
Team-Fly

Systematic	Software	Testing
by	Rick	D.	Craig
and	Stefan	P.
Jaskiel

ISBN:1580535089

Artech	House	©	2002	(536	pages)

Focusing	on	the	prevention	and
early	discovery	of	defects,	the
testing	process	described	in	this
text	parallels	the	software
development	lifecycle,	and	the
authors	outline	a	flexible	process
for	improving	software	testing
capabilities.

Table	of	Contents
Systematic	Software	Testing

Foreword

Preface

Chapter	1 - An	Overview	of	the	TestingProcess
Chapter	2 - Risk	Analysis
Chapter	3 - Master	Test	Planning
Chapter	4 - Detailed	Test	Planning
Chapter	5 - Analysis	and	Design
Chapter	6 - Test	Implementation
Chapter	7 - Test	Execution
Chapter	8 - The	Test	Organization
Chapter	9 - The	Software	Tester

Chapter	10 - The	Test	Manager
Chapter	11 - Improving	the	Testing	Process
Chapter	12 - Some	Final	Thoughts…
Appendix	A - Glossary	of	Terms
Appendix	B - Testing	Survey
Appendix	C - IEEE	Templates
Appendix	D - Sample	Master	Test	Plan
Appendix	E - Simplified	Unit	Test	Plan
Appendix	F - Process	Diagrams
Appendix	G - Bibliography
Index

List	of	Figures

List	of	Tables

List	of	Case	Studies

Team-Fly

Team-Fly

	

Back	Cover

There’s	no	quicker	way	to	realize	return	on	investment	than	to	prevent	or	discover
defects	early	in	the	software	development	lifecycle.	Written	by	leading	experts,	this
book	delivers	a	flexible,	risk-based	process	that	improves	your	software	testing
capabilities	and	helps	you	do	just	that.	Whether	your	organization	already	has	a
well-defined	testing	process,	or	it’s	faltering	with	almost	no	process,	Systematic
Software	Testing	provides	unique	insights	into	better	ways	to	test	your	software.

Learn	to	use	a	preventive	method	of	testing	that	parallels	the	software	development
lifecycle,	and	subsequently	how	to	create	and	use	test	plans,	design,	and	metrics.
Detailed	instructions	help	you	decide	what	to	test,	how	to	prioritize,	and	when
testing	is	complete.	You’ll	even	learn	to	conduct	risk	analysis	and	measure	test
effectiveness	to	maximize	the	efficiency	of	your	testing	efforts.

And	because	organizational	structure,	the	right	people,	and	management	are
primary	keys	to	better	software	testing,	Systematic	Software	Testing	helps	you
shape	your	organization	to	better	respond	to	the	dynamics	of	software	testing.

Learn	how	testing	fits	into	the	bigger	software	development	picture
Get	a	cradle-to-grave	perspective	on	testing	that	parallels	the	software
development	lifecycle
Gain	an	understanding	of	what	constitutes	good	testing	practices	and
processes
Learn	the	principles	of	leadership	and	how	to	apply	them	to	managing	testing
teams
Develop	a	tailor-made	testing	process	that	fits	your	organization’s	unique
structure	based	on	the	authors’	25	years	of	experience

About	the	Authors

Rick	D.	Craig,	an	experienced	test	manager	and	consultant	at	Software	Quality
Engineering,	has	spoken	at	testing	conferences	every	year	since	1985.	Rick	has
helped	hundreds	of	companies	throughout	Europe,	Asia,	Australia,	and	the
Americas	improve	their	testing	practices.	Rick	is	the	former	American	editor	of
Software	Quality	Management	magazine,	an	active	member	of	Mensa	of	America,
and	a	colonel	in	the	United	States	Marine	Corps	Reserve.	He	is	a	technical	editor
for	StickyMinds.com,	a	community	Web	site	for	software	testing	and	quality

engineering	managers	and	professionals.

Stefan	P.	Jaskiel	is	an	information	manager	experienced	in	the	development	of
technical	documentation.	He	has	developed	a	wide	variety	of	reference	manuals,
online	help	systems	and	multimedia	CD-ROMs	for	hardware	and	software
applications	in	client/server,	Web,	and	PC	environments.	Stefan	has	led	the	design
and	development	of	systems/processes	for	managing	and	disseminating	technical
information	and	he	is	also	coauthor	of	the	recently	published	book,	The	Web
Testing	Handbook.

Team-Fly 	

Team-Fly

	

Systematic	Software	Testing
Rick	D.	Craig
Stefan	P.	Jaskiel

Artech	House	Publishers	
Boston	•	London

685	Canton	Street
Norwood,	MA	02062
(781)	769-9750

46	Gillingham	Street
London	SW1V	1AH
+44	(0)171	973-8077

Copyright	©	2002	STQE	Publishing

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise
without	written	permission	from	the	publisher.
International	Standard	Book	Number:	1-58053-508-9

Printed	in	the	United	States	of	America

First	Printing:	May	2002

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have
been	appropriately	capitalized.	Artech	House	Publishers	and	STQE	Publishing	cannot	attest
to	the	accuracy	of	this	information.	Use	of	a	term	in	this	book	should	not	be	regarded	as
affecting	the	validity	of	any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	"as	is"	basis.	The
authors	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity
with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this	book.

Reviewers	&	Contributors

Heidi	Amundson
Rob	Baarda
Bev	Berry

Rex	Black
Steve	Boycan
Renee	E.	Broadbent
Lee	Copeland
George	Flynn
Cheryl	Happe
Tim	Koomen
Claire	Lohr
Clare	Matthews
Amanda	McCrary
Anne	Meilof
Wayne	Middleton
Wilton	Morley
Eric	Patel
Dale	Perry
Martin	Pol
Cristina	Raszewski
Bill	Scoffield
Steven	Splaine
Marjolein	Steyerberg
Laurie	F.	White
Pamela	Young

Cover	Designer	
Jamie	Borders

Indexer	
Bill	Graham

Dedications	from	the	Authors

From	Rick,

To	my	daughter	Crissy,	my	mother	Phyllis,	my	sisters	Pam	and	Beth,	and	my	brothers	Ed
and	Mark	for	always	being	there	when	I	needed	you.

To	the	mentors	in	my	life:	my	father	Richard	Craig,	Jim	Gleason,	and	Mark	Caldarello.	I
learned	more	from	you	than	any	book	I	could	ever	read.

From	Stefan,

To	my	parents,	Maria	and	Walter,	for	teaching	me	how	to	choose	the	best	road	to	follow
among	life's	many	choices.

To	my	sisters	Halina	and	Anita,	and	my	brothers	George	and	Frank,	for	always	"listening"
and	helping	me	find	my	way.

Acknowledgments

Software	Testing	is	a	dynamic	interdisciplinary	subject	that	spans	the	entire	breadth	of
software	engineering.	We	believe	that	no	one	person	or	even	group	of	people	could	possibly
write	a	comprehensive	text	on	such	a	broad	subject.	Indeed,	even	in	this	broad,	but
admittedly	incomplete	text,	we	had	to	rely	heavily	on	our	colleagues,	students,	clients,	and
the	authors	of	other	books,	articles,	and	Web	sites	for	support.

We	would	like	to	thank	our	colleagues	(especially	Rex	Black,	Lee	Copeland,	Claire	Lohr,
and	Dale	Perry	-	who	also	teach	various	SQE	courses)	who	contributed	to	the	work	by
providing	insight,	reviewing	various	stages	of	the	book,	and	providing	content	on	subjects
where	our	own	knowledge	was	inadequate.	We	offer	a	special	thanks	to	the	authors	of	our
principal	references:

The	Systematic	Test	and	Evaluation	Process	(STEP):	An	Introduction	and
Summary	Guide

by	Dr.	Bill	Hetzel

The	Systematic	Software	Testing	(SST)	Course

by	Dr.	David	Gelperin

The	Test	Management	Course

by	Steven	Splaine	and	Rick	Craig

Additionally,	we	would	like	to	acknowledge	that	many	of	our	reviewers	supported	us	not	only
with	their	insightful	reviews,	but	also,	in	some	cases,	by	also	allowing	us	to	use	their	words
and	ideas.	Finally,	we	would	like	to	acknowledge	our	family,	friends,	clients,	and	colleagues
who	really	didn't	see	us	very	often	during	the	development	of	this	book.

-	Rick	and	Stefan

Team-Fly 	

Team-Fly

	

Foreword
When	I	wrote	Managing	the	Testing	Process,	that	book	joined	a	fairly	slender	collection	of
books	on	testing.	Happily,	over	the	last	few	years,	the	collection	of	published	resources	for
test	professionals	has	grown	steadily.	As	I	work	on	the	second	edition	of	Managing	the
Testing	Process,	and	my	new	book,	Critical	Testing	Processes,	I	now	find	I	have	lots	of
material	I	can	recommend	to	my	readers	for	further	ideas.	Systematic	Software	Testing	will
show	up	in	lots	of	footnotes	in	my	current	and	future	books.	Attendees	of	my	test
management	course	often	ask	me	to	recommend	books	on	various	testing	topics.	I	plan	on
including	Systematic	Software	Testing	in	the	short	list	of	books	that	I	preface	with	the
remark,	"If	you	only	have	time	to	read	one	book	on	testing,	pick	one	of	these."

While	the	number	of	books	on	testing	has	grown	considerably	over	the	last	few	years,	this	is
not	a	"me	too"	testing	book.	Systematic	Software	Testing	offers	a	complete	roadmap	for
test	professionals	looking	to	institute	or	improve	the	way	they	test	software.	The	title	says
that	the	book	will	outline	a	systematic	method,	and	it	does.	I	expect	that	many	test
professionals	-	myself	included	-	will	find	this	book	occupies	a	frequently-accessed	part	of
their	professional	library.	I'm	sure	a	dog-eared	and	annotated	copy	of	this	book	will
accompany	me	on	a	number	of	my	consulting	forays.

I	first	learned	that	Rick	Craig	and	Stefan	Jaskiel	were	working	on	this	book	about	six
months	ago,	and	I	was	excited	to	hear	it.	Along	with	Rick	and	some	of	his	other	colleagues
at	Software	Quality	Engineering,	I	teach	the	Systematic	Software	Testing	course,	and	I	had
long	thought	that	the	excellent	course	materials	needed	a	full-length	book	to	delve	deeper
into	the	details.	This	book	fills	that	need	perfectly.	When	Rick	and	Stefan	asked	me	to	write
this	foreword,	I	was	excited	and	happy	to	have	been	asked.	Back	when	Rick	recommended
me	as	a	teacher	of	the	Systematic	Software	Testing	course,	he	said,	"Rex	is	smart	-	he
thinks	like	me!"	(I	think	he	might	have	been	joking	a	little	bit.)	I	was	glad	that	Rick's	opinion
of	me	hadn't	changed,	and	that	he'd	been	able	to	convince	Stefan	of	my	talents,	too.

But	I	was	also	a	little	apprehensive.	I	have	a	huge	pile	of	books	in	my	office	that	I	know	I
should	read.	I	mean,	I'm	sure	there	are	good	ideas	that	I	need	to	absorb	in	them,	but	for
some	reason	I	just	can't	get	to	the	point	where	the	books	move	out	of	that	huge	pile	and	into
my	hands	for	a	long	enough	period	of	time	to	learn	from	them.	Some	books	have	made	it
out	of	that	pile	for	a	short	period,	only	to	return	to	it	with	a	lonely	bookmark	stuck	near	the
front	cover	when	something	else	comes	up.	I	was	somewhat	concerned	that	perhaps	this
might	somehow	be	such	a	book,	one	that	I	had	to	force	myself	to	read.	Those	concerns
were	unfounded.	I	simply	flew	through	this	book	in	four	days.	Good	ideas	-	lots	of	them,	one
after	another	-	are	presented	and	fully	explained,	but	never	belabored.	The	topics	are
brought	to	life	throughout	with	anecdotes	and	case	studies.	(While	some	look	down	their
noses	at	"anecdotal	evidence,"	I	found	the	stories	rang	true	for	me.	As	the	saying	goes,
"The	plural	of	anecdote	is	data.")	Rick	and	Stefan's	senses	of	humor	leaven	the	material;	I
even	found	myself	laughing	out	loud	a	time	or	two.

Just	because	I	was	smiling	doesn't	mean	I	wasn't	learning,	though.	Rick	and	Stefan	led	me
on	a	soup-to-nuts	tour	of	the	issues	that	confront	the	tester	and	test	manager.	Heard	good

things	about	risk-based	testing	and	looking	for	a	way	to	start?	There's	a	simple	yet	effective
approach	outlined	right	in	here.	Looking	to	learn	how	to	write	actionable,	useful,	well-
received	test	plans?	Just	keep	reading.	Wondering	about	whether	change	management	and
release	management	can	be	improved	at	your	company?	You've	found	the	book	you	need.
Metrics?	Yep.	A	synopsis	of	various	black-box	and	white-box	test	design	techniques?	It's
here.	How	to	go	from	being	merely	in	charge	of	testing	to	being	an	effective	leader	of	a	test
team?	The	chapter	on	test	management,	especially	Rick's	lessons	on	leadership	gleaned
from	experience	as	a	United	States	Marine	Corps	officer,	makes	the	book	worth	purchasing
for	that	chapter	alone.

Throughout	the	discussion,	Rick	and	Stefan	remind	the	reader	that	the	correct	answer	to
any	hard	question	about	how	to	tackle	some	thorny	testing	problems	is,	"It	depends."
They're	careful	to	discuss	the	contextual	issues	that	affect	testers	and	test	managers,	which
will	help	those	implementing	the	ideas	in	this	book	to	avoid	the	landmines.	And	speaking	of
landmines,	there	are	plenty	of	honest	comments	about	where	some	of	the	common	testing
landmines	live.	People	new	to	testing	can	use	this	book	to	avoid	stepping	on	them.

If	I'm	a	smart	guy	-	and	after	all,	Rick	tells	people	that	I	am	-	then	I	should	be	able	to	make
a	few	predictions.	I	predict	you'll	learn	a	lot	from	this	book	if	you	read	it.	I	predict	that	you'll
laugh	from	time	to	time,	you'll	nod	in	recognition	at	some	of	the	anecdotes,	and	you'll	stroke
your	chin	thoughtfully	more	than	once.	And	I	predict	that	you'll	return	to	this	book	for	sage
advice	from	two	seasoned	test	professionals	even	if	you,	like	me,	consider	yourself	a
seasoned	test	professional,	too.	This	is	good	stuff,	well	written,	entertaining,	and	insightful.
If	I	may	be	so	bold	as	to	offer	some	advice	in	someone	else's	book,	I	recommend	that	you
read	on,	enjoy,	and	learn	new	ways	to	be	more	systematic	about	your	software	testing.

Rex	Black
President	of	Rex	Black	Consulting	Services,	Inc.

Team-Fly 	

Team-Fly

	

Preface
We	wrote	this	book	because	many	of	our	clients	and	students,	through	Software	Quality
Engineering	(SQE),	told	us	that	it	would	be	useful	to	capture	the	information	that	we	present
in	our	classes.	And	we	saw	an	opportunity	to	share	some	of	the	information	that	we've
learned	from	our	audiences	over	the	years.	In	the	beginning,	we	specifically	didn't	want	to
write	a	cookbook	with	prescriptive	instructions	and	lists	of	processes.	One	thing	we	have
learned	from	our	clients	is	that	one	size	definitely	does	not	fit	all.	What	works	well	at	one
company	is	not	necessarily	the	right	fit	at	another.	We	even	jokingly	tell	our	students	that
one	good	answer	to	any	question	is	"it	depends,"	in	recognition	of	the	fact	that	every
organization,	project,	and	release	is	different.

When	the	book	was	done,	however,	we	had	done	just	the	opposite	and	created	a
comprehensive	reference	with	specific	directions	on	how	to	conduct	risk	analysis,	create
inventories,	write	test	plans,	and	so	forth.	These	practices	represent	the	basis	of	what	we
have	found	to	work	most	of	the	time.	It	may	be	that	some	of	you	will	be	able	to	use	the
processes	described	in	this	book	"as	is"	or	"off	the	shelf."	Good	for	you!	It's	more	likely,
though,	that	most	readers	will	have	to	use	the	described	processes	as	a	starting	point	to
build	their	own	unique	processes	and	infrastructure.	Please	feel	free	to	take	our	step-by-
step	instructions	and	modify	them	to	meet	your	own	particular	corporate	culture	and
situation.	While	you're	at	it,	don't	get	too	complacent	once	you	find	something	that	works.
Without	a	doubt,	you'll	need	to	continuously	update	and	improve	your	processes	as	your
culture	and	environment	change.

How	Is	This	Book	Organized?

Standalone	Chapters

This	book	was	written	so	our	readers	could	read	any	chapter	independently	of	all	of	the
other	chapters.	However,	the	chapters	are	organized	in	such	a	way	that	reading	the	book
sequentially	beginning	with	Chapter	1	and	finishing	with	Chapter	12	will	lead	the	reader
through	a	more	or	less	chronological	journey	through	the	software	testing	process.	The
choice	is	yours	-	you	can	read	this	book	from	cover	to	cover,	or	keep	it	as	a	handy
reference	guide.

References

This	book	was	developed	based	on	the	IEEE	Std.	829-1998	Standard	for	Software	Test
Documentation	and	the	IEEE	Std.	610.12-1990	Glossary	of	Terms,	The	Systematic	Test
and	Evaluation	Process	(STEPTM):	An	Introduction	and	Summary	Guide,	magazine	articles,
books,	Web	sites	(e.g.,	www.StickyMinds.com),	and	many	years	of	personal	experiences.
All	of	these	references	are	presented	in	an	alphabetized	list	at	the	end	of	the	book.

SST	and	TM	Courses

Much	of	the	content	within	this	book	was	developed	based	on	the	topics	covered	in	the
Systematic	Software	Testing	(SST)	and	Test	Management	(TM)	Courses	offered	by
Software	Quality	Engineering,	Inc.	While	these	courses	provided	the	foundation	for	this
book,	our	students'	comments,	stories,	and	suggestions	really	brought	this	book	to	life.

Case	Studies

The	case	studies	are	a	combination	of	Rick's	real-life	adventures	and	our	clients'
experiences.	In	the	case	studies	that	are	based	on	our	colleagues'	experiences,	we've	given
credit	where	credit	is	due.	Although	we	hope	that	you'll	find	some	of	our	case	studies
entertaining,	they're	also	important	because	they	represent	real-life	examples	of	how	people
behave,	why	some	processes	fail,	why	some	processes	succeed,	and	lessons	we've
learned	over	the	years.	In	other	instances,	we	use	"Case	Study"	boxes	to	explain
calculations	or	processes	via	examples.

Case	Study:	Not	all	testers	need	all	of	the	same	skills.

They	say	I	tell	a	great	many	stories.	I	reckon	I	do;	but	I	have	learned	from	long
experience	that	plain	people,	take	them	as	they	run,	are	more	easily	influenced
through	the	medium	of	a	broad	and	humorous	illustration	than	in	any	other	way…

-	Abraham	Lincoln

http://www.StickyMinds.com

Key	Points

Important	ideas,	concepts,	definitions,	reminders,	and	other	things	that	need	extra	emphasis
are	highlighted	in	the	"Key	Point"	boxes	throughout	this	book.	In	some	cases,	we	also	use
these	boxes	to	provide	our	readers	with	a	synopsis	of	the	topic	explained	in	the
corresponding	paragraph.	Readers	of	Stefan's	other	book,	The	Web	Testing	Handbook,
find	these	informative	boxes	useful	for	quickly	locating	topics	of	interest	by	just	"flipping
pages."

Key
Point

Finding	our	the	level	of	maturity	of	a	vendor's	software	engineering	process
can	help	you	draw	conclusions	about	the	quality	of	their	testing	software.

Terminology

We've	purposely	chosen	to	use	an	informal	and	conversational	writing	style	in	this	book	that
we	hope	you'll	find	easy	to	read	and	understand.	Throughout	this	book,	we	use	the	words
"we,"	"our,"	and	"us,"	to	describe	our	combined	knowledge	and/or	experiences.	Whenever	a
story,	topic,	or	belief	pertains	only	to	one	of	us,	we've	identified	that	person	by	name.	We've
referred	to	you,	our	readers,	as	"testers"	even	though	we	understand	that	many	of	you	may
not	be	full-time	testers.	You	may,	in	fact,	be	developers,	users,	managers	or	just	someone
interested	in	software	testing.	(Our	family	and	friends	have	pledged	to	read	the	book	just	to
figure	out	what	it	is	that	we	actually	do	for	a	living.)	For	the	time	you	spend	reading	this
book,	we	dub	you	honorary	testers.

Throughout	this	book,	we	use	software	terminology	as	defined	by	the	Institute	of	Electrical
and	Electronics	Engineers	(IEEE)	Standard	610.12-1990	Glossary	of	Software	Engineering
Terminology.	In	some	cases,	we	use	other	terms	that	have	gained	popularity	through
different	sources.	David	Gelperin,	cofounder	of	Software	Quality	Engineering,	Inc.,	for
example,	coined	the	term	"testware"	to	describe	all	software	testing-related	work	products
including	test	procedures,	test	data,	test	specifications,	and	test	reports,	among	other
things.	"Testware"	and	other	terms	used	in	this	book	are	defined	in	the	Appendix	-	Glossary
of	Terms.

During	the	development	of	this	book,	some	of	our	reviewers	were	concerned	about	our
occasional	use	of	"slang"	as	opposed	to	"engineering	terminology."	For	example,	we	use	the
(slang)	word	"bug"	interchangeably	with	its	more	formal	cousin	"defect."	To	be	consistent
with	our	informal	and	conversational	writing	style,	we	made	a	conscious	decision	to	use	the
terms	"defects"	and	"bugs"	synonymously.	Although	some	of	our	colleagues	may	disagree
with	this	usage,	we	believe	that	these	terms	have	evolved	to	be	one	and	the	same	after
years	of	usage	throughout	the	software	industry.

Team-Fly 	

Team-Fly

	

Who	Should	Read	This	Book?
Key
Point

StickyMinds.com	is	an	excellent	online	resource	for	testing	articles,	papers,
message	boards,	tools	info,	and	other	resources.

This	book	is	designed	to	be	used	by	testers,	test	managers,	developers,	and	other	people
who	interact	with	testers	or	need	to	understand	testing.	Specifically,	this	book	is	useful	to
software	engineers	who:

are	just	beginning	their	careers	and	need	to	understand	how	software	testing	works

are	seasoned	professionals	and	want	to	refresh	their	knowledge	of	software	testing
and	test	management

want	to	substantiate	that	they're	already	doing	the	right	things

want	to	try	a	new	approach	to	testing

The	book	covers	a	wide	range	of	software	testing	topics,	but	it	does	not	provide	a
comprehensive	explanation	of	everything.	Instead,	we	try	to	provide	an	introduction	to	each
topic	along	with	recommended	procedures	and	supporting	examples.	That	way,	you'll	be
able	to	immediately	apply	our	techniques	and	also	gain	a	strong	foundation	for	continuing
your	own	comprehensive	research	into	the	specific	topics	that	interest	you.

Team-Fly 	

Team-Fly

	

Who	Are	the	Authors?
The	back	cover	of	this	book	says	that	Rick	Craig	is	a	professional	speaker,	tester	and	test
manager,	consultant,	author	of	numerous	articles,	technical	editor	for	StickyMinds.com,	and
of	course	the	co-author	of	this	book.	What	the	back	cover	doesn't	mention,	though,	is	that
Rick	is	also	a	proud	father,	a	Colonel	in	the	United	States	Marine	Corps	Reserve,	a
restaurant	owner,	an	after-dinner	speaker,	and	a	member	of	Mensa.	For	over	15	years,
Rick	has	entertained	audiences	with	stories	from	these	various	facets	of	his	life	by
somehow	relating	them	to	software	testing.	Repeat	visits	to	the	same	client	sites	often
result	in,	"Rick,	tell	us	about	the	time	you…"	We've	included	a	few	of	these	stories	and	hope
that	you	enjoy	them	and,	at	least	occasionally,	get	the	point.

-	Stefan

Stefan	Jaskiel	is	a	manager,	technical	writer,	author,	consultant,	and	entrepreneur.	Stefan
keeps	insisting	that	he'll	"take	a	long	vacation	after	just	one	more	project,"	but	that	hasn't
happened	in	the	16	years	that	we've	known	each	other.	Wow,	time	really	flies	when	you're	a
workaholic!	While	assisting	me	in	the	development	of	this	book,	Stefan	has	also	led	the
development	of	the	graphical	user	interface,	documentation,	and	marketing	literature	for	a
revolutionary	network	security	system	based	on	a	military	radar	metaphor,	and	worked	on
several	other	security-	and	surveillance-related	projects.	In	his	spare	time,	Stefan	dreams
about	taking	a	ski	trip	to	Colorado	or	traveling	through	Europe.	Maybe	his	next	consulting
assignment	will	take	him	there…	Hey,	wait	a	minute,	isn't	that	still	considered	work?

-	Rick

Team-Fly 	

Team-Fly

	

Chapter	1:	An	Overview	of	the	Testing	Process

Overview
"Few	things	are	harder	to	put	up	with	than	the	annoyance	of	a	good	example."

—	Mark	Twain

For	several	years,	our	clients	have	told	us	that	we	should	write	a	book	about	the	processes
and	methods	that	we	use	to	test	software,	so,	with	a	lot	of	help,	that's	what	we've	done.
Specifically,	the	processes	we	use	are	based	upon	a	methodology	called	STEP™,	which
was	created	by	Dr.	Bill	Hetzel	and	Dr.	David	Gelperin	as	a	way	to	implement	the	original
IEEE-829	Standard	for	Test	Documentation.

Team-Fly 	

Team-Fly

	

A	Brief	History	of	Testing
STEP	was	originally	developed	out	of	a	frustration	that,	although	the	IEEE	standard	did	a
good	job	of	specifying	what	testing	documents	needed	to	be	built,	they	didn't	describe	how
to	create	them	or	how	to	develop	the	processes	(planning,	analysis,	design,	execution,	etc.)
needed	to	use	them.	The	STEP	methodology	(and	therefore	this	book)	doesn't	establish
absolute	rules	that	must	be	followed	but	rather	describes	guidelines	that	can	and	should	be
modified	to	meet	the	needs	and	expectations	of	the	software	engineers	using	them.	Even	as
we	write	this	book,	thousands	of	our	past	and	present	clients	and	students	are	using	their
own	version	of	the	STEP	methodology	and	its	underlying	processes	to	build	and	implement
quality	software.

However,	before	we	launch	into	the	ins	and	outs	of	STEP,	it's	instructional	to	review	the
state	of	software	testing	prior	to	the	launch	of	STEP,	during	its	creation,	and	today.	A	good
starting	point	is	to	review	the	definitions	of	testing	(shown	in	Table	1-1)	published	by	the
authors	at	each	of	these	times.

Table	1-1:	Definitions	of	Testing	Over	the	Years

Year Definition

1979 Testing	is	the	process	of	executing	a	program	or	system	with	the	intent	of	findingerrors.

1983 Testing	is	any	activity	aimed	at	evaluating	an	attribute	of	a	program	or	system.Testing	is	the	measurement	of	software	quality.

2002
Testing	is	a	concurrent	lifecycle	process	of	engineering,	using,	and	maintaining
testware	in	order	to	measure	and	improve	the	quality	of	the	software	being
tested.

Key
Point

"Innovate!	Follow	the	standard	and	do	it	intelligently.	That	means	including
what	you	know	needs	to	be	included	regardless	of	what	the	standard	says.	It
means	adding	additional	levels	or	organization	that	make	sense."

-	IEEE	Computer	Society	Software	Engineering	Standards	Collection

In	1979,	Glenford	Myers	explained,	"Testing	is	the	process	of	executing	a	program	or
system	with	the	intent	of	finding	errors,"	in	his	classic	book,	The	Art	of	Software	Testing.	At
the	time	Myers'	book	was	written,	his	definition	was	probably	the	best	available	and
mirrored	the	thoughts	of	the	day.	Simply	stated,	testing	occurred	at	the	end	of	the	software
development	cycle	and	its	main	purpose	was	to	find	errors.

If	we	skip	forward	to	1983,	we	find	that	the	definition	of	testing	had	changed	to	include	an
assessment	of	the	quality	of	the	software,	rather	than	merely	a	process	to	find	defects.	In
The	Complete	Guide	to	Software	Testing,	Bill	Hetzel	stated	that,	"Testing	is	any	activity
aimed	at	evaluating	an	attribute	of	a	program	or	system.	Testing	is	the	measurement	of

software	quality."

Myers'	and	Hetzel's	definitions	are	still	valid	today	because	they	each	address	a	particular
facet	of	software	testing.	But,	the	problem	with	these	definitions	is	scope.	To	resolve	this
problem,	we	offer	the	following	definition	of	testing	that	will	be	used	throughout	this	book:

Key
Point

Philip	Crosby's	definition	of	quality	is	"conformance	to	requirements.	Lack	of
conformance	is	lack	of	quality."

Dr.	Joseph	M.	Juran's	definition	of	quality	is	"the	presence	of	that	which
satisfies	customers	and	users	and	the	absence	of	that	which	dissatisfies."

Testing	is	a	concurrent	lifecycle	process	of	engineering,	using	and	maintaining	testware	in
order	to	measure	and	improve	the	quality	of	the	software	being	tested.

Notice	that	no	direct	mention	was	made	of	finding	defects,	although	that's	certainly	still	a
valid	goal	of	testing.	Also	note	that	our	definition	includes	not	only	measuring,	but	also
improving	the	quality	of	the	software.	This	is	known	as	preventive	testing	and	will	be	a
consistent	theme	throughout	this	book.

Preventive	Testing

Preventive	testing	uses	the	philosophy	that	testing	can	actually	improve	the	quality	of	the
software	being	tested	if	it	occurs	early	enough	in	the	lifecycle.	Specifically,	preventive
testing	requires	the	creation	of	test	cases	to	validate	the	requirements	before	the	code	is
written.	Suppose,	for	example,	that	the	user	of	an	Automated	Teller	Machine	(ATM)
specified	the	following	requirement:

A	valid	user	must	be	able	to	withdraw	up	to	$200	or	the	maximum	amount	in	the	account.

Key
Point

Preventive	testing	uses	the	philosophy	that	testing	can	actually	improve	the
quality	of	the	software	being	tested	if	it	occurs	early	enough	in	the	lifecycle.

We	know	that	some	of	you	are	already	thinking,	"What	a	horrible	requirement."	But	we	also
know	that	many	of	you	are	thinking,	"Wouldn't	it	be	nice	to	have	such	a	good	requirement?"
And,	some	of	you	are	even	thinking,	"So	that's	what	a	requirement	looks	like?"	Whatever
you	think	about	our	sample	requirement	and	no	matter	how	good	your	requirement
specifications	are,	they're	certain	to	have	inaccuracies,	ambiguities,	and	omissions.	And
problems	in	the	requirements	can	be	very	expensive	to	fix,	especially	if	they	aren't
discovered	until	after	the	code	is	written,	because	this	may	necessitate	the	rewriting	of	the
code,	design	and/or	requirements.

Preventive	testing	attempts	to	avoid	this	situation	by	employing	a	very	simple	notion:	the
process	of	writing	the	test	cases	to	test	a	requirement	(before	the	design	or	code	is
completed)	can	identify	flaws	in	the	requirements	specification.

Now,	let's	get	back	to	our	ATM	example.	Table	1-2	briefly	describes	two	(of	many)	test

cases	that	you	might	write.

Table	1-2:	Sample	Test	Cases	for	an	ATM

Test	Case Description Results

TC01 Withdraw	$200	from	an	account	with	$165	in	it. ???

TC02 Withdraw	$168.46	from	an	account	with	$200	in	it. ???

Key
Point

The	process	of	writing	the	test	cases	to	test	a	requirement	(before	the	design
or	code	is	completed)	can	identify	flaws	in	the	requirements	specification.

Should	TC01	pass?	It	depends	on	how	you	interpret	the	"or"	in	the	requirement:	A	valid
user	must	be	able	to	withdraw	up	to	$200	or	the	maximum	amount	in	the	account.	Some
people	will	interpret	it	to	mean	that	the	ATM	user	can	withdraw	the	lesser	of	the	two	values
($165),	while	other	people	will	interpret	it	to	mean	they	can	withdraw	the	greater	of	the	two
values	($200).	Congratulations,	you've	discovered	an	ambiguity	in	the	requirements
specifications	that	can	lead	to	many	problems	down	the	road.

Key
Point

Testware	is	any	document	or	product	created	as	part	of	the	testing	effort
(e.g.,	test	cases,	test	plans,	etc.).	Testware	is	to	testing	what	software	is	to
development.

Should	TC02	pass?	It	should	according	to	the	specification.	But	do	you	really	think	that	the
bank	wants	the	ATM	to	dispense	coins	to	the	users?	Well,	maybe,	but	we	doubt	it.	Some	of
you	may	be	saying	that	no	programmer	would	ever	write	the	code	to	do	this.	Think	again,
this	is	a	real	example	and	the	programmer	did	indeed	write	the	code	to	allow	the	withdrawal
of	odd	amounts.

By	writing	the	test	cases	before	the	code	was	written,	we	were	able	to	find	some	(in	this
case,	obvious)	problems.	We	found	them	early	enough	that	it's	a	relatively	simple	and
inexpensive	job	to	correct	them.	An	added	benefit	of	creating	the	test	cases	before	the	code
is	that	the	test	cases	themselves	help	document	the	software.	Think	how	much	easier	it
would	be	to	write	code	if	instead	of	just	having	requirements	specifications	to	base	your
code	on,	you	could	also	use	the	test	cases	that	were	created	to	test	the	system	as	part	of
the	system	documentation.

Key
Point

An	added	benefit	of	creating	the	test	cases	before	the	code	is	that	the	test
cases	themselves	help	document	the	software.

Where	Are	Most	Companies	Today?

After	reading	the	example	above,	we	hope	that	most	of	you	will	think	that	the	philosophy	of
preventive	testing	is	clearly	sound.	Preventive	testing	is	certainly	not	a	new	idea,	so
everyone	must	be	using	it,	right?	Well,	not	exactly.	Our	experience	at	most	of	the
organizations	we	visit	each	year	is	that	software	is	still	developed	using	some	kind	of

sequential	model	where	the	requirements	are	built,	then	the	design,	then	the	code,	and
finally	the	testing	begins.	The	most	famous	of	the	sequential	models	of	software
development	is	the	Waterfall	model	shown	in	Figure	1-1.

	Figure	1-1:	Waterfall	Model	of	Software
Development

Key
Point

Our	experience	at	most	of	the	organizations	we	visit	each	year	is	that	software
is	still	developed	using	some	kind	of	sequential	model	where	the	requirements
are	built,	then	the	design,	then	the	code,	and	finally	the	testing	begins.

Although	at	first	it	appears	that	once	a	phase	is	complete	there's	"no	going	back,"	this	is	not
necessarily	true.	There	are	usually	one	or	more	returns	to	a	previous	phase	from	a	current
phase	due	to	overlooked	elements	or	surprises.	The	difficulty	arises	when	you	have	to	back
up	more	than	one	phase,	especially	in	later	phases.	The	costs	of	rework,	re-testing,	re-
documenting,	etc.	become	very	high	and	usually	result	in	shortcuts	and	bypasses.	As	Steve
McConnell	explains	in	his	book	Rapid	Development,	"late	changes	in	the	Waterfall	model
are	akin	to	salmon	swimming	upstream	-	it	isn't	impossible,	just	difficult."

When	a	sequential	model	like	the	Waterfall	model	is	used	for	software	development,	testers
should	be	especially	concerned	with	the	quality,	completeness,	and	stability	of	the
requirements.	Failure	to	clarify	and	define	requirements	at	the	beginning	of	the	project	will
likely	result	in	the	development	of	a	software	design	and	code	that's	not	what	the	users
wanted	or	needed.	Worse,	the	discovery	of	these	defects	will	be	delayed	until	the	end	of
the	lifecycle	(i.e.,	test	execution).

There	are	actually	a	few	advantages	to	the	Waterfall	model,	the	most	obvious	one	being
that	the	resources	are	largely	focused	on	one	activity	at	a	time,	and	the	next	activity	has	the
(hopefully)	completed	artifact	from	the	previous	stage	to	use	as	the	basis	for	the	next	stage.
However,	as	you	will	see,	in	addition	to	a	few	good	features,	the	Waterfall	model	has	many
problems.

Sequential	models	are,	in	particular,	difficult	to	use	successfully	from	the	testing	viewpoint.
You	can	see	in	Figure	1-1	that	in	the	Waterfall	model,	testing	is	largely	ignored	until	the	end,
and	indeed	that's	exactly	how	it	works	today	in	many	companies	around	the	world.	If	testing
occurs	only	(or	largely)	after	the	product	has	already	been	built,	then	the	most	that	the
testers	can	hope	to	accomplish	is	to	find	bugs	in	the	finished	product.	(This	would	be	like
discovering	you	forgot	to	put	the	chocolate	chips	in	the	cookies	until	you	were	testing	-
eating	-	them.	Sure,	you	could	take	a	bite	of	the	cookie	and	then	throw	down	a	couple	of
chocolate	chips,	but	the	effect	is	really	not	the	same.	You	would	have	to	settle	for	chocolate
chipless	cookies	or	start	over.)	If	testing	occurs	only	at	the	end,	there's	a	lot	of	"starting
over"	going	on.

Key
Point

The	Waterfall	model	is	particularly	difficult	to	use	successfully	from	the	testing
viewpoint.

Another	problem	with	the	Waterfall	model	is	that	the	testers	will	almost	always	find
themselves	on	the	critical	path	of	delivery	of	the	software.	This	is	exacerbated	because	all
too	often	the	software	is	delivered	to	the	testers	late,	and	the	schedule	is	cast	in	stone	and
cannot	be	changed.	The	result,	of	course,	is	that	the	window	of	opportunity	for	testing	is
constantly	shrinking.

The	STEP	process	described	in	this	book	can	be	used	with	any	software	development
methodology	(e.g.,	XP,	RAD,	Prototyping,	Spiral,	DSDM).	If	used	with	a	sequential	model	of
software	development	like	the	Waterfall	model,	many	of	the	problems	described	earlier	can
be	overcome	(i.e.,	the	use	of	the	STEP	testing	methodology	will	transform	a	sequential
model	into	an	iterative	model).

Why	Is	Testing	So	Difficult?

To	the	uninitiated,	testing	software	seems	like	one	of	the	easiest	things	imaginable.	You	try
the	software	and	either	it	works	or	it	doesn't.	But	there	has	to	be	more	to	it	than	this	or
companies	wouldn't	spend	20,	30,	40,	50	percent	or	more	of	the	software	development
budget	on	testing.	So	why	is	testing	so	difficult?	We've	already	encountered	some	of	the
difficulties	in	testing:	ambiguous	and	incorrect	requirements,	and	tight	time	schedules.	There
are,	unfortunately,	many	more	difficulties	in	testing.

Case	Study	1-1:	Different	testers	may	have	different	reasons	why	they	think	testing
is	difficult,	but	they	all	seem	to	agree	that	IT	IS	DIFFICULT!

Why	Is	Testing	Difficult?

When	we	ask	a	group	of	testers	the	question,	"Why	is	testing	difficult?"	we	get	fairly
consistent	(and	lengthy)	answers.	The	reply	we	received	from	our	friend	Clare	when
we	asked	her	to	give	us	a	fresh	perspective	on	an	early	version	of	this	book	sums	up
many	of	the	difficulties	in	testing:

Sure!	Not	only	can	I	give	you	a	fresh	perspective,	but	by	being	in	the	trenches	every

day,	I	can	offer	a	reality	check	quite	well.	I	am	sadly	well-versed	in	doing	whatever	it
takes	to	test,	which	includes	working	with	ridiculous	time	frames,	bad	to	no
requirements,	testers	who	need	to	be	trained	in	testing,	politics	in	test	responsibility,
providing	data	in	as	neutral	a	way	as	possible	when	notifying	development	and
marketing	of	the	state	of	the	product.	You	name	it…	I	think	I've	experienced	it	all.

—	Clare	Matthews

Clare	is	not	the	only	tester	experiencing	difficulties	in	testing,	so	let's	get	to	work.	We'll	start
by	describing	a	high-level	overview	of	STEP	and	where	each	of	the	facets	of	this
methodology	is	covered	in	this	book.

Team-Fly 	

Team-Fly

	

STEP	Methodology
The	Systematic	Test	and	Evaluation	Process	(STEP)	was	first	introduced	in	1985	as	part	of
the	course	material	for	the	Systematic	Software	Testing	seminar	series.	It	has	since	been
revised	many	times	and	field-tested	through	consulting	engagements	and	the	shared
experience	of	many	individuals	and	organizations.	STEP	is	built	upon	the	foundation	of	the
IEEE	Std.	829-1983	Standard	for	Software	Test	Documentation	and	subsequently	updated
based	on	the	latest	version	(IEEE	Std.	828-1998)	of	this	standard	and	the	IEEE	Std.	1008-
1987	Standard	for	Software	Unit	Testing.	While	retaining	compatibility	with	these	standards,
this	methodology	has	grown	in	scope	and	now	stands	as	one	of	the	leading	models	for
effective	software	testing	throughout	the	industry.

Key
Point

Much	of	this	section	was	reprinted	from	the	STEP	Guide	with	permission	from
Software	Quality	Engineering.

Scope	and	Objectives	of	STEP

STEP	covers	the	broad	activity	of	software	evaluation.	Evaluation	is	defined	as	that	sub-
discipline	of	software	engineering	concerned	with	determining	whether	software	products	do
what	they	are	supposed	to	do.	The	major	techniques	employed	in	evaluation	are	analysis,
review	and	test.	STEP	focuses	on	testing	as	the	most	complex	of	the	three,	but	stresses
overall	coordination	and	planning	of	all	aspects	of	evaluation	as	a	key	to	success.	It
stresses	the	prevention	potential	of	testing,	with	defect	detection	and	demonstration	of
capability	as	secondary	goals.

Key
Point

Evaluation	is	defined	as	the	sub-discipline	of	software	engineering	concerned
with	determining	whether	software	products	do	what	they	are	supposed	to	do.

Early	views	saw	testing	as	a	phase	that	occurred	after	software	development,	or
"something	that	programmers	did	to	get	the	bugs	out	of	their	programs."	The	more	modern
view	sees	testing	as	a	process	to	be	performed	in	parallel	with	the	software	development	or
maintenance	effort	(refer	to	Figure	1-2)	incorporating	the	activities	of	planning	(determining
risks	and	selecting	strategies);	analysis	(setting	test	objectives	and	requirements);	design
(specifying	tests	to	be	developed);	implementation	(constructing	or	acquiring	the	test
procedures	and	cases);	execution	(running	and	rerunning	the	tests);	and	maintenance
(saving	and	updating	the	tests	as	the	software	changes).

	Figure	1-2:	Views	of	Testing
This	lifecycle	perspective	of	testing	represents	a	major	change	from	just	a	few	years
ago,	when	many	equated	testing	with	executing	tests.	The	contribution	of	planning,
analyzing,	and	designing	tests	was	under-recognized	(and	still	is	by	many	people),	and
testing	was	not	seen	as	really	starting	until	tests	started	running.	Now	we	understand	the
evaluation	power	of	test	planning	and	analysis.	These	activities	can	be	more	powerful

than	test	execution	in	defect	prevention	and	timely	detection.	We	also	understand	that	an
accurate	interpretation	of	the	situation	when	"all	tests	are	running	successfully"	requires	a
clear	understanding	of	the	test	design.

The	lifecycle	model	for	testing	that	has	emerged	borrows	heavily	from	the	methodology
we've	grown	accustomed	to	for	software.	Considering	that	a	test	set	is	made	up	of	data
and	procedures	(which	are	often	implemented	as	executable	test	programs),	it	should	not
come	as	a	surprise	that	what	it	takes	to	build	good	software	is	also	what	it	takes	to	build
good	testware!

Elements	of	STEP

STEP	draws	from	the	established	foundation	of	software	methodologies	to	provide	a
process	model	for	software	testing.	The	methodology	consists	of	specified	tasks	(individual
actions);	work	products	(documentation	and	implemented	tests);	and	roles	(defined
responsibilities	associated	with	groups	of	tasks),	as	shown	in	Figure	1-3,	packaged	into	a
system	with	proven	effectiveness	for	consistently	achieving	quality	software.

	
Figure	1-3:	Elements	of	STEP

The	STEP	methodology	is	not	tool	dependent	and	does	not	assume	any	particular	test
organization	or	staffing	(such	as	independent	test	groups).	It	does	assume	a	development
(not	a	research)	effort,	where	the	requirements	information	for	the	product	and	the	technical
design	information	are	comprehensible	and	available	for	use	as	inputs	to	testing.	Even	if	the
requirements	and	design	are	not	specified,	much	of	the	STEP	methodology	can	still	be	used
and	can,	in	fact,	facilitate	the	analysis	and	specification	of	software	requirements	and
design.

Key
Point

Even	if	the	requirements	and	design	are	not	specified,	much	of	the	STEP
methodology	can	still	be	used	and	can,	in	fact,	facilitate	the	analysis	and
specification	of	requirements	and	design.

STEP	Architecture

Figure	1-4	shows	how	STEP	assumes	that	the	total	testing	job	is	divided	into	levels	during
planning.	A	level	represents	a	particular	testing	environment	(e.g.,	unit	testing	usually	refers

to	the	level	associated	with	program	testing	in	a	programmer's	personal	development
library).	Simple	projects,	such	as	minor	enhancements,	may	consist	of	just	one	or	two	levels
of	testing	(e.g.,	unit	and	acceptance).	Complex	projects,	such	as	a	new	product
development,	may	have	more	levels	(e.g.,	unit,	function,	subsystem,	system,	acceptance,
alpha,	beta,	etc.).

	
Figure	1-4:	Activity	Timing	at	Each	Level	of	Test 	STEP	provides	a
model	that	can	be	used	as	a	starting	point	in	establishing	a	detailed	test	plan.	All	of	the
components	of	the	model	are	intended	to	be	tailored	and	revised,	or	extended	to	fit	each
particular	test	situation.

The	three	major	phases	in	STEP	that	are	employed	at	every	level	include:	planning	the
strategy	(selecting	strategy	and	specifying	levels	and	approach),	acquiring	the	testware
(specifying	detailed	test	objectives,	designing	and	implementing	test	sets),	and	measuring
the	behavior	(executing	the	tests	and	evaluating	the	software	and	the	process).	The
phases	are	further	broken	down	into	eight	major	activities,	as	shown	in	Table	1-3.

Table	1-3:	STEP	Activities	&	Their	Locations	in	This	Book

Step	1 Plan	the	Strategy Covered	In

P1 Establish	the	master	test	plan. Chapters	2	and	3

P2 Develop	the	detailed	test	plans. Chapter	4

Step
2 Acquire	the	Testware

A1 Inventory	the	test	objectives	(requirements-based,	design-based,	and
implementation-based).

Chapter
5

A2 Design	the	tests	(architecture	and	environment,	requirements-based,
design-based,	and	implementation-based).

Chapter
5

A3 Implement	the	plans	and	designs. Chapter
6

Step	3 Measure	the	Behavior

M1 Execute	the	tests. Chapter	7

M2 Check	the	adequacy	of	the	test	set. Chapter	7

M3 Evaluate	the	software	and	testing	process. Chapter	11

NOTE:	Chapters	8,	9,	and	10	cover	the	testing	organization,	the	software	tester,	and
the	test	manager,	respectively.	Chapter	12	provides	a	review	of	critical	testing
processes.

Timing	of	STEP	Activities

STEP	specifies	when	the	testing	activities	and	tasks	are	to	be	performed,	as	well	as	what
the	tasks	should	be	and	their	sequence,	as	shown	in	Figure	1-5.	The	timing	emphasis	is
based	on	getting	most	of	the	test	design	work	completed	before	the	detailed	design	of	the
software.	The	trigger	for	beginning	the	test	design	work	is	an	external,	functional,	or	black
box	specification	of	the	software	component	to	be	tested.	For	higher	test	levels	(e.g.,
acceptance	or	system),	the	external	specification	is	equivalent	to	the	system	requirements
document.	As	soon	as	that	document	is	available,	work	can	(and	should)	begin	on	the
design	of	the	requirements-based	tests.

	
Figure	1-5:	Activity	Timing	at	Various	Levels	of	Test 	The	test	design
process	continues	as	the	software	is	being	designed	and	additional	tests	based	on	the
detailed	design	of	the	software	are	identified	and	added	to	the	requirements-based	tests.
As	the	software	design	process	proceeds,	detailed	design	documents	are	produced	for
the	various	software	components	and	modules	comprising	the	system.	These,	in	turn,
serve	as	functional	specifications	for	the	component	or	module,	and	thus	may	be	used	to
trigger	the	development	of	requirements-based	tests	at	the	component	or	module	level.
As	the	software	project	moves	to	the	coding	stage,	a	third	increment	of	tests	is	designed
based	on	the	code	and	implementation	details.

Key
Point

The	goal	at	each	level	is	to	complete	the	bulk	of	the	test	design	work	as
soon	as	possible.

Test	inventory	and	design	activities	at	the	various	levels	overlap.	The	goal	at	each	level	is
to	complete	the	bulk	of	the	test	design	work	as	soon	as	possible.	This	helps	to	ensure

that	the	requirements	are	"testable"	and	well	thought	out	and	that	defects	are	discovered
early	in	the	process.	This	strategy	supports	an	effective	software	review	and	inspection
program.

Measurement	phase	activities	are	conducted	by	level.	Units	are	executed	first,	then
modules	or	functions	are	integrated	and	system	and	acceptance	execution	is	performed.
The	sequential	execution	from	small	pieces	to	big	pieces	is	a	physical	constraint	that	we
must	follow.	A	major	contribution	of	the	methodology	is	in	pointing	out	that	the	planning
and	acquisition	phases	are	not	so	constrained;	and	furthermore,	it's	in	our	interest	to
reverse	the	order	and	begin	to	develop	the	high-level	test	sets	first	-	even	though	we	use
them	last!

The	timing	within	a	given	test	level	is	shown	in	Figure	1-6	and	follows	our	natural
expectation.	Plans	and	objectives	come	first,	then	test	design,	then	implementation,	then
finally	execution	and	evaluation.	Overlap	of	activities	is	possible.

	
Figure	1-6:	Activity	Timing	at	Various	Levels	of	Test

Work	Products	of	STEP

Another	aspect	of	the	STEP	process	model	is	the	set	of	work	products	produced	in	each
phase	and	activity.	STEP	uses	the	word	"testware"	to	refer	to	the	major	testing	products
such	as	test	plans	and	test	specification	documents	and	the	implemented	test	procedures,
test	cases,	and	test	data	files.	The	word	"testware"	is	intentionally	analogous	to	software
and,	as	suggested	by	Figure	1-7,	is	intended	to	reflect	a	parallel	development	process.	As
the	software	is	designed,	specified,	and	built,	the	testware	is	also	designed,	specified,	and
built.

	
Figure	1-7:	Parallel,	Mutually	Supportive	Development 	These	two

broad	classes	of	work	products	support	each	other.	Testware	development,	by	relying	on
software	work	products,	supports	the	prevention	and	detection	of	software	faults.
Software	development,	by	reviewing	testware	work	products,	supports	the	prevention
and	detection	of	testware	faults.

STEP	uses	IEEE	standard	document	templates	as	a	recommended	guideline	for
document	structure	and	content.	Figure	1-8	lists	the	documents	that	are	included	in	this
book.

IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation	Template	for
Test	Documents	Contents

1.
Test	Plan
Used	for	the	master	test	plan	and	level-specific	test	plans.

2.
Test	Design	Specification
Used	at	each	test	level	to	specify	the	test	set	architecture	and	coverage
traces.

3.
Test	Case	Specification
Used	as	needed	to	describe	test	cases	or	automated	scripts.

4.
Test	Procedure	Specification
Used	to	specify	the	steps	for	executing	a	set	of	test	cases.

5.
Test	Log
Used	as	needed	to	record	the	execution	of	test	procedures.

6.

Test	Incident	Report
Used	to	describe	anomalies	that	occur	during	testing	or	in	production.	These
anomalies	may	be	in	the	requirements,	design,	code,	documentation,	or	the
test	cases	themselves.	Incidents	may	later	be	classified	as	defects	or
enhancements.

7.
Test	Summary	Report
Used	to	report	completion	of	testing	at	a	level	or	a	major	test	objective	within
a	level.

Figure	1-8:	Template	for	Test	Documents	from	IEEE	Std.	829-1998.	The	templates
for	many	IEEE	documents	are	presented	in	this	book,	but	we	recommend	that	you
purchase	the	complete	guidelines	from	the	IEEE	at—	www.ieee.org

Implementations	are	the	actual	test	procedures	to	be	executed	along	with	their

supporting	test	data	and	test	files	or	test	environments	and	any	supporting	test	code	that
is	required.

Roles	and	Responsibilities	in	STEP

Roles	and	responsibilities	for	various	testing	activities	are	defined	by	STEP.	The	four	major
roles	of	manager,	analyst,	technician,	and	reviewer	are	listed	in	Table	1-4.

Table	1-4:	Roles	and	Responsibilities

Role Description	of	Responsibilities

Manager Communicate,	plan,	and	coordinate.

Analyst Plan,	inventory,	design,	and	evaluate.

Technician Implement,	execute,	and	check.

Reviewer Examine	and	evaluate.

These	roles	are	analogous	to	their	counterpart	roles	in	software	development.	The	test
manager	is	responsible	for	providing	overall	test	direction	and	coordination,	and
communicating	key	information	to	all	interested	parties.	The	test	analyst	is	responsible	for
detailed	planning,	inventorying	of	test	objectives	and	coverage	areas,	test	designs	and
specifications,	and	test	review	and	evaluation.	The	test	technician	is	responsible	for
implementation	of	test	procedures	and	test	sets	according	to	the	designs	provided	by	the
analyst,	for	test	execution	and	checking	of	results	for	termination	criteria,	and	for	test
logging	and	problem	reporting.	The	test	reviewer	provides	review	and	oversight	over	all
steps	and	work	products	in	the	process.

The	STEP	methodology	does	not	require	that	these	roles	be	filled	by	different	individuals.
On	small	projects,	it's	possible	that	one	person	may	wear	all	four	hats:	manager,	analyst,
technician,	and	reviewer.	On	larger	projects	and	as	a	test	specialty	becomes	more	refined
in	an	organization,	the	roles	will	tend	to	be	assigned	to	different	individuals	and	test	specialty
career	paths	will	develop.

Key
Point

On	smaller	projects,	it's	possible	that	one	person	may	wear	all	four	hats:
manager,	analyst,	technician,	and	reviewer.

Summary	of	STEP

STEP	has	been	introduced	through	Software	Quality	Engineering's	(SQE)	Systematic
Software	Testing	classes	to	hundreds	of	organizations.	It's	a	proven	methodology	offering
significant	potential	for	improving	software	quality	in	most	companies.

Key	differences	between	STEP	and	prevalent	industry	practices	are	highlighted	in	Table	1-5.
First	is	the	overall	goal	of	the	testing	activity.	STEP	is	prevention	oriented,	with	a	primary

focus	on	finding	requirements	and	design	defects	through	early	development	of	test	designs.
This	results	in	the	second	major	difference	of	when	major	testing	activities	are	begun	(e.g.,
planning	timing	and	activity	timing).	In	STEP,	test	planning	begins	during	software
requirements	definition,	and	testware	design	occurs	in	parallel	with	software	design	and
before	coding.	Prevalent	practice	is	for	planning	to	begin	in	parallel	with	coding	and	test
development	to	be	done	after	coding.

Table	1-5:	Major	Differences	Between	STEP	and	Industry	Practice

Methodology Focus Planning
Timing

Acquisition
Timing Coverage Visibility

STEP
Prevention	&
Risk
Management

Begins	During
Requirements
Definition

Begins	During
Requirements
Definition

Known
(Relative	to
Inventories)

Fully
Documented	&
Evaluated

Prevalent
Industry
Practice

Detection	&
Demonstration

Begins	After
Software
Design

Begins	After
Software
Design	(or
Code)

Largely
Unknown

Largely
Undocumented
with	Little	or	No
Evaluation

Another	major	difference	between	STEP	and	prevalent	industry	practices	is	the	creation	of	a
group	of	test	cases	with	known	coverage	(i.e.,	mapping	test	cases	to	inventories	of
requirements,	design,	and	code).	Finally,	using	the	IEEE	documents	provides	full
documentation	(i.e.,	visibility)	of	testing	activities.

Key
Point

In	STEP,	test	planning	begins	during	software	requirements	definition	and
testware	design	occurs	in	parallel	with	software	design	and	before	coding.

STEP	also	requires	careful	and	systematic	development	of	requirements	and	design-based
coverage	inventories	and	for	the	resulting	test	designs	to	be	calibrated	to	these	inventories.
The	result	is	that	in	STEP,	the	test	coverage	is	known	and	measured	(at	least	with	respect
to	the	listed	inventories).	Prevalent	practice	largely	ignores	the	issue	of	coverage
measurement	and	often	results	in	ad	hoc	or	unknown	coverage.

A	final	major	difference	lies	in	the	visibility	of	the	full	testing	process.	Every	activity	in	STEP
leads	to	visible	work	products.	From	plans,	to	inventories,	to	test	designs,	to	test	specs,	to
test	sets,	to	test	reports,	the	process	is	visible	and	controlled.	Industry	practice	provides
much	less	visibility,	with	little	or	no	systematic	evaluation	of	intermediate	products.

These	differences	are	significant	and	not	necessarily	easy	to	put	into	practice.	However,	the
benefits	are	equally	significant	and	well	worth	the	difficulty	and	investment.

Key
Point

Calibration	is	the	term	used	to	describe	the	measurement	of	coverage	of	test
cases	against	an	inventory	of	requirements	and	design	attributes.

Team-Fly 	

Team-Fly

	

Chapter	2:	Risk	Analysis

Overview
"If	you	do	not	actively	attack	risks,	they	will	actively	attack	you."

—	Tom	Gilb

Key
Point

A	latent	defect	is	an	existing	defect	that	has	not	yet	caused	a	failure	because
the	exact	set	of	conditions	has	never	been	met.

A	masked	defect	is	an	existing	defect	that	hasn't	yet	caused	a	failure,	because
another	defect	has	prevented	that	part	of	the	code	from	being	executed.

There's	no	way	we	can	ever	guarantee	that	a	software	system	will	be	"perfect,"	because
failures	may	come	from	many	unexpected	directions.	A	latent	defect	in	a	system	that	has
run	well	for	many	years	may	cause	the	system	to	fail	unexpectedly.	Hardware	may	fail	or
defects	may	remain	undetected	for	years,	then	suddenly	become	unmasked.	These	effects
may	be	amplified	as	changes	to	interfaces	and	protocols	in	one	part	of	the	system	begin	to
interfere	with	legacy	software	in	another	part.	Multiplying	numbers	of	users	may	stress	the
system,	or	changes	in	the	business	model	may	cause	them	to	use	it	in	ways	that	were	never
originally	foreseen.	A	changing	operating	environment	may	also	pose	risks	that	can
undermine	a	sound	software	design,	creating	implementation	and	operational	problems.

In	his	article	"Chaos	Into	Success,"	Jim	Johnson	reported	that	only	26%	of	projects	met	the
criteria	for	success	-	completed	on	time,	on	budget,	and	with	all	of	the	features	and
functions	originally	specified.	Unfortunately,	the	disaster	stories	behind	these	statistics	are
often	more	difficult	to	digest	than	the	numbers	themselves.	In	an	article	in	IEEE	Computer
magazine,	Nancy	Leveson	and	Clark	Turner	reported	that	a	computerized	radiation	therapy
machine	called	Therac-25	caused	six	known	incidents	of	accidental	overdose	between	June
1985	and	January	1987,	which	resulted	in	deaths	and	serious	injuries.	According	to	Space
Events	Diary,	corrupted	software	may	have	been	the	cause	of	the	failure	of	the	upper	stage
on	a	Titan	4B	spacecraft	on	April	30,	1999.	The	malfunction	caused	the	upper	stage	of	the
rocket	to	misfire	and	place	its	payload	(a	communications	satellite)	in	the	wrong	orbit.	A
review	of	newspapers,	magazines,	and	Web	sites	will	show	that	these	are	only	a	few	of	the
documented	incidents	caused	by	defective	software.	Thousands	of	undocumented	incidents
occur	every	day	and	affect	nearly	every	aspect	of	our	lives.

Key
Point

A	GUI	with	10	fields	that	can	be	entered	in	any	order	results	in	a	set	of
3,628,800	combinations	that	could	potentially	be	tested.

Most	software	testing	managers	and	engineers	realize	that	it's	impossible	to	test	everything
in	even	the	most	trivial	of	systems.	The	features	and	attributes	of	a	simple	application	may
result	in	millions	of	permutations	that	could	potentially	be	developed	into	test	cases.
Obviously,	it's	not	possible	to	create	millions	of	test	cases;	and	even	if	a	large	number	of
test	cases	are	created,	they	generally	still	represent	only	a	tiny	fraction	of	the	possible
combinations.	Even	if	you	had	created	thousands	of	test	cases,	and	through	a	concerted
effort	doubled	that	number,	millions	of	other	combinations	may	still	exist	and	your	"doubled"

test	set	would	still	represent	only	a	tiny	fraction	of	the	potential	combinations,	as	illustrated
in	Figure	2-1.	In	most	cases,	"what"	you	test	in	a	system	is	much	more	important	than	"how
much"	you	test.

	Figure	2-1:	Domain	of	All	Possible	Test	Cases	(TC)
in	a	Software	System

Tight	time	schedules	and	shortages	of	trained	testers	serve	to	exacerbate	this	problem	even
further.	In	many	companies,	the	testers	begin	work	on	whatever	components	or	parts	of	the
system	they	encounter	first,	or	perhaps	they	work	on	those	parts	that	they're	most	familiar
with.	Unfortunately,	both	of	these	approaches	typically	result	in	the	eventual	delivery	of	a
system	in	which	some	of	the	most	critical	components	are	untested,	inadequately	tested,	or
at	the	very	least,	tested	later	in	the	lifecycle.	Even	if	problems	are	found	later	in	the
lifecycle,	there	may	be	inadequate	time	to	fix	them,	thereby	adding	to	the	risk	of	the
software.	Changing	priorities,	feature	creep,	and	loss	of	resources	can	also	reduce	the
ability	of	the	test	team	to	perform	a	reasonably	comprehensive	test.

Team-Fly 	

Team-Fly

	

What	Is	Risk?

Note

For	more	information	on	Risk	Management,	refer	to	the	following	books:	Software
Risk	Management	by	Barry	W.	Boehm

Software	Engineering	Risk	Analysis	by	Robert	Charette	Risk	Management	for
Software	Projects	by	Down,	Coleman,	and	Absolon	IEEE	Tutorial	on	Software
Risk	Management	by	Barry	Boehm	A	Manager's	Guide	to	Software	Engineering
by	Roger	S.	Pressman

Webster's	dictionary	defines	risk	as	"the	chance	of	injury,	damage,	or	loss;	a	dangerous
chance;	a	hazard."	In	other	words,	risk	involves	the	probability	or	likelihood	of	an	event
occurring	and	the	negative	consequences	or	impact	of	that	event.	For	the	purposes	of	this
book,	we	will	use	the	words	likelihood	and	impact	as	the	two	components	of	risk.

Everyone	subconsciously	performs	risk	analysis	hundreds	of	times	a	day.	If	you	were	living
or	working	in	downtown	Manhattan	and	were	late	for	a	meeting,	for	example,	you	might
decide	to	take	a	risk	and	dash	across	a	busy	street.	Consciously,	you	might	not	even	think
much	about	it,	but	subconsciously,	you're	probably	thinking,	"What	is	the	likelihood	that	I'll	be
hit	by	a	yellow	cab	and	if	I'm	hit	by	the	cab,	what	is	the	impact	(no	pun	intended)?"
Obviously,	the	impact	could	be	catastrophic	to	you	personally,	so	you	would	only	dart
across	the	street	if	you	were	reasonably	confident	that	you	wouldn't	be	hit	by	a	cab.	This	is
just	one	example	of	how	risk	analysis	impacts	our	daily	lives.	The	good	news	is	that	all	of
these	daily	decisions	that	you've	made	have	helped	prepare	you,	as	a	tester,	for	analyzing
software	risk.	Still,	having	said	this	and	after	visiting	hundreds	of	companies	as	management
consultants	over	the	years,	we've	found	that	very	few	companies	make	any	attempt	at
conducting	even	a	semi-formal	software	risk	analysis.	A	risk	analysis	is	one	of	the	most
important	activities	that	can	occur	on	any	software	development	project,	especially	if
schedules	are	tight	and/or	resources	are	scarce.

Key
Point

Risk	Management	is	the	process	of	controlling	risk	and	monitoring	the
effectiveness	of	the	control	mechanisms.

Risk	Analysis	is	the	process	of	identifying,	estimating,	and	evaluating	risk.

There	is	an	entire	body	of	information	about	and	many	professionals	who	specialize	in	risk
management,	which	is	composed	of	risk	analysis,	avoidance,	and	control.	However,	the
primary	focus	of	this	chapter	is	on	risk	analysis	and,	to	a	lesser	degree,	risk	avoidance	and
control.	Even	though	the	risk	analysis	techniques	explained	in	this	book	are	focused	on
software	testing,	they	can	also	be	useful	tools	in	other	areas	of	the	development	project,
especially	if	no	other	risk	analysis	has	been	undertaken.	If	another	group,	such	as
developers	or	users,	has	already	conducted	a	risk	analysis,	you	may	be	able	to	use	their
results	to	help	plan	and	prioritize	your	tests.

Key
Point

Risk	Analysis	can	be	separated	into	two	key	activities:
software	risk	analysis

analysis	of	planning	risks	and	contingencies

IEEE	Standard	for	Software	Test	Documentation	(IEEE	Std.	829-1998)	identifies	a	section
in	the	test	plan	template	called	Risks	and	Contingencies.	We've	taken	this	a	step	further	by
separating	risk	analysis	into	two	key	activities:	software	risk	analysis	and	the	analysis	of
planning	risks	and	contingencies.

	Figure	2-2:	Risk	Analysis
Activities 	This	separation	of	activities	provides	a	clear	distinction
between	the	risk	associated	with	the	failure	of	a	feature	or	attribute	of	the	system	and
the	risk	associated	with	the	implementation	of	the	test	plan.

Team-Fly 	

Team-Fly

	

Software	Risk	Analysis
The	purpose	of	a	software	risk	analysis	is	to	determine	what	to	test,	the	testing	priority,	and
the	depth	of	testing.	In	some	cases,	it	may	also	include	determining	what	not	to	test.	A	risk
analysis	can	help	testers	identify	high-risk	applications	that	should	be	tested	more
thoroughly,	and	potentially	error-prone	components	within	specific	applications	that	should
be	tested	more	rigorously	than	other	components.	The	results	of	the	risk	analysis	can	be
used	during	the	test	planning	phase	to	determine	the	testing	priorities	for	the	software	under
test.

Key
Point

The	purpose	of	a	software	risk	analysis	is	to	determine	what	to	test,	the
testing	priority,	and	the	depth	of	testing.

Who	Should	Do	the	Analysis?

You	might	argue	that	it	would	be	logical	to	have	the	users	or	customers	perform	a	software
risk	analysis	-	and	you	would	be	right.	Or,	you	might	argue	that	if	the	users	don't	do	the	risk
analysis,	the	developers	should	do	it	-	and	you	would	be	right	again.	Developers	who	are
responsible	for	software	maintenance,	for	example,	can	derive	great	benefits	from	doing	a
risk	analysis.	So	why	did	we	include	this	topic	in	a	software	testing	book?	Because	users
and	developers	rarely	perform	a	risk	analysis	or,	at	least,	fail	to	do	one	in	sufficient	detail	to
help	the	tester.	So	even	if	you	think	it's	not	your	job,	you	can't	do	your	job	well	if	a	risk
analysis	isn't	done	first.

Key
Point

Ideally,	the	risk	analysis	should	be	done	by	an	interdisciplinary	team	of
experts.

Ideally,	the	risk	analysis	should	be	done	by	a	team	of	experts	from	various	groups	within	the
organization.	Likely	candidates	may	include	developers,	testers,	users,	customers,
marketers,	and	other	interested,	willing,	and	able	contributors.

When	Should	It	Be	Done?

A	risk	analysis	should	be	done	as	early	as	possible	in	the	software	lifecycle.	A	first	cut	at	a
risk	analysis	can	usually	be	done	as	soon	as	the	high-level	requirements	are	known.	The	risk
analysis	doesn't	have	to	be	completely	re-done	for	every	release,	but	should	be	revisited
based	on	the	changes	that	are	being	implemented.	Also,	keep	in	mind	that	the	results	of	the
analysis	may	have	to	be	reviewed	occasionally	during	the	course	of	a	project	since	the
requirements,	resources,	and	other	factors	may	change.

How	Should	It	Be	Done?

We	have	outlined	the	ten-step	process	(illustrated	in	Figure	2-3)	that	we	use	for	conducting
a	software	risk	analysis.	Depending	on	the	structure	of	your	organization,	you	may	have
encountered	one	or	more	variations	of	this	process.	Some	organizations	may	combine

several	steps	into	one,	while	others	may	include	additional	steps.	However,	the	overall
objective	remains	the	same	-	to	determine	what	to	test,	the	testing	priority,	and	the	depth	of
testing.

	Figure	2-3:	Software	Risk	Analysis	Process	Overview

NoteEach	of	these	steps	will	be	explained	in	detail	on	the	following	pages.

Step	1:	Form	a	Brainstorming	Team

The	first	step	in	performing	a	risk	analysis	is	to	form	a	brainstorming	team.	Typically,	you
should	include	users	(or	pseudo-users	such	as	business	analysts),	developers,	testers,
marketers,	customer	service	representatives,	support	personnel,	and	anyone	else	that	has
knowledge	of	the	business	and/or	product,	and	is	willing	and	able	to	participate.	Too	many
teams	fail	because	not	enough	or	the	wrong	people	participate.

In	their	excellent	book	Exploring	Requirements:	Quality	Before	Design,	Donald	Gause	and
Gerald	Weinberg	lay	out	guidelines	for	conducting	a	brainstorming	session.	We've	only
included	an	outline	of	their	suggestions	here.	For	a	more	complete	description,	we
recommend	you	obtain	a	copy	of	their	book.

The	purpose	of	Part	One	of	a	brainstorm	session	is	to	increase	the	number	of	ideas	that	the
group	generates.	As	a	general	rule	of	thumb:

Do	not	allow	criticism	or	debate.

Let	your	imagination	soar.

Shoot	for	quantity.

Mutate	and	combine	ideas.

The	purpose	of	Part	Two	of	the	brainstorming	session	is	to	reduce	the	list	of	ideas	to	a
workable	size.	As	a	general	rule	of	thumb,	the	methods	for	doing	this	include:

Voting	with	campaign	speeches

Blending	ideas

Applying	criteria

Using	scoring	or	ranking	systems

The	software	risk	analysis	process	that	we've	outlined	will	take	care	of	Part	Two	of	Gause
and	Weinberg's	guidelines,	but	we've	included	them	here	in	case	you	want	to	apply
brainstorming	techniques	elsewhere	(e.g.,	inventories:	refer	to	Chapter	5).

Step	2:	Compile	a	List	of	Features

The	brainstorming	team	should	gather	any	available	documentation	such	as	requirements
specifications	(if	they	exist),	functional	specifications,	change	requests,	defect	reports,
design	documents,	etc.	Once	these	documents	have	been	collected,	the	team	should
compile	an	inventory	of	features	(initially	at	a	high	level),	attributes,	or	business	functions	for
the	entire	system.	Later,	as	time	allows,	the	list	can	be	made	more	complete	and	detailed.
If	a	given	development	effort	or	release	is	being	done	on	only	a	subset	of	the	system	or	on
a	sub-system,	the	analysis	can	be	focused	just	on	that	area.	However,	in	addition	to	the
included	features,	all	interfaces	should	be	identified	and	listed	because	they	may	also	need
to	be	tested.

In	our	classes,	we	often	use	an	Automated	Teller	Machine	(ATM)	as	an	example	for
demonstrating	how	a	risk	analysis	works,	since	almost	everyone	is	familiar	with	ATMs.	An
ATM	application	has	a	variety	of	features.	Some	of	the	features	that	our	students	typically
identify	include	withdraw	cash,	deposit	cash,	check	account	balance,	transfer	funds,
purchase	stamps,	and	make	a	loan	payment.	In	most	cases,	global	attributes	are	also
identified	and	considered	in	the	risk	analysis.	Some	of	these	global	attributes	include
accessibility,	availability,	compatibility,	maintainability,	performance,	reliability,	scalability,
security,	and	usability,	which	are	applicable	to	most	systems.

