 296

Controls in Visual Basic, 273-276

 Object window, 273

 Code window, 274

 Form properties, 274-276

Control-flow arrows, 129

Controlled objects, 194

Controlling, 208

Controlling changes during prototyping, 43

Copy database wizard, 380

Corrective maintenance, 35, 40, 203

Correctness, 78, 92-94, 118

Cosmetic changes, 43

Cost-estimation process, 209

Coupling and cohesion, 136-143

 Coupling, 136-139

 Factors affecting coupling between
modules, 137

 Types of couplings, 137-139

 Cohesion, 139-142

 Types of cohesion, 140-142

 Relationship between coupling and cohesion,
142-143

Creating a connection using DSN, 456-457

Creating a connection with Visual Basic, 387-389

Creating a database using the create database
wizard in Enterprise Manager, 358

Creating a database in MS Access 2000, 319-324

 Access database wizard, 320-321

 Blank Access database, 321-324

 Datasheet view, 322

 Table wizard, 322

 Design view, 322

 Import table, 322

 INDEX 497

 Link table, 322

Creating a new user in Oracle, 331-332

Creating the setup package, 481-490

 How to create a setup, 481-490

Creating reports using DSN of the SQL Server
2000 database, 451-456

Creation of reports using an SQL Server 2000
database, 457-460

Cross life-cycle CASE or integrated tools, 234

Crystal reports, 447-464

 Advantages over Visual Basic data reports,
448

 Starting with Crystal Report 8.0, 448-451

 Creating reports using DSN of the SQL
Server 2000 database, 451-456

 How to make a DSN, 451-456

 Creating a connection using DSN, 456-457

 Creation of reports using an SQL Server
2000 database, 457-460

 Inserting formulas into the report, 460-461

 Grouping of fields, 462

 Connecting crystal reports with Visual Basic,
462-464

Crystal Report Data Explorer, 449

Crystal Report Gallery, 449

Customized software, 9

Cycle of design phase, 33

Cyclomatic complexity, 157-159

D

Data abstraction, 121

Data abstraction modules, 126

Data coupling, 137-138

Data dictionary, 230

Data environment and the connection in Visual
Basic, 425-429

Data export at runtime, 420

Data export in Oracle, 346-347

Data-flow diagrams, 62-67

 Symbols uses for constructing DFDs, 62-63

 Function symbol, 62

 External entity, 62

 Data-flow symbol, 62

 Data-store symbol, 62-63

 Output symbol, 63

 Example DFD, 63-64

 Levels of a DFD, 64-66

 General guidelines and rules for constructing
DFDs, 66-67

Data import in Oracle, 347-348

Data insertion in a table, 339

Data integrity, 318

Data links, 414-416

Data modeling, 50

Data operations and computation defects, 251

Data project, 267

Data re-engineering, 241

Data report controls in Visual Basic, 433-435

Data report creation in Visual Basic, 425

Data report designing in Visual Basic, 430-433

Data restructuring, 243-244

Data selection, 339

Data transformation services, 380-385

Data types, 271-272, 361-362

Data types in MS Access, 324

Data types in Oracle, 335

Database connectivity, 400-404

Database designing in VB, 399-412

 Structure of the table, 399-400

498 SOF T WARE ENGINEERING AND TESTING

 Modules, 400

 Database connectivity, 400-404

 Code for module, 405

 Code for MDI form, 405

 Code for student entry form, 405-410

 Code for student report form, 410-412

Database management system (DBMS), 7, 315

Databases, 315-318

Data-centric architecture, 123-124

Data-flow architecture, 123-124

Data-flow arrows (in structure charts), 128

Data-flow diagrams (DFD), 263

Data-flow symbol, 62

Datasheet view in MS Access, 322

Data-store symbol, 62-63

DBMSs, 5

Debug tool bar, 270

Debugging, 39, 127, 134, 186-189, 262-263

Debugging guidelines, 189

Debugging process, 187

Decision symbol, 132

Decision tables, 67-70

 Basic elements of a decision table, 67

 Limited-entry decision table, 68

 Ambiguous decision table, 68

 Incomplete and over-specified decision table,
69

 Advantages of decision tables, 69

 Disadvantages of decision tables, 70

Decoupling data structures, 247

Defect repair ratio, 204

Definition of software, 4

Definition of software design, 117-118

Definition of software metrics, 149-150

Definition of software quality, 89

Deleting a primary key in Oracle, 346

Deleting a table in Oracle, 338

Deleting records in Oracle, 341

Deliverable increment, 47

Deliverables and milestones, 25-26

Delivery and maintenance, 40

Depth, 125

Depth-first integration, 169

Derived attribute, 81-82

Design constraints, 76-77

Design objectives/properties, 118-119

Design principles, 119-123

Design recovery, 238

Design view in MS Access, 322

Design specifications, 144-145

Detaching a database in SQL, 378-380

DHTML application, 267

Diagnosibility, 105

Diagramming tools, 234

Dir list box, 291-292

Directionality, 239

Disclosures, 219

Do while… statement in VB, 301

Document restructuring, 242-243

Domain understanding, 56

Draw programs, 8

Drawbacks of function points, 155-156

Drive list box, 291

Drivers, 167, 170-171

Dropping a table, 364

Dynamic structures, 252-253

E

Economic feasibility, 31

Edit tool bar, 270

 INDEX 499

Editing, 232

Editing SQL statements, 337

Efficiency, 91-94, 105, 118-119, 262

Embedded project, 212-213

Embedded software, 16

Enduring requirements, 59

Engineering, 23-25

Engineering and scientific software, 17-18

Entity relationships, 80

Entity-relationship diagram, 79-81

 Entity, 79

 Relationship, 80

 Binary relationship, 80

 Attributes, 81

Entity types, 79

Environment architecture, 226

Error handling in Visual Basic, 465-480

 Key handling, 465-469

 Key locking at key press event, 469-470

 Validation for integers, 469-470

 Validation for characters, 470

 Validation for float numbers, 470

 Other error-handling methods, 470-471

 On Error GoTo, 470-471

 On Error Resume Next, 471