Key
Point

Examples	of	attributes	to	consider	may	include:
accessibility

availability

compatibility

maintainability

performance

reliability

scalability

security

usability

Step	3:	Determine	the	Likelihood

The	next	step	in	the	risk	analysis	process	is	to	assign	an	indicator	for	the	relative	likelihood
of	failure.	We	typically	assign	H	for	a	relatively	high	likelihood	of	failure,	M	for	medium,	and	L
for	low.	When	the	brainstorming	team	assigns	a	value	of	H,	M,	or	L	for	each	feature,	they
should	be	answering	the	question,	"Based	on	our	current	knowledge	of	the	system,	what	is
the	likelihood	that	this	feature	or	attribute	will	fail	or	fail	to	operate	correctly?"	Usually,	the
likelihood	indicators	are	caused	by	systemic	characteristics	(e.g.,	complexity,	number	of

interfaces,	etc.)	of	the	system,	which	makes	developers	and	other	technically	oriented
members	of	the	team	useful	during	this	part	of	the	risk	analysis.	For	example,	most	students
quickly	assign	a	likelihood	value	of	H	for	the	withdraw	cash	feature.	When	asked	why,	they
invariably	point	out	that	in	order	to	withdraw	cash,	the	system	must	go	through	various
software	interfaces,	software/hardware	interfaces,	and	human	activities	(load	the	cash).
Other	values	typically	identified	for	the	likelihood	of	failure	of	selected	ATM	features	and
attributes	are	listed	in	Table	2-1.

Table	2-1:	Likelihood	of	Failure	for	ATM	Features/Attributes

ATM	Software
Likelihood

Features Attributes

Withdraw	cash High

Deposit	cash Medium

Check	account	balance Low

Transfer	funds Medium

Purchase	stamps High

Make	a	loan	payment Low

Usability Medium

Performance Low

Security Medium

Key
Point

Based	on	our	current	knowledge	of	the	system,	what	is	the	likelihood	that	this
feature	or	attribute	will	fail	or	fail	to	operate	correctly?

It's	very	important	that	the	brainstorming	team	begin	by	assigning	an	initial	value	for	the
(relative)	likelihood	of	a	failure	for	each	feature	or	attribute.	Even	though	some	team

members	may	not	agree	on	the	initial	value,	it's	important	to	get	something	committed	to
paper	as	soon	as	possible	to	stimulate	the	thought	process.	It's	not	important	for	the	team
to	be	precise	in	their	rankings	or	in	total	agreement	at	this	point	in	the	risk	analysis	process.
In	fact,	the	entire	process	up	to	this	point	is	fairly	subjective,	based	on	the	experience	and
knowledge	level	of	each	of	the	team	members.

Suppose	that	four	members	of	your	team	think	that	a	feature	has	a	high	likelihood	of	failure,
one	thinks	it's	medium,	and	one	thinks	it's	low.	You	should	assign	a	likelihood	of	high	or
medium	and	move	on.	It's	critical	that	the	team	doesn't	become	bogged	down	early	in	the
process.	Later	they'll	discover	that	they're	not	trying	to	prioritize	every	feature	1	through	n,
but	are	simply	trying	to	put	each	feature	into	a	few	"buckets"	or	broad	categories.	Later,	if
time	allows,	the	team	can	go	back	and	modify	the	first	likelihood	analysis	by	using	one	or
more	of	the	likelihood	indicators	outlined	in	Step	7.

Step	4:	Determine	the	Impact

Once	again	the	brainstorming	team	should	use	the	same	high,	medium,	and	low	rating
system	that	they	used	for	the	likelihood	of	failure.	Here,	the	team	should	ask	themselves	the
question,	"What	would	be	the	impact	on	the	user	if	this	feature	or	attribute	failed	to	operate
correctly?"	Our	students	typically	assign	a	value	of	H	for	withdraw	cash,	since	most	users	of
ATMs	would	consider	the	apparatus	worthless	without	this	feature.	The	impact	of	failure	for
other	features	and	attributes	in	our	ATM	example	is	highlighted	in	Table	2-2.	Although	you
may	be	tempted	to	also	consider	the	impact	of	a	failed	function	on	the	development	of	the
rest	of	the	system	(i.e.,	the	critical	path)	at	this	point,	you	should	resist	doing	this	as	part	of
the	software	risk	analysis.	You	should	focus	only	on	the	features	and	attributes	that	directly
impact	the	user,	not	necessarily	the	testing	effort.	Concerns	regarding	the	impact	on	the
testing	schedule	will	be	addressed	in	a	later	section	of	this	chapter,	Planning	Risks	and
Contingencies.

Table	2-2:	Impact	of	Failure	for	ATM	Features/Attributes

ATM	Software
Likelihood Impact

Features Attributes

Withdraw	cash High High

Deposit	cash Medium High

Check	account	balance Low Medium

Transfer	funds Medium Medium

Purchase	stamps High Low

Make	a	loan	payment Low Medium

Usability Medium High

Performance Low Medium

Security Medium High

Key
Point

What	would	be	the	impact	on	the	user	if	this	feature	or	attribute	failed	to
operate	correctly?

The	users	are	particularly	important	for	this	part	of	the	risk	analysis	because	the	impact	is
usually	driven	by	business	issues	rather	than	by	the	systemic	nature	of	the	system.	One
word	of	caution:	many	users	will	insist	that	every	feature	has	a	high	failure	impact.	This	is
especially	true	if	the	system	is	large	enough	that	you	need	several	users	who	each	possess
different	areas	of	expertise.	Obviously,	it	doesn't	help	in	prioritizing	risks	if	virtually	every
feature	is	ranked	the	same	(i.e.,	high).	If	you	experience	this	phenomenon,	you	might	want
to	limit	each	user	to	assigning	a	specific	number	of	Hs,	Ms,	and	Ls.

Key
Point

The	users	are	particularly	important	in	assigning	values	for	impact,	since	the
impact	is	usually	driven	by	business	issues	rather	than	by	the	systemic	nature
of	the	system.

Testers	who	have	worked	in	the	industry	for	a	substantial	amount	of	time	are	often	very
good	at	determining	the	impact	of	failures.	In	fact,	we	have	found	that	at	many	companies,
experienced	testers	have	the	broadest	knowledge	of	how	the	systems	relate	to	the
business.	Especially	in	larger	systems,	many	users	may	only	be	experts	in	one	particular
area	of	functionality,	while	experienced	testers	often	have	a	much	broader	view.	It	is	this
broad	view	that	is	most	useful	in	determining	the	relative	impact	of	failure.

Step	5:	Assign	Numerical	Values

In	this	step	of	the	risk	analysis,	the	brainstorming	team	should	assign	numerical	values	for	H,
M,	and	L	for	both	likelihood	and	impact.	While	these	values	can	be	any	sequence	of
descending	numbers,	for	the	sake	of	simplicity,	we	usually	assign	a	value	of	3	for	H,	2	for
M,	and	1	for	L.	Some	people	like	to	get	a	greater	"spread"	by	assigning	10	for	H,	3	for	M,
and	1	for	L,	or	various	other	schemes.	Weighting	scales	will	vary	from	organization	to
organization	depending	on	how	they	perceive	the	relative	risk.	Once	a	scale	has	been

selected,	you	must	use	that	same	scale	throughout	the	entire	risk	analysis.

If	your	system	is	safety-critical	(i.e.,	people's	lives	may	be	endangered	by	the	malfunction	of
the	system),	it's	important	that	those	features	that	can	cause	death	or	loss	of	limb	are
always	assigned	a	high	priority.	You	can	accomplish	this	in	a	variety	of	ways	such	as
"flagging"	those	safety-critical	features	or	by	assigning	a	special	high	value	to	their	impact.
Suppose,	for	example,	that	you	were	working	on	a	nuclear	control	system	and	there	was	a
function	called	the	"nuclear	shut-off	switch."	In	reality,	this	switch	probably	doesn't	exist,	but
hopefully	you	get	the	idea	that	this	would	be	a	very	risky	function	indeed!	You	would	always
want	to	ensure	that	this	function	was	given	a	high	priority	even	if	the	overall	risk	was	low	due
to	an	exceptionally	low	likelihood	of	failure.

Key
Point

If	your	system	is	safety-critical,	it's	important	that	those	features	that	can
cause	death	or	loss	of	limb	are	always	assigned	a	high	priority	for	test	even	if
the	overall	risk	was	low	due	to	an	exceptionally	low	likelihood	of	failure.

Step	6:	Compute	the	Risk	Priority

Next,	the	values	assigned	to	the	likelihood	of	failure	and	the	impact	of	failure	should	be
added	together.	If	a	value	of	3	is	used	for	H,	2	for	M,	and	1	for	L,	then	five	risk	priority
levels	are	possible	(i.e.,	6,	5,	4,	3,	2)	as	illustrated	in	Figure	2-4.	The	overall	risk	priority	is	a
relative	value	for	the	potential	impact	of	failure	of	a	feature	or	attribute	of	the	software
weighted	by	the	likelihood	of	it	failing.

	
Figure	2-4:	Risk	Priority

Notice	that	the	feature	withdraw	cash,	which	has	a	relatively	high	likelihood	of	failure	(value
3)	and	a	relatively	high	impact	of	failure	(value	3),	has	a	risk	priority	of	6	(i.e.,	3+3=6)	in
Table	2-3.	The	deposit	cash	feature	has	a	priority	of	5,	and	so	forth.	This	isn't	the	only
possible	method	for	determining	risk	priority,	however.	Even	though	we	prefer	to	add	the
values	for	likelihood	of	failure	and	impact	of	failure	together,	some	organizations	choose	to
multiply	these	values	together,	which	has	the	effect	of	amplifying	the	risky	areas.

Table	2-3:	Summed	Priorities	for	ATM	Features/Attributes

ATM	Software
Likelihood Impact Priority

Features Attributes

Withdraw	cash High High 6

Deposit	cash Medium High 5

Check	account	balance Low Medium 3

Transfer	funds Medium Medium 4

Purchase	stamps High Low 4

Make	a	loan	payment Low Medium 3

Usability Medium High 5

Performance Low Medium 3

Security Medium High 5

Step	7:	Review/Modify	the	Values

In	Step	3	of	the	risk	analysis	process,	a	value	was	assigned	to	the	likelihood	of	failure	for
each	feature	or	attribute	based	upon	the	experience	and	perception	of	the	brainstorming
team.	After	the	team	has	initially	reached	a	consensus	on	the	likelihood	of	failure	for	each
feature	or	attribute	based	upon	their	brainstorming	session,	it's	possible	that	these	values
may	be	modified	based	on	additional	information	or	analyses	that	may	be	available.	Some
examples	of	likelihood-of-failure	indicators	include	team	history,	complexity,	usability,	new
or	modified	features,	features	developed	using	new	technology,	defect	history,	and	those
features	that	are	difficult	to	test	due	to	constraints	in	the	(test)	environment.

Team
History Experience	of	the	developers	can	affect	testing	priorities.

For	example,	most	of	us	know	that	certain	developers	or	development	teams	produce	better
code	than	others.	If	you	have	knowledge	about	the	relative	skill	or	experience	of	the	teams
developing	the	system,	it	might	be	prudent	to	plan	to	test	the	code	of	the	less	experienced
teams	more	than	the	code	developed	by	the	more	experienced	teams.	So,	if	a	new	team	is
assigned	to	work	on	the	check	account	balance	feature,	for	example,	the	brainstorming
team	may	agree	to	raise	the	initial	"low"	likelihood	rating	of	that	feature	(refer	to	Table	2-3)
to	medium	or	even	high.	This,	of	course,	will	eventually	have	the	effect	of	raising	the	risk
priority	of	that	feature.

A	word	of	caution	is	needed	here.	Although	understanding	the	relative	skill	or	effectiveness
of	various	development	teams	would	be	useful	in	planning	the	testing	priorities,	collecting
metrics	about	the	relative	effectiveness	of	developers	or	teams	can	bring	unwanted	political
problems	to	the	table	and	can	ultimately	undermine	your	relationship	with	the	developers.
Developers	(like	testers,	or	anyone	else	for	that	matter)	don't	like	to	feel	that	they	are	being

measured.	So	your	best	intentions	may	do	more	harm	than	good.	Since	we	have	no
knowledge	of	the	culture	of	your	organization,	we	offer	no	advice	here,	but	if	you	choose	to
collect	metrics	about	individual	or	team	efficiency,	please	proceed	cautiously.

Complexity This	is	one	of	the	most	commonly	used	likelihood-of-failure	indicators.

Another	indicator	of	the	likelihood	of	failure	is	the	relative	complexity	of	the	components	or
features	of	the	system.	Tom	McCabe,	who	has	done	a	substantial	amount	of	work	on
software	complexity,	has	devised	a	metric	known	as	cyclomatic	complexity	that	is	based	on
the	number	of	decisions	in	a	program.	He,	along	with	others,	has	shown	that	those	parts	of
the	system	with	high	cyclomatic	complexity	are	more	prone	to	defects	than	those	with	a
lower	value.	For	our	purposes,	we	would	assign	those	features	a	higher	likelihood	of	failure.
Tools	are	available	to	assist	in	this	analysis.	Of	course	if	the	system	has	not	yet	been
coded,	complexity	cannot	be	measured	because	there's	nothing	yet	to	measure.

Key
Point

Tom	McCabe	noted	that	modules	with	high	cyclomatic	complexity	are
harder	to	understand	and	have	a	higher	probability	of	defects	than
modules	with	smaller	values.	He	recommended	limiting	cyclomatic
complexity	to	10.	Later,	Victor	Basili	noted	that	modules	with	cyclomatic
complexity	exceeding	14	are	more	defect	prone.

-	From	Practical	Software	Metrics	for	Project	Management	and	Process
Improvement	by	Robert	B.	Grady.

Some	organizations	use	the	complexity	measures	as	the	sole	input	into	the	assignment	of
the	likelihood	value	(probably	because	it's	fairly	simple	to	do).	We	recommend	that	you
assign	the	initial	value	during	the	brainstorming	session	and	use	the	complexity	analysis	as	a
way	to	modify	these	initial	values.

Increasing	the	"user-friendliness"	of	a	system	(or	part	of	a	system)	generally	increases	the
complexity	of	the	software	and	ultimately	increases	the	likelihood	of	failure.	This	problem	is
amplified	because	it	may	also	be	difficult	to	replicate	the	end-user	environment	or	even
know	who	the	end-user	is.	One	of	the	problems	with	the	statement	"The	user	is	always
right"	is	defining	"Who	is	the	user?"	Companies	that	make	and	sell	commercial	software
dedicate	a	lot	of	resources,	thought,	and	money	to	this	issue.	All	users	aren't	the	same	and
they	have	different	needs.	Some	users	want	to	have	a	powerful	system	devoid	of	annoying
prompts	such	as	"Do	you	really	want	to	delete	this	file?"	Other	users	are	a	little	more	timid
and,	after	deleting	their	newly	written	version	of	War	and	Peace,	would	welcome	a	question
that	requires	confirmation.

Usability Increasing	the	"user-friendliness"	of	a	system	can	increase	the	complexity	ofthe	software.

Usability	labs	attempt	to	simulate	these	users'	requirements	and	the	conditions	under	which
they'll	be	using	a	particular	feature	of	the	system.	If	you	have	a	usability	lab,	it	can	be	useful

for	determining	those	features	that	have	a	high	likelihood	of	failure	due	to	the	user-
friendliness	of	the	system.	Refer	to	Chapter	4	for	more	information	on	usability	labs.

New	or	Modified
Features

This	is	one	of	the	most	commonly	used	likelihood-of-failure
indicators.

Parts	of	the	system	that	are	new	(e.g.,	enhancements)	or	those	modules	that	have
experienced	changes	are	usually	more	prone	to	defects	than	those	modules	that	remain
unchanged.	Ironically,	features	that	have	had	just	a	one-	or	two-line	code	change	often	have
a	higher	rate	of	error	introduction	per	line	changed	than	modules	with	more	extensive
changes	(probably	because	they	have	less	rigorous	regression	testing).	You	would	have	to
analyze	your	own	defects	versus	changed	lines	of	code	in	order	to	determine	if	this	is	true
on	your	software.	A	useful	metric	is	the	number	of	bugs	introduced	per	fix	or	the	number	of
bugs	introduced	per	changed	line	of	code,	as	shown	in	Figure	2-5.

	
Figure	2-5:	Formulae	for	Measuring	the	Ratio	of	Bugs	to	Fixes

This	is	often	used	as	a	measure	of	the	effectiveness	of	maintenance	programming.

Unfortunately,	fixing	problems	may	not	necessarily	make	your	software	more	reliable.	On
the	contrary,	serious	new	problems	may	arise.	According	to	an	article	by	Alan	Joch,	after
changing	three	lines	of	code	in	a	signaling	program	containing	millions	of	lines	of	code	in
1991,	the	local	telephone	systems	in	California	and	along	the	Eastern	seaboard	came	to	a
halt.	One	company	that	we	visited	learned	that	they	had	introduced	more	bugs	(and	in	some
cases	with	greater	severity)	than	they	had	fixed	in	a	project	for	three	releases	in	a	row!	It
seems	that	more	than	just	their	software	was	broken.

In	the	course	of	conducting	project	reviews	at	many	companies,	we've	frequently
encountered	the	situation	where	certain	functions	or	features	were	written	(or	rewritten)
using	some	new	or	unfamiliar	technology.	For	example,	the	organization	may	have	gone
from	COBOL	to	C++,	introduced	object-oriented	design	techniques,	developed	a	new
database	structure,	or	introduced	a	new	development/testing	methodology	such	as	Extreme
Programming.	Obviously,	as	testers	we	are	concerned	about	these	changes	and	want	to
focus	additional	testing	on	those	affected	features	(i.e.,	raise	the	likelihood	value).	This	is
especially	true	if	the	change	was	sudden	or	not	supported	by	adequate	training.

Key
Point

Features	developed	using	new	technology,	methods,	techniques,	or	languages
may	require	extra	testing.

As	an	aside,	we	have	also	noted	that	many	companies	introduce	multiple	technology
changes	on	the	same	project	at	the	same	time	(often	due	to	a	new	VP	or	CIO	coming

onboard).	If	this	is	the	case,	the	tester	should	beware!	Conventional	wisdom	for
implementing	change	is	to	limit	the	number	of	new	processes	introduced	on	a	given	project.
Refer	to	Chapter	11	for	more	information	on	process	improvement.

In	some	systems,	it's	difficult	to	replicate	the	production	environment	in	the	laboratory,	which
can	increase	the	software	risk	for	certain	features	or	attributes,	or	for	the	entire	project.	For
example,	it	may	be	difficult	to	replicate	the	loads	experienced	on	a	Web	application	or	have
as	many	clients	as	would	normally	operate	in	a	client/server	environment.	It's	probably	not
feasible	to	launch	the	space	shuttle	just	to	test	some	new	code.	Similarly,	if	you	were
working	on	a	weather	prediction	system,	you	couldn't	just	conjure	up	a	hurricane	to	assist
you	in	the	testing	effort.

Environmental
Accessibility

The	realism	of	the	test	environment	may	affect	testing
priorities.

Those	features	that	are	difficult	to	test	due	to	environmental	accessibility	have	a	higher
likelihood	of	failure	and	should	receive	a	higher	priority	for	testing	to	allow	for	the	additional
time	that	may	be	required	to	create	simulators,	conduct	beta	testing,	etc.	These	features
are	also	candidates	for	mitigation	(refer	to	Step	10	of	the	Risk	Analysis	Process).

Pareto	Principle	(80-20
Rule)

According	to	Software	Risk	Management	by	Barry	W.
Boehm,	"Many	software	phenomena	follow	a	Pareto
distribution:	80%	of	the	contribution	comes	from	20%	of	the
contributors."

One	example:	20%	of	the	modules	contribute	80%	of	the
errors	(not	necessarily	the	same	ones).

One	type	of	analysis	that	we	strongly	recommend	is	the	analysis	of	the	trends	and	patterns
of	defects.	If	defects	from	previous	releases	or	earlier	levels	of	test	and/or	inspections	are
documented,	they	can	be	analyzed	to	determine	particular	areas	of	the	system	that	have	a
"clumping"	of	bugs.	Testers	routinely	call	this	type	of	analysis	a	"Pareto	analysis,"	although	it
may	not	rigorously	meet	the	definition	assigned	by	statisticians.	Anyone	who	has	ever	been
a	maintenance	programmer	knows	that	they	are	repeatedly	called	in	to	fix	the	same	feature
or	module.	In	almost	every	case,	areas	of	a	system	that	have	proven	to	be	buggy	in	the
past,	will	very	likely	continue	to	be	buggy	in	the	future	and	should	be	assigned	a	higher
likelihood	of	failure.	This	clumping	of	bugs	often	occurs	because	certain	parts	of	the	system
may	be	unusually	complex,	or	written	from	a	poor	specification,	etc.

There	are	many	factors	that	affect	the	likelihood	of	failure	such	as	usability,	new	features,
complexity,	etc.,	and	many	people	would	like	to	choose	one	of	these	as	the	sole	method	of
determining	likelihood	of	failure.	However,	the	preferable	approach	is	to	allow	the
brainstorming	team	to	assign	these	values	as	described	in	Step	4	and	then	use	these	other
techniques,	like	complexity,	to	validate	or	modify	their	choices.	For	example,	if	your
brainstorming	team	has	found	that	the	withdraw	cash	feature	has	a	low	(L)	likelihood	of
failure,	but	the	developer	tells	you	that	the	underlying	code	has	a	very	high	complexity,	you

might	want	to	change	the	"L"	to	an	"M"	or	even	an	"H."	Similarly,	you	can	apply	the	same
logic	using	Pareto	analysis,	inventory	of	changes,	or	one	of	the	other	likelihood-of-failure
indicators.

Step	8:	Prioritize	the	Features

In	this	step	of	the	risk	analysis	process,	the	brainstorming	team	should	reorganize	their	list
of	features	and	attributes	in	order	of	risk	priority.	Table	2-4	shows	the	features	and
attributes	of	an	ATM	application	in	order	of	risk	priority.	Since	the	withdraw	cash	feature	has
the	highest	risk	priority,	it	appears	first	in	the	list.	Although	the	impact	of	releasing	the
software	with	poor	performance	is	medium,	the	likelihood	of	failure	is	low.	Consequently,
performance	is	assigned	a	relatively	low	risk	priority	of	3	and	therefore	appears	last	in	the
list.	Consider	entering	the	risk	data	into	a	software	tool	that	is	"sort-friendly"	to	assist	in	the
prioritization.

Table	2-4:	Sorted	Priorities	for	ATM	Features/Attributes

ATM	Software
Likelihood Impact Priority

Features Attributes

Withdraw	cash High High 6

Deposit	cash Medium High 5

Usability Medium High 5

Security Medium High 5

Transfer	funds Medium Medium 4

Purchase	stamps High Low 4

Make	a	loan	payment Low Medium 3

Check	account	balance Low Medium 3

Performance Low Medium 3

The	sorted	list	of	priorities	provides	a	clear	view	of	which	risks	need	the	most	attention.	As
you	may	have	noticed,	one	deficiency	of	this	technique	for	prioritization	is	that	it	doesn't	take
into	account	the	testing	dependencies.	For	example,	even	though	the	check	account
balance	value	is	assigned	a	relatively	low	priority,	it	will	very	likely	be	tested	early	on	since
the	system	must	check	the	account	value	prior	to	withdrawing	cash.	We	urge	you	to	ignore
these	dependencies	until	after	the	first	draft	of	the	software	risk	analysis	is	complete.

Key
Point

The	sorted	list	of	priorities	provides	a	clear	view	of	which	risks	need	the	most
attention.

Step	9:	Determine	the	"Cut	Line"

After	the	priorities	have	been	sorted,	a	"cut	line"	may	be	established	to	indicate	the	line
below	which	features	will	not	be	tested	(if	any)	or	tested	less.	In	order	to	determine	where
the	cut	line	should	go,	it's	necessary	to	estimate	the	amount	of	testing	that	is	possible	with
the	available	time	and	resources.	Refer	to	Chapter	7	for	more	information	on	estimating
time	and	resources.	The	dotted	line	in	Table	2-5	represents	the	cut	line	that	the
brainstorming	team	established	for	the	ATM	project.	The	check	account	balance	feature
and	the	make	a	loan	payment	feature	will	not	be	tested	on	this	release	due	to	the	relatively
low	risk	and	limited	availability	of	time	and	resources.

Table	2-5:	"Cut	Line"	for	ATM	Features/Attributes

ATM	Software
Likelihood Impact Priority

Features Attributes

Withdraw	cash High High 6

To	Be	Tested

Deposit	cash Medium High 5

Usability Medium High 5

Transfer	funds Medium Medium4

Purchase	stamps High Low 4

Security Low High 4

Make	a	loan
payment Low Medium3

Not	to	Be	Tested	(or
tested	less)Check	account

balance Low Medium3

Performance Low Medium3

Of	course,	as	time	goes	by	and	estimates	are	"honed,"	the	cut	line	may	have	to	be	moved
up	or	down	(or	the	amount	of	testing	of	lower-risk	features	or	attributes	may	be	reduced).	If
the	system	is	very	risky	and	it's	unacceptable	to	have	features	go	untested,	additional	time
and/or	resources	must	be	allocated.	Wishful	thinking	doesn't	work	here.	An	important	job	of
the	test	manager	is	to	present	the	information	and	decide	what	can	and	can't	be	done	with
the	resources	that	are	available.	The	software	risk	analysis	is	a	wonderful	tool	to	use	with
upper	management	to	gain	buy-in	for	schedules,	budgets,	and	allocation	of	resources.

Step	10:	Consider	Mitigation

Some	companies	like	to	add	a	column	to	their	software	risk	analysis	called	mitigation.	If	the
withdraw	cash	feature	is	rated	a	6	(i.e.,	high	likelihood	and	high	impact)	the	test	or
development	group	may	decide	to	consider	a	way	to	lower	or	mitigate	the	risk.	For
example,	the	mitigation	might	be	that	all	of	the	code	and	design	associated	with	the
withdraw	cash	feature	will	undergo	rigorous	code	and	design	inspections.	Or,	maybe	a
prototype	of	the	deposit	cash	feature	will	be	built	early	in	order	to	allow	users	to	provide
early	feedback	on	the	usability	of	this	feature.	This	may	be	accomplished	with	a	"paper"
prototype	or	by	using	a	more	formal	prototype	in	a	usability	lab.	Another	mitigation	might	be
to	add	an	extra	layer	of	test	such	as	beta	testing	(refer	to	Chapter	4).	Table	2-6	includes	a
column	for	mitigated	priorities.	Notice	that	only	the	withdraw	cash	feature,	deposit	funds
feature,	and	usability	attribute	were	mitigated	for	this	particular	project.	Some	projects	may
warrant	the	inclusion	of	a	mitigation	column,	while	others	don't	-	the	choice	is	yours	and	may
vary	depending	on	the	project.	Notice	that	the	mitigation	activities	may	require	action	by
developers,	users,	testers,	or	others,	which	is	another	reason	why	the	risk	analysis	team
should	include	people	from	these	groups.	Whether	implicitly	or	explicitly,	you	should

somehow	account	for	mitigation	during	the	creation	of	your	test	plan.

Table	2-6:	Mitigated	List	of	Priorities	for	ATM	Features/Attributes

ATM	Software
Likelihood Impact Priority Mitigation

Features Attributes

Withdraw	cash High High 6 Code	inspection

Deposit	cash Medium High 5 Early	prototype

Usability Medium High 5 Early	user	feedback

Security Medium High 5

Transfer	funds Medium Medium 4

Purchase	stamps High Low 4

Make	a	loan	payment Low Medium 3

Check	account	balance Low Medium 3

Performance Low Medium 3

Key
Point

Risk	mitigation	helps	reduce	the	likelihood	of	a	failure,	but	does	not	affect	the
impact.

At	this	point,	you	should	have	completed	the	first	draft	of	your	software	risk	analysis.	This
means	that	you've	already	accomplished	something	that	most	test	groups	fail	to	do.	The
software	risk	analysis	will	have	to	be	revisited	occasionally	in	order	to	update	it	as	changes
in	requirements,	scope,	design,	schedule,	and	other	factors	occur.	When	you	move	to	the
next	version	of	software,	you	can	use	the	current	risk	analysis	as	the	basis	for	the	new
analysis.	Without	a	doubt,	you'll	find	that	on	subsequent	releases	the	risk	will	naturally	be
higher	for	those	components	undergoing	change.	Although	this	isn't	a	hard	and	fast	rule,
subsequent	revisions	to	support	new	releases	often	require	greater	changes	to	the
likelihood	column	than	the	impact	column	unless	major	functionality	changes	have	been
introduced.

Team-Fly 	

Team-Fly

	

Planning	Risks	and	Contingencies
Now,	let's	go	on	the	other	side	of	risk	management	and	take	a	look	at	planning	risks,	which
are	unscheduled	events	or	late	activities	that	occur	which	may	jeopardize	the	testing
schedule.	The	purpose	of	this	risk	analysis	is	to	determine	the	best	contingencies	in	the
event	that	one	of	the	planning	risks	occurs.	This	is	important	because	the	scope	and	nature
of	a	project	almost	always	change	as	the	project	progresses.	Most	test	managers	find	that
during	the	planning	phases,	the	users	and	developers	are	much	more	likely	to	sit	down	and
make	rational	decisions	on	what	to	do	if	one	of	the	planning	risks	occurs.	If	the	decision	is
made	in	"the	heat	of	battle"	near	the	end	of	the	project,	emotions	and	politics	are	much
more	likely	to	be	the	primary	drivers	of	the	decision-making	process.

Key
Point

Planning	risks	are	unscheduled	events	or	late	activities	that	may	jeopardize
the	testing	schedule.

Some	common	planning	risks	include:
Delivery	dates

Staff	availability

Budget

Environmental	options

Tool	inventory

Acquisition	schedule

Participant	buy-in

Training	needs

Scope	of	testing

Lack	of	requirements

Risk	assumptions

Usage	assumptions

Resources

Feature	creep

Poor	quality	s/w

Most	of	us	have	taken	part	in	projects	where	the	schedule	is	at	best	ambitious	and	at	worst
impossible.	Once	an	implementation	date	has	been	set,	it's	often	considered	sacred.
Customers	may	have	been	promised	a	product	on	a	certain	date,	management's	credibility

is	on	the	line,	corporate	reputation	is	at	stake,	or	competitors	may	be	breathing	down	your
neck.	At	the	same	time,	as	an	organization,	you	may	have	stretched	your	resources	to	the
limit.	Planning	risks	are	anything	that	adversely	affects	the	planned	testing	effort.	Perhaps
the	start	of	the	project	is	slightly	delayed,	or	a	major	software	vendor	releases	a	new
version	of	the	operating	system	that	the	application	will	run	on.	It's	not	our	purpose	here	to
address	the	many	reasons	why	we	so	often	find	ourselves	in	this	unenviable	spot.	Rather,
we	would	like	to	talk	about	what	can	be	done	about	it.	Case	Study	2-1	describes	a	common
scenario	in	many	organizations	along	with	some	possible	contingencies.

Case	Study	2-1:	Suppose	Jane	Doe	resigned	and	your	ambitious	schedule	suddenly
became	impossible.	What	would	you	do?

The	Deliverable	Is	the	Date

Consider	the	following	scenario.	Your	VP	has	promised	the	next	release	of	your
product	on	a	certain	date.	The	date	seems	very	aggressive	to	you	in	light	of	the
available	resources	and	the	need	to	release	a	high-quality	product	(after	the	last
release	failed	spectacularly).	Then,	the	unthinkable	happens.	Jane	Doe	takes	a	job
with	your	competitor,	leaving	a	huge	gap	in	your	company's	knowledge	base	(or	a	key
component	is	late,	or	the	requirements	change,	or	some	other	planning	risk	occurs).
What	was	once	an	ambitious	schedule	now	appears	to	be	impossible.	What	are	your
choices	or	contingencies?

1.	 Alter	the	schedule	í	which	marketing	says	can't	be	done...

2.	 Reduce	the	scope	í	but	we	promised	our	customers...

3.	 Reduce	quality,	which	usually	means	reduce	testing	or	allow	more	defects	in
the	final	product	í	but	our	last	release	failed!!!

4.	 Add	resources	(including	overtime)	í	but	there	are	none	to	add	and	everyone
is	already	working	around	the	clock...

5.	 Punt...

Unfortunately,	all	of	the	choices	listed	above	seem	bad	and,	all	too	often,
management	decides	that	they're	all	unacceptable.	If	management	does	not	make
proactive	decisions	during	the	planning	stage,	the	technical	staff	will	often	end	up
making	the	choices	by	default.	Initially,	more	resources	may	be	added	in	the	form	of
overtime.	If	this	doesn't	solve	the	problem,	the	team	will	begin	to	take	shortcuts	--
eliminating	a	document	here,	a	review	there,	or	eliminating	an	entire	set	of	tests.	Of
course,	the	quality	suffers.

If	the	project	is	still	in	jeopardy,	functionality	that	is	not	absolutely	essential	will	be
rescheduled	for	a	later	release	or	the	date	may	be	slipped.	Eventually,	the	new	target
date	may	be	met	when	a	watered-down	system	of	poor	quality	is	delivered	to	the
customer	late,	by	a	very	frustrated	development	team.	Sound	familiar?

Identifying	planning	risks	and	contingencies	helps	you	make	intelligent,	informed	decisions.
Almost	every	project	team	can	identify	the	planning	risks	that	cause	concern:	late
requirements,	test	environment	problems,	late	delivery	of	software,	etc.	Our	goal	is	to
decide	in	advance	what	to	do	if	one	of	these	planning	risks	comes	true.	In	our	opinion,	the
only	possible	contingencies	that	exist	are:

reduce	the	scope

delay	implementation

add	resources

reduce	quality	processes

Key
Point

The	major	focus	of	the	section	Planning	Risks	and	Contingencies	in	the	IEEE
Standard	829-1998	is	on	planning	risks	(as	opposed	to	software	risks).

Although	not	universally	used,	planning	risks	and	contingencies	are	more
commonly	used	than	software	risk	analysis.

However,	you	may	encounter	many	different	"flavors"	of	these	four	contingencies,	depending
on	your	organization	and	the	details	of	the	project.	For	example,	"add	resources"	might
mean	overtime	for	the	prime	staff	or	it	could	mean	bringing	in	additional	testers.	Case	Study
2-2	lists	some	examples	of	planning	risks	and	contingencies.

Case	Study	2-2:	Sample	Planning	Risk	and	Contingencies

Sample	Planning	Risk

The	user	introduces	a	major	requirements	change	late	in	the	software	lifecycle.

Sample	Contingency	#1

Ask	the	user	group	to	contribute	more	users	to	the	testing	effort	(i.e.,	add	more
resources).

Sample	Contingency	#2

Decide	not	to	implement	a	low-priority	feature	until	a	later	release	(e.g.,	reduce	the
scope).

Sample	Contingency	#3

Decide	not	to	test	(or	at	least	to	test	less)	some	of	the	low-risk	features	identified	in
the	course	of	the	software	risk	analysis	(i.e.,	reduce	quality	processes).

Case	Study	2-3:	Sample	Planning	Risk	and	Contingencies

Sample	Planning	Risk

The	size	of	the	project	keeps	growing	í	this	is	a	double	whammy.	Not	only	do	testing
resources	need	to	grow	because	of	the	increased	size	of	the	project,	but	productivity
rates	for	software	development	and	testing	typically	decrease	as	the	size	of	the	project
increases.

Sample	Contingency	#1

Add	resources	(e.g.,	outsource,	add	users,	add	developers,	authorize	overtime).

Sample	Contingency	#2

Reduce	the	scope	of	the	project.	Choose	a	strategy	of	incremental	delivery	to	the
customer.

Sample	Contingency	#3

Reduce	testing	of	some	of	the	lower-risk	modules	(i.e.,	reduce	quality	processes).

Sample	Contingency	#4

Delay	implementation.

As	you	can	see,	all	of	the	contingencies	in	Case	Studies	2-2	and	2-3	involve	compromise.
But	without	planning	risks	and	contingencies,	the	developers	and	testers	are	forced	to	make
these	choices	on	the	fly.	The	software	risk	analysis	and	the	analysis	of	the	planning	risks
and	contingencies	work	together.	Recall	our	Automated	Teller	Machine	(ATM)	example	from
the	previous	section.	The	risk	analysis	process	helped	us	identify	the	software	risks,	which,
in	turn,	helped	us	focus	and	prioritize	our	testing	effort	in	order	to	reduce	those	risks.

The	planning	risks	help	us	to	do	the	"What	if…"	and	develop	contingencies.	For	example,
what	if	Jane	Doe	really	does	leave	and	her	departure	causes	the	software	to	be	delivered
to	the	test	group	late?	One	of	the	contingencies	was	to	reduce	quality	(this	usually	means
less	testing).	If	this	contingency	befalls	us,	we	would	probably	want	to	go	back	to	the
software	risk	analysis	and	consider	reducing	the	testing	of	the	least	critical	components
(i.e.,	moving	the	cut	line	up).	Refer	to	Step	9	of	the	Software	Risk	Process	for	information
on	the	cut	line.

It	should	be	apparent	at	this	point	that	planning	risks,	software	risks,	features/attributes	to
be	tested,	features/attributes	not	to	be	tested,	and	indeed	the	entire	testing	strategy	are
built	around	the	concept	of	using	risk	to	prioritize	the	testing	effort.

Project	Assumptions

Some	project	plans	and	even	some	test	plans	have	a	section	called	Assumptions.	In	many
cases,	these	assumptions	will	become	planning	risks	if	they	turn	out	to	be	false.	Suppose,
for	example,	management	assumes	that	the	very	experienced	Team	X	will	be	developing	the
transfer	funds	feature	for	your	ATM	software.	If	this	feature	is	outsourced	to	another
company	with	an	unknown	track	record	instead,	the	likelihood	of	failure	may	increase	or
decrease,	depending	on	the	skills	of	this	outside	resource.	Consider	the	following	as	another
example.	If	you	assume	there	will	be	10	testers,	but	in	reality	there	are	only	5	available,	this
is	a	planning	risk	even	though	it	may	have	been	originally	recorded	as	an	assumption.

While	there	are	many	different	ways	to	perform	a	risk	analysis,	this	chapter	has	identified
two	distinct	types	of	risk	analysis	that	have	worked	well	for	our	clients,	students,	and
colleagues	over	the	years.	Software	risk	analysis	helps	you	decide	what	features	and
attributes	should	be	tested	and	helps	you	assign	priorities	to	these	items.	Planning	risk
analysis	helps	you	decide	what	to	do	in	the	event	that	an	unplanned	problem	arises.
Effective	risk	analysis	is	a	joint	effort	of	developers,	testers,	subject-matter	experts,
marketers,	and	other	willing	and	able	participants.	Unfortunately,	in	many	companies,	risk
analysis	is	not	done	in	any	formal	sense.	After	reading	this	chapter,	we	hope	that	you'll	have
a	clear	understanding	of	how	to	perform	or	improve	risk	analysis	within	your	organization
and	understand	its	benefits	to	you	and	your	organization.

Key
Point

Planning	risk	analysis	helps	you	decide	what	to	do	in	the	event	that	an
unplanned	problem	arises.

Team-Fly 	

Team-Fly

	

Chapter	3:	Master	Test	Planning

Overview
"Make	no	little	plans;	they	have	no	magic	to	stir	men's	blood."

—	Daniel	Hudson	Burnham

"Plans	must	be	simple	and	flexible.	Actually,	they	only	form	a	datum	plane	from	which
you	build	as	necessity	directs	or	opportunity	offers.	They	should	be	made	by	the
people	who	are	going	to	execute	them."

—	George	S.	Patton

Test	planning	is	one	of	the	keys	to	successful	software	testing,	yet	it's	frequently	omitted
due	to	time	constraints,	lack	of	training,	or	cultural	bias.	A	survey	taken	at	a	recent	STAR
conference	showed	that	81%	of	the	companies	participating	in	the	survey	completed	test
plans.	That	doesn't	sound	too	bad,	but	our	experience	has	shown	that	many	of	those	81%
are	calling	the	testing	schedule	the	test	plan,	so	the	actual	percentage	is	probably	much
less.	Testing	without	a	plan	is	analogous	to	developing	software	without	a	project	plan	and
generally	occurs	for	the	same	reason	-	pressure	to	begin	coding	(or	in	this	case,	testing)	as
soon	as	possible.	Many	organizations	measure	progress	in	development	by	modules
completed	or	lines	of	code	delivered,	and	in	testing	by	the	number	of	test	cases	run.	While
these	can	be	valuable	measures,	they	don't	recognize	planning	as	a	worthwhile	activity.

Key
Point

"Planning	is	the	art	and	science	of	envisioning	a	desired	future	and
laying	out	effective	ways	of	bringing	it	about."

-	Planning,	MCDP5	U.S.	Marine	Corps

Team-Fly 	

Team-Fly

	

Levels	(Stages)	of	Test	Planning
Test	planning	can	and	should	occur	at	several	levels	or	stages.	The	first	plan	to	consider	is
the	Master	Test	Plan	(MTP),	which	can	be	a	separate	document	or	could	be	included	as
part	of	the	project	plan.	The	purpose	of	the	MTP	is	to	orchestrate	testing	at	all	levels.	The
IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation	identifies	the	following
levels	of	test:	Unit,	Integration,	System,	and	Acceptance.	Other	organizations	may	use	more
or	less	than	four	levels	and	possibly	use	different	names.	Some	other	levels	(or	at	least
other	names)	that	we	frequently	encounter	include	beta,	alpha,	customer	acceptance,	user
acceptance,	build,	string,	and	development.	In	this	book,	we	will	use	the	four	levels	identified
in	the	IEEE	and	illustrated	in	figure	3-1.

	Figure	3-1:	Levels	of	Test	Planning

Key
Point

Test	planning	CAN'T	be	separated	from	project	planning.

All	important	test	planning	issues	are	also	important	project	planning	issues.

The	test	manager	should	think	of	the	Master	Test	Plan	as	one	of	his	or	her	major
communication	channels	with	all	project	participants.	Test	planning	is	a	process	that
ultimately	leads	to	a	document	that	allows	all	parties	involved	in	the	testing	process	to
proactively	decide	what	the	important	issues	are	in	testing	and	how	to	best	deal	with	these
issues.	The	goal	of	test	planning	is	not	to	create	a	long	list	of	test	cases,	but	rather	to	deal
with	the	important	issues	of	testing	strategy,	resource	utilization,	responsibilities,	risks,	and
priorities.

Key
Point Test	planning	SHOULD	be	separated	from	test	design.

In	test	planning,	even	though	the	document	is	important,	the	process	is	ultimately	more
important	than	the	document.	Discussing	issues	of	what	and	how	to	test	early	in	the	project
lifecycle	can	save	a	lot	of	time,	money,	and	disagreement	later.	Case	Study	3-1	describes
how	one	company	derived	a	great	benefit	from	their	Master	Test	Plan,	even	though	it	was
never	actually	used.

Case	Study	3-1:	If	the	Master	Test	Plan	was	so	great,	why	didn't	they	use	it?

The	"Best"	Test	Plan	We	Ever	Wrote

I	once	had	a	consulting	assignment	at	a	major	American	company	where	I	was
supposed	to	help	them	create	their	first	ever	Master	Test	Plan.	Following	up	with	the
client	a	few	months	later,	the	project	manager	told	me	that	the	creation	of	the	Master
Test	Plan	had	contributed	significantly	to	the	success	of	the	project,	but	unfortunately
they	hadn't	really	followed	the	plan	or	kept	it	up	to	date.	I	replied,	"Let	me	get	this
straight.	You	didn't	use	the	plan,	but	you	felt	that	it	was	a	major	contributor	to	your
success.	Please	explain."	The	project	manager	told	me	that	when	they	began	to	fall
behind,	they	dispensed	with	much	of	the	project	documentation,	including	the	test	plan
(sound	familiar?).	But	because	they	created	the	plan	early	in	the	project	lifecycle,
many	testing	issues	were	raised	that	normally	weren't	considered	until	it	was	too	late
to	take	action.	The	planning	process	also	heightened	the	awareness	of	the	importance
of	testing	to	all	of	the	project	participants.	Now,	I	believe	that	keeping	test	plans	up	to
date	is	important,	so	that's	not	the	purpose	of	telling	you	this	story.	Rather,	I'm	trying	to
stress	the	importance	of	the	testing	process,	not	just	the	document.

—	Rick	Craig

Key
Point

"We	should	think	of	planning	as	a	learning	process	-	as	mental
preparation	which	improves	our	understanding	of	a	situation…	Planning
is	thinking	before	doing."

-	Planning,	MCDP5	U.S.	Marine	Corps

Key
Point

Ike	said	it	best:	"The	plan	is	nothing,	the	planning	is	everything."

-	Dwight	D.	Eisenhower

In	addition	to	the	Master	Test	Plan,	it	is	often	necessary	to	create	detailed	or	level-specific
test	plans.	On	a	larger	or	more	complex	project,	it's	often	worthwhile	to	create	an
Acceptance	Test	Plan,	System	Test	Plan,	Integration	Test	Plan,	Unit	Test	Plan,	and	other
test	plans,	depending	on	the	scope	of	your	project.	Smaller	projects,	that	is,	projects	with
smaller	scope,	number	of	participants,	and	organizations,	may	find	that	they	only	need	one
test	plan,	which	will	cover	all	levels	of	test.	Deciding	the	number	and	scope	of	test	plans
required	should	be	one	of	the	first	strategy	decisions	made	in	test	planning.	As	the
complexity	of	a	testing	activity	increases,	the	criticality	of	having	a	good	Master	Test	Plan
increases	exponentially,	as	illustrated	in	Figure	3-2.

	
Figure	3-2:	Importance	of	Test	Planning

Detailed	level	planning	is	explained	in	Chapter	4	-	Detailed	Test	Planning.	For	the	most	part,
the	major	considerations	for	detailed	test	plans	are	the	same	as	those	for	the	master	test
plan,	but	differ	in	scope	and	level	of	detail.	In	fact,	it's	normally	desirable	to	use	the	same
basic	template	for	the	detailed	test	plans	that	you	use	for	the	master	test	plan.

Team-Fly 	

Team-Fly

	

Audience	Analysis
The	first	question	you	must	ask	yourself	when	creating	a	test	plan	is,	"Who	is	my	audience?"
The	audience	for	a	Unit	Test	Plan	is	quite	different	than	the	audience	for	an	Acceptance	Test
Plan	or	a	Master	Test	Plan,	so	the	wording,	use	of	acronyms,	technical	terms,	and	jargon
should	be	adjusted	accordingly.	Also	keep	in	mind	that	various	audiences	have	different
tolerances	for	what	they	will	and	will	not	read.	Executives,	for	example,	may	not	be	willing	to
read	an	entire	Master	Test	Plan	if	it's	50	pages	long,	so	you	might	have	to	include	an
executive	summary.	In	fact,	you	may	want	to	avoid	making	the	test	plan	prohibitively	long	or
no	one	will	read	(and	use)	it.	If	your	test	plan	is	too	long,	it	may	be	necessary	to	create	a
number	of	plans	of	reduced	scope	built	around	subsystems	or	functionality.	Sometimes,	the
size	of	your	test	plans	can	be	managed	and	limited	by	the	judicious	use	of	references.	If	you
decide	to	use	references,	though,	you	should	carefully	consider	the	implications.	Most
people	don't	really	want	to	gather	a	stack	of	documents	just	so	they	can	read	a	single	test
plan.

Key
Point

If	your	test	plan	is	too	long,	it	may	be	necessary	to	create	a	number	of	plans
of	reduced	scope	built	around	subsystems	or	functionality.

Since	we	can't	predict	how	long	a	document	your	audience	is	willing	to	read,	we	can't	say
that	your	test	plan	should	not	exceed	any	particular	length	such	as	5,	10,	15,	or	100	pages.
Instead,	we	recommend	that	you	survey	the	potential	audience	of	your	test	plan	to
determine	how	long	a	document	they	are	willing	to	read	and	use.	Some	military
organizations,	for	example,	may	be	accustomed	to	using	documents	of	100	pages	or	more,
while	members	of	a	small	entrepreneurial	firm	may	only	tolerate	10	pages	or	less.

Team-Fly 	

Team-Fly

	

Activity	Timing
Test	planning	should	be	started	as	soon	as	possible.	Generally,	it's	desirable	to	begin	the
Master	Test	Plan	at	about	the	same	time	the	requirements	specifications	and	the	project
plan	are	being	developed.	Figure	3-3	relates	the	approximate	start	times	of	various	test
plans	to	the	software	development	lifecycle.

	Figure	3-3:	Timing	of	Test	Planning

If	test	planning	is	begun	early	enough,	it	can	and	should	have	a	significant	impact	on	the
content	of	the	project	plan.	Acceptance	test	planning	can	be	started	as	soon	as	the
requirements	definition	process	has	begun.	We	have	one	client,	for	example,	that	actually
includes	the	acceptance	test	plan	and	high-level	test	scenarios	as	part	of	the	requirements
specification.	Similarly,	the	system,	integration,	and	unit	test	plans	should	be	started	as
early	as	possible.

Test	planners	often	get	frustrated	when	they	begin	their	planning	process	early	and	find	out
that	all	of	the	information	needed	is	either	not	available	or	in	a	state	of	flux.	Experienced	test
planners	have	learned	to	use	TBD	(To	Be	Determined)	when	they	come	to	a	part	of	the	plan
that	is	not	yet	known.	This,	in	itself,	is	important	because	it	allows	planners	to	see	where	to
focus	their	efforts	and	it	highlights	what	has	yet	to	be	done.	It's	true	that	plans	that	are
written	early	will	probably	have	to	be	changed	during	the	course	of	the	software
development	and	testing.	Sometimes,	the	documenting	of	the	test	plan	will	precipitate
changes	to	the	strategy.	This	change	process	is	important	because	it	records	the	progress
of	the	testing	effort	and	helps	planners	become	more	proficient	on	future	projects.

Key
Point

As	a	rule	of	thumb,	when	using	TBD	(To	Be	Determined),	it's	desirable	to
record	who's	responsible	for	resolution	of	the	TBD	and	a	target	completion
date.

Team-Fly 	

Team-Fly

	

Standard	Templates
It's	important	that	an	organization	have	a	template	for	its	test	plans.	The	templates	used	in
this	book	are	based	on	the	IEEE	Std.	829-1998	for	Software	Test	Documentation,	which
provides	a	good	basis	for	creating	your	own	customized	template.	In	many	cases,	you	may
find	that	the	IEEE	template	meets	your	particular	needs	without	requiring	modifications.

If	a	template	doesn't	meet	your	particular	requirements,	you	should	feel	free	to	customize	it
as	necessary.	For	example,	we	use	a	slightly	modified	version	of	the	IEEE	test	plan
template	in	this	book	because	we	believe	that	risk	should	be	divided	into	two	sections,
rather	than	the	one	section	included	in	the	standard	template.	Refer	to	Chapter	2	-	Risk
Analysis	for	a	detailed	explanation.

Over	time,	it's	likely	that	you'll	find	some	of	the	required	items	on	your	template	are	always
left	blank.	If	you're	confident	that	those	items	are	not	germane	to	your	organization,	there's
no	need	to	maintain	those	fields	in	your	template,	so	remove	them.	If	the	wording	in	certain
sections	is	constant	from	plan	to	plan,	then	you	must	first	decide	if	you've	really	addressed
the	issue.	If	you're	confident	that	you've	adequately	addressed	the	issue,	then	maybe	that
section	should	become	part	of	your	standard	methodology	and	be	removed	from	the	test
plan.	Remember	that	a	test	plan	should	consider	the	unique	situation	of	a	given	project	or
release	and	may	need	to	be	customized	for	some	projects.	Since	different	sizes	and	types
of	projects	require	different	amounts	of	documentation,	it	may	be	wise	to	identify	some
sections	of	the	template	as	optional.

Key
Point

Since	different	sizes	and	types	of	projects	require	different	amounts	of
documentation,	it	may	be	wise	to	identify	some	sections	of	the	template	as
optional.

Case	Study	3-2	describes	a	strategy	that	some	companies	use	to	improve	the	usability	of
their	templates	and,	consequently,	recognize	their	employees	for	their	outstanding
achievements.

Case	Study	3-2:	What	do	your	company's	templates	have	in	common	with	employee
morale?

A	Mark	of	Pride

One	good	idea	that	we've	seen	at	several	companies	is	the	inclusion	of	sample
documents	such	as	test	plans	and	supporting	material	for	the	template.	You	could
include	one	sample	each	from	a	small,	medium,	and	large	project.	If	your
organization	has	different	types	of	applications,	you	might	consider	having	a	sample
template	for	each	of	them	(e.g.,	client/server,	Web,	etc.).	In	one	company,	it	was
regarded	as	a"	mark	of	pride"	if	your	test	plan	was	chosen	to	be	included	as	a	sample
in	the	template.

Team-Fly 	

Team-Fly

	

Sections	of	a	Test	Plan
There	are	many	issues	that	should	be	considered	in	developing	a	test	plan.	The	outline	that
we	describe	(refer	to	Figure	3-4)	and	recommend	is	a	slightly	modified	version	of	the	IEEE
Std.	829-1998	document	for	test	planning.	The	modifications	that	we've	made	to	this
template	include	breaking	the	standard	IEEE	section	Risks	and	Contingencies	into	two
sections:	Software	Risk	and	Planning	Risks	and	Contingencies.	Furthermore,	we've	added
sections	for	Table	of	Contents,	References,	and	Glossary,	which	aren't	included	in	the	IEEE
Standard.	The	parts	of	the	template	in	Figure	3-4	that	we've	added	to	the	IEEE	template
are	shown	in	italics.	Please	feel	free	to	modify	this	template	(or	any	other	template)	to	meet
your	needs.	This	outline	is	useful	for	creating	any	kind	of	test	plan:	Master,	Acceptance,
System,	Integration,	Unit,	or	whatever	you	call	the	levels	of	test	planning	within	your
organization.

IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation	Template	for
Test	Planning

Contents
1.	 Test	Plan	Identifier

2.	 Table	of	Contents

3.	 References

4.	 Glossary

5.	 Introduction

6.	 Test	Items

7.	 Software	Risk	Issues

8.	 Features	to	Be	Tested

9.	 Features	Not	to	Be	Tested

10.	 Approach

11.	 Item	Pass/Fail	Criteria

12.	 Suspension	Criteria	and	Resumption	Requirements

13.	 Test	Deliverables

14.	 Testing	Tasks

15.	 Environmental	Needs

16.	 Responsibilities

17.	 Staffing	and	Training	Needs

18.	 Schedule

19.	 Planning	Risks	and	Contingencies

20.	 Approvals

Figure	3-4:	Template	for	Test	Planning	from	IEEE	Std.	829-1998

1.0	Test	Plan	Identifier

In	order	to	keep	track	of	the	most	current	version	of	your	test	plan,	you	should	assign	it	an
identifying	number.	If	you	have	a	standard	documentation	control	system	in	your
organization,	then	assigning	numbers	should	be	second	nature	to	you.	A	test	plan	identifier	is
a	unique	company-generated	number	used	to	identify	a	version	of	a	test	plan,	its	level,	and
the	version	of	software	that	it	pertains	to.

Keep	in	mind	that	test	plans	are	like	other	software	documentation	-	they're	dynamic	in
nature	and,	therefore,	must	be	kept	up-to-date.	When	we're	auditing	the	testing	practices	of
an	organization,	we	always	check	for	the	test	plan	identifier.	If	there	isn't	one,	this	usually
means	that	the	plan	was	created	but	never	changed	and	probably	never	used.	In	some
cases,	it	may	even	mean	that	the	plan	was	created	only	to	satisfy	International	Standards
Organization	(ISO)	or	Capability	Maturity	Model	(CMM)	guidelines,	or	simply	because	the
boss	said	you	had	to	have	a	plan.	Occasionally,	we	even	encounter	a	situation	where	the
test	plan	was	written	after	the	software	was	released.	Our	colleague,	Lee	Copeland,	calls
this	"post-implementation	test	planning."

Key
Point

Due	to	the	dynamic	nature	of	test	plans,	it	may	be	more	efficient	to
disseminate	and	maintain	the	documents	electronically.

2.0	Table	of	Contents

The	table	of	contents	should	list	each	topic	that's	included	in	the	test	plan,	as	well	as	any
references,	glossaries,	and	appendices.	If	possible,	the	table	of	contents	should	be	two	or
more	levels	deep	to	give	the	reader	as	much	detail	about	the	content	of	each	topic	as
possible.	The	reader	can	then	use	this	information	to	quickly	review	the	topics	of	interest,
without	having	to	read	through	the	document	from	beginning	to	end.

3.0	References

In	the	IEEE	Std.	829-1998	Standard	for	Test	Documentation,	references	are	included	in	the
Introduction,	but	we've	separated	them	into	their	own	section	to	emphasize	their
importance.

References	recommended	in	the	IEEE	include:

Project	Authorization

Project	Plan

QA	Plan

Configuration	Management	Plan

Relevant	Policies

Relevant	Standards

The	IEEE	standard	also	specifies	that	in	multi-level	test	plans,	each	lower-level	plan	must
reference	the	next	higher-level	plan.	Other	references	to	consider	are	requirements
specifications,	design	documents,	and	any	other	documents	that	provide	additional	related
information.	Each	listing	in	this	section	should	include	the	name	of	the	document,	date	and
version,	and	the	location	or	point	of	contact.	References	add	credibility	to	your	test	plan,
while	allowing	the	reader	to	decide	which	topics	warrant	further	investigation.

4.0	Glossary

A	glossary	is	used	to	define	any	terms	and	acronyms	used	in	the	document.	When	compiling
the	glossary,	be	sure	to	remember	who	your	audience	is	and	include	any	product-specific
terms	as	well	as	technical	and	testing	terms.	Some	readers,	for	example,	may	not
understand	the	meaning	of	a	"level"	as	it	pertains	to	test	planning.	A	glossary	provides
readers	with	additional	information,	beyond	the	simple	meaning	of	a	term	derived	from	its
usage.

5.0	Introduction	(Scope)

There	are	two	main	things	to	include	in	the	Introduction	section:	a	basic	description	of	the
scope	of	the	project	or	release	including	key	features,	history,	etc.,	and	an	introduction	that
describes	the	scope	of	the	plan.	The	scope	of	the	project	may	include	a	statement	such	as:

"This	project	will	cover	all	of	the	features	currently	in	use,	but	will	not	cover	features
scheduled	for	general	availability	in	release	5.0."

The	scope	of	the	plan	might	include	a	statement	such	as:

"This	Master	Test	Plan	covers	integration,	system,	and	acceptance	testing,	but	not
unit	testing,	since	unit	testing	is	being	done	by	the	vendor	and	is	outside	the	scope
of	this	organization."

Figure	3-5	illustrates	some	of	the	considerations	when	deciding	the	scope	of	the	Master
Test	Plan	(MTP).	For	embedded	systems,	the	MTP	might	cover	the	entire	product	(including
hardware)	or	only	the	software.	The	MTP	might	include	only	testing	or	might	address	other

evaluation	techniques	such	as	reviews,	walkthroughs,	and	inspections.	Similarly,	a	project
may	have	one	MTP,	or	large	projects	may	have	multiple	plans	organized	around
subsystems.

	
Figure	3-5:	Scope	of	Test	and	Evaluation	Plans

6.0	Test	Items

This	section	of	the	test	plan	describes	programmatically	what	is	to	be	tested	within	the
scope	of	this	test	plan	and	should	be	completed	in	collaboration	with	the	configuration	or
library	manager	and	the	developer.	This	section	can	be	oriented	to	the	level	of	the	test	plan.
For	higher	levels,	this	section	may	be	organized	by	application	or	by	version.	For	lower
levels,	it	may	be	organized	by	program,	unit,	module,	or	build.	If	this	is	a	Master	Test	Plan,
for	example,	this	section	might	include	information	pertaining	to	version	2.2	of	the	accounting
software,	version	1.2	of	the	user	manual	and	version	4.5	of	the	requirements	specification.	If
this	is	an	Integration	or	Unit	Test	Plan,	this	section	might	actually	list	the	programs	to	be
tested,	if	they're	known.	The	IEEE	standard	specifies	that	the	following	documentation	be
referenced,	if	it	exists:

Requirements	Specification

Design	Specification

User's	Guide

Operations	Guide

Installation	Guide

Incident	Reports	that	relate	to	the	test	items

Items	that	are	to	be	specifically	excluded	from	testing	should	be	identified.

7.0	Software	Risk	Issues

The	purpose	of	discussing	software	risk	is	to	determine	what	the	primary	focus	of	testing
should	be.	Generally	speaking,	most	organizations	find	that	their	resources	are	inadequate
to	test	everything	in	a	given	release.	Outlining	software	risks	helps	the	testers	prioritize
what	to	test	and	allows	them	to	concentrate	on	those	areas	that	are	likely	to	fail	or	have	a
large	impact	on	the	customer	if	they	do	fail.	Organizations	that	work	on	safety-	critical
software	can	usually	use	the	information	from	their	safety	and	hazard	analysis	as	the	basis

for	this	section	of	the	test	plan.

We've	found,	though,	that	in	most	companies	no	attempt	is	made	to	verbalize	software	risks
in	any	fashion.	If	your	company	doesn't	currently	do	any	type	of	risk	analysis,	starting	simple
is	the	recommended	approach.	Organize	a	brainstorming	session	among	a	small	group	of
users,	developers,	and	testers	to	find	out	what	their	concerns	are.	Start	the	session	by
asking	the	group,	"What	worries	you?"	We	don't	use	the	word	risk,	which	we	find	can	be
intimidating	to	some	people.	Some	examples	of	software	risks	include:

Interfaces	to	other	systems

Features	that	handle	large	sums	of	money

Features	that	affect	many	(or	a	few	very	important)	customers

Highly	complex	software

Modules	with	a	history	of	defects	(from	a	defect	analysis)

Modules	with	many	or	complicated	changes

Security,	performance,	and	reliability	issues

Features	that	are	difficult	to	change	or	test

You	can	see	that	the	risk	analysis	team	needs	users	to	judge	the	impact	of	failure	on	their
work;	as	well	as	developers	and	testers	to	analyze	the	likelihood	of	failure.	The	list	of
software	risks	should	have	a	direct	effect	on	what	you	test,	how	much	you	test,	and	in	what
order	you	test.	Risk	analysis	is	hard,	especially	the	first	time	you	try	it,	but	you	will	get
better,	and	it's	worth	the	effort.	Risk	analysis	is	covered	in	depth	in	Chapter	2.

Key
Point What	you	test	is	more	important	than	how	much	you	test.

8.0	Features	to	Be	Tested

This	section	of	the	test	plan	includes	a	listing	of	what	will	be	tested	from	the	user	or
customer	point	of	view	as	opposed	to	test	items,	which	are	a	measure	of	what	to	test	from
the	viewpoint	of	the	developer	or	library	manager.	If	you're	testing	an	Automated	Teller
Machine	(ATM),	for	example,	some	of	the	features	to	be	tested	might	include	withdraw
cash,	deposit	cash,	check	account	balance,	transfer	funds,	purchase	stamps,	and	make	a
loan	payment.	For	lower	levels	of	test,	the	features	to	be	tested	might	be	much	more
detailed.	Table	3-1	shows	how	the	risk	analysis	described	in	Section	7.0	is	based	on
analyzing	the	relative	risk	of	each	feature	identified	in	the	Features	to	Be	Tested	section.

Table	3-1:	Prioritized	List	of	ATM	Features/Attributes	with	"Cut	Line"

ATM	Software

Likelihood Impact Priority
Features Attributes

Withdraw	cash High High 6

To	Be	Tested

Deposit	cash Medium High 5

Usability Medium High 5

Transfer	funds Medium Medium4

Purchase	stamps High Low 4

Security Low High 4

Make	a	loan
payment Low Medium3

Not	to	Be	Tested	(or
tested	less)Check	account

balance Low Medium3

Performance Low Medium3

One	benefit	of	using	the	list	of	features	to	be	tested	as	the	basis	for	software	risk	analysis
is	that	it	can	help	determine	which	low-risk	features	should	be	moved	to	Section	9.0	-
Features	Not	to	Be	Tested,	if	your	project	falls	behind	schedule.

9.0	Features	Not	to	Be	Tested

This	section	of	the	test	plan	is	used	to	record	any	features	that	will	not	be	tested	and	why.
There	are	many	reasons	why	a	particular	feature	might	not	be	tested.	Maybe	the	feature
wasn't	changed,	it's	not	yet	available	for	use,	or	it	has	a	good	track	record;	but	whatever
the	reason	a	feature	is	listed	in	this	section,	it	all	boils	down	to	relatively	low	risk.	Even
features	that	are	to	be	shipped	but	not	yet	enabled	and	available	for	use	pose	at	least	a
certain	degree	of	risk,	especially	if	no	testing	is	done	on	them.	This	section	will	certainly
raise	a	few	eyebrows	among	managers	and	users,	many	of	whom	cannot	imagine
consciously	deciding	not	to	test	a	feature,	so	be	careful	to	document	the	reason	you
decided	not	to	test	a	particular	feature.	These	same	managers	and	users,	however,	will
often	approve	a	schedule	that	doesn't	possibly	allow	enough	time	to	test	everything.	This
section	is	about	intelligently	choosing	what	not	to	test	(i.e.,	low-risk	features),	rather	than
just	running	out	of	time	and	not	testing	whatever	was	left	on	the	ship	date.

Key
Point

Choosing	features	not	to	be	tested	allows	you	to	intelligently	decide	what	not
to	test,	rather	than	just	running	out	of	time	and	not	testing	whatever	was	left	on
the	ship	date.

Politically,	some	companies	that	develop	safety-critical	systems	or	have	a	corporate	culture
that	"requires"	every	feature	to	be	tested	will	have	a	hard	time	listing	any	features	in	this
section.	If	every	feature	is	actually	tested,	then	that's	fine.	But,	if	resources	don't	allow	that
degree	of	effort,	using	the	Features	Not	to	Be	Tested	section	actually	helps	reduce	risk	by

raising	awareness.	We've	met	many	test	managers	who	have	obtained	additional	test
resources	or	time	when	they	clearly	spelled	out	which	features	would	not	be	tested!	Case
Study	3-3	describes	one	company's	claim	that	they	test	every	feature	of	their	software.

Case	Study	3-3:	Does	your	company	really	test	every	feature?

Here	at	XYZ	Company,	"We	Test	Everything"

Once,	I	was	giving	a	series	of	Test	Management	courses	at	a	large	software
company.	I	gave	the	same	two-day	lecture	three	times	in	a	row!	I	thought	I	deserved	a
medal	for	that,	but	the	real	medal	belonged	to	the	VP	of	Testing	(yes,	they	had	a
Testing	VP)	for	sitting	through	the	same	class	three	straight	times.	Anyway,	the	only
guideline	he	gave	me	was	that	I	couldn't	talk	about	"features	NOT	to	be	tested"
because	at	his	company,	everything	was	tested!	Well,	of	course	I	forgot	what	the	VP
told	me	and	I	began	talking	to	his	staff	about	features	not	to	be	tested.	The	VP	quickly
stood	up	and	said,	"Rick,	you	know	that	here	at	the	XYZ	Company,	we	test
everything."	Meanwhile,	behind	him,	all	of	his	managers	were	mouthing	the	words,
"No,	we	don't."	Apparently,	the	only	person	who	thought	that	everything	was	being
tested	was	the	VP.	The	moral	of	the	story	is	this:	even	if	you	think	your	company	tests
every	feature	of	their	software,	chances	are	they	don't.

—	Rick	Craig

Another	important	item	to	note	is	that	this	section	may	grow	if	projects	fall	behind	schedule.
If	the	risk	assessment	identifies	each	feature	by	risk,	it's	much	easier	to	decide	which
additional	features	pose	the	least	risk	if	moved	from	Section	8.0	-	Features	to	Be	Tested	to
Section	9.0	-	Features	Not	to	Be	Tested	of	your	test	plan.	Of	course,	there	are	other	options
other	than	reducing	testing	when	a	project	falls	behind	schedule,	and	they	should	be
included	in	Section	19.0	-	Planning	Risks	and	Contingencies.

10.0	Approach	(Strategy)

Since	this	section	is	the	heart	of	the	test	plan,	some	organizations	choose	to	label	it
Strategy	rather	than	Approach.	This	section	should	contain	a	description	of	how	testing	will
be	performed	(approach)	and	explain	any	issues	that	have	a	major	impact	on	the	success	of
testing	and	ultimately	on	the	project	(strategy).	Figure	3-6	illustrates	some	typical	influences
on	strategy	decisions.

	
Figure	3-6:	Influences	on	Strategy	Decisions

For	a	Master	Test	Plan,	the	approach	to	be	taken	for	each	level	should	be	explained,
including	the	entrance	and	exit	criteria	from	one	level	to	another.	Case	Study	3-4	describes
one	company's	approach	to	testing.

Case	Study	3-4:	Example	of	the	Approach	Section	in	a	Master	Test	Plan

ABC	Company's	Approach	to	Testing

System	testing	will	take	place	in	the	test	labs	in	our	London	Office.	The	Testing	effort
will	be	under	the	direction	of	the	London	test	team,	with	support	from	the	development
staff	and	users	from	our	New	York	office.	An	extract	of	production	data	from	an	entire
month	will	be	used	for	the	duration	of	the	testing	effort.	Test	plans,	test	design	specs,
and	test	case	specs	will	be	developed	using	the	IEEE	Std.	829-1998	Standard	for
Software	Test	Documentation.	All	tests	will	be	captured	using	our	in-house	tool	for
subsequent	regression	testing.	Tests	will	be	designed	and	run	to	test	all	features	listed
in	section	8	of	the	system	test	plan.	Additionally,	testing	will	be	done	in	concert	with
our	Paris	office	to	test	the	billing	interface.	Performance,	security,	load,	reliability,	and
usability	testing	will	be	included	as	part	of	the	system	test.	Performance	testing	will
begin	as	soon	as	the	system	has	achieved	stability.	All	user	documentation	will	be
tested	in	the	latter	part	of	the	system	test.	The	system	test	team	will	assist	the
acceptance	test	team	in	testing	the	installation	procedures.	Before	bug	fixes	are
reintroduced	into	the	test	system,	they	must	first	successfully	pass	unit	testing,	and	if
necessary,	integration	testing.	Weekly	status	meetings	will	be	held	to	discuss	any
issues	and	revisions	to	the	system	test	plan,	as	required.

Exit	Criteria	from	System	Test	include:

All	test	cases	must	be	documented	and	run.

90%	of	all	test	cases	must	pass.

All	test	cases	dealing	with	the	Billing	function	must	pass.

All	Medium	and	High	defects	must	be	fixed.

Code	coverage	must	be	at	least	90%	(including	Integration	and	Unit	testing).

Methodology	Decisions

Many	organizations	use	an	"off-the-shelf"	methodology,	while	others	have	either	created	a
brand-new	methodology	from	scratch	or	have	adapted	someone	else's.	Methodology
decisions	require	management	to	answer	many	questions:

When	will	testers	become	involved	in	the	project?

When	will	test	execution	begin?

How	many	(if	any)	beta	sites	will	be	used?

Will	there	be	a	pilot	(i.e.,	a	production	system	executed	at	a	single	or	limited	number
of	sites)?

What	testing	techniques	(e.g.,	"buddy"	testing,	inspections,	walkthroughs,	etc.)	will
be	utilized?

How	many	testers	will	be	required	for	planning?	Design?	Execution?

What	testing	levels	(e.g.,	Acceptance,	System,	Integration,	Unit,	etc.)	will	be	used?

Key
Point

Refer	to	Chapter	4	-	Detailed	Test	Planning	for	more	information	on	buddy
testing.

The	left-most	column	of	Figure	3-7	shows	the	standard	levels	identified	in	the	IEEE	829-
1998	Standard	for	Software	Test	Documentation.	Many	organizations	always	try	to	use	the
same	levels	on	every	project	and	every	release,	but	some	organizations	may	choose	to
occasionally	or	always	combine	levels,	delete	levels,	add	levels,	or	call	them	by	different
names.

	
Figure	3-7:	Test	Level	Decisions

Figure	3-8	illustrates	the	test	levels	identified	in	IEEE	Std.	829-	1998	Standard	for	Test
Documentation.	Each	level	is	defined	by	a	particular	environment,	which	may	include	the
hardware	configuration,	software	configuration,	interfaces,	testers,	etc.	Notice	that	as	you
move	to	higher	levels	of	test,	the	environment	becomes	increasingly	more	realistic.	The
highest	level	of	test,	in	this	example	acceptance	testing,	should	mirror	the	production
environment	as	closely	as	possible	since	the	system	will	be	fielded	upon	successful
completion	of	the	testing.

	
Figure	3-8:	Typical	Test	Levels

Key
Point As	you	move	to	higher	levels	of	test,	the	environment	becomes	more	realistic.

Case	Study	3-5:	Many	people	who	are	used	to	actually	doing	the	coding	and	testing
are	frustrated	by	the	process	of	sitting	around	trying	to	help	us	document	a	testing
methodology	-	they	feel	like	they	should	be	doing	"real"	work.