 Some common errors, 471-479

 Precautions, 479-480

Error reports, 34

Errors, 189-190

Estimating, 207-215

Estimating cost, 209-210

Estimating effort, 209

Estimating schedule, 209

Estimating size, 208

Event, 269

Evolution of art to an engineer discipline, 20

Evolution of software, 20-22

 First era, 20

 Second era, 21

 Third era, 21

 Fourth era, 21-22

Evolutionary development model, 46-47

 Need of an evolutionary model, 46-47

 Uses of an evolutionary model, 47

Evolvability, 95

Example DFD, 63-64

Example flowchart, 134-135

Example of black-box testing, 177-178

External coupling, 138

External entity, 62

External inquiry types, 155

External interface file types, 155

External interface requirements, 77

External versus internal qualities, 90

Extract abstractions, 239

F

Factors affecting coupling, 137

Factors affecting effort, 204

Factors affecting re-engineering costs, 244

Failure classifications, 109

Failure intensity, 13

Failures, 190

Fan-in, 125

Fan-out, 125

Fault tolerance, 104

Faults, 190

Fault-tolerance requirements, 77

Fault-tree analysis, 187

500 SOF T WARE ENGINEERING AND TESTING

Feasibility, 79

Feasibility study, 31, 37-38

Field properties in MS Access, 324-327

 Field size, 324-325

 Format, 325-326

 Input mask, 326-327

 Caption, 327

 Default value, 327

 Validation rules and validation text, 327

 Required, 327

 Allow zero length, 327

 Index, 327

Field size, 324-325

File list box, 292-293

First era, 20

Flexibility, 92-94

Flow lines, 132

Flowchart drawing rules, 133

Flowchart symbols, 132-133

Flowcharts, 131-136, 157, 263

For loop in VB, 302

Foreign key, 318

Form and report generator tools in VB, 234

Form editor in VB, 270

Form events in VB, 295

Form properties in VB, 274-276

Form window in VB, 270

Forms in VB, 268

Formal review, 58

Formal technical review, 182

Format, 325-326

Forms and generator tools, 234

Forward engineering, 244

Forward traceability, 78

Fourth-generation techniques (4GT), 255-257

 Use of fourth-generation technologies, 256

 Advantages of 4GT, 256

 Disadvantages of 4GT, 256

 Differences between 3GLs and 4GLs,
256-257

Frames in VB, 281-282

Function points, 154

Function-point based measures, 154-157

 Function points, 154

 Function-point metric, 154-155

 Special features, 155

 Advantages of function points, 155

 Drawbacks of function points, 155-156

 Function-point metrics, 156-157

Function symbol, 62

Functional abstraction, 121

Functional cohesion, 140

Functional modules, 126

Functional requirements, 54, 75-76

Functional/black-box testing, 175-178

Functionality, 90, 104, 250

Functional-oriented versus the object-oriented
approach, 143-144

Function-point based measures, 154-157

Function-point contribution of an element, 154

Function-point metrics, 154-157

Functions, 140-141

Functions in VB, 303-313

G

General guidelines and rules for constructing
DFDs, 66-67

Generating an SQL script, 370-375

Generic risks, 219

 INDEX 501

Generic software, 8-9

Global changes, 43

Global variables, 250

Gold-plating, 48

Gotos, 249

Graphical user interface (GUI), 42, 265

Graphs in Visual Basic, 421-424

Grouping in data reports in Visual Basic,
440-446

Grouping of data, 343

Grouping of fields, 462

H

Halstead’s software science, 151-154

Hardware interface requirements, 77

Hardware and software requirements for Visual
Basic, 266

 Editions, 266

Hardware modules, 126

Hexagon symbol, 133

High-level design, 39

Highly coupled, 136

Horizontal CASE tools, 233

Horizontal partitioning, 119-120

Horizontal scroll bar, 289

How to create a database using Enterprise
Manager, 354-358

How to create a setup, 481-490

How to make a DSN, 451-456

How to use Query Analyzer, 368-369

How to use the script, 374-375

How to write a good program, 262-263

 Readability, 262

 Design, 262

 Efficiency, 262

 Debugging, 262-263

 Testing, 263

Human errors, 109

I

I-CASE environment, 231

IEEE, 4, 9, 73-74, 200

IEEE standards for SRS documents, 73-74

 IEEE recommended approaches for SRS, 73

 Benefits of SRS, 74

 IEEE recommended practice for software
requirements specification, 74

IEEE-SA, 73

If-else statement in VB, 301

IIS application, 268

Image editors, 8

Image processors, 8

Implementation, 34-35

Import table in MS Access, 322

Importance of software, 4

Importance of software quality, 96

Importing a table in MS Access, 328

Incomplete and over-specified decision table, 69

Inconsistency, 75

Incorrect fact, 75

Increasing criticality of software, 96

Increment approach to testing, 168-169

Incremental module, 126

Index, 327

Index number of data report section in Visual
Basic, 439

Informal review, 58

Informal technical review, 182

502 SOF T WARE ENGINEERING AND TESTING

Information flow model (IFM), 61

Information hiding, 247-249

Information modeling, 61

Input mask, 326-327

Input/output symbol, 132

Installability, 105

Installing SQL Server on a database server, 352

Intangibility of software, 96

Integrated data environment, 265

Integrated I-CASE tools, 231

Integrated development environment (IDE),
269-272

 Tool bar, 270-271

 Data types, 271-272

Integration and system testing, 40

Integration framework, 226

Integration testing, 167-172

Integrity, 92-94

Interactivity, 239

Iterative-enhancement model, 47-49

 Advantages of iterative-enhancement model,
48

 Disadvantages of iterative-enhancement
model, 48-49

Interface design language (IDL), 11

Interface requirement, 77

Intermediate COCOMO model, 214

Internal documentation, 250-251

International standard organization (ISO),
99-106

 ISO-9000 mission, 100-101

 ISO certification, 101-102

 Benefits of ISO-9000 certification, 102

 Limitations of ISO-9000, 103

 Uses of ISO, 103

 Salient features of ISO-9001 requirements,