Using	the	Test	Planning	Process	to	Create	a	Methodology

As	consultants,	we	are	often	asked	to	help	create	a	testing	methodology	for
organizations	that	don't	even	have	a	rudimentary	testing	process	in	place	-	or	at	least
not	one	that	is	documented.	We've	found	that	many	people	who	are	used	to	actually
doing	the	coding	and	testing	are	frustrated	by	the	process	of	sitting	around	trying	to
help	us	document	a	testing	methodology	-	they	feel	like	they	should	be	doing	"real"
work.	This	frustration	often	leads	to	a	documented	process	that	no	one	wants	to	use.

So,	an	alternate	approach	is	to	use	the	test	planning	process	as	a	way	to	create	a
methodology	from	the	bottom	up.	That	is,	we	choose	a	pilot	project	and	create	a
master	test	plan.	The	decisions	made	while	creating	the	master	test	plan	for	the	pilot
project	are	declared	to	be	Version	1.0	of	the	organization's	testing	methodology.

Resources

The	best-laid	plans	of	test	managers	can	easily	be	sabotaged	by	either	of	two	events:
development	is	running	late	and	will	not	be	able	to	provide	the	testing	team	with	the	builds
as	originally	scheduled,	or	the	ship	date	has	been	moved	forward	(often	due	to	competitive
pressure).	Unfortunately,	the	test	manager	has	little	control	over	these	events	and	should
therefore	ensure	that	the	testing	schedule	contains	contingencies	to	accommodate	these
possible	scenarios.

Another	strategy	decision	might	be	where	the	testing	resources	will	come	from.	If	your
organization	has	a	dedicated	test	group,	you	may	already	have	sufficient	resources.	If	the
testing	group	is	understaffed	or	has	other	priorities,	it	may	be	necessary	to	look	for	other
resources	in	the	form	of	developers,	users,	college	interns,	contractors,	support	staff,	and
others.	Unfortunately,	adding	resources	can	also	become	a	political	issue	in	some
organizations.	Some	users	may	want	nothing	to	do	with	the	testing	effort,	while	others	may
be	"miffed"	if	they	aren't	included	in	the	project.	You	can	usually	maximize	efficiency	by
adequately	staffing	your	project	from	the	beginning.	However,	you	should	avoid	the	scenario
in	which	high-priced	testing	consultants	are	just	sitting	around	(using	up	the	testing	budget)
waiting	for	development	to	provide	them	with	something	to	test.	Conversely,	bringing	on
additional	testers	late	in	the	project	can	actually	slow	down	the	process	due	to	the	steep
learning	curve.

Key
Point

According	to	Frederick	Brooks'	The	Mythical	Man-Month	"adding	more	people
to	a	late	software	project	makes	it	later."

Test	Coverage	Decisions

Several	types	of	coverage	measures	are	used	in	software	testing.	Perhaps	the	best-known
form	of	coverage	is	code	coverage,	which	measures	the	percentage	of	program
statements,	branches,	or	paths	that	are	executed	by	a	group	of	test	cases	(i.e.,	a	test	set).
Code	coverage	requires	the	assistance	of	a	special	tool	to	instrument	the	code.	These	tools
have	been	around	for	years	and	help	the	programmers	and	testers	understand	what	parts
of	the	code	are	or	are	not	executed	by	a	given	group	of	tests.	They	are	also	useful	for
identifying	"dead"	or	unexecutable	code.

Based	on	our	experiences,	code	coverage	tools	still	don't	enjoy	widespread	use.	While	it	is
not	totally	clear	why	these	tools	are	not	used	more	often,	we	believe	the	following	issues
may	be	factors:

Code	coverage	requires	the	purchase	and	subsequent	training	on	a	new	tool.

Code	coverage	metrics	are	foreign	to	some	functional	level	testers.

Code	coverage	is	almost	a	moot	point	for	organizations	that	have	entire	programs
or	even	subsystems	that	are	not	addressed	by	the	tests	due	to	time	or	resource
constraints	or	lack	of	system	knowledge.

Other	measures	include	coverage	of	requirements,	design,	and	interfaces.	Requirements
coverage	measures	the	percentage	of	business	requirements	that	are	covered	by	a	test
set,	while	design	coverage	measures	how	much	of	the	design	is	covered.	Interface
coverage	measures	the	percentage	of	interfaces	that	are	being	exercised	by	a	test	set.
Coverage	will	be	explained	in	more	detail	in	Chapter	7	-	Test	Execution.

Key
Point

Requirements	coverage	measures	the	percentage	of	business	requirements
that	are	covered	by	a	test	set,	while	design	coverage	measures	how	much	of
the	design	is	covered.

Walkthroughs	and	Inspections

The	major	focus	of	this	book	is	on	testing	and	analysis,	but	as	you	can	see	in	Figure	3-9,
software	evaluation	also	includes	another	category	called	reviews.	Reviews	of
requirements,	design,	and	code	are	examples	of	verification	techniques,	which	are	an
important	part	of	software	quality	assurance	(known	as	evaluation	in	the	STEP
methodology).	While	they	are	not	testing	activities,	they	are	complementary	activities	that
can	significantly	affect	the	test	strategy	and	should	be	included	in	the	Approach	(Strategy)
section	of	the	Master	Test	Plan.	Specifically,	they	can	have	an	impact	on	the	quality	of	the
software	being	tested	and	on	the	resources	available	for	testing.

	
Figure	3-9:	Software	Evaluation	Process

Two	of	the	most	common	types	of	reviews	are	walkthroughs	and	inspections.	It	is	not	clear
to	us	when	and	where	the	term	"walkthrough"	originated,	but	walkthroughs	have	been	in	use
longer	than	their	more	rigorous	cousin,	software	inspections.	Software	inspections	as	we
know	them	today	were	developed	and	popularized	by	Michael	Fagan	while	he	worked	for
IBM	in	the	1970s.

Key
The	IEEE	defines	an	inspection	as	a	formal	evaluation	technique	in	which
software	requirements,	design,	or	code	are	examined	in	detail	by	a	person	or

Point group	other	than	the	author,	to	detect	faults,	violations	of	development
standards,	and	other	problems.

A	walkthrough	is	a	peer	review	of	a	software	product	that	is	conducted	by	"walking	through"
the	product	sequentially	(line	by	line)	to	judge	the	quality	of	the	product	being	reviewed	and
to	discover	defects.	Most	walkthroughs	that	we've	taken	part	in	are	led	by	the	developer	of
the	product	being	reviewed.	Inspections	are	also	peer	reviews,	but	are	much	more	rigorous
and,	in	addition	to	finding	defects	in	the	product	being	inspected,	typically	employ	statistical
process	control	to	measure	the	effectiveness	of	the	inspection	process	and	to	identify
process	improvement	opportunities	in	the	entire	software	development	process.

The	IEEE	Std.	729-1983	Standard	Glossary	of	Software	Engineering	Terminology	defines
an	inspection	as:	a	formal	evaluation	technique	in	which	software	requirements,	design,	or
code	are	examined	in	detail	by	a	person	or	group	other	than	the	author	to	detect	faults,
violations	of	development	standards,	and	other	problems.	It	also	states	that	the	objective	of
software	inspections	is	to	detect	and	identify	defects	in	software	elements.

The	information	in	Table	3-2	reflects	our	thoughts	on	the	differences	between	walkthroughs
and	inspections.	The	various	books	on	walkthroughs	and	inspections	have	surprisingly
different	views	on	the	exact	definition,	purpose,	and	rigor	of	the	two	techniques.

Table	3-2:	Comparison	of	Walkthroughs	versus	Inspections

Walkthroughs Inspections

Participants Peer(s)	led	by	author Peers	in	designated	roles

Rigor Informal	to	formal Formal

Training
Required None,	informal,	or	structured Structured,	preferably	by	teams

Purpose Judge	quality,	find	defects,	training Measure/improve	quality	of	product
and	process

Effectiveness Low	to	medium Low	to	very	high,	depending	on
training	and	commitment

References

Handbook	of	Walkthroughs,
Inspections,	and	Technical	Reviews
by	Daniel	P.	Freedman	and	Gerald
M.	Weinberg

Software	Inspection	by	Tom	Gilb
and	Dorothy	Graham

Structured	Walkthroughs	by	Edward
Yourdon

Handbook	of	Walkthroughs,
Inspections,	and	Technical	Reviews
by	Daniel	P.	Freedman	and	Gerald
M.	Weinberg

Software	Reviews	and	Audits Design	and	Code	Inspections	to
Reduce	Errors	in	Program

Handbook	by	C.P.	Hollocker Development	by	Michael	E.	Fagan

Key
Point

To	learn	more	about	software	inspections,	we	recommend	the	book	Software
Inspection	by	Tom	Gilb	and	Dorothy	Graham.

Inspections	and,	to	a	lesser	degree,	walkthroughs	are	very	labor	and	thought	intensive	and
require	a	lot	of	resources	to	conduct	them	well.	For	many	projects,	it	may	not	be	possible	to
perform	inspections	on	everything.	The	tester	and/or	the	developer	may	decide	to	do
inspections	only	on	highly	complex	code,	modules	that	have	had	many	lines	of	code
changed,	code	that's	been	problematic	in	past	releases,	or	high-risk	requirements	and
design	specifications.	What	has	been	inspected	will	have	a	great	impact	on	the	testing
strategy.	Those	modules	that	have	undergone	successful	inspections	may	require	less
testing	than	other	modules.	On	the	other	hand,	if	the	inspection	reveals	many	bugs,	testing
should	be	delayed	until	the	code	or	specification	is	repaired	or	more	time	may	need	to	be
allocated	for	testing	those	parts	of	the	system.	An	inspection	is	a	rigorous,	formal	peer
examination	that	does	the	following:

Verifies	that	the	software	elements	satisfy	the	specifications.

Verifies	that	the	software	element(s)	conform	to	applicable	standards.

Identifies	deviations	from	standards	and	specifications.

Collects	software	engineering	data	(for	example,	defect	and	effort	data).

Does	not	examine	alternatives	or	stylistic	issues.

Key
Point

"…	human	processes	tend	to	be	more	effective	in	finding	certain	types	of
errors,	while	the	opposite	is	true	of	other	types	of	errors.	The	implication
is	that	inspections,	walk-throughs,	and	computer-based	testing	are
complementary;	error	detection	will	suffer	if	one	or	the	other	is	not
present."

-	Glenford	Myers,	The	Art	of	Software	Testing

Another	part	of	the	walkthroughs	and	inspections	strategy	is	determining	who	should
participate.	In	this	case,	we're	particularly	interested	in	the	role	of	the	testers	in	the
process.	It's	highly	desirable	to	have	system-level	testers	involved	in	the	requirements	and
design	reviews,	but	they	may	or	may	not	be	as	useful	in	the	code	reviews,	depending	on	the
skill	set	of	the	testers.	If	the	testers	don't	have	any	coding	experience,	their	presence	in	the
meeting	may	not	contribute	significantly	to	the	review,	but	can	still	serve	as	a	useful	learning
experience	for	them.

Configuration	Management

Another	strategic	issue	that	should	generally	be	considered	in	the	Approach	section	of	a
test	plan	is	how	configuration	management	will	be	handled	during	software	testing.
Alternatively,	many	companies	choose	to	describe	their	configuration	management
processes	in	an	entirely	separate	document.	Configuration	management	in	the	context	of	a
Master	Test	Plan	usually	includes	change	management	as	well	as	the	decision-making
process	used	to	prioritize	bugs.	Change	management	is	important	because	it's	critical	to
keep	track	of	the	version	of	the	software	and	related	documents	that	are	being	tested.
There	are	many	woeful	tales	of	companies	that	have	actually	shipped	the	wrong	(untested)
version	of	the	software.

Key
Point

If	the	code	is	frozen	prematurely,	the	tests	will	become	unrealistic	because
fixing	the	bugs	that	were	previously	found	may	change	the	code	now	being
tested.

Equally	important	is	the	process	for	reviewing,	prioritizing,	fixing,	and	re-testing	bugs.	The
test	environment	in	some	companies	is	controlled	by	developers,	which	can	be	very
problematic	for	test	groups.	As	a	general	rule,	programmers	want	to	fix	every	bug	(in	their
code)	immediately.	It's	as	though	many	programmers	feel	that	if	they	can	fix	the	bug	quickly
enough	it	didn't	actually	happen.	Testers,	on	the	other	hand,	are	famous	for	saying	that
"testing	a	spec	is	like	walking	on	water	-	it	helps	if	it's	frozen."	Obviously,	both	of	the
extremes	are	counterproductive.	If	every	bug	fix	were	immediately	promoted	into	the	test
environment,	testers	would	never	do	anything	but	regression	testing.	Conversely,	if	the	code
is	frozen	prematurely,	the	tests	will	become	unrealistic	because	fixing	the	bugs	that	were
previously	found	may	change	the	code	now	being	tested.	The	key	is	to	mutually	agree	on	a
process	for	reviewing,	fixing,	and	promoting	bugs	back	into	the	test	environment.	This
process	may	be	very	informal	during	unit	and	integration	testing,	but	will	probably	need	to	be
much	more	formal	at	higher	levels	of	test.

Key
Point

Regression	testing	is	retesting	previously	tested	features	to	ensure	that	a
change	or	bug	fix	has	not	introduced	new	problems.

Key
Point

Confirmation	testing	is	rerunning	tests	that	revealed	a	bug	to	ensure	that
the	bug	was	fully	and	actually	fixed.

-	Rex	Black

We	recommend	that	our	clients	use	acceptance	testing	as	a	way	of	validating	their	software
configuration	management	process.	A	Change	Control	Board	(CCB)	comprised	of	members
from	the	user	community,	developers,	and	testers	can	be	set	up	to	handle	this	task.	They
will	determine	the	severity	of	the	bug,	the	approximate	cost	to	fix	and	test	the	bug,	and
ultimately	the	priority	for	fixing	and	re-implementing	the	code.	It's	possible	that	some	bugs
discovered,	especially	in	acceptance	testing,	may	be	deferred	to	a	future	release.

Collection	and	Validation	of	Metrics

Another	topic	often	described	in	the	Approach	section	of	a	test	plan	is	metrics.	Since
metrics	collection	and	validation	can	be	a	significant	overhead,	it's	necessary	to	discuss
which	metrics	will	be	collected,	what	they	will	be	used	for,	and	how	they	will	be	validated.	All
testing	efforts	will	need	a	way	to	measure	testing	status,	test	effectiveness,	software
quality,	adherence	to	schedules,	readiness	for	shipment,	etc.	Refer	to	Chapter	10	-	The
Test	Manager	for	more	information.

Tools	and	Automation

Another	strategy	issue	that	should	be	addressed	in	the	Approach	section	of	the	test	plan	is
the	use	of	tools	and	automation.	Testing	tools	can	be	a	tremendous	help	to	the	development
and	testing	staff,	but	they	can	also	spell	disaster	if	their	use	isn't	carefully	planned	and
implemented.	For	some	types	of	tools,	there	can	actually	be	a	requirement	for	more	time	to
develop,	implement,	and	run	a	test	set	the	first	time	than	there	would	be	if	the	test	cases
were	executed	manually.	Alternatively,	time	may	be	saved	during	regression	testing.	Other
types	of	tools	can	pay	time	dividends	from	the	very	beginning,	but	again,	it's	not	our	purpose
to	discuss	test	tools	here	(refer	to	Chapter	7	-	Test	Execution	for	more	information).	We
only	want	to	emphasize	that	the	use	of	automated	testing	tools	needs	to	be	well	planned
and	have	adequate	time	allocated	for	implementation	and	training.

Changes	to	the	Test	Plan

The	Master	Test	Plan	should	address	how	changes	to	the	plan	itself	and	its	corresponding
detailed	test	plans	will	be	handled.	When	working	to	draft	the	plan,	it's	desirable	to	include
all	of	the	key	people	and	groups	(e.g.,	developers,	users,	configuration	managers,
customers,	marketing,	etc.)	in	the	development	and	review	cycles.	At	some	point,	we	hope
that	these	key	people	will	sign	off	on	the	plan.

It's	also	important	to	remember	that	the	test	plan	will	change	during	the	project.	Each	test
manager	should	include	a	strategy	addressing	how	to	update	the	plan.	Some	of	the
questions	that	need	to	be	addressed	include:

Are	small	changes	(e.g.,	misspelled	words)	permissible	without	going	through	the
approval	process	again?

Should	there	be	weekly	or	monthly	updates	to	the	test	plan?

Should	the	test	plan	go	through	the	regular	CM	process?

How	should	the	test	plan	be	published	(e.g.,	electronically,	on	paper,	or	both)?

Should	the	test	plan	review	be	conducted	in	a	"shotgun"	fashion,	sequentially,	in	a
meeting,	or	some	combination	thereof?

Key
Point The	test	manager	must	develop	a	strategy	for	updating	the	test	plan.

Meetings	and	Communications

It's	often	a	good	idea	to	include	a	section	in	the	Master	Test	Plan	on	meetings,	reporting,
and	communications.	If	there	are	to	be	any	standing	meetings,	they	should	be	described	in
the	Approach	section	of	the	test	plan.	Examples	of	meetings	and	other	methods	of
communication	include	the	Change	Control	Board	(CCB),	status	meetings,	and
presentations	to	users	and/or	upper	management.

Status	reporting	should	also	be	covered	in	this	section	and	include	details	on	how	often
meetings	will	be	held,	in	what	format,	and	what	metrics	will	be	used	to	monitor	and
communicate	results.	Finally,	it's	useful	to	describe	chains	of	command	and	where	to	go	for
conflict	resolution	-	the	CCB	is	one	obvious	choice.

Other	Strategy	Issues

We've	covered	a	few	of	the	strategy	issues	that	occur	frequently.	Other	topics	that	might
affect	the	strategy	include	how	to	handle:

multiple	production	environments

multi-level	security

beta	testing

test	environment	setup	and	maintenance

use	of	contractual	support

unknown	quality	of	software

feature	creep

etc.

The	bottom	line	is	that	anything	that	has	a	significant	impact	on	the	effectiveness	or	cost	of
testing	is	a	candidate	for	inclusion	in	the	Approach	section	of	the	test	plan.

11.0	Item	Pass/Fail	Criteria

This	section	of	the	test	plan	describes	the	pass/fail	criteria	for	each	of	the	items	described
in	Section	6.0	-	Test	Items.	Just	as	every	test	case	needs	an	expected	result,	each	test	item
needs	to	have	an	expected	result.	Typically,	pass/fail	criteria	are	expressed	in	terms	of	test
cases	passed	and	failed;	number,	type,	severity	and	location	of	bugs;	usability,	reliability,
and/or	stability.	The	exact	criteria	used	will	vary	from	level	to	level	and	organization	to
organization.

Remember	that	all	test	cases	are	not	created	equal.	Percentage	of	test	cases	executed,
although	a	common	and	often	useful	metric,	can	be	misleading.	For	example,	if	95%	of	the

test	cases	pass,	but	the	"nuclear	shut-off	valve"	test	fails,	the	actual	percentage	may	not
mean	much.	Furthermore,	all	tests	don't	cover	the	same	amount	of	the	system.	For
example,	it	may	be	possible	to	have	75%	of	the	test	cases	cover	only	50%	of	the	system.	A
more	effective	measure	for	quantifying	pass/fail	criteria	would	relate	the	test	case
completion	to	some	measure	of	coverage	(e.g.,	code,	design,	requirements,	etc.).

Key
Point

Some	examples	of	pass/fail	criteria	include:
%	of	test	cases	passed

number,	severity,	and	distribution	of	defects

test	case	coverage

successful	conclusion	of	user	test

completion	of	documentation

performance	criteria

If	you've	never	tried	to	quantify	pass/fail	criteria	before,	you	may	find	it	a	little	frustrating	at
first.	But,	trying	to	foresee	"what's	good	enough"	can	really	help	crystallize	the	thinking	of
the	various	test	planners	and	reduce	contention	later.	If	the	software	developer	is	a
contractor,	this	section	can	even	have	legal	ramifications,	since	the	pass/fail	criteria	may	be
tied	to	bonus	or	penalty	clauses,	or	client	acceptance	of	the	product.

12.0	Suspension	Criteria	&	Resumption	Requirements

The	purpose	of	this	section	of	the	test	plan	is	to	identify	any	conditions	that	warrant	a
temporary	suspension	of	testing	and	the	criteria	for	resumption.	Because	testers	are	often
harried	during	test	execution,	they	may	have	a	tendency	to	surge	forward	no	matter	what
happens.	Unfortunately,	this	can	often	lead	to	additional	work	and	a	great	deal	of	frustration.
For	example,	if	a	group	is	testing	some	type	of	communications	network	or	switch,	there
may	come	a	time	when	it's	no	longer	useful	to	continue	testing	a	particular	interface	if	the
protocol	to	be	used	is	undefined	or	in	a	state	of	flux.	Using	our	ATM	example,	it	may	not	be
possible	to	test	the	withdraw	cash	feature	if	the	check	account	balance	feature	has	not	yet
been	developed.

Metrics	are	sometimes	established	to	flag	a	condition	that	warrants	suspending	testing.	If	a
certain	predefined	number	of	total	defects	or	defects	of	a	certain	severity	are	encountered,
for	example,	testing	may	be	halted	until	a	determination	can	be	made	whether	or	not	to
redesign	part	of	the	system,	try	an	alternate	approach,	or	take	some	other	action.

Key
Point

Frequently	used	suspension	criteria	include:
incomplete	tasks	on	the	critical	path

large	volumes	of	bugs

critical	bugs

incomplete	test	environments

and	resource	shortages.

Gantt	charts	can	be	used	to	clearly	show	dependencies	between	testing	activities.	In	Figure
3-10,	for	example,	Task	5.3-Execute	Test	Procedures	for	8.6	and	all	subsequent	tasks
cannot	begin	until	task	5.2-Load	ATM	Version	8.6,	Build	1	is	completed.	The	Gantt	chart
clearly	shows	that	Task	5.2	is	on	the	critical	path	and	all	subsequent	activities	will	need	to
be	suspended	until	this	task	is	completed.

	
Figure	3-10:	Sample	Gantt	Chart

13.0	Test	Deliverables

This	is	a	listing	of	all	of	the	documents,	tools,	and	other	components	that	are	to	be
developed	and	maintained	in	support	of	the	testing	effort.	Examples	of	test	deliverables
include	test	plans,	test	design	specs,	test	cases,	custom	tools,	defect	reports,	test
summary	reports,	and	simulators.	One	item	that	is	not	a	test	deliverable	is	the	software	to
be	tested.	The	software	to	be	tested	should	be	listed	under	Section	6.0	-	Test	Items.

Artifacts	that	support	the	testing	effort	need	to	be	identified	in	the	overall	project	plan	as
deliverables	and	should	have	the	appropriate	resources	assigned	to	them	in	the	project
tracking	system.	This	will	ensure	that	the	test	process	has	visibility	within	the	overall	project
tracking	process	and	that	the	test	tasks	used	to	create	these	deliverables	are	started	at	the
appropriate	times.	Any	dependencies	between	the	test	deliverables	and	their	related
software	deliverables	should	be	identified	in	Section	18.0	-	Schedule	and	may	be	tracked
using	a	Gantt	chart.	If	the	predecessor	document	is	incomplete	or	unstable,	the	test
products	will	suffer	as	well.

Examples	of	test	deliverables	include:
test	plans

test	design	specs

test	cases

test	procedures

Key
Point

test	log

test	incident	reports

test	summary	reports

test	data

simulators

custom	tools

14.0	Testing	Tasks

This	section	is	called	Testing	Tasks	in	the	IEEE	template	and	it	identifies	the	set	of	tasks
necessary	to	prepare	for	and	perform	testing.	All	intertask	dependencies	and	any	special
skills	that	may	be	required	are	also	listed	here.	We	often	omit	this	section	and	include	all
testing	tasks	in	a	matrix	under	Section	16.0	-	Responsibilities	to	ensure	that	someone	will
be	responsible	for	the	completion	of	these	tasks	at	a	later	date.

15.0	Environmental	Needs

Environmental	needs	include	hardware,	software,	data,	interfaces,	facilities,	publications,
security	access,	and	other	requirements	that	pertain	to	the	testing	effort,	as	illustrated	in
Figure	3-11.	An	attempt	should	be	made	to	configure	the	testing	environment	as	similar	to
the	real-world	system	as	possible.	If	the	system	is	destined	to	be	run	on	multiple
configurations	(hardware,	operating	system,	etc.),	a	decision	must	be	made	whether	to
replicate	all	of	these	configurations,	only	the	riskiest,	only	the	most	common,	or	some	other
combination.	When	you're	determining	the	hardware	configuration,	don't	forget	to	list	your
system	software	requirements	as	well.

	
Figure	3-11:	Environmental	Needs 	In	addition	to	specifying	the
hardware	and	software	requirements,	it's	also	necessary	to	identify	where	the	data	will
come	from	to	populate	the	test	database.	Some	possible	choices	might	include

production	data,	purchased	data,	user-supplied	data,	generated	data,	and	simulators.	At
this	point,	you	should	also	determine	how	to	validate	the	data	and	assess	its	fragility	so
you	know	how	often	to	update	it.	Remember	that	it's	false	to	assume	that	even
production	data	is	totally	accurate.

Key
point

Test	data	that	is	quickly	outdated	due	to	a	very	dynamic	business
environment	is	said	to	be	fragile.

Undoubtedly,	many	of	our	students	get	tired	of	hearing	that	"interfaces	are	risky,"	but
indeed	they	are.	When	planning	the	test	environment,	it's	very	important	to	determine	and
define	all	interfaces.	Occasionally,	the	systems	that	we	must	interface	with	already	exist.
In	other	instances,	they	may	not	yet	be	ready	and	all	we	have	to	work	with	is	a	design
specification	or	some	type	of	protocol.	If	the	interface	is	not	already	in	existence,	building
a	realistic	simulator	may	be	part	of	your	testing	job.

Facilities,	publications,	and	security	access	may	seem	trivial,	but	you	must	ensure	that
you	have	somewhere	to	test,	your	tests	are	properly	documented,	and	you	have
appropriate	security	clearance	to	access	systems	and	data.

Case	Study	3-6:	Security	access	may	seem	trivial,	but	it's	really	an	important	part
of	the	test	environment.

Tough	Duty

Once,	while	on	active	duty	in	the	Marine	Corps,	I	was	"loaned"	to	an	Air	Force
command	to	help	in	testing	a	large	critical	system.	For	some	reason,	my	security
clearance	didn't	arrive	at	the	base	until	two	days	after	I	was	scheduled	to	begin
work.	Since	I	couldn't	logon	to	the	system	or	even	gain	access	to	the	building,	I	was
forced	to	spend	a	couple	of	boring	days	hanging	out	at	the	Officer's	Club	and
lounging	by	the	pool	-	basically	doing	everything	except	testing.

—	Rick	Craig

Refer	to	Chapter	6	-	Test	Implementation	for	more	information	about	the	test
environment.

16.0	Responsibilities

We	like	to	include	a	matrix	in	this	section	that	shows	major	responsibilities	such	as
establishment	of	the	test	environment,	configuration	management,	unit	testing,	and	so	forth.
Some	people	like	to	list	job	titles	in	the	responsibilities	matrix	(i.e.,	Development	Manager)
because	the	staff	members	holding	various	jobs	change	so	frequently.	We	prefer	to	list	the
responsible	parties	by	name	because	we've	found	that	having	someone's	name	next	to	a
task	gets	their	attention	more	than	just	listing	a	department	or	job	title.	In	Figure	3-12,	we

hedged	our	bets	by	listing	the	responsible	parties	both	by	name	and	by	job	title.

	
Figure	3-12:	Responsibilities	Matrix

17.0	Staffing	and	Training	Needs

The	actual	number	of	people	required	to	handle	your	testing	project	is,	of	course,	dependent
upon	the	scope	of	the	project,	the	schedule,	and	a	multitude	of	other	factors.	This	section	of
the	test	plan	describes	the	number	of	people	required	and	what	skills	they	need	to	possess.
In	some	cases,	you	may	need	15	journeymen	testers	and	5	apprentice	testers.	More	often,
though,	you	will	have	to	be	more	specific.	If	you	already	have	someone	in	mind,	for
example,	you	could	state	your	requirements	as,	"We	must	have	Jane	Smith	to	help	establish
a	realistic	test	environment."

Examples	of	training	needs	might	include	learning	how	to	use	a	particular	tool,	testing
methodologies,	interfacing	systems,	management	systems	such	as	defect	tracking,
configuration	management,	or	basic	business	knowledge	related	to	the	system	under	test.
Training	needs	may	vary	significantly,	depending	on	the	scope	of	the	project.	Refer	to
Chapter	10	-	The	Test	Manager	for	more	information.

18.0	Schedule

The	testing	schedule	should	be	built	around	the	milestones	contained	in	the	Project	Plan
such	as	delivery	dates	of	various	documents	and	modules,	availability	of	resources,
interfaces,	and	so	forth.	Then,	it	will	be	necessary	to	add	all	of	the	testing	milestones.
These	testing	milestones	will	differ	in	level	of	detail	depending	upon	the	level	of	the	test	plan
being	created.	In	a	Master	Test	Plan,	milestones	will	be	built	around	major	events	such	as
requirements	and	design	reviews,	code	delivery,	completion	of	user	manuals,	and	availability
of	interfaces.	In	a	Unit	Test	Plan,	most	of	the	milestones	will	be	based	on	the	completion	of
various	software	modules.

Initially,	it's	often	useful	to	build	a	generic	schedule	without	calendar	dates;	that	is,	identify
the	time	required	for	various	tasks,	dependencies,	and	so	forth	without	specifying	particular
start	and	finish	dates.	Normally,	this	schedule	should	be	portrayed	graphically	using	a	Gantt
chart	in	order	to	show	dependencies.

Key
Point

It's	important	that	the	schedule	section	reflect	how	the	estimates	for	the
milestones	were	determined.

Our	template	specifies	a	testing	schedule	without	reference	to	where	the	milestone	came
from,	but	it's	our	hope	that	the	milestones	are	based	on	some	type	of	formal	estimate.	If
we're	ever	going	to	gain	credibility	in	the	software	development	arena,	we	must	be	more
accurate	in	estimating	time	and	resources.	It's	important	that	the	schedule	section	reflect
how	the	estimates	for	the	milestones	were	determined.	In	particular,	if	the	time	schedule	is
very	aggressive,	estimating	becomes	even	more	critical,	so	that	the	planning	risks	and
contingencies	and	priorities	for	test	can	be	specified.	Recording	schedules	based	on
estimates	also	provides	the	test	manager	with	an	audit	trail	of	how	the	estimates	did	and	did
not	come	to	pass,	and	forms	the	basis	for	better	estimating	in	the	future.

19.0	Planning	Risks	and	Contingencies

Many	organizations	have	made	a	big	show	of	announcing	their	commitment	to	quality.	We've
seen	quality	circles,	quality	management,	total	quality	management,	and	who	knows	what
else.	Unfortunately,	in	the	software	world,	many	of	these	same	organizations	have
demonstrated	that	their	only	true	commitment	is	to	the	schedule.	The	Planning	Risks	and
Contingencies	section	of	Chapter	2	provides	a	good	overview	of	how	to	make	intelligent	and
informed	planning	decisions.	Any	activity	that	jeopardizes	the	testing	schedule	is	a	planning
risk.	Some	typical	planning	risks	include:

Unrealistic	delivery	dates

Staff	availability

Budget

Environmental	options

Tool	inventory

Acquisition	schedule

Participant	buy-in	and	marketing

Training	needs

Scope	of	testing

Lack	of	product	requirements

Risk	assumptions

Usage	assumptions

Resource	availability

Feature	creep

Poor-quality	software

Possible	contingencies	include:

Reducing	the	scope	of	the	application

Delaying	implementation

Adding	resources

Reducing	quality	processes

Refer	to	Chapter	2	-	Risk	Analysis	for	more	information	on	planning	risks	and	contingencies.

20.0	Approvals

The	approver(s)	should	be	the	person	or	persons	who	can	declare	that	the	software	is
ready	to	move	to	the	next	stage.	For	example,	the	approver	on	a	Unit	Test	Plan	might	be	the
Development	Manager.	The	approvers	on	a	System	Test	Plan	might	be	the	people	in	charge
of	the	system	test	and	whoever	is	going	to	receive	the	product	next,	which	may	be	the
customer	if	they're	going	to	perform	the	Acceptance	Testing.	Since	this	is	a	Master	Test
Plan,	there	may	be	many	approvers	including	developers,	testers,	customers,	QA,
configuration	management,	among	others.	One	of	the	important	parts	of	the	approval
section	of	the	test	plan	is	the	signature	page.	Figure	3-13	shows	an	example	of	a	signature
page.

	
Figure	3-13:	Sample	Signature	Page

Key
Point

The	approver(s)	should	be	the	person	or	persons	who	can	declare	that	the
software	is	ready	to	move	to	the	next	stage.

The	author(s)	should	sign	in	the	appropriate	block	and	enter	the	date	that	this	draft	of	the
plan	was	completed.	In	our	sample	signature	page,	we've	also	included	a	place	for	the
reviewer	to	sign	and	date	the	document	and	check	the	block	indicating	whether	or	not
he/she	is	recommending	approval.	The	reviewers	should	be	technical	or	business	experts
and	are	usually	not	managers.	If	some	of	the	approvers	lack	the	technical	or	business
expertise	to	understand	the	entire	document,	their	approval	may	be	based	partly	upon	the
expertise	and	reputation	of	the	reviewers.

In	our	sample	signature	block,	we've	included	a	space	for	the	approver	to	sign	and	date	the
document	and	indicate	approval	"as-is"	or	conditionally.	The	approver(s)	should	be	the
person(s)	who	have	the	authority	to	declare	accept/reject	the	terms	of	this	document.	Even
though	we're	anxious	to	get	the	approvers	to	"sign	off"	on	the	plan,	we	really	want	their	buy-
in	and	commitment	-	not	just	their	signature.	If	you	wait	until	the	plan	is	written	and	then
circulate	the	document	for	approval,	it's	much	harder	to	get	buy-in	and	the	most	you	can
hope	for	is	just	a	signature.	In	order	to	get	the	commitment	we	want,	the	approver(s),	or
their	representatives,	should	be	involved	in	the	creation	and/or	review	of	the	test	plan	during
its	development.	It's	part	of	your	challenge,	as	the	test	planner,	to	determine	how	to	involve
all	the	approvers	in	the	test	planning	process.

Key
Point

In	order	to	get	the	commitment	we	want,	the	approver(s),	or	their
representatives,	should	be	involved	in	the	creation	and/or	review	of	the	test
plan	during	its	development.

Ideally,	we'd	like	to	have	the	developers	and	users	actually	help	write	the	test	plan.	For
example,	convincing	the	development	manager	or	one	of	the	senior	developers	to	explain
how	unit	testing	will	be	conducted	is	much	more	effective	than	having	someone	from	the
testing	group	try	to	describe	how	unit	testing	will	de	done.	Often,	though,	the	key	developer
and/or	user	may	not	be	willing	(or	may	not	have	enough	time)	to	actually	write	the	plan.
We've	found	that	one	way	to	involve	developers	and	users	early	in	the	development	of	the
test	plan	is	to	invite	them	to	a	test	planning	meeting.	While	few	people	like	attending
meetings,	many	prefer	them	over	helping	write	the	plan.	During	the	course	of	the	meeting,
you	should	go	through	the	entire	template	and	identify	the	issues.	Then,	publish	the	first
rough	draft	of	the	plan	as	the	minutes	of	the	meeting.	You	might	want	to	preface	your	e-mail
with,	"Is	this	what	we	agreed	on?"	If	you	follow	these	steps,	you're	well	on	your	way	to
achieving	buy-in	for	your	test	plan.

Test	planning	is	a	lot	of	work	and	can	be	time	consuming.	If	you're	under	the	gun	to	get	the
next	release	out	the	door,	you	may	argue	that	you	can't	afford	to	spend	time	creating	a	test
plan.	On	the	contrary,	we	hope	that	you	will	agree	that	you	can't	afford	to	begin	testing
without	a	good	test	plan.

Team-Fly 	

Team-Fly

	

Chapter	4:	Detailed	Test	Planning

Overview
"You've	got	to	be	careful	if	you	don't	know	where	you're	going	'cause	you	might	not
get	there!"

—	Yogi	Berra

To	be	most	effective,	test	planning	must	start	at	the	beginning	and	proceed	in	parallel	with
software	development.	General	project	information	is	used	to	develop	the	master	test	plan,
while	more	specific	software	information	is	used	to	develop	the	detailed	test	plans,	as
illustrated	in	Figure	4-1.	This	approach	will	target	testing	to	the	most	effective	areas,	while
supporting	and	enhancing	your	development	process.	When	fully	implemented,	test	planning
will	provide	a	mechanism	to	identify	improvements	in	all	aspects	of	the	system	and
development	process.

	Figure	4-1:	Planning	Phase
Process 	A	level	of	test	is	defined	by	a	particular	environment,	which	is
a	collection	of	people,	hardware,	software,	interfaces,	data,	and	even	the	viewpoints	of
the	testers.	Table	4-1	lists	some	sample	environmental	variables.	This	list	may	vary
significantly	between	projects	and	companies.	Some	companies,	for	example,	may	have
only	one	level	of	test,	while	others	may	have	ten	or	more.

Table	4-1:	Sample	Environmental	Variables

Attribute
Level

Unit Integration System Acceptance

People Developers Developers	&
Testers Testers Testers	&

Users

Hardware
O/S

Programmers'
Workbench

Programmers'
Workbench

System	Test
Machine	or	Region

Mirror	of
Production

Cohabiting
Software None None None/Actual Actual

Interfaces None Internal Simulated	&	Real Simulated	&
Real

Source	of
Test	Data

Manually
Created

Manually
Created

Production	&
Manually	Created

Production

Volume	of
Test	Data Small Small Large Large

Strategy Unit Groups	of
Units/Builds Entire	System Simulated

Production

What	determines	the	number	of	levels	required?	Typically	this	decision	is	made	based	on
complexity	of	the	system,	number	of	unique	users,	politics,	budget,	staffing,
organizational	structure	and	so	forth.	It's	very	important	that	the	test	manager	help	define
what	the	levels	are	and	ensure	that	there	aren't	too	many	or	too	few	levels.	We	can
hardly	afford	to	have	overlapping	levels	and,	conversely,	we	don't	want	to	take	the	risk	of
having	big	gaps	between	levels.

Key
Point Cohabiting	software	is	other	applications	that	reside	on	the	same	platform.

Creating	a	test	plan	for	a	specific	level	requires	a	clear	understanding	of	the	unique
considerations	associated	with	that	level.	Product	risk	issues,	resource	constraints,
staffing	and	training	requirements,	schedules,	testing	strategy,	and	other	factors	must	all
be	considered.	Level-specific	or	detailed	test	plans	are	created	using	the	same	template
that	we	used	for	the	Master	Test	Plan	(refer	to	Chapter	3	-	Master	Test	Planning),	but
the	amount	of	detail	is	greater	for	a	level-specific	plan.

Figure	4-2	shows	the	relationship	of	the	Master	Test	Plan	(MTP)	to	the	Project	Plan	and
the	Detailed	Test	Plans.

	
Figure	4-2:	Master	versus	Detailed	Test	Plans 	There	are	many
names	for	the	levels	employed	by	different	groups	and	companies.	Here	are	only	a
few	that	we've	encountered	recently:	unit,	component,	code,	developer,	build,	string,
thread,	integration,	system,	system	integration,	acceptance,	user	acceptance,
customer	acceptance,	interoperability,	alpha,	beta;	Verification,	Validation,	and	Testing
(VV&T),	and	others.	You	see,	there	are	many	different	names,	and	you	may	very	well
have	some	that	we	didn't	list	here.	In	the	long	run,	what	you	name	your	levels	is
relatively	unimportant.	What's	important	is	to	define	the	scope	of	the	level	and	what
that	level	is	supposed	to	accomplish;	then,	create	a	plan	to	ensure	that	it	happens.

Key
Point

It's	important	to	define	the	scope	of	the	level	and	what	that	level	is
supposed	to	accomplish;	then,	create	a	plan	to	ensure	that	it	happens.

Throughout	this	book,	we	use	the	level	names	defined	by	the	IEEE:	Acceptance,
System,	Integration	and	Unit.	While	these	names	are	no	better	or	worse	than	any
others,	they	are	convenient,	as	they	provide	a	basis	for	discussion.	This	chapter	will
focus	on	the	highest	levels	first	and	then	progressively	move	to	the	lower	levels	of	test.
This	is	done	because	the	level-specific	plans	should	usually	be	written	in	reverse	order
of	execution.	That	is	to	say,	even	though	the	acceptance	test	is	normally	the	last	one
to	be	executed,	it	should	be	the	first	test	to	be	planned.	Why?	Simply	because	the
acceptance	test	plan	is	built	on	the	artifacts	that	are	available	first	-	the	requirements	-
and	this	group	of	tests	is	used	to	model	what	the	system	will	look	like	when	it's
complete.	The	"V"	model	of	testing	in	Figure	4-3	shows	that	the	system	test	should	be
planned	next	based	on	the	high-level	design	(and	requirements);	integration	testing
should	be	planned	using	the	detailed	design	(and	the	high-level	design	and
requirements);	and	unit	testing	should	be	planned	based	on	the	coding	(and	the
detailed	design,	high-level	design,	and	requirements).

	
Figure	4-3:	The	"V"	Model	of	Software	Testing

Key
Point

The	level-specific	plans	should	usually	be	written	in	reverse	order	of
execution.

Without	a	doubt,	some	readers	may	be	more	concerned	with	one	level	of	test	than	the
others.	However,	we	encourage	you	to	read	about	all	of	the	levels	of	test	in	this
chapter	even	if	you're	not	directly	involved,	because	it's	important	to	understand	all	of
the	types	of	testing	that	may	be	occurring	in	your	company.	Also,	as	a	matter	of	style
in	writing	this	book,	we	sometimes	discuss	issues	in	one	level	of	test	that	are
applicable	at	other	levels	and	may	not	necessarily	be	repeated	in	the	other	sections	of
this	chapter.

Team-Fly 	

Team-Fly

	

Acceptance	Testing
Acceptance	testing	is	a	level	of	test	that	is	based	largely	on	users'	requirements	and
demonstrates	that	those	requirements	have	been	satisfied.	As	illustrated	in	Figure	4-4,
acceptance	testing	is	the	first	level	to	be	planned	because	it's	built	based	on	the	system
requirements.	Since	this	group	of	tests	is	used	to	model	what	the	system	will	look	like	when
it's	complete,	acceptance	testing	is	most	effective	when	performed	by	the	users	or	their
representatives	in	the	most	realistic	environment	possible.

	Figure	4-4:	Sequence	of	Planning	Activities

Audience	Analysis

Obviously	the	users	or	customers	are	part	of	the	audience	for	the	acceptance	test	plan.
Whoever	is	conducting	the	system	testing	is	also	part	of	the	audience,	since	their	exit
criteria	must	consider	the	entrance	criteria	into	acceptance	testing.	The	developers	will	also
be	anxious	to	see	the	acceptance	test	plan,	since	it	will	specify	exactly	what	constitutes
success	for	their	development	effort.	Therefore,	the	audience	for	the	acceptance	test	plan
may	include	technical	people	such	as	developers,	as	well	as	business	users	who	may	or
may	not	be	very	technically	adept.	In	order	to	accommodate	such	a	diverse	audience,	the
language	of	this	plan	should	be	non-technical.

Activity	Timing

The	acceptance	test	planning	process	should	begin	as	soon	as	the	high-level	requirements
are	known.	It's	essential	that	this	occur	early	in	the	lifecycle	because	one	of	the	key
purposes	of	the	acceptance	test	plan	is	to	develop	the	criteria	for	what	constitutes	a
completed	project.	In	other	words,	the	exit	criteria	from	the	acceptance	testing	provide	a
basis	for	acceptance	of	the	product.	The	acceptance	test	plan,	and	later	the	acceptance
test	cases,	should	fairly	accurately	describe	what	the	finished	product	will	look	like.	In	some
of	the	most	progressive	companies	that	we've	visited,	the	acceptance	test	plan	and	test
cases	are	actually	delivered	with	the	requirements	document.	In	the	case	of	outsourced
development,	the	acceptance	test	plan	and	test	cases	may	even	be	made	part	of	the

contract.

NoteWhen	should	the	test	plan	be	written?

NoteWho	should	write	the	test	plan?

The	acceptance	test	plan	would	ideally	be	written	by	the	end-user.	This	is	frequently	not
possible	for	a	variety	of	reasons.	If,	for	example,	your	product	is	commercial	shrink-wrap
software	or	a	Web	application,	you	may	have	thousands	or	even	millions	of	very	different
and	unknown	users.	In	that	situation,	it's	important	to	find	a	group	of	people	that	represent
the	final	end-users.	In	many	organizations,	the	acceptance	testers	are	called	business
associates	or	some	similar	name.	These	people	are	testers	that	typically	come	from	the
user	community.	Other	organizations	employ	the	users	from	a	particular	site	or	company	as
testers.	Whoever	is	chosen,	they	need	to	have	the	most	complete	understanding	of	the
business	application	as	possible.

Figure	4-5	illustrates	how	the	realism	of	the	test	environment	increases	at	higher	levels	of
test.

	
Figure	4-5:	Typical	Test	Levels

As	we	pointed	out	earlier,	the	acceptance	test	is	not	intended	to	be	comprehensive	and,
therefore,	doesn't	last	as	long	as	the	system	test.	Sometimes,	the	acceptance	test	on
extremely	large	systems	may	take	only	a	few	days	or	weeks.	If	your	acceptance	testing
today	is	going	on	for	weeks	and	weeks,	you	may	be	doing	"good"	work,	but	you	also	may
be	doing	more	than	what	we	call	acceptance	testing.	In	fact,	you	may	be	doing	some	of
what	we	call	system	testing.	That's	fine,	though,	because	you've	just	defined	your	levels
differently	than	we	have.	The	point	is	that	a	comprehensive	test	is	not	necessary	in	order	to
demonstrate	that	the	requirements	work.

NoteHow	long	should	acceptance	testing	last	and	how	comprehensive	should	it	be?

Of	course,	anything	is	possible.	Rick	used	to	have	a	colleague	(okay,	not	a	colleague,	but
his	boss)	who	felt	that	most	acceptance	tests	were	a	waste	of	time	(probably	because	they
were	often	ad	hoc)	and	should	be	done	away	with.	We	believe,	though,	that	the	acceptance
test	is	a	very	valuable	way	to	prove	the	validity	of	the	requirements	and	to	support	buy-in
from	the	users.

NoteCan	acceptance	testing	be	combined	with	system	testing?

Still,	with	tight	time	crunches	and	shortage	of	personnel,	does	it	make	sense	to	combine
system	and	acceptance	testing?	Remember	that	the	levels	are	what	define	the	environment,
and	each	environment	can	be	associated	with	a	level	of	test.	The	environment	includes	the
hardware,	software,	documentation,	data,	and	people.	One	of	the	most	common
differences	between	the	system	test	environment	and	the	acceptance	test	environment	is
who	is	doing	the	testing.	Therefore,	there	are	two	situations	where	it	might	make	sense	to
combine	the	two	levels	if	necessitated	by	resource	or	time	constraints:

1.	 When	the	users	have	a	very	active	role	in	systems	test.	It's	always	desirable	to
have	the	users	involved	in	the	system	test	(and	throughout	the	lifecycle).	If	they're
an	integral	part	of	the	systems	test	effort	and	the	rest	of	the	test	environment	is	as
realistic	as	possible,	then	it	might	make	sense	to	combine	acceptance	testing	with
system	testing.

2.	 When	the	users	have	no	involvement	in	testing	whatsoever.	If	the	most	frequent
difference	in	the	system	and	acceptance	test	environments	is	who	is	conducting
the	test	and	if	the	test	group	is	conducting	both	tests	in	similar	environments,	then
why	not	combine	the	two?	We've	seen	situations	where	organizations	had
historically	conducted	both	system	and	acceptance	testing	and	continued	to	do	so
even	though	both	tests	were	virtually	identical.	In	one	case,	the	acceptance	test
set	was	a	subset	of	the	system	test	set	and	was	rerun	in	exactly	the	same
environment	by	the	same	people.

Should	the	execution	of	one	level	begin	before	the	execution	of	the	previous	level	is
complete?	In	order	to	cut	the	elapsed	time	(schedule)	from	inception	to	delivery,	many
organizations	overlap	various	testing	levels.	The	penalty	for	overlapping	the	levels,	however,
is	extra	effort.	Even	though	the	lifecycle	is	shortened,	it	will	typically	take	more	effort
because	the	higher	level	of	test	may	find	bugs	that	may	have	already	been	found	(and
sometimes	fixed)	by	the	lower	level	of	test.	Sometimes,	both	levels	of	test	may	be	finding
some	of	the	same	bugs	at	the	same	time	and	reporting	them	in	slightly	different	words.	This
can	add	overhead	to	defect	and	configuration	management.

NoteCan	acceptance	testing	begin	before	the	system	testing	is	done?

Another	issue	may	be	one	of	first	impressions.	The	first	time	the	users	see	a	nearly
complete	product	is	often	during	the	acceptance	test.	If	users	receive	a	product	that	has	not
yet	completed	system	testing,	it	will	potentially	contain	more	(possibly	many	more)	bugs,
which	may	cause	them	to	get	the	feeling	that	the	system	is	unsound.	Hopefully,	this	attitude
doesn't	exist	in	your	company,	because,	ideally,	we	would	like	to	have	the	users	involved
throughout	the	lifecycle.

In	some	instances,	system	testing	can	be	combined	with	integration	testing.	Our	clients	who
successfully	use	this	strategy	have	excellent	configuration	management,	a	relatively	high
level	of	test	automation,	and	a	good	working	relationship	between	the	developers	and
testers.	The	basic	strategy	is	that	the	integration	tests	are	developed	around	each	build	-
usually	by	the	test	group.	That	is,	each	progressively	larger	build	is	tested	as	part	of	the
integration	effort.	The	final	build	contains	the	entire	system	and	becomes,	in	fact,	the

system	test.	This	technique	is	not	for	everyone	and	depends	on	a	lot	of	the	factors	that	we
explained	above.	One	of	the	downsides	of	combining	system	and	integration	testing	is	that	it
removes	part	of	the	developer's	responsibility	for	developing	and	delivering	a	finished
product	and	passes	that	responsibility	to	the	test	team.

NoteCan	the	system	testing	be	combined	with	integration	testing?

Sources	of	Information

The	key	documents	needed	to	write	the	acceptance	test	plan	include	the	project	plan,	the
master	test	plan	and	the	requirements	documentation.	Other	documents,	such	as	user
manuals,	are	also	useful	if	they're	available.	The	project	plan	lays	out	the	entire	strategy	and
schedule	for	the	development	project,	and	the	acceptance	test	plan	must	relate	to	that
document.	However,	the	master	test	plan	is	typically	based	upon	the	project	plan	and	gets
into	more	detail	on	specifically	how	the	system	will	be	tested.	Therefore,	level-specific	test
planners	can	typically	rely	on	the	master	test	plan	more	than	the	project	plan	for	general
guidance.	For	example,	an	overall	testing	schedule	is	published	in	the	master	test	plan.
Another	feature	of	the	master	test	plan	is	the	characterization	of	broad	goals	for	each	level
including	the	entrance	and	exit	criteria.	The	acceptance	test	plan	(and	all	subsequent	level-
specific	test	plans)	should	follow	this	grand	scheme.	If	significant	changes	are	identified	in
the	course	of	the	detailed	test	planning,	they	must	be	rolled	up	into	the	master	test	plan.

Key
Point

If	changes	are	identified	in	the	course	of	the	detailed	test	planning,	they	must
be	rolled	up	into	the	master	test	plan.

Ideally,	the	acceptance	test	cases	should	be	based	upon	the	requirement	specification.
Unfortunately,	many	projects	do	not	have	a	requirements	document	per	se.	In	those
instances,	other	methods	or	documents	must	be	used	to	identify	the	key	features	and
components	to	test.	This	is	the	subject	of	Chapter	5	-	Analysis	and	Design.	For	acceptance
testing	in	particular,	user	documentation	can	be	very	useful	when	planning	a	new	release	of
an	existing	system.	At	all	levels	of	test,	enhancement	requests	and	defect	reports	should	be
treated	as	requirements	documents.

User	Responsibilities

The	users	or	their	representatives	play	an	important	part	in	the	acceptance	testing	process.
Some	of	their	responsibilities	may	include:

Defining	the	requirements

Identifying	the	business	risks

Creating,	updating,	and/or	reviewing	the	Acceptance	Test	Plan

Defining	realistic	scenario-based	tests

Providing	realistic	test	data

Executing	the	tests

Reviewing	the	documentation

Reviewing	the	test	output

Providing	acceptance	criteria

Usability	Testing

NoteWhat	if	there	are	many	users	and	they're	not	always	right?

In	many	organizations,	customers	(users)	conduct	the	acceptance	testing	on	a	nearly
complete	product	in	a	near-production	environment.	Many	organizations	are	proud	of	their
stance	that	"the	user	is	always	right,"	but	one	of	the	problems	associated	with	this	is
defining	who	is	the	user.	Companies	that	develop	and	sell	commercial	software	spend	lots
of	thought	and	money	on	just	this	issue.	All	users	are	just	not	the	same	and	have	different
needs.	Some	users	want	to	be	able	to	have	a	powerful	system	devoid	of	annoying	prompts
such	as	"Do	you	really	want	to	delete	this	file?"	Other	users	are	a	little	more	timid	and	after
deleting	their	newly	written	doctoral	thesis	would	welcome	the	child-like	but	annoying
question	that	required	a	second	thought.	Sometimes	user	'A'	wants	a	feature	that	is	a	direct
detriment	to	what	user	'B'	wants.	Who	is	right	and	who	decides?	Maybe	you	should	pay	for
two	systems	to	satisfy	both	users?	But	then	what	happens	if	you	have	a	hundred	users
instead	of	just	two?

Another	problem	is	that	the	users	often	don't	know	what	they	want.	That's	not	pointing	the
finger	at	the	users.	It's	simply	a	challenging	task	because	the	software	developers	also
often	don't	have	a	clear	view	of	what	the	system	requirements	are.	Anyone	who	has	ever
participated	in	the	creation	of	a	requirements	document	(which,	by	the	way,	is	often	done	by
the	users)	knows	just	how	difficult	that	task	is.

The	solution	to	these	problems	lies	within	the	entire	software	engineering	process	(including
requirements	formulation	and	acceptance	testing)	and	the	communications	between	the
users,	developers,	and	testers.	Fostering	clear	and	concise	communications	between
developers,	tester,	and	users	near	the	beginning	of	the	software	development	lifecycle	can
help	reduce	the	problem	of	"who's	right."

Usability	testing	is	one	of	the	hardest	kinds	of	testing	to	accomplish.	Part	of	the	difficulty	is
that	the	usability	requirements	are	hard	to	describe	and	are	often	done	poorly	-	and	poor
requirements	can	lead	to	poor	testing.	For	example,	a	common	usability	requirement	is	that
the	system	must	be	"user-friendly,"	but	what	does	that	mean?	An	accomplished	user	might
consider	a	powerful	system	with	shortcuts	to	other	features	to	be	user-friendly,	while	other
users	may	require	extensive	menus	to	drag	them	from	one	part	of	the	system	to	another.
This	entire	problem	is	compounded	because	there	may	be	many	users	with	different	needs
and/or	the	users	may	be	unknown.

Key
Point

Usability	requirements	are	hard	to	describe	and	are	often	done	poorly	-	and
poor	requirements	can	lead	to	poor	testing.

Another	problem	with	usability	testing	is	that	it	can	be	difficult	to	conduct	until	very	late	in	the
lifecycle	(i.e.,	acceptance	test	execution).	Even	if	problems	are	discovered	at	this	late
juncture,	it	may	be	too	late	or	too	expensive	to	correct	them	(at	least	in	this	release).	One
approach	used	by	some	companies	to	overcome	this	problem	is	to	use	prototypes	to	"mock
up"	the	system	and	let	the	users	see	what	the	finished	product	will	look	like	earlier	in	the
lifecycle.	Sometimes,	these	prototypes	may	merely	be	paper	mock-ups	of	reports	or
screens.	Other	companies	have	more	sophisticated	tools	at	their	disposal	such	as	usability
laboratories,	where	a	cut-down	version	of	the	actual	system	is	created	to	allow	the	users	to
interact	with	it	early	to	get	a	feel	for	it.

Usability	Labs

A	usability	lab	(Ulab)	is	a	special	environment	created	to	evaluate	the	usability	of	a
prototype	product	(application).	Prospective	users	are	asked	to	"use"	the	prototype	being
evaluated	with	only	the	assistance	of	the	normal	product	documentation.	The	goal	is	to
discover	usability	problems	before	the	actual	system	is	built,	effectively	saving	the	cost	of
building	the	"wrong"	system.

Key
Point

The	goal	of	a	usability	lab	is	to	discover	usability	problems	before	the	actual
system	is	built	ffectively,	this	saves	the	cost	of	building	the	"wrong"	system.

The	key	actors	in	any	type	of	usability	testing	are	the	user,	the	observer,	and	a	recording
mechanism	or	method.	In	the	usability	lab	in	Figure	4-6,	the	user	sits	in	an	observation
room	where	he	or	she	uses	the	prototype	product.	Video	cameras	record	the	user	activities,
facial	expressions,	body	positions,	and	other	factors	that	may	be	indications	of	the	usability
of	the	software	under	test.	On	the	other	side	of	a	one-way	mirror,	the	observers	are
watching	the	user	in	his	or	her	attempts	to	use	the	system.	Occasionally,	a	user	may	be
asked	why	he	or	she	did	something	or	be	told	how	to	resolve	a	difficult	situation,	but	overall,
communications	between	the	observers	and	the	user	are	kept	to	a	minimum.	Observers
may	include	usability	laboratory	staff	members,	developers,	and/or	testers.	The	video
cameras	serve	as	the	principal	recording	mechanism.

	

Figure	4-6:	Usability	Lab	Design	by	Dr.	Michael	J.	Prasse,	Director	of	OCLC	Usability
Lab

Key
Point

One	danger	of	using	a	prototype	is	that	the	users	may	want	to	immediately
install	and	use	it.

Unfortunately,	a	prototype	is	not	a	complete	system	and	it's	not	ready	to	be
used	in	a	production	environment.

The	Ulab	staff	members	record	notes	as	the	user	works,	and	these	notes	will	later	be
reviewed	with	the	videotape.	Additionally,	the	users	may	be	interviewed	and/or	fill	out	a
questionnaire	designed	to	learn	their	perception	of	the	usability	of	the	product.	The	results	of
the	Ulab	session	(i.e.,	notes,	video,	interviews,	and	questionnaires)	are	used	to	identify	and
correct	usability	deficiencies.

Both	usability	testing	and	Ulab	sessions	are	designed	to	discover	usability	problems	that
may	require	correction.	The	major	difference	is	in	when	they	are	conducted.	Because	most
usability	testing	is	conducted	at	the	end	of	the	development	lifecycle	(i.e.,	system	or
acceptance	testing),	usability	problems	that	are	discovered	are	difficult	and	expensive	to
correct.	Since	the	Ulab	is	conducted	before	the	final	product	is	built,	usability	problems	can
be	addressed	early	when	it's	relatively	inexpensive	to	rectify	them.

Case	Study	4-1	describes	an	incident	that	often	occurs	in	usability	labs.

Case	Study	4-1:	Are	the	users	really	"stupid"	or	is	the	user	interface	difficult	to
understand?

Round	#1:	In	the	Usability	Lab

Perhaps	one	of	the	most	interesting	events	to	watch	is	the	reaction	of	the	developers
to	a	user's	initial	attempt	to	use	a	prototype	in	the	usability	lab.	When	a	user
unsuccessfully	attempts	to	use	a	function,	the	developer	on	the	other	side	of	the	one-
way	mirror	can	often	be	seen	fuming	at	the	"stupid"	user	for	not	understanding	how	to
handle	the	problem.	When	the	function	doesn't	work	the	way	the	user	thinks	it	should
work,	he	or	she	almost	always	tries	the	same	thing	again	or	pounds	the	Enter	key
several	times.	About	that	time,	the	developer	starts	to	see	the	discrepancies	between
what	he	or	she	has	created	and	what	the	user	is	trying	to	do.	The	key	here,	though,	is
that	this	usability	discrepancy	was	discovered	in	the	prototype	and	not	in	the	final
product.	This	means	that	the	development	team	will	have	more	time	and	therefore	a
better	shot	at	fixing	the	problem.

Alpha	and	Beta	Testing

At	best,	the	terms	"alpha	testing"	and	"beta	testing"	are	highly	ambiguous	or	at	least	mean
very	different	things	to	different	people.	We'll	try	to	offer	the	most	common	definitions	of

both.	Alpha	testing	is	an	acceptance	test	that	occurs	at	the	development	site	as	opposed	to
a	customer	site.	Hopefully,	alpha	testing	still	involves	the	users	and	is	performed	in	a
realistic	environment.

Key
Point

Some	organizations	merely	refer	to	alpha	testing	as	testing	that	is	conducted
on	an	early,	unstable	version	of	the	software,	while	beta	testing	is	conducted
on	a	later,	more	stable	version.

Beta	testing	is	an	acceptance	test	conducted	at	a	customer	site.	Since	beta	testing	is	still	a
test,	it	should	include	test	cases,	expected	results,	etc.	Many	companies	give	the	software
to	their	customers	to	let	them	"play	with	it"	and	call	this	the	beta	test.	While	allowing	your
customers	to	play	with	your	software	may	be	a	valuable	thing	to	do,	it's	probably	not
adequate	for	a	beta	test.	On	the	other	hand,	if	a	more	formal	acceptance	test	has	been
conducted	and	you	just	want	some	additional	assurance	that	the	customers	will	be	happy,
it's	fine	to	let	the	users	have	a	go.

Frequently,	though,	the	users	will	not	conduct	a	very	broad	test	if	they	are	allowed	to
proceed	in	a	purely	ad	hoc	fashion	without	the	benefit	of	a	test	strategy	and	test	cases.

Requirements	Traceability

Requirements	traceability	is	an	important	concept	in	testing,	especially	at	the	acceptance
level.	In	a	nutshell,	requirements	traceability	is	the	process	of	ensuring	that	one	or	more	test
cases	address	each	requirement.	These	are	normally	presented	in	a	matrix	as	illustrated	in
Table	4-2	or	done	in	a	spreadsheet,	database,	or	using	a	commercially	available	tool.

Table	4-2:	Tracing	Test	Cases	to	Requirements

Requirement TC-1 TC-2 TC-3 TC-4

RQ-1 ü ü ü ü

RQ-2 ü ü

RQ-3 ü ü

RQ-4 ü

RQ-5 ü

RQ-6 ü ü

RQ-7 ü ü ü

Requirements	traceability	is	a	high-level	measure	of	coverage,	which	in	turn	is	one	way	that
test	managers	can	measure	the	effectiveness	of	their	testing.	The	requirements	traceability
matrix	can	and	normally	should	be	used	in	concert	with	the	software	risk	analysis	described
in	Chapter	2	-	Risk	Analysis.

The	entire	thrust	of	acceptance	testing	is	to	ensure	that	every	requirement	is	addressed.	It

may	or	may	not	be	clear	to	you	that	it's	possible	to	test	every	requirement	and	still	not	have
tested	the	"entire"	system.	Remember,	the	requirements	traceability	matrix	doesn't	show
that	every	requirement	is	tested	completely,	only	that	each	requirement	has	been
addressed.	Additionally,	design	characteristics	are	not	specifically	addressed	during
acceptance	testing	and,	therefore,	other	issues	may	be	left	untested.	In	other	words,
acceptance	testing	is	not	a	comprehensive	test,	nor	was	it	intended	to	be.	Rather,	in	the
perfect	world,	the	acceptance	test	would	demonstrate	to	(or,	even	better,	by)	the	user	or
their	representative	that	the	requirements	have	been	met.

Configuration	Management

Key
Point

During	acceptance	testing,	configuration	management	of	the	software	under
test	(SUT)	should	be	as	formal	as	it	is	in	the	production	environment.

Key
Point

Configuration	management	is	covered	in	more	detail	later	in	this	chapter	under
the	topic	System	Testing.

During	acceptance	testing,	configuration	management	of	the	software	under	test	(SUT)
should	be	as	formal	as	it	is	in	the	production	environment.	Because	the	execution	of	the
acceptance	test	plan	(and	test	cases)	is	conducted	shortly	before	the	scheduled
implementation	date,	finding	major	defects	is	a	problem	because	there	is	little	time	to	fix	and
test	them.	Ideally,	we	want	the	acceptance	test	to	be	largely	a	demo	and	hope	to	find	all	of
the	major	problems	in	earlier	levels	of	test.	Unfortunately,	if	the	users	were	not	involved
throughout	the	lifecycle	in	requirements	formulation,	walkthroughs,	and	earlier	levels	of	test,
prototypes,	and	so	forth,	acceptance	testing	may	be	their	first	encounter	with	the	"system"
or	at	least	their	first	time	since	the	requirements	were	created.	Users	are	almost	certain	to
find	things	that	are	incorrect	or	don't	meet	their	vision.	In	fact,	users	may	not	have	a	clear
vision	of	what	they	expected,	only	that	the	system	doesn't	meet	their	expectations.	Hence,
the	users	typically	request	major	requirements	changes.	The	worst	thing	that	can	(and
frequently	does)	happen	is	to	discover	a	major	requirements	flaw	just	before	shipping	and
try	to	make	the	change	on	the	fly	without	providing	adequate	time	for	analysis,	design,
implementation,	and	regression	testing.	There	is	a	good	chance	that	the	change	was	rushed
and	may	go	out	without	being	tested	or,	at	least,	tested	inadequately.	Almost	all	companies
ship	their	products	with	known	bugs	(and	unknown	bugs)	but	there's	something	about	"that
last	bug"	that	makes	many	developers	feel	that	they	must	correct	it	before	shipping.	So,
developers	fix	that	last	bug	and	if	there	is	inadequate	time	to	test,	then	untested	software	is
shipped.

Implementing	major	requirements	changes	at	the	end	of	the	lifecycle	can	turn	a	project	into
chaos.	That's	why	it's	so	important	for	the	Change	Control	Board	(CCB),	or	its	equivalent,	to
review	each	major	change	and	determine	the	impact	on	the	system	and	the	project.	Each
change	must	be	prioritized	and	in	many	cases,	the	correct	choice	is	to	delay	certain	fixes	to
a	future	release.	If	the	change	must	be	done	in	this	release,	then	the	planning	risks
discussed	in	Chapter	2	must	be	revisited.	That	is,	we	may	have	to	slip	the	schedule,	not
ship	a	particular	feature,	add	resources,	or	reduce	testing	of	some	relatively	low-risk

features.

Key
Point

It's	important	for	the	Change	Control	Board	(CCB),	or	its	equivalent,	to	review
each	major	change	and	determine	the	impact	on	the	system	and	the	project.

Exit	Criteria

The	categories	of	metrics	for	release	criteria	are	pretty	much	the	same	for	each	level	of
test,	but	the	actual	values	will	be	different.	The	exit	criteria	for	acceptance	testing	are
especially	key,	since	they're	also	the	exit	(or	release)	criteria	for	the	entire	system.	These
exit	criteria	were	originally	laid	out	in	general	terms	in	the	master	test	plan	and	republished
in	greater	detail	in	the	level-specific	plans.	Case	Study	4-2	provides	an	example	of	one
company's	exit	criteria	for	their	acceptance	testing.

Case	Study	4-2:	Some	exit	criteria	may	be	standard	across	the	organization,	while
others	may	be	unique	to	each	project.

Example	Exit	Criteria	for	an	Acceptance	Test

There	can	be	no	Medium	or	High	severity	bugs.

There	can	be	no	more	than	2	bugs	in	any	one	feature	or	50	bugs	total.

At	least	one	test	case	must	pass	for	every	requirement.

Test	cases	23,	25,	and	38-52	must	all	pass.

8	out	of	10	experienced	bank	clerks	must	be	able	to	process	a	loan	document
in	1	hour	or	less	using	only	the	on-line	help	system.

The	system	must	be	able	to	process	1,000	loan	applications/hour.

The	system	must	be	able	to	provide	an	average	response	time	of	under	1
second	per	screen	shift	with	up	to	100	users	on	the	system.

The	users	must	sign	off	on	the	results.

Release	Strategies

When	acceptance	testing	has	successfully	concluded,	the	system	is	typically	rolled	out	to
the	users.	One	strategy	is	to	ship	and	install	the	entire	system	at	every	client	site
simultaneously.	This	introduces	a	significant	risk	if	major	problems	are	encountered	in	the
installation	or	functionality	of	the	system.	In	order	to	reduce	this	risk,	organizations
commonly	use	other	rollout	strategies	such	as:	pilots,	gradual	implementation,	phased
implementation,	and	parallel	implementation.

Pilots

Key
Point

The	difference	between	a	beta	site	and	a	pilot	is	that	the	users	at	the	pilot	site
are	actually	using	the	product	to	do	real	work,	while	the	beta	testers	are
executing	tests.

Pilots	are	often	confused	with	beta	tests.	You	will	remember	that	a	beta	test	is	an
acceptance	test	at	a	client	site	where	test	cases	are	executed	in	a	very	realistic	(test)
environment.	A	pilot	is	a	production	system	executed	at	a	single	or	limited	number	of	sites,
as	shown	in	Figure	4-7.	The	difference	between	a	beta	site	and	a	pilot	is	that	the	users	at
the	pilot	site	are	actually	using	the	product	to	do	real	work.	Failures	can	immediately	affect
their	business.

	
Figure	4-7:	Release	Using	Pilot	Site

Gradual	Implementation

Figure	4-8	shows	that	gradual	implementation	or	shipping	the	entire	product	to	a	few
customers	at	a	time	is	another	possible	option.	This,	of	course,	allows	developers	to	get
feedback	from	the	earlier	recipients	of	the	product,	which	may	allow	them	to	make	changes
before	the	product	is	generally	available.	The	downside	of	this	technique	is	that	it	extends
the	time	until	all	customers	have	the	product	in	hand	(i.e.,	general	availability).	It	also	means
that	the	developers	and	testers	must	maintain	more	than	one	version	simultaneously.

	
Figure	4-8:	Complete	Shipment	to	Some	Users

Phased	Implementation

Phased	implementation	is	when	the	product	is	rolled	out	to	all	users	incrementally.	That	is,
each	successive	release	contains	additional	functionality.	As	a	system	is	being	built,
functionality	is	installed	for	immediate	use	at	the	client	sites,	as	it	becomes	available,	as
illustrated	in	Figure	4-9.	The	beauty	of	this	is	that	the	customers	get	involved	early,	get
something	that	they	can	(hopefully)	use,	and	can	provide	useful	feedback	to	the	developers

and	testers.	The	downside	is	that	the	overall	integration	of	the	system	may	be	more
complicated	and	there	will	be	significantly	more	regression	testing	conducted	over	the	entire
lifecycle	of	the	product.

	
Figure	4-9:	Incremental	Shipments	to	All	Users

Parallel	Implementation

Parallel	implementation	is	another	technique	used	to	reduce	the	risk	of	implementation.	The
existing	application	is	run	side	by	side	(in	production)	with	the	new	application.	If	there	are
any	differences,	the	existing	system	is	considered	correct	until	proven	otherwise.	Parallel
implementation	may	require	extra	hardware,	software,	and	personnel	resources.

All	of	the	above	implementation	techniques	(pilots,	gradual	implementation,	phased
implementation,	and	parallel	implementation)	are	done	in	order	to	reduce	the	risk	of	shipping
an	entire	system	to	all	of	your	clients	and	having	it	fail	spectacularly.	There	is	one	risk,
though,	that	each	of	these	techniques	introduces	-	the	elapsed	time	for	all	of	the	clients	to
receive	the	entire	system	is	extended.	Remember	how	sensitive	management	normally	is
about	getting	the	product	out	the	door?	It	seems	that	in	some	companies,	once	the	pilot
begins,	the	entire	company	lets	go	with	a	collective	sigh	of	relief.

Test	Environment

The	environment	for	acceptance	testing	should	be	as	realistic	as	possible.	Any	differences
between	the	acceptance	test	environment	and	the	real	world	are	actually	risks	-	things	that
have	not	been	tested.	For	each	level	of	testing	(especially	for	acceptance	and	system),	the
testers	should	compare	their	environment	to	the	real	world	and	look	for	differences.	If
possible,	the	differences	should	be	eliminated	or	reduced.	If	this	is	not	possible,	then	the
testers	will	have	to	look	for	other	ways	to	deal	with	the	risk	of	an	unrealistic	test
environment.	Case	Study	4-3	compares	one	of	our	clients'	test	environment	to	their
production	environment.

Case	Study	4-3:	Example	of	a	Test	Environment

An	Example	Test	Environment

Here	is	an	example	test	environment	from	one	of	our	clients.	(Remember	that	the
environment	includes	who	is	doing	the	testing,	hardware,	software,	interfaces,	data,

cohabiting	systems,	etc.)

People: Testers	(formerly	users)

Hardware: "Exact"	replica	of	the	most	common	configuration

Software	Under	Test:Same

Interfaces Some	missing,	some	simulated

Data Subset	of	real	production	data,	updated	weekly

Cohabiting	Software: Unknown

This	is	not	a	bad	test	environment,	but	you	can	see	that	differences	do	exist	between
the	test	environment	and	the	real	word.	Let's	analyze	each	part	of	the	environment	to
see	if	it	introduces	a	significant	risk.	If	it	does,	is	there	is	a	way	to	mitigate	the	risk?

People:	This	project	had	a	good	strategy	of	using	former	users	as	testers,	which
helped	reduce	the	risk.	As	former	users,	the	testers,	for	the	most	part,	have	some
business	knowledge,	but	as	time	goes	by,	the	business	changes	and	memories	fade
(sounds	like	a	song)	and	they	become	testers	rather	than	users.	However,	these
testers	will	always	retain	their	business	viewpoint	and	empathy	for	the	users.	In	the
example	above,	the	system	being	developed	had	many	different	users	with	different
needs,	some	of	which	were	not	represented	by	the	former	user	testers.	If	the	team	felt
that	a	risk	existed	(and	they	did)	they	might	have	chosen	to	bring	some	users	on
board	as	temporary	testers	or	possibly	conduct	a	beta	test	at	one	or	more	customer
sites	(this	client	did	both).

Hardware:	This	client/server	system	had	consistent	hardware	and	operating	systems
for	the	servers,	but	the	clients	were	not	as	closely	controlled.	The	test	team	addressed
this	issue	by	inventorying	the	hardware	used	by	the	customers	and	creating	profiles	of
the	most	common	client	hardware	configurations,	operating	systems,	printers,	etc.

Software	Under	Test:	Same	-	no	issues.

Interfaces:	This	was	a	problem.	It	was	not	possible	to	interface	with	the	live	systems,
so	simulators	had	to	be	created	to	replicate	the	interaction	of	the	system	under	test
and	the	other	systems	and	databases	it	interacted	with.	The	testing	is	only	as	good	as
the	simulators	were	and,	in	this	case,	problems	were	experienced	upon	fielding	the
system.	Fortunately,	this	project	used	a	pilot	site	and	the	problems	were	limited	to	one
(volunteer)	customer.

Data:	Copies	of	real	data	were	used	as	much	as	possible.	Some	unique	data	had	to
be	created	by	hand.	Due	to	the	constraints	of	the	test	environment,	the	volume	of	data
used	for	testing	was	significantly	less	than	production.	This	was	offset	somewhat	by
using	some	dynamic	load	testing	tools	and	techniques.	The	data	was	not	particularly
"fragile,"	and	the	fact	that	some	of	the	data	was	quite	old	did	not	adversely	impact	the
test.

Cohabiting	systems:	This	was	another	problem.	Customers	were	not	supposed	to
load	their	own	software	on	the	client	machines,	but	of	course	they	did.	The	testers	did
not	test	the	impact	of	any	other	software,	because	the	users	were	not	supposed	to
load	it.	Actually,	it	turned	out	that	another	piece	of	software	developed	by	the	company
caused	the	software	under	test	to	crash	frequently	if	both	were	loaded	and	used	at	the
same	time.

Team-Fly 	

Team-Fly

	

System	Testing
The	system	test	is	what	most	people	think	about	when	they	think	of	testing.	It	is	what	Rick
often	calls	"The	Big	Kahuna."	The	system	test	is	where	most	of	the	testing	resources
normally	go	because	the	testing	may	go	on	for	an	extended	period	of	time	and	is	intended	to
be	as	comprehensive	as	the	resources	allow	and	the	risk	dictates.	In	addition	to	functional
testing,	it	is	typically	during	system	test	that	load,	performance,	reliability,	and	other	tests
are	performed	if	there	is	not	a	special	effort	or	team	for	those	activities.	The	system	test
set	or	a	portion	of	it	will	normally	comprise	the	bulk	of	the	regression	test	suite	for	future
releases	of	the	product.

Audience	Analysis

NoteWho	should	write	the	system	test	plan?

If	there	is	an	independent	test	team,	their	focus	is	normally	on	system	testing.	The	manager
of	this	team	or	a	senior	test	analyst	would	normally	be	the	primary	author	of	the	system	test
plan.	He	or	she	would	be	responsible	for	coordinating	with	the	developers	and	users	to	get
their	input	on	the	areas	that	affect	them.	If	there	is	no	independent	test	team,	the	system
test	plan	may	be	written	by	the	development	team	or	in	some	cases	by	the	users.

The	system	test	plan	can	normally	be	started	as	soon	as	the	first	draft	of	the	requirements
is	fairly	complete.	The	software	design	documentation	will	also	have	an	impact	on	the
system	test	plan,	so	the	"completion"	of	the	plan	may	be	delayed	until	it	is	done.

NoteWhen	should	the	system	test	plan	be	written?

Sources	of	Information

As	in	the	case	of	the	acceptance	test	plan,	the	system	test	plan	must	be	in	agreement	with
the	master	test	plan	and	seek	to	amplify	those	parts	of	the	MTP	that	address	system
testing.	The	system	test	plan	is	built	based	on	the	requirements	specifications,	design
documentation,	and	user	documentation,	if	they	exist.	Other	documents	such	as	functional
specifications,	training	materials,	and	so	on	are	also	useful.	Chapter	5	-	Analysis	and
Design	explains	the	valuable	of	creating	inventories	of	functions,	states,	interfaces,	etc.	to
be	used	as	a	basis	for	the	test	design.

A	traceability	matrix	for	system	testing	may	include	some	or	all	of	the	following
domains:

requirements

features

design	characteristics

states

Note

capacity

concurrence

conversion

h/w	configuration

interoperability

installation

interfaces

localization

performance

recovery

reliability

resource	usage

scalability

sensitivity

s/w	configuration

usability

The	requirements	traceability	matrix	that	is	used	for	acceptance	testing	is	a	good	starting
point	for	the	system	testing	traceability	matrix,	but	is	generally	not	comprehensive	enough	to
support	the	system	test	design.	Generally,	the	system	test	group	will	try	to	build	a	matrix
that	not	only	covers	the	requirements,	but	also	includes	an	inventory	of	features,	design
characteristics,	states,	etc.	Other	domains	that	are	addressed	in	systems	testing	might
include	capacity,	concurrence,	configuration,	conversion,	hardware,	installation,
interoperability,	interfaces,	localization,	performance,	recovery,	reliability,	resource	usage,
scalability,	sensitivity,	software	configuration,	and	usability.	However,	not	all	of	these
domains	are	applicable	for	every	application.

Software	Configuration	Management

Software	configuration	management	is	critical	to	the	testing	effort.	It	is	so	important	that	if
the	software	configuration	management	is	done	poorly,	the	testing	effort	and	indeed	the
entire	project	may	fail.	Normally,	we	think	of	software	configuration	management	as	a
process	that	has	two	distinct	but	related	functions,	as	illustrated	in	Figure	4-10.

	Figure	4-10:	Functions	of	Configuration
Management

The	first	of	these	is	an	administrative	function	that	is	itself	sometimes	called	configuration
management,	although	library	management	is	probably	a	more	accurate	term.	This	is	the
function	of	creating	the	builds,	managing	changes	to	the	software,	and	ensuring	that	the
correct	versions	of	the	software	and	documentation	are	maintained	and	shipped.	It's
frequently	done	with	the	aid	of	commercially	available	or	homegrown	tools.	The
configuration	manager	may	be	organizationally	independent,	or	the	function	may	fall	under
the	development	organization,	the	QA	team,	or	the	testing	team.	Configuration	management
is	a	difficult	and	thankless	job	where	you're	hardly	ever	noticed	until	something	goes	wrong	-
kind	of	like	testing.

Key
Point

Change	Control	Board	(CCB)	members	may	include:
testers

developers

configuration	managers

database	admins

users/customers

customer	support

marketing

The	other	part	of	software	configuration	management	is	more	of	a	management	function.
This	is	usually	done	with	a	group	called	the	Change	Control	Board	(CCB),	Change
Management	Board	(CMB),	bug	committee,	the	every-other-Tuesday	meeting,	or	whatever
you	call	it	-	really,	the	name	is	not	that	important.	The	purpose	of	the	CCB	is	to	determine
how	incidents,	defects,	and	enhancements	should	be	handled,	as	illustrated	in	Figure	4-11.
Basically,	the	CCB	determines	what	changes	should	be	made	and	in	what	order	(i.e.,	the
priority).

	
Figure	4-11:	Defect	Analysis	Decision	Tree

Key
Point

After	digesting	dozens	of	books,	we	found	that	about	half	refer	to	the	CCB	as
the	Configuration	Control	Board,	while	the	other	half	referred	to	CCB	as	the
Change	Control	Board.	We	like	Change	Control	Board.

Ideally,	the	CCB	would	comprise	a	group	of	users,	developers,	testers,	and	anyone	else
with	a	vested	interest	in	the	final	product.	Normally,	priorities	are	based	upon	the	severity	of
the	bug	(users	are	useful),	the	effort	to	fix	the	bug	(developers	are	useful),	the	impact	on	the
schedule	(managers	are	useful),	and	the	effort	to	re-test	(testers	are	useful).

Key
Point

An	incident	is	something	that	doesn't	work	as	desired	or	expected.	It	may	be
caused	by	a	defect	(software	or	testing),	it	may	be	an	enhancement,	or	it	may
be	a	one-time	anomaly	(i.e.,	incident).

Most	companies	have	some	type	of	formal	or	informal	CCB	that	looks	at	production	bugs
and	enhancement	requests.	Many	of	these	same	companies	do	not	have	any	special
process	to	handle	and	prioritize	bugs	and	enhancements	that	occur	during	the	course	of	the
software	development	lifecycle.	This	is	not	necessarily	a	big	problem	at	the	lower	levels	of
test	(e.g.,	unit),	where	the	required	degree	of	formality	of	configuration	management	is	less,
but	becomes	critical	at	system	and	acceptance	test	times.	We're	discussing	configuration
management	in	greater	detail	in	the	section	on	system	testing	because	it	seems	that	is
where	some	of	the	biggest	configuration	management	problems	occur.	Case	Study	4-4
describes	a	configuration	management	problem	that	occurs	all	too	often.

Case	Study	4-4:	If	a	developer	fixes	a	bug	really	fast	and	creates	a	new	build,	did	the
bug	really	exist?

The	Bug	That	"Never	Existed"

See	if	this	scenario	sounds	familiar…	The	systems	test	is	being	conducted	and
Heather,	the	tester,	discovers	a	defect.	She	immediately	documents	the	bug	and
sends	it	back	to	the	developer	for	resolution.	Bob,	the	developer,	can't	stand	the
thought	that	someone	found	a	bug	in	his	work,	so	he	fixes	it	immediately	and	updates
the	version	of	the	software	under	test.	Out	of	sight,	out	of	mind…	Many	developers
feel	that	if	they	fix	the	bug	fast	enough,	it's	as	if	it	never	happened.	But	now,	Heather
and	maybe	some	of	her	colleagues	have	to	test	the	bug	fix,	possibly	retest	other	parts
of	the	system,	or	even	re-run	a	significant	part	of	the	regression	suite.	If	this	is

repeated	over	and	over	with	different	developers	and	testers,	the	testing	gets	out	of
control	and	it's	unlikely	that	the	testers	will	ever	finish	testing	the	entire	system.	At	the
very	least,	they	will	have	spent	way	too	much	time	and	money.

On	the	other	hand,	testers	are	also	a	problem.	You	may	have	heard	or	even	said
yourself,	"How	do	you	expect	me	to	ever	get	this	tested	if	you	keep	changing	it?
Testing	a	spec	is	like	walking	on	water,	it	helps	if	it	is	frozen."	Well,	obviously	if	the
software	is	frozen	prematurely,	at	some	point	the	testing	will	become	unrealistic.	A
bug	found	by	tester	'A,'	for	example,	would	certainly	change	what	tester	'B'	was	doing
if	the	first	bug	had	been	fixed.

The	solution	to	Case	Study	4-4	is	not	to	fix	every	bug	immediately	or	to	freeze	the	code
prematurely,	but	to	manage	the	changes	to	the	system	under	test.	Ideally,	changes	should
be	gathered	together	and	re-implemented	into	the	test	environment	in	such	a	way	as	to
reduce	the	required	regression	testing	without	causing	a	halt	or	slowdown	to	the	test	due	to
a	blocking	bug.	The	changes	to	the	software	under	test	should	begin	to	slow	down	as	the
system	test	progresses	and	moves	into	the	acceptance	test	execution	phase.	Case	Study
4-5	describes	an	example	of	how	one	company's	system	test	plan	identifies	a	strategy	for
implementing	changes	to	their	software.

Case	Study	4-5:	How	does	your	organization	manage	changes	to	the	software	under
test?

An	Example	Strategy	for	Implementing	Changes

For	the	first	two	weeks	of	testing,	all	change	requests	and	bug	fixes	will	be
implemented	in	a	daily	build	to	occur	at	5:30	p.m.

For	the	next	two	weeks,	the	test	manager,	development	manager,	user
representative,	and	configuration	manager	will	meet	at	10:00	every	Tuesday
and	Thursday	to	prioritize	all	outstanding	or	open	change	requests	or	bug
fixes.	They	will	also	decide	which	completed	fixes	will	be	promoted	into	the
System	Test	Environment.

For	the	final	two	weeks	of	scheduled	system	test,	only"	show-stopper"	bug
fixes	will	be	implemented	into	the	test	environment.

Many	of	our	students	and	some	of	our	clients	ask	about	daily	builds.	Daily	builds	are	not	for
everyone	and	not	for	the	entire	software	development	lifecycle.	Early	in	the	development
phase,	unit	and	integration	testing,	and	even	in	the	early	stages	of	the	system	test	execution
phase,	daily	builds	can	be	a	useful	tool.	However,	using	daily	builds	until	the	very	end
assures	most	companies	that	they	have	spent	too	much	time	doing	regression	testing	and/or
shipping	a	product	that	isn't	fully	tested.	If	the	regression	test	suite	is	automated,	then	it	is

possible	to	extend	the	daily	builds	well	into	the	system	test	execution	phase,	but	there	still
needs	to	be	a	code	freeze	(show-stoppers	aside)	during	the	later	stages	of	system	test	and
during	acceptance	testing.

There	are	very	few	things	that	a	test	manager	can	do	to	improve	the	efficiency	of	the	testing
effort	that	will	pay	a	dividend	as	much	as	managing	how	changes	are	re-implemented	into
the	test	environment.	Some	managers	of	testing	groups	have	little	or	no	control	over	how
changes	are	promoted	into	the	test	environment.	Other	managers	may	not	even	have	a
clear	view	of	what	changes	are	introduced	and	when	(i.e.,	the	developer	has	total	control	of
the	software	under	test).	If	you	fall	into	one	of	these	two	categories,	getting	control	of	how
changes	are	promoted	into	your	test	environment	should	be	one	of	your	top	priorities.
Otherwise,	you're	not	really	managing	the	testing	effort	-	you're	only	reacting	to	the	changes
to	your	environment.

Key
Point

There	are	very	few	things	that	a	test	manager	can	do	to	improve	the	efficiency
of	the	testing	effort	that	will	pay	a	dividend	as	much	as	managing	how	changes
are	re-implemented	into	the	test	environment.

Exit/Entrance	Criteria

Exit	and	entrance	criteria	are	important	issues	that	should	be	addressed	in	the	system	test
plan.	If	the	system	test	execution	is	started	prior	to	the	conclusion	of	integration	testing	(in
order	to	shorten	the	lifecycle),	then	many	of	the	bugs	that	would	have	been	contained	during
the	developmental	testing	(e.g.,	unit	and	integration)	may	be	discovered	during	system	test,
where	the	cost	to	find	and	fix	them	is	much	greater.	For	example,	in	Figure	4-12,	the	defect
found	at	point	'A'	might	have	been	discovered	during	integration	testing	had	integration
testing	concluded	prior	to	the	start	of	system	testing.

	
Figure	4-12:	Consequences	of	Overlapping	Test	Levels

Key
Point

Many	organizations	begin	executing	one	level	of	test	before	the	prior	one
completes,	in	order	to	field	the	system	sooner.	The	downside	of	this	strategy
is	that	it	typically	requires	more	resources.

If	a	developer	discovers	a	bug	in	his	or	her	code	during	unit	or	integration	testing,	he	or	she
normally	just	fixes	it	without	advertising	the	problem.	If	the	same	bug	is	discovered	during
system	test,	it	has	to	be	documented,	prioritized,	returned	to	the	developer	for	correction,
and	ultimately	reintroduced	into	the	system	test	environment	for	re-testing	and	appropriate
regression	testing.	During	this	time,	the	developer	may	have	already	moved	on	to	something

else.	Debugging	is	often	significantly	more	difficult	for	bugs	found	by	the	tester	in	the	system
as	opposed	to	finding	them	in	unit	or	integration	testing.

Automation	of	regression	test	suites	(or	any	other,	for	that	matter)	is	difficult	if	the	software
and,	consequently,	the	test	cases	have	to	change	frequently.	In	fact,	if	the	software	is	too
unstable	and	changing	too	rapidly,	some	test	automation	techniques	would	probably	prove
to	be	counterproductive	and	it	would	be	easier	to	test	manually.	To	help	solve	these
problems,	it's	useful	to	create	exit	criteria	from	the	developer's	test	(unit	or	integration)	and
entrance	criteria	into	system	test.	We	would	also	need	to	consider	exit	criteria	from	system
test	and	entrance	criteria	into	acceptance	test.	Case	Study	4-6	describes	one	company's
exit	criteria	from	their	developmental	tests.

Case	Study	4-6:	How	does	your	organization	define	developmental	tests?	What	are
your	exit	criteria?

Example	Exit	Criteria	from	Developmental	Tests

All	unit	and	integration	tests	and	results	are	documented.

There	can	be	no	High	severity	bugs.

There	must	be	100%	statement	coverage.

There	must	be	100%	coverage	of	all	programming	specifications.

The	results	of	a	code	walkthrough	are	documented	and	acceptable.

The	exit	criteria	that	this	company	defined	are	somewhat	of	a	wish	list.	Some	test
managers	would	be	happy	if	the	code	just	compiled	cleanly.	At	a	minimum,	test	cases
and	results	should	be	documented,	and	if	it	is	part	of	your	culture	(and	we	hope	it	is),
the	results	of	the	code	walkthroughs	should	also	be	documented.

Key
Point

Developmental	tests	are	those	levels	of	test	that	are	normally	accomplished	by
the	developer.	In	this	book,	those	levels	are	Unit	and	Integration.

The	entrance	criteria	should	include	all	or	some	of	the	exit	criteria	from	the	previous	level,
plus	they	may	contain	statements	about	the	establishment	of	the	test	environment,	gathering
of	data,	procurement	and	installation	of	tools,	and	if	necessary,	the	hiring	or	borrowing	of
testers.	If	you	are	having	difficulty	receiving	a	stable	system,	you	might	want	to	consider
building	a	"smoke"	test	as	part	of	the	entrance	criteria.

Smoke	Test

A	smoke	test	is	a	group	of	test	cases	that	establish	that	the	system	is	stable	and	all	major
functionality	is	present	and	works	under	"normal"	conditions.	The	purpose	of	a	smoke	test	is

not	to	find	bugs	in	the	software,	although	you	might,	but	rather	to	let	the	system	test	team
know	what	their	starting	point	is.	It	also	provides	a	goal	for	the	developers	and	lets	them
know	when	they	have	achieved	a	degree	of	stability.

Key
Point

A	smoke	test	is	a	group	of	test	cases	that	establish	that	the	system	is	stable
and	all	major	functionality	is	present	and	works	under	"normal"	conditions.

The	smoke	test	cannot	be	created	autonomously	by	the	testing	team,	but	should	be	done
jointly	or	at	least	with	the	consent	of	the	developers.	Otherwise,	the	developers	will	feel	like
the	testers	are	dictating	to	them	how	to	do	their	job,	and	no	buy-in	will	be	achieved	for	the
smoke	test.	Then,	all	you'll	have	is	a	smoke	test	that	may	or	may	not	work,	and	the
developer	will	say,	"So	what?"	Remember	that	buy-in	is	the	key	to	success.

The	trick	to	establishing	a	good	smoke	test	is	to	create	a	group	of	tests	that	are	broad	in
scope,	as	opposed	to	depth.	Remember	that	the	purpose	is	to	demonstrate	stability,	not	to
find	every	bug	in	the	system.	We	like	to	take	our	smoke	test	cases	from	the	regression	test
set,	so	the	smoke	test	becomes	a	subset	of	the	regression	test	set.	We	also	like	to	target
the	smoke	tests	as	the	very	first	tests	that	we	attempt	to	automate.

It	doesn't	really	matter	if	the	smoke	test	is	run	by	the	developers	or	testers,	but	it	should	be
run	in	the	system	test	environment.	The	developer	may	want	to	try	it	in	his	or	her
environment	first,	but	you	must	remember	that	just	because	it	works	in	the	development
environment	doesn't	mean	it	will	work	in	the	system	test	environment.	The	test	manager
might	want	to	make	the	test	environment	available	to	the	developers,	so	they	can	run	the
test	and	have	some	confidence	that	it	works	prior	to	promoting	the	code	to	the	test	team.

Team-Fly 	

Team-Fly

	

Integration	Testing
Integration	testing	is	the	level	of	test	done	to	ensure	that	the	various	components	of	a
system	interact	and	pass	data	correctly	among	one	another	and	function	cohesively.
Integration	testing	can	be	accomplished	at	various	levels.	At	the	lowest	level,	integration
testing	is	normally	done	by	the	development	group	to	ensure	that	the	units	work	properly
together.	Higher	levels	of	integration	or	builds	may	also	be	done	by	the	developer	or	by	the
test	team.	Integration	testing	is	the	process	of	examining	how	the	pieces	of	a	system	work
together,	especially	at	the	interfaces.	Integration	can	occur	at	various	levels,	as	illustrated	in
the	car	example	in	Figure	4-13.

	Figure	4-13:	Levels	of	Integration	in	a	Typical
Car

Key
Point

Integration	testing	is	also	known	as	string,	thread,	build,	subsystem,	and	by	a
multitude	of	other	names.

Several	units	(e.g.,	U1,	U2,	U3)	are	used	to	make	the	fuel	module,	the	fuel	and	the	air
module	make	the	carburetor,	the	carburetor	and	other	parts	are	used	to	make	the	engine,
and	so	on.	The	levels	of	integration	continue	up	the	chain	until	the	entire	car	is	assembled.
Different	people	might	do	different	levels	of	integration	testing.	What	you	call	"integration"	is
dependent	on	what	you	call	a	"system."	Consider	the	example	in	Figure	4-13.	If	you	define
the	system	as	the	car,	then	everything	below	the	car	is	integration	that	leads	to	the	ultimate
system.	If	the	engine	is	seen	as	the	system,	then	all	of	the	parts	leading	to	the	engine	are
part	of	the	integration	testing.	The	process	of	testing	the	engine	with	the	transmission
becomes	a	systems	integration	task	or	a	job	of	testing	the	interface	between	two	systems.
The	decision	of	"what	is	a	system"	was	described	in	the	Introduction	(Scope)	section	of	the
master	test	plan	and	may	be	affected	by	the	structure	of	the	organization,	politics,	staffing,
and	other	factors.

Audience	Analysis

In	most	organizations,	the	integration	test	plan	is	used	primarily	by	developers	as	a	"road
map"	to	test	how	all	the	individual	parts	of	a	system	fit	together.	The	test	group	also	uses
this	plan	to	make	sure	there's	no	overlap	between	what	they're	testing	and	what	the

developers	or	other	test	groups	are	testing.

Many	companies	that	we've	visited	have	never	done	integration	testing	per	se	and	frequently
deliver	well-tested	systems.	In	this	case	the	integration	testing	is	probably	done	as	part	of
an	extended	unit	testing	effort	or	is	accomplished	as	part	of	system	testing.	Integration
testing	can	become	very	important,	especially	on	larger,	more	complex	systems,	and	in
particular	on	new	development.	Some	bugs	that	can	be	discovered	as	the	units	are
integrated	are	impossible	to	find	when	testing	isolated	units.	The	interfaces	between
modules	are	the	target	of	integration	testing	and	are	normally	error-prone	parts	of	the
system.

Activity	Timing

As	always,	we're	anxious	to	start	the	test	plan	as	soon	as	possible.	Normally,	this	would
mean	that	the	integration	test	planning	process	could	begin	as	soon	as	the	design	is
beginning	to	stabilize.

NoteWhen	should	the	Integration	Test	Plan	be	written?

Developers	play	an	important	part	in	the	development	of	the	integration	test	plan	because
they'll	eventually	be	required	to	participate	in	the	testing.	We	have	always	felt	that	the
developers	are	the	most	logical	people	to	do	the	integration	testing,	since	the	development
team	really	doesn't	know	if	they	have	created	a	viable	system	without	doing	at	least	some
integration	testing.	Having	the	developers	do	the	integration	testing	also	speeds	the	fixing	of
any	bugs	that	are	discovered.

NoteWho	should	write	the	Integration	Test	Plan	and	who	should	do	the	testing?

Finally,	in	order	to	do	integration	testing,	it	is	frequently	necessary	to	create	scaffolding
code	(stubs	and	drivers).	The	members	of	the	test	team	may	or	may	not	have	the	skill	set
necessary	to	create	this	scaffolding	code.

Key
Point

According	to	Glenford	Myers'	The	Art	of	Software	Testing,	scaffolding	is	code
that	simulates	the	function	of	non-existent	components.

Drivers	are	modules	that	simulate	high-level	components,	while	stubs	are
modules	that	simulate	low-level	components.

One	of	the	key	issues	in	integration	testing	is	determining	which	modules	to	create	and
integrate	first.	It's	very	desirable	to	integrate	the	riskiest	components	or	those	that	are	on
the	critical	path	(drivers)	first,	so	that	we	can	discover	as	early	as	possible	if	there	are	any
major	problems.	There's	nothing	worse	than	discovering	a	fatal	flaw	in	one	of	the	most
critical	components	late	in	the	lifecycle.	Another	reason	why	the	developers	are	often	called
upon	to	do	the	integration	test	is	because	the	strategy	of	how	to	conduct	the	integration
testing	is	controlled	almost	entirely	by	the	strategy	for	integrating	the	system,	which	is	done
by	the	developer.

Since	systems	are	frequently	built	by	iteratively	combining	larger	and	larger	pieces	of	code
(and	underlying	functionality),	there	may	be	various	levels	of	integration	tests.	The	earliest
levels	are	often	used	to	just	check	the	interaction	of	units.	In	many	companies	this	is
accomplished	in	a	fairly	informal	fashion	and	is	often	seen	as	just	an	extension	of	unit
testing.	Integration	testing	is	often	done	by	individual	developers	working	together	to	see
how	their	code	works.	At	some	point,	entire	modules	or	subsystems	need	to	be	built.	This	is
also	often	known	as	integration	or	build	testing.	Logically,	build	testing	should	be	done	by
the	developers	or,	in	some	cases,	the	test	group.

NoteWhat	do	you	mean	by	different	levels	of	integration	testing?

Sources	of	Information

Typically,	the	integration	tests	are	built	based	upon	the	detailed	design	specifications.	Higher
levels	of	integration	testing	may	also	use	the	high-level	or	architectural	design	specifications.
Finally,	even	in	integration	testing,	an	effort	should	be	made	to	match	the	software	design
and	its	corresponding	test	cases	to	the	requirements.

Integration	Test	Planning	Issues

Many	strategic	issues	should	be	considered	before	deciding	what	type	of	integration	testing
to	perform:

What	modules	or	objects	should	be	assembled	and	tested	as	a	group?

What	are	the	functional	subassemblies?

What	are	the	critical	features?

How	much	testing	is	appropriate?

Are	there	any	implementation-based	testing	objectives?

How	much	scaffolding	code	or	test	support	code	is	required?

How	will	problems	be	isolated?

How	is	testing	coordinated	with	system	and	unit	testing?

Figure	4-14	illustrates	a	sample	project	containing	a	group	of	interacting	builds.	The	shaded
boxes	represent	critical-path	components	that	must	pass	integration	testing	before	the
Make	Reservation	function	can	move	to	the	system	testing	phase.

	
Figure	4-14:	Sample	Build	Scheme

If	any	of	the	components	A,	C,	K,	or	N	are	incomplete,	the	Make	Reservation	function
cannot	be	executed	without	including	stubs	or	drivers.

Configuration	Management

At	the	earliest	stages	of	integration	testing,	that	is	to	say,	as	the	first	units	are	being
integrated,	configuration	management	is	normally	done	in	a	fairly	informal	fashion	with	the
developers	and/or	program	leads	handling	most	of	the	duty.	As	the	builds	get	progressively
larger,	the	configuration	management	should	become	more	formal,	as	changes	to	the
system	can	potentially	affect	the	coding	and	testing	of	other	developers	and	testers.

Test	Environments

In	most	organizations,	the	integration	test	environment	will	be	the	development	environment.
Because	the	integration	testing	will	commence	prior	to	the	total	integration	of	the	system,
integration	test	cases	often	cannot	be	executed	without	creating	stubs	and/or	drivers	to	stub
out	the	missing	pieces	of	code.	The	effectiveness	of	the	integration	testing	will	be	directly
affected	by	the	validity	of	the	scaffolding	code.

Key
Point

"Volume	testing	is	testing	that	purposely	subjects	a	system	to	a	series	of
tests	where	the	volume	of	the	data	being	processed	is	the	subject	of	the
test…	Volume	testing	will	seek	to	verify	the	physical	and	logical	limits	to
a	system's	capacity…"

-	The	Information	Security	Glossary

Often	the	data	being	used	in	integration	testing	will	be	made	up	of	a	subset	of	the
production	environment.	Since	integration	testing	is	focused	on	testing	the	internal	interfaces
of	the	system,	volume	testing	is	not	normally	attempted	and	therefore	large	volumes	of	test
data	are	not	required.

Team-Fly 	

Team-Fly

	

Unit	Testing
Over	the	course	of	the	past	several	years,	we	have	had	the	opportunity	to	present	over	300
seminars	on	various	aspects	of	software	testing.	During	these	seminars,	one	topic	that
receives	more	than	its	share	of	blank	stares	is	"unit	testing."	Rick	jokingly	tells	the	audience
that	"there's	an	IEEE	standard	(IEEE	Std.	1008-1987,	Standard	for	Software	Unit	Testing)
for	unit	testing,	but	so	far	only	one	copy	has	been	sold	and	I	own	it!"	Refer	to	Figure	4-15.

IEEE	Std.	1008-1987	for	Software	Unit	Testing

Contents

1. Scope	and	References

1.1 Inside	the	Scope

1.2 Outside	the	Scope

1.3 References

2. Definitions

3. Unit	Testing	Activities

3.1 Plan	the	General	Approach,	Resources,	and	Schedule

3.2 Determine	Features	to	Be	Tested

3.3 Refine	the	General	Plan

3.4 Design	the	Set	of	Tests

3.5 Implement	the	Refined	Plan	and	Design

3.6 Execute	the	Test	Procedures

3.7 Check	for	Termination

3.8 Evaluate	the	Test	Effort	and	Unit

Figure	4-15:	Rick's	copy	of	the	Unit	Testing	Standard

Key
Point A	simplified	template	for	a	unit	test	plan	is	contained	in	Appendix	E.

This	section	will	explore	some	of	the	reasons	why	unit	testing	is	done	poorly	(or	not	at	all),
why	unit	testing	is	important,	and	some	ideas	for	implementing	formal	unit	testing	within	an
organization.

Common	Obstacles	in	Unit	Testing

Most	developers	are	quick	to	learn	that	their	job	is	to	create	code.	Management	may	talk
about	the	importance	of	unit	testing,	but	their	actions	contradict	their	words.	Developers	are
measured	and	rewarded	for	producing	code.	It's	true	that	developers	may	also	be	penalized
for	excessive	bugs	in	their	code,	but	the	pressure	to	get	the	code	out	the	door	often
outweighs	every	other	concern.	Another	problem	is	the	attitude	of	the	developers
themselves.	Most	seem	to	be	eternal	optimists,	and	when	placed	under	the	gun,	they
believe	their	code	will	work	correctly	and	unit	testing	is	something	to	do	only	if	time	permits
(which,	of	course,	it	never	does).

Note "It's	not	my	job	to	do	unit	testing."

An	extension	of	this	problem	is	the	normal	situation	in	most	companies,	where	the
developers/unit	testers	have	not	been	trained	to	do	unit	testing.	Many	managers	and	some
developers	believe	that	if	you	know	how	to	code,	you	also	know	how	to	test	-	as	if	testing
was	some	inherent	trait	existent	in	every	developer.	Developers	must	be	trained	in	the
general	concepts	of	testing	at	all	levels	(unit,	integration,	system,	acceptance,	etc.)	and	in
the	specific	techniques	necessary	to	effectively	perform	unit	testing.

Note "I	haven't	been	trained	to	do	unit	testing."

Note "I	don't	have	the	tools	to	do	unit	testing."

Finally,	the	proper	procedures	and	tools	have	to	be	in	place	in	order	for	developers	to
conduct	unit	testing.	Documents	need	to	be	created	that	describe	unit	test	plans,	test
designs,	configuration	management,	etc.	Adequate	test	tools	and	debuggers	must	also	be
available.	Certainly,	each	developer	needs	to	have	access	to	debugging	tools,	code
coverage	tools,	defect	tracking	systems,	and	library	management	systems.	Other	tools	may
be	necessary	in	some	organizations.

If	the	three	preceding	paragraphs	describe	some	of	the	situations	that	exist	in	your
organization,	please	read	on.	We	have	described	some	of	the	issues	that	need	to	be
addressed	in	order	to	successfully	implement	and	conduct	unit	testing	in	an	organization.

Education	and	Buy-In

The	first	step	in	implementing	effective	unit	testing	is	to	provide	all	developers	with	training
on	how	to	test.	The	training	should	include	general	training	in	testing	methodologies	as	well
as	training	on	specific	unit	testing	techniques	and	tools.	Development	managers	would	also
benefit	from	participating	in	training	on	testing	methodologies	and	techniques.	Not	only	will
the	training	provide	them	with	an	understanding	of	the	discipline,	it	will	also	show	support	to
their	staff.

Key
Point

Our	testing	classes	have	recently	shown	an	increase	in	the	number	of
developers	attending.

Many	companies	have	independent	test	teams,	often	at	the	system	test	level.	These	test

groups	have	a	vested	interest	in	the	quality	of	the	unit	testing,	since	good	unit	testing	can
greatly	facilitate	the	testing	at	higher	levels	by	finding	defects	earlier	in	the	lifecycle.	Many
development	managers	may	find	that	the	testing	groups	can	provide	some	type	of	training
for	their	staffs.	Often	the	testing	groups	are	willing	(even	excited)	to	provide	a	trainer	or
mentor	to	assist	in	the	creation	of	unit	test	plans,	test	case	design,	etc.

Standards	and	Requirements

An	effective	way	to	develop	standards	is	to	provide	company-unique	samples	of	each	kind
of	document	required.	As	a	minimum	set	the	following	samples	should	be	created:	unit	test
plan,	test	design,	test	case/test	procedure,	defect	report,	and	test	summary	report.	Unless
the	work	is	remarkably	consistent	from	project	to	project,	it	may	be	necessary	to	provide
samples	for	small	projects	(i.e.,	3-4	individuals)	and	for	larger	projects,	since	documentation
requirements	are	generally	greater	for	larger	projects.	It's	important	that	the	samples
include	only	the	information	necessary	to	avoid	the	perceived	(and	sometimes	real)	notion
that	documentation	is	being	created	for	its	own	sake.

Often,	the	only	process	documentation	required	in	addition	to	the	sample	documents	is	a
series	of	flowcharts	that	describe	how	to	accomplish	certain	tasks	such	as	reporting	a
defect,	checking	code	in	and	out,	where	and	how	to	save	test	cases,	when	and	how	to
implement	an	inspection	or	walkthrough,	and	how	to	use	a	test	log.	The	key	is	to	make	all	of
these	activities	as	simple	and	painless	as	possible.

It's	important	that	an	individual	(or	group)	be	identified	as	the	champion	of	the	testing
process	and	documentation.	The	champion	is	a	person	whom	everyone	knows	they	can	go
to	for	help.	Typically,	the	champion	should	be	an	opinion-leader	although	not	necessarily	a
manager.	In	fact,	the	champion	should	probably	not	be	in	the	chain	of	command.

Key
Point

Developers	should	be	responsible	for	creating	and	documenting	unit	testing
processes.

Developers	should	be	responsible	for	creating	and	documenting	unit	testing	processes.	If	a
set	of	documents	or	procedures	is	passed	down	to	the	programming	staff,	they'll	often
adopt	the	attitude	that	"this	is	just	another	bureaucratic	requirement."	Similarly,	the
practitioners,	possibly	through	the	champion,	must	feel	that	the	standards	can	be	changed	if
they're	not	working.	A	periodic	review	of	the	procedures	by	a	group	of	practitioners	will	help
facilitate	this	idea.

Configuration	Management

Systematic	unit	testing	is	seldom	achieved	without	first	establishing	procedures	for	source
code	control.	If	developers	are	allowed	unregulated	control	of	their	code	during	unit	test,
they	are	unlikely	to	execute	formal	unit	tests	that	identify	defects	in	their	code,	since	no	one
likes	to	admit	that	their	work	is	"less	than	perfect."	Placing	the	code	under	configuration
management	is	one	way	to	signal	that	it	is	time	for	the	execution	of	unit	tests.	There	is	a
danger,	of	course,	of	establishing	controls	that	are	too	rigid,	especially	early	in	the

development	process.	Initially,	it	may	be	adequate	to	control	source	code	at	the	team	level
or	even	at	the	individual	developer	level	(if	adequate	guidelines	are	provided)	rather	than
through	the	library	manager,	but	if	no	procedures	are	established	it	will	be	difficult	to
differentiate	between	debugging	and	unit	testing.	The	successful	completion	of	a	code
inspection	can	also	be	used	as	a	signal	for	formal	unit	test	execution.

Key
Point

Systematic	unit	testing	is	seldom	achieved	without	first	establishing	procedures
for	source	code	control.

Metrics

Key
Point

Defect	density	is	the	ratio	of	defects	to	size.	The	most	common	ratio	is	the
number	of	defects	per	thousand	lines	of	code	(KLOC).

Another	benefit	of	formal	unit	testing	is	that	it	allows	the	collection	of	unit-level	metrics,
which	help	identify	problematic	areas	early	in	the	development	process.	Although	it's	not
necessarily	an	intuitive	concept,	programs	or	modules	that	have	had	large	numbers	of
defects	identified	in	them	(and	subsequently	corrected)	generally	still	have	abnormally	large
numbers	of	undetected	defects	remaining.	One	reason	that	this	phenomenon	occurs	may	be
because	programs	with	large	numbers	of	defects	are	complex	or	not	well	understood.
Another	reason	might	be	that	some	bugs	are	introduced	into	the	system	as	a	result	of
implementing	fixes.	Organizations	that	can	identify	defect-prone	modules	during	unit	testing
can	tag	them	as	high	risk	and	ensure	that	they	receive	adequate	attention	prior	to
integration	and	system	testing.	High	defect	density	during	unit	test	may	also	signal	that	more
time	needs	to	be	allotted	for	higher-level	testing.

Collecting	metrics	during	unit	testing	also	facilitates	estimating	testing	time	and	resources
for	future	releases	and	helps	identify	areas	for	process	improvement.	One	word	of	caution:
we	are	interested	in	measuring	the	product	and	the	process,	but	many	developers	may	feel
that	they	are	being	measured!	Make	sure	you	understand	the	culture	and	personality	of	the
development	group	before	you	implement	measurements	that	might	appear	threatening.

Case	Study	4-7:	Most	developers	would	rather	just	fix	the	bugs	in	their	code	rather
than	reveal	them.

They'd	Rather	Just	Fix	the	Bugs	Than	Reveal	Them

I've	always	found	it	difficult	to	collect	metrics	on	unit	testing,	since	most	developers
would	rather	just	fix	the	bugs	in	their	code	rather	than	reveal	them.	This	is	unfortunate
because	knowledge	of	which	units	contained	the	most	bugs	is	lost.	Knowing	which
units	had	the	most	bugs	is	useful	for	systems	testers	because	those	buggy	units	tend
to	have	more	"escapes"	than	other	units.

One	test	manager	explained	how	she	learned	of	those	problematic	units	without
requiring	the	developers	to	record	their	bugs.	She	merely	asked	every	developer,	"Of
all	the	units	that	you	created,	which	ones	were	the	most	difficult?"	It	turns	out	that	the

units	identified	as	difficult	had	a	greater	concentration	of	bugs	than	the	ones	that
weren't	identified.

-	Rick	Craig

Reusing	Unit	Testware

In	this	era	of	tight	budgets	and	schedules,	it's	absolutely	imperative	that	every	effort	be
made	to	maximize	all	resources.	One	way	of	doing	this	is	in	the	reuse	of	work	products	such
as	test	cases	and	procedures,	test	plans,	etc.	If	unit	test	cases	are	properly	documented,
they	can	be	invaluable	in	helping	to	describe	the	system	(i.e.,	they	can	be	thought	of	as	part
of	the	system	documentation).	Furthermore,	well-documented	test	cases	can	be	reused
during	regression	testing	and	sometimes	can	even	be	reused	at	higher	levels	of	test.	This
idea	of	reusing	some	of	the	unit	tests	at	a	higher	level	of	test	is	a	concept	that	some
practitioners	have	difficulty	accepting.	We're	not	suggesting	that	all	of	the	unit-level	tests
need	to	be	rerun	(say	at	integration	test),	or	that	the	unit	test	set	by	itself	is	adequate	for
higher-level	testing.	We're	only	suggesting	that	if	a	unit	test	satisfies	a	testing	objective	at
integration	or	system	test,	it	may	be	possible	to	reuse	it	for	that	purpose.	Running	the	same
test	case	at	two	different	levels	frequently	results	in	testing	quite	different	attributes.	All	of
this	is	a	moot	point,	of	course,	if	the	test	cases	are	not	intelligently	documented	and	saved
(by	intelligently,	we	mean	that	you	know	what	each	test	case	is	designed	to	test,	i.e.,
coverage).

Key
Point

Well-documented	test	cases	can	be	reused	during	regression	testing	and
sometimes	can	even	be	reused	at	higher	levels	of	test.

Reviews,	Walkthroughs,	and	Inspections

Key
Point Refer	to	Chapter	3	under	Walkthroughs	and	Inspections	for	more	information.

More	and	more	software	engineers	believe	that	review	techniques	(such	as	inspections)	that
use	the	power	of	the	human	mind	and	the	dynamics	of	group	interaction	are	a	powerful	and
effective	method	of	identifying	defects.	Some	organizations	agonize	over	what	to	inspect
(code,	test	cases,	test	plans),	when	to	conduct	inspections	(before	unit	testing,	after	unit
testing,	both	before	and	after),	and	how	to	measure	their	effectiveness,	but	very	few
organizations	that	we	have	encountered	regret	choosing	to	use	inspections.	The	use	of	code
inspections	complements	systematic	unit	testing	by	helping	to	flag	when	to	begin	unit	test
execution.	Inspections	are	also	effective	at	finding	defects	that	are	difficult	to	find	during	unit
testing	and	vice	versa.

Buddy	Testing

For	some	time	now,	we've	been	recommending	that	our	clients	employ	a	team	approach
("Buddy	Testing")	to	coding	and	unit	testing.	Using	this	concept,	two-person	teams	are
identified	and	assigned	programming	tasks.	Developer	'A'	writes	the	test	cases	for
Developer	'B's	specification	before	Developer	'B'	begins	coding.	Developer	'B'	does	the
same	thing	for	Developer	'A'.	There	are	several	advantages	to	this	technique:

Objectivity	is	introduced	into	testing	at	a	very	low	level,	which	is	seldom	achieved
during	developmental	testing.

By	creating	the	test	cases	prior	to	coding,	they	can	serve	as	models	of	the	program
specification	requirements.	Most	developers	will	find	that	having	the	test	cases
available	prior	to	coding	actually	changes	the	way	they	write	their	code.	The	test
cases	are	designed	to	break	the	code	as	well	as	show	that	it	works.	Many
developers	who	write	test	cases	after	coding	merely	demonstrate	that	their	code
"does	what	it	does."	Don't	underestimate	the	power	of	buddy	testing.	This	is
applying	the	principle	of	preventative	testing	at	the	lowest	level.

Finally,	buddy	testing	provides	a	certain	degree	of	cross-training	on	the	application.
If	developer	'A'	leaves,	then	Developer	'B'	has	knowledge	of	his	or	her	code.

Key
Point

Most	developers	will	find	that	having	the	test	cases	available	prior	to	coding
actually	changes	the	way	they	write	their	code.

The	downside	of	buddy	testing	is	the	extra	time	required	to	write	the	test	cases	up	front	and
for	the	developers	to	familiarize	themselves	with	each	other's	specifications	and	code.

We've	been	using	buddy	testing	for	20	years	or	so	and	first	published	an	introduction	to	the
process	in	1995.	Most	of	the	methods	we	espouse	as	part	of	buddy	testing	are	also
incorporated	in	a	larger	discipline	now	known	as	extreme	programming.	For	more
information,	we	highly	recommend	Extreme	Programming:	Embrace	Change	(The	XP
Series)	by	Kent	Beck.

As	we	explained	throughout	this	chapter,	detailed	test	planning	must	start	at	the	beginning
and	proceed	in	parallel	with	the	software	development	lifecycle	in	order	to	be	effective.	We
recommend	that	you	start	with	the	basic	levels	of	test	defined	by	the	IEEE	(acceptance,
system,	integration	and	unit)	and	add	or	delete	levels	as	necessary.	If	you	use	this
approach,	you'll	provide	yourself	with	a	good	foundation	to	build	your	detailed	test	plans.

Team-Fly 	

Team-Fly

	

Chapter	5:	Analysis	and	Design

Overview
"Absolute	certainty	about	the	fail-proofness	of	a	design	can	never	be	attained,	for	we
can	never	be	certain	that	we	have	been	exhaustive	in	asking	questions	about	its
future."

—	Henry	Petroski
To	Engineer	Is	Human

Test	Analysis	and	Design	is	the	process	of	determining	test	objectives	and	how	to	organize
the	test	objectives	in	a	manner	that	supports	efficient	execution.	There	are	many	different
design	techniques	available	to	the	tester,	and	the	choice	of	what	technique	to	use	is	typically
based	on	the	nature	of	the	system,	the	overall	risk	of	the	implementation,	the	level	of	test,
and	the	skill	set	of	the	testers.	It's	also	likely	that	on	any	given	system,	more	than	one
technique	will	apply.	This	chapter	will	introduce	the	reader	to	some	of	the	available
techniques	and	will	explain,	in	detail,	how	to	use	one	of	these	techniques:	inventories.	Using
inventories	to	develop	a	test	design	actually	embodies	several	different	testing	techniques.

Key
Point

Test	objectives	are	broad	categories	of	things	to	test.	Test	objectives	are	to
testing	what	requirements	are	to	development.

Team-Fly 	

Team-Fly

	

Creating	Inventories
Test	objectives	are	broad	categories	of	things	that	need	to	be	tested	for	any	given
application.	For	example,	the	testers	of	a	car	insurance	program	might	determine	that	the
following	objectives	exist:	type	of	car,	geographic	region,	age	of	driver,	age	of	car,	safety
features	of	the	car,	security	features	of	the	car,	deductible	amount,	primary	use	of	the	car,
and	so	forth.

The	inventory	is	the	actual	list	of	things	that	need	to	be	tested	for	each	of	the	test
objectives.	For	example,	the	inventory	for	type	of	car	might	include	SUVs,	sports	cars,
vintage	cars,	off-road	vehicles,	sedans,	etc.,	as	illustrated	in	Figure	5-1.	Many	objectives
will	be	unique	to	the	application	being	tested.	Our	insurance	example	used	type	of	car	as	an
objective,	but	this	would	certainly	not	be	a	test	objective	for	an	ATM	application,	or	a
grocery	store	point-of-sale	application.

	Figure	5-1:	Inventory	of	Types	of	Cars

Some	objectives,	though,	are	universal	enough	that	they	can	be	called	common.	For
example,	one	common	objective	is	interfaces.	It's	highly	likely	that	most	applications	would
need	to	have	all	of	their	interfaces	to	other	systems	tested.	Consequently,	the	testers	of
each	application	would	need	to	create	an	inventory	of	interfaces	unique	to	their	particular
application.

Creating	inventories	is	a	multi-step	process	that	begins	with	gathering	reference	materials
and	"ends"	with	maintaining	the	testing	matrix.	We've	developed	a	process,	outlined	in
Figure	5-2,	that	uses	objectives	and	inventories	as	the	primary	basis	for	test	design.

	
Figure	5-2:	Process	for	Creating	an	Inventory

Step	1:	Gather	Reference	Materials

The	first	step	in	creating	an	inventory	is	to	gather	all	of	the	relevant	documentation	that	you
can	find	about	the	system.	These	may	include:

requirements	documentation

design	documentation

user's	manuals

product	specifications

functional	specifications

government	regulations

training	manuals

customer	feedback

Step	2:	Form	a	Brainstorming	Team

The	brainstorming	team	should	ideally	be	made	up	of	three	or	four	subject-matter	experts
(but	probably	not	more	than	seven	or	eight).	Systems	and	business	expertise	are	the	two
most	sought	areas	of	experience.	Good	brainstormers	might	include	developers,	testers,
users,	customers,	business	analysts,	user	representatives,	system	architects,	and
marketing	representatives.	The	key	is	to	get	the	people	with	the	most	knowledge	of	the
business	application	and	the	systemic	nature	of	the	application	(for	existing	systems).	Our

team	might	look	like	this:	

Cheryl Test	Manager

Crissy Systems	Architect

Stefan Senior	Developer

Rayanne Business	Analyst

Erika Marketing	Representative

Step	3:	Determine	Test	Objectives

The	idea	behind	the	brainstorming	session	is	to	create	lists	of	things	to	test.	It's	important
not	to	scrutinize	the	list	too	closely	up	front	and	equally	important	not	to	get	too	detailed.	In
fact,	we	recommend	that	the	team	first	just	brainstorm	the	inventory	topics	(i.e.,	objectives).

Examples	of	common	requirements	objectives	include:	

Functions	or	methods

Constraints	or	limits

System	configurations

Interfaces	with	other	systems

Conditions	on	input	and	output	attributes

Conditions	of	system/object	memory	(i.e.,	states	that	affect	processing)

Behavior	rules	linking	input	and	memory	conditions	(i.e.,	object	states)	to	resultant
functions

Critical	usage	and	operational	scenarios

Anything	else	to	worry	about,	based	on	an	external	analysis	of	the	system

Many	other	test	objectives	exist,	and	there	will	always	be	some	that	are	unique	to	a
particular	system,	but	the	above	list	gives	you	an	idea	of	the	kinds	of	things	we're	looking
for.	Another	word	of	caution:	don't	be	concerned	about	the	overlap	in	the	objectives	or
inventories.	Remember,	we're	trying	to	determine	what's	possible	to	test	by	looking	at	the
system	from	many	viewpoints.	We'll	worry	about	eliminating	redundancy	in	future	steps.

The	following	list	shows	some	of	the	test	objectives	that	we	compiled	for	an	insurance
company:

Requirements

Features

Screens

Error	Messages

Transaction	Types

Customers

States	(geographical)

Type	of	Policy

Type	of	Vehicle

States	(Effective)

Step	4:	Prioritize	Objectives

Once	the	high-level	objectives	have	been	determined,	it's	time	to	prioritize	them.	Normally	we
prioritize	the	objectives	based	on	scope	(i.e.,	breadth)	and	risk.	It's	always	desirable	to	choose,
as	the	highest	priority,	an	objective	(and	its	associated	inventory)	that	has	broad	coverage	of
the	system.	Often,	that	will	turn	out	to	be	the	inventory	of	features,	customer	types,	the
requirements	specification	itself,	or	some	other	similar	broad	category.	In	our	insurance
company	example,	we	took	the	requirements	document	and	features	as	our	two	highest-priority
objectives	since	they	had	the	broadest	scope.

Step	5:	Parse	Objectives	into	Lists

The	next	step	in	creating	an	inventory	is	to	parse	the	objectives	into	lists	(inventories).	You
should	start	with	the	highest-priority	objectives	and	parse	them	into	more	detailed	components.
Lower-priority	objectives	will	be	parsed	into	more	detail	when,	and	if,	time	allows.	The	objective
features,	for	example,	can	be	parsed	into	the	following	inventory:

Write	a	policy

Add	a	driver

Add	a	car

Submit	a	claim

Change	address	(same	locale)

Change	address	(different	locale)

Submit	a	bill

Amend	a	policy

Amend	a	bill

Later,	if	more	time	permits,	the	inventory	could	be	expanded	to	a	finer	level	of	granularity:

Write	a	policy

Commercial

Individual

High-risk

Stated	Value

Add	a	driver

Under	16

Over	16,	under	65

Male

Female

Driving	School

Record

Good

Bad

Add	a	Car

Type

SUV

Sports

Pickup

Security	Devices

Club

Alarm

Tracking	Device

Garaged?

Etc.

Obviously,	this	inventory	could	be	broken	down	even	further.	We	recommend	that	you	initially
not	try	to	make	them	too	detailed,	because	creating	the	test	cases	can	be	overwhelming.	If
time	allows,	additional	detail	can	always	be	added	later.

Step	6:	Create	an	Inventory	Tracking	Matrix

To	create	the	matrix,	list	the	objectives	and	their	corresponding	inventories	down	the	left	column
of	Table	5-1,	starting	with	the	number	1	priority	objective,	and	then	the	number	2	objective,	and
so	forth.	Then,	place	any	existing	test	cases	from	previous	releases	and	testing	efforts
horizontally	across	the	top	of	the	table.	This	process	of	mapping	existing	test	cases	to	the
inventories	is	known	as	calibration	because	we	are	calibrating	the	test	cases	against	a	"known"
entity	(i.e.,	the	inventories).	If	you	think	you	have	a	pretty	good	set	of	test	cases,	but	have
never	calibrated	them,	we	believe	most	of	you	will	be	surprised	to	find	that	the	coverage	of
your	tests	is	not	nearly	as	great	as	you	might	have	imagined.

Table	5-1:	Inventory	Tracking	Matrix

Notice	that	the	first	objective	on	our	list	is	the	requirements	specification.	The	mapping	of	this
inventory	to	the	test	cases	is	known	as	requirements	traceability	(shown	in	Table	5-1),	which	is
a	preferred	practice	of	virtually	every	testing	methodology.	Notice	that	we've	gone	beyond	just
tracing	to	the	requirements	specification	and	have	traced	to	the	entire	set	of	inventories.	Most
people	will	find	that	even	if	they	have	a	good	set	of	requirements,	the	additional	inventories	will
identify	many	test	scenarios	that	were	"missed."	Also	note	that	one	test	case	can	cover	multiple
inventories.	In	Table	5-1,	for	example,	Test	Case	#1	covers	both	Requirement	2	and	Feature	4.
This	also	demonstrates	how	the	matrix	can	help	reveal	redundancies	in	the	inventories	and	the
test	cases.

Key
Point

Most	people	will	find	that	even	if	they	have	a	good	set	of	requirements,	the
additional	inventories	will	identify	many	test	scenarios	that	were	"missed."

Step	7:	Identify	Tests	for	Unaddressed	Conditions

In	Table	5-2,	you	can	see	that	existing	test	cases	cover	Requirements	2	and	3,	and	Features	1,
3,	and	4.	However,	Requirement	1	and	Feature	2	(refer	to	shaded	rows)	are	not	covered	by
any	test.	Therefore,	it's	necessary	to	create	a	test	case	or	cases	to	cover	these	inventory
items.

Table	5-2:	Inventory	Tracking	Matrix

Objectives/Inventories
Test	Cases

TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7

Requirements

Requirement	1

Requirement	2 X X X

Requirement	3 X X X

Features

Feature	1 X

Feature	2

Feature	3 X

Feature	4 X X X

Objective	A

Objective	B

Objective	C

NOTE:	Objectives	A,	B,	C,	and	so	on	may	be	other	common	objectives	such	as	interfaces,
configurations,	etc.	or	they	may	be	application-specific	objectives.

In	Table	5-3,	notice	that	Requirement	1	is	now	covered	by	Test	Case	#1.	It	was	possible	to
modify	Test	Case	#1	to	cover	Requirement	1	and	still	cover	Requirement	2	and	Feature	4.	It
wasn't	possible	to	modify	an	existing	test	case	to	cover	Feature	2,	so	Test	Case	#8	was	added
and,	later,	Test	Case	#9	was	added	because	we	felt	that	Test	Case	#8	didn't	adequately	test
Feature	2	by	itself.

Table	5-3:	Inventory	Tracking	Matrix

Objectives/Inventories
Test	Cases

TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7 TC#8 TC#9

Requirements

Requirement	1 X

Requirement	2 X X X

Requirement	3 X X X

Features

Feature	1 X

Feature	2 X X

Feature	3 X

Feature	4 X X X

Objective	A

Objective	B

Objective	C

NOTE:	Objectives	A,	B,	C,	and	so	on	may	be	other	common	objectives	such	as	interfaces,
configurations,	etc.	or	they	may	be	application-specific	objectives.

Rather	than	modify	existing	test	cases,	it's	frequently	easier	to	add	new	test	cases	to	address
untested	conditions.	Testers	also	have	to	be	careful	about	making	any	one	test	case	cover	too
many	conditions.	If	the	test	fails,	or	has	to	be	modified,	it	will	possibly	invalidate	the	testing	of
other	conditions.

Step	8:	Evaluate	Each	Inventory	Item

Evaluate	each	inventory	item	for	adequacy	of	coverage	and	add	additional	test	cases	as
required	–	remember	that	this	process	will	never	truly	be	complete.	The	testers	must	use	their
experience	and	exercise	their	judgment	to	determine	if	the	existing	tests	for	each	condition	are
adequate.	For	example,	in	Table	5-3	(above),	we	see	that	Requirement	1	is	covered	by	test
case	#1.	Does	that	one	test	case	adequately	cover	Requirement	#1?	If	not,	Requirement	1	will
have	to	be	parsed	into	greater	detail	or	more	test	cases	will	have	to	be	created.

Case	Study	5-1:	These	creative	testers	used	ad	hoc	testing	techniques	to	help	evaluate	their	systematic	testing
process.

Bug	Parties

I	once	had	a	student	from	a	well-known	company	who	said	they	used	a	similar	process	in
their	group.	Testers	were	committed	to	developing	and	maintaining	a	systematic	set	of	test
cases.	Testers	also	recognized,	though,	the	value	of	creative	or	ad	hoc	testing,	so	they
conducted	something	which	they	called	a	"bug	party,"	every	other	Friday.	At	these	bug

parties,	all	test	cases	were	thrown	out	for	the	day	and	the	testers	(and	anyone	else	that
wanted	to	"play")	were	urged	to	look	for	bugs.	Prizes	were	awarded	for	the	most	bugs
found,	the	biggest	bug,	and	the	most	creative	testing	technique.	The	whole	thing	was	a
huge	morale	booster	and	resulted	in	finding	many	bugs,	some	of	which	were	significant.
But	finding	bugs,	as	important	as	it	was,	was	not	the	purpose	of	the	party.	You	see,	they
then	wrote	the	test	case	that	would	have	found	the	bug,	which	improved	the	coverage	of
their	existing	test	set.	But	that	wasn't	the	real	reason	they	had	the	bug	parties	either.	What
they	were	really	looking	for	were	entire	categories	or	lists	(inventories)	of	things	that	they
forgot	to	test.	How	interesting,	they	were	using	ad	hoc	testing	techniques	to	validate	the
effectiveness	of	their	systematic	testing.	Who	says	testers	are	not	creative!

—	Rick	Craig

Step	9:	Maintain	the	Testing	Matrix

As	the	system	matures	and	changes,	so	too	should	the	testing	matrix.	The	testing	matrix	is	a
reusable	artifact	that	is	particularly	valuable	in	determining	what	regression	tests	to	maintain
and	execute	for	any	given	release	(at	least	which	ones	to	begin	with).	The	testing	matrix	is	also
a	valuable	tool	to	help	in	the	configuration	management	of	the	test	cases,	since	it	helps	relate
the	tests	to	the	system	itself.	The	maintenance	of	the	matrix	is	a	huge	undertaking,	but	without
it,	the	testers	must	virtually	start	over	with	the	development	of	their	tests	for	each	new	release.
Not	only	is	that	a	waste	of	time,	but	there's	always	the	risk	that	some	great	test	that	was
created	for	a	previous	release	will	not	be	remembered	for	this	one.

Commercial	tools	are	available	to	help	document	and	maintain	the	inventories	and	test	cases,
but	the	effort	required	to	maintain	the	testing	matrix	is	still	significant.

Design	Analysis

The	design	can	be	subjected	to	the	same	process	as	described	above.	In	fact,	the	design
coverage	can	be	added	to	the	requirements	traceability	matrix	as	shown	in	Table	5-4.

Table	5-4:	Inventory	Tracking	Matrix

Objectives	/	Inventories
Test	Cases

TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7 TC#8 TC#9

Requirements

Requirement	1 X

Requirement	2 X X X

Requirement	3 X X X

Features

Feature	1 X

Feature	2 X X

Feature	3 X

Feature	4 X X X

Design

Design	1 X X

Design	2 X

Design	3 X X

Team-Fly 	

Team-Fly

	

Black-Box	vs.	White-Box
Black-box	testing	or	behavioral	testing	is	testing	based	upon	the	requirements	and,	just	as
the	name	implies,	the	system	is	treated	as	a	"black	box."	That	is,	the	internal	workings	of
the	system	are	unknown,	as	illustrated	in	Figure	5-3.	In	black-box	testing	the	system	is	given
a	stimulus	(input)	and	if	the	result	(output)	is	what	was	expected,	then	the	test	passes.	No
consideration	is	given	to	how	the	process	was	completed.

	Figure	5-3:	Black-Box	versus	White-Box	Testing

Key
Point

White-box	or	blackbox	(testing)	improves	quality	by	40%.	Together,	they
improve	quality	by	60%.

–	Oliver	E.	Cole,	Looking	Under	the	Covers	to	Test	Web	Applications,
STAR	East	Conference,	2001

In	white-box	testing,	an	input	must	still	produce	the	correct	result	in	order	to	pass,	but	now
we're	also	concerned	with	whether	or	not	the	process	worked	correctly.	White-box	testing	is
important	for	at	least	two	reasons.	Without	peering	inside	the	box,	it's	impossible	to	test	all
of	the	ways	the	system	works	(i.e.,	how	the	system	works).	While	both	black-box	and
white-box	testing	can	determine	if	the	system	is	doing	what	it's	supposed	to	do,	only	white-
box	testing	is	effective	at	determining	if	the	"how"	part	of	the	equation	is	correct.	Generally
speaking,	if	the	result	of	a	test	is	correct,	we	can	assume	that	the	process	was	completed
successfully.	This,	however,	is	not	always	true.	In	some	cases	it	is	possible	to	get	the
correct	output	from	a	test	for	the	wrong	reason.	This	phenomenon	is	known	as	coincidental
correctness	and	is	not	necessarily	discovered	using	black-box	techniques.

Key
Point

White-box	testing	is	also	called	structural	testing	because	it's	based	upon	the
object's	structure.

Let's	say	that	we	have	a	system	that's	supposed	to	estimate	hours	based	upon	the
complexity	of	the	task	being	performed.	As	estimating	experts	(at	least	in	this	fictitious
system),	we	know	that	the	correct	algorithm	to	predict	the	hours	required	to	complete	a
certain	task	might	be	y=2x,	where	y	is	the	time	estimate	and	x	is	the	complexity	of	the	task.
So,	we	know	that	if	the	complexity	of	a	task	has	a	value	of	2,	the	task	should	take	4	hours
to	complete.

Key
Point

Coincidental	correctness	describes	a	situation	where	the	expected	result	of	a
test	case	is	realized	in	spite	of	incorrect	processing	of	the	data.

For	example,	if	we	input	a	value	of	2	into	the	system	and	get	an	answer	of	4,	the	system

must	be	correct,	right?	It	may	be,	or	may	not	be.	Suppose	your	programmer,	for	whatever
reason,	miscoded	the	algorithm	and	put	in	the	formula	y=x2	(instead	of	y=2x).	If	the	poor
tester	is	unfortunate	enough	to	put	in	a	test	value	of	2,	the	system	will	give	the	correct
answer	in	spite	of	the	bad	code.	However,	this	is	only	coincidental.	If	we	run	another	test
with	a	value	of	x=3,	we	would	find	that	our	system	gives	a	result	of	9	instead	of	6!

To	find	bugs	like	these,	we	need	to	look	inside	the	box.	Whitebox	testing	would	have	been
more	effective	in	finding	the	sample	bug	than	black-box	testing	(although	probably	the	most
effective	way	to	have	found	the	bug	in	the	example	would	have	been	using	code	inspection).
Another	important	point	about	white-box	testing	is	that	it	allows	the	testers	to	use	their
knowledge	of	the	system	to	create	test	cases	based	on	the	design	or	the	structure	of	the
code.	However,	in	order	to	conduct	whitebox	tests,	the	testers	must	know	how	to	read	and
use	software	design	documents	and/or	the	code.

Key
Point

White-box	is	also	known	as	clear-box,	glass-box,	translucent-box,	or	just
about	any	other	non-opaque	box.

Team-Fly 	

Team-Fly

	

Black-Box	Science
Several	techniques	fall	into	the	category	of	black-box	science.	Some	of	these	techniques
include	equivalence	partitioning,	boundary	value	analysis,	design	analysis,	decision	tables,
domain	analysis,	state-transition	diagrams,	orthogonal	arrays,	and	others.	Some	of	these
techniques	are	more	useful	at	one	level	than	another,	while	others	can	be	used	at	any	level
of	test.	Table	5-5	lists	the	most	appropriate	use	of	the	various	techniques	described	in	this
chapter.

Table	5-5:	Techniques	vs.	Levels	of	Test

Method Unit Integration System Acceptance

Equivalence	Class	Partitioning ü ü ü ü

Boundary	Value ü ü ü ü

Inventories/Trace	Matrix ü ü

Invalid	Combinations	and	Processes ü ü ü ü

Decision	Table ü ü ü ü

Domain	Analysis ü ü ü ü

State-Transition	Diagrams ü ü

Orthogonal	Arrays ü ü ü ü

Equivalence	Partitioning

Equivalence	partitioning	is	a	technique	that	is	intuitively	used	by	virtually	every	tester	we've
ever	met.	Basically	we	are	identifying	inputs	that	are	treated	the	same	by	the	system	and
produce	the	same	results.	Assume	that	Figure	5-4	represents	a	typical	domestic	passenger
jet.	We	have	been	asked	to	help	with	testing	some	new	software	that	helps	gate	agents
assign	seats.	As	you	probably	are	aware,	most	U.S.	domestic	airlines	have	two	classes	of
seats:	First	Class	and	Coach	(or	as	our	colleague	Dale	would	say,	"Cattle	Class").	If	a
patron	only	cares	about	the	class	of	service,	there	are	only	two	(partitions)	to	consider:	First
Class	and	Coach.	Every	First	Class	seat	is	like	every	other	First	Class	seat	as	far	as
assigning	of	seats	is	concerned.	Therefore,	if	the	only	consideration	for	seating	were	class
of	service,	we	would	only	need	two	test	cases	since	there	are	only	two	equivalence
partitions.	We	would	need	to	test	any	First	Class	seat	and	any	Coach	seat.

	Figure	5-4:	Equivalence	Partitioning	in	a	Typical
Passenger	Jet

Key
Point

A	group	of	tests	forms	an	equivalence	class	if	you	believe	that:
they	all	test	the	same	thing

if	one	catches	a	bug,	the	others	probably	will	too

if	one	doesn't	catch	a	bug,	the	others	probably	won't	either

–	Cem	Kaner,	Testing	Computer	Software

The	world	is	seldom	so	simple,	though.	Most	people	have	a	preference	not	only	for	the
class	of	service	but	also	where	they	sit	in	a	row:	aisle,	middle,	window.	So	now	we	have
several	more	partitions:

First	Class	Aisle

First	Class	Window

First	Class	Middle	(at	least	on	some	airplanes)

Coach	Aisle

Coach	Window

Coach	Middle

We	now	have	6	equivalence	partitions	and	would	need	a	minimum	of	6	test	cases.	But	wait,
some	people	want	the	exit	row!	Now	we	have	First	Class	or	Coach,	aisle,	middle,	window,
and	exit	row,	or	not.	The	number	of	equivalence	partitions	has	grown	to	12!	As	you	can	see,
it's	possible	that	the	number	can	get	quite	large.	Actually,	if	the	seating	chart	really	needed
to	consider	all	of	these	attributes,	we	would	also	have	to	consider	the	back	row	(which
doesn't	recline),	smoking	or	non-smoking	(on	many	non-US	carriers),	over	the	wing,	next	to
the	lavatory,	etc.	At	some	point,	we	might	just	think	it's	easier	to	test	every	single	seat!

Still,	equivalence	partitioning	can	help	reduce	the	number	of	tests	from	a	list	of	all	possible
inputs	(e.g.,	200+	on	a	modern	jet)	to	a	minimum	set	that	would	still	test	each	partition.	If
the	tester	chooses	the	right	partitions,	the	testing	will	be	accurate	and	efficient.	If	the	tester

mistakenly	thinks	of	two	partitions	as	equivalent	and	they	are	not,	a	test	situation	will	be
missed.	Or	on	the	other	hand,	if	the	tester	thinks	two	objects	are	different	and	they	are	not,
the	tests	will	be	redundant.

As	another	example,	suppose	that	an	ATM	will	allow	withdrawals	of	cash	in	$20	increments
from	$20	to	$200	(inclusive).	There	are	three	equivalence	partitions	to	consider:	one	is	valid
and	two	are	invalid,	as	illustrated	in	Figure	5-5.

	
Figure	5-5:	ATM	Equivalence	Partitions 	Some	testers	might	decide
that	since	there	are	so	few	valid	amounts,	they	will	just	try	them	all:

TC	01	–	Withdraw	$20

TC	02	–	Withdraw	$40

TC	03	–	Withdraw	$60

TC	04	–	Withdraw	$80

…

TC	10	–	Withdraw	$200

Unfortunately,	a	tester	would	have	wasted	her	time	if	all	of	these	test	cases	were	created
and	executed.	In	this	example,	it's	safe	to	assume	that	if	our	ATM	can	withdraw	$20,	it
can	surely	withdraw	$40,	$60,	$80,	or	$200	as	long	as	there	are	sufficient	funds	in	the
account,	the	account	has	not	already	exceeded	its	daily	limit,	and	there's	money	in	the
machine.	This	tester	wasted	precious	time	testing	things	that	were	part	of	an	equivalence
partition.	Of	course	it's	possible	that	the	programmer	created	some	abnormal	(disjointed)
code	and	using	more	than	one	test	case	might	discover	this	fault,	but	there	are	other
more	effective	techniques	for	finding	this	type	of	bug	(such	as	a	code	inspection).

As	far	as	equivalence	partitioning	goes,	we	would	need	only	one	valid	and	two	invalid	test
cases	for	adequate	coverage.	Naturally	there	are	other	important	test	cases	to	try	such
as	special	characters	and	odd	amounts	(withdraw	$145.78),	but	you	would	have	to	use
another	technique	to	discover	them	(such	as	error	guessing).

Boundary	Value	Analysis

We	know	what	many	of	you	are	thinking.	What	about	the	boundaries?	In	most	cases	when
we	use	equivalence	partitioning,	we	also	use	boundary	value	analysis.	Boundary	value
analysis	is	important	because	we	have	learned	from	experience	that	the	boundaries	are

often	prone	to	failure.	In	the	example	above,	the	valid	boundaries	are	$20	(the	minimum
amount	we	can	withdraw)	and	$200,	the	maximum	amount	we	can	withdraw,	and	so	we
would	create	test	cases	for	both	of	these	values.	You	could	(successfully)	argue	that	both	of
these	tests	are	part	of	the	same	equivalence	partition	of	$20	to	$200	and,	therefore,	if	you
test	the	boundaries	you	would	not	need	any	other	tests	for	this	partition.	Most	testers	have
been	taught	to	test	the	boundaries	and	a	valid	value	in	the	middle.	While	most	of	us	were
never	told	why	we	needed	the	value	in	the	middle,	we	just	did	it.	The	reason	we	were	taught
to	take	a	value	somewhere	in	the	middle	of	the	partition	is	because	if	the	valid	boundary
values	fail,	there	will	still	be	a	test	case	for	the	valid	partition.