103

 ISO-9126, 103-106

Internet information server (IIS), 265

Interoperability, 92-95, 104

Inventory analysis, 242

ISO certification, 101-102, 106

ISO standards, 106

ISO-9000, 100-107

ISO-9001, 100-106

ISO-9002, 100-101

ISO-9003, 101

ISO-9126, 103-106

Iterations, 253-255

Iterative paradigm, 47

Iterative process, 46

J

Jelinski-Moranda model, 112-114

K

Key features of structured programming, 255

Key handling, 465-469

Key locking at key press event, 469-470

Key process areas (KPAs), 98-99

Keys, 317-318

 Candidate key, 317

 Primary key, 317

 Alternate key, 317

 Composite key, 318

 Foreign key, 318

Keywords, 130

 INDEX 503

L

Labels in VB, 278-279

Language-processing integration, 232

Layered architecture, 123-124

Learnability, 105

Learning curve, 235

Lehman’s first law, 193

Lehman’s second law, 193

Lehman’s third law, 193

Levels of a DFD, 64-66

Levels of CASE, 224

 Production process support technology, 224

 Process management and technology, 224

 Meta-CASE technology, 224

Levels of reverse engineering, 237-238

Levels of testing, 165-173

Library modules, 128

Limited-entry decision table, 68

Linear sequential model, 47

Link table in MS Access, 322

List box in VB, 288-289

Little Wood and Verall’s model, 114

Local changes, 43

Logic error, 190

Logical and control defects, 251

Logical cohesion, 141-142

Logical internal file types, 155

Logical operators in VB, 298-300

Loosely coupled, 136

Lower CASE or Back-end tools, 234

Low-level design, 39, 125-136

 Modularization, 125-127

 Classification of modules, 126

 Advantages of modular systems,
126-127

 Structure charts, 127-129

 Basic building blocks of a structure
chart, 128-129

 Pseudo-code, 130-131

 Advantages of pseudo-code, 130

 Disadvantages of pseudo-code, 130-131

 Flowcharts, 131-136

 Flowchart symbols, 132-133

 Flowchart drawing rules, 133

 Advantages of flowcharts, 134

 Limitations of flowcharts, 134

 Example of a flowchart, 134-135

 Difference between flowcharts and
structure charts, 136

M

Main-control module, 169

Maintainability, 91-94, 104

Maintenance, 35-36

Maintenance costs, 204-207

 Factors affecting effort, 204

 Modeling maintenance effort, 205-207

 Belady and Lehman model, 205-206

 Boehm model, 206-207

Maintenance to-do list, 202-203

Management of risks, 216-219

Mandatory participant, 82

Many to many cardinality relationship, 80

Mapping, 236-237

Maturity, 104

Maximum cardinality relationship, 82

McCall’s quality factors, 91-92

MDI form, 392

Mean time between failures (MTBF), 110

504 SOF T WARE ENGINEERING AND TESTING

Mean time to failure (MTTF), 110

Mean time to repair (MTTR), 110

Measurements of reliability and availability,
111-112

Measures, metrics, and indicators, 26

Meta-CASE technology, 224

Microsoft Chart Control 6.0, 421

Minimum cardinality relationship, 82

Modeling maintenance effort, 205-207

Modifiable, 78

Modified E-R diagram, 82

Modifying a record in Oracle, 341

Modifying a table in MS Access, 328

Modifying the data type and size of the column
in Oracle, 338

Modifying the structure of a table in Oracle, 338

Modifying the structure of an existing table in
SQL, 363

Modular systems, 125-126

Modularity, 127

Modularization, 125-127

Module interface, 250

Module size, 249

Modules, 121-146, 249-250, 400

Monitoring and control for coding, 251-252

Monitoring and control for design, 146

Multidimensional spreadsheets, 5

Multivalued attributes, 81

N

Naming, 248-249

Need of an evolutionary model, 46-47

Need for maintenance, 202-203

 Maintenance to-do list, 202-203

Negative functional testing, 177

Nesting, 249

Nesting construct, 254

Nonfunctional requirements, 54

O

Object window, 273

Objectives for reviews, 182-183

Objectives of architectural design, 124-125

Objectives of CASE, 228-229

 Improve productivity, 228

 Improve information system quality,
228-229

 Improve effectiveness, 229

Objectives of structured programming, 253

Object-management system (OMS), 225

Object-oriented architecture, 123-124

Object-oriented design approach, 39

Omissions, 75

On Error GoTo, 470-471

On Error Resume Next, 471

One to many cardinality relationship, 81

Operability, 105

Operating systems, 5

Operational feasibility, 31

Operator and operand count for a FORTRAN
routine, 153

Option button in VB, 285-286

Organic project, 212-213

Organization of SRS document, 70-72

Organizational feasibility, 31

Output symbol, 63

 INDEX 505

P

Paint programs, 8

Parallel module, 126

Parameters, 250

Perfective maintenance, 35-36, 203

Performance, 94

Performance requirements, 76

Personal computer software, 17

Person-month curve, 212

Personnel attributes, 214

Phases of project management, 146

Phase-sensitive effort multipliers, 215

Picture box in VB, 277-278

Planning, 208, 232

Pointer in VB, 277

Portability, 91-94, 104

Portability services, 226

Positive functional testing, 176-177

Precautions, 479-480

Precontrolled objects, 194

Presentation graphics, 7

Preventive maintenance, 36, 203

Primary key (in a database), 317

Primary keys in Oracle, 345-346

 Adding a primary key, 345

 Adding a primary key in an existing table,
345-346

 Deleting a primary key, 346

Principles of re-engineering, 240

Principles of structured programming, 253-254

Prioritization, 57

Private access specifier, 248

Probability of failure on demand (POFOD),
110-111

Problem partitioning, 119-120

Procedural cohesion, 141

Process descriptions, 88

Process management and technology, 224

Process metrics, 150

Process model of elicitation and analysis, 56-57

Process modeling, 50

Process of requirements engineering, 55-60

 Requirement elicitation and analysis, 55-56

 Process model of elicitation and analysis,
56-57