Key
Point

Boundary	value	analysis	is	important	because	we	have	learned	from
experience	that	the	boundaries	are	often	prone	to	failure.

Actually,	most	experienced	testers	learn	that	testing	the	middle	value	has	a	fairly	low	ROI
(i.e.,	it	doesn't	really	improve	the	coverage	and	it	has	a	low	likelihood	of	finding	the	bug).
Still,	many	of	these	same	experienced	testers	insist	on	testing	the	value	in	the	middle
because	that's	the	way	they	were	trained.

Normally	when	conducting	boundary	value	analysis,	the	exact	boundaries	are	tested,	the
value	immediately	above	the	upper	boundary,	and	the	value	immediately	below	the	lower
boundary.	Some	testers	also	choose	a	value	just	above	the	bottom	boundary	and	just	below
the	top	boundary.	We	think	this	adds	little	value	to	the	test	coverage	and,	therefore,	we
don't	recommend	it.	So	for	the	ATM,	we	would	test	the	following	boundaries:

$	0,	Below	the	Bottom	Boundary –	Invalid

$	20,	Bottom	Boundary –	Valid

$200,	Top	Boundary –	Valid

$220,	Above	the	Top	Boundary –	Invalid

You	could	argue	that	the	invalid	boundaries	are	$19	and	$201,	or	$19.99	and	$200.01,	but
this	doesn't	make	sense	from	a	practical	standpoint	since	we	know	that	any	amount	that	is
not	in	$20	increments	is	invalid.

This	turns	out	to	be	a	rather	trivial	example,	and	in	fact,	if	we	were	testing	the	ATM	we
might	decide	to	test	the	withdrawal	of	all	valid	values,	just	because	it's	easy	to	do	and
because	of	the	high	risk	associated	with	these	transactions.

Decision	Tables

Decision	tables	are	tables	that	list	all	possible	"conditions"	(inputs)	and	all	possible	actions
(outputs).	Decision	tables	have	been	in	use	for	many	years.	One	of	the	earliest	systems	that
we	worked	on	over	20	years	ago	used	decision	tables	as	the	primary	design	medium,	that
is	to	say,	the	entire	system	was	described	with	decision	tables	in	lieu	of	(or	in	addition	to)
other	design	mediums	available	in	that	era	(i.e.,	HIPOs,	flow	charts,	etc.).	Most	engineers

today	would	not	even	consider	using	a	laborintensive	technique	such	as	decision	tables	to
document	an	entire	system,	but	they're	still	particularly	useful	for	describing	critical
components	of	a	system	that	can	be	defined	by	a	set	of	rules	(e.g.,	payroll,	insurance	rules,
amortization	schedules,	etc.).

Table	5-6	contains	a	decision	table	for	computing	payroll	taxes.	There	is	a	"rule"	for	each
possible	combination	of	conditions.	For	each	condition	it's	identified	as	a	"Yes",	a	"No",	or	an
"I"	for	immaterial.

Table	5-6:	Decision	Table

Condition
Rules

Rule	1 Rule	2 Rule	3 Rule	4

Wages	Earned No Yes Yes Yes

End	of	Pay	Period I No Yes Yes

FICA	Salary	Exceeded I I No Yes

Action

Withhold	FICA	Tax No No Yes No

Withhold	Medicare	Tax No No Yes Yes

Withhold	Payroll	Tax No No Yes Yes

To	read	the	table,	go	to	the	first	(top)	condition	and	follow	the	row	to	the	right	until	the	rule
that	satisfies	the	condition	is	met.	Then,	go	to	each	succeeding	rule	and	follow	the	column
down	until	the	corresponding	condition	is	satisfied.	When	the	last	condition	is	satisfied,	apply
the	actions	indicated	by	the	column	(rule)	that	you	ended	up	in.

For	example,	if	the	answer	to	Wages	Earned	is	"Yes,"	we	go	to	Rule	2,	3,	or	4.	If	the
answer	to	the	condition	End	of	Pay	Period	is	"Yes,"	then	we	now	go	to	Rule	3	or	4.	If	the
FICA	Salary	Exceeded	condition	is	"Yes,"	then	we	follow	the	table	down	Rule	4	to	the
actions	and	know	that	we	must:

not	withhold	FICA	tax

withhold	Medicare	tax

withhold	payroll	tax

Table	5-7	summarizes	the	input	conditions	for	test	cases	1	through	4	and	lists	the	expected
results.

Table	5-7:	Test	Cases	for	Payroll	Tax	Table

Test	Case Input	Condition Expected	Results

1 No	Wages	Earned 1.	 Don't	Withhold	FICA	Tax

2.	 Don't	Withhold	Medicare

3.	 Don't	Withhold	Payroll	Tax

2 Wages	Earned 1.	 Don't	Withhold	FICA	Tax

Not	End	of	Pay	Period 2.	 Don't	Withhold	Medicare

3.	 Don't	Withhold	Payroll	Tax

3 Wages	Earned 1.	 Withhold	FICA	Tax

End	of	Pay	Period 2.	 Withhold	Medicare

FICA	Not	Exceeded 3.	 Withhold	Payroll	Tax

4 Wages	Earned0 1.	 Don't	Withhold	FICA	Tax

End	of	Pay	Period 2.	 Withhold	Medicare

FICA	Salary	Exceeded 3.	 Withhold	Payroll	Tax

State-Transition	Diagrams

State-transition	diagrams	are	an	ancient	(mid-1900s),	but	still	effective,	method	of
describing	system	design	and	guiding	our	testing.	A	state	machine	is	a	thing	(e.g.,	system,
subsystem,	component,	unit)	whose	functionality	and	output	is	dependent	not	solely	on	its
current	input,	but	also	on	its	past	input.	The	result	of	its	previous	input	is	called	its	state,	and
transitions	are	commands	that	cause	changes	from	one	state	to	another.

Case	Study	5-2:	State-transition	diagrams	are	used	in	airline	reservations	systems.

Simplified	State-Transition	Diagram	for	a	One-Way	Ticket

I	call	Southwest	Airlines	to	make	a	reservation.	I	provide	information	about	the	origin
and	destination	of	my	travel,	and	the	date	and	time	that	I	wish	to	fly.	A	reservation	is
made	for	me	and	stored	in	their	system.	My	reservation	is	now	in	the	"Made"	state.

Depending	on	the	various	fare	rules,	I'm	given	a	certain	amount	of	time	to	pay	for	the

ticket.	It	could	be	within	24	hours;	or	it	might	be	until	1	hour	before	departure.	Once	I
pay	for	the	ticket,	my	reservation	changes	state.	It's	now	"Paid".	On	the	day	of	travel,	I
arrive	at	the	airport	in	plenty	of	time,	stand	in	the	incredibly	long	lines,	and	get	a
printed	copy	of	my	ticket.	The	reservation	is	now	in	the	"Ticketed"	state.	When	I	give
my	ticket	to	the	agent	and	get	on	the	plane,	the	reservation	changes	to	the	"Used"
state.	Of	course,	I	can	cancel	my	reservation	at	any	time	before	I	get	on	the	plane.	If
I've	paid	for	it,	I	should	be	able	to	get	a	refund	or	at	least	a	credit.

Now,	let's	use	this	state-transition	diagram	to	guide	our	testing.	At	first	glance	we
might	decide	that	the	appropriate	level	of	coverage	is	to	create	the	minimum	number
of	test	cases	to	visit	every	state	(Made,	Paid,	Ticketed,	Used,	CancelledByCustomer)
at	least	once.	This	approach	will	miss	some	of	the	possible	execution	paths.	A	second
approach	is	to	create	the	minimum	number	of	test	cases	to	exercise	each	transition
(MakeReservation,	PayMoney,	PleasePrintTicket,	PleaseCancel,	GiveTicket)	at	least
once.	This	approach	will	also	miss	some	of	the	paths.

The	recommended	approach	is	to	test	every	state-transition	combination	(i.e.,	every
arrow	on	the	diagram)	at	least	once.	This	gives	good	coverage	of	the	state	machine,
although	it	may	not	cover	all	the	paths.	If	the	diagram	has	loops	back	to	previous
states,	then	there	can	be	a	very	large	number	(infinite)	of	paths	–	far	too	many	to	test.

—	Lee	Copeland

Orthogonal	Arrays

The	orthogonal	array	shown	in	our	example	in	Table	5-8	is	a	two-dimensional	array	of
integers	with	an	interesting	property:	if	you	choose	any	two	columns	in	the	array,	all	of	the
combinations	of	the	numbers	will	appear	in	those	columns.

Table	5-8:	L9(34)	Orthogonal	Array

1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

For	example,	consider	the	L9(34)	orthogonal	array	shown	in	Table	5-8.	The	"9"	indicates	it
has	9	rows.	The	"34"	is	not	an	exponent.	It	indicates	the	array	has	4	columns	and	each	cell
in	the	array	contains	a	1,	2,	or	3.

Key
Point

Orthogonal	arrays	are	curious	mathematical	oddities	with	an	interesting
property:	if	you	choose	any	two	columns	in	the	array	in	Table	5-8,	all	of	the
combinations	of	the	numbers	will	appear	in	those	columns.

Now,	let's	test	this	array.	Choose	any	two	columns	at	random	(We'll	pick	columns	2	and	4,
but	you	can	choose	another	combination	if	you	like).	Can	you	locate	all	the	pairs	(1,1),	(1,2),
(1,3),	(2,1),	(2,2),	(2,3),	(3,1),	(3,2),	(3,3)	looking	at	columns	2	and	4?	Yes	you	can,	so	this
is	an	orthogonal	array.

Do	all	of	the	combinations	of	1s,	2s,	and	3s	appear	in	the	table?	No,	there	are	81
combinations	(3	x	3	x	3	x	3).	For	example,	(3,3,3,3)	is	a	valid	combination,	but	it's	not	in	the
table.

Now,	this	is	all	very	interesting	but	what	does	it	have	to	do	with	testing?	In	many	testing
situations,	there	are	simply	too	many	test	cases	to	write	and	execute.	So,	how	do	we
choose	a	"good"	subset?	Orthogonal	arrays	are	the	answer.	Whenever	we	have	a	number
of	variables	and	each	of	these	variables	takes	on	a	defined	state,	we	can	map	the	problem
onto	an	orthogonal	array.

Consider	the	following	situation.	Suppose	you	have	a	Web	site	that	is	hosted	on	a	number	of
servers	and	operating	systems	and	viewed	on	a	number	of	browsers	with	various	plug-ins:

Web	Browser	(Netscape	6.2,	IE	6.0,	Opera	4.0)

Plug-in	(None,	RealPlayer,	MediaPlayer)

Application	Server	(IIS,	Apache,	Netscape	Enterprise)

Operating	System	(Win2000,	WinNT,	Linux)

How	many	distinct	combinations	should	be	tested?	The	answer	is	81	(3x3x3x3	=	81).	But
what	if	you	don't	have	enough	resources	to	do	this	level	of	testing?	What	other	choices	do
you	have?	You	could	test	a	few	combinations	chosen	at	random.	Or,	you	could	test	a	few
that	are	easy.	Or,	you	could	test	a	few	that	you	believe	will	work.	Unfortunately,	none	of
these	approaches	really	inspire	confidence.

So,	let's	map	our	problem	onto	the	L9	orthogonal	array	as	shown	in	Table	5-9.	In	the	first
column,	let	1=Netscape	6.2,	2=IE	6.0,	3=Opera	4.0.	In	the	second	column,	let	1=None,
2=RealPlayer,	3=MediaPlayer.	In	the	third	column,	let	1=IIS,	2=Apache,	3=Netscape
Enterprise.	In	the	fourth	column,	let	1=Win2000,	2=WinNT,	3=Linux.

Table	5-9:	L9(34)	Orthogonal	Array

Test	Case Browser Plug-In Server Operating	System

1 Netscape	6.2 None IIS Win2000

2 Netscape	6.2 RealPlayer Apache WinNT

3 Netscape	6.2 MediaPlayer Netscape	Enterprise Linux

4 IE	6.0 None Apache Linux

5 IE	6.0 RealPlayer Netscape	Enterprise Win2000

6 IE	6.0 MediaPlayer IIS WinNT

7 Opera	4.0 None Netscape	Enterprise WinNT

8 Opera	4.0 RealPlayer IIS Linux

9 Opera	4.0 MediaPlayer Apache Win2000

Now,	let's	take	a	look	at	what	we've	achieved:

Each	browser	is	tested	with	every	plug-in,	with	every	server,	and	with	every
operating	system.

Each	plug-in	is	tested	with	every	browser,	every	server,	and	every	operating
system.

Each	server	is	tested	with	every	browser,	every	plug-in,	and	every	operating
system.

Each	operating	system	is	tested	with	every	browser,	every	plug-in,	and	every
server.

Not	all	combinations	of	all	variables	have	been	tested	–	that	would	be	81	combinations	–	but
all	pairs	of	combinations	have	been	tested	(and	with	only	9	test	cases).

Orthogonal	array	testing	is	extremely	useful	because	most	compatibility	defects	are	pair-
wise	defects.	In	recent	weeks,	we	installed	a	commercial	software	package	on	Windows	95
(worked),	Windows	98	(worked),	Windows	NT	(worked),	Win2000	(worked),	and	Windows
ME	(didn't	work).	The	Windows	ME	problem	is	called	a	pair-wise	defect.

Team-Fly 	

Team-Fly

	

Black-Box	Art

Ad	Hoc	Testing

Case	Study	5-3:	How	can	Mary	Brown	always	find	the	bugs,	just	by	looking	at	the
system?

Mary	Brown	Always	Finds	the	Bugs

I've	been	an	advocate	of	systematic	testing	for	years.	In	fact,	one	of	the	courses	that	I
teach	is	even	called	Systematic	Software	Testing.	Still,	even	in	a	class	with	a	name
like	that,	someone	always	asks	me	about	ad	hoc	testing.	The	student	will	say,	"Mary
Brown	can	always	find	bugs,	really	big	bugs,	by	just	looking	at	the	system."	For	years,
I	would	steadfastly	insist	that	testing	should	be	systematic.	Finally,	though,	a	few
years	ago,	I	relented.	If	you	have	a	Mary	Brown	in	your	company	(and	everyone
does!),	then	she's	too	valuable	an	asset	to	waste.

I	secretly	believe	that	most	of	the	Mary	Browns	in	the	world	are	actually	very
systematic	in	the	processes	that	they	employ.	They	just	don't	like	to	document	their
test	cases	and	sometimes	can't	even	remember	how	they	found	a	bug.	Then,	if	the
situation	that	found	the	bug	can't	be	replicated,	the	bug	can't	be	fixed	and	everyone
just	ends	up	feeling	badly	because	they	know	there's	a	bug,	but	they	can't	do	anything
about	it.

In	the	case	of	Mary	Brown,	the	company	decided	to	install	a	capture-replay	tool	on	her
system	so	when	she	stumbled	onto	a	bug,	the	scenario	could	be	recreated.
Unfortunately,	the	test	manager	didn't	explain	to	Mary	that	everything	she	did	would	be
recreated.	When	Mary	found	a	bug	while	doing	her	ad	hoc	testing	and	the	execution
was	replayed,	the	test	manager	discovered	that	Mary	spent	a	great	deal	of	time
surfing	the	Internet	(instead	of	working).

—	Rick	Craig

Most	ad	hoc	testers	will	tell	you	that	their	tests	are	based	upon	experience	and,	indeed,
that's	true.	However,	if	we	were	to	analyze	their	thought	processes,	we	believe	it	would	look
a	lot	like	some	of	the	"systematic"	techniques	addressed	in	this	book.	For	example,	most	ad
hoc	testers	focus	on	the	things	that	have	failed	in	the	past	(e.g.,	Pareto	analysis),	or	things
that	they	know	are	important	to	the	user	(e.g.,	risk	analysis),	or	situations	that	are	always
problematic	(e.g.,	zero	sums,	boundaries),	etc.	The	key	to	successfully	using	ad	hoc	testing
is	to	make	sure	that	when	a	bug	is	found,	the	problem	can	be	replicated.	This	usually	means
that	when	a	bug	is	found	using	ad	hoc	methods,	you	should	create	the	test	case	that	would
have	found	the	bug.	The	test	cases	are	needed	to	facilitate	the	debugging,	and	they'll	also
need	to	be	rerun	after	the	problem	has	been	rectified.

Key
Point

It's	a	good	idea	to	add	the	test	cases	created	during	ad	hoc	testing	to	your
repository.

As	many	of	you	know,	bugs	seem	to	have	a	way	of	reappearing,	so	it's	a	good	idea	to	add
the	test	cases	created	during	ad	hoc	testing	to	your	test	repository.	Probably	one	of	the
most	important	aspects	of	ad	hoc	testing	is	that	it	allows	you	to	use	the	expertise	of	some
users/engineers	who	otherwise	would	not	be	willing	and/or	able	to	sit	down	and	document
tests.	It	can	also	be	a	useful	reality	check	on	your	systematic	testing	process.	If	a	bug	is
found	in	ad	hoc	testing,	you	should	ask	yourself,	"Why	didn't	I	have	a	test	to	find	this?"
Sometimes	ad	hoc	testing	will	identify	an	entire	class	of	tests	that	were	missed	using	other
testing	strategies.	And,	finally,	ad	hoc	testing	is	just	plain	fun!

Random	Testing

Random	testing	means	quite	different	things	to	different	people.	To	us,	random	testing	is
creating	tests	where	the	data	is	in	the	format	of	real	data	but	all	of	the	fields	are	generated
randomly,	often	using	a	tool.	For	example,	if	we	were	testing	the	name	field	of	a	system	that
is	supposed	to	accept	up	to	20	characters,	strings	of	20	characters	would	be	randomly
generated	and	input	into	the	system.	One	20-character	string	might	be:

ty5%,,ijs5ajU	jjkk	kkk

Key
Point Random	testing	is	sometimes	called	monkey	testing.

Obviously,	no	one	really	has	a	name	like	that	and,	in	fact,	we	probably	don't	even	want	to
allow	certain	characters	in	the	name	field	like	the	%	sign.	So	we	might	refine	the	"random"
set	to	omit	certain	characters	that	are	not	allowed,	otherwise	we'll	end	up	with	lots	and	lots
of	negative	tests	(definitely	overkill).	But	as	soon	as	we	begin	to	refine	the	input	stream,	is
the	data	really	random?	Now,	we're	beginning	to	generate	test	data	with	(minimally	defined)
parameters.	Often	when	using	random	data,	we	don't	necessarily	figure	out	the	expected
results	in	advance.	This	means	that	we	may	be	spending	inordinate	amounts	of	time
reviewing	the	output	of	random	tests	to	determine	if	the	results	are	actually	correct.
Besides,	if	you	remember	equivalence	partitioning,	many	of	the	random	strings	generated
will	be	from	the	same	equivalence	partition,	which	means	that	we'll	essentially	be	running	the
same	tests	over	and	over	again.

Key
Point

A	negativetest	is	when	you	put	in	an	invalid	input	and	expect	to	receive	an	error
message.

A	positive	test	is	when	you	put	in	a	valid	input	and	expect	some	action	to	be
completed	in	accordance	with	the	specification.

Let's	recount	some	of	the	weaknesses	of	random	testing:

The	tests	are	often	not	very	realistic.

There	is	no	gauge	of	actual	coverage	of	the	random	tests.

There	is	no	measure	of	risk.

Many	of	the	tests	become	redundant.

A	great	deal	of	time	may	have	to	be	spent	in	determining	the	expected	results.

The	tests	can't	be	recreated	unless	the	input	data	is	stored	or	a	seed	is	used	to
create	the	random	data.

This	kind	of	random	testing	is	really	of	little	use	most	of	the	time	and	at	best	can	be	used	for
"crash-proofing"	or	to	see	if	the	system	will	"hang	together"	under	adverse	impact.

Semi-Random	Testing

Let's	take	the	idea	of	random	testing	and	refine	it	so	that	it	is	a	little	more	useful.	Let's	say
that	we	are	testing	an	inventory	system	that	has	the	following	parameters:

There	are	400	stores.

There	are	12,000	different	products	in	the	stores.

There	are	8	different	ways	to	bill	for	each	product.

There	are	200	different	suppliers	of	the	various	products.

Assuming	that	all	four	variables	are	mutually	independent,	the	total	number	of	different
combinations	of	the	four	attributes	results	in	an	astronomically	large	number	(in	fact,	our
scientific	calculator	returned	a	'memory	overflow'	error).

We	could	(and	should)	use	techniques	like	equivalence	partitioning	to	reduce	the	number	of
combinations	to	a	workable	number.	Still,	we	might	want	to	generate	some	random
combinations	of	the	four	parameters	listed	above	to	possibly	stumble	onto	a	defect.	Semi-
random	testing	also	gives	us	a	little	added	confidence	in	our	systematic	techniques,	and	it's
fairly	easy	to	create	large	numbers	of	combinations.	Remember,	though,	many	of	these
semi-random	tests	probably	add	little	to	the	functional	coverage	of	the	system.

Exploratory	Testing

Exploratory	testing	is	a	term	originally	coined	in	1988	by	Cem	Kaner	in	Testing	Computer
Software.	Since	that	time,	Cem	Kaner,	James	Whitaker,	James	Bach,	and	others	have
refined	the	process	and	created	an	alternative	(or	a	complementary	process)	to	more
traditional,	structured	techniques.

Key
Point

The	beauty	of	exploratory	testing	is	that	productive	areas	of	test	are	expanded
immediately.

In	exploratory	testing,	the	test	design	and	execution	are	conducted	concurrently.	The	results
of	a	test	or	group	of	tests	will	often	prompt	the	tester	to	delve	deeper	into	that	area	(i.e.,
explore).	We	think	the	beauty	of	exploratory	testing	is	that	productive	areas	of	test	are
expanded	immediately.	In	structured	testing,	the	testers	often	create	many	tests	that	don't
seem	as	useful	during	execution	as	they	did	during	creation.

Exploratory	testing	is	not	the	same	thing	as	ad	hoc	testing.	Just	as	its	name	implies,	ad	hoc
testing	is	an	unplanned,	unstructured,	maybe	even	impulsive	journey	through	the	system	with
the	intent	of	finding	bugs.	Ad	hoc	testing,	in	fact,	often	does	find	bugs	and	can	be	a	useful
addition	to	structured	testing,	but	should	never	replace	structured	techniques.

Key
Point

"Always	write	down	what	you	did	and	what	happened	when	you	run
exploratory	tests."

–	Cem	Kaner
Testing	Computer	Software

Exploratory	testing,	on	the	other	hand,	can	be	a	viable	alternative	to	more	structured	testing
techniques.	Obviously,	since	we're	writing	a	book	that	focuses	primarily	on	systematic	or
structured	techniques,	we	believe	that	these	more	traditional	techniques	are	very	important
to	most	organizations,	and	we	recommend	that	exploratory	techniques	be	considered	as	a
complement	to	(not	a	replacement	for)	structured	testing.	There	are,	however,	many
testimonials	from	testing	groups	that	focus	exclusively	on	exploratory	testing	techniques.

In	fact,	exploratory	testing	is	neither	ad	hoc	nor	random.	Exploratory	testers	are	not	merely
keying	in	random	tests,	but	rather	testing	areas	that	their	experience	(or	imagination)	tells
them	are	important	and	then	going	where	those	tests	take	them.	Even	structured	testers
know	that	some	of	the	best	test	cases	they	run	are	often	precipitated	by	the	results	of	other
tests.	This	means,	of	course,	that	most	good	"traditional"	testers	do	at	least	some
exploratory	testing.

Key
Point

There	are	several	excellent	articles	by	James	Bach	on	Exploratory	Testing	at:

stickyminds.com

satisfice.com

Exploratory	testers	share	some	traits	with	traditional	testers	too.	Good	exploratory	testers
often	keep	notes	or	checklists	of	tests	that	appear	to	be	useful,	to	reuse	on	future	releases.
These	"notes"	may	(or	may	not)	even	look	a	lot	like	test	scripts.

Case	Study	5-4:	A	Successful	Example	of	Unstructured	Testing

Definitely	Not	Ad	Hoc	Testing

While	teaching	a	testing	course	at	Microsoft	in	the	late	1980s,	I	remember	one	student
describing	the	informal	bug	sessions	they	conducted	in	his	group	and	I	said,	"Oh,	ad

hoc	testing."	He	replied,	"No,	creative	and	unstructured,	but	not	ad	hoc	testing."	He
went	on	to	describe	how	the	individual	testers,	without	scripts,	tested	areas	of	the
code	that	they	thought	might	contain	bugs	and	then	launched	the	rest	of	the	testing
from	there.	He	explained	that	the	best	bugsession	testers	actually	had	a	pretty	good
testing	strategy	outlined	in	their	minds	when	they	began	the	session.	As	I	recall,	this
group	spent	1	day	every	two	weeks	or	10%	of	their	time	using	this	technique,	and	he
reported	that	it	was	some	of	their	most	productive	testing	time.	In	spite	of	their	ability
to	find	bugs,	these	bug	sessions	didn't	totally	replace	structured	testing,	because	the
test	group	needed	the	repeatability	of	an	automated	regression	suite	and	a	gauge	of
coverage,	which	was	obtained	by	using	the	"systematic"	test	set.

—	Rick	Craig

Team-Fly 	

Team-Fly

	

White-Box	Science
Black-box	test	cases	should	be	designed	before	attempting	to	design	white-box	test	cases,
because	they	can	be	created	from	the	requirements	and	high-level	design	long	before	any
code	exists	and	they	may	help	improve	the	detailed	design	and	code.	Some	white-box
techniques	cannot	be	done	until	the	code/detailed	design	exists.	But	if	you	wait	to	do	them,
you've	lost	the	opportunity	to	prevent	problems.

White-Box	Testing

White-box	testing	allows	you	to	look	inside	a	component	being	tested	and	create	your	test
cases	based	on	the	component's	implementation	(code).	Unfortunately,	you	can't	see
through	the	color	white	any	better	than	you	can	see	through	black.	So,	technically,	white-box
testing	should	really	be	called	"clear-box"	or	"glass-box"	testing	because	you're	able	to	see
the	code.	Consider	the	code	illustrated	in	Figure	5-6,	which	implements	a	software	module.

	Figure	5-6:	Code	Implementing	Module

How	many	paths	do	you	see	from	the	top	to	the	bottom	of	this	code?	The	correct	answer	is
four	(4),	because	you	could	move	left-left,	right-right,	left-right,	and	right-left	as	you	execute
each	statement	from	top	to	bottom.	If	your	goal	is	to	achieve	path	coverage	and	someone
claims	to	be	able	to	test	this	module	with	only	three	test	cases,	they're	wrong!	You	must
have	at	least	four	test	cases	in	order	to	touch	every	path	at	least	once.

This	diagram	was	fairly	simple	to	evaluate,	but	as	the	paths	get	more	numerous	and	more
complex,	you	need	automated	help	in	determining	the	number	of	paths	and,	thus,	the
number	of	test	cases	to	create.	There	are	a	number	of	tools	available	to	help	you	determine
which	paths	need	to	be	tested.

Cyclomatic	Complexity

Tom	McCabe	developed	a	metric	called	Cyclomatic	Complexity,	which	is	derived	from
mathematical	graph	theory	and	used	to	describe	the	complexity	of	a	software	module.	The
complexity	C	is	determined	by	the	formula:

C	=	e	–	n+2p

e=the	number	of	edges	in	the	graph	(i.e.,	the	number	of	arrows)

n=the	number	of	nodes	(i.e.,	the	chunks	of	code	that	are	executed	without	loops	and/or
branches)

p=the	number	of	independent	procedures

For	this	single-entry,	single-exit	example,	p	is	equal	to	1.	The	Cyclomatic	Complexity	of	the
example	shown	in	Figure	5-6	is:

C	=	7	–	6	+	2(1)	=	3

The	Cyclomatic	Complexity	metric	provides	a	measure	of	the	complexity	of	a	software
module.	It	also	allows	you	to	determine	the	maximum	number	of	tests	that	are	required	to
reach	branch	coverage.	(Sometimes,	branch	coverage	can	be	reached	with	fewer	than	C
tests,	but	more	tests	are	never	needed.)	McCabe	suggests	using	the	basis-path	test	model,
which	chooses	C	test	cases	for	effective	test	coverage.

Scalability	of	White-Box	Testing

Although	white-box	testing	is	almost	always	viewed	as	a	technique	for	testing	code	as	a
part	of	unit	testing,	this	approach	can	also	be	scaled	to	accommodate	subsystem	and
system	testing.	Simply	replace	each	of	the	chunks	of	code	in	Figure	5-6	with	rectangles	that
represent	subsystems.

White-box	testing	is	really	about	path	testing,	and	there	are	often	a	number	of	paths
between	subsystems.	Using	white-box	techniques	during	integration	testing	can	help	you
understand	the	flow	of	data	and	control	through	subsystems,	which,	in	turn,	will	help	you
wisely	choose	integration	test	cases.	Even	at	the	system	level,	if	the	system	under	test
interacts	with	other	systems,	white-box	techniques	can	help	you	determine	the	number	of
paths	and	guide	you	in	choosing	test	cases.

Coverage	Techniques

Key
Point

We're	sensitive	to	the	fact	that	some	organizations	become	enamored	with
code	coverage	tools	and	lose	sight	of	functional	coverage	and	risk	issues.

We	believe	that	many	organizations	can	benefit	from	white-box	testing,	especially	when
using	tools	to	measure	code	coverage.	While	obviously	valuable	for	developmental	testing
(e.g.,	unit	and	integration),	code	coverage	can	also	be	useful	for	high-level	testing	(e.g.,
system	and	acceptance).	However,	we're	sensitive	to	the	fact	that	some	organizations
become	enamored	with	code	coverage	tools	and	lose	sight	of	functional	coverage	and	risk
issues.	To	avoid	this	pitfall,	we	offer	the	following	strategy	for	testing	organizations	that	use
code	coverage	tools.

Key

Statement	coverage	measures	are	used	to	determine	the	number	of	lines	of
code	that	are	invoked	by	the	tests.

Decision	or	branch	coveragemeasures	are	used	to	determine	the	number	of

Point decisions	or	yes/no	expressions	that	are	invoked	by	the	tests.

Path	coverage	measures	are	used	to	determine	the	number	of	paths	that	are
executed	by	the	tests.

Strategy	for	using	"Code	Coverage":
1.	 Design	test	cases	using	techniques	such	as	inventories,	equivalence	partitioning,

etc.	and	the	results	of	the	risk	analysis.

2.	 Measure	code	coverage.

3.	 Examine	unexecuted	code.

4.	 If	resources	allow	and	risk	dictates,	create	test	cases	to	execute	code	previously
unaddressed	by	tests.	If	the	system	is	of	lower	risk	or	the	code	that	is
unaddressed	is	in	a	low-risk	part	of	the	system,	the	decision	may	be	made	not	to
test	every	line	of	code.	This	will,	of	course,	introduce	a	risk	that	the	unexecuted
code	may	fail.	It's	really	all	about	weighing	the	risk	versus	the	resources	available.

Team-Fly 	

Team-Fly

	

Test	Design	Documentation
Recall	that	in	Chapter	3	we	covered	the	Master	Test	Plan	and,	in	Chapter	4,	we	covered	the
Detailed	Test	Plan.	Here,	we'll	cover	the	Test	Design	Specification,	Test	Case
Specifications,	and	Test	Procedures.

IEEE	Test	Design	Specification

Figure	5-7	shows	all	of	the	documents	created	on	the	front	end	(i.e.,	before	execution)	of
testing	using	an	IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation.	The
system	test	plan	shown	in	this	figure	is	supported	by	three	test	design	specifications.	The
integration	and	acceptance	test	plans	would	also	be	supported	by	one	or	more	test	design
specifications.	For	the	sake	of	simplicity,	the	test	design	specifications	for	these	plans	are
not	shown	in	the	diagram.

	Figure	5-7:	Test	Design
Specification 	When	many	people	think	of	a	test	plan,	they	think	about	a
group	of	test	cases.	In	this	book,	we've	identified	a	test	plan	as	a	document	that	outlines
the	strategy,	schedule,	risks,	responsibilities,	and	so	forth	(Refer	to	Chapter	3	–	Master
Test	Planning).	Nowhere	in	this	plan	did	we	include	test	cases.	So	where	are	the	test
cases?	In	the	IEEE	model,	the	test	cases	are	described	in	a	document	known	as	a	Test
Design	Specification.	We	like	to	think	of	the	test	design	specification	as	a	miniature	test
plan	that	does	include	the	test	cases	necessary	to	test	one	or	more	features.	The
purpose	of	the	test	design	specification	is	to	group	similar	test	cases	together.	Every
level	of	test	(except	unit)	will	have	one	or	more	test	design	specifications.

Key
Point

We	like	to	think	of	the	test	design	specification	as	a	miniature	test	plan	that
includes	the	test	cases	necessary	to	test	one	or	more	features.

Figure	5-8	shows	the	IEEE	template	for	the	Test	Design	Specification.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Design	Specification	Contents

1.	 Test	Design	Specification	Identifier

2.	 Feature(s)	to	Be	Tested

3.	 Approach	Refinement

4.	 Test	Identification

5.	 Feature	Pass/Fail	Criteria

Figure	5-8:	Test	Design	Specification	Template	from	IEEE	Std.	829-1998

Test	Design	Specification	Identifier

This	is	the	unique	number	(and	date	and	version)	of	the	test	design	specification,	which
will	allow	us	to	change	and	control	the	document.	Each	test	design	specification	should
be	referenced	to	its	associated	test	plan.

Feature(s)	to	Be	Tested

This	section	of	the	test	design	specification	is	called	Feature	(or	Features)	to	Be	Tested.
Each	test	design	specification	should	contain	a	description	of	the	group	of	test	cases	that
must	be	executed	in	order	to	test	a	feature	(or	features).	We've	found	that	it's	often
useful	to	have	a	single	test	design	specification	for	each	feature	identified	in	the	section
Features	to	Be	Tested	in	the	corresponding	test	plan.	For	example,	there	might	be	a
series	of	test	design	specifications	such	as	Withdraw	Cash,	Check	Account	Balance,
etc.	that	refer	back	to	the	system	test	plan	for	our	ATM.	All	of	the	features	identified	in
the	Features	to	Be	Tested	section	of	the	test	plan	need	to	be	included	in	a	test	design
specification.

Approach	Refinement

Remember	the	long	explanation	we	had	about	the	Approach	section	of	the	test	plan	in
Chapter	3?	Since	the	test	design	specification	is	a	document	that	details	a	part	of	the
system	identified	in	the	test	plan,	the	Approach	Refinement	in	the	test	design
specification	must	support	the	approach	in	the	test	plan,	but	it	usually	goes	into	much
greater	detail.	For	example,	the	approach	in	an	acceptance	test	plan	might	suggest	that
cash	will	be	withdrawn	from	selected	ATMs	throughout	the	downtown	San	Francisco
area.	The	test	design	specification	for	Withdraw	Cash	might	specify	exactly	which	ATMs
will	be	used,	which	accounts	need	to	be	established	or	used,	and	what	time	of	day	the
transactions	will	occur.	This	information	provides	additional	detail	that	supports	the
original	approach	outlined	in	the	test	plan.

Key
Point

The	Approach	Refinement	in	the	test	design	specification	must	support	the
approach	in	the	test	plan,	but	it	usually	goes	into	much	greater	detail.

Test	Identification

In	this	section,	the	test	case	identifiers	and	a	short	description	of	the	test	cases	are
recorded.	There	is	no	need	to	describe	the	details	of	the	test	cases	or	their	execution,
since	the	test	cases	will	be	described	in	a	separate	document	or	program	(if	automated).
The	following	test	cases	are	used	in	our	ATM	example:

TC	01	– Withdraw	$20	from	valid	account	with	$200

TC	02	– Withdraw	$200	from	valid	account	with	$200

TC	03	– Withdraw	$200	from	valid	account	with	$100

TC	04	– Withdraw	$182.34	from	valid	account	with	$200

TC	05	– …

TC	28	– …

TC	96	– …

Each	of	these	test	cases	will	be	described	in	detail	in	a	Test	Case	Specification.	The	test
case	specification	will	describe	which	account	will	be	used	for	each	test	case,	how	to	set
up	the	test	case,	what	the	expected	results	should	be,	and	so	on.

Notice	that	some	of	the	identified	test	cases	are	probably	negative	tests.	Even	though	we
don't	have	the	requirements	specification	in	front	of	us,	TC	03	is	probably	a	negative	test
or	a	test	designed	to	do	error	checking,	since	it's	unlikely	that	the	bank	will	want
someone	with	only	$100	in	their	account	to	be	able	to	withdraw	$200.

Notice	that	the	test	cases	are	not	necessarily	sequential	(i.e.,	we	go	from	TC	05	to	TC
28).	That's	because	the	test	design	specification	describes	all	of	the	tests	necessary	to
test	a	feature.	Some	of	the	tests	necessary	to	test	this	feature	(Withdraw	Cash)	will
probably	already	have	been	created	to	test	some	other	part	of	the	system.	For	example,
TC	28	may	be	a	test	that	checks	the	validity	of	a	user.	This	is	important	to	the	Withdraw
Cash	feature,	but	there's	no	reason	to	create	a	new	test	case	if	one	was	created	for
another	feature	such	as	Security.	The	test	design	specification	describes	a	covering	set
of	tests,	but	it	does	not	describe	how	those	tests	will	be	executed.	The	Test	Procedure
Specification,	which	we'll	explain	in	a	moment,	is	used	to	actually	execute	the	tests	in	an
efficient	manner.

Key
Point

The	test	design	specification	describes	a	covering	set	of	tests,	but	it	does
not	describe	how	those	tests	will	be	executed.

Feature	Pass/Fail	Criteria

The	Feature	Pass/Fail	Criteria	establish	what	constitutes	success	or	failure	for	the	testing
of	this	feature(s).	This	is	similar	to	the	pass/fail	criteria	in	the	test	plan,	but	the	criteria	in	the
test	plan	apply	to	the	entire	(product)	item.	The	test	design	specification	pass/fail	will	let	us

know	if	the	Withdraw	Cash	feature	is	ready	to	be	used.

We	can	use	some	of	the	same	categories	of	metrics	(used	in	the	test	plan)	to	establish	the
pass/fail	criteria	for	the	test	design	specification:

The	most	common	metric	is	the	percentage	of	test	cases	that	passed.	For	example,
"all	test	cases	must	pass"	or	"90%	of	all	test	cases	must	pass,	and	all	test	cases
that	dispense	money	must	pass."

Criteria	can	also	be	built	around	the	number,	severity,	and	distribution	of	defects.

Other	criteria	could	include	the	results	of	a	review,	performance	characteristics,
security	characteristics,	etc.	Remember,	though,	one	good	way	to	handle	these
other	criteria	is	with	performance	test	cases,	security	test	cases,	etc.	That	way	the
criteria	can	be	limited	to	pass/fail	of	test	cases,	defects,	and	possibly	a	review.

IEEE	Test	Case	Specification

Test	cases	are	at	the	heart	of	all	testing.	They	describe	exactly	what	will	be	executed	and
what	is	being	covered.	How	the	test	cases	are	described	depends	on	several	things	such	as
the	number	of	test	cases,	frequency	of	change,	level	of	automation,	skill	of	the	testers,
methodology	chosen	(i.e.,	exploratory	testing,	STEP,	etc.),	staff	turnover,	and	risk.

Key
Point

Test	cases	are	at	the	heart	of	all	testing.	They	describe	exactly	what	will	be
executed	and	what	is	being	covered.

There	are	as	many	ways	to	document	test	cases	as	there	are	people	testing.	In	this	book,
we	focus	on	two	approaches	for	documenting	test	cases:	one	approach	uses	the	IEEE	Std.
829-1998	Standard	for	Software	Test	Documentation	for	a	test	case,	and	the	other
approach	uses	a	spreadsheet.	Some	of	you	will	also	be	using	automated	test	tools	to
describe	your	tests.

In	the	hierarchy	of	the	master	test	plan,	Figure	5-9	shows	that	the	test	case	specification
occurs	immediately	below	the	test	design	specification	for	the	system	test	plan.	The
integration	and	acceptance	test	plans	would	also	be	supported	by	one	or	more	test	design
specifications	and	associated	test	case	specifications,	but	are	not	shown	in	the	diagram	for
the	sake	of	simplicity.

	
Figure	5-9:	Test	Case	Specification 	The	IEEE	template	for	test	case
specifications	describes	each	test	case	in	exact	detail.	It's	especially	useful	for
organizations	that	are	working	on	high-risk,	stable	systems.	It's	also	a	good	choice	if	the
testers	are	less	experienced	or	if	there's	rapid	turnover	of	the	testing	staff.	Figure	5-10
shows	the	IEEE	template	for	the	Test	Case	Specification.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Case	Specification	Contents

1.	 Test	Case	Specification	Identifier

2.	 Test	Items

3.	 Input	Specifications

4.	 Output	Specifications

5.	 Environmental	Needs

6.	 Special	Procedural	Requirements

7.	 Inter-Case	Dependencies

Figure	5-10:	Test	Case	Specification	Template	from	IEEE	Std.	829-1998

In	particular,	the	IEEE	approach	for	documenting	test	cases	requires	fairly	complete
documentation	of	each	test	case,	which	is	one	of	the	reasons	that	it's	so	useful	for	high-
risk	systems.	This	template	is	not	as	good	a	choice	for	systems	that	are	undergoing
rapid	change	and/or	are	unstable,	since	it	requires	significant	effort	to	create	each	test
case.	Changes	to	the	system	might	invalidate	many	test	cases	and	require	the	creation	of
new	tests.	It's	good,	though,	for	companies	that	have	a	lot	of	rapid	turnover	or
inexperienced	staff,	since	the	test	cases	are	very	detailed	and	can	be	handled	by	less
experienced	staff	members.

Key
Point

The	IEEE	approach	for	documenting	test	cases	requires	fairly	complete
documentation	of	each	test	case,	which	is	one	of	the	reasons	it's	so	useful

for	high	risk	systems.

Test	Case	Specification	Identifier

This	is	the	date,	number,	and	version	of	the	test	case	that	identifies	the	test	case	and	any
subsequent	changes	to	the	test	case	specification.

Test	Items

This	describes	the	items	(e.g.,	requirement	specs,	design	specs,	and	code)	required	to
run	this	particular	test	case.

Input	Specifications

This	describes	what	input	is	required	for	the	test	case.	This	will	often	describe	the	values
that	must	be	entered	into	a	field,	input	files,	completion	of	graphic	user	interfaces,	etc.
The	input	can	be	described	in	English,	as	a	"picture"	of	a	properly	completed	screen,	a
file	identifier,	or	an	interface	to	another	system.

Output	Specifications

This	will	describe	what	the	system	should	look	like	after	the	test	case	is	run.	Normally,	it
can	be	described	by	examining	particular	screens,	reports,	files,	etc.	One	test	case	may
change	many	different	outputs	(i.e.,	multiple	files,	reports,	etc.).	The	sample	output	can
be	a	comparator	file,	screen	image,	copy	of	a	report,	English	description,	etc.

Environmental	Needs

This	describes	any	special	environmental	needs	for	this	particular	test	case.	Examples
might	include	the	need	for	stubs	or	drivers	(especially	at	lower	levels	of	test),	tools,
specific	records	or	files,	interfaces,	etc.

Special	Procedural	Requirements

This	section	describes	any	special	procedural	requirements	necessary	to	set	up	the	test
environment.	For	example,	Y2K	data	might	have	to	be	converted	into	YYYYMMDD
format	before	proceeding.

Inter-Case	Dependencies

Experienced	testers	know	that	one	way	to	set	up	the	environment	for	a	particular	test	is
to	run	another	test	to	set	the	state	of	the	environment.	In	our	ATM,	for	example,	we	might
have	a	test	that	requires	a	deposit	of	$1,000	that	needs	to	be	run	before	we	run	another
test	case	that	requires	a	withdrawal,	otherwise	the	account	might	not	have	sufficient
funds.

Using	a	Spreadsheet

Table	5-10	shows	what	simplified	test	case	specifications	might	look	like	if	you	chose	to
use	a	spreadsheet	to	manage	your	testing.	Each	of	the	test	cases	is	listed	sequentially
along	with	special	notes	about	how	to	run	each	test,	what	the	input	variables	should	look
like,	and	what	the	acceptable	results	are.

Table	5-10:	Simple	Test	Case	Specifications

Test	Cases Special	Notes
INPUTS OK	RESULTS

Var	1 Var	2 Var	3	…. Var	X Var	Y Var	Z	….

TC0401

TC0402

TC0501

…

Using	a	spreadsheet	is	one	of	the	most	common	methods	used	by	our	clients	to	record
their	test	cases.	This	method	is	particularly	valuable	for	testers	who	construct	many	small
test	cases	where	the	input	is	often	a	few	keystrokes	and	the	result	is	a	new	screen	or
report	(e.g.,	testing	user	interfaces).

As	you	can	see,	the	template	identifies	each	test	case,	describes	the	input	required,	and
the	desired	results.	Other	sections	included	in	the	IEEE	model,	such	as	environmental
needs,	are	handled	on	an	exception	basis	in	the	Special	Notes	field.	There's	room	at	the
end	of	the	template	to	record	the	results,	which	may	be	recorded	as	pass/fail	or	may
describe	what	the	actual	results	were.

IEEE	Test	Procedure	Specification

When	all	is	said	and	done,	the	Test	Procedure	Specification	is	nothing	more	than	a
description	of	how	the	tests	will	be	run.	Test	procedures	can	be	described	manually	or	they
can	be	written	into	scripts	using	a	tool.	These	scripts	are	actually	code	written	in	a	high-level
language,	and	the	people	who	created	them	may	be	called	testers,	but	now	they're	also
coders.	This	may	have	far-reaching	ramifications	regarding	who	the	testers	can	be,	the	skill
sets	required,	and	so	on.

Key
Point

We	use	the	word	scripts	to	describe	automated	test	procedures.	These
scripts	are	actually	code	written	in	a	high-level	language.

Some	people	use	the	word	scripts	to	describe	all	test	procedures	(manual	and
automated).

The	structure	that	we	recommend	following	when	developing	a	test	procedure	is	shown	in
Figure	5-11.	After	the	test	procedures	are	executed,	the	results	should	be	evaluated	and

then	the	test	environment	should	be	restored	to	its	initial	condition.	Test	design	procedures
should	be	kept	simple	and	they	should	use	common	sub-procedures.

	
Figure	5-11:	Structure	of	a	Test	Procedure	Specification 	Figure	5-12
shows	the	IEEE	template	for	a	test	procedure.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Procedure	Contents

1.0
Test	Procedure	Specification	Identifier	Specify	the	unique	identifier
assigned	to	this	test	procedure.
Supply	a	reference	to	the	associated	test	design	specification.

2.0
Purpose
Describe	the	purpose(s)	of	the	procedure	and	refer	to	the	test	cases	being
executed.

3.0
Special	Requirements
Describe	any	special	requirements	such	as	environmental	needs,	skill	level,
training,	etc.

4.0

Procedure	Steps
This	is	the	heart	of	the	test	procedure.	The	IEEE	describes	several	steps
listed	below:

4.1

Log
Describe	any	special	methods	or	formats	for	logging	the	results	of	test
execution,	the	incidents	observed,	and	any	other	events	pertinent	to	the
test.

4.2
Set	up
Describe	the	sequence	of	actions	necessary	to	prepare	for	execution	of
the	procedure.

4.3
Start
Describe	the	actions	necessary	to	begin	execution	of	the	procedure.

Proceed
Describe	any	actions	necessary	during	execution	of	the	procedure.

4.4
4.4.1 Step	1

4.4.2 Step	2

4.4.3 Step	3

4.4.4 Step	Z

4.5
Measure
Describe	how	the	test	measurements	will	be	made.

4.6
Shut	Down
Describe	the	action	necessary	to	suspend	testing	when	unscheduled
events	dictate.

4.7
Restart
Identify	any	procedural	restart	points	and	describe	the	action	necessary
to	restart	the	procedure	at	each	of	these	points.

4.8
Stop
Describe	the	actions	necessary	to	bring	execution	to	an	orderly	halt.

4.9
Wrap	Up
Describe	the	action	necessary	to	restore	the	environment.

4.10
Contingencies
Describe	the	actions	necessary	to	deal	with	anomalies	and	other	events
that	may	occur	during	execution.

Figure	5-12:	Test	Procedure	Template	from	IEEE	Std.	829-1998

In	the	IEEE	template,	it's	not	clear	that	somewhere	between	Steps	4.3	–	Start	and	4.6	–
Shutdown,	it's	necessary	to	list	all	of	the	chronological	steps	that	need	to	occur.	Indeed,
this	is	the	key	part	of	the	entire	test	procedure	and	will	normally	make	up	the	bulk	of	the
document.

Example	Test	Procedure

Since	we	virtually	live	on	airplanes,	we	decided	to	show	an	example	from	a	(fictitious)
frequent	flyer	system	using	the	IEEE	template	for	a	test	procedure	(refer	to	Figure	5-13).

Example	Test	Procedure	for	a	Frequent	Flyer	System	Using	the	IEEE
Template

Request	for	Domestic	Award

Contents

1.0Test	Procedure	Specification	Identifier	5.2

2.0
Purpose
This	procedure	will	execute	test	cases	2,	28,	35,	and	44	in	order	to	validate
requesting	an	award.

3.0
Special	Requirements
It's	necessary	to	have	at	least	one	record	available	for	a	super-duper
frequent	flyer	who	has	adequate	miles	to	request	a	domestic	award.

4.0

Procedure	Steps

4.1 Log.	Results	will	be	compared	manually	to	predetermined	responses
calculated	by	customer	service	representatives.

4.2 Set	up.	The	frequent-flyer	program	must	be	loaded	and	running	and	the
client	must	be	logged	into	the	server.

4.3 Start.	Logon	to	the	frequent-flyer	program	using	a	password	for	a	valid
customer	service	representative.	Note	the	system	log	time.

4.4

Proceed.

4.4.1 Go	to	screen	'X.'

4.4.2 Enter	Frequent	Flyer	number	for	a	super	duper	frequent	flyer.

4.4.3 Double	Click	the	"Check	Miles"	icon.	Note	the	mileage.

4.4.4 Double	click	the	"Request	Domestic	Award"	icon	(screen	'Y'
displays).

4.4.5 Enter	Tampa	for	departure	city.

4.4.6 Enter	San	Francisco	for	destination	city.

4.4.7 Enter	6/01/2002	for	departure	date.

4.4.8 Enter	6/05/2002	for	return	date.

4.4.9 Hit	the	Enter	key	(message	"Request	accepted"	displays).

4.4.10Go	to	screen	'X.'

4.4.11Double	Click	the	"Check	Miles"	icon.

4.5
Measure.	The	value	for	"Check	Miles"	should	be	reduced	by	25,000
after	the	successful	execution	of	this	procedure.	An	e-ticket	request
should	be	processed.	Check	this	by	going	to	the	reservation	system.

4.6 Shut	Down.	Log	off	the	frequent-flyer	program.

4.7 Restart.	If	necessary,	the	test	procedure	will	be	restarted	in	Step	4.4.1.

4.8 Stop.	Close	the	connection	to	the	server.

Wrap	up	(restore).	Restore	the	system	to	the	state	identified	in	Step

4.9 4.3.

4.10Contingencies.	If	the	frequent-flyer	record	specified	is	not	available,	userecord	locater	838.78.

Figure	5-13:	Example	Test	Procedure	for	a	Frequent	Flyer	System	Using	the	IEEE
Template 	This	test	procedure	or	script	describes	how	the	tests	will	be
executed.	It	may	contain	one	or	more	test	cases,	each	of	which	will	describe
something	(what)	that	needs	to	be	tested.	For	example,	Test	Case	2	might	be	a	test
case	for	something	as	simple	as	logging	on	to	the	system.	Test	Case	28	might	be	a
test	designed	to	test	requesting	a	domestic	award	for	a	super-duper	frequent	flyer
who	has	more	than	25,000	miles	in	their	account.	Both	of	these	test	cases	will	be
executed	by	the	test	procedure	shown	in	Figure	5-13.

The	test	cases	specify	what	needs	to	be	tested	and	provide	us	with	measures	of
coverage,	but	the	test	procedures	specify	how	the	test	cases	will	be	executed	and
provide	us	with	efficiency	of	execution.	As	Figure	5-14	shows,	one	test	procedure	may
execute	test	cases	from	a	single	test	design	specification	or	from	many.

	
Figure	5-14:	Specifications	for	a	Typical	System-Level	Test

When	developing	the	test	design	specification,	you	should	start	with	the	testing
objectives.	Since	more	than	one	procedure	may	be	required	to	run	the	test	cases
contained	in	the	test	design	specification,	you	may	want	to	work	on	the	test	cases	first
in	order	to	establish	a	baseline	of	coverage.	Some	companies	(e.g.,	medical	and
pharmaceutical)	buy	the	test	design	documentation	from	software	developers	in	order
to	prove	to	various	government	agencies	that	the	software	actually	meets
requirements.

Team-Fly 	

Team-Fly

	

Chapter	6:	Test	Implementation

Overview
"Just	do	it."

—	Nike	Advertisement

Test	implementation	is	the	process	of	acquiring	test	data,	developing	test	procedures,
preparing	the	test	environment,	and	selecting	and	implementing	the	tools	that	will	be	used	to
facilitate	this	process.	During	this	phase,	test	managers	and	testers	are	faced	with	a	myriad
of	questions:

What	setup	will	be	required	for	the	test	environment?

How	will	the	test	data	be	obtained?

Which	test	procedures	will	be	automated?

Which	test	tools	will	be	used?

How	will	the	test	set	be	verified?

This	chapter	describes	a	systematic	approach,	which	will	help	you	to	identify	these
questions	early	in	the	software	development	lifecycle	and	plan	realistic	solutions	before
reaching	the	test	execution	phase.

Key
Point

Test	implementation	is	the	process	of	acquiring	test	data,	developing	test
procedures,	preparing	the	test	environment,	and	selecting	and	implementing
the	tools	that	will	be	used	to	facilitate	this	process.

Team-Fly 	

Team-Fly

	

Test	Environment
The	test	environment	is	the	collection	of	data,	hardware	configurations,	people	(testers),
interfaces,	operating	systems,	manuals,	facilities,	and	other	items	that	define	a	particular
level.	In	the	planning	chapters,	we	discussed	the	importance	of	choosing	the	right	levels	in
order	to	avoid	duplication	of	effort	or	missing	some	important	aspect	of	the	testing.	An
important	exercise	that	test	managers	should	undertake	is	to	examine	the	current	levels	and
attributes	at	each	level	of	test.	Table	6-1	shows	some	example	environmental	features	and
attributes	for	a	product	developed	by	one	of	our	clients.

Table	6-1:	Example	Test	Environment	Attributes	at	Various	Levels

Attribute Level

Unit Integration System Acceptance

People Developers Developers	&
Testers Testers Testers	&

Users

Hardware
O/S

Programmers'
Workbench

Programmers'
Workbench

System	Test	Machine
or	Region

Mirror	of
Production

Cohabiting
Software None None None/Actual Actual

Interfaces None Internal Simulated	&	Real Simulated	&
Real

Source	of
Test	Data Manually	Created Manually	Created Production	&Manually	Created Production

Volume	of
Test	Data Small Small Large Large

Strategy Unit Groups	of
Units/Builds Entire	System Simulated

Production

As	you	can	see	in	Table	6-1,	the	realism	of	the	test	environment	approaches	the	production
environment	at	higher	levels	of	test.	In	fact,	an	important	drill	that	test	managers	should
undertake	is	to	compare	every	facet	of	their	system	and	acceptance	test	environments	with
the	production	environment	and	try	to	determine	the	differences	(and	therefore	the	risks).	If
a	significant	risk	exists,	the	tester	should	try	to	find	a	way	to	mitigate	that	risk	(refer	to	the
Planning	Risk	section	of	Chapter	2	-	Risk	Analysis	for	more	information).

Key
Point

Cohabiting	software	is	other	applications	that	reside	in	the	test	environment,
but	don't	interact	with	the	application	being	tested.

Case	Studies	6-1	through	6-7	provide	a	series	of	examples	that	compare	the	acceptance
testing	environment	of	an	insurance	company	to	the	production	environment.	The	people,

hardware,	cohabiting	software,	interfaces,	source	and	volume	of	data,	and	strategy	are	all
attributes	of	the	test	environment.	Keep	in	mind	that	in	this	example,	the	software	is
released	immediately	after	successful	conclusion	of	the	acceptance	test.	Therefore,	any
differences	between	the	acceptance	test	environment	and	the	production	environment
represent	untested	attributes	of	the	system.

People

An	important	part	of	every	test	environment	is	the	people	who	are	doing	the	testing.	By
testing,	we	mean	not	only	the	execution	of	the	tests,	but	the	design	and	creation	of	the	test
cases	as	well.	There	is	really	no	right	or	wrong	answer	as	to	who	should	do	the	testing,	but
it	is	best	be	done	by	people	who	understand	the	environment	at	a	given	level.	For	example,
unit	testing	is	usually	done	by	the	developers	because	it	is	based	on	the	program
specifications	and	code,	which	are	typically	understood	best	by	the	developers.	Unit	testing
also	provides	the	developer	with	assurance	that	his	or	her	code	functions	correctly	and	is
ready	to	be	integrated.

Key
Point

The	creation	and	execution	of	tests	is	best	be	done	by	the	people	who
understand	the	environment	associated	with	that	level	of	test.

Similarly,	integration	testing	is	usually	done	by	groups	of	developers	working	in	concert	to
determine	if	all	of	the	software	components	and	their	interfaces	function	together	correctly.
Some	organizations	also	use	testers	instead	of,	or	in	addition	to,	the	developers	because	of
a	shortage	of	developers,	lack	of	testing	skill,	or	a	problem	in	the	past	(i.e.,	the	system	was
promoted	to	the	test	environment	without	adequate	testing).	We're	advocates	of	having	the
developer	do	the	integration	testing;	otherwise,	developers	can't	be	sure	they're	promoting	a
viable,	integrated	system.

At	system	test,	it's	not	always	clear	who	should	do	the	testing.	If	there's	no	test	group,	the
system	testing	must	be	accomplished	by	the	developers	or	possibly	the	users	(or	their
representatives).	If	an	independent	test	group	exists,	their	focus	is	often	on	system	testing,
because	this	is	where	the	bulk	of	testing	occurs.	Other	people	such	as	developers,	QA
personnel,	users,	tech	writers,	help	desk	personnel,	training	personnel,	and	others	often
augment	the	system	test	group.	This	is	done	to	add	expertise	to	the	test	group	or	just
because	extra	resources	are	needed.

Ideally	people	with	knowledge	of	how	the	system	will	be	used	should	do	acceptance	testing.
This	might	be	users,	customer	service	representatives,	trainers,	marketing	personnel	as	well
as	testers.	If	users	are	employed	as	testers,	the	issue	is	"which	users?"	If	there	are	many
different	users	of	the	system,	it's	likely	that	every	one	of	them	will	use	the	system	in	a
different	manner.	The	key	is	to	get	users	involved	in	testing	who	best	represent	the	general
user	community,	plus	any	other	users	that	might	use	the	system	in	a	radically	different
mode.

Case	Study	6-1:	People	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	People	in	an	Acceptance	Testing	Environment	-	for
ABC	Insurance	Company

Situation:

The	testers	are	mostly	former	users	of	the	system.	Most	of	them	have	been	testers	for
many	years.

Analysis:

Certainly,	turning	motivated	users	into	acceptance	testers	is	one	way	to	get	business
experience	and	realism	in	the	testing	environment.	For	the	most	part,	these	testers
retain	their	empathy	and	user	viewpoint	throughout	their	career.	However,	as	time
goes	by,	the	former	users	tend	to	have	less	and	less	current	business	experience.

Mitigation:

This	company	decided	to	bring	in	some	current	users	to	supplement	the	test	team.
Even	though	they	lacked	testing	experience,	they	helped	to	emphasize	the	current
needs	of	the	users.	Unfortunately,	the	three	users	who	were	chosen	could	not	possibly
represent	the	actual	number	of	users	(about	3,000)	of	the	production	system,	who
each	had	different	needs	and	skill	levels.

Hardware	Configuration

An	important	part	of	the	test	environment	is	the	hardware	configuration(s).	This	is	always
important,	but	it's	particularly	important	(and	difficult)	for	those	companies	that	are	vendors
of	software.	Each	customer	could	potentially	have	slightly	different	configurations	of
hardware,	operating	systems,	peripherals,	etc.	An	excellent	approach	to	take	in	this	case	is
to	develop	"profiles"	of	different	customers'	environments.	One	company	that	we	often	visit
has	a	Web	site	that	literally	has	thousands	of	customers.	Each	customer	potentially	has	a
different	configuration.	This	company,	which	happens	to	be	a	vendor	of	software,	obviously
has	no	control	over	its	customers'	environments.

The	approach	taken	by	the	test	group	was	to	survey	a	sample	of	the	existing	customer	base
and	create	a	series	of	profiles	that	describe	the	various	customer	configurations.	Since	it's
impossible	to	replicate	thousands	of	these	in	the	laboratory,	the	test	group	looked	for
common	configurations	and	set	up	a	number	of	them	(about	20)	in	their	laboratory.	Even
though	the	bulk	of	the	functional	testing	was	done	on	just	one	of	these	configurations,	the
automated	regression	test	suite	was	run	on	each	of	the	20	configurations	prior	to
deployment.	A	lab	like	this	is	also	worth	its	weight	in	gold	when	a	customer	calls	in	with	a
problem.	The	help	desk,	developers,	and	testers	are	often	able	to	replicate	the	customers'
environment	and	therefore	facilitate	the	isolation,	correction,	and	testing	of	the	problem.

Key If	there	are	many	diverse	users	of	the	system,	it's	useful	to	create	profiles	of

Point common	customer	environments.

Obviously,	not	every	test	group	has	the	luxury	of	creating	an	entire	laboratory	of	test
configurations.	In	that	case,	it's	desirable	to	create	a	profile	of	a	typical	customer
environment.	If	resources	allow,	it's	also	desirable	to	set	up	an	environment	that	represents
the	minimum	hardware	configurations	required	to	run	the	software	under	test.

Case	Study	6-2:	Hardware	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	Hardware	in	an	Acceptance	Testing	Environment	-
for	ABC	Insurance	Company

Situation:

This	was	largely	a	client-server	system.	The	servers	were	maintained	by	data
processing	professionals	at	regional	sites.	The	clients	were	company-provided	PCs.
The	testers	used	"exact"	replicas	of	the	hardware.	All	systems	used	the	same
operating	system,	but	the	memory,	storage,	and	peripherals	(especially	printers	and
drivers)	were	different.	The	testers	set	up	three	different	environments:

"High-end,"	which	represented	the	most	powerful	configuration	found

"Low-end,"	which	represented	the	least	powerful	configuration	found

"Normal"	configuration,	which	represented	the	average	configuration	found

Analysis:

This	seems	like	a	reasonable	approach.	On	the	previous	release,	the	team	had	only
used	the	"normal"	configuration	and	there	were	lots	of	problems	with	users	on	"low-
end"	systems	and	with	some	peripherals.	This	test	environment	with	three	hardware
configurations	worked	well	for	this	company.

Mitigation:

Of	course,	this	problem	could	also	have	been	addressed	by	upgrading	all	clients	to
the	same	standard.	That	turned	out	to	be	politically	impossible,	since	each	region
funded	its	own	hardware	purchases.

Cohabiting	Software

Most	applications	that	you	test	will	ultimately	be	installed	on	a	machine	(PC,	mainframe,
client/server)	that	also	serves	as	a	host	for	other	applications.	This	has	important
implications	to	the	tester:

Do	the	cohabiting	applications	share	common	files?

Is	there	competition	for	resources	between	the	applications?

The	approach	we	recommend	for	testing	cohabiting	software	is	to	make	an	inventory	of	the
cohabiting	applications	used	by	the	various	users.	If	there	are	many	users,	this	may	have	to
be	done	on	a	sampling	basis.	It's	also	beneficial	to	create	one	or	more	profiles	of	the	most
common	combinations	of	cohabiting	applications	employed	by	different	users.	The	strategy
is	to	test	each	of	the	cohabiting	applications	in	the	inventory	(unless	there	are	just	too	many)
and	the	most	common	and	important	combinations	(profiles).	This	can	be	done	by	having	the
various	cohabiting	software	applications	running	during	the	execution	of	the	system	and/or
acceptance	test.	Other	organizations	conduct	a	separate	testing	activity	designed	just	to
test	the	cohabiting	software.	This	is	frequently	done	using	the	regression	test	set.
Sometimes,	the	testing	of	the	profiles	of	cohabiting	software	can	be	combined	with	testing
the	various	hardware	profiles.

Case	Study	6-3:	Cohabiting	Software	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	Cohabiting	Software	in	an	Acceptance	Testing
Environment	-	for	ABC	Insurance	Company

Situation:

Company	regulations	specified	what	software	could	be	loaded	onto	the	client
machines.	In	reality,	most	of	the	users	installed	whatever	additional	software	they
wanted.

Analysis:

The	system	was	tested	on	machines	that	had	only	the	software	under	test	(SUT)
installed.	There	were	isolated	instances	where	the	"additional"	software	installed	by
some	users	crashed	the	application	or	hindered	its	performance.

Mitigation:

Enforcing	the	regulations	could	have	solved	this	problem.	The	testing	solution	could
be	to	develop	"profiles"	of	commonly	user-installed	software	and	test	the	interaction	of
various	applications.	In	the	end,	the	team	felt	that	the	problem	was	not	severe	enough
to	warrant	the	creation	of	profiles,	and	their	(reasonable)	solution	was	to	urge	all	end-
users	to	conform	to	company	regulations	or	at	least	report	what	software	was	loaded.
Interestingly,	though,	some	of	the	problematic	cohabiting	software	was	unlicensed,
which	is	an	entirely	different	issue.

Interfaces

Testing	interfaces	(to	other	systems)	is	often	difficult	and	is	frequently	a	source	of	problems
once	systems	are	delivered.	Interfaces	between	systems	are	often	problematic	because	the

systems	may	not	have	originally	been	built	to	work	together,	may	use	different	standards
and	technology,	and	are	frequently	built	and	supported	by	different	organizations.	All	of
these	things	make	the	testing	of	interfaces	difficult,	but	the	problem	is	exacerbated	because
it's	frequently	necessary	to	conduct	the	tests	using	simulated	rather	than	real	interfaces,
since	the	system(s)	that	are	being	interfaced	may	already	be	in	production.	Hence,	the
quality	and	effectiveness	of	interface	testing	is	dependent	on	the	quality	of	the	simulated
interface.	(Do	you	remember	all	of	the	bugs	that	you	found	in	the	application	you're	testing?
The	simulated	interfaces	were	created	using	the	same	types	of	tools,	methods,	and
people.)

Case	Study	6-4:	Interfaces	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	Interfaces	in	an	Acceptance	Testing	Environment	-
for	ABC	Insurance	Company

Situation:

The	only	interface	that	the	clients	had	was	with	the	server.	The	server	interfaced	with
several	other	company	systems.	The	test	environment	normally	simulated	the
interfaces	to	these	various	production	systems.	On	previous	releases,	some	of	the
interfaces	did	not	work	correctly	after	installation	in	spite	of	the	testing	using	the
simulations.

Analysis:

This	is	a	common	and	difficult	situation.	It's	frequently	impossible	to	have	"live"
interfaces	with	production	systems	due	to	the	risk	of	corrupting	actual	processes	or
data.

Mitigation:

After	the	particularly	troublesome	release,	the	testers	re-evaluated	the	realism	of	the
interfaces	and	tried	to	more	closely	model	the	actual	interface.	This	problem	was
serious	enough	that	on	future	releases,	the	system	was	installed	on	a	pilot	site	before
being	installed	globally.

Source	of	Test	Data

A	goal	of	testing	is	to	create	the	most	realistic	environment	that	resources	allow	and	the
risks	dictate	-	this	includes	the	test	data.	Data	can	be	in	the	form	of	messages,
transactions,	records,	files,	etc.	There	are	many	sources	of	data,	and	most	test	groups	will
probably	try	to	use	several	different	sources.	Real	data	is	desirable	in	many	instances
because	it's	the	most	realistic.	Unfortunately,	there	are	lots	of	reasons	why	real	data	is
inadequate	or,	in	some	instances,	impossible	to	use.	For	example,	if	the	latest	release	uses
radically	different	data	formats	from	the	production	data,	then	production	data	may	not	be	a

viable	choice.	In	some	cases	(e.g.,	military),	the	data	could	be	classified	and	would	require
that	the	test	environment	also	be	classified.	This	can	greatly	add	to	the	cost	of	the	tests	and
might	mean	that	some	of	the	staff	cannot	participate.	In	other	environments,	real	data,
although	not	classified,	may	be	company	sensitive	(e.g.,	financial	records)	or	personally
sensitive	(e.g.,	social	security	numbers).	In	this	case,	additional	security	precautions	may	be
required	if	real	data	is	used.

If	there	are	a	large	number	of	different	users	who	have	different	profiles	of	data,	it	may	be
more	difficult	or	impossible	to	accurately	model	all	of	the	real	data.	Different	users	may
have	different	profiles	of	data	(e.g.,	an	insurance	company	in	Colorado	may	have	much
more	data	relating	to	the	insurance	of	snowmobiles	than	one	in	Florida).	In	any	case,	even	a
large	sample	of	production	data	seldom	provides	all	of	the	situations	that	are	required	for
testing,	which	means	that	some	data	must	be	created	by	hand	or	using	some	type	of	test
data	generator.

Table	6-2	lists	some	sources	of	data	and	their	testing	characteristics.

Table	6-2:	Data	Source	Characteristics

Production Generated Captured Manually
Created Random

Volume Too	Much Controllable Controllable Too	Little Controllable

Variety Mediocre Varies Varies Good Mediocre

Acquisition Easy Varies Fairly	Easy Difficult Easy

Validation
(Calibration) Difficult Difficult Fairly

Difficult Easy Very
Difficult

Change Varies Usually
Easy Varies Easy Easy

Production	data	is	the	most	realistic	but	may	not	cover	all	of	the	scenarios	that	are	required.
Additionally,	this	type	of	data	could	be	sensitive,	difficult	to	ensure	that	it	is	all	correct,	and
sometimes	difficult	to	change.	Production	data	may	vary	depending	on	the	day	of	the	week,
month,	or	time	of	year.	Similarly,	there	may	be	different	data	mixes	at	different	client	sites.
Another	issue	for	some	organizations	is	that	a	copy	of	the	production	data	may	be
prohibitively	large	and	would,	therefore,	slow	the	execution	of	the	test	or	require	the	use	of
a	profiling	or	extract	tool	to	reduce	its	size.

Key
Point

Production	data	may	vary	depending	on	the	day	of	the	week,	month,	or	time	of
year.

Generated	data	typically	requires	a	tool	or	utility	to	create	it.	The	variability	of	generated
data	depends	on	the	sophistication	of	the	tool	and	the	tester's	specification	of	how	the	data
is	to	be	created.	If	a	tool	is	used	to	create	very	specific	types	of	data,	it	may	almost	be	like

hand-creating	the	data.	A	tool,	for	example,	may	be	used	to	create	large	volumes	of	similar
data	or	data	that	varies	according	to	an	algorithm.	Realism	of	the	data	depends	on	the
quality	of	the	tool	and	how	it's	used.

Captured	data	is	only	as	good	as	the	source	from	which	it	came.	No	extra	effort	is	required
to	obtain	the	data	once	it	has	been	gathered	the	first	time.	Most	tools	allow	testers	to
modify	the	data,	but	the	ease	of	this	task	varies	depending	on	the	particular	tool.

Manually	created	data	is,	sometimes,	the	only	way	to	obtain	the	extremely	unique	data
required	by	certain	test	cases.	Unfortunately,	creating	data	by	hand	is	time	consuming	and
tedious.	Sometimes,	this	approach	is	not	very	realistic	if	the	author	of	the	data	doesn't	have
a	good	understanding	of	the	functionality	of	the	system	(e.g.,	the	data	might	be	in	the
correct	format,	but	not	representative	of	the	real	world).

Random	data,	although	easy	to	obtain,	is	not	very	realistic	because	an	unknown	amount	of
data	would	be	required	to	cover	every	situation.	Random	data	is	useful	for	stress	or	load
testing,	but	even	here,	the	type	of	data	can	sometimes	affect	the	quality	of	the	load	test.

Most	testers	will	probably	want	to	use	data	from	a	variety	of	sources,	depending	on	the
level	of	test	and	the	availability	of	different	types	of	data.	If	production	data	is	available,
most	high-level	testers	(i.e.,	system	and	acceptance)	will	use	this	as	their	primary	source	of
data.	However,	they	may	still	need	to	create	some	data	by	hand	to	exercise	circumstances
not	represented	by	the	production	data,	or	use	generated	data	for	volume	testing,	etc.

Volume	of	Test	Data

In	our	goal	of	creating	a	realistic	environment	(especially	during	system	and	acceptance
testing),	it's	necessary	to	consider	the	volume	of	data	that	will	be	needed.	Most
organizations	choose	to	use	a	limited	volume	of	data	during	the	execution	of	the	structural
and	functional	tests.	This	is	done	because	the	objective	of	most	test	cases	can	be	achieved
without	large	volumes	of	data,	and	using	smaller	volumes	of	data	is	quicker	and	uses	fewer
resources.	Unfortunately,	the	volume	of	data	can	have	a	large	impact	on	the	performance	of
the	system	being	tested	and	therefore	needs	to	be	addressed.	Ideally,	the	test	group	would
use	a	volume	equal	to	the	volume	expected	in	production.	This	may	be	possible,	but	in	some
instances,	resource	constraints	make	this	impossible	and	the	test	group	will	have	to	use
smaller	volumes	(and	accept	the	associated	risk),	or	resort	to	using	a	load	generation	tool.

It's	also	important	to	note,	though,	that	sometimes	it's	not	enough	to	use	an	equivalent
volume	of	data,	but	you	must	also	consider	the	mix	of	the	data.	If	production	data	is
available,	it	can	sometimes	be	used	to	get	the	correct	mix.

Case	Study	6-5:	Data	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	Data	(Source	and	Volume)	in	an	Acceptance	Testing
Environment	-	for	ABC	Insurance	Company

Situation:

The	team	used	copies	of	real	production	data	from	one	of	the	regions.	This	data	was
the	same	data	used	in	the	previous	release.

Analysis:

In	this	case,	this	strategy	worked	fine	since	the	production	data	had	enough	variability
and	volume	to	satisfy	their	testing	needs.	Other	companies	that	we've	visited	found
that	the	data	is	different	on	different	days	of	the	week,	months,	etc.,	or	is	different	at
different	client	sites,	or	changes	rapidly	from	release	to	release.

Mitigation:

None.

Strategy

In	"Strategy,"	we	discuss	any	additional	considerations	that	the	testing	strategy	has	on	the
design	of	the	test	environment.	For	example,	if	buddy	testing	is	used	for	unit	testing,	the
environment	must	make	it	easy	for	programmers	to	access	each	other's	specifications	and
code,	and	provide	rules	about	how	recommended	changes	will	be	communicated	and	made.

If	the	strategy	for	integration	testing	is	to	test	progressively	larger	builds,	the	environment
must	support	the	testing	of	each	successive	build	with	data	files	that	"cover"	that	build.	For
example,	the	test	environment	for	'Build	C'	will	have	to	have	data	to	cover	the	functionality
added	during	that	build.	An	example	in	the	system	test	environment	might	be	to	create	a
small	test	environment	for	functional	testing	and	a	larger,	more	realistic	environment	for
performance	testing.

Similarly,	if	the	system	or	acceptance	testing	is	built	around	testing	specific	customer
profiles,	then	the	hardware	and	data	in	the	test	environment	must	match	the	profiles.

Case	Study	6-6:	Strategy	in	an	Acceptance	Testing	Environment

Test	Environment	Attribute	-	Strategy	in	an	Acceptance	Testing	Environment	-
for	ABC	Insurance	Company

Situation:

The	testers	decided	that	the	test	cases	would	mirror	the	instructions	that	were	used	in
the	user's	manual	(e.g.,	create	a	policy,	amend	a	policy,	etc.).

Analysis:

This	worked	pretty	well.	It	turns	out	that	the	(well-designed)	user's	manual	covered

most	of	the	situations	that	a	user	might	encounter.	In	fact,	the	user's	manual	itself
looked	remarkably	like	a	set	of	high-level	test	cases	or	scenarios.

Mitigation:

None.

Team-Fly 	

Team-Fly

	

Model	Office	Concept
One	concept	that	we've	recently	seen	several	times	is	the	model	office.	The	model	office	is
really	just	what	its	name	implies	-	a	test	environment	(probably	acceptance)	that	is	set	up
exactly	like	a	real	office.	If	you	were	in	the	business	of	creating	software	for	travel
agencies,	for	example,	your	model	office	could	be	an	office	that	is	set	up	just	like	a	real
travel	agency,	right	down	to	the	travel	posters	on	the	wall.	The	office	is	typically	arranged
like	the	real	environment	and	uses	testers	and	customers	who	are	as	near	the	real	thing	as
possible.	For	our	travel	agent,	for	example,	the	tester	would	be	a	real	travel	agent	and	the
customer	would	be	someone	who	went	into	the	model	office	to	plan	a	vacation	to	Tampa,
Florida.	The	tests	are	complete,	end-to-end	processing	of	the	customer's	request	using
actual	hardware,	software,	data,	and	other	real	attributes.

Because	the	model	office	has	the	look	and	feel	of	a	production	environment	and	uses	real
data,	it	provides	developers	and	testers	the	opportunity	to	make	changes	to	production
system	code,	test	it,	and	move	it	into	the	production	environment	without	impacting	the
current	production	environment.

Team-Fly 	

Team-Fly

	

What	Should	Be	Automated?
We're	constantly	frustrated	when	we	visit	a	client	site	where	testing	is	in	its	infancy	-	they
have	no	test	cases,	no	metrics,	poor	or	no	defect	tracking	-	and	all	they	want	to	know	is
what	tool	they	should	buy.	Fred	Brooks'	famous	quote	says,	"There	is	no	silver	bullet,"	and
indeed	that's	the	case	with	test	tools.

Case	Study	6-7:	The	tool	will	do	all	of	the	work.	Or,	will	it?

Is	Automation	the	"Silver	Bullet?"

Way	back	in	the	early	'80s,	when	I	was	a	(really)	young	Captain	of	Marines,	Mr.	Bill
Perry	of	the	Quality	Assurance	Institute	asked	me	to	be	a	speaker	at	the	Second
Annual	International	Testing	Conference.	First	of	all,	I	was	very	flattered,	but	I	was
also	pretty	nervous	at	the	thought	of	speaking	in	front	of	a	large	group	of	people
(especially	those	very	unpredictable	civilian	types).	However,	I	overcame	my	fear	and
gave	a	presentation	on	a	topic	that	was	near	and	dear	to	my	heart,	"Test	Automation."

But	let	me	digress	a	bit.	At	that	time,	I	was	in	charge	of	an	Independent	Test	Group	at
the	(now	non-existent)	United	States	Readiness	Command.	Even	though	I	had	a	fairly
large	staff	of	testers,	the	size	and	importance	of	the	application	was	huge	and	quite
overwhelming.	We	decided	that	the	answer	to	our	problems	was	test	automation,	so
we	hired	a	couple	of	high-powered	consultants	to	help	us	develop	crude	(by	today's
standards)	code	coverage	tools,	performance	monitors,	script	recorders,	test
execution	tools,	and	even	a	really	crude	screen	capture	facility.	This	was	all	really
cutting-edge	stuff	for	that	era.	Unfortunately,	the	tools	required	huge	overhead	in	the
form	of	effort	and	computer	resources.	We	soon	found	ourselves	purchasing
computer	time	from	the	local	university	and	spending	almost	all	of	our	time	"serving
the	tools,"	for	they	had	certainly	become	our	masters.	I	was	truly	enamored.

So,	let's	get	back	to	the	conference.	What	did	I	say?	I	started	off	with	the	antique	slide
you	see	below	and	explained	to	my	audience	that	if	your	testing	is	automated,	all	you
have	to	do	is	sit	back,	have	the	Corporal	turn	the	crank,	and	measure	the	successes
and	failures.	The	tool	will	do	all	of	the	work!	When	I	joined	SQE	a	few	years	later,
however,	I	was	surprised	to	find	my	slide	in	one	of	their	note	sets	with	a	new	title!	The
cartoon	was	renamed	"Automation	is	not	the	Answer,"	which	reversed	the	meaning	of
my	original	slide	and	speech.

Well,	now	I'm	a	wily	old	Colonel	instead	of	a	naive	young	Captain,	and	I've	learned
that	as	important	as	testing	tools	and	automation	are,	they	are	not	THE	answer	to	your
problems.	They	are	just	one	more	tool	in	your	bag	of	testing	tricks.

-	Rick	Craig

A	testing	tool	is	a	software	application	that	helps	automate	some	part	of	the	testing	process
that	would	otherwise	be	performed	manually.	In	this	category,	we	also	include	tools	that
support	testing,	such	as	some	configuration	management	tools,	project	management	tools,
defect	tracking	tools,	and	debugging	tools.

Key
Point

It's	typically	not	fruitful,	and	probably	not	possible	or	reasonable,	to	automate
every	test.	Obviously,	if	you're	trying	to	test	the	human/machine	interface,	you
can't	automate	that	process	since	the	human	is	a	key	part	of	the	test.

Automation	is	the	integration	of	testing	tools	into	the	test	environment	in	such	a	fashion	that
the	test	execution,	logging,	and	comparison	of	results	are	done	with	minimal	human
intervention.	Generally,	most	experienced	testers	and	managers	have	learned	(in	the	school
of	hard	knocks)	that	it's	typically	not	fruitful,	and	probably	not	possible	or	reasonable,	to
automate	every	test.	Obviously	if	you're	trying	to	test	the	human/machine	interface,	you
can't	automate	that	process	since	the	human	is	a	key	part	of	the	test.	Similarly,	usability
testing	is	normally	done	manually	for	the	same	reasons.

Case	Study	6-8:	If	you	automate	a	bunch	of	garbage,	all	you	end	up	with	is	fast
trash.

Fast	Trash

I	had	a	friend	who	used	to	work	for	a	large	bank	in	Hong	Kong	as	the	Test	Automation
Director.	Once,	while	I	was	consulting	for	his	bank,	James	confided	in	me	about	the
state	of	the	practice	at	his	bank.	He	said,	"You	know,	Rick,	here	at	the	ABC	bank,	we
do	testing	very	poorly	and	it	takes	us	a	really	long	time."	He	went	on	to	say,	"My	job	is
to	automate	all	of	the	tests	so	that	we	can	do	the	same	bad	job,	but	do	it	quicker."
Naturally,	I	was	a	little	skeptical,	but	James	made	a	strong	case	for	using	the	"extra"
time	he	gained	by	automation	for	process	improvement.

The	next	time	I	arrived	in	Hong	Kong	and	met	with	James,	he	looked	rather
bedraggled	and	said,	"You	know,	if	you	automate	a	bunch	of	garbage,	all	you	end	up
with	is	fast	trash."

-	Rick	Craig

Creating	automated	test	scripts	can	often	take	more	expertise	and	time	than	creating

manual	tests.	Some	test	groups	use	the	strategy	of	creating	all	tests	manually,	and	then
automating	the	ones	that	will	be	repeated	many	times.	In	some	organizations,	this
automation	may	even	be	done	by	an	entirely	separate	group.	If	you're	working	in	an
environment	where	it	takes	longer	to	write	an	automated	script	than	a	manual	one,	you
should	determine	how	much	time	is	saved	in	the	execution	of	the	automated	scripts.	Then,
you	can	use	this	estimate	to	predict	how	many	times	each	script	will	have	to	be	executed	to
make	it	worthwhile	to	automate.	This	rule	of	thumb	will	help	you	decide	which	scripts	to
automate.	Unless	there	is	very	little	cost	in	automating	the	script	(perhaps	using	capture-
replay,	but	don't	forget	the	learning	curve),	it's	almost	always	more	efficient	to	execute	the
test	manually	if	it's	intended	to	be	run	only	once.

Repetitive	Tasks

Repetitive	tasks,	such	as	regression	tests,	are	prime	candidates	for	automation	because
they're	typically	executed	many	times.	Smoke,	load,	and	performance	tests	are	other
examples	of	repetitive	tasks	that	are	suitable	for	automation,	as	illustrated	in	Figure	6-1.

	Figure	6-1:	Repetitive	and	Tedious	Tasks	Are
Prime	Candidates	for	Automation

We	usually	recommend	that	smoke	tests	be	included	as	a	subset	of	the	regression	test	set.
If	there	isn't	enough	time	to	automate	the	entire	regression	test	set,	the	smoke	tests	should
be	automated	first	since	they	will	probably	be	run	more	than	any	other	tests.	Performance
tests	are	typically	much	easier	to	execute	using	a	tool	and,	in	some	environments,	load
testing	may	not	be	possible	without	a	tool.

Tedious	Tasks

Tedious	tasks	are	also	prime	candidates	for	automation.	Code	coverage,	mathematical
calculations,	simulations,	and	human-intensive	tasks,	as	listed	in	Figure	6-1	above,	are
virtually	impossible	to	do	on	any	sizable	scale	without	using	a	tool.

Team-Fly 	

Team-Fly

	

Avoiding	Testing	Tool	Traps
There	are	a	multitude	of	reasons	why	the	use	of	testing	tools	may	fail.	While	some	of	these
obstacles	may	seem	easy	to	overcome	on	the	surface,	they're	often	deep-rooted	within	an
organization's	culture	and	may	be	difficult	to	resolve.	According	to	a	survey	conducted	at	the
1997	Rational	ASQ	Conference,	28%	of	respondents	said	they	didn't	use	automated	testing
tools	due	to	lack	of	management	support	or	budget;	18%	said	adequate	tools	weren't
available;	13%	said	their	current	testing	effort	was	too	disorganized	to	use	automated	tools;
7%	said	their	current	manual	testing	was	adequate;	5%	said	they	didn't	know	that	tools
were	available;	and	0%	said	they	didn't	see	any	benefit	to	using	tools.	Chapter	11	-
Improving	the	Testing	Process	has	more	information	on	how	to	identify	and	manage	some
of	these	obstacles.

No	Clear	Strategy

Key
Point

In	most	instances,	it's	necessary	to	first	define	the	process	and	then	choose	a
tool	to	facilitate	that	process.

One	of	the	greatest	pitfalls	is	implementing	a	tool	without	a	clear	idea	of	how	the	testing	tool
can	help	contribute	to	the	overall	success	of	the	testing	effort.	It's	important	that	tools	be
chosen	and	implemented	so	that	they	contribute	to	the	overall	strategy	as	outlined	in	the
master	test	plan.	For	the	most	part,	it's	not	a	good	strategy	to	choose	a	tool	and	then
modify	your	procedures	to	match	the	tool	(well,	you	will	almost	always	have	to	do	this	a	little
bit).	The	idea	is	to	get	a	tool	that	helps	you	implement	your	testing	strategy,	not	that	of	the
tool	vendor.	An	exception	(there	are	always	exceptions)	might	be	if	you	have	no	processes
at	all	in	place	for	a	certain	function.	For	example,	if	your	organization	has	no	defect	tracking
system	in	place,	it	might	be	reasonable	to	choose	a	popular	tool	and	create	your	defect
tracking	process	around	that	of	the	tool.	We	reiterate,	though,	that	in	most	instances	it's
necessary	to	first	define	the	process	and	then	choose	a	tool	to	facilitate	that	process.

Great	Expectations

Management	(especially	upper	management)	expects	that	after	the	purchase	of	a	tool,	the
testing	will	be	better	and	faster	and	cheaper	-	usually	by	an	entire	order	of	magnitude	and
usually	immediately.	While	some	projects	may	achieve	this	triad	of	success,	most	should
consider	one	or	two	of	these	a	success.	The	actual	level	of	improvement	expected	(or
required)	needs	to	be	quantified,	otherwise	it's	not	possible	to	determine	if	the	tool
implementation	was	actually	successful.	For	more	hints	on	where	and	how	to	quantify
expectations,	refer	to	Chapter	11	-	Improving	the	Testing	Process.

Lack	of	Buy-In

The	developers	and	testers	that	can	potentially	benefit	from	the	use	of	a	tool	must	be
convinced	that	the	tool	will	help	them,	that	it	is	within	their	capability	to	use,	and	that	they'll
receive	adequate	training	on	how	to	use	the	tool.	Would-be	users	are	much	less	likely	to

enthusiastically	learn	and	use	the	tool	if	their	requirements	and	opinions	are	not	taken	into
account	during	the	tool	selection	and	procurement.

Poor	Training

Key
Point

The	amount	of	time	and	training	required	to	implement	and	use	tools
successfully	is	frequently	underestimated.

Most	test	managers	understand	that	testers	must	be	trained	on	how	to	use	new	tools.
Unfortunately,	the	amount	of	time	and	training	is	often	underestimated.	Similarly,	training
sometimes	occurs	too	early	and	a	significant	time	gap	exists	between	the	training	and	the
first	use	of	the	tool.	Training	without	immediate	use	is	usually	not	very	valuable.	In	fact,	as	a
rough	rule	of	thumb,	if	more	than	6	months	have	passed	since	the	training	without	using	the
tool,	the	potential	users	can	be	considered	largely	untrained.

Another	training	issue	is	how	to	use	the	tool	to	actually	test	software.	In	this	case,	we	don't
mean	how	to	actually	set	up	the	tool	or	press	the	keys	but,	rather,	we're	talking	about	how
the	tool	helps	the	testers	select	the	test	cases,	set	up	the	test	cases,	and	determine	the
results	-	in	other	words,	"how	to	test."

Automating	the	Wrong	Thing

One	common	pitfall	that	should	be	avoided	is	automating	the	wrong	thing.	In	the	section
What	Should	Be	Automated,	we	concluded	that	there	are	a	variety	of	human-intensive	and
repetitive	tasks	that	are	good	candidates	for	automation.	But	there	are	also	situations	where
automation	is	not	as	useful.	For	example,	test	cases	that	are	intended	to	be	run	only	once
are	not	a	good	choice	for	automation.	When	a	system	is	changing	rapidly,	it	usually	ends	up
taking	more	resources	to	automate	the	tests,	since	even	the	regression	tests	are	unstable.
Obviously,	any	tests	designed	to	exercise	the	human	interface	with	the	system	cannot	be
automated.

Choosing	the	Wrong	Tool

Key
Point

Not	having	a	clear	idea	of	the	strategy	on	how	to	use	the	tool	can	result	in
choosing	the	wrong	tool.

If	an	attempt	is	made	to	automate	the	wrong	thing,	there's	a	good	chance	that	the	wrong
tool	will	be	chosen.	In	order	to	choose	the	right	tool,	it's	important	that	requirements	be
formulated	for	the	selection	and	use	of	the	tool.	It's	important	to	note	that	as	with	all
software	requirements,	it	is	necessary	to	prioritize	them.	There	may	be	no	one	tool	(of	a
certain	type)	that	fulfills	all	of	the	requirements.	Different	potential	users	of	the	tool	may	also
have	different	needs,	so	it	may	be	possible	(and	unfortunate)	that	more	than	one	of	the
same	kind	of	tool	may	have	to	be	selected,	especially	if	there	are	many	different
environments	in	which	the	application	being	tested	must	run.

Ease	of	Use

Another	major	issue	in	tool	selection	is	ease	of	use	and	the	technical	bent	of	the	testing
staff.	Some	testers	may	have	been	(or	still	are)	developers.	Some	organizations	may
purposely	choose	testers	with	a	development	background,	while	other	organizations	may
choose	testers	based	on	their	business	acumen.	These	testers	may	or	may	not	like	the	idea
of	becoming	"programmers,"	and	in	spite	of	what	many	vendors	may	say,	using	some	tools
requires	the	users	to	do	some	high-level	programming.

Case	Study	6-10:	Some	organizations	enlist	developers	to	assist	in	the	automation	of
tests.

Using	Developers	As	Test	Automation	Engineers

We	once	heard	a	speaker	from	a	large	telecom	company	describe	their	test
automation	efforts.	Apparently,	their	testers	came	mostly	from	the	user	community
and	weren't	comfortable	using	automated	testing	tools.	The	test	manager	arranged	to
have	a	developer	assigned	to	each	testing	team	to	help	them	automate	the	manual
scripts	they	had	written.	Not	only	did	it	hasten	the	automation	of	the	tests,	but	it	also
sent	a	very	clear	message	to	the	testers,	"that	your	time	is	so	important	that	we've
gotten	a	developer	to	work	with	you."	Unfortunately,	some	of	the	developers	that	had
been	sent	to	help	the	testers	acted	like	they	had	received	a	prison	sentence.

Even	if	your	testers	are	programmers	or	former	programmers,	some	tools	are	just	hard	to
use.	This	is	frustrating	and	may	result	in	"shelfware."

Choosing	the	Wrong	Vendor

This	is	a	touchy	subject,	but	we	have	to	admit	that	all	vendors	do	not	meet	the	same
standards.	When	choosing	a	vendor,	it's	important	to	choose	one	that	the	group	is
comfortable	working	with.	The	responsiveness	of	the	tool	vendor	is	a	key	factor	in	the	long-
term	success	of	a	tool.	Another	important	issue	in	selecting	a	vendor	is	the
training/consulting	that	they	supply.	Here	are	some	things	to	consider	when	choosing	a
vendor:

Do	they	only	show	the	testing	staff	how	to	use	the	tool	on	"canned"	examples,	or	do
they	actually	provide	training	on	your	application?

Are	they	available	for	assistance	in	the	implementation	of	the	tool?

How	difficult	is	it	to	get	on-site	assistance	after	the	tool	is	purchased?

When	the	tool	is	being	demonstrated,	does	the	vendor	only	send	sales	people	or	do
they	also	send	technical	people	who	can	answer	in-depth	questions?

Do	the	vendors	have	an	annual	user's	conference	and/or	regional	users'	groups?	We
have	found	that	companies	that	do	often	have	a	greater	customer	focus	than	those
that	don't.

Can	the	tool	be	modified	to	meet	your	needs?	Some	vendors	are	willing	to	help
modify	the	tool	for	your	particular	needs	and	environment,	while	other	vendors	are
not.	If	the	tool	works	for	you	"as	is"	off-the-shelf,	then	this	is	not	an	issue.	However,
if	you	do	need	to	have	it	modified,	this	can	be	a	disqualifier	for	that	vendor.

Key
Point

Ask	the	tool	vendor	how	they	test	their	own	software.	This	may	give	you
valuable	insight	into	how	good	their	software	really	is.

Key
Point

In	a	survey	conducted	at	the	1997	Rational	ASQ	Conference,	64%	of
respondents	stated	that	what	they	did	not	like	about	automated	tools	was
the	effort	required	to	maintain	the	test	cases.

-	Ross	Collard

Sometimes,	it	may	be	easier	to	choose	different	tools	from	the	same	vendor	if	they	must
work	together.	For	example,	a	defect	tracking	tool	may	work	with	the	configuration
management	tool	from	the	same	vendor,	but	not	with	another	vendor's.	Choosing	the	same
vendor	also	allows	the	testers	to	become	more	familiar	with	the	vendor's	help	desk,	their
personnel,	and	any	particular	design	quirks	of	their	tools.	Some	vendors	may	also	provide	a
price	break	for	buying	multiple	tools.

It's	an	excellent	idea	to	ask	the	tool	vendor	to	explain	how	they	test	their	own	software.	Are
their	developers	trained	in	testing	methodologies	and	techniques?	Can	they	explain	their
measures	of	test	effectiveness?	Are	they	ISO	certified?	What	CMM	level	have	they
achieved?	We	wouldn't	disqualify	a	vendor	for	not	being	ISO	certified	or	at	a	low	CMM
level,	but	we	might	have	more	interest	in	one	that	is.

Another	good	idea	is	to	ask	other	testing	organizations	how	they	like	the	vendor	and	their
products.	One	good	place	to	do	this	is	at	testing	conferences	like	Software	Testing	Analysis
and	Review	(STAR),	EuroSTAR,	Quality	Week,	The	Test	Automation	Conference,	Quality
Assurance	Institute	(QAI)	Conferences,	and	others.	Not	only	can	you	see	many	tools
demonstrated,	but	you'll	also	have	the	opportunity	to	talk	to	people	who	have	actually
purchased	and	used	the	tool.	Don't	forget,	though,	that	their	needs	are	not	necessarily	the
same	as	yours.

Key
Point

It's	an	excellent	idea	to	ask	the	tool	vendor	to	explain	how	they	test	their
software.

Unstable	Software

Key If	the	application	being	tested	is	unstable	or	changing	rapidly,	automating	the

Point test	scripts	may	be	difficult.

Another	important	consideration	in	deciding	whether	or	not	to	automate	test	cases	is	the
stability	of	the	software	under	test.	If	the	software	that	is	brought	into	the	test	environment
is	of	poor	quality	or	is	changing	rapidly	for	any	reason,	some	of	the	test	cases	will
potentially	have	to	be	changed	each	time	the	software	under	test	(SUT)	is	changed.	And,	if
the	automated	scripts	take	longer	to	write	than	manual	scripts,	then	the	SUT	may	not	be	a
good	candidate	for	automation.	Some	of	our	clients	feel	that	automated	scripts	can	be
created	as	quickly	as	manual	ones.	In	other	words,	they	create	the	tests	using	a	tool,	rather
than	writing	the	tests	and	then	automating	them.	This	process	is	similar	to	us	typing	this	text
as	we	think	of	the	sentences,	rather	than	writing	it	down	and	later	transcribing	it.	For	these
companies,	it's	just	as	easy	and	more	economical	to	automate	most	tests	(with	the
exception	of	some	usability	tests),	including	those	that	may	only	be	executed	once	or	twice.

The	first	foray	many	testing	groups	take	into	test	automation	is	in	the	area	of	regression
testing.	The	idea	behind	regression	testing	is	that	the	regression	tests	are	run	after	changes
(corrections	and	additions)	are	made	to	the	software	to	ensure	that	the	rest	of	the	system
still	works	correctly.	This	means	that	we	would	like	the	regression	test	set	to	be	fairly
constant	or	stable.	Since	we	know	that	creating	automated	scripts	can	sometimes	take
longer	than	creating	manual	ones,	it	doesn't	make	a	lot	of	sense	to	automate	the	regression
test	set	for	an	application	that	is	changing	so	rapidly	and	extensively	that	the	regression	test
cases	are	in	a	constant	state	of	flux.

Key
Point

Regression	tests	are	tests	that	are	run	after	changes	(corrections	and
editions)	are	made	to	the	software	to	ensure	that	the	rest	of	the	system	still
works	correctly.

Doing	Too	Much,	Too	Soon

Just	as	with	any	process	improvement,	it's	generally	a	good	idea	to	start	small	and	limit	the
changes.	Normally,	we'd	like	to	try	the	new	tool	out	on	a	pilot	project	rather	than	do	a	global
implementation.	It's	also	generally	a	good	idea	to	introduce	one,	or	at	least	a	limited
number,	of	tools	at	one	time.	If	multiple	tools	are	implemented	simultaneously,	there's	a
tendency	to	stretch	resources,	and	it	becomes	difficult	to	judge	the	impact	of	any	one	tool
on	the	success	of	the	testing	effort.

Underestimating	Time/Resources

Poor	scheduling	and	underestimating	the	amount	of	time	and/or	resources	required	for
proper	implementation	can	have	a	significant	impact	on	the	success	or	failure	of	a	test	tool.
If	a	tool	is	purchased	for	a	particular	project,	but	isn't	implemented	on	that	project,	there's
little	chance	that	it	will	be	implemented	on	any	other	project.	In	reality,	the	tool	will	probably
sit	on	the	test	bench	or	stay	locked	in	the	software	cabinet	until	it's	obsolete.

Implementing	tools	can	take	a	long	time.	Some	of	our	clients	report	that	they	spend	years
(that's	not	a	typo)	implementing	a	tool	across	an	entire	organization.	Even	implementing	a

tool	in	a	small	organization	can	take	weeks	or	even	months.	You	have	to	ensure	that	you
have	buy-in	for	that	extended	effort.

Key
Point

If	a	tool	is	purchased	for	a	particular	project,	but	isn't	implemented	on	that
project,	there's	little	chance	that	it	will	be	implemented	on	any	other	project.

Inadequate	or	Unique	Test	Environment

Now	it's	time	to	defend	the	tool	vendors	for	a	moment.	Some	testing	organizations	purchase
tools	that	they	aren't	equipped	to	use,	or	their	test	environment	is	incapable	of	effectively
utilizing	these	tools.	By	environment,	we're	talking	about	databases,	files,	file	structures,
source	code	control,	configuration	management,	and	so	on.	It's	necessary	to	get	your	own
development	and	testing	environments	in	order	if	you	want	to	successfully	implement	testing
tools.

Key
Point

If	you	build	your	own	tools,	you	also	have	to	test	them,	document	them,	and
maintain	them.

One	common	test	management	issue	is,	"Should	we	build,	buy,	or	as	we	(sometimes
jokingly)	say,	'steal'	the	tool?"	We	recommend	that	in	almost	every	case	it's	better	to	buy
the	tool	than	to	make	it.	Just	think	of	all	of	the	things	that	you	don't	like	to	do	that	are
required	if	you	build	the	tool	yourself:	document	it,	test	it	and	maintain	it.	Joking	aside,	the
vendors	have	amortized	their	development	and	testing	of	the	tool	across	multiple	users,
where	you	would	be	making	it	for	a	limited	audience.	You	wouldn't	normally	create	your	own
word	processor,	would	you?	Of	course,	there	are	exceptions:	If	you	have	a	very	unique
environment	(embedded	systems,	for	example),	it	might	mean	that	you	have	to	build	the	tool
since	there	may	not	be	any	commercially	available.	Another	example	might	be	where	you
want	to	capitalize	on	some	existing	expertise	and/or	infrastructure.	Let's	say	that	your
company	is	accustomed	to	using	some	kind	of	groupware	like	Lotus	Notes.	If	it's	difficult	to
introduce	technical	change	in	your	organization,	it	might	be	worthwhile	to	build	a	defect
tracking	system	on	top	of	the	groupware	(assuming	you	can't	find	an	off-the-shelf	defect
tracking	system	based	on	the	groupware).

Poor	Timing

Timing	is	everything.	Trying	to	implement	a	major	tool	or	automation	effort	in	the	midst	of	the
biggest	software	release	of	all	time	is	not	a	good	strategy.	We	understand	that	there	never
really	seems	to	be	a	good	time	to	implement	a	tool	(or	improve	processes	or	train	people),
but	you	have	to	use	your	common	sense	here.	For	example,	many	companies	were	buying
(and	sometimes	using)	regression	testing	tools	to	help	in	their	Y2K	testing.	In	most
instances,	starting	in	the	fall	of	1998,	we	stopped	recommending	that	our	clients	buy	these
tools	for	the	purpose	of	reaching	their	millennium	goals,	because	we	felt	that	implementing
the	tool	at	that	late	juncture	would	take	too	much	of	their	remaining	time.	This	time	would	be
better	spent	on	creating	and	running	tests	manually.

Key
Point

Timing	is	everything.	Trying	to	implement	a	major	tool	or	automation	effort	in
the	midst	of	the	biggest	software	release	of	all	time	is	not	a	good	strategy.

Cost	of	Tools

Another	reason	that	tool	implementation	never	gets	off	the	ground	is	cost.	There	are	the
obvious	costs	of	licensing	plus	the	not-so-obvious	costs	of	implementing	and	training,	which
may	actually	exceed	the	licensing	costs.	Because	some	tools	may	cost	thousands	of	dollars
per	copy,	there	may	be	a	tendency	to	restrict	the	number	of	copies	purchased,	which	can
be	very	frustrating	if	the	testers	have	to	take	turns	to	access	the	tool.	While	it	may	not	be
necessary	to	have	a	copy	for	every	tester,	there	have	to	be	enough	to	preclude	testers	from
"waiting	around"	for	access	to	the	tool.	We	know	of	clients	who	have	had	testers	queue	up
to	enter	defects	into	the	only	workstation	with	the	defect	tracking	tool	installed.

Key
Point

Some	vendors	offer	network	licensing,	which	may	be	more	economical	than
buying	individual	copies	of	a	tool.

Evaluating	Testware

It	should	be	clear	to	most	testers	and	test	managers	that	in	the	process	of	testing	an
application,	the	testers	are	also	evaluating	the	work	of	the	people	who	specified	the
requirements,	design,	and	code.	But	who	evaluates	the	work	of	the	testers?	In	some
organizations,	an	evaluation	may	be	done	by	the	QA	department,	but	ultimately,	it's	the
customers	or	end-users	who	judge	the	work	done	by	the	testers.	Among	his	clients,	Capers
Jones	states	that	"…the	number	of	enterprises	that	have	at	least	some	bad	test	cases	is
approximately	100%.	However,	the	number	of	clients	that	measure	test	case	quality	is	much
smaller:	only	about	20	enterprises	out	of	600	or	so."	Our	colleague,	Martin	Pol,	has	stated
that	20%	of	all	defects	are	testing	defects.	Even	though	we	believe	that	for	the	most	part
testers	are	smarter,	better	looking,	and,	in	general,	just	better	people	than	the	general
population	(just	kidding),	they	too	are	only	human	and	can	make	mistakes.	The	intellectual
effort	in	testing	an	application	is	often	as	great	as	the	effort	to	create	it	in	the	first	place,
and,	therefore,	someone	should	evaluate	the	work	of	the	testers.

Key
Point

The	intellectual	effort	in	testing	an	application	is	often	as	great	as	the	effort	to
create	it	in	the	first	place	and,	therefore,	someone	should	evaluate	the	work	of
the	testers.

Quality	Assurance	Group

Some	organizations	may	have	a	quality	assurance	group	that	evaluates	the	quality	of	the
testing	effort.	Other	organizations	use	post-project	reviews	to	evaluate	(after	the	fact)	the
effectiveness	of	the	development	and	testing	efforts.	Measures	of	test	effectiveness	such
as	coverage	and	defect	removal	efficiency	are	important	topics	in	and	of	themselves.	For
more	information	about	these	topics,	refer	to	the	section	on	Measuring	Test	Effectiveness	in
Chapter	7	-	Test	Execution.	In	addition	to	these	topics,	however,	it's	also	important	to

understand	that	there	are	a	variety	of	other	techniques	that	can	be	used	to	evaluate	the
effectiveness	of	testware.	Generally	speaking,	you	can	evaluate	your	testware	using	many
of	the	same	techniques	that	are	used	to	test	the	software.

Reviews

Reviews	of	test	documents	can	be	a	useful	way	to	analyze	the	quality	of	the	testing.
Walkthroughs,	inspections,	peer	reviews,	and	buddy	checks	can	be	used	to	review	test
plans,	test	cases,	procedures,	etc.	These	reviews	should	include	interested	parties	outside
of	the	test	group	such	as	users,	business	analysts,	and	developers.	You'll	benefit	from	the
diverse	range	of	ideas	while,	at	the	same	time,	achieving	buy-in	for	the	testing	effort.

Key
Point

Some	organizations	find	it	useful	to	review	test	documents	and	the
corresponding	development	documents	at	the	same	time.

Dry	Runs

Key
Point A	test	set	is	a	group	of	test	cases	that	cover	a	feature	or	system.

It's	often	useful	to	conduct	a	dry	run	of	the	test	cases,	possibly	on	a	previous	version	of	the
software.	Even	though	the	previous	version	is	different	and,	therefore,	some	of	the	tests	will
(and	should)	fail	because	of	these	differences,	many	test	cases	should	pass.	The	testers
can	then	analyze	the	failed	tests	in	order	to	determine	if	any	of	the	failures	can	be	attributed
to	incorrect	tests,	and	subsequently	upgrade	the	test	set.

Traceability

Traceability	is	the	process	that	ultimately	leads	to	the	coverage	metrics	described	in	the
Test	Effectiveness	section.	For	our	particular	purposes,	we	simply	want	to	ensure	that	the
test	cases	can	be	mapped	to	the	requirements,	design,	or	code	in	order	to	maintain
traceability.	Tables	6-3,	6-4,	and	6-5	list	some	sample	requirements	for	an	ATM,	some
sample	test	cases	that	might	be	used	to	test	those	requirements,	and	the	resulting
traceability	matrix.

Table	6-3:	Requirements	for	ATM	Example

Requirement Description

1.0 A	valid	user	must	be	able	to	withdraw	up	to	$200	or	the	maximum
amount	in	the	account.

1.1Withdrawal	must	be	in	increments	of	$20.

1.2 User	cannot	withdraw	more	than	account	balance.

If	the	maximum	amount	in	the	account	is	less	than	$200,	user	may

1.3 withdraw	an	amount	equal	to	the	largest	sum	divisible	by	20,	but	less
than	or	equal	to	the	maximum	amount.

1.4 User	must	be	validated	in	accordance	with	Requirement	16.

2.0 A	valid	user	may	make	up	to	5	withdrawals	per	day.

…

…

Table	6-4:	Simplified	Description	of	Test	Cases	for	ATM	Example

Test	Case Description

TC-01 Withdraw	$20	from	a	valid	account	that	contains	$300.

TC-02
Withdraw	$25	from	a	valid	account	that	contains	$300.

Note This	is	a	negative	test	and	should	return	an	error	message.

TC-03
Withdraw	$400	from	a	valid	account	that	contains	$300.

Note This	is	a	negative	test	and	should	return	an	error	message.

TC-04 Withdraw	$160	from	a	valid	account	that	contains	$165.

…

Table	6-5:	Traceability	of	Requirements	to	Test	Cases

Attribute TC	#1 TC#	2 TC	#3 TC	#4 TC	#5

Requirement	1.0

Requirement	1.1 ü ü

Requirement	1.2 ü

Requirement	1.3 ü

Requirement	2.0

…

…

Requirement	16.0 ü ü ü ü ü

Design	1.0

Design	1.1 ü

Design	1.2 ü

…

…

Table	6-5	shows	a	simplified	requirements	and	design	traceability	matrix	for	our	ATM
example.	Notice	that	it	takes	more	than	one	test	case	to	test	Requirement	1.1.	Also	notice
that	test	cases	TC-01	through	TC-04	are	also	used	to	test	Requirement	16.0	in	addition	to
testing	the	other	requirements.

Defect	Seeding

Defect	seeding	is	a	technique	that	was	developed	to	estimate	the	number	of	bugs	resident
in	a	piece	of	software.	This	technique	may	seem	a	little	more	off	the	wall	than	other
techniques	for	evaluating	testware,	and	it's	definitely	not	for	everyone.	Conceptually,	a	piece
of	software	is	"seeded"	with	bugs	and	then	the	test	set	is	run	to	find	out	how	many	of	the
seeded	bugs	were	discovered,	how	many	were	not	discovered,	and	how	many	new
(unseeded)	bugs	were	found.	It's	then	possible	to	use	a	simple	mathematical	formula	to
predict	the	number	of	bugs	remaining.	The	formulae	for	calculating	these	values	are	shown
in	Figure	6-2.

	Figure	6-2:	Formulae	for	Calculating	Seed	Ratio
and	Estimated	Number	of	Real	Defects	Still	Present

Key Most	articles	about	defect	seeding	seem	to	be	written	by	college	professors
and	graduate	students.	Perhaps	this	means	that	defect	seeding	is	only	used	in

Point the	world	of	academia?

For	example,	if	an	organization	inserted	100	seed	bugs	and	later	were	only	able	to	locate
75	of	the	seeded	bugs,	their	seed	ratio	would	be	0.75	(or	75%).	If	the	organization	had
already	discovered	450	"real"	defects,	then	using	the	results	from	the	seeding	experiment,	it
would	be	possible	to	extrapolate	that	the	450	"real"	defects	represented	only	75%	of	all	of
the	real	defects	present.	Then,	the	total	number	of	real	defects	would	be	estimated	to	be
600.	Since	only	450	of	the	potential	600	real	defects	have	been	found,	it	appears	that	the
product	still	has	150	"real"	defects	waiting	to	be	discovered	plus	25	seed	bugs	that	still	exist
in	the	code.	Don't	forget	to	remove	the	seed	bugs!

In	our	experience,	seeding	doesn't	work	very	well	as	a	means	of	predicting	the	number	of
undiscovered	bugs,	because	it's	virtually	impossible	to	create	the	seeded	bugs	as	creatively
as	programmers	do	in	real	life.	In	particular,	seeded	bugs	seldom	replicate	the	complexity,
placement,	frequency,	etc.	of	developer-created	defects.	Still,	this	technique	can	be	used	to
"test"	the	testware.	Software	with	seeded	or	known	bugs	is	subjected	to	the	test	set	to
determine	if	all	of	the	seeded	bugs	are	discovered.	If	some	of	the	bugs	are	not	found,	the
test	set	may	be	inadequate.	If	all	of	the	bugs	are	found,	the	test	set	may	or	may	not	be
adequate.	(Great,	just	what	we	need	-	a	technique	that	shows	us	when	we've	done	a	bad
job,	but	can't	confirm	when	we've	done	a	good	job!)

Key
Point

Seeded	bugs	seldom	replicate	the	complexity,	placement,	frequency,	etc.	of
developer-created	defects.

Case	Study	6-11:	What	do	software	bugs	and	fish	have	in	common?

The	Genesis	of	Defect	Seeding

I've	been	telling	a	story	in	my	classes	for	the	last	several	years	about	the	genesis	of
defect	seeding	in	software.	I	tell	my	students	that	software	defect	seeding	is	a
technique	borrowed	from	the	State	Fishery	Department.	The	fishery	department	would
catch	a	batch	of	fish,	tag	them,	and	then	release	them.	Later,	a	second	batch	of	fish
would	be	caught	and	the	ratio	of	tagged	to	untagged	fish	was	noted.	It's	then	a	simple
mathematical	calculation	to	determine	the	population	of	fish	in	the	lake.

Some	wise	person,	as	I	tell	my	class,	decided	to	try	this	technique	with	software.	After
the	software	is	seeded	with	bugs	and	tested,	the	ratio	of	seeded	to	unseeded	bugs	is
computed.	Using	the	same	mathematical	formula	as	our	friends	in	the	fisheries,	we
should	be	able	to	predict	the	number	of	bugs	in	the	software.	Well,	apparently	bugs
are	different	from	fish,	because	it	didn't	work	nearly	as	well	with	software	as	it	did	with
fish.	No	doubt,	this	technique	failed	because	nobody	can	seed	the	software	with	bugs
as	creatively	as	programmers	do.

While	re-reading	the	book	Software	Defect	Removal	by	Robert	H.	Dunn,	I	was
surprised	to	learn	that	indeed	software	defect	seeding	did	come	from	the	work	of
scientists	measuring	populations	of	fish.	The	first	suggestion	of	seeding	software	with

defects	seems	to	come	from	the	work	of	Harlan	Mills	around	1970.

-	Rick	Craig

Some	organizations	also	use	software	with	known	or	seeded	bugs	as	a	training	vehicle	for
new	testers.	The	neophyte	testers	are	asked	to	test	a	piece	of	software	to	see	if	they	can
find	all	of	the	bugs.

For	all	practical	purposes,	most	of	you	don't	have	the	time	or	resources	to	do	defect
seeding,	and	the	technique	is	definitely	not	at	the	top	of	our	priority	list.	Besides,	isn't	it	just
a	little	scary	to	put	bugs	in	the	software	on	purpose?	Can	you	imagine	what	would	happen	if
these	bugs	were	shipped	to	customers	by	mistake?	We	know	of	one	company	where	this
actually	happened.

Key
Point

Some	organizations	use	software	with	known	or	seeded	bugs	as	a	training
vehicle	for	new	testers.

Mutation	Analysis

Mutation	analysis	is	sometimes	used	as	a	method	of	auditing	the	quality	of	unit	testing.
Basically,	to	do	mutation	analysis,	you	insert	a	mutant	statement	(e.g.,	bug)	into	a	piece	of
code	(e.g.,	a	unit)	and	run	the	unit	test	cases	to	see	if	the	mutant	is	detected,	as	illustrated
in	Figure	6-3.

	
Figure	6-3:	Steps	in	the	Mutation	Analysis	Process

If	the	unit	test	set	is	comprehensive,	the	mutant	should	always	be	found.	If	the	mutant	is	not
found,	the	unit	test	set	is	not	comprehensive.	The	converse,	however,	is	not	true.	Just
because	the	mutant	is	discovered,	doesn't	mean	the	test	set	is	comprehensive.

Key
Point

Mutation	analysis	is	sometimes	used	as	a	method	of	auditing	the	quality	of	unit
testing.

Mutation	analysis	is	only	effective	in	organizations	that	have	already	achieved	high	levels	of

code	coverage,	since	mutation	analysis	is	based	on	the	premise	that	virtually	all	lines	of
code	have	been	covered	and	we're	just	looking	for	an	anomaly.	Our	research	has	shown
that	only	25%	of	organizations	do	any	form	of	formal	unit	testing.	It's	very	likely	that	the
coverage	is	so	low	for	the	75%	of	organizations	that	don't	do	any	formal	unit	testing,	that	it's
actually	a	surprise	if	the	mutant	is	found	rather	than	if	it	isn't	found.

So,	it's	our	opinion	that	mutation	analysis	is	primarily	of	value	to	organizations	that	are
already	doing	comprehensive	unit	testing.	We	believe	that	these	"advanced"	organizations
are	also	likely	to	be	the	ones	using	code	coverage	tools	and	therefore	don't	need	mutation
analysis	anyway.	The	bottom	line	on	mutation	analysis	is	that	unless	you	have	a	lot	of	time
on	your	hands,	move	on	to	something	more	useful,	like	code	coverage.

Key
Point

Mutation	analysis	is	only	effective	in	organizations	that	have	already	achieved
high	levels	of	code	coverage,	since	mutation	analysis	is	based	on	the	premise
that	virtually	all	lines	of	code	have	been	covered	and	we're	just	looking	for	an
anomaly.

Testing	Automated	Procedures

When	test	procedures	are	automated,	they	effectively	become	software	-	just	like	the
software	under	test.	You	can	employ	the	same	techniques	for	testing	automated	procedures
that	you	would	use	for	any	other	piece	of	software.

Team-Fly 	

Team-Fly

	

Chapter	7:	Test	Execution

Overview
"Knowledge	must	come	through	action;	you	can	have	no	test	which	is	not	fanciful,
save	by	trial."

—	Sophocles

"Take	time	to	deliberate,	but	when	the	time	for	action	has	arrived,	stop	thinking	and	go
in."

—	Napoleon	Bonaparte

Test	execution	is	the	process	of	executing	all	or	a	selected	number	of	test	cases	and
observing	the	results.	Although	preparation	and	planning	for	test	execution	occur	throughout
the	software	development	lifecycle,	the	execution	itself	typically	occurs	at	or	near	the	end	of
the	software	development	lifecycle	(i.e.,	after	coding).

Team-Fly 	

Team-Fly

	

Before	Beginning	Test	Execution
When	most	people	think	of	testing,	test	execution	is	the	first	thing	that	comes	to	mind.	So,
why	is	there	an	emphasis	on	execution?	Well,	not	only	is	test	execution	the	most	visible
testing	activity,	it	also	typically	occurs	at	the	end	of	the	development	lifecycle	after	most	of
the	other	development	activities	have	concluded	or	at	least	slowed	down.	The	focus	then
shifts	to	test	execution,	which	is	now	on	the	critical	path	of	delivery	of	the	software.	By-
products	of	test	execution	are	test	incident	reports,	test	logs,	testing	status,	and	results,	as
illustrated	in	Figure	7-1.

	Figure	7-1:	Executing	the	Tests

By	now,	you	should	know	that	we	consider	testing	to	be	an	activity	that	spans	the	entire
software	development	lifecycle.	According	to	Martin	Pol,	"test	execution	may	only	consume
40%	or	less	of	the	testing	effort,"	but	it	typically	has	to	be	concluded	as	quickly	as	possible,
which	means	that	there	is	often	an	intense	burst	of	effort	applied	in	the	form	of	long	hours
and	borrowed	resources.	Frequently,	it	also	means	that	the	test	execution	effort	will	be
anxiously	scrutinized	by	the	developers,	users,	and	management.

Deciding	Who	Should	Execute	the	Tests

Who	executes	the	tests	is	dependent	upon	the	level	of	test.	During	unit	test	it	is	normal	for
developers	to	execute	the	tests.	Usually	each	developer	will	execute	their	own	tests,	but	the
tests	may	be	executed	by	another	programmer	using	techniques	like	buddy	testing	(refer	to
Chapter	4	-	Detailed	Test	Planning	for	more	information	on	buddy	testing).	Integration	tests
are	usually	executed	by	the	developers	and/or	the	testers	(if	there	is	a	test	group).	System
tests	could	be	executed	by	the	developers,	testers,	end-users,	or	some	combination
thereof.	Some	organizations	also	use	developers	to	do	the	system	testing,	but	in	doing	so,
they	lose	the	fresh	perspective	provided	by	the	test	group.

Ideally,	acceptance	tests	should	be	executed	by	end-users,	although	the	developers	and/or
testers	may	also	be	involved.	Table	7-1	shows	one	way	that	test	execution	may	be	divided,
but	there	is	really	no	definitive	answer	as	to	who	should	execute	the	tests.	Ideally,	we	are
looking	for	people	with	the	appropriate	skill	set,	although	sometimes	we're	lucky	to	find
somebody,	anybody	that's	available.

Table	7-1:	Responsibilities	for	Test	Execution

Responsible	Group Unit Integration System Acceptance

Testers ü ü ü

Developers ü ü ü

End-Users ü ü

During	test	execution,	the	manager	of	the	testing	effort	is	often	looking	for	additional
resources.	Potential	testers	might	include:	members	of	the	test	team	(of	course),
developers,	users,	technical	writers,	trainers,	or	help	desk	staff	members.	Some
organizations	even	bring	in	college	interns	to	help	execute	tests.	College	interns	and	new-
hires	can	be	used	successfully	if	the	test	cases	are	explicit	enough	for	them	to	understand
and	they've	received	training	in	how	to	write	an	effective	incident	report.	We	must	be
cautious,	though,	or	we	might	spend	more	time	training	the	neophyte	testers	than	it's	worth.
On	the	other	hand,	having	new	testers	execute	tests	is	one	way	to	quickly	make	them
productive	and	feel	like	part	of	the	team.

Key
Point

"Newbies"	make	good	candidates	for	usability	testing	because	they're	not
contaminated	by	previous	knowledge	of	the	product.

Deciding	What	to	Execute	First

Key
Point

As	a	rule	of	thumb,	we	normally	recommend	that	the	regression	test	set	(or	at
least	the	smoke	test)	be	run	in	its	entirety	early	on	to	flag	areas	that	are
obviously	problematic.

Choosing	which	test	cases	to	execute	first	is	a	strategy	decision	that	depends	on	the	quality
of	the	software,	resources	available,	existing	test	documentation,	and	the	results	of	the	risk
analysis.	As	a	rule	of	thumb,	we	normally	recommend	that	the	regression	test	set	(or	at
least	the	smoke	test)	be	run	in	its	entirety	early	on	to	flag	areas	that	are	obviously
problematic.	This	strategy	may	not	be	feasible	if	the	regression	set	is	exceptionally	large	or
totally	manual.	Then,	the	focus	of	the	test	should	be	placed	on	those	features	that	were
identified	as	high-risk	during	the	software	risk	analysis	described	in	Chapter	2.	High-risk
features	will	almost	certainly	contain	all	features	that	were	extensively	modified,	since	we
know	that	changed	features	are	typically	assigned	a	higher	likelihood	of	failure.

Writing	Test	Cases	During	Execution

Really,	no	matter	how	good	you	and	your	colleagues	are	at	designing	test	cases,	you'll
always	think	of	new	test	cases	to	write	when	you	begin	test	execution	(this	is	one	of	the
arguments	for	techniques	such	as	exploratory	testing).	As	you	run	tests,	you're	learning
more	about	the	system	and	are	in	a	better	position	to	write	the	additional	test	cases.
Unfortunately,	in	the	heat	of	battle	(test	execution)	when	time	is	short,	these	tests	are	often
executed	with	no	record	made	of	them	unless	an	incident	is	discovered.	This	is	truly
unfortunate,	because	some	of	these	"exploratory"	test	cases	are	frequently	among	the	most

useful	ones	created	and	we	would	like	to	add	them	to	our	test	case	repository,	since	we
have	a	long-term	goal	of	improving	the	coverage	of	the	test	set.	One	of	our	clients	includes
notes	in	the	test	log	as	a	shorthand	way	of	describing	these	exploratory	test	cases.	Then,
after	release,	they	use	the	test	log	to	go	back	and	document	the	test	cases	and	add	them
to	the	test	case	repository.

Key
Point

No	matter	how	good	you	and	your	colleagues	are	at	designing	test	cases,
you'll	always	think	of	new	test	cases	to	write	when	you	begin	test	execution.

Recording	the	Results	of	Each	Test	Case

Obviously,	the	results	of	each	test	case	must	be	recorded.	If	the	testing	is	automated,	the
tool	will	record	both	the	input	and	the	results.	If	the	tests	are	manual,	the	results	can	be
recorded	right	on	the	test	case	document.	In	some	instances,	it	may	be	adequate	to	merely
indicate	whether	the	test	case	passed	or	failed.	Failed	test	cases	will	also	result	in	an
incident	report	being	generated.	Often,	it	may	be	useful	to	capture	screens,	copies	of
reports,	or	some	other	output	stream.

Team-Fly 	

Team-Fly

	

Test	Log
The	IEEE	Std.	829-1998	defines	the	test	log	as	a	chronological	record	of	relevant	details
about	the	execution	of	test	cases.	The	purpose	of	the	test	log	shown	in	Figure	7-2	is	to
share	information	among	testers,	users,	developers,	and	others	and	to	facilitate	the
replication	of	a	situation	encountered	during	testing.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test	Log
Contents
1.Test	Log	Identifier

2.Description

3.Activity	and	Event	Entries

Figure	7-2:	Test	Log	Template	from	IEEE	Std.	829-1998

In	order	for	a	test	log	to	be	successful,	the	people	that	must	submit	data	into	and	eventually
use	the	log	must	want	to	do	so.	Forcing	participants	to	use	a	test	log	when	they	don't	want
to	use	it	is	seldom	successful.	In	order	to	make	it	desirable,	the	test	log	must	be	easy	to
use	and	valuable	to	its	users.

Key
Point

Since	the	primary	purpose	of	the	test	log	is	to	share	information	rather	than
analyze	data,	we	recommend	making	the	log	free	form.

Since	the	primary	purpose	of	the	test	log	is	to	share	information	rather	than	analyze	data,
we	recommend	making	the	log	free	form,	instead	of	using	fields	or	buttons,	which	are
desirable	in	other	areas	such	as	defect	tracking.	If	the	testing	team	is	small	and	co-located,
the	test	log	might	be	as	simple	as	a	spiral	notebook	in	which	testers	and/or	developers	can
make	log	entries.	Alternatively,	it	might	be	more	convenient	to	have	a	word-processed
document	or	e-mailed	form.	If	the	team	members	are	geographically	separated,	the	test	log
would	probably	be	better	served	in	the	form	of	a	Web	page	or	company	intranet.	Wherever
it	is,	the	test	log	should	be	easy	to	access	and	update.	One	of	our	clients,	for	example,	has
a	continuously	open	active	window	on	their	monitor	where	a	thought	can	be	entered	at	any
time.

Table	7-2	shows	an	example	of	a	test	log	sheet.	Notice	that	even	though	it	mentions	the
writing	up	of	PR#58,	it	doesn't	go	into	any	detail.	The	purpose	of	the	log	is	not	to	document
bugs	(we	have	defect	tracking	systems	for	that),	but	rather	to	record	events	that	you	want
to	share	among	the	team	members	or	use	for	later	recall.	The	larger	the	team	and/or	the
project	and	the	more	geographically	separated	they	are,	the	more	important	the	log
becomes.

Table	7-2:	Sample	Test	Log

Description:	Online
Trade

Date:	01/06/2002

ID Time Activity	and	Event	Entries

1 08:00 Kicked	off	test	procedure	#18	(buy	shares)	with	64	users	on
test	system.

2 09:30 Test	system	crashed.

3 10:00 Test	system	recovered.

4 10:05 Kicked	off	test	procedure	#19	(sell	shares).

5 11:11 PR	#58	written	up.

6 12:00 New	operating	system	patch	installed.

Team-Fly 	

Team-Fly

	

Test	Incident	Reports
Incidents	can	be	defined	as	any	unusual	result	of	executing	a	test	(or	actual	operation).
Incidents	may,	upon	further	analysis,	be	categorized	as	defects	or	enhancements,	or	merely
retain	their	status	as	an	incident	if	they're	determined	to	be	inconsequential	or	the	result	of	a
one-time	anomaly.	A	defect	(or	bug)	is	a	flaw	in	the	software	with	the	potential	to	cause	a
failure.	The	defect	can	be	anywhere:	in	the	requirements,	design,	code,	test,	and/or
documentation.	A	failure	occurs	when	a	defect	prevents	a	system	from	accomplishing	its
mission	or	operating	within	its	specifications.	Therefore,	a	failure	is	the	manifestation	of	one
or	more	defects.	One	defect	can	cause	many	failures	or	none,	depending	on	the	nature	of
the	defect.	An	automated	teller	machine	(ATM),	for	example,	may	fail	to	dispense	the
correct	amount	of	cash,	or	an	air	defense	system	may	fail	to	track	an	incoming	missile.
Testing	helps	you	find	the	failure	in	the	system,	but	then	you	still	have	to	track	the	failure
back	to	the	defect.

Key
Point

Some	software	testing	books	say,	"The	only	important	test	cases	are	the
ones	that	find	bugs."

We	believe	that	proving	that	some	attribute	of	the	system	works	correctly	is
just	as	important	as	finding	a	bug.

Defect	tracking	is	an	important	activity	and	one	that	almost	all	test	teams	accomplish.
Defect	tracking	is	merely	a	way	of	recording	software	defects	and	their	status.	In	most
organizations,	this	process	is	usually	done	using	a	commercial	or	"home-grown"	tool.	We've
seen	many	"home-grown"	tools	that	were	developed	based	on	applications	such	as
Infoman,	Lotus	Notes,	Microsoft	Access,	and	others.

Case	Study	7-1:	On	September	9,	1945,	a	moth	trapped	between	relays	caused	a
problem	in	Harvard	University's	Mark	II	Aiken	Relay	Calculator.

The	First	Computer	Bug

I'm	very	proud	of	the	fact	that	I	got	to	meet	Rear	Admiral	Grace	Murray	Hopper,	the
famous	computer	pioneer,	on	two	separate	occasions.	On	one	of	these	meetings,	I
even	received	one	of	Admiral	Hopper's	"nanoseconds,"	a	small	piece	of	colored	"bell"
wire	about	a	foot	or	so	long,	which	Grace	often	gave	to	her	many	admirers	to	show
them	how	far	electricity	would	travel	in	one	nanosecond.

Among	Rear	Admiral	Grace	Murray	Hopper's	many	accomplishments	were	the
invention	of	the	programming	language	COBOL	and	the	attainment	of	the	rank	of
Rear	Admiral	in	the	U.S.	Navy	(one	of	the	first	women	to	ever	reach	this	rank).	But,
ironically,	Admiral	Hopper	is	probably	most	famous	for	an	event	that	occurred	when
she	wasn't	even	present.

Admiral	Hopper	loved	to	tell	the	story	of	the	discovery	of	the	first	computer	bug.	In
1945,	she	was	working	on	the	Harvard	University	Mark	II	Aiken	Relay	Calculator.	On

September	9	of	that	year,	while	Grace	was	away,	computer	operators	discovered	that
a	moth	trapped	between	the	relays	was	causing	a	problem	in	the	primitive	computer.
The	operators	removed	the	moth	and	taped	it	to	the	computer	log	next	to	the	entry,
"first	actual	case	of	a	bug	being	found."	Many	people	cite	this	event	as	the	first
instance	of	using	the	term	"bug"	to	mean	a	defect.	The	log	with	the	moth	still	attached
is	now	located	in	the	History	of	American	Technology	Museum.

Even	though	this	is	a	great	story,	it's	not	really	the	first	instance	of	using	the	term
"bug"	to	describe	a	problem	in	a	piece	of	electrical	gear.	Radar	operators	in	World
War	II	referred	to	electronic	glitches	as	bugs,	and	the	term	was	also	used	to	describe
problems	in	electrical	gear	as	far	back	as	the	1900s.	The	following	is	a	slide	that	I
used	in	a	presentation	that	I	gave	at	a	testing	conference	in	the	early	1980s	shortly
after	meeting	Admiral	Grace	Hopper.

—	Rick	Craig

IEEE	Template	for	Test	Incident	Report

An	incident	report	provides	a	formal	mechanism	for	recording	software	incidents,	defects,
and	enhancements	and	their	status.	Figure	7-3	shows	the	IEEE	template	for	a	Test	Incident
Report.	The	parts	of	the	template	in	Figure	7-3	shown	in	italics	are	not	part	of	the	IEEE
template,	but	we've	found	them	to	be	useful	to	include	in	the	Test	Incident	Report.	Please
feel	free	to	modify	this	(or	any	other	template)	to	meet	your	specific	needs.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Incident	Report	Contents

1. Incident	Summary	Report	Identifier

2. Incident	Summary

3. Incident	Description

3.1 Inputs

3.2 Expected	Results

3.3 Actual	Results

3.4 Anomalies

3.5 Date	and	Time

3.6 Procedure	Step

3.7 Environment

3.8 Attempts	to	Repeat

3.9 Testers

3.10 Observers

4. Impact

5. Investigation

6.Metrics

7.Disposition

Figure	7-3:	Template	for	Test	Incident	Report	from	IEEE	Std.	829-1998

Incident	Summary	Report	Identifier

The	Incident	Summary	Report	Identifier	uses	your	organization's	incident	tracking	numbering
scheme	to	identify	this	incident	and	its	corresponding	report.

Incident	Summary

The	Incident	Summary	is	the	information	that	relates	the	incident	back	to	the	procedure	or
test	case	that	discovered	it.	This	reference	is	often	missing	in	many	companies	and	is	one
of	the	first	things	that	we	look	for	when	we're	auditing	their	testing	processes.	Absence	of
the	references	on	all	incident	reports	usually	means	that	the	testing	effort	is	largely	ad	hoc.
All	identified	incidents	should	have	a	reference	to	a	test	case.	If	an	incident	is	discovered
using	ad	hoc	testing,	then	a	test	case	should	be	written	that	would	have	found	the	incident.
This	test	case	is	important	in	helping	the	developer	recreate	the	situation,	and	the	tester	will
undoubtedly	need	to	re-run	the	test	case	after	any	defect	is	fixed.	Also,	defects	have	a	way
of	reappearing	in	production	and	this	is	a	good	opportunity	to	fill	in	a	gap	or	two	in	the	test
coverage.

Key
Point

All	identified	incidents	should	have	a	reference	to	a	test	case.	If	an	incident	is
discovered	using	ad	hoc	testing,	then	a	test	case	should	be	written	that	would
have	found	the	incident.

Incident	Description

The	author	of	the	incident	report	should	include	enough	information	so	that	the	readers	of
the	report	will	be	able	to	understand	and	replicate	the	incident.	Sometimes,	the	test	case
reference	alone	will	be	sufficient,	but	in	other	instances,	information	about	the	setup,
environment,	and	other	variables	is	useful.	Table	7-3	describes	the	subsections	that	appear
under	Incident	Description.

Table	7-3:	Subsections	Under	Incident	Description

Section
Heading Description

4.1	Inputs Describes	the	inputs	actually	used	(e.g.,	files,	keystrokes,	etc.).

4.2
Expected
Results

This	comes	from	the	test	case	that	was	running	when	the	incident	was
discovered.

4.3	Actual
Results Actual	results	are	recorded	here.

4.4
Anomalies

How	the	actual	results	differ	from	the	expected	results.	Also	record	other
data	(if	it	appears	to	be	significant)	such	as	unusually	light	or	heavy	volume
on	the	system,	it's	the	last	day	of	the	month,	etc.

4.5	Date
and	Time The	date	and	time	of	the	occurrence	of	the	incident.

4.6
Procedure
Step

The	step	in	which	the	incident	occurred.	This	is	particularly	important	if	you
use	long,	complex	test	procedures.

4.7
Environment

The	environment	that	was	used	(e.g.,	system	test	environment	or
acceptance	test	environment,	customer	'A'	test	environment,	beta	site,
etc.)

4.8
Attempts	to
Repeat

How	many	attempts	were	made	to	repeat	the	test?

4.9	Testers Who	ran	the	test?

4.10
Observers Who	else	has	knowledge	of	the	situation?

Impact

The	Impact	section	of	the	incident	report	form	refers	to	the	potential	impact	on	the	user,	so
the	users	or	their	representative	should	ultimately	decide	the	impact	of	the	incident.	The
impact	will	also	be	one	of	the	prime	determinants	in	the	prioritization	of	bug	fixes,	although
the	resources	required	to	fix	each	bug	will	also	have	an	effect	on	the	prioritization.

One	question	that	always	arises	is,	"Who	should	assign	the	impact	rating?"	We	believe	that
the	initial	impact	rating	should	be	assigned	by	whoever	writes	the	incident	report.	This
means	that	if	the	incident	is	written	as	a	result	of	an	incorrect	response	to	a	test	case,	the
initial	assignment	will	be	made	by	a	tester.

Many	people	think	that	only	the	user	should	assign	a	value	to	the	impact,	but	we	feel	that	it's
important	to	get	an	initial	assessment	of	the	impact	as	soon	as	possible.	Most	testers	that
we	know	can	correctly	determine	the	difference	between	a	really	critical	incident	and	a	trivial
one.	And,	it's	essential	that	incidents	that	have	the	potential	to	become	critical	defects	be
brought	to	light	at	the	earliest	opportunity.	If	the	assignment	of	criticality	is	deferred	until	the
next	meeting	of	the	Change	Control	Board	(CCB)	or	whenever	the	user	has	time	to	review
the	incident	reports,	valuable	time	may	be	lost.	Of	course,	when	the	CCB	does	meet,	one	of
their	most	important	jobs	is	to	review	and	revise	the	impact	ratings.

Key
Point

It's	essential	that	incidents	that	have	the	potential	to	become	critical	defects	be
brought	to	light	at	the	earliest	opportunity.

A	standardized	organization-wide	scale	should	be	devised	for	the	assignment	of	impact.
Oftentimes,	we	see	a	scale	such	as	Minor,	Major,	and	Critical;	Low,	Medium,	and	High;	1
through	5;	or	a	variety	of	other	scales.	Interestingly	enough,	we	discovered	a	scale	of	1
through	11	at	one	client	site.	We	thought	that	was	strange	and	when	we	queried	them,	they
told	us	that	they	had	so	many	bugs	with	a	severity	(or	impact)	of	10	that	they	had	to	create
a	new	category	of	11.	Who	knows	how	far	they	may	have	expanded	their	impact	scale	by
now	(…35,	36,	37)?	It's	usually	necessary	to	have	only	four	or	five	severity	categories.
We're	not,	for	example,	looking	for	a	severity	rating	of	1	to	100	on	a	sliding	scale.	After	all,
how	can	you	really	explain	the	difference	between	a	severity	of	78	and	79?	The	key	here	is
that	all	of	the	categories	are	defined.

If	your	categories	are	not	defined,	but	just	assigned	on	a	rolling	scale,	then	the	results	will
be	subjective	and	very	much	depend	on	who	assigns	the	value.	The	imprecision	in	assigning
impact	ratings	can	never	be	totally	overcome,	but	it	can	be	reduced	by	defining	the
parameters	(and	using	examples)	of	what	minor,	major,	and	critical	incidents	look	like.	Case
Study	7-2	shows	the	categories	chosen	by	one	of	our	clients.

Case	Study	7-2:	Example	Impact	Scale

Example	of	Minor,	Major,	and	Critical	Defects

Minor:

Misspelled	word	on	the	screen.

Major:

System	degraded,	but	a	workaround	is	available.

Critical:

System	crashes.

Key
Point

The	imprecision	in	assigning	impact	ratings	can	never	be	totally	overcome,	but
it	can	be	reduced	by	defining	the	parameters	(and	using	examples)	of	what
minor,	major,	and	critical	incidents	look	like.

Investigation

The	Investigation	section	of	the	incident	report	explains	who	found	the	incident	and	who	the
key	players	are	in	its	resolution.	Some	people	also	collect	some	metrics	here	on	the
estimated	amount	of	time	required	to	isolate	the	bug.

Metrics

Initially,	most	testers	automatically	assume	that	every	incident	is	a	software	problem.	In
some	instances,	the	incident	may	be	a	hardware	or	environment	problem,	or	even	a	testing
bug!	Some	of	our	clients	are	very	careful	to	record	erroneous	tests	in	the	defect	tracking
system,	because	it	helps	them	to	better	estimate	their	future	testing	(i.e.,	how	many	bad
test	cases	are	there?)	and	helps	in	process	improvement.	As	an	aside,	one	company	told	us
that	recording	erroneous	test	cases	helped	give	their	testers	a	little	extra	credibility	with	the
developers,	since	the	testers	were	actually	admitting	and	recording	some	of	their	own	bugs.
In	most	cases,	though,	testers	don't	normally	like	to	record	their	own	bugs,	just	as	many
developers	don't	like	to	record	their	own	unit	testing	bugs.

Key
Point

The	Metrics	section	of	the	incident	report	can	be	used	to	record	any	number	of
different	metrics	on	the	type,	location,	and	cause	of	the	incidents.

The	Metrics	section	of	the	incident	report	can	be	used	to	record	any	number	of	different
metrics	on	the	type,	location,	and	cause	of	the	incidents.	While	this	is	an	ideal	place	to
collect	metrics	on	incidents,	be	cautious	not	to	go	overboard.	If	the	incident	report	gets	too
complicated	or	too	long,	testers,	users,	and	developers	will	get	frustrated	and	look	for
excuses	to	avoid	recording	incidents.

Case	Study	7-3:	What	happens	when	there's	a	defect	in	the	testware?

Good	Initiative,	But	Poor	Judgment

I	learned	that	every	bug	doesn't	have	to	be	a	software	bug	the	hard	way.	In	the	late
1980's,	I	was	the	head	of	an	independent	test	team	that	was	testing	a	critical
command	and	control	system	for	the	U.S.	military.	During	one	particularly	difficult	test
cycle,	we	discovered	an	alarming	number	of	bugs.	One	of	my	sergeants	told	me	that	I
should	go	inform	the	development	manager	(who	was	a	Brigadier	General,	while	I
was	only	a	Captain)	that	his	software	was	the	worst	on	the	planet.	I	remember	asking
the	sergeant,	"Are	you	sure	all	of	the	tests	are	okay?"	and	he	replied,	"Yes,	sir.	It's	the

software	that's	bad."

In	officer	training	school	we	were	taught	to	listen	to	the	wisdom	of	our	subordinate
leaders,	so	I	marched	up	to	the	General's	office	and	said,	"Sir,	your	software	is	not	of
the	quality	that	we've	come	to	expect."	Well,	you	can	almost	guess	the	ending	to	this
story.	The	General	called	together	his	experts,	who	informed	me	that	most	of	the
failures	were	caused	by	a	glitch	in	our	test	environment.	At	that	point,	the	General
said	to	me,	"Captain,	good	initiative,	but	poor	judgment,"	before	I	was	dismissed	and
sent	back	to	my	little	windowless	office.

The	moral	of	the	story	is	this:	If	you	want	to	maintain	credibility	with	the	developers,
make	sure	your	tests	are	all	valid	before	raising	issues	with	the	software.

—	Rick	Craig

Disposition	(Status)

In	a	good	defect	tracking	system,	there	should	be	the	capability	to	maintain	a	log	or	audit
trail	of	the	incident	as	it	goes	through	the	analysis,	debugging,	correction,	re-testing,	and
implementation	process.	Case	Study	7-4	shows	an	example	of	an	incident	log	recorded	by
one	of	our	clients.

Case	Study	7-4:	Example	Incident	Log	Entry

Example	Incident	Log

2/01/01	Incident	report	opened.

2/01/01	Sent	to	the	CCB	for	severity	assignment	and	to	Dominic	for	analysis.

2/03/01	Dominic	reports	that	the	fix	is	fairly	simple	and	is	in	code	maintained	by
Hunter	C.

2/04/01	CCB	changed	the	severity	to	Critical.

2/04/01	Bug	fix	assigned	to	Hunter.

2/06/01	Bug	fix	implemented	and	inspection	set	for	2/10/01.

2/10/01	Passed	inspection	and	sent	to	QA.

2/12/01	Bug	fix	is	re-tested	and	regression	run.	No	problems	encountered.

2/12/01	Incident	report	closed.

Closed	incident	reports	should	be	saved	for	further	analysis	of	trends	and

Note patterns	of	defects.

Writing	the	Incident	Report

Key
Point

Most	incident	tracking	tools	are	also	used	to	track	defects,	and	the	tools	are
more	commonly	called	defect	tracking	tools	than	incident	tracking	tools.

We	are	often	asked,	"Who	should	write	the	incident	report?"	The	answer	is,	"Whoever	found
the	incident!"	If	the	incident	is	found	in	the	production	environment,	the	incident	report	should
be	written	by	the	user	-	if	it's	culturally	acceptable	and	if	the	users	have	access	to	the	defect
tracking	system.	If	not,	then	the	help	desk	is	a	likely	candidate	to	complete	the	report	for
the	user.	If	the	incident	is	found	by	a	tester,	he	or	she	should	complete	the	report.	If	an
incident	is	found	by	a	developer,	it's	desirable	to	have	him	or	her	fill	out	the	report.	In
practice,	however,	this	is	often	difficult,	since	most	programmers	would	rather	just	"fix"	the
bug	than	record	it.	Very	few	of	our	clients	(even	the	most	sophisticated	ones)	record	unit
testing	bugs,	which	are	the	most	common	type	of	bugs	discovered	by	developers.	If	the	bug
is	discovered	during	the	course	of	a	review,	it	should	be	documented	by	the	person	who	is
recording	the	minutes	of	the	review.