 Domain understanding, 56

 Requirements collection, 56

 Classification, 56

 Conflict resolution, 57

 Prioritization, 57

 Requirements checking, 57

 Requirements documentation, 57-59

 Requirements definition document,
57-58

 Requirements review, 58-59

 Requirements management, 59

 Classes of requirements management,
59

 Requirements management planning, 60

Process support modules, 126

Processing symbol, 132

Product and process, 26

Product and process qualities, 90

Product attributes, 214

Product metrics, 150

Product operation and quality factors, 92

Product plans, 88

Production introduction, 88

Production process support technology, 224

Productivity, 95

Program analysis tools, 232

506 SOF T WARE ENGINEERING AND TESTING

Program debugging, 188-189

Program design methods, 253

Program documentation, 250-251

Program layout, 249

Program modularization, 241

Program phase, 262

Program slicing, 187

Program structure improvement, 241

Program-design language, 130

Programming, 232

Programming languages, 250

Programming in Visual Basic with MS Access
2000, 391-392

 MDI form, 392

Programming with Oracle and SQL Server 2000,
413-420

 Table creation, 413

 Data links, 414-416

 Creating a connection, 417-418

 Working with the project, 418-420

 Required modifications, 418-419

 Use of condate function, 419-420

 Data export at runtime, 420

 Working in a project with an SQL Server
2000 database, 420

Programming tools, 263

 Algorithms, 263

 Flowcharts, 263

 Pseudo-code, 263

 Data-flow diagrams (DFD), 263

Programs, 26

Programs versus software products, 26-27

 Programs, 26

 Software products, 27

Programming style, 248-250

 Naming, 248-249

 Control constructs, 249

 Information hiding, 249

 Gotos, 249

 User-defined type, 249

 Nesting, 249

 Module size, 249

 Program layout, 249

 Module interface, 250

 Robustness, 250

 Side effects, 250

Project analysis, 32

Project attributes, 214

Project estimating, 207-215

Project explorer, 271

Project metrics, 150

Project-estimation guidelines, 211

Project-estimation process, 210

Project-specific risks, 219

Property window, 270

Prototyping model, 41-44

 Reasons for using prototyping model, 42-43

 Controlling changes during prototyping, 43

 Advantages of prototyping models, 43

 Limitations of prototyping models, 43-44

Prototyping, 41-44, 47, 232

Prototyping support, 227

Pseudo-code, 130-131, 263

Q

Quality goals, 88

Query Analyzer, 368-369

 INDEX 507

R

RAD model, 49-50

 Business modeling, 49-50

 Data modeling, 50

 Process modeling, 50

 Application generation, 50

 Testing and turnover, 50

 Disadvantages of RAD model, 50

Rate of occurrences of failure (ROCOF), 111

Readability, 262

Real-time software, 16

Reasons for poor/inaccurate estimation, 210-211

Reasons for using prototyping model, 42-43

Reasons white-box testing is performed, 174-175

Recognition of need, 31

Recoverability, 104

Re-documentation, 238

Re-engineering process, 240-241

Re-engineering tools, 232

Regression testing, 171

Relational database management system
(RDBMS), 315, 329

Relationship between coupling and cohesion,
142-143

Relationship cardinalities, 82

Reliability, 91-94, 104

Reliability and fault tolerance, 77

Reliability assessment, 115

Reliability growth modeling, 112-114

 Jelinski-Moranda model, 112-114

 Little Wood and Verall’s model, 114

 Step function model, 114

Reliability issues, 107-109

 Software reliability, 107-108

 Software-reliability specifications, 108-109

 Reliability terminologies, 109

 Classification of failures, 109

Reliability measurement process, 115

Reliability metrics, 110-111

 Mean time to failure (MTTF), 110

 Mean time to repair (MTTR), 110

 Mean time between failures (MTBF), 110

 Probability of failure on demand (POFOD),
110-111

 Rate of occurrences of failure (ROCOF), 111

 AVAIL (Availability), 111

Reliability terminologies, 109

Renaming a table, 338

Repairability, 95

Repetition, 129

Replaceability, 105

Repository, 226

Representative qualities, 93-96

Required modifications, 418-419

Requirement analysis and specification, 38

Requirement definition and description (RDD),
54-56

Requirement elicitation and analysis, 55-56

Requirements checking, 57

Requirements collection, 56

Requirements cross-reference, 144

Requirements definition document, 57-58

Requirements documentation, 57-59

Requirements engineering (RE), 53-56

 Types of requirements, 54

 Functional requirements, 54

 Nonfunctional requirements, 54

Requirements identification, 60

Requirements management, 59-60

Requirements review, 58-59

508 SOF T WARE ENGINEERING AND TESTING

Retrieval of selected data in the data report in
Visual Basic, 436-439

Return value of command buttons in VB, 310

Reusability, 92-94

Reverse software engineering, 234-239

 Definition, 235

 Purpose of, 236

 Reverse-engineering process, 236

 Reverse-engineering tasks, 236-237

 Levels of reverse engineering, 237-238

 Re-documentation, 238

 Design recovery, 238

 Characteristics of reverse engineering, 239

 Abstraction level, 239

 Completeness, 239

 Interactivity, 239

 Directionality, 239

 Extract abstractions, 239

 Application areas of reverse engineering,
239

Review meeting, 183

Revision control, 199

Risk analysis, 218

Risk and risk management, 88

Risk avoidance, 218

Risk category, 218

Risk detection, 218

Risk elimination, 219

Risk hierarchy, 216

Risk management, 215-219

Risk pending, 219

Risk prioritization, 218

Risk recovery, 219

Risk resolution, 219

Risk transfer, 219

Risk-analysis table, 218

Risk-management tool, 217

RMS calculating software, 129

Robustness, 94, 250

S

Sandwich integration testing, 171-172

Saving projects and forms in VB, 393-399

 Design of student entry form, 393-396

 Design of student report form, 396-399

Saving a table in MS Access, 327

Schedule estimation, 209

Scopes of variables in VB, 298

Security, 77, 104

SEI-CMM model, 106-107

Selection symbol, 129

Semi-automatic grounded environment (SAGE),
36

Semi-detached project, 212-213

Sequence constructs, 253-254

Sequencing, 255

Sequential cohesion, 140

Sequential module, 126

Shape control in VB, 293-294

Side effects, 250

Simple attribute, 81

Simplicity, 119

Single entry-single exit constructs, 34

Single valued attribute, 81

Single-entry, 255

Single-exit, 255

Smoke testing, 171

Software applications, 15-18

 System software, 15-16

 Real-time software, 16

 INDEX 509

 Embedded software, 16

 Business software, 16-17

 Personal computer software, 17

 Artificial-intelligence software, 17

 Web-based software, 17

 Engineering and scientific software, 17-18

Software as an evolutionary model, 193

Software breakage, 48

Software characteristics, 12-13

Software crisis, 13-15

Software components, 11

Software-configuration management, 200-202

 Versions and releases, 201

 Version and release management, 201-202

Software-configuration management activities,
193-197

 Configuration identification, 194

 Configuration control, 194-195

 Configuration accounting, 195

 Status accounting, 195-196

 Configuration audit, 196-197

Software curve, 13

Software development, 19

Software-development life-cycle, 29-36

 Recognition of need, 31

 Feasibility study, 31

 Project analysis, 32

 System design, 32-33

 Coding, 33-34

 Testing, 34

 Implementation, 34-35

 Maintenance, 35-36

 Corrective maintenance, 35

 Adaptive maintenance, 35

 Perfective maintenance, 35-36

 Preventive maintenance, 36

Software engineering institute, 215

Software-engineering principles, 10-11

Software-engineering processes, 18-20

Software evolution, 19-20

Software metrics, 149-151

 Definition of software metrics, 149-150

 Categories of metrics, 149

 Attributes of effective software metrics,
150-151

Software myths, 15

Software products, 27

Software-project estimation, 207-211

 Estimating size, 208

 Estimating effort, 209

 Estimating schedule, 209

 Estimating cost, 209-210

 Reasons for poor/inaccurate estimation,
210-211

 Project-estimation guidelines, 211

Software project management, 146

Software quality, 89-96

 Definition of software quality, 89

 Classification of software qualities, 89-90

 External versus internal qualities, 90

 Product and process qualities, 90

 Software quality attributes, 90-91

 Functionality, 90

 Reliability, 91

 Usability, 91

 Efficiency, 91

 Maintainability, 91

 Portability, 91

 McCall’s quality factors, 91-92

 Product operation and quality factors,
92

510 SOF T WARE ENGINEERING AND TESTING

 Software quality criteria, 92-93

 Representative qualities, 93-96

 Correctness, 93

 Reliability, 93-94

 Robustness, 94

 Performance, 94

 Verifiability, 94

 Repairability, 95

 Evolvability, 95

 Understandability, 95

 Interoperability, 95

 Productivity, 95

 Timeliness, 95-96

 Visibility, 96

 Importance of software quality, 96

Software quality assurance (SQA), 87-89

 SQA objectives, 87

 SQA goals, 87-88

 SQA plan, 88-89

Software quality attributes, 90-91

Software quality criteria, 92-93

Software quality plan, 88-89

 Production introduction, 88

 Product plans, 88

 Process descriptions, 88

 Quality goals, 88

 Risks and risk management, 88

Software re-engineering, 240-245

 Principles of re-engineering, 240

 Re-engineering process, 240-241

 Source-code translation, 241

 Reverse engineering, 241

 Program structure improvement, 241

 Program modularization, 241

 Data re-engineering, 241

 Software re-engineering process model,
241-244

 Inventory analysis, 242

 Document restructuring, 242-243

 Reverse engineering, 243

 Code restructuring, 243

 Data restructuring, 243-244

 Forward engineering, 244

 Factors affecting re-engineering costs, 244

 Differences between forward engineering
and re-engineering, 244

 Advantages and disadvantages, 245

Software reliability, 107-108

Software reliability curve, 107

Software-reliability specifications, 108-109

Software requirements specification (SRS), 57,
156, 163

Software-risk analysis and management, 215-220

 Risk management, 215-216

 Management of risks, 216-219

 Risk management categories, 216-219

 Risk avoidance, 218

 Risk detection, 218

 Risk analysis, 218

 Risk category, 218

 Risk prioritization, 218

 Risk recovery, 219

 Sources of risks, 219

 Generic risks, 219

 Project-specific risks, 219

Software specifications, 18

Software testing, 161-179

 Testing principles, 162-163

 Testing objectives, 163-164

 Testing oracles, 164

 Levels of testing, 165-173

 INDEX 511

 Unit testing, 165-167

 Integration testing, 167-172

 System testing, 172-173

 White-box testing/structural testing, 173-175

 Reasons white-box testing is performed,
174-175

 Advantages of structural/white-box
testing, 175

 Functional/black-box testing, 175-178

 Categories of black-box testing, 176-177

 Example of black-box testing, 177-178

 Advantages of black-box testing, 178

 Test plan, 178-179

 Test-case design, 179

Software-testing strategies, 181-190

 Static-testing strategies, 181

 Formal technical reviews, 182

 Objectives for reviews, 182-183

 Types of reviews, 182

 Review meeting, 182

 Results of formal technical review, 183

 Code walk-throughs, 183-184

 Code inspections, 184-186

 Checklist for code inspections, 185

 Differences between walk-throughs and
inspections/reviews, 185-186

 Debugging, 186-189

 Debugging tactics/categories, 186-187

 Debugging process, 187

 Program debugging, 188-189

 Debugging guidelines, 189

 Characteristics of bugs, 189

 Errors, 189-190