Key
Point

Very	few	of	our	clients	record	unit	testing	bugs,	which	are	the	most	common
type	of	bugs	discovered	by	developers.

It's	a	good	idea	to	provide	training	or	instructions	on	how	to	write	an	incident	report.	We've
found	that	the	quality	of	the	incident	report	has	a	significant	impact	on	how	long	it	takes	to
analyze,	recreate,	and	fix	a	bug.	Specifically,	training	should	teach	the	authors	of	the
incident	reports	to:

focus	on	factual	data

ensure	the	situation	is	re-creatable

not	use	emotional	language	(e.g.,	bold	text,	all	caps)

not	be	judgmental

Attributes	of	a	Defect	Tracking	Tool

Most	organizations	that	we	work	with	have	some	kind	of	defect	tracking	tool.	Even
organizations	that	have	little	else	in	the	way	of	formal	testing	usually	have	some	type	of
tracking	tool.	This	is	probably	because	in	many	organizations,	management's	effort	is	largely
focused	on	the	number,	severity,	and	status	of	bugs.

In	a	survey	conducted	in	1997,	Ross	Collard	reported	that	defect	tracking
tools	were	the	most	commonly	used	testing	tools	among	his	respondents

Key
Point

(83%).

-	Ross	Collard	1997	Rational	ASQ	User	Conference

We	also	find	that	some	companies	use	commercial	defect	tracking	tools,	while	others
create	their	own	tools	using	applications	that	they're	familiar	with	such	as	MS-Word,	MS-
Access,	Lotus	Notes,	Infoman,	and	others.	Generally,	we	urge	companies	to	buy	tools
rather	than	make	them	themselves	unless	the	client	environment	is	so	unique	that	there	is	no
tool	that	will	fit	their	requirements.	Remember	that	if	you	build	the	tool	yourself,	you	also
have	to	document	it,	test	it,	and	maintain	it.

Ideally,	a	defect	tracking	tool	should	be	easy	to	use,	be	flexible,	allow	easy	data	analysis,
integrate	with	a	configuration	management	system,	and	provide	users	with	easy	access.
Ease	of	use	is	why	so	many	companies	choose	to	build	their	own	defect	tracking	tool	using
some	familiar	product	like	Lotus	Notes.	If	the	tool	is	difficult	to	use,	is	time-consuming,	or
asks	for	a	lot	of	information	that	the	author	of	an	incident	report	sees	no	need	for,	use	of	the
tool	will	be	limited	and/or	the	data	may	not	be	accurate.	Software	engineers	have	a	way	of
recording	"any	old	data"	in	fields	that	they	believe	no	one	will	use.

Key
Point

Ideally,	a	defect	tracking	tool	should	be	easy	to	use,	be	flexible,	allow	easy
data	analysis,	integrate	with	a	configuration	management	system,	and	provide
users	with	easy	access.

A	good	defect	tracking	tool	should	allow	the	users	to	modify	the	fields	to	match	the
terminology	used	within	their	organization.	In	other	words,	if	your	organization	purchases	a
commercial	tool	that	lists	severity	categories	of	High,	Medium,	and	Low,	users	should	be
able	to	easily	change	the	categories	to	Critical,	Major,	Minor,	or	anything	else	they	require.

Key
Point

A	good	defect	tracking	tool	should	allow	the	users	to	modify	the	fields	to
match	the	terminology	used	within	their	organization.

The	tool	should	facilitate	the	analysis	of	data.	If	the	test	manager	wants	to	know	the
distribution	of	defects	against	modules,	it	should	be	easy	for	him	or	her	to	get	this	data	from
the	tool	in	the	form	of	a	table	or	chart.	This	means	that	most	of	the	input	into	the	tool	must
be	in	the	form	of	discrete	data	rather	than	free-form	responses.	Of	course	there	will	always
be	a	free-form	description	of	the	problem,	but	there	should	also	be	categories	such	as
distribution,	type,	age,	etc.	that	are	discrete	for	ease	of	analysis.	Furthermore,	each	record
needs	to	have	a	dynamic	defect	log	associated	with	it	in	order	to	record	the	progress	of	the
bug	from	discovery	to	correction	(refer	to	Case	Study	7-4).

Ideally,	the	incident	reports	will	be	linked	to	the	configuration	management	system	used	to
control	the	builds	and/or	versions.

All	users	of	the	system	must	be	able	to	easily	access	the	system	at	all	times.	We	have
occasionally	encountered	organizations	where	incident	reports	could	only	be	entered	into	the
defect	tracking	system	from	one	or	two	computers.

Using	Multiple	Defect	Tracking	Systems

Although	we	personally	prefer	to	use	a	single	defect	tracking	system	throughout	the
organization,	some	organizations	prefer	to	use	separate	defect	tracking	systems	for
production	and	testing	bugs.	Rather	than	being	a	planned	event,	separate	defect	tracking
systems	often	evolve	over	time,	or	are	implemented	when	two	separate	systems	are	initially
created	for	separate	purposes.	For	example,	the	production	defect	tracking	system	may
have	originally	been	designed	for	tracking	support	issues,	but	later	modified	to	also	track
incidents.	If	you	do	use	separate	systems,	it's	beneficial	to	ensure	that	field	names	are
identical	for	production	and	test	bugs.	This	allows	the	test	manager	to	analyze	trends	and
patterns	in	bugs	from	test	to	production.	Unfortunately,	many	of	you	are	working	in
organizations	that	use	entirely	different	vocabularies	and/or	metrics	for	bugs	discovered	in
test	versus	those	found	by	the	user.

Key
Point

Part	of	the	process	of	analyzing	an	incident	report	is	to	determine	if	the	failure
was	caused	by	a	new	bug,	or	if	the	failure	is	just	another	example	of	the	same
old	bug.

It's	useful	to	analyze	trends	and	patterns	of	the	failures,	and	then	trends	and	patterns	of	the
defects.	Generally,	part	of	the	process	of	analyzing	an	incident	report	is	to	determine	if	the
failure	was	caused	by	a	new	bug,	or	if	the	failure	is	just	another	example	of	the	same	old
bug.	Obviously,	the	development	manager	is	most	concerned	about	the	number	of	defects
that	need	to	be	fixed,	whereas	the	user	may	only	be	concerned	with	the	number	of	failures
encountered	(even	if	every	failure	is	caused	by	the	same	bug).

Team-Fly 	

Team-Fly

	

Testing	Status	and	Results
One	of	the	first	issues	that	a	test	manager	must	deal	with	during	test	execution	is	finding	a
way	to	keep	track	of	the	testing	status.	How	the	testing	status	will	be	tracked	should	be
explained	in	the	master	test	plan	(refer	to	Chapter	3	-	Master	Test	Planning).	Basically,
testing	status	is	reported	against	milestones	completed;	number,	severity,	and	location	of
defects	discovered;	and	coverage	achieved.	Some	test	managers	may	also	report	testing
status	based	upon	the	stability,	reliability,	or	usability	of	the	system.	For	our	purposes,
however,	we'll	measure	these	"…ilities"	based	on	their	corresponding	test	cases	(e.g.,
reliability	test	cases,	usability	test	cases,	etc.).

Measuring	Testing	Status

The	testing	status	report	(refer	to	Table	7-4)	is	often	the	primary	formal	communication
channel	that	the	test	manager	uses	to	inform	the	rest	of	the	organization	of	the	progress
made	by	the	testing	team.

Table	7-4:	Sample	Test	Status	Report

Project:	Online	Trade	Date:	01/05/02

Feature
Tested

Total
Tests

#
Complete

%
Complete

#
Success

%	Success	(to
date)

Open	Account 46 46 100 41 89

Sell	Order 36 25 69 25 100

Buy	Order 19 17 89 12 71

… … … … … …

… … … … … …

… … … … … …

Total 395 320 81 290 91

Notice	that	Table	7-4	shows,	at	a	glance,	how	much	of	the	test	execution	is	done	and	how
much	remains	unfinished.	Even	so,	we	must	be	careful	in	how	we	interpret	the	data	in	this
chart	and	understand	what	it	is	that	we're	trying	to	measure.	For	example,	Table	7-4	shows
that	the	testing	of	this	system	is	81%	complete.	But	is	testing	really	81%	complete?	It	really
shows	that	81%	of	the	test	cases	have	been	completed,	not	81%	of	the	testing.	You	should
remember	that	all	test	cases	are	definitely	not	created	equal.	If	you	want	to	measure	testing
status	against	a	timeline,	you	must	weight	the	test	cases	based	on	how	long	they	take	to
execute.	Some	test	cases	may	take	only	a	few	minutes,	while	others	could	take	hours.

Key
If	you	want	to	measure	testing	status	against	a	time	line,	you	have	to	weight
the	test	cases	based	on	how	long	they	take	to	execute,	but	if	you	want	to

Point measure	status	against	functionality,	then	the	test	cases	must	be	weighted
based	on	how	much	of	the	functionality	they	cover.

On	the	other	hand,	if	you	want	to	measure	status	against	functionality	(i.e.,	how	much	of	the
user's	functionality	has	been	tested?),	then	the	test	cases	must	be	weighted	based	on	how
much	of	the	functionality	they	cover.	Some	test	cases	may	cover	several	important
requirements	or	features,	while	others	may	cover	fewer	or	less	important	features.

Test	Summary	Report

Key
Point

The	purpose	of	the	Test	Summary	Report	is	to	summarize	the	results	of	the
testing	activities	and	to	provide	an	evaluation	based	on	the	results.

The	purpose	of	the	Test	Summary	Report	is	to	summarize	the	results	of	the	testing	activities
and	to	provide	an	evaluation	based	on	these	results.	The	summary	report	provides	advice
on	the	release	readiness	of	the	product	and	should	document	any	known	anomalies	or
shortcomings	in	the	product.	This	report	allows	the	test	manager	to	summarize	the	testing
and	to	identify	limitations	of	the	software	and	the	failure	likelihood.	There	should	be	a	test
summary	report	that	corresponds	to	every	test	plan.	So,	for	example,	if	you	are	working	on
a	project	that	had	a	master	test	plan,	an	acceptance	test	plan,	a	system	test	plan,	and	a
combined	unit/integration	test	plan,	each	of	these	should	have	its	own	corresponding	test
summary	report,	as	illustrated	in	Figure	7-4.

	Figure	7-4:	There	Should	Be	a	Test	Summary
Report	for	Each	Test	Plan

In	essence,	the	test	summary	report	is	an	extension	of	the	test	plan	and	serves	to	"close	the
loop"	on	the	plan.

One	complaint	that	we	often	hear	about	the	test	summary	report	is	that,	since	it	occurs	at
the	end	of	the	test	execution	phase,	it's	on	the	critical	path	of	the	delivery	of	the	software.
This	is	true,	but	we	would	also	like	to	add	that	completing	the	test	summary	report	doesn't
take	a	lot	of	time.	In	fact,	most	of	the	information	contained	within	the	report	is	information
that	the	test	manager	should	be	collecting	and	analyzing	constantly	throughout	the	software
development	and	testing	lifecycles.	You	could	consider	using	most	of	the	information	in	the
test	summary	report	as	a	test	status	report.	Just	think	of	the	test	summary	report	as	a	test
status	report	on	the	last	day	of	the	project.

Key
Point

Think	of	the	Test	Summary	Report	as	a	test	status	report	on	the	last	day	of
the	project.

Here's	a	tip	that	you	may	find	useful	-	it	works	well	for	us.	Once	we	begin	the	execution	of
the	tests,	we	seldom	have	time	to	keep	the	test	plan	up-to-date.	Instead	of	updating	the
plan,	we	keep	track	of	the	changes	in	the	test	summary	report's	Variances	section,	and
after	the	software	under	test	has	moved	on,	we	go	back	and	update	the	plan.

The	Test	Summary	Report	shown	in	Figure	7-5	conforms	to	IEEE	Std.	829-1998	for
Software	Test	Documentation.	Sections	that	are	not	part	of	the	IEEE	template	are	indicated
in	italics.

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Summary	Report	Contents

1.Test	Summary	Report	Identifier

2.Summary

3.Variances

4.Comprehensive	Assessment

5.Summary	of	Results

5.1 Resolved	Incidents

5.2 Unresolved	Incidents

6.Evaluation

7.Recommendations

8.Summary	of	Activities

9.Approvals

Figure	7-5:	Template	for	Test	Summary	Report	from	IEEE-829-1998

Test	Summary	Report	Identifier

The	Report	Identifier	is	a	unique	number	that	identifies	the	report	and	is	used	to	place	the
test	summary	report	under	configuration	management.

Summary

This	section	summarizes	what	testing	activities	took	place,	including	the	versions/releases	of
the	software,	the	environment	and	so	forth.	This	section	will	normally	supply	references	to
the	test	plan,	test-design	specifications,	test	procedures,	and	test	cases.

Variances

This	section	describes	any	variances	between	the	testing	that	was	planned	and	the	testing
that	really	occurred.	This	section	is	of	particular	importance	to	the	test	manager	because	it
helps	him	or	her	see	what	changed	and	provides	some	insights	into	how	to	improve	the	test
planning	in	the	future.

Comprehensive	Assessment

In	this	section,	you	should	evaluate	the	comprehensiveness	of	the	testing	process	against
the	criteria	specified	in	the	test	plan.	These	criteria	are	based	upon	the	inventory,
requirements,	design,	code	coverage,	or	some	combination	thereof.	Features	or	groups	of
features	that	were	not	adequately	covered	need	to	be	addressed	here,	including	a
discussion	of	any	new	risks.	Any	measures	of	test	effectiveness	that	were	used	should	be
reported	and	explained	in	this	section.

Summary	of	Results

Summarize	the	results	of	testing	here.	Identify	all	resolved	incidents	and	summarize	their
resolution.	Identify	all	unresolved	incidents.	This	section	will	contain	metrics	about	defects
and	their	distribution	(refer	to	the	section	on	Pareto	Analysis	in	this	chapter).

Evaluation

Provide	an	overall	evaluation	of	each	test	item,	including	its	limitations.	This	evaluation
should	be	based	upon	the	test	results	and	the	item	pass/fail	criteria.	Some	limitations	that
might	result	could	include	statements	such	as	"The	system	is	incapable	of	supporting	more
than	100	users	simultaneously"	or	"Performance	slows	to	x	if	the	throughput	exceeds	a
certain	limit."	This	section	could	also	include	a	discussion	of	failure	likelihood	based	upon	the
stability	exhibited	during	testing,	reliability	modeling	and/or	an	analysis	of	failures	observed
during	testing.

Recommendations

We	include	a	section	called	Recommendations	because	we	feel	that	part	of	the	test
manager's	job	is	to	make	recommendations	based	on	what	they	discover	during	the	course
of	testing.	Some	of	our	clients	dislike	the	Recommendations	section	because	they	feel	that
the	purpose	of	the	testing	effort	is	only	to	measure	the	quality	of	the	software,	and	it's	up	to
the	business	side	of	the	company	to	act	upon	that	information.	Even	though	we	recognize
that	the	decision	of	what	to	do	with	the	release	ultimately	resides	with	the	business	experts,
we	feel	that	the	authors	of	the	test	summary	report	should	share	their	insights	with	these
decision	makers.

Summary	of	Activities

Summarize	the	major	testing	activities	and	events.	Summarize	resource	consumption	data;

for	example,	total	staffing	level,	total	machine	time,	and	elapsed	time	used	for	each	of	the
major	testing	activities.	This	section	is	important	to	the	test	manager,	because	the	data
recorded	here	is	part	of	the	information	required	for	estimating	future	testing	efforts.

Approvals

Specify	the	names	and	titles	of	all	persons	who	must	approve	this	report.	Provide	space	for
the	signatures	and	dates.	Ideally,	we	would	like	the	approvers	of	this	report	to	be	the	same
people	who	approved	the	corresponding	test	plan,	since	the	test	summary	report
summarizes	all	of	the	activities	outlined	in	the	plan	(if	it's	been	a	really	bad	project,	they	may
not	all	still	be	around).	By	signing	this	document,	the	approvers	are	certifying	that	they
concur	with	the	results	as	stated	in	the	report,	and	that	the	report,	as	written,	represents	a
consensus	of	all	of	the	approvers.	If	some	of	the	reviewers	have	minor	disagreements,	they
may	be	willing	to	sign	the	document	anyway	and	note	their	discrepancies.

Team-Fly 	

Team-Fly

	

When	Are	We	Done	Testing?
So,	how	do	we	know	when	we're	done	testing?	We'd	like	to	think	that	this	would	have	been
spelled	out	in	the	exit	criteria	for	each	level.	Meeting	the	exit	criteria	for	the	acceptance
testing	is	normally	the	flag	you're	looking	for,	which	indicates	that	testing	is	done	and	the
product	is	ready	to	be	shipped,	installed,	and	used.	We	believe	that	Boris	Beizer	has	nicely
summed	up	the	whole	issue	of	when	to	stop	testing:

Key
Point

"Good	is	not	good	enough	when	better	is	expected."

-	Thomas	Fuller

"There	is	no	single,	valid,	rational	criterion	for	stopping.	Furthermore,	given	any	set	of
applicable	criteria,	how	each	is	weighed	depends	very	much	upon	the	product,	the
environment,	the	culture	and	the	attitude	to	risk."

At	the	1999	Application	Software	Measurement	(ASM)	Conference,	Bob	Grady	identified
the	following	key	points	associated	with	releasing	a	product	too	early:

Many	defects	may	be	left	in	the	product,	including	some	"show-stoppers."

The	product	might	be	manageable	with	a	small	number	of	customers	with	set
expectations.

A	tense,	reactive	environment	may	make	it	difficult	for	team	members	to	switch	their
focus	to	new	product	needs.

The	tense	environment	could	result	in	increased	employee	turnover.

Customers'	frustration	with	the	product	will	continue.

Grady	also	identified	the	following	key	points	associated	with	releasing	the	product	too	late:

Team	members	and	users	are	confident	in	the	quality	of	the	product.

Customer	support	needs	are	small	and	predictable.

The	organization	may	experience	some	loss	of	revenue,	long-term	market	share,
and	project	cancellations,	thus	increasing	the	overall	business	risk.

The	organization	may	gain	a	good	reputation	for	quality,	which	could	lead	to
capturing	a	greater	market	share	in	the	long	term.

When	you	consider	the	implications	associated	with	releasing	too	early	or	too	late,	it's	clear
that	important	decisions	(such	as	when	to	stop	testing)	should	be	based	on	more	than	one
metric	that	way,	one	metric	can	validate	the	other	metric.	Some	commonly	used	metrics	are
explained	in	the	paragraphs	that	follow.

Defect	Discovery	Rate

Many	organizations	use	the	defect	discovery	rate	as	an	important	measure	to	assist	them	in
predicting	when	a	product	will	be	ready	to	release.	When	the	defect	discovery	rate	drops
below	the	specified	level,	it's	often	assumed	(sometimes	correctly)	that	the	product	is	ready
to	be	released.	While	a	declining	discovery	rate	is	typically	a	good	sign,	one	must	remember
that	other	forces	(less	effort,	no	new	test	cases,	etc.)	may	cause	the	discovery	rate	to
drop.	This	is	why	it	is	normally	a	good	idea	to	base	important	decisions	on	more	than	one
supporting	metric.

Notice	in	Figure	7-6	that	the	number	of	new	defects	discovered	per	day	is	dropping	and,	if
we	assume	that	the	effort	is	constant,	the	cost	of	discovering	each	defect	is	also	rising.

	Figure	7-6:	Defect	Discovery	Rate

At	some	point,	therefore,	the	cost	of	continuing	to	test	will	exceed	the	value	derived	from	the
additional	testing.	Of	course,	all	we	can	do	is	estimate	when	this	will	occur,	since	the	nature
(severity)	of	the	undiscovered	bugs	is	unknown.	This	can	be	offset	somewhat	if	risk-based
techniques	are	used.	In	fact,	another	useful	metric	to	determine	whether	the	system	is
ready	to	ship	is	the	trend	in	the	severity	of	bugs	found	in	testing.	If	risk-based	techniques
are	used,	then	we	would	expect	not	only	the	defect	discovery	rate	to	drop,	but	also	the
severity	of	the	defects	discovered.	If	this	trend	is	not	observed,	then	that's	a	sign	that	the
system	is	not	ready	to	ship.

Remaining	Defects	Estimation	Criteria

One	method	of	determining	"when	to	ship"	is	to	base	the	decision	on	an	estimate	of	the
number	of	defects	expected.	This	can	be	accomplished	by	comparing	the	defect	discovery
trends	with	those	from	other,	similar	projects.	This	normally	requires	that	an	extensive
amount	of	data	has	been	collected	and	managed	in	the	past,	and	will	also	require
normalization	of	the	data	to	take	into	account	the	differences	in	project	scope,	complexity,
code	quality,	etc.

Running	Out	of	Resources

It's	true,	running	out	of	time	or	budget	may	be	a	valid	reason	for	stopping.	Many	of	us	have
certainly	recommended	the	release	of	a	product	that	we	felt	was	fairly	poor	in	quality
because	it	was	better	than	what	the	user	currently	had.	Remember,	we're	not	striving	for

perfection,	only	acceptable	risk.	Sometimes,	the	risk	of	not	shipping	(due	to	competition,
failure	of	an	existing	system,	etc.)	may	exceed	the	(business)	risk	of	shipping	a	flawed
product.

Case	Study	7-5:	In	the	world	of	software,	timing	can	be	everything.

Great	Software,	But	Too	Late

One	of	our	clients	several	years	ago	made	a	PC-based	tax	package.	They	felt	that
they	had	created	one	of	the	best,	easiest-to-use	tax	packages	on	the	market.
Unfortunately,	by	the	time	their	product	had	met	all	of	their	quality	goals,	most	people
who	would	normally	buy	and	use	their	product	had	already	purchased	a	competitor's
product.	Our	client	was	making	a	great	product	that	was	of	very	little	use	(since	it	was
too	late	to	market).	The	next	year	the	company	relaxed	their	quality	goals	(just	a	little),
added	resources	on	the	front-end	processes,	and	delivered	a	marketable	product	in	a
timely	fashion.

Team-Fly 	

Team-Fly

	

Measuring	Test	Effectiveness
When	we	ask	our	students,	"How	many	of	you	think	that	the	time,	effort,	and	money	spent
trying	to	achieve	high-quality	software	in	your	organization	is	too	much?"	we	get	lots	of
laughs	and	a	sprinkling	of	raised	hands.	When	we	ask	the	same	question,	but	change	the
end	of	the	sentence	to	"…too	little?"	almost	everyone	raises	a	hand.	Changing	the	end	of
the	sentence	to	"…about	right?"	gets	a	few	hands	(and	smug	looks).	Generally,	there	may
be	one	or	two	people	who	are	undecided	and	don't	raise	their	hands	at	all.

Question
#1

Do	you	think	that	the	time,	effort,	and	money	spent	trying	to	achieve	high-
quality	software	in	your	organization	is:
� too	much?
� too	little?
�not	enough?

Next,	we	ask	the	same	people,	"How	many	of	you	have	a	way	to	measure	test
effectiveness?"	and	we	get	almost	no	response.	If	you	don't	have	a	way	to	measure	test
effectiveness,	it's	almost	impossible	to	answer	question	#1	with	anything	other	than,	"It's	a
mystery	to	me."	Knowing	what	metrics	to	use	to	measure	test	effectiveness	and
implementing	them	is	one	of	the	greatest	challenges	that	a	test	manager	faces.

Question
#2 Do	you	have	a	way	to	measure	test	effectiveness?

We've	discovered	the	following	key	points	regarding	measures	of	test	effectiveness:

Many	organizations	don't	consciously	attempt	to	measure	test	effectiveness.

All	measures	of	test	effectiveness	have	deficiencies.

In	spite	of	the	weaknesses	of	currently	used	measures,	it's	still	necessary	to
develop	a	set	to	use	in	your	organization.

Gilb's
Law

"Anything	you	need	to	quantify	can	be	measured	in	some	way	that	is
superior	to	not	measuring	it	at	all."

-	Tom	Gilb

In	this	section,	we'll	analyze	some	of	the	problems	with	commonly	used	measures	of	test
effectiveness,	and	conclude	with	some	recommendations.	In	working	with	dozens	of
organizations,	we've	found	that	most	attempts	to	measure	test	effectiveness	fall	into	one	of
the	three	major	categories	illustrated	in	Figure	7-7.

	Figure	7-7:	Categories	of	Metrics	for	Test
Effectiveness

Customer	Satisfaction	Measures

Many	companies	use	customer	satisfaction	measures	to	determine	if	their	customers	are
happy	with	the	software	they	have	received.	The	most	common	customer	satisfaction
measures	are	usually	gathered	by	analyzing	calls	to	the	help	desk	or	by	using	surveys.
Both	of	these	measures	have	general	deficiencies	and	other	problems	specific	to	testing.
First,	let's	examine	surveys.

Surveys

Surveys	are	difficult	to	create	effectively.	It's	hard	for	most	of	us	to	know	specifically
what	questions	to	ask	and	how	to	ask	them.	In	fact,	there's	a	whole	discipline	devoted	to
creating,	using,	and	understanding	surveys	and	their	results.	Case	Studies	7-6	and	7-7
describe	some	of	the	pitfalls	associated	with	designing	and	administering	surveys.

Case	Study	7-6:	The	Science	of	Survey	Design

What	Do	You	Mean,	"I	Need	an	Expert"?

When	I	was	working	on	a	large	survey	effort	in	the	early	1990s,	my	colleague
suggested	that	I	should	have	a	"survey	expert"	review	my	survey.	I	was	a	little
miffed,	since	I	had	personally	written	the	survey	and	I	was	sure	that	I	knew	how	to
write	a	few	simple	questions.	Still,	I	found	a	"survey	expert"	at	a	local	university
and	asked	him	to	review	my	software	survey.	I	was	surprised	when	he	had	the
nerve	to	say,	"Come	back	tomorrow	and	I'll	tell	you	how	your	respondents	will	reply
to	your	survey."	Sure	enough,	the	next	day	he	gave	me	a	completed	survey	(and	a
bill	for	his	services).	I	thought	that	he	was	pretty	presumptuous	since	he	was	not	a
"software	expert,"	but	after	administering	the	survey	to	a	few	of	my	colleagues,	I
was	amazed	that	this	professor	had	predicted	almost	exactly	how	they	would
respond!

How	a	respondent	answers	a	survey	is	dependent	on	all	kinds	of	issues	like	the
order	of	the	questions,	use	of	action	verbs,	length	of	the	survey,	and	length	of	the
questions	used.	So,	the	moral	of	the	story	is	this:	If	you	want	to	do	a	survey,	we
recommend	that	you	solicit	help	from	an	"expert."

—	Rick	Craig

Case	Study	7-7:	Personal	Bias	in	Survey	Design

The	Waitress	Knows	Best

Another	experience	I	had	with	a	survey	occurred	several	years	ago	at	a	restaurant
that	I	own	in	Tampa	called	"Mad	Dogs	and	Englishmen."	My	head	waitress	decided
to	create	a	customer	satisfaction	survey	(on	her	own	initiative).	You	have	to	love
employees	like	that!	The	survey	had	two	sections:	one	rated	the	quality	of	food	as
Outstanding,	Excellent,	Above	Average,	Average,	and	Below	Average,	and	the
other	section	rated	service.

The	service	scale	included	Outstanding,	Excellent,	and	Above	Average.	I	asked	her
about	the	missing	Average	and	Below	Average	categories	and	she	assured	me	that
as	long	as	she	was	in	charge,	no	one	would	ever	get	average	or	below-average
service!	I	realized	that	the	survey	designer's	personal	bias	can	(and	will)
significantly	influence	the	survey	results!

—	Rick	Craig

Key
Point

Customer	satisfaction	surveys	don't	separate	the	effectiveness	of	the	test
from	the	quality	of	the	software.

Customer	satisfaction	measures	are	probably	useful	for	your	company,	and
are	of	interest	to	the	test	manager,	but	don't,	in	themselves,	solve	the
problem	of	how	to	measure	test	effectiveness.

All	issues	of	construction	aside,	surveys	have	more	specific	problems	when	you	try	to	use
them	to	measure	the	effectiveness	of	testing.	The	biggest	issue,	of	course,	is	that	it's
theoretically	possible	that	the	developers	could	create	a	really	fine	system	that	would
please	the	customer	even	if	the	testing	efforts	were	shoddy	or	even	non-existent.

Customer	satisfaction	surveys	do	not	separate	the	quality	of	the	development	effort	from
the	effectiveness	of	the	testing	effort.	So,	even	though	surveys	may	be	useful	for	your
organization,	they	don't	give	the	test	manager	much	of	a	measure	of	the	effectiveness	of
the	testing	effort.	On	the	other	hand,	if	the	surveys	are	all	negative,	that	gives	the	test
manager	cause	for	concern.

Help	Desk	Calls

Another	customer	satisfaction	measure	that	is	sometime	used	is	the	number	of	calls	to
the	help	desk.	This	metric	suffers	from	the	same	problem	as	a	survey	-	it	doesn't
separate	the	quality	of	the	software	from	the	effectiveness	of	the	testing	effort.	Each	call
must	be	analyzed	in	order	to	determine	the	root	cause	of	the	problem.	Was	there	an
insufficient	amount	of	training?	Are	there	too	many	features?	Although	most	companies
are	immediately	concerned	when	the	help	desk	is	swamped	right	after	a	new	release,
how	would	they	feel	if	no	one	called?	If	nobody	called,	there	would	be	no	data	to	analyze
and	no	way	to	discover	(and	resolve)	problems.	Even	worse,	though,	maybe	the
application	is	so	bad	that	nobody	is	even	using	it.

Key
Point

Customer	satisfaction	measures	are	useful	for	your	organization	and	are	of
interest	to	the	test	manager,	but	don't,	in	themselves,	solve	the	problem	of
how	to	measure	test	effectiveness.

One	final	problem	with	the	customer	satisfaction	measures	that	we've	just	discussed	(i.e.,
surveys	and	help	desk	calls)	is	that	they're	both	after	the	fact.	That	is,	the	measures	are
not	available	until	after	the	product	is	sold,	installed,	and	in	use.	Just	because	a	metric	is
after	the	fact	doesn't	make	it	worthless,	but	it	does	lessen	its	value	considerably.

Customer	satisfaction	measures	are	useful	for	your	organization,	and	are	of	interest	to
the	test	manager,	but	don't,	in	themselves,	solve	the	problem	of	how	to	measure	test
effectiveness.

Defect	Measures

Another	group	of	measures	commonly	used	for	test	effectiveness	are	built	around	the
analysis	of	defects.

Number	of	Defects	Found	in	Testing

Some	test	managers	attempt	to	use	the	number	of	defects	found	in	testing	as	a	measure	of
test	effectiveness.	The	first	problem	with	this,	or	any	other	measure	of	defects,	is	that	all
bugs	are	not	created	equal.	It's	necessary	to	"weight"	bugs	and/or	use	impact	categories
such	as	all	"critical"	bugs.	Since	most	defects	are	recorded	with	a	severity	rating,	this
problem	can	normally	be	overcome.

Key
Another	problem	with	defect	counts	as	a	measure	of	test	effectiveness	is	that
the	number	of	bugs	that	originally	existed	significantly	impacts	the	number	of

Point bugs	discovered	(i.e.,	the	quality	of	the	software).

Another	problem	with	defect	counts	as	a	measure	of	test	effectiveness	is	that	the	number	of
bugs	that	originally	existed	significantly	impacts	the	number	of	bugs	discovered	(i.e.,	the
quality	of	the	software).	Just	as	in	the	customer	satisfaction	measures,	counting	the	number
of	bugs	found	in	testing	doesn't	focus	on	just	testing,	but	is	affected	by	the	initial	quality	of
the	product	being	tested.

Some	organizations	successfully	use	the	number	of	defects	found	as	a	useful	measure	of
test	effectiveness.	Typically,	they	have	a	set	of	test	cases	with	known	coverage	(coverage
is	our	next	topic)	and	a	track	record	of	how	many	bugs	to	expect	using	various	testing
techniques.	Then,	they	observe	the	trends	in	defect	discovery	versus	previous	testing
efforts.	The	values	have	to	be	normalized	based	upon	the	degree	of	change	of	the	system
and/or	the	quantity	and	complexity	of	any	new	functionality	introduced.

Figure	7-8	shows	the	defect	discovery	rates	of	two	projects.	If	the	projects	are	normalized
based	on	size	and	complexity,	one	can	assume	that	'Project	B'	will	contain	a	number	of
defects	similar	to	'Project	A'.	Consequently,	the	curves	described	by	each	of	these	projects
should	also	be	similar.

	
Figure	7-8:	Defect	Discovery	Rates	for	Projects	A	and	B

If	the	testing	effort	on	'Project	B'	finds	significantly	fewer	bugs,	this	might	mean	that	the
testing	is	less	effective	than	it	was	on	'Project	A'.	Of	course,	the	weakness	in	this	metric	is
that	the	curve	may	be	lower	because	there	were	fewer	bugs	to	find!	This	is	yet	another
reason	why	decisions	shouldn't	be	based	solely	on	a	single	metric.

Another,	more	sophisticated,	example	of	measuring	defects	is	shown	in	Table	7-5.	Here,	a
prediction	of	the	number	of	bugs	that	will	be	found	at	different	stages	in	the	software
development	lifecycle	is	made	using	metrics	from	previous	releases	or	projects.	Both	of
these	models	require	consistent	testing	practices,	covering	test	sets,	good	defect	recording,
and	analysis.

Table	7-5:	Bug	Budget	Example

Total	#	Predicted

Predicted	(P)	Versus	Actual	(A)

P A P A P A P A P A

Jan Feb Mar Apr May

Requirements	Review 20 20 14

Design	Review 35 5 0 15 15

Test	Design 65 25 30 10

Code	Inspections 120 60 60

Unit	Test 80

System	Test 40

Regression	Test 10

Acceptance	Test 5

6	Months	Production 15

Totals 390 25 14 40 45 70 60

Production	Defects

A	more	common	measure	of	test	effectiveness	is	the	number	of	defects	found	in	production
or	by	the	customer.	This	is	an	interesting	measure,	since	the	bugs	found	by	the	customer
are	obviously	ones	that	were	not	found	by	the	tester	(or	at	least	were	not	fixed	prior	to
release).	Unfortunately,	some	of	our	old	problems	such	as	latent	and	masked	defects	may
have	appeared.

Another	issue	in	using	production	defects	as	a	measure	of	test	effectiveness	is	that	it's
another	"after	the	fact"	measure	and	is	affected	by	the	quality	of	the	software.	We	must
measure	severity,	distribution,	and	trends	from	release	to	release.

Defect	Removal	Efficiency	(DRE)

A	more	powerful	metric	for	test	effectiveness	(and	the	one	that	we	recommend)	can	be
created	using	both	of	the	defect	metrics	discussed	above:	defects	found	during	testing	and
defects	found	during	production.	What	we	really	want	to	know	is,	"How	many	bugs	did	we
find	out	of	the	set	of	bugs	that	we	could	have	found?"	This	measure	is	called	Defect
Removal	Efficiency	(DRE)	and	is	defined	in	Figure	7-9.

	
Figure	7-9:	Formula	for	Defect	Removal	Efficiency	(DRE)

Note

Dorothy	Graham	calls	DRE	Defect	Detection	Percentage	(DDP).	We	actually
prefer	her	naming	convention	because	it's	more	descriptive	of	the	metric.	That	is,
Defect	Removal	Efficiency	does	not	really	measure	the	removal	of	defects,	only

their	detection.

The	number	of	bugs	not	found	is	usually	equivalent	to	the	number	of	bugs	found	by	the
customers	(though	the	customers	may	not	find	all	of	the	bugs	either).	Therefore,	the
denominator	becomes	the	number	of	bugs	that	could	have	been	found.	DRE	is	an	excellent
measure	of	test	effectiveness,	but	there	are	many	issues	that	you	must	be	aware	of	in	order
to	use	it	successfully:

The	severity	and	distribution	of	the	bugs	must	be	taken	into	account.	(Some
organizations	treat	all	defects	the	same,	i.e.,	no	severity	is	used,	based	on	the
philosophy	that	the	ratio	of	severity	classes	is	more	or	less	constant).

How	do	you	know	when	the	customer	has	found	all	of	the	bugs?	Normally,	you
would	need	to	look	at	the	trends	of	defect	reporting	by	your	customers	on	previous
projects	or	releases	to	determine	how	long	it	takes	before	the	customer	has	found
"most"	of	the	bugs.	If	they	are	still	finding	a	bug	here	and	there	one	year	later,	it
probably	won't	significantly	affect	your	metrics.	In	some	applications,	especially
those	with	many	users,	most	of	the	bugs	may	be	reported	within	a	few	days.	Other
systems	with	fewer	users	may	have	to	go	a	few	months	to	have	some	assurance
that	most	of	the	bugs	have	been	reported.

Key
Point

In	his	book	A	Manager's	Guide	to	Software	Engineering,	Roger
Pressman	calls	DRE	"the	one	metric	that	we	can	use	to	get	a	'bottom-
line'	of	improving	quality."

It's	after	the	fact	(refer	to	the	bullet	item	above).	Metrics	that	are	"after	the	fact"	do
not	help	measure	the	test	effectiveness	of	the	current	project,	but	they	do	let	test
managers	measure	the	long-term	trends	in	the	test	effectiveness	of	their
organizations.

Key
Point

Metrics	that	are	"after	the	fact"	do	not	help	measure	the	test
effectiveness	of	the	current	project,	but	they	do	let	test	managers
measure	the	long-term	trends	in	the	test	effectiveness	of	their
organizations.

When	do	we	start	counting	bugs	(e.g.,	during	unit,	integration,	system,	or
acceptance	testing?	during	inspections?	during	ad	hoc	testing?),	and	what
constitutes	a	bug-finding	activity?	It's	important	to	be	consistent.	For	example,	if	you
count	bugs	found	in	code	inspections,	you	must	always	count	bugs	found	in	code
inspections.

Some	bugs	cannot	be	found	in	testing!	Due	to	the	limitations	of	the	test	environment,
it's	possible,	and	even	likely,	that	there	is	a	set	of	bugs	that	the	tester	could	not	find
no	matter	what	he	or	she	does.	The	test	manager	must	decide	whether	or	not	to
factor	these	bugs	out.	If	your	goal	is	to	measure	the	effectiveness	of	the	testing
effort	without	considering	what	you	have	to	work	with	(i.e.,	the	environment),	the
bugs	should	be	factored	out.	If	your	goal	is	to	measure	the	effectiveness	of	the

testing	effort	including	the	environment	(our	choice),	the	bugs	should	be	left	in.	After
all,	part	of	the	job	of	the	tester	is	to	ensure	that	the	most	realistic	test	environment
possible	is	created.

DRE	Example

Figure	7-10	is	an	example	of	a	DRE	calculation.	Horizontal	and	upward	vertical	arrows
represent	bugs	that	are	passed	from	one	phase	to	the	next.

	
Figure	7-10:	DRE	Example

Key
Point

In	their	book	Risk	Management	for	Software	Projects,	Alex	Down,	Michael
Coleman,	and	Peter	Absolon	report	that	the	DRE	for	the	systems	they	are
familiar	with	is	usually	in	the	range	of	65–70%.

Defect	Removal	Efficiency	(DRE)	is	also	sometimes	used	as	a	way	to	measure	the
effectiveness	of	a	particular	level	of	test.	For	example,	the	system	test	manager	may	want
to	know	what	the	DRE	is	for	their	system	testing.	The	number	of	bugs	found	in	system
testing	should	be	placed	in	the	numerator,	while	those	same	bugs	plus	the	acceptance	test
and	production	bugs	should	be	used	in	the	denominator,	as	illustrated	in	the	example	below.

System	Test	DRE	Example

Figure	7-11	is	an	example	of	a	system	test	DRE	calculation.	Horizontal	and	upward	vertical
arrows	represent	bugs	that	are	passed	from	one	phase	to	the	next.

	
Figure	7-11:	System	Test	DRE	Example

Unit	Testing	DRE

When	measuring	the	DRE	of	unit	testing,	it	will	be	necessary	to	factor	out	those	bugs	that
could	not	be	found	due	to	the	nature	of	the	unit	test	environment.	This	may	seem
contradictory	to	what	we	previously	recommended,	but	we	don't	want	the	developer	to	have
to	create	a	"system"	test	environment	and,	therefore,	there	will	always	be	bugs	that	cannot
be	found	in	unit	testing	(e.g.,	bugs	related	to	the	passing	of	data	from	one	unit	to	another).

Defect	Age

Another	useful	measure	of	test	effectiveness	is	defect	age,	often	called	Phase	Age	or
PhAge.	Most	of	us	realize	that	the	later	we	discover	a	bug,	the	greater	harm	it	does	and	the
more	it	costs	to	fix.	Therefore,	an	effective	testing	effort	would	tend	to	find	bugs	earlier	than
a	less	effective	testing	effort	would.

Key
Point

The	later	we	discover	a	bug,	the	greater	harm	it	does	and	the	more	it	costs	to
fix.

Table	7-6	shows	a	scale	for	measuring	defect	age.	Notice	that	this	scale	may	have	to	be
modified	to	reflect	the	phases	in	your	own	software	development	lifecycle	and	the	number
and	names	of	your	test	levels.	For	example,	a	requirement	defect	discovered	during	a	high-
level	design	review	would	be	assigned	a	PhAge	of	1.	If	this	defect	had	not	been	found	until
the	Pilot,	it	would	have	been	assigned	a	PhAge	of	8.

Table	7-6:	Scale	for	Defect	Age	on	Project	X

Table	7-6:	Scale	for	Defect	Age	on	Project	X

Phase
Created

Phase	Discovered

Requirements
High-
Level
Design

Detailed
Design Coding Unit

Testing
Integration
Testing

System
Testing

Acceptance
Testing

Requirements 0 1 2 3 4 5 6 7

High-Level
Design 0 1 2 3 4 5 6

Detailed
Design 0 1 2 3 4 5

Coding 0 1 2 3 4

Summary

Table	7-7	shows	an	example	of	the	distribution	of	defects	on	one	project	by	phase	created
and	phase	discovered.	In	this	example,	there	were	8	requirements	defects	found	in	high-
level	design,	4	during	detailed	design,	1	in	coding,	5	in	system	testing,	6	in	acceptance
testing,	2	in	pilot,	and	1	in	production.	If	you've	never	analyzed	bugs	to	determine	when	they
were	introduced,	you	may	be	surprised	how	difficult	a	job	this	is.

Table	7-7:	Defect	Creation	versus	Discovery	on	Project	X

Phase
Created

Phase	Discovered

Requirements
High-
Level
Design

Detailed
Design Coding Unit

Testing
Integration
Testing

System
Testing

Acceptance
Testing

Requirements 0 8 4 1 0 0 5 6

High-Level
Design 0 9 3 0 1 3 1

Detailed
Design 0 15 3 4 0 0

Coding 0 62 16 6 2

Summary 0 8 13 19 65 21 14 9

Defect	Spoilage

Spoilage	is	a	metric	that	uses	the	Phase	Age	and	distribution	of	defects	to	measure	the
effectiveness	of	defect	removal	activities.	Other	authors	use	slightly	different	definitions	of
spoilage.	Tom	DeMarco,	for	example,	defines	spoilage	as	"the	cost	of	human	failure	in	the
development	process,"	in	his	book	Controlling	Software	Projects:	Management,

Measurement,	and	Estimates.	In	their	book	Software	Metrics:	Establishing	a	Company-
Wide	Program,	Robert	Grady	and	Deborah	Caswell	explain	that	Hitachi	uses	the	word
spoilage	to	mean	"the	cost	to	fix	post-release	problems."	Regardless	of	which	definition	of
spoilage	you	prefer,	you	should	not	confuse	spoilage	with	Defect	Removal	Efficiency	(DRE),
which	measures	the	number	of	bugs	that	were	found	out	of	the	set	of	bugs	that	could	have
been	found.

Key
Point

Spoilage	is	a	metric	that	uses	Phase	Age	and	distribution	of	defects	to
measure	the	effectiveness	of	defect	removal	activities.

Table	7-8	shows	the	defect	spoilage	values	for	a	particular	project,	based	on	the	number	of
defects	found	weighted	by	defect	age.	During	acceptance	testing,	for	example,	9	defects
were	discovered.	Of	these	9	defects,	6	were	attributed	to	defects	created	during	the
requirements	phase	of	this	project.	Since	the	defects	that	were	found	during	acceptance
testing	could	have	been	found	in	any	of	the	seven	previous	phases,	the	requirements
defects	that	remained	hidden	until	the	acceptance	testing	phase	were	given	a	weighting	of
7.	The	weighted	number	of	requirements	defects	found	during	acceptance	testing	is	42	(i.e.,
6	x	7	=	42).

Table	7-8:	Number	of	Defects	Weighted	by	Defect	Age	on	Project	X

Phase	Discovered

Phase
Created Requirements

High-
Level
Design

Detailed
Design Coding Unit

Testing
Integration
Testing

System
Testing

Acceptance
Testing

Requirements 0 8 8 3 0 0 30 42

High-Level
Design 0 9 6 0 4 15 6

Detailed
Design 0 15 6 12 0 0

Coding 0 62 32 18 8

Summary

The	Defect	Spoilage	is	calculated	using	the	formula	shown	in	Figure	7-12.

	

Figure	7-12:	Formula	for	Defect	Spoilage

Generally	speaking,	lower	values	for	spoilage	indicate	more	effective	defect	discovery
processes	(the	optimal	value	is	1).	As	an	absolute	value,	the	spoilage	has	little	meaning.
However,	it	becomes	valuable	when	used	to	measure	a	long-term	trend	of	test
effectiveness.

Defect	Density	and	Pareto	Analysis

Defect	Density	is	calculated	using	the	formula	shown	in	Figure	7-13.

	
Figure	7-13:	Formula	for	Defect	Density

Key
Point

J.M.	Duran	admonished	us	to	concentrate	on	the	vital	few,	not	the	trivial	many.
Later,	Thomas	J.	McCabe	extended	the	Pareto	Principle	to	software	quality
activities.

To	learn	more	about	the	history	of	the	Pareto	Principle	and	see	some	actual
examples,	read	The	Pareto	Principle	Applied	to	Software	Quality	Assurance
by	Thomas	J.	McCabe	and	G.	Gordon	Schulmeyer	in	the	Handbook	of
Software	Quality	Assurance.

Unfortunately,	defect	density	measures	are	far	from	perfect.	The	two	main	problems	are	in
determining	what	is	a	defect	and	what	is	a	line	of	code.	By	asking,	"What	is	a	defect?"	we
mean	"What	do	we	count	as	a	defect?"

Are	minor	defects	treated	the	same	as	critical	defects,	or	do	we	need	to	weight
them?

Do	we	count	unit	testing	bugs	or	only	bugs	found	later?

Do	we	count	bugs	found	during	inspection?	During	ad	hoc	testing?

Similarly,	measuring	the	size	(i.e.,	lines	of	code	or	function	points)	of	the	module	is	also	a
problem,	because	the	number	of	lines	of	code	can	vary	based	on	the	skill	level	of	the
programmer	and	the	language	that	was	used.

Figure	7-14	shows	the	defect	density	per	1,000	lines	of	code	in	various	modules	of	a
sample	project.	Notice	that	Module	D	has	a	high	concentration	of	bugs.	Experience	has
shown	that	parts	of	a	system	where	large	quantities	of	bugs	have	been	discovered	will
continue	to	have	large	numbers	of	bugs	even	after	the	initial	cycle	of	testing	and	correcting
of	bugs.	This	information	can	help	the	tester	focus	on	problematic	(i.e.,	error	prone)	parts	of
the	system.	Similarly,	instead	of	plotting	defect	density	on	the	histogram	as	in	Figure	7-14,
the	causes	of	the	defects	could	be	displayed	in	descending	order	of	frequency	(e.g.,

functionality,	usability,	etc.).	This	type	of	analysis	is	known	as	Pareto	Analysis	and	can	be
used	to	target	areas	for	process	improvement.

	
Figure	7-14:	Defect	Density	in	Various	Modules 	The	bottom	line	is	that
defect	measures	can	and	should	be	used	to	measure	the	effectiveness	of	testing,	but	by
themselves,	they're	inadequate	and	need	to	be	supplemented	by	coverage	metrics.

Coverage	Measures

Coverage	metrics	are	probably	the	most	powerful	of	all	measures	of	test	effectiveness,
since	they	are	not	necessarily	"after	the	fact"	and	are	not	affected	by	the	quality	of	the
software	under	test.	High-level	coverage	metrics	such	as	requirements	and/or	inventory
coverage	can	be	done	as	soon	as	the	test	cases	are	defined.	In	other	words,	you	can
measure	the	coverage	of	the	test	cases	created	before	the	code	is	even	written!

Key
Point Requirements	coverage	can	be	measured	before	the	code	is	even	written.

Coverage	can	be	used	to	measure	the	completeness	of	the	test	set	(i.e.,	the	test	created)
or	of	the	tests	that	are	actually	executed.	We	can	use	coverage	as	a	measure	of	test
effectiveness	because	we	subscribe	to	the	philosophy	that	a	good	test	case	is	one	that
finds	a	bug	or	demonstrates	that	a	particular	function	works	correctly.	Some	authors	state
that	the	only	good	test	case	is	the	one	that	finds	a	bug.	We	contend	that	if	you	subscribe	to
that	philosophy,	coverage	metrics	are	not	useful	as	a	measurement	of	test	effectiveness.
(We	reckon	that	if	you	knew	in	advance	where	the	bugs	were,	you	could	concentrate	on
only	writing	test	cases	that	found	bugs	-	or,	better	yet,	just	fix	them	and	don't	test	at	all.)

Requirements	and	Design	Coverage

How	to	measure	requirements,	inventory,	design,	and	code	coverage	was	discussed	in
Chapter	5	-	Analysis	and	Design.	At	the	very	least,	every	testing	methodology	that	we	are
familiar	with	subscribes	to	requirements	coverage.	Unfortunately,	it's	possible	to	"test"	every
requirement	and	still	not	have	tested	every	important	condition.	There	may	be	design	issues
that	are	impossible	to	find	during	the	course	of	normal	requirements-based	testing,	which	is
why	it's	important	for	most	testing	groups	to	also	measure	design	coverage.	Table	7-9
shows	a	matrix	that	combines	requirements	and	design	coverage.

Table	7-9:	Requirements	and	Design	Coverage

Table	7-9:	Requirements	and	Design	Coverage

Attribute TC	#1 TC	#	2 TC	#3 TC	#4 TC	#5

Requirement	1 ü ü ü ü

Requirement	2 ü ü

Requirement	3 ü ü

Requirement	4 ü ü ü ü

Design	1 ü ü

Design	2 ü ü ü

Design	3 ü

It's	quite	clear,	however,	that	if	requirements	coverage	is	not	achieved,	there	will	be	parts	of
the	system	(possibly	very	important	parts)	that	are	not	tested!

Code	Coverage

Many	testing	experts	believe	that	one	of	the	most	important	things	a	test	group	can	do	is	to
measure	code	coverage.	These	people	may	be	touting	code	coverage	as	a	new	silver
bullet,	but	actually,	code	coverage	tools	have	been	in	use	for	at	least	as	long	as	Rick	has
been	a	test	manager	(20	years).	The	tools	in	use	today,	however,	are	much	more	user-
friendly	than	earlier	tools.	Table	7-10	is	a	conceptual	model	of	the	output	of	a	code
coverage	tool.	These	tools	can	measure	statement,	branch,	or	path	coverage.

Table	7-10:	Code	Coverage

Statement
Test	Run

Covered?
TR	#1 TR#	2 TR	#3

A ü ü ü Yes

B ü ü Yes

C ü Yes

D No

E ü Yes

Total 60% 20% 60% 80%

The	reports	are	clearer	and	easier	to	interpret,	but	the	basic	information	is	almost	the	same.
Code	coverage	tools	tell	the	developer	or	tester	which	statements,	paths,	or	branches	have
and	have	not	been	exercised	by	the	test	cases.	This	is	obviously	a	good	thing	to	do,	since
any	untested	code	is	a	potential	liability.

Code	Coverage	Weaknesses

Just	because	all	of	the	code	has	been	executed	does	not,	in	any	way,	assure	the	developer
or	tester	that	the	code	does	what	it's	supposed	to	do.	That	is,	ensuring	that	all	of	the	code
has	been	exercised	under	test	does	not	guarantee	that	it	does	what	the	customers,
requirements,	and	design	need	it	to	do.

Figure	7-15	shows	a	fairly	typical	progression	in	software	development.	The	users'	needs
are	recorded	as	requirements	specifications,	which	in	turn	are	used	to	create	the	design,
and	from	there,	the	code	is	written.	All	of	the	artifacts	that	are	derived	from	the	users'
needs	can	and	should	be	tested.	If	test	cases	are	created	from	the	code	itself,	the	most
you	can	expect	to	prove	is	that	the	code	"does	what	it	does"	(i.e.,	it	functions,	but	not
necessarily	correctly).

	
Figure	7-15:	Test	Verification

By	testing	the	design,	you	can	show	that	the	system	matches	the	design	and	the	code
matches	the	design,	but	you	can't	prove	that	the	design	meets	the	requirements.	Test	cases
based	upon	the	requirements	can	demonstrate	that	the	requirements	have	been	met	and	the
design	matches	the	requirements.	All	of	these	verification	steps	should	be	done	and,
ultimately,	it's	important	to	create	test	cases	based	upon	the	code,	the	design,	and	the
requirements.	Just	because	a	code	coverage	tool	is	used,	doesn't	mean	that	the	test	cases
must	be	derived	solely	from	the	code.

Key
Point

Just	because	a	code	coverage	tool	is	used,	doesn't	mean	that	the	test	cases
must	be	derived	solely	from	the	code.

In	some	organizations,	code	coverage	becomes	the	ultimate	metric.	Some	organizations
may	be	struggling	to	move	from	say	85%	to	90%	coverage	regardless	of	the	cost.	While
that	may	be	good,	we	think	it's	important	to	ensure	that	we	have	tested	the	"right"	90%.
That	is	to	say,	even	using	code	coverage	metrics	requires	that	we	use	some	kind	of	risk-
based	approach.	This	is	true	even	if	a	goal	of	100%	code	coverage	is	established,	because
it's	advantageous	to	test	(and	fix	problems)	in	the	critical	components	first.

Another	issue	when	using	code	coverage	tools	is	that	the	test	cases	may	have	to	be

executed	one	additional	time,	since	most	code	coverage	tools	require	the	source	code	to	be
instrumented.	Therefore,	if	a	defect	is	discovered	while	using	a	code	coverage	tool,	the	test
will	have	to	be	run	again	without	the	tool	in	order	to	ensure	that	the	defect	is	not	in	the
instrumentation	itself.

Generally,	we	have	found	that	code	coverage	is	most	effective	when	used	at	lower	levels	of
test	(e.g.,	unit	and	integration).	These	levels	of	test	are	normally	conducted	by	the
developer,	which	is	good	because	the	analysis	of	the	parts	of	the	code	that	were	not	tested
is	best	done	by	the	people	with	intimate	knowledge	of	the	code.	Even	when	using	a	code
coverage	tool,	unit	test	cases	should	first	be	designed	to	cover	all	of	the	attributes	of	the
program	specification	before	designing	test	cases	based	on	the	code	itself.

Key
Point

Even	when	using	a	code	coverage	tool,	unit	test	cases	should	first	be
designed	to	cover	all	of	the	attributes	of	the	program	specification	before
designing	test	cases	based	on	the	code	itself.

As	with	most	projects,	you've	got	to	crawl	before	you	run.	Trying	to	get	a	high	level	of	code
coverage	is	fine	in	organizations	that	have	already	established	a	fairly	comprehensive	set	of
test	cases.	Unfortunately,	many	of	the	companies	that	we	have	visited	have	not	even
established	a	test	set	that	is	comprehensive	enough	to	cover	all	of	the	features	of	the
system.	In	some	cases,	there	are	entire	modules,	programs,	or	subsystems	that	are	not
tested.	It's	fine	to	say	that	every	line	of	code	should	be	tested,	but	if	there	are	entire
subsystems	that	have	no	test	cases,	it's	a	moot	point.

Code	Coverage	Strengths

Code	coverage	measures	put	the	focus	on	lower	levels	of	tests	and	provide	a	way	to
determine	if	and	how	well	they've	been	done.	Many	companies	do	little	unit	testing,	and
code	coverage	tools	can	help	highlight	that	fact.	Global	coverage	can	also	be	used	as	a
measure	of	test	effectiveness.

Global	Code	Coverage

The	global	coverage	number	can	be	used	as	a	measure	of	test	effectiveness,	and	it	can
highlight	areas	that	are	deficient	in	testing.	This	measure	of	test	effectiveness,	like	all	of	the
others	we've	discussed,	has	some	problems.	While	it	is	useful	to	see	that	the	coverage	has
increased	from	50%	to	90%,	it's	not	as	clear	how	valuable	it	is	to	go	from	50%	to	51%.	In
other	words,	if	risk-based	techniques	that	ensure	that	the	riskiest	components	are	tested
first	are	used,	then	every	increase	has	a	more	or	less	"known"	value.	If	tests	are	not	based
on	risk,	it's	harder	to	know	what	an	increase	in	coverage	means.	It's	also	interesting	to	note
that	it	costs	more	to	go	from,	for	example,	95%	to	100%	coverage	than	it	did	to	go	from
50%	to	55%	coverage.	If	risk-based	techniques	were	used,	the	last	gain	might	not	"buy"	us
as	much,	since	the	last	5%	tested	is	also	(we	hope)	the	least	risky.	Perhaps	we're	just
trying	to	weigh	the	value	of	these	added	tests	against	the	resources	required	to	create	and
run	them.	At	the	end	of	the	day,	though,	that's	what	testing	is	all	about!

Key
Point

Global	code	coverage	is	the	percent	of	code	executed	during	the	testing	of	an
entire	application.

Team-Fly 	

Team-Fly

	

Chapter	8:	The	Test	Organization

Overview
"A	house	divided	against	itself	cannot	stand.	Our	cause	must	be	entrusted	to,	and
conducted	by,	its	undoubted	friends	-	whose	hands	are	free,	whose	hearts	are	in	the
work	-	who	do	care	for	the	result."

—	Abraham	Lincoln

Most	software	testing	books	(this	one	included)	devote	a	lot	of	pages	to	the	technical	issues
of	testing,	even	though	most	of	us	realize	that	the	human	element	may	be	the	most
important	part	of	the	testing	process.	It's	really	understandable	why	this	happens.	We	focus
on	the	process	and	technical	side	of	testing	in	our	classes	and	in	this	book	because	most
people	(especially	managers)	think	that	they	already	understand	the	art	of	communicating
and	interacting	with	other	people.	This	is	in	spite	of	the	fact	that	many	of	these	same	people
have	had	no	formal	management	training.	It's	easier	to	understand	and	implement	process
and	technical	change,	which	means	that	testers	(and	managers)	seem	to	be	more	in	control.

Key
Point

There	are	at	least	a	few	books	that	deal	with	the	human	dynamics	of	software
development.	Tom	DeMarco	and	Tim	Lister	published	a	wonderful	book	called
Peopleware,	which	talks	about	various	aspects	of	the	human	side	of	software
engineering.	An	earlier	book	called	The	Psychology	of	Computer
Programming	by	Gerald	M.	Weinberg	also	has	a	lot	to	offer	on	the	subject.

In	our	Test	Management	class,	for	example,	we	spend	about	1/3	of	the	class	time	talking
about	the	structure	of	a	test	organization,	leadership,	management,	and	how	to	hire	testers.
Most	of	the	attendees	in	the	class	tell	us	in	advance	that	this	is	one	of	their	weakest	areas,
but	in	the	post-class	review	many	say	that	they	really	wanted	to	spend	all	three	days	talking
about	technical	topics	and	the	testing	process.	In	other	words,	they	know	that	the	human
side	is	critical,	but	they	still	prefer	to	talk	about	"concrete"	topics.

Team-Fly 	

Team-Fly

	

Test	Organizations

Key
Point

"It's	easy	to	get	good	players.	Getting	'em	to	play	together,	that's	the	hard
part."

-	Casey	Stengel

There	are	as	many	ways	to	organize	for	software	testing,	as	there	are	organizations	that
test.	There's	really	no	right	or	wrong	way	to	organize	for	test	and,	in	fact,	we've	seen	most
of	the	sample	organizational	structures	discussed	below	work	in	some	companies	and	fail	in
others.	How	the	test	organization	is	internally	structured	and	positioned	within	the	overall
organization	is	very	much	dependent	on	politics,	corporate	culture,	quality	culture,	skill	and
knowledge	level	of	the	participants,	and	risk	of	the	product.

Case	Study	8-1:	A	Few	Words	from	Petronius	Arbiter

This	quote	is	commonly	attributed	to	Petronius	Arbiter	in	210	B.C.,	but	some	sources	place
the	date	as	1st	Century	B.C.	or	1st	Century	A.D.	Even	though	we're	not	sure	of	the	exact
attribution,	its	message	is	clear.

Words	of	Wisdom	That	Still	Hold	True

We	trained	hard,	but	it	seems	that	every	time	we	were	beginning	to	form	up	into
teams	we	would	be	reorganized.	I	was	to	learn	later	in	life	that	we	meet	any	new
situation	by	reorganizing,	and	a	wonderful	method	it	can	be	for	creating	the	illusion	of
progress	while	producing	confusion,	inefficiency,	and	demoralization.

-	Petronius	Arbiter	210	BC

I	love	the	quote	above	by	Petronius	Arbiter.	After	over	two	millennia,	it	seems	the	only
thing	that	is	the	same	is	"change."	I've	used	this	quote	for	so	long	that	sometimes	I
feel	like	I	wrote	it.	I	was	surprised	to	find	it	in	Ed	Kit's	book	Software	Testing	in	the
Real	World.	It	seems	likely	that	I	may	have	started	using	Petronius'	quote	(Petronius
and	I	are	on	a	first-name	basis)	after	hearing	my	friend	Ed	uses	it.	Ed,	if	you're
reading	this	book,	thanks.	The	quote	is	too	good	not	to	share.

-	Rick	Craig

Sample	Test	Organizations

Table	8-1	lists	some	of	the	pros	and	cons	of	various	types	of	test	organizations.	It's	possible
that	a	company	could	have	more	than	one	organizational	style.	For	example,	they	could
have	an	independent	test	team	and	a	SWAT	team,	or	a	test	coordinator	and	a	QA	group

that	performs	testing.	There	are	many	other	strategies	for	organizing	the	testing	functions	-
this	is	only	intended	to	be	a	sampling.

Table	8-1:	Pros	and	Cons	of	Various	Test	Organizations

Type	of
Organization Pros Cons

Independent
Test	Teams

Professional
testers	with	fresh,
objective
viewpoints

Potential	conflict	between	developers	and	testers,
hard	to	begin	testing	early	enough

Integrated
Test	Teams

Teamwork,
sharing	of
resources,
facilitates	early
start

Pressure	to	ship	in	spite	of	quality

Developers
(as	the
principal
testers)

Expert	on
software,	no
conflict	with
testers

Lack	fresh	perspective,	lack	knowledge	of	business,
may	lack	software	testing	skills,	pressure	to	ship,
focus	on	the	code,	requires	rigorous	procedures	and
discipline

SWAT	Teams Extra	professional
resources

Expensive,	hard	to	create	and	retain;	not	for	small
organizations

Test
Coordinator

Don't	need
permanent	test
infrastructure

Staffing,	matrix	management,	testing	skill,	lack	of
credibility

QA	/	QC

Existing
organization,	some
existing	skill,
infrastructure

More	to	worry	about	than	just	testing

Outsourcing

Professional
testers	(maybe),
don't	need	to
hire/retain	staff

Still	requires	management	of	outsourcers,	need	to
have	a	good	contract

Independent
Verification
and	Validation
(IV&V)

Lowers	risk,
professional
testers

Too	expensive	for	most;	at	the	very	end

Key
Point

A	SWAT	team	is	what	our	colleague	Steven	Splaine	calls	"a	reserve	group	of
expert	testers	that	can	be	rapidly	called	in	an	emergency	to	help	put	out	a
testing	fire."

Independent	Test	Teams

An	independent	test	team	is	a	team	whose	primary	job	is	testing.	They	may	be	tasked	with
testing	just	one	product	or	many.	The	test	manager	does	not	report	to	the	development
manager	and	should	be	organizationally	equal	(i.e.,	a	peer).

Independent	test	teams	have	been	around	for	a	long	time,	but	they	really	gained	in
popularity	starting	in	the	early	1980s.	Prior	to	the	creation	of	independent	test	teams,	most
of	the	testing	was	done	by	the	programmers	or	by	the	QA	function,	if	one	existed.	All	too
frequently	during	that	era	(and	even	today),	products	were	shipped	that	didn't	satisfy	the
user's	needs	and,	in	some	cases,	just	flat-out	didn't	work.	One	of	the	major	reasons	for	this
failure	was	the	overwhelming	pressure	to	get	the	product	out	the	door	on	time,	regardless
of	the	consequences.	Since	the	developers	did	the	testing	as	well	as	the	development,	they
were	pretty	much	able	to	ship	the	software	without	any	oversight.	And	the	software	was
shipped	because	it	was	clear	that	the	date	was	the	most	important	measure	of	success.
Too	many	of	the	developers	had	received	very	little	(if	any)	training	in	testing	since	their
primary	job	was	writing	code.

The	popularity	of	independent	test	teams	has	grown	out	of	frustration.	Independent	test
teams	have	allowed	testing	to	move	to	the	status	of	a	discipline	within	software	engineering.
Testing	techniques,	standards,	and	methodologies	were	created,	and	some	people	became
full-time	professional	testers.	These	professionals	focused	on	testing	and,	therefore,
became	experts	in	their	field.	The	independent	test	team	provides	an	objective	look	at	the
software	being	tested.	Too	often,	programmers	who	test	their	own	code	are	only	able	to
prove	that	the	code	does	what	the	code	does,	rather	than	what	it's	supposed	to	do.

Key
Point Independent	test	teams	provide	an	objective	look	at	the	software	being	tested.

On	the	negative	side,	the	creation	of	independent	test	teams	often	results	in	the	creation	of
a	"brick	wall"	between	the	developers	and	the	testers.	Developers	are	less	anxious	to	test
their	code,	since	they	know	that	the	testers	are	going	to	do	it	anyway.	One	of	the	biggest
challenges	facing	managers	of	independent	test	groups	today	is	getting	started	early
enough	in	the	product	lifecycle.	Often,	the	developers	balk	at	having	the	testers	get	involved
early	because	they	fear	that	the	testers	will	slow	their	progress.	This	means	that	the	testers
may	be	stuck	testing	at	the	end	of	the	lifecycle,	where	they're	the	least	effective	(refer	to
Chapter	1	for	more	information	about	preventive	testing).

Integrated	Test	Teams

Integrated	test	teams	are	teams	made	up	of	developers	and	testers	who	all	report	to	the
same	manager.	Lately,	integrated	teams	seem	to	be	resurging	in	popularity.	We've	talked	to
several	testers	who	indicated	that,	organizationally,	they're	trying	to	move	the	testing
function	closer	to	the	development	function.	We	believe	that	this	is	occurring	because
integrated	teams	are	used	to	working	together	and	are	physically	collocated,	which	greatly
facilitates	communications.

Key
Point

Many	developers	have	a	tendency	to	assume	that	the	system	will	work	and,
therefore,	do	not	focus	on	how	it	might	break.

Some	organizations	also	find	that	it's	easier	to	get	buy-in	to	start	the	testing	early	(i.e.,
during	requirements	specification)	when	the	teams	work	together.	Independent	test	teams
often	find	it	much	more	difficult	to	begin	testing	early,	because	developers	fear	that	the
testers	"will	be	in	the	way"	and	slow	down	their	development	effort.

Just	as	in	the	Independent	Test	Teams	model,	integrated	team	members	who	conduct	the
testing	are	(or	should	be)	professional	testers.	We've	found	that	in	practice,	testers	who	are
part	of	integrated	teams	sometimes	have	to	fight	harder	for	resources	(especially	training
and	tools)	than	their	counterparts	in	independent	test	teams.	This	is	probably	due	to	the	fact
that	there's	no	dedicated	test	manager	at	a	level	equal	to	the	development	manager.

Since	the	manager	is	in	charge	of	both	development	and	testing	in	an	integrated	team,	one
of	the	downsides	is	that	when	under	schedule	pressure	he	or	she	may	feel	compelled	to
ship	the	product	prematurely.

Developers

In	this	type	of	test	organization,	the	developers	and	testers	are	the	same	people.	There	are
no	full-time	testers.	In	the	good	old	days,	the	developers	did	it	all	-	requirements,	design,
code,	test,	etc.	Even	today,	there	are	a	large	number	of	organizations	where	the	same
individuals	write	and	test	the	code.	While	there	has	been	a	lot	of	negative	press	written
about	organizations	that	don't	use	independent	and/or	professional	testers,	we've
encountered	several	organizations	that	seem	to	do	a	good	job	of	testing	using	only
developers.	Most	of	these	organizations	tend	to	be	smaller	groups,	although	we've	seen
larger	groups	where	all	of	the	testing	was	done	(and	done	well)	by	the	developers.

Key
Point

While	there	has	been	a	lot	of	negative	press	written	about	organizations	that
don't	use	independent	and/or	professional	testers,	we've	encountered	several
organizations	that	seem	to	do	a	good	job	of	testing	using	only	developers.

On	the	plus	side,	when	the	developers	do	all	of	the	testing,	there's	no	need	to	worry	about
communications	problems	with	the	testing	group!	Another	bonus	is	that	the	developers	have
intimate	knowledge	of	the	design	and	code.	Decisions	on	the	prioritization	of	bug	fixes	are
generally	easier	to	make	since	there	are	fewer	parties	participating.

The	obvious	downside	of	this	organizational	strategy	is	the	lack	of	a	fresh,	unbiased	look	at
the	system.	When	testing,	many	developers	tend	to	look	at	the	system	the	way	they	do
when	they're	building	it.	There's	often	a	tendency	to	assume	that	the	system	will	work,	or
that	no	user	would	be	dumb	enough	to	try	"that."	It's	also	asking	a	lot	to	expect	developers
to	be	expert	designers,	coders,	and	testers.	When	the	developers	do	all	the	testing,	there
may	be	less	expertise	in	testing	and	less	push	to	get	the	expertise,	because	most
developers	we	know	still	see	programming	as	their	primary	job	and	testing	as	an	"also	ran."
Finally,	developers	may	not	have	a	good	understanding	of	the	business	aspect	of	the

software.	This	is	a	frequent	complaint	even	in	unit	testing,	but	can	be	very	serious	in	system
or	acceptance	testing.

For	this	organizational	strategy	to	be	successful,	we	believe	that	the	following	things	need	to
be	considered:

A	rigorous	test	process	needs	to	be	defined	and	followed.

Adequate	time	must	be	allocated	for	testing.

Business	expertise	must	be	obtained	from	the	users	or	the	training	department.

Configuration	management	needs	to	be	enforced.

Buddy	testing,	XP,	or	some	other	type	of	team	approach	should	be	used.

Training	developers	about	testing	is	mandatory.

Exit	criteria	need	to	be	established	and	followed.

The	process	needs	continuous	monitoring	(e.g.,	QA)	to	ensure	that	it	doesn't	break
down.

Test	Coordinator

In	this	style	of	organizing	for	test,	there's	no	standing	test	group.	A	test	coordinator	is	hired
or	selected	from	the	development,	QA,	or	user	community.	The	test	coordinator	then	builds
a	temporary	team,	typically	by	"borrowing"	users,	developers,	technical	writers,	or	help
desk	personnel	(or	sometimes	any	other	warm	bodies	that	are	available).

We've	seen	this	strategy	employed	at	several	organizations,	especially	at	companies	that
have	large,	mature,	transaction-oriented	systems	(e.g.,	banks,	insurance	companies,	etc.)
where	a	major	new	product	or	revision	has	occurred	and	the	existing	test	organization	(if
any)	is	inadequate	or	there's	no	permanent	testing	group.	In	particular,	we	saw	this
happening	a	lot	during	Y2K	because	the	existing	testing	infrastructure	was	inadequate	to
conduct	both	normal	business	and	Y2K	testing.

Obviously,	the	reason	this	strategy	is	chosen	is	because	there's	an	immediate	need	for
testing,	but	there's	no	time,	money,	or	expertise	to	acquire	and	develop	a	team.	Sometimes,
the	temporary	team	that's	assembled	becomes	so	valuable	that	it's	made	into	a	permanent
test	group.

Being	the	test	coordinator	in	the	scenario	described	above	is	a	tough	assignment.	If	you're
ever	selected	for	this	position,	we	recommend	that	you	"just	say	no,"	unless,	of	course,	you
like	a	challenge.	Indeed,	the	first	major	obstacle	in	using	this	strategy	is	selecting	a
coordinator	who	has	the	expertise,	communication	skills,	credibility,	and	management	skills
to	pull	it	off.	The	test	coordinator	is	faced	with	building	a	testing	infrastructure	from	the
ground	up.	Often,	there	will	be	no	test	environment,	tools,	methodology,	existing	test	cases,

or	even	testers.	The	coordinator	has	to	ask	(sometimes	beg)	for	people	to	use	as	testers
from	other	groups	such	as	the	developers	or	users.	All	too	often,	the	development	or	user
group	manager	will	not	give	the	coordinator	the	very	best	person	for	the	job.	And	even	if	the
people	are	good	employees,	they	may	not	have	any	testing	experience.	Then,	there's	the
issue	of	matrix	management.	Most	of	these	temporary	testers	know	that	they'll	eventually
go	back	to	their	original	manager,	so	where	does	their	loyalty	really	lie?

Key
Point

Using	a	test	coordinator	can	be	a	successful	strategy	for	testing,	but	hinges	on
the	selection	of	a	very	talented	individual	to	fill	the	role.

Quality	Assurance	(QA)

In	this	organizational	strategy,	the	testing	function	is	done	all,	or	in	part,	by	the	staff	of	an
existing	Quality	Assurance	(QA)	group.	Some	of	the	earliest	testing	organizations	were
formed	from,	or	within,	an	existing	QA	group.	This	was	done	because	some	of	the	skills
possessed	by	the	QA	staff	members	were	similar	to	the	skills	needed	by	testers.	Today,
there	are	many	groups	that	call	themselves	QA,	but	don't	do	any	traditional	quality
assurance	functions	-	they	only	do	software	testing.	That	is	to	say,	they're	not	really	a	QA
group,	but	rather	a	testing	group	with	the	name	QA.

The	downside	of	this	strategy	is	that	a	true	QA	organization	has	more	to	worry	about	than
the	testing	of	software.	The	additional	responsibilities	may	make	it	difficult	for	the	QA	group
to	build	an	effective	test	organization.

Outsourcing

In	this	type	of	test	organization,	all	or	some	of	the	testing	is	assigned	to	another
organization	in	exchange	for	compensation.	Outsourcing	has	received	a	lot	of	visibility	in
recent	years	and	is	a	good	way	to	get	help	quickly.	The	key	to	making	outsourcing	work	is
to	have	a	good	contract,	hire	the	right	outsourcer,	have	well-defined	deliverables	and	quality
standards,	and	have	excellent	oversight	of	the	outsourcer's	work.

Key
Point

The	key	to	making	outsourcing	of	testing	work	is	to	have	a	good	contract,	hire
the	right	outsourcer,	have	well-defined	deliverables	and	quality	standards,	and
have	excellent	oversight	of	the	outsourcer's	work.

Companies	often	hire	an	outsourcer	to	do	the	testing	because	they	lack	the	correct	type	of
funding	to	do	it	in-house	or	lack	the	correct	environment	or	expertise.	These	are	all	valid
reasons	for	outsourcing,	but	outsourcing	the	testing	effort	does	not	necessarily	relieve	your
company	of	the	responsibility	of	producing	high-quality	software	or	guarantee	the	results
achieved	by	the	outsourcer.	We've	occasionally	encountered	a	situation	where	a	company
develops	a	system	and	not	only	wants	to	outsource	the	testing,	but	they	also	want	to	"wash
their	hands"	of	the	entire	testing	process	and	transfer	the	responsibility	for	delivering	a
quality	product.

Key For	more	information	on	outsourcing,	refer	to	the	article	"Getting	the	Most

Point from	Outsourcing"	by	Eric	Patel	in	the	Nov/Dec	2001	issue	of	STQE	Magazine.

Outsourcers	often	have	great	expertise	in	testing	and	many	have	excellent	tools	and
environments,	but	they	rarely	have	a	clear	vision	of	the	functional	aspects	of	your	business.
So	even	if	your	testing	is	outsourced,	your	organization	must	maintain	oversight	of	the
testing	process.	Ideally,	a	liaison	will	be	provided	who	will	take	part	in	periodic	progress
reviews,	walkthroughs	or	inspections,	configuration	control	boards,	and	even	the	final	run	of
the	tests.

Outsourcing	is	ideal	for	certain	kinds	of	testing,	such	as	performance	testing	for	Web
applications.	Many	organizations	may	also	find	that	outsourcing	of	the	load	testing	is
economically	the	right	choice.	Lower	levels	of	test	are	also	easier	to	outsource	(our	opinion)
because	they	are	more	likely	to	be	based	on	structural	rather	than	functional	techniques.

Independent	Verification	&	Validation	(IV&V)

Independent	Verification	and	Validation	(IV&V)	is	usually	only	performed	on	certain	large,
high-risk	projects	within	the	Department	of	Defense	(DoD)	or	some	other	government
agency.	IV&V	is	usually	conducted	by	an	independent	contractor,	typically	at	the	end	of	the
software	development	lifecycle,	and	is	done	in	addition	to	(not	instead	of)	other	levels	of
test.	In	addition	to	testing	the	software,	IV&V	testers	are	looking	for	contract	compliance
and	to	prevent	fraud,	waste,	and	abuse.

Key
Point

Independent	Verification	and	Validation	(IV&V)	is	usually	only	performed	on
certain	large,	high-risk	projects	within	the	Department	of	Defense	(DoD)	or
some	other	government	agency.

IV&V	may	reduce	the	risk	on	some	projects,	but	the	cost	can	be	substantial.	Most
commercial	software	developers	are	unwilling	or	unable	to	hire	an	independent	contractor	to
conduct	a	completely	separate	test	at	the	end.	As	we've	explained	in	this	book,	the	end	of
the	lifecycle	is	usually	the	most	inefficient	and	expensive	time	to	test.	Most	of	our	readers
should	leave	IV&V	testing	to	the	contractors	who	do	them	on	government	projects,	where
loss	of	life,	national	prestige,	or	some	other	huge	risk	is	at	stake.

Team-Fly 	

Team-Fly

	

Office	Environment
This	may	not	seem	like	the	most	important	issue	to	many	testers	and	managers,	but	the
environment	that	the	testers	work	in	can	play	an	important	part	in	their	productivity	and	long-
term	success.

Office	Space

Testers	have	certain	basic	needs	in	order	to	perform	their	job.	They	need	a	place	to	call
their	own	(a	cube	or	office	or	at	least	a	desk),	a	comfortable	chair,	telephone,	computer
(not	a	cast-off)	and	easy	access	to	an	area	to	take	a	break	away	from	their	"home".	Offices
that	are	too	warm	or	cold,	smoky,	poorly	lit,	too	small,	or	noisy	can	greatly	reduce	the
effectiveness	of	the	workers.	Not	only	do	the	situations	mentioned	above	affect	the	ability	of
the	workers	to	concentrate,	they	send	a	message	to	the	testers	that	"they	are	not	important
enough	to	warrant	a	better	work	environment."	If	you're	a	test	manager,	don't	dismiss	this
issue	as	trivial,	because	it	will	have	a	big	impact	on	the	effectiveness	of	your	group.

Key
Point

In	their	book	Peopleware:	Productive	Projects	and	Teams,	Tom	DeMarco	and
Timothy	Lister	explained	that	staff	members	who	performed	in	the	upper
quartile	were	much	more	likely	to	have	a	quiet,	private	workplace	than	those	in
the	bottom	quartile.

Case	Study	8-2:	Not	all	workspaces	are	ideal.

The	Imprisoned	Tester

On	one	project	that	I	worked	on,	my	desk	was	situated	in	a	hallway.	On	another
project,	we	were	housed	in	the	document	vault	of	a	converted	prison	-	the	windows
still	had	bars	on	them.

-	Steven	Splaine

Location	Relative	to	Other	Participants

We've	had	the	opportunity	to	conduct	numerous	post-project	reviews	over	the	years.	One
opportunity	for	improvement	that	we	have	recommended	more	than	once	is	to	collocate
testers	with	the	developers	and/or	the	user	representatives.	Now,	we	understand	that	if	your
developers	are	in	India	and	you're	located	in	California,	you	can't	easily	move	India	any
closer	to	California.	On	the	other	hand,	if	you're	all	located	in	the	same	building	or	campus,
it	just	might	be	possible	to	move	the	teams	closer	together.	Having	the	testers,	developers,
and	user	representatives	located	within	close	proximity	of	each	other	fosters	better
communications	among	the	project	participants.	So	if	geography	and	politics	allow,	you
should	consider	colocating	these	staffs.	If	not,	then	you'll	have	to	be	more	creative	in	coming
up	with	ways	to	improve	communications	(e.g.,	interactive	test	logs,	status	meetings,

conference	calls,	intranet	pages,	site	visits,	and	so	on).

Key
Point

Having	the	testers,	developers,	and	user	representatives	located	within	close
proximity	of	each	other	fosters	better	communications	among	the	project
participants.

Cube	vs.	Office	vs.	Common	Office

This	issue	is	way	too	sensitive	and	complicated	for	us	to	solve	here.	It	seems	that	every	few
years	we	read	an	article	extolling	the	virtues	of	private	offices,	cubes,	common	work	areas,
or	whatever	the	flavor	of	the	month	is.	Every	time	we	think	we	understand	what	the	best
office	design	is,	someone	convinces	us	that	we're	wrong.	However,	we're	pretty	sure	that
the	style	that	works	for	one	individual	or	group	is	probably	not	the	ideal	setup	for	another.

Key
Point

There	are	times	when	engineers	need	some	privacy	to	do	their	best	work	and
there	are	other	times	when	they	need	the	stimulus	of	their	coworkers.

We're	not	totally	clueless,	though.	We	do	know	that	there	are	times	when	engineers	need
some	privacy	to	do	their	best	work	and	there	are	other	times	when	they	need	the	stimulus
of	their	coworkers.	An	ideal	setup	would	provide,	even	if	on	a	temporary	basis,	both	private
and	common	areas.	We'll	leave	it	up	to	you	to	determine	the	best	way	to	set	up	your	office
for	day-in,	day-out	operations.	Unfortunately,	some	of	you	will	find	that	you	actually	have
very	little	to	say	about	the	office	arrangement,	since	it	may	be	an	inherent	part	of	your
corporate	culture	or	be	confined	by	the	layout	of	your	office	spaces.

Immersion	Time

Managers	have	learned	that	most	8-hour	days	result	in	much	less	than	8	hours	of	actual
work	from	each	of	their	employees.	We've	had	clients	that	claim	that	they	expect	to	get	6
hours	of	work	per	8-hour	day	per	employee.	Others	use	4	hours,	or	3	hours,	or	whatever.
We're	not	sure	where	the	values	came	from,	but	we're	betting	that	most	of	them	were
guesses	rather	than	measured	values.	In	their	book	Peopleware,	Tom	DeMarco	and	Tim
Lister	introduce	a	metric	known	as	the	Environmental	Factor	or	E-Factor,	which	somewhat
formalizes	the	metric	described	above.	The	E-Factor	shown	in	Figure	8-1	is	one	way	to
quantify	what	percentage	of	a	workday	is	actually	productive.

	Figure	8-1:	Formula	for	Calculating	the
Productive	Percentage	of	a	Workday

Multiplying	the	E-Factor	by	the	number	of	body-present	hours	tells	you	how	many	productive
hours	were	spent	on	a	particular	task.	You	could	just	measure	uninterrupted	work	every	day,
but	if	the	E-Factor	is	relatively	consistent,	it's	easier	to	measure	this	value	on	a	sampling
basis,	then	daily	measure	the	number	of	hours	spent	on	the	job,	and	multiply	the	two	values.

According	to	DeMarco	and	Lister,	"What	matters	is	not	the	amount	of	time	you're	present,
but	the	amount	of	time	that	you're	working	at	full	potential.	An	hour	in	flow	really
accomplishes	something,	but	ten	six-minute	work	periods	sandwiched	between	eleven
interruptions	won't	accomplish	anything."

No	doubt,	most	of	you	have	experienced	days	where	you	seem	to	accomplish	nothing	due	to
constant	interruptions.	How	long	it	takes	you	to	get	fully	back	into	the	flow	of	a	task	after	an
interruption	depends	very	much	on	the	nature	of	the	task,	your	personal	work	habits,	the
environment,	your	state	of	mind,	and	many	other	things	we	don't	pretend	to	understand.	We
call	the	amount	of	time	it	takes	to	become	productive	after	an	interruption	immersion	time.
It	occurred	to	us	that	if	it	were	possible	to	reduce	the	immersion	time	for	an	individual	or
group	through	some	kind	of	training	(although	we	certainly	don't	know	where	you	would	go
to	get	this	training),	then	productivity	would	rise.	But	since	we	don't	really	have	any	good
ideas	on	how	to	lessen	immersion	time,	we	have	to	achieve	our	productivity	gains	by
reducing	interruptions.

Key
Point

Immersion	time	is	the	amount	of	time	it	takes	to	become	productive	after	an
interruption.

Case	Study	8-3:	How	long	does	it	take	for	you	to	truly	immerse	yourself	in	your
work?

No	More	Interruptions,	Please!

We	visit	client	sites	where	they	still	routinely	use	the	overhead	speakers	located	in	every
room	to	blast	out	every	trivial	message	imaginable:	"Connie,	please	call	your	mother	at
home."	Now	this	message	is	not	just	broadcast	in	Connie's	work	area,	it's	also	sent
throughout	the	building.	When	the	message	is	broadcast,	everyone	in	the	building	looks	up
from	their	desks	and	wonders,	"What	has	Connie	done	now?"

If	there	are	1,000	engineers	in	the	room	and	it	takes	each	of	them	15	minutes	to	truly
immerse	themselves	into	their	work,	that	little	message	to	Connie	may	have	cost	the
company	up	to	250	engineering	hours.	Actually,	it	probably	cost	much	less,	because	it's
very	likely	that	many	of	those	workers	were	not	currently	immersed	in	their	work	at	that
time	because	they	had	probably	already	been	interrupted	for	some	other	reason.	But	you
get	the	point.	If	Connie's	mother	only	wanted	her	to	pick	up	a	loaf	of	bread,	the	cost	to
Connie's	company	made	it	a	very	expensive	loaf	of	bread	indeed!

Quiet	Time

One	manager	from	a	large	European	telecom	company	that	we	frequently	work	with	told	us
that	he	had	noticed	that	many	of	his	staff	members	were	staying	later	and	later	every	day.
Some	others	were	coming	in	early	each	day.	When	queried	about	why	they	had	voluntarily
extended	their	days,	most	of	these	employees	responded	with	a	comment	like,	"I	come	in
early	so	I	can	get	some	work	done."	When	asked	by	the	manager	what	they	did	all	day

during	normal	business	hours,	these	employees	explained,	"The	time	that	wasn't	spent
attending	meetings	was	spent	constantly	answering	e-mails,	phone	calls,	or	responding	to
colleagues'	questions."

Shortly	thereafter,	the	manager	implemented	a	policy	whereby	every	staff	member	had	to
designate	a	daily	2-hour	window	as	quiet	time.	During	quiet	time,	they	couldn't	attend
meetings,	receive	phone	calls	(although	they	could	call	another	colleague	who	was	not	in	his
or	her	quiet	time),	or	be	interrupted	by	colleagues.	The	quiet	times	were	staggered	for	the
staff	members	so	that	not	everyone	was	"quiet"	at	the	same	time.	After	all,	someone	still
had	to	talk	to	the	customers.	They	also	kept	one	2-hour	window	when	no	one	was	on	quiet
time.	This	was	reserved	for	group	meetings	and	other	activities.	The	manager	said	it	was
very	successful	and	productivity	rose	significantly,	although	the	policy	was	modified	later	to
only	have	quiet	time	three	days	a	week.	We	guess	they	didn't	really	need	to	do	all	that	much
work	after	all.

Key
Point

One	innovative	test	manager	that	we	know	required	each	of	his	testers	to
declare	a	2-hour	period	of	time	each	day	when	no	interruptions	were	allowed.

Another	innovative	software	engineer	that	we	know	"borrowed"	a	"Do	Not	Cross	-	Police
Line"	banner	and	drapes	it	across	her	door	when	she	needs	some	quiet	time	(please	note
that	we	are	not	advocating	swiping	the	police	banners	from	a	crime	scene).	Still	another
engineer	had	a	sign	designed	like	a	clock	(like	you	see	in	a	restaurant	window),	where	the
hands	can	be	moved	to	indicate	a	time	-	in	this	case	the	time	when	the	engineer	is	ready	to
talk	to	her	fellow	engineers.	These	are	all	different	approaches	to	achieving	the	same	goal
of	getting	a	little	quiet	time	to	do	real	work.	If	you're	a	test	manager,	it	should	be	clear	to
you	that	your	staff	already	knows	the	importance	of	quiet	time	and	so	should	you!

Key
Point

Even	though	"Do	Not	Cross"	banners	and	"clocks"	may	provide	needed
privacy,	we	worry	that	they	may	also	label	the	individuals	who	use	them	as
loners,	rather	than	team	players.

Meetings

Key
Point

Many	meetings	are	too	long,	have	the	wrong	attendees,	start	and	end	late,
and	some	have	no	clearly	defined	goal.

Most	test	managers	and	testers	spend	a	great	deal	of	time	in	meetings,	and	many	of	these
meetings	are,	without	a	doubt,	valuable.	Some	meetings,	however,	are	not	as	effective	as
they	could	be.	Many	meetings	are	too	long,	have	the	wrong	attendees,	start	and	end	late,
and	some	have	no	clearly	defined	goal.	We	offer	the	following	suggestions	to	make	your
meetings	more	productive:

Start	the	meeting	on	time.

Publish	an	agenda	(in	writing,	if	possible	-	an	e-mail	is	fine)	and	objectives	of	the
meeting.

Specify	who	should	attend	(by	name,	title,	or	need).

Keep	the	attendees	to	a	workable	number.

Limit	conversations	to	one	at	a	time.

Have	someone	take	notes	and	publish	them	at	the	conclusion	of	the	meeting.

Urge	participation,	but	prevent	monopolization	(by	the	people	who	just	like	the	sound
of	their	own	voice).

Choose	a	suitable	location	(properly	equipped	and	free	from	interruptions).

Review	the	results	of	the	meeting	against	the	agenda	and	objectives.

Assign	follow-up	actions.

Schedule	a	follow-up	meeting,	if	necessary.

End	the	meeting	on	time.

We	realize	that	there	are	many	times	when	an	impromptu	meeting	will	be	called	or	may	just
"happen."	We	certainly	approve	of	this	communication	medium	and	don't	mean	to	suggest
that	every	meeting	has	to	follow	the	checklist	above.

Case	Study	8-4:	Some	organizations	use	meeting	critique	forms	to	measure	the
effectiveness	of	their	meetings.

Nobody	Told	Me	There	Would	Be	a	Critique	Form

I	was	conducting	a	meeting	at	a	client	site	several	years	ago.	At	the	conclusion	of	the
meeting,	all	of	the	participants	began	to	fill	out	a	form,	which	I	learned	later	was	a
meeting	critique	form.	This	company	critiqued	every	meeting	much	as	they	would
critique	a	seminar	or	training	class.	I'm	not	really	convinced	that	most	organizations
need	to	go	to	this	level	of	formality	when	conducting	meetings,	but	I	do	admit	that	it
made	me	re-evaluate	how	I	conducted	meetings	in	the	future.	Oh,	by	the	way,	I	didn't
get	a	great	rating	on	my	first	meeting,	but	subsequent	meetings	were	graded	higher.
Perhaps	this	is	a	good	example	of	the	Hawthorne	Effect	at	work?

—	Rick	Craig

Team-Fly 	

Team-Fly

	

Chapter	9:	The	Software	Tester
"By	the	work,	one	knows	the	workman."

—	Jean	de	La	Fontaine

Characteristics	of	Good	Testers
Case	Study	9-1:	Not	all	testers	need	all	of	the	same	skills

What	Do	You	Look	For	in	a	Tester?

One	exercise	that	we	do	in	every	Test	Management	class	is	ask	the	students	to	make
a	list	of	what	characteristics	they'd	like	to	see	in	a	tester.	The	results	of	the	exercise
are	instructive,	because	everyone	quickly	realizes	that	the	skills	required	are
extensive	and	diverse	and	probably	don't	exist	in	any	one	person,	or	even	in	most
groups	of	testers.	The	good	news	is	that	not	all	testers	need	all	the	skills	mentioned
and	some	of	the	skills	are	not	required	as	much	at	certain	levels	of	test.	For	example,
programming	skills	are	very	useful	for	unit	testers,	but	may	be	less	important	for
acceptance	testers.	Here	are	the	unedited	results	of	a	recent	class:	Common	"serious"
answers	include:

Is	inquisitive

Has	functional/business	knowledge

Is	detail-oriented

Is	open-minded

Has	a	good	personality

Has	a	technical	background,	but	does	not	want	to	be	a	programmer

Has	testing	experience

Is	a	team	player

Is	flexible

Is	self-reliant

Is	self-starting

Has	a	positive	attitude

Is	logical

Handles	stress	well

Is	a	quick	thinker

Knows	specific	tools

Has	good	common	sense

Is	politically	astute

Has	a	sense	of	humor

Understands	the	software	development	lifecycle

Common	"fun"	answers	include:

Is	still	breathing

Has	a	destructive,	devious	nature

Likes	to	party

Possesses	a	thick	skin

Likes	to	work	long	hours

Likes	to	say,	"gotcha"

Team-Fly 	

Team-Fly

	

Finding	Good	Testers
Finding	and	hiring	the	right	people	for	the	right	job	is	a	challenge	in	every	organization.
Managers	of	some	organizations,	such	as	development	managers,	may	choose	to	hire
mostly	recent	college	graduates	who	have	received	a	degree	in	computer	science,
information	technology,	software	engineering,	or	some	similar	discipline.	Unfortunately	for
the	test	manager,	looking	for	testers	is	complicated	by	the	fact	that	very	few	universities
offer	a	curriculum	focused	on	software	testing	(but	this	is	beginning	to	change).	So	test
managers	must	either	hire	new	graduates	and	train	them,	or	look	to	other	sources	such	as
development	and	QA,	or	poach	them	from	other	companies'	testing	departments.

Developers

Hopefully,	all	developers	are	doing	unit	testing,	and	maybe	some	integration	testing,	so	they
have	some	knowledge	of	the	testing	discipline.	Their	knowledge	of	system	design	and
coding	can	also	help	them	be	effective	testers	and	will	afford	them	credibility	with	the
development	group.	Even	though	some	developers	make	good	full-time	testers,	most
developers	that	we	know	don't	want	to	become	testers.	Still,	there	are	many	reasons	why	a
developer	might	decide	to	try	his	or	her	hand	at	becoming	a	full-time	tester.	Perhaps,	for
example,	there's	an	exciting	project	that	needs	more	testers,	or	help	is	required	in
automating	test	scripts	(which	is,	after	all,	a	form	of	programming).

Users

Users,	or	former	users,	often	make	good	testers,	especially	at	high	levels	of	test	like
acceptance	testing.	Many	users	will	not	have	any	experience	in	testing,	but	their	knowledge
of	the	business	function	may	make	them	valuable	additions	in	spite	of	their	lack	of
experience.	Of	course,	you	have	to	be	careful	not	to	alienate	the	user	community	by	trying
to	"steal"	one	or	more	of	their	key	staff	members.

Help	Desk	/	Technical	Support

Help	desk	/	technical	support	personnel	are	often	good	testers	for	all	of	the	same	reasons
that	users	are.	Plus,	help	desk	personnel	may	have	an	even	broader	vision	of	the	business
function	than	many	users,	since	the	view	of	the	help	desk	personnel	is	shaped	by	the	views
of	many	different	users.

Technical	Writers

We	had	to	include	technical	writers	since	one	of	the	authors	of	this	book	is	a	trained
technical	writer.	However,	even	if	Stefan	were	not	a	technical	writer,	we	think	that	technical
writers	can	be	good	testers	because	they	provide	great	attention	to	detail.	Technical	writers
are	also	valuable	assets	in	the	creation	of	testing	documentation.

QA	Personnel

QA	personnel	understand	the	importance	of	quality	and	of	process	use,	which	makes	them
an	excellent	addition	to	the	testing	team.

Recent	Graduates

You	could	hire	your	testers	right	out	of	college	and	train	them	the	way	you	want	them.
Recent	college	graduates	are	enthusiastic	and	willing	to	study	and	learn	more	about	the
testing	discipline.	They	aren't	afraid	to	try	new	things,	because	they	don't	suffer	from	"we
always	did	it	this	way"	syndrome.	In	the	last	few	years,	some	colleges	are	even	teaching
their	software	engineering	students	about	testing,	something	that	very	rarely	happened	a
decade	or	so	ago.

Rex	Black,	author	of	Managing	the	Testing	Process,	is	working	with	professors	from
Polytechnic	State	University	and	the	Milwaukee	School	of	Engineering	to	develop	testing
courses.	Professors	Cem	Kaner	and	James	Whitaker	are	well-known	testing	gurus	who
work	at	the	Florida	Institute	of	Technology,	where	a	degree	in	software	engineering	with	a
specialization	in	testing	is	available.	Professor	Alan	R.	Hevner	of	the	University	of	South
Florida	teaches	a	graduate	level	seminar	on	software	testing	that	emphasizes	many	of	the
concepts	detailed	in	this	book.	At	the	time	of	this	writing,	other	universities	are	considering
or	developing	curricula	of	this	nature.

Other	Companies	(New	Hires)

It's	a	fact	of	life	that	some	companies	are	always	downsizing,	while	others	are	expanding.
It's	a	real	bonus	if	you	can	hire	a	tester	who	has	already	been	trained	by	another	company
(including	offering	to	convert	consultants	into	full-time	employees).	This	is	also	a	good	way
to	acquire	expertise	on	a	particular	testing	tool.

Team-Fly 	

Team-Fly

	

Hiring	Testers
It	used	to	be	that	in	order	to	hire	a	new	employee,	a	manager	would	interview	an	entourage
of	candidates	and	then	select	one.	Undoubtedly,	many	of	you	have	taken	part	in	both	sides
of	this	process:	as	the	job	applicant	and	as	the	hiring	manager,	and	you	probably	remember
this	as	a	very	time	consuming	and	stressful	process.	Many	managers	monopolize	the
conversation	and	barely	allow	the	applicant	a	chance	to	talk.	Hiring	a	tester	is	a	two-way
street	-	the	test	manager	is	hiring	the	tester,	and	the	tester	is	"hiring"	the	manager	and	his
or	her	organization.

According	to	Bev	Berry,	Director	of	Business	Development	for	ProtoTest	LLC,	"Many	test
managers	are	not	given	training	on	how	to	conduct	interviews	and	hire	the	right	people."	Bev
has	identified	several	important	and	helpful	techniques	to	effectively	interview	and	hire
testers.	We've	included	many	of	Bev's	tips	in	this	section.

Define	Job	Requirements

Key
Point

If	you	don't	define	what	you're	looking	for	upfront,	you	won't	recognize	it	when
it	walks	through	the	door.

Have	your	job	requirements	defined	before	you	start	interviewing.	Define	and	prioritize	what
you	are	looking	for.	We're	amazed	at	how	often	this	is	not	done.	Many	managers	don't	fully
understand	the	skills	and	talents	they	want	and/or	need	to	get	the	job	done	well.	If	you	don't
define	what	you're	looking	for	upfront,	you	won't	recognize	it	when	it	walks	through	the	door.
Spend	some	time	determining	what	type	of	tester	you	need	technically,	interpersonally,	and
at	what	level	of	career	development.	If	you're	not	finding	that	person	after	several
interviews,	be	open	to	re-evaluating	your	job	requirements	and	seeing	what	parts	can	be
modified.

Read	the	Candidate's	Résumé

Prior	to	your	interview,	read	the	candidate's	résumé	and	take	notes	on	specific	areas	you
want	to	address.	We	hear	over	and	over	again	how	often	testers	experience	interviews
where	the	hiring	manager	never	even	read	their	résumés.	It's	important	that	the	candidates
feel	they	are	dealing	with	someone	who	understands	what	they've	done	in	the	past;
otherwise,	they	won't	have	any	respect	for	you	or	your	organization.

Prepare	Yourself	Mentally

Prepare	yourself	mentally	and	be	present.	Clear	your	head	a	few	minutes	before	you	meet
with	the	candidate.	You	must	be	focused	during	the	interview	-	if	you're	off	thinking	about
which	meeting	you	have	to	go	to	next,	you'll	likely	miss	key	indicators	and	the	candidate	will
sense	it.	You	must	listen	well	and	take	in	as	much	information	as	you	can	about	the
candidate,	technically	and	personally.	If	your	mind	is	elsewhere,	you	can't	listen	effectively
and	your	powers	of	discrimination	are	greatly	diminished.	Active	listening	skills	are	important

in	conducting	good	interviews.

Key
Point

You	must	be	focused	during	the	interview	-	if	you're	off	thinking	about	which
meeting	you	have	to	go	to	next,	you'll	likely	miss	key	indicators	and	the
candidate	will	sense	it.

First	Impressions	Are	Important

First	impressions	are	important.	Remember,	you're	selling	the	candidate	on	you	and	your
organization	as	much	as	they	are	selling	you.	Make	good	eye	contact,	smile,	have	a	firm
handshake,	and	sense	as	much	as	you	can	about	what	kind	of	person	you	are	dealing	with.
Pay	attention	to	what	you're	sensing	and	make	note	of	it.

Key
Point6

Remember,	you're	selling	the	candidate	on	you	and	your	organization	as	much
as	they	are	selling	you.

Your	goal	is	to	put	the	candidate	at	ease	so	you	can	learn	as	much	about	this	person	and
their	genuine	characteristics	as	possible.	Create	a	peer-to-peer	environment;	make	it	safe
for	them	to	reveal	information.	It's	critical	to	gain	trust	if	you	want	an	open,	honest	dialogue.

Learn	How	to	Ask	Questions

Your	job,	as	a	hiring	manager,	is	to	gain	as	much	information	about	the	candidate	as
possible.	Ask	open-ended	questions.	Make	notes	of	how	the	candidate	responds	to
questions.	Do	they	talk	incessantly?	Do	they	answer	everything	"yes"	or	"no"?	This	gives
you	vital	information	about	their	interpersonal	skills	in	the	work	environment.

Keep	the	candidate	talking.	We're	amazed	at	how	often	testers	tell	us	after	they've
interviewed	with	a	manager,	"Well,	they	never	really	asked	me	any	questions."	The	manager
spends	most	of	the	interview	time	talking	about	the	project,	the	problems,	how	they	are
testing,	and	other	topics	that	aren't	directly	related	to	the	tester	being	interviewed.	It's
important	to	ask	questions	-	lots	of	them	-	and	stay	away	from	questions	that	can	have	a
"yes"	or	"no"	response.	Asking	a	tester,	"Have	you	ever	written	a	master	test	plan?"	gets
you	nothing.	Changing	the	question	to,	"Tell	me	your	definition	of	a	master	test	plan	and	why
it's	significant	to	the	testing	process"	will	give	you	much	more	information.	One	of	our
favorite	questions	to	ask	testers	is,	"What	are	some	of	the	challenges	you've	faced	as	a
tester	and	how	did	you	overcome	them?"	This	single	question	can	give	you	volumes	of
information	about	the	candidate.	Be	thorough.	The	"tell	me	about	a	time	when…"	questions
generally	solicit	meaningful	responses	that	will	help	you	evaluate	the	candidate.

Key
Point

One	of	our	favorite	questions	to	ask	testers	is,	"What	are	some	of	the
challenges	you've	faced	as	a	tester	and	how	did	you	overcome	them?"

Ask	Candidates	to	Demonstrate	Skills

It's	sometimes	very	difficult	to	see	past	the	words	on	a	job	applicant's	résumé	and	the

answers	received	during	an	interview.	Managers	looking	to	hire	a	tester	who	can	"hit	the
ground	running"	might	want	to	ask	candidate	testers	to	review	a	specification	and	describe
what	test	cases	they	would	write	or	what	strategy	they	would	use	for	testing.	In	order	for
this	approach	to	work,	the	specification	must	be	of	a	general	enough	nature	that	each
candidate	can	understand	its	meaning.	For	example,	if	you	were	hiring	testers	to	test	an
insurance	application	and	you're	considering	candidates	without	insurance	experience,	it
might	be	difficult	for	them	to	create	viable	high-level	test	cases.	A	way	around	this	problem
is	to	choose	an	application	that	is	understandable	to	all	candidates	(we	use	an	ATM
application)	or	have	them	write	unit-	or	integration-level	test	cases	that	don't	require	intimate
knowledge	of	the	business	application.	Of	course,	if	one	of	your	considerations	is	industry
expertise	(in	this	case,	banking),	then	by	all	means	use	an	example	from	your	industry.

Key
Point

Managers	looking	to	hire	a	tester	who	can	"hit	the	ground	running"	might	want
to	ask	candidate	testers	to	review	a	specification	and	describe	what	test
cases	they	would	write	or	what	strategy	they	would	use	for	testing.

Take	Notes

Take	notes.	It's	important	to	write	as	much	pertinent	information	down	during	the	interview
as	possible.	You'll	forget	things	after	you've	interviewed	five	candidates	for	the	position.
Take	notes,	but	be	selective	-	you	don't	want	to	take	so	many	notes	that	you	miss	paying
attention	to	the	candidate.	Create	a	balance	between	listening	and	writing.

Answer	the	Candidate's	Questions

Answer	the	candidate's	questions.	Near	the	end	of	the	interview,	you	should	ask	the
candidate	if	he	or	she	has	any	questions	for	you.	Make	sure	you	understand	the	inner
workings	of	your	organization	so	that	you	can	accurately	address	any	questions.	This	is	a
good	time	to	get	them	excited	about	working	with	your	organization.	As	a	hiring	manager,
you	have	a	responsibility	to	sell	the	candidate	on	your	position.

Check	References

Always	check	references.	The	fact	is	that	people	change	very	little	over	time,	and	the	best
predictor	of	future	performance	is	past	performance.	References	give	you	additional	and
valuable	information	about	your	candidate	that	you	may	not	get	during	the	interview	process.
They	give	you	a	deeper	understanding	of	your	candidate's	strengths	and	weaknesses,	so
you're	better	able	to	assess	them	for	your	needs.	Often,	you'll	find	a	theme	when	checking
references	on	a	candidate	-	listen	to	it.	People	generally	don't	want	to	provide	negative
information	about	another	person.	They'll	soften	their	choice	of	words	but,	if	you	pay
attention	closely,	you'll	be	able	to	hear	the	underlying	message.	If	the	message	is	consistent
among	three	or	more	references,	it's	important	to	give	any	negative	information	heavy
weighting	in	considering	that	candidate.

The	best	predictor	of	future	performance	is	past	performance.	References

Key
Point

give	you	additional	and	valuable	information	about	your	candidate	that	you	may
not	get	during	the	interview	process.

Team	Interviews

Some	test	managers	employ	team	interviews	as	a	way	of	selecting	new	testers.	This	is
done	because	these	test	managers	realize	the	need	for	the	new	candidate	to	"fit	in"	with	the
rest	of	the	group.	When	team	members	participate	in	the	selection	process,	they	have	a
vested	interest	in	helping	the	new	team	member	be	successful.	Using	team	interviews	does
not,	in	any	way,	relieve	the	test	manager	of	the	responsibility	of	the	selection.

From	a	human	resources	perspective,	remember	that	it's	important	to	treat	all	candidates
fairly	and	equally,	so	if	you	give	one	person	a	"test,"	you	should	give	all	candidates	the	same
or	similar	test.	Similarly,	if	you're	using	"group"	interviewing	techniques,	you	should	use	them
on	all	candidates.	Spend	the	time	to	get	the	right	person.	It's	always	easier	to	hire	a	tester
than	it	is	to	fire	one.

Key
Point

When	team	members	participate	in	the	selection	process,	they	have	a	vested
interest	in	helping	the	new	team	member	be	successful.

Team-Fly 	

Team-Fly

	

How	Many	Testers	Do	You	Need?
Two	of	the	most	common	questions	that	we	receive	are	"How	many	testers	do	we	need?"
and	"What	is	the	correct	ratio	of	developers	to	testers?"	Usually,	the	test	managers	asking
these	questions	secretly	have	a	number	or	ratio	in	mind	that	they	want	to	hear	so	they	can
go	back	to	their	manager	and	use	it	to	justify	more	testers.	We	can	probably	find	a
reference	that	would	answer	this	question	any	way	the	test	manager	wants.	Some
references	say	that	the	number	of	developers	should	equal	the	number	of	testers,	or	the
ratio	of	developers	to	testers	should	be	2:1,	3:1,	or	some	other	number.

Key
Point

The	correct	ratio	of	developers	to	testers	depends	on	the	quality	of	the
software	being	tested,	the	skill	of	the	testers,	the	level	of	test	automation,	and
the	amount	of	time	that	you	have	to	test.

Key
Point

In	his	book	Software	Testing	in	the	Real	World,	Ed	Kit	states	that	the	typical
ratio	of	developers	to	testers	is	3:1	or	4:1	(as	of	1995).

The	correct	answer	to	"What	should	the	ratio	of	developers	to	testers	be?"	is,	of	course,	"It
depends."	In	fact,	it	depends	on	the	quality	of	the	software	being	tested,	the	skill	of	the
testers,	the	level	of	automation	of	the	testing,	and	the	length	of	time	allowed	for	testing.	For
example,	if	the	regression	test	is	largely	automated	and	the	regression	test	set	is	relatively
stable,	the	number	of	testers	required	to	do	the	job	would	be	much	less	than	the	number
required	on	a	rapidly	changing	application	where	the	testing	is	mostly	manual.

Even	after	we	give	this	little	speech	in	class,	though,	someone	still	says,	"That's	all	well	and
good,	but	what	should	the	ratio	be?"	Although	we	know	that	the	ratio	at	one	company	is	not
indicative	of	what	the	ratio	should	be	at	another	company,	we	think	that	it's	instructive	and
interesting	to	understand	what's	happening	in	other	companies.	For	example,	if	your	ratio	of
developers	to	testers	is	3:1	and	someone	else's	is	2:1,	it's	hard	to	argue	that	you	need
more	testers	based	on	this	data	alone	(maybe	you	have	better	test	automation	or	more
experienced	testers).	But	if	your	ratio	is	100:1,	then	you	probably	have	a	strong	argument
that	your	ratio	of	developers	to	testers	is	out	of	balance.

Key
Point

Roger	Sherman	reported	that	the	developer-to-tester	ratio	at	Microsoft	is
1	to	1.

-	Best	Development	and	Testing	Strategies	of	Microsoft	Proceedings
from	the	STAR	West	1998	Conference

Case	Study	9-2:	Survey	Results	from	a	Typical	Class	of	25	Students

How	Many	Testers	Do	You	Really	Need?

In	our	Test	Management	classes,	we	ask	each	student	what	the	ratio	of	developers	to
testers	is	in	their	company.	Out	of	a	25-person	class,	the	breakdown	usually	looks

more	or	less	like	this:

Ratio	of	Developers	to	Testers Number	of	Students	Who	Raised	Their	Hand

Fewer	Developers	than	Testers 1

1:1 5

2:1 5

3:1,	4:1,	5:1 10

6:1,	7:1,	8:1,	9:1,	10:1 3

Some	Crazy	Number	Like	100:1 1

Obviously	the	data	shown	in	the	table	above	cannot	stand	up	to	any	kind	of	statistical
scrutiny,	due	to	the	way	it	was	collected	(those	spoil-sport	mathematicians),	but
anecdotally,	we've	seen	similar	results	often	enough	that	at	least	we're	convinced	of	their
accuracy.	In	his	book	Software	Testing	in	the	Real	World,	Ed	Kit	cites	examples	where	the
number	of	testers	exceeded	the	number	of	developers,	but	concluded	that	more	typical
ratios	are	in	the	range	from	3:1	to	4:1	[developers	to	testers].

Team-Fly 	

Team-Fly

	

Retaining	Staff
When	you	consider	how	much	it	costs	to	hire	and	train	new	testers,	it	really	behooves
organizations	to	retain	effective	staff	members.	We	have,	on	occasion,	been	asked	by	some
companies	to	review	the	results	of	exit	interviews	conducted	with	departing	employees.
Some	of	the	reasons	given	for	leaving	were	the	normal	personal	and	professional	reasons
that	you	would	expect,	but	we	were	also	struck	by	the	incredibly	trivial	reasons	that	some
employees	gave	for	leaving	a	company.	One	tester	identified	as	a	key	employee,	for
example,	was	leaving	because	she	felt	that	she	had	been	"cheated"	out	of	two	days	of
vacation	and	the	system	was	too	rigid	to	make	it	up	to	her.	The	manager	had	to	go	through
the	entire	hiring	and	training	process	because	of	two	days	of	vacation!	And	of	course,	it's
not	known	if	the	new	employee	will	also	turn	out	to	be	a	"key"	employee.

Key
Point

There	is	a	strong	correlation	between	increased	training	and	improved
worker	productivity,	profitability,	and	shareholder	value.	An	American
Management	Association	study	discovered	that	companies	with	increased
training	are	66%	more	likely	to	report	productivity	improvements,	twice	as
likely	to	reduce	turnover	rates,	and	150%	more	likely	to	improve	the
quality	of	their	products	and	services.

-	Dick	Grote	and	John	Boroshok,	Are	Most	Layoffs	Carried	Out	Fairly?

Here	are	some	of	the	typical	and	not-so-typical	reasons	given	for	choosing	employment
elsewhere:

No	one	appreciated	the	work	that	I	was	doing.

No	recognition	was	given	for	all	of	the	extra	hours	that	I	put	in.

The	developers	got	all	of	the	training.

Testers	are	seen	as	second-class	citizens.

The	hours	are	too	long.

They	don't	understand	how	important	testing	is.

I	was	asked	my	opinion,	but	no	one	really	listened	to	my	answer.

My	salary	was	too	low.

I	wanted	to	telecommute	one	or	two	days	a	week,	but	they	said,	"No."

This	company	was	too	bureaucratic.

My	manager	wouldn't	let	me	do	my	job.

Everyone	said	our	work	was	important,	but	they	would	ship	the	release	whether	we
were	done	testing	or	not.

I	was	not	hired	to	be	a	programmer	(no	doubt,	a	testing	tool	issue).

QA	gets	stuck	with	all	the	SLJ	(we	think	"SLJ"	means	trivial	jobs).

We	had	intended	to	write	an	entire	section	on	how	to	retain	employees,	but	we	believe	the
list	above	says	it	all.	To	summarize,	employees	(testers)	expect:

To	be	recognized	for	their	effort	and	contribution.

To	be	seen	as	part	of	the	overall	team	that	delivers	a	quality	product.

To	be	treated	as	professionals.

To	be	heard.

To	receive	pay	commensurate	with	their	experience	and	the	job	that	they	perform.

To	receive	appropriate	and	adequate	training.

To	perform	the	job	they	were	hired	for.

To	be	treated	as	individuals	with	personal	as	well	as	professional	needs.

Working	Overtime

It's	a	fact	of	life	that	most	projects	have	periods	of	time	where	the	resource	requirements
exceed	the	availability	of	staff	members.	One	way	to	solve	the	problem	is	to	acquire
additional	resources	in	the	form	of	temporary	testers	drawn	from	the	development	group,
QA,	the	user	community,	or	from	other	sources.	But	if	the	need	for	additional	resources
comes	unexpectedly,	as	it	frequently	does,	and	if	the	deadline	is	near,	adding	more	people
to	a	late	project	may	just	delay	it	further	due	to	the	training	curve	of	the	new	people	brought
on	board.	So	that,	of	course	leads	us	to	overtime.	Having	your	staff	work	over-time	is	the
best	way	to	obtain	small	doses	of	extra	resource.	Overtime,	though,	is	a	resource	that
needs	to	be	carefully	managed.	If	overtime	is	just	a	way	of	life	day	in	and	day	out,	the	test
manager	will	have	nothing	in	reserve	when	an	emergency	arises.

Key
Point

Adding	more	people	to	a	late	project	may	just	delay	it	further	due	to	the
training	curve	of	the	new	people	brought	on	board.

And	if	overtime	is	the	norm,	it	loses	some	of	its	effectiveness	as	the	adrenalin	rush	subsides
and	the	staff	members	realize	that	there's	no	light	at	the	end	of	the	tunnel.	Soon,	you'll	find
yourselves	doing	in	9	or	10	hours	what	you	used	to	do	in	8	hours.	Initially,	staff	effectiveness
may	begin	to	drop,	and	if	"routine"	overtime	is	continued	long	enough,	morale	will	begin	to
decline.	Managers	must	remember	that	overtime	is	like	the	reserve	in	a	military	campaign	-
once	it's	committed,	there's	no	further	reserve	available.

Key
Point

Managers	must	remember	that	overtime	is	like	the	reserve	in	a	military
campaign	-	once	it's	committed,	there's	no	further	reserve	available.

If,	in	fact,	overtime	is	routine	in	your	organization,	this	may	be	indicative	of	a	bigger	problem
and	is	an	indication	that	a	downward	spiral	toward	inefficient	and	unhappy	workers	has
begun.	Are	you	understaffed?	Are	you	ineffective?	Are	you	trying	to	do	too	much?
Remember	the	concept	of	risk	analysis?	Software	risk	analysis	helps	determine	the	priority
of	testing	and	planning	risks,	which	help	us	determine	what	we	can	and	cannot	do	with
available	resources.	If	you	find	yourself	in	the	situation	described	above,	we	recommend
that	you	go	back	and	re-read	Chapter	2	-	Risk	Analysis.

Finally,	testers	must	be	shown	appreciation	for	their	overtime.	A	simple	"thank	you"	is	a
good	start.	Future	time	off,	or	even	extra	pay,	should	not	be	out	of	the	question,	even	for
salaried	workers.

And	finally,	if	your	entire	staff	(or	a	large	part	of	it)	is	working	overtime,	so	should	you,	even
if	only	for	a	show	of	support.	There's	nothing	worse	than	working	day	and	night	and
watching	your	boss	go	home	every	night	at	the	stroke	of	5:00	PM.

Beware	of	the	testers	who	always	want	to	work	overtime	only	because	they	need	the	extra
money.	Just	because	they're	willing	participants	doesn't	ensure	that	their	efficiency	and
morale	will	not	suffer	with	extended	overtime.

Team-Fly 	

Team-Fly

	

Software	Tester	Certifications
Over	the	years,	we've	received	many	queries	from	testers	and	test	managers	who	were
interested	in	some	type	of	technical	certification.	We've	always	thought	that	the	concept	of
certification	is	sound	and	offers	a	lot	of	benefits	to	organizations	that	urge	their	employees
to	become	certified	and	to	the	individuals	who	participate	in	this	endeavor.	Specifically,
certification	is	a	way	to	recognize	professional	achievement,	provide	a	career	path,	and
introduce	an	incentive	to	learn	about	testing	and	related	fields.	We've	also	worried,	though,
that	there's	not	a	single	industry-wide	certification	program	for	software	testers.	Several
different	certification	programs	have	emerged	that	have	gained	a	certain	degree	of
recognition,	but	the	mere	fact	that	there	are	multiple	certifications	available	waters	down	the
recognition	one	gets	for	achieving	any	one	of	them.	On	balance,	though,	the	benefits	of
achieving	any	one	of	the	certifications	described	below	far	outweigh	any	negative	perception
caused	by	the	lack	of	standardization.

Key
Point

The	concept	of	certification	is	sound	and	offers	a	lot	of	benefits	to
organizations	that	urge	their	employees	to	become	certified	and	to	the
individuals	who	participate	in	this	endeavor.

The	comments	above	are	based	on	the	opinions	of	the	authors	of	this	book.	The	rest	of	this
section	on	certification	draws	heavily	from	an	excellent	article	by	Darin	Kalashian	and	one	of
the	reviewers	of	this	book,	Eric	Patel.

According	to	Kalashian	and	Patel,	"Certification	is	commonly	defined	as	formal	recognition
by	an	institution	that	an	individual	has	demonstrated	proficiency	within	and	comprehension
of	a	specified	body	of	knowledge	at	a	point	in	time.	It's	important	to	note	that	certification	is
not	registration	or	a	license.	It	implies	that	you	have	fulfilled	the	requirements	to	become
certified	and	that	you	have	passed	an	exam.	Once	you	become	certified,	it	will	be
important	to	maintain	your	certified	status	by	performing	approved	re-certification	activities
within	a	fixed	timeframe."

There	are	several	categories	of	certification	shown	in	Figure	9-1.	Perhaps	the	most	familiar
type	is	the	product-based	certification,	such	as	Novell's	Certified	Novell	Engineer	(CNE)	and
Microsoft's	Certified	Systems	Engineer	(MCSE).	The	other	major	category	of	certification	is
software	certifications,	which	come	in	two	basic	flavors:	vendor-specific	and	organization-
based.	Vendor	specific	programs	have	some	merit,	but	a	broader	aspect	is	gained	through
what	are	known	as	organization-based	software	certifications,	and	that	will	be	the	focus	in
this	book.

	Figure	9-1:	Categories	of	Tester	Certifications

The	most	widely	recognized	organization-based	software	certifications	include:

American	Society	for	Quality's	(ASQ)	Certified	Software	Quality	Engineer	(CSQE)

Quality	Assurance	Institute's	(QAI)	Certified	Software	Test	Engineer	(CSTE)

International	Institute	for	Software	Testing's	(IIST)	Certified	Software	Test
Professional	(CSTP)

Institute	of	Electrical	and	Electronic	Engineers'	(IEEE)	Certified	Software
Development	Professional	(CSDP)

British	Computer	Society's	(BCS)	Information	Systems	Examination	Board	(ISEB)

Table	9-1	provides	a	comparison	of	various	elements	of	each	software-quality-centric	and
software-test-centric	certification	program.

Table	9-1:	Comparison	of	Software	Quality	and	Test	Certifications	(Reprinted	with
permission	from	Certification:	A	Win-Win	Investment	for	Employees	and
Employers	by	Darin	Kalashian	and	Eric	Patel)

Software-Quality-Centric Software-Test-Centric

Certification CSQE CSDP CSTE CSTP

Organization ASQ IEEE QAI IIST

First	Started
Certifying 1996 2002([1]) 1996 2000

Total	Number
of	Active
Certifications(
[2]
)

1,969 167 2,200+ 153+

Work
Experience 3	–	8	years 4-1/2years 0	–	6	years 1	year

Exam

4	hours,	160
multiple	multiple

choice
questions([1])

3-1/2	hours,
180	choice
questions([1])

4	hours,
true/false,

multiple	choice,
essay([1])

10	short	essay
exams	(within	5

years)

Type	of	Exam Open	book Closed	book Closed	book Closed	book

Exam	Dates June,	December Spring,	Fall Periodically Periodically

Passing	Score 73%	(550/750) Unknown 75%	(in	each	of	4
parts) 80%	(in	each	exam)

Recertification
Period 3	years 3	years 1	year None([5])

Average
Salary
Increase

3%([6]) Unknown 19%([7]) Unknown

For	More
Information www.asq.org computer.org www.qaiusa.com www.softdim.com/iist

Certification
Costs	(est.)

Exam	Fee(s) $180	–	$285([3])
$450	–
$600([3])

$250 $4,500([8])

Study
Materials

$190([4]) $120 $75	–	$500 Included

Exam
Refresher	/
Test	Prep
Course

$355	–	$415([3])
To	Be

Determined $300	–	$400 N/A

Travel $25 $25 $25 $100	–	$4,000

Total $760	–	$925 $595	–	$745 $650	–	$1,175 $4,600	–	$8,500

[1]IEEE	is	scheduled	to	offer	exams	in	2002

[2]As	of	December	2001

[5]IIST	is	currently	identifying	recertification	requirements

[6]ASQ	2001	Salary	Survey,	Quality	Progress,	December	2001

[7]CSTE	brochure,	QAI,	all	active	CSTEs	1997-2000

[3]Higher	fee	is	for	non-members

http://www.asq.org
http://www.computer.org
http://www.qaiusa.com
http://www.softdim.com/iist

[8]$2,225	for	five	courses

[4]CSQE	Primer	($65),	CSQE	CD-ROM	($70),	textbook	($55)

Value	of	Certification	to	Testers

If	certification	is	to	be	successful,	the	individual	testers	must	find	that	there's	value	in	it	for
them.	This	value	may	be	the	hope	of	a	better	job,	promotion,	prestige,	or	more	pay.	Testers
will	also	be	motivated	to	strive	for	certification	if	they	feel	that	it	will	help	them	do	a	better
job	and	demonstrate	their	proficiency	in	testing.

Help	in	Getting	a	Job

We	won't	say	that	if	you	get	this	certification	or	that	certification	you'll	automatically	get	any
job	that	you	want,	but	some	companies	do	look	favorably	upon	certification	when	seeking
candidates	for	testing	jobs.	Certifications	show	employers	that	the	candidate	has	the
motivation	to	learn	more	about	testing,	treats	testing	as	a	profession,	and	has	a	certain
body	of	knowledge	on	the	topic.

Salary	Increase	or	Promotion

Some	companies	use	certification	as	an	indication	that	the	employee	is	ready	for	greater
responsibility	(and	maybe	more	money!).	On	the	other	hand,	even	if	your	company	does	not
immediately	and	directly	compensate	you	for	your	achievement,	in	the	long	term,	we	hope
that	your	increased	knowledge	will	help	you	improve	your	work	skills	to	such	a	degree	that
you'll	be	recognized	for	increasingly	more	responsible	positions.	Of	course,	if	your	company
totally	ignores	your	effort,	you	may	want	to	refer	to	the	paragraph	above	entitled	Help	in
Getting	a	Job.

Do	a	Better	Job

Most	people	receive	great	satisfaction	from	doing	a	job	well.	Certification,	and	the	training
that	goes	with	it,	helps	most	testers	perform	their	jobs	better.	Unfortunately,	we	are	not
aware	of	any	studies	that	have	been	done	to	measure	the	increase	in	quality	or	productivity
of	work	resulting	from	certification.

Team-Fly 	

Team-Fly

	

Value	of	Certification	to	Test	Managers
Test	managers	are	anxious	for	their	staffs	to	become	more	knowledgeable	and	proficient
testers,	and	most	agree	that	certification	is	one	way	to	achieve	that	goal.	Most	test
managers	also	welcome	a	program	that	provides	structure	and	goals	to	the	training	of	their
staffs.

Certain	Level	of	Knowledge

If	a	tester	has	received	one	of	the	certifications	mentioned	above,	that	will	assure	the	test
manager	that	the	employee	possesses	at	least	a	certain	minimal	level	of	testing	knowledge.
Certification	of	all	employees	on	the	staff	can	help	the	test	manager	introduce	common
terms	and	methods,	which	can	improve	communications	within	the	group	and	help	the
organization	become	more	consistent	in	its	processes.

Using	the	same	certification	program	for	the	entire	staff	is	more	effective	at	introducing	a
commonality	of	terms	than	using	multiple	programs.	That	is,	if	one	of	the	goals	of	the	test
manager	is	to	establish	a	common	vocabulary	and	philosophy	of	testing	within	the
organization,	he	or	she	would	do	well	to	choose	just	one	of	the	certification	programs
explained	in	this	chapter	and	urge	their	staff	to	use	that	program	over	the	others.	If	some
employees	wish	to	get	another	certification	in	addition	to	your	organization's	standard,	then
good	for	them.

Key
Point

If	one	of	the	goals	of	the	test	manager	is	to	establish	a	common	vocabulary
and	philosophy	of	testing	within	the	organization,	he	or	she	would	do	well	to
choose	just	one	of	the	certification	programs	explained	in	this	chapter	and	urge
their	staff	to	use	that	program	over	the	others.

Incentive	to	Study

Time	and	money	for	training	are	often	in	short	supply,	so	anything	that	encourages	an
employee	to	study	on	his	or	her	own	time	is	an	obvious	plus.	Employees	who	pursue	training
such	as	certification	on	their	own	initiative	are	usually	more	motivated	to	learn	than
employees	who	are	forced	or	"urged"	to	learn	on	their	own,	or	to	attend	a	class	that	they
really	don't	want	to	attend.	The	incentive	to	learn	can	be	further	enhanced	by	offering
employees	some	additional	reward	for	completing	the	program.	One	of	our	clients,	for
example,	presented	newly	certified	testers	with	a	gift	certificate	and	honorable	mention	in
the	company	newsletter.	Other	companies	award	extra	vacation	or	"comp"	time	to
successful	individuals,	or	at	least	agree	to	pay	for	the	study	fees	and	course	exam.	These
rewards	not	only	are	an	incentive	to	study,	but	also	show	support	of	the	certification
program	and	of	the	employees	who	participate	in	it.

Motivation

Training	is	often	a	motivator	for	employees.	Pursuing	a	formal	regimen,	such	as	one	of	the
certification	programs	addressed	in	this	book,	can	be	a	motivator	for	all	participating

employees.

Career	Path

Test	managers	can	use	a	certification	program	as	a	basis	for	creating	a	career	path	for	their
employees.	For	example,	certification	might	be	one	of	the	criteria	for	being	promoted	from
one	level	to	another,	or	for	moving	from	one	job	to	another	(e.g.,	from	"tester"	to	"test
analyst").	Since	all	candidates	for	promotion	are	required	to	complete	the	same
standardized	certification	program,	the	promotion	process	is	seen	as	fair	and	impartial.

Show	of	Support

Encouraging	staff	to	participate	in	a	certification	program	shows	the	employees	that	you
support	their	careers	and	you	care	about	their	success.	You	can	reinforce	this	support	by
allowing	employees	who	are	seeking	certification	some	"company	time"	to	work	toward	the
certification.

Value	of	Certification	to	the	Company

Everything	discussed	above	that	provides	value	to	the	individual	and	the	manager	ultimately
helps	the	company	that	employs	them.	One	added	bonus	for	the	company	is	that	they	can
point	to	the	certifications	as	"evidence"	of	the	quality	of	the	staff	(and	therefore	the
products)	that	they	produce	(okay,	we'll	say	it,	"Some	companies	may	use	certification	of
their	employees	as	a	marketing	tool").	Employee	certifications	can	also	play	an	important
role	in	helping	an	organization	achieve	ISO	certification,	since	the	ISO	certification	process
requires	managers	to	maintain	employee	training	records.

How	to	Prepare	for	Certification

The	first	step	in	obtaining	a	certification	is	to	complete	an	application	and	submit	it	to	the
organization	to	see	if	you	qualify	to	sit	for	the	exam.	The	next	step	is	to	prepare	for	the
exam	itself.	This	can	be	done	through	self-study,	formal	education,	or	some	combination	of
the	two.	Most	of	the	organizations	that	provide	certification	also	provide	training	to	help
students	achieve	the	prescribed	goals.

All	certification	programs	have	a	Body	of	Knowledge	(BOK),	which	is	assembled	by	industry
experts	and	identifies	best	practices	for	professional	performance.	For	example,	ASQ's
Certified	Software	Quality	Engineer	(CSQE)	certification	requires	expertise	within	the
following	areas:

Software	Standards	and	Ethics

Software	Quality	Management

Software	Processes

Software	Project	Management

Software	Test	Engineering

Software	Metrics	and	Measurement	Methods

Software	Auditing

Software	Configuration	Management

The	IEEE's	Certified	Software	Development	Professional	(CSDP)	certification	requires
knowledge	in:

Software	Standards	and	Ethics

Software	Requirements

Software	Design

Software	Construction

Software	Testing

Software	Maintenance

Software	Configuration	Management

Software	Engineering	Management

Software	Engineering	Process

Software	Engineering	Tools	and	Methods

Software	Quality

QAI's	Certified	Software	Test	Engineer	(CSTE)	body	of	knowledge	covers:

Quality	Principles	and	Concepts

Verification	and	Validation	Methods

Test	Approach	and	Planning

Test	Design	and	Execution

Test	Analysis,	Reporting,	and	Improvement

IIST's	Certified	Software	Test	Professional	(CSTP)	domain	consists	of:

Principles	of	Software	Testing

Test	Design

Test	Management

Test	Execution	and	Defect	Tracking

Requirements	Definition,	Refinement,	and	Verification

Test	Automation

Verification	Testing

BCS's	Information	Systems	Examination	Board	(ISEB)	body	of	knowledge	consists	of:

Principles	of	Testing

Testing	Terminology

How	Much	Testing	Is	Enough?

Testing	Throughout	the	Lifecycle

Dynamic	Testing	Techniques

Static	Testing	Techniques

Test	Management

Organizational	Structures	for	Testing

Configuration	Management

Test	Estimation

Test	Monitoring

Incident	Management

Standards	for	Testing

Tool	Support	for	Testing

Recertification

Each	of	the	certification	programs	listed	in	Table	9-1	requires	recertification	on	a	periodic
basis.	Usually,	you	can	accomplish	this	by	re-sitting	for	the	exam	(ugh!)	or	performing	other
activities	that	will	earn	you	recertification	credit.	Examples	include:

Continuing	education	courses	and/or	tutorials

Attend	or	present	at	seminars	and/or	conferences

Professional	meetings

Committees

Publishing

Speaking	engagements,	presentations

Case	Study	9-3:	Certification	Can	Benefit	You	on	Many	Levels

How	Certification	Has	Benefited	Me

I'm	glad	that	I	made	the	decision	to	pursue	certification.	Being	certified	has	benefited
me	on	many	levels.	Being	quite	active	in	the	software	quality	community,	I	have
gained	additional	distinction	and	credibility	with	writing	articles,	speaking	at
conferences,	and	teaching	courses.	I'm	a	firm	believer	in	continuing	education.	I	enjoy
the	endless	learning	aspect	of	my	continuing	education	efforts,	and	certification	not
only	has	supplemented	my	knowledge	base,	but	also	motivates	me	to	remain
certified.	By	continuing	with	my	professional	development	activities,	which	I	enjoy
doing	anyway,	I	now	obtain	the	additional	benefit	of	recertification	credits	that	I	can
apply	towards	my	future	recertification	efforts.	Also,	when	I	went	to	college	there	were
no	SQA	or	testing	courses.	Certification	has	helped	me	fill	the	void	that	traditional
education	left	me	with.

During	a	recent	job	hunt,	one	of	my	certifications	was	a	key	competitive	advantage
that	helped	me	land	job	offers.	In	addition,	with	my	newly	acquired	certifications	since
I	got	hired,	I	now	have	additional	leverage	during	my	next	performance	review.	I	have
effectively	increased	my	worth	and	value	to	my	employers	and	in	the	marketplace.
Moreover,	certification	has	given	me	additional	visibility	and	recognition	within	my
company	and	has	made	me	the	de	facto	quality	"expert"	in	my	business	unit.	Mostly,	I
enjoy	the	personal	satisfaction	from	achieving	my	career	goals	and	inspiring	others	to
follow	the	path	and	enjoy	the	benefits	of	becoming	certified.

—	Eric	Patel

Case	Study	9-4:	Certification	is	one	of	the	best	ways	to	complement	a	software
engineering	degree.

Certification:	Making	My	Life	Easier

I	have	found	that	software	quality	certification	is	one	of	the	best	ways	to	complement	a
software	engineering	degree.	An	engineer	by	trade	solves	problems.	A	quality
engineer	attempts	to	solve	problems	in	the	most	effective	and	efficient	means	while
assuring	quality.	Organizations	typically	pay	software	quality	engineers	to	drive	end-
product	quality	by	testing	prior	to	delivery.	Some	organizations	realize	that	focusing	on

activities	earlier	on	and	throughout	the	development	process	can	help	achieve
software	quality.	The	tools	and	skills	that	I	developed	have	allowed	me	to	increase
customer	satisfaction,	reduce	development	time,	and	have	a	team	that	upon	project
completion	was	sane	enough	to	succeed	in	the	future.

Another	reason	why	certification	adds	value	is	that	it	makes	my	daily	functions	easier.
If	I	identify	a	process	improvement	that	saves	months	of	overtime	or	a	metric	that	aids
in	resolving	a	real	issue,	my	life	is	easier	and,	more	importantly,	less	chaotic.	I	was
recently	discussing	this	issue	with	a	manager	of	a	Software	Quality	Department	in	a
very	successful	company.	We	were	discussing	how	their	products	come	to	"releasable
quality	levels."	His	answer	was	that	quality	is	achieved	by	extensive	testing.
Furthermore,	we	talked	about	how	although	testing	may	be	a	necessity,	it	can	be	a
very	ineffective	process.

As	part	of	the	certification	program	of	study,	tools	and	techniques	are	identified	and
applied	with	the	goal	of	preventing	defects	from	being	inserted	into	the	product	in	the
first	place.	This	allows	the	entire	team	to	be	more	effective	and	produce	a	higher
quality	product	or	service.	The	team	is	not	solely	dependent	upon	testing	to	produce
high	quality	software.	We	also	acknowledged	that	subjects	like	prototyping,	modeling,
and	project	management	weren't	new	ideas	but	ones	that	are	hard	to	implement.
Certification	taught	me	to	"tool-smith"	my	abilities	and	develop	skills	to	fit	the	right	tool
to	the	job.

Attaining	certification	is	the	first	step.	Certifications	must	be	renewed.	This	means
constant	learning,	demonstration,	and	application,	all	of	which	require	ongoing
commitment.	As	a	hiring	manager,	I	have	found	that	there	is	no	better	way	to	reward
this	professional	commitment	than	to	recognize	individuals'	professional	certification
and	accomplishments.

—	Darin	Kalashian

Team-Fly 	

Team-Fly

	

Chapter	10:	The	Test	Manager
"A	writer	asked	me,	'What	makes	a	good	manager?'	I	replied,	'Good	players.'"

—	Yogi	Berra

What	Is	Management?
Henry	Mintzberg	wrote	a	classic	article	called	"The	Manager's	Job:	Folklore	and	Fact"	for
the	Harvard	Business	Review	in	1975.	In	his	article,	Mintzberg	concluded	that	many
managers	don't	really	know	what	they	do.	When	pressed,	many	managers	fall	back	on	the
mantra	many	of	us	have	been	taught	that	managers	plan,	organize,	coordinate	and	control,
and	indeed	managers	do	spend	time	doing	all	of	these	things.

Rather	than	discuss	management	in	light	of	tasks	or	activities,	Mintzberg	has	defined
management	by	a	series	of	roles	that	managers	fulfill.	A	manager,	states	Mintzberg,	is
vested	with	formal	authority	over	an	organization.	From	this	authority	comes	status	that
leads	the	manager	into	the	various	interpersonal	roles	shown	in	Figure	10-1,	which	allow	the
manager	to	gain	access	to	information,	and	ultimately	allow	him	or	her	to	make	decisions.
It's	instructional	to	take	this	model	and	apply	it	to	a	software	testing	manager.

	Figure	10-1:	The	Manager's	Roles

Interpersonal	Roles

The	test	manager	is	the	figurehead	for	the	testing	group	and,	as	such,	can	affect	the
perception	people	outside	the	test	group	have	of	the	testing	group	and	the	people	in	it.	In
most	companies,	the	test	manager	is	very	visible	within	the	entire	Information	Technology
(IT)	division	and	may	even	be	well	known	in	other	organizations	outside	of	IT.	Examples	of
this	visibility	are	the	manager's	role	on	the	Configuration	Control	Board,	Steering	Council,	or
Corporate	Strategy	Group.

Because	of	the	unique	nature	of	testing	software	(i.e.,	evaluating	the	work	of	another	group
the	developers	-	for	use	by	a	third	group	-	the	users),	the	testing	manager	will	have	to
coordinate	and	work	with	people	from	many	organizations	throughout	the	company	and	even
with	groups	and	individuals	outside	of	the	company.	Figure	10-2	shows	just	a	few	of	the
people	with	whom	a	test	manager	may	have	to	deal	on	a	daily	basis.

	
Figure	10-2:	Interpersonal	Roles	of	a	Test	Manager

Another	interpersonal	role	that	the	test	manager	plays	is,	of	course,	the	leader.	As	such,	the
manager	is	trusted	to	accomplish	the	mission	of	the	organization	and	ensure	the	welfare	of
the	staff.	Refer	to	the	section	below	on	the	Test	Manager	as	a	Leader.

Informational	Roles

The	test	manager	is	in	a	position	to	present	information	on	a	daily	basis.	He	or	she	will	be
expected	to	provide	status	reports,	plans,	estimates,	and	summary	reports.	Additionally,	the
test	manager	must	fulfill	a	role	as	a	trainer	of	the	testing	staff,	upper	management,
development,	and	the	user	community.	In	this	role,	the	test	manager	will	act	as	the
spokesperson	for	the	testing	group.

Decisional	Roles

Test	managers	make	hundreds	of	decisions	every	day:

Which	tester	should	get	this	assignment?

What	tool	should	we	use?

Should	we	work	overtime	this	weekend?

And	so	on…

One	of	the	major	decisional	roles	that	the	test	manager	may	take	part	in	is	the	decision	on
what	to	do	at	the	conclusion	of	testing.	Should	the	software	be	released	or	should	it
undergo	further	testing?	This	is	primarily	a	business	decision,	but	the	test	manager	is	in	a
unique	position	to	participate	in	this	decision-making	process	by	advising	(the	CCB,	users,
or	management)	on	the	quality	of	the	software,	the	likelihood	of	failure,	and	the	potential
impact	of	releasing	the	software.

Team-Fly 	

Team-Fly

	

Management	vs.	Leadership
According	to	Robert	Kreitner	and	Angelo	Kinicki	in	their	book	Organizational	Behavior,
"Management	is	the	process	of	working	with	and	through	others	to	achieve	organizational
objectives	in	an	efficient	and	ethical	manner."	Effective	managers	are	team	players	that	have
the	ability	to	creatively	and	actively	coordinate	daily	activities	through	the	support	of	others.
Management	is	about	dealing	with	complexity.	Test	managers	routinely	have	to	work	within
complicated	organizations	that	possess	many	formal	and	informal	lines	of	communication.
They	deal	with	complex	processes	and	methodologies,	staffs	with	varying	degrees	of	skill,
tools,	budgets	and	estimates.	This	is	the	essence	of	management.

Key
Point

Management	is	about	dealing	with	complexity.

Leadership	is	about	dealing	with	change.

Kreitner	and	Kinicki	state	that	leadership	is	"a	social	influence	process	in	which	the	leader
seeks	the	voluntary	participation	of	subordinates	in	an	effort	to	achieve	organizational
goals."	It's	about	dealing	with	change.	Leadership	is	what	people	possess	when	they	are
able	to	cope	with	change	by	motivating	people	to	adopt	and	benefit	from	the	change.
Leadership	is	more	than	just	wielding	power	and	exercising	authority.	Leadership	depends
on	a	million	different	little	things	(e.g.,	coaching,	effectively	wandering	around,	consistency,
enthusiasm,	etc.)	that	work	together	to	help	achieve	a	common	goal.	Management	controls
people	by	pushing	them	in	the	right	direction;	leadership	motivates	them	by	satisfying	basic
human	needs.	In	his	essay	"What	Leaders	Really	Do,"	John	Kotter	explains	that
"management	and	leadership	are	complementary."	That	is,	test	managers	don't	need	to
become	test	leaders	instead	of	test	managers,	but	they	do	need	to	be	able	to	lead	as	well
as	manage	their	organization.

Key
Point

"Leadership	is	a	potent	combination	of	strategy	and	character.	But	if	you	must
be	without	one,	be	without	strategy."

-	General	H.	Norman	Schwartzkopf

Leadership	Styles

A	debate	that	has	been	going	on	for	thousands	of	years	(if	you	read	Thucydides'	The
Peloponnesian	War,	you'll	see	that	they	were	debating	the	issue	over	2000	years	ago)	is
whether	leaders	are	made	or	born.	There	are	many	references	to	this	topic,	but,	at	the	end
of	the	day,	most	conclude	that	while	there	are	certain	personal	characteristics	that	make	it
easier	to	be	a	leader,	almost	everyone	has	the	potential	to	be	a	leader.	For	example,	some
people	are	naturally	better	communicators	than	others.	Good	communications	skills	are	a
definite	asset	to	any	leader.	Still,	a	determined	person	can	overcome	or	compensate	for	a
personal	deficiency	in	this	area	and	most	others.	Certainly,	the	Marine	Corps	believe	that	all
Marines	are	or	can	become	leaders.

We	think	that	what's	important	for	you	is	to	determine	what	style	of	leadership	best	fits	your

personality.	If	you're	naturally	quiet	and	prefer	one-on-one	communications,	then	your
leadership	style	should	focus	on	this	strength	(of	course,	you'll	still	have	to	talk	in	front	of
groups	and	should	work	on	this	skill).	If	you're	naturally	extroverted,	your	leadership	style
should	reflect	this	trait.

Case	Study	10-1:	Choosing	the	correct	leadership	style	is	an	important	part	of	being
an	effective	leader.

Leadership	As	a	Platoon	Commander

As	a	young	Lieutenant	stationed	in	