 Types of errors, 190

 Faults, 190

 Failures, 190

Software validation, 19

Software-version control, 199-200

Source-code control, 199

Source-code translation, 241

Sources of risks, 219

Special features, 155

Spiral model, 44-46

 Characteristics of spiral model, 45

 Limitations of spiral model, 46

 Advantages of spiral model, 46

 Disadvantages of spiral model, 46

Spreadsheets, 6

SQA goals, 87-88

SQA objectives, 87

SQA plan, 88-89

SQL Query Analyzer, 349, 368

SQL Server 2000, 349-389

 SQL Query Analyzer, 349

 Starting SQL Server 2000, 349-350

 Installing, 351-352

 Choosing components and options, 352

 Installing SQL Server on a database server,
352

 Using SQL Server with Client/Server
applications, 352-353

 Other SQL Server components, 353

 Creating a database, 353-354

 How to create a database using Enterprise
Manager, 354-358

 Creating a database using the create database
wizard in Enterprise Manager, 358

 Creating a new table, 358-361

 Data types, 361-362

 Viewing the structure of the table, 362

512 SOF T WARE ENGINEERING AND TESTING

 Modifying the structure of an existing table,
363

 Dropping a table, 364

 Opening a table, 365-367

 Query Analyzer, 368-369

 How to use Query Analyzer, 368-369

 Generating an SQL script, 370-375

 How to use the script, 374-375

 Attaching a database, 376-378

 Detaching a database, 378-380

 Copy database wizard, 380

 Importing and exporting a database, 380

 Data transformation services, 380-385

 SQL Service Manager, 386-389

 Authentication, 386-387

 Creating a connection with Visual Basic,
387-389

SQL Server authentication, 387

SQL Server Desktop Engine, 353

SQL Server editions, 350

SQL Service Manager, 386-389

SQL templates, 368

SRS document, 38, 70-72

 Organization of SRS document, 70-72

 Uses for SRS documents, 72

SRS validation, 75

 Omission, 75

 Inconsistency, 75

 Incorrect fact, 75

 Ambiguity, 75

Stability, 105

Stamp coupling, 138

Standard EXE, 266

Standard tool bar, 270

Standards compliance, 76

Starting SQL Server 2000, 349-350

Starting with Crystal Report 8.0, 448-451

Starting with Oracle, 329-331

Static analysis, 251

Static structures, 252-253

Static-testing strategies, 181

Status accounting, 195-196

Step function model, 114

Stepwise refinement, 253-254

Structural testing, 173-175

Structure charts, 127-129

Structure of a database, 317

Structure of a table, 399-400

Structured analysis and design, 227

Structured programs, 252-255

Structured programming, 34, 252-255

 Objectives of structured programming, 253

 Principles of structured programming,
253-254

 Key features of structured programming,
255

 Advantages of structured programming,
255

Stubs, 167

Suitability, 104

Symbolic execution, 251

Symbols uses for constructing DFDs, 62

Syntax error, 190

Syntax and query in Oracle, 336-343

 Table creation, 336

 Table with data, 336

 To view all the tables of the currently
connected user, 337

 To view the structure of a table, 337

 Creation of a table from another table, 337

 INDEX 513

 Editing SQL statements, 337

 Renaming a table, 338

 Deleting a table, 338

 Modifying the structure of a table, 338

 Modifying the data type and size of the
column, 338

 To add a new column in a table, 339

 Data insertion in a table, 339

 Data selection, 339

 Conditional searching, 339

 Insertion of data from another table, 341

 Modifying a record, 341

 Deleting records, 341

 Use of NOT, 342

 Use of LIKE, 342

 Use of BETWEEN, 342

 Use of IN, 343

 Use of NOT IN, 343

 Grouping of data, 343

Synthesis, 134

System design, 32-33, 117-146

System error, 109

System failure, 109

System fault, 109

System software, 5, 15-16

System testing, 172-173

System/software design, 117-123

 Definition of software design, 117-118

 Design objectives/properties, 118-119

 Design principles, 119-122

 Problem partitioning, 119-120

 Abstraction, 121

 Top-down and bottom-up design,
121-122

T

Table creation in Oracle, 336, 413

Table wizard in MS Access, 322

Tables (in databases), 316

Technical feasibility, 31

Templates, 161, 232

Temporal cohesion, 141

Terminal symbol, 132

Terminologies, 25-26

 Deliverables and milestones, 25-26

 Product and process, 26

 Measures, metrics, and indicators, 26

Test CASE generator, 228

Test plan, 178-179

Test reports, 34

Testability, 92-94, 105

Test-case design, 179

Testing and turnover, 50

Testing objectives, 163-164

Testing oracles, 164

Testing principles, 162-163

Text box controls in VB, 279-281

Three-level product hierarchy, 215

Timeliness, 95-96

Timer, 290

Tool bar in VB, 270-271

Tool-box controls in VB, 271, 276-296

 Tool box, 276

 Pointer, 277

 Picture box, 277-278

 Label, 278-279

 Text box, 279-281

 Frame, 281-282

 Command button, 282-283

514 SOF T WARE ENGINEERING AND TESTING

 Check box, 283-285

 Option button, 285-286

 Combo box, 287-288

 List box, 288-289

 Horizontal scroll bar, 289

 Vertical scroll bar, 290

 Timer, 290

 Drive list box, 291

 Dir list box, 291-292

 File list box, 292-293

 Shape, 293-294

 Line, 294-295

 Image, 295

 Form events, 295

 Control events, 296

Tools-management services (tools-set), 225

Top-down design, 121-122

Top-down integration, 169-170

Total quality management (TQM), 107

Traceability, 58, 79, 118

Traceability policies, 60

Traceable, 78

Tracing, 34, 262

Traditional design approach, 38-39

Types of attributes, 81-82

 Simple attribute, 81

 Composite attribute, 81

 Single valued attribute, 81

 Multivalued attribute, 81

 Derived attribute, 81-82

Types of cohesion, 140-142

Types of couplings, 137-139

Types of errors, 190

Types of module cohesion, 140

Types of reviews, 182

Types of software, 5-8

 System software, 5

 Application software, 5

 Operating systems, 5

 Utilities, 5

 Compilers and interpreters, 5

 Word processors, 6

 Spreadsheets, 6

 Presentation graphics, 7

 Database management system (DBMS), 7

 Image processors, 8

 Paint programs, 8

 Draw programs, 8

 Image editors, 8

U

Uncontrolled objects, 194

Uncoupled, 137

Understandability, 95, 105

Unit test consideration, 165-166

Unit test environment, 167

Unit test procedure, 166-167

Unit testing, 165-167

Upper CASE tools/Front-end CASE tools,
233-234

Usability, 91-94, 104-105

Use of App.Path in VB, 412

Use of BETWEEN, 342

Use of condate function, 419-420

Use of fourth-generation technologies, 256

Use of IN, 343

Use of LIKE, 342

Use of NOT IN, 343

Use of NOT, 342

 INDEX 515

User creation by navigation in Oracle 8, 332-335

User interface, 77, 224

User manual, 77

User-defined type, 249

Uses for SRS documents, 72

Uses of an evolutionary model, 47

Uses of ISO, 103

Using SQL Server with Client/Server
applications, 352-353

Utilities, 5

V

Validation, 85-86

Validation for characters, 470

Validation for float numbers, 470

Validation for integers, 469-470

Validation rules and validation text, 327

Variable declaration in VB, 297-298

Variable naming conventions in VB, 297

Verifiability, 58, 94, 118

Verifiable, 78

Verification and validation, 85-86

Verification for design, 145

Version and release management, 201-202

Versions and releases, 201

Vertical CASE tools, 233

Vertical partitioning, 120

Vertical scroll bar, 290

Viewing the structure of the table, 362

Visibility, 96

Visual Basic application types, 266-268

 Standard EXE, 266

 ActiveX EXE, 266

 ActiveX DLL, 266

 ActiveX control, 266

 ActiveX document EXE, 266

 ActiveX document DLL, 266

 VB application wizard, 267

 VB wizard manager, 267

 Data project, 267

 DHTML application, 267

 IIS application, 268

 Addin, 268

 VB enterprise edition control, 268

Visual Basic application wizard, 267

Visual Basic editions, 266

Visual Basic enterprise edition control, 268

Visual Basic functions, 303-313

Visual Basic terminology, 268-269

 Form, 268

 Object, 268

 Control, 268

 Property, 269

 Method, 269

 Event, 269

Visual Basic tool bars, 270-271

Volatile requirements, 59

W

Waterfall model, 36-41

 Feasibility study, 37-38

 Requirement analysis and specification, 38

 Design and specification, 38-39

 Traditional design approach, 38-39

 Object-oriented design approach, 39

 Coding and module testing, 39

 Integration and system testing, 40

 Delivery and maintenance, 40

516 SOF T WARE ENGINEERING AND TESTING

 Advantages of waterfall model, 41

 Disadvantages of waterfall model, 41

Web-based software, 17

White-box testing/structural testing, 173-175

Width, 125

With-end with statement in VB, 302

Word processors, 6

Working in a project with an SQL Server 2000
database, 420

	TABLE OF CONTENTS
	PART I: SOFTWARE ENGINEERING AND TESTING
	Chapter 1:INTRODUCTION TO SOFTWARE ENGINEERING
	1.1 INTRODUCTION TO SOFTWARE
	1.2 TYPES OF SOFTWARE
	1.3 CLASSES OF SOFTWARE
	1.4 INTRODUCTION TO SOFTWARE ENGINEERING
	1.5 SOFTWARE COMPONENTS
	1.6 SOFTWARE CHARACTERISTICS
	1.7 SOFTWARE CRISIS
	1.8 SOFTWARE MYTHS
	1.9 SOFTWARE APPLICATIONS
	1.10 SOFTWARE-ENGINEERING PROCESSES
	1.11 EVOLUTION OF SOFTWARE
	1.12 COMPARISON OF SOFTWARE ENGINEERING AND RELATED FIELDS
	1.13 SOME TERMINOLOGIES
	1.14 PROGRAMS VERSUS SOFTWARE PRODUCTS
	EXERCISES

	Chapter 2: SOFTWARE-DEVELOPMENT LIFE-CYCLE MODELS
	2.1 SOFTWARE-DEVELOPMENT LIFE-CYCLE
	2.2 WATERFALL MODEL
	2.3 PROTOTYPING MODEL
	2.4 SPIRAL MODEL
	2.5 EVOLUTIONARY DEVELOPMENT MODEL
	2.6 ITERATIVE-ENHANCEMENT MODEL
	2.7 RAD MODEL
	2.8 COMPARISON OF VARIOUS PROCESS MODELS
	EXERCISES

	Chapter 3: INTRODUCTION TO SOFTWARE REQUIREMENTS SPECIFICATION
	3.1 REQUIREMENT ENGINEERING
	3.2 PROCESS OF REQUIREMENTS ENGINEERING
	3.3 INFORMATION MODELING
	3.4 DATA-FLOW DIAGRAMS
	3.5 DECISION TABLES
	3.6 SRS DOCUMENT
	3.7 IEEE STANDARDS FOR SRS DOCUMENTS
	3.8 SRS VALIDATION
	3.9 COMPONENTS OF SRS
	3.10 CHARACTERISTICS OF SRS
	3.11 ENTITY-RELATIONSHIP DIAGRAM
	EXERCISES

	Chapter 4: SOFTWARE RELIABILIT Y AND QUALITY ASSURANCE
	4.1 VERIFICATION AND VALIDATION
	4.2 SOFTWARE QUALITY ASSURANCE
	4.3 SOFTWARE QUALITY
	4.4 CAPABILITY MATURITY MODEL (SEI-CMM)
	4.5 INTERNATIONAL STANDARD ORGANIZATION (ISO)
	4.6 COMPARISON OF ISO-9000 CERTIFICATION AND THE SEI-CMM
	4.7 RELIABILITY ISSUES
	4.8 RELIABILITY METRICS
	4.9 RELIABILITY GROWTH MODELING
	4.10 RELIABILITY ASSESSMENT
	EXERCISES

	Chapter 5: SYSTEM DESIGN
	5.1 SYSTEM/SOFTWARE DESIGN
	5.2 ARCHITECTURAL DESIGN
	5.3 LOW-LEVEL DESIGN
	5.4 COUPLING AND COHESION
	5.5 FUNCTIONAL-ORIENTED VERSUS THE OBJECT-ORIENTED APPROACH
	5.6 DESIGN SPECIFICATIONS
	5.7 VERIFICATION FOR DESIGN
	5.8 MONITORING AND CONTROL FOR DESIGN
	EXERCISES

	Chapter 6: SOFTWARE MEASUREMENT AND METRICS
	6.1 SOFTWARE METRICS
	6.2 HALSTEAD’S SOFTWARE SCIENCE
	6.3 FUNCTION-POINT BASED MEASURES
	6.4 CYCLOMATIC COMPLEXITY
	EXERCISES

	Chapter 7: SOFTWARE TESTING
	7.1 INTRODUCTION TO TESTING
	7.2 TESTING PRINCIPLES
	7.3 TESTING OBJECTIVES
	7.4 TEST ORACLES
	7.5 LEVELS OF TESTING
	7.6 WHITE-BOX TESTING/STRUCTURAL TESTING
	7.7 FUNCTIONAL/BLACK-BOX TESTING
	7.8 TEST PLAN
	7.9 TEST-CASE DESIGN
	EXERCISES

	Chapter 8: SOFTWARE-TESTING STRATEGIES
	8.1 STATIC-TESTING STRATEGIES
	8.2 DEBUGGING
	8.3 ERROR, FAULT, AND FAILURE
	EXERCISES

	Chapter 9: SOFTWARE MAINTENANCE AND PROJECT MANAGEMENT
	9.1 SOFTWARE AS AN EVOLUTION ENTITY
	9.2 SOFTWARE-CONFIGURATION MANAGEMENT ACTIVITIES
	9.3 CHANGE-CONTROL PROCESS
	9.4 SOFTWARE-VERSION CONTROL
	9.5 SOFTWARE-CONFIGURATION MANAGEMENT
	9.6 NEED FOR MAINTENANCE
	9.7 CATEGORIES OF MAINTENANCE
	9.8 MAINTENANCE COSTS
	9.9 SOFTWARE-PROJECT ESTIMATION
	9.10 CONSTRUCTIVE COST MODEL (COCOMO)
	9.11 SOFTWARE-RISK ANALYSIS AND MANAGEMENT
	EXERCISES

	Chapter 10: COMPUTER-AIDED SOFTWARE ENGINEERING
	10.1 CASE AND ITS SCOPE
	10.2 LEVELS OF CASE
	10.3 ARCHITECTURE OF CASE ENVIRONMENT
	10.4 BUILDING BLOCKS FOR CASE
	10.5 CASE SUPPORT IN SOFTWARE LIFE-CYCLE
	10.6 OBJECTIVES OF CASE
	10.7 CASE REPOSITORY
	10.8 CHARACTERISTICS OF CASE TOOLS
	10.9 CASE CLASSIFICATION
	10.10 CATEGORIES OF CASE TOOLS
	10.11 ADVANTAGES OF CASE TOOLS
	10.12 DISADVANTAGES OF CASE TOOLS
	10.13 REVERSE SOFTWARE ENGINEERING
	10.14 SOFTWARE RE-ENGINEERING
	EXERCISES

	Chapter 11: CODING
	11.1 INFORMATION HIDING
	11.2 PROGRAMMING STYLE
	11.3 INTERNAL DOCUMENTATION
	11.4 MONITORING AND CONTROL FOR CODING
	11.5 STRUCTURED PROGRAMMING
	11.6 FOURTH-GENERATION TECHNIQUES
	EXERCISES

	PART II: SOFTWARE DEVELOPMENT AND APPLICATIONS
	Chapter 12: INTRODUCTION TO SOFTWARE DEVELOPMENT
	12.1 PROGRAM PHASE
	12.2 HOW TO WRITE A GOOD PROGRAM
	12.3 PROGRAMMING TOOLS

	Chapter 13: VISUAL BASIC 6.0
	13.1 HARDWARE AND SOFTWARE REQUIREMENTS FOR VISUAL BASIC
	13.2 APPLICATION TYPES
	13.3 COMPILATION IN VISUAL BASIC
	13.4 VISUAL BASIC TERMINOLOGY
	13.5 INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

	Chapter 14: CONTROLS IN VISUAL BASIC
	14.1 TOOL-BOX CONTROLS

	Chapter 15: VARIABLES AND OPERATORS IN VISUAL BASIC
	15.1 VARIABLE NAMING CONVENTIONS
	15.2 VARIABLE DECLARATION
	15.3 SCOPE OF VARIABLES
	15.5 LOGICAL OPERATORS
	15.6 IF-ELSE STATEMENT
	15.7 DO WHILE …. STATEMENT
	15.8 FOR LOOP
	15.9 WITH–END WITH STATEMENT

	Chapter 16: FUNCTIONS IN VISUAL BASIC
	Chapter 17: INTRODUCTION TO DATABASES
	17.1 TABLES
	17.2 STRUCTURE OF A DATABASE
	17.3 KEYS
	17.4 DATA INTEGRITY

	Chapter 18: MS ACCESS 2000
	18.1 CREATING A DATABASE IN MS ACCESS 2000
	18.2 DATA TYPES
	18.3 FIELD PROPERTIES
	18.4 SAVING THE TABLE
	18.5 MODIFYING THE TABLE
	18.6 IMPORTING THE TABLE

	Chapter 19: ORACLE
	19.1 STARTING WITH ORACLE 8
	19.2 HOW TO CREATE A NEW USER
	19.3 USER CREATION BY NAVIGATOR
	19.4 DATA TYPES IN ORACLE
	19.5 SYNTAX AND QUERY IN ORACLE
	19.6 FUNCTIONS
	19.7 PRIMARY KEYS
	19.8 DATA EXPORT
	19.9 DATA IMPORT

	Chapter 20: SQL SERVER 2000
	20.1 WHAT’S NEW IN MICROSOFT SQL SERVER 2000?
	20.2 STARTING MICROSOFT SQL SERVER 2000
	20.3 INSTALLATION OF SQL SERVER 2000
	20.4 CREATING A DATABASE
	20.5 HOW TO CREATE A DATABASE USING ENTERPRISE MANAGER
	20.6 CREATE A DATABASE USING THE CREATE DATABASE WIZARDIN ENTERPRISE MANAGER
	20.7 CREATING A NEW TABLE
	20.8 DATA TYPES
	20.9 QUERY ANALYZER
	20.10 HOW TO USE QUERY ANALYZER
	20.11 GENERATING AN SQL SCRIPT
	20.12 HOW TO USE THE SCRIPT
	20.13 ATTACHING A DATABASE
	20.14 DETACHING A DATABASE
	20.15 COPY DATABASE WIZARD
	20.16 IMPORTING AND EXPORTING A DATABASE
	20.17 SQL SERVER SERVICE MANAGER

	Chapter 21: PROGRAMMING IN VISUAL BASIC WITH MS ACCESS 2000
	21.1 SAVING PROJECTS AND FORMS
	21.2 DATABASE DESIGNING
	21.3 USE OF APP.PATH

	Chapter 22: PROGRAMMING WITH ORACLE AND SQL SERVER 2000
	22.1 TABLE CREATION
	22.2 DATA LINKS
	22.3 WORKING WITH THE PROJECT
	22.4 DATA EXPORT AT RUNTIME
	22.5 WORKING IN A PROJECT WITH AN SQL SERVER 2000 DATABASE

	Chapter 23: GRAPHS
	Chapter 24: DATA REPORTS
	24.1 DATA REPORT CREATION
	24.2 DATA ENVIRONMENT AND THE CONNECTION
	24.3 DATA REPORT DESIGNING
	24.4 DATA REPORT CONTROLS
	24.5 CALLING A REPORT
	24.6 RETRIEVAL OF SELECTED DATA IN THE DATA REPORT
	24.7 INDEX NUMBER OF DATA REPORT SECTION
	24.8 GROUPING IN DATA REPORTS

	Chapter 25: CRYSTAL REPORTS
	25.1 ADVANTAGES OVER VISUAL BASIC DATA REPORTS
	25.2 STARTING WITH CRYSTAL REPORT 8.5
	25.3 CREATING REPORTS USING DSN OF THE SQL SERVER 2000 DATABASE
	25.4 CREATING CONNECTION USING DSN

	Chapter 26: ERROR HANDLING
	26.1 KEY HANDLING
	26.2 KEY LOCKING AT KEY PRESS EVENT
	26.3 OTHER ERROR-HANDLING METHODS
	26.4 SOME COMMON ERRORS
	26.5 PRECAUTIONS

	Chapter 27: CREATING THE SETUP PACKAGE
	27.1 HOW TO CREATE A SETUP
	REFERENCES

	INDEX

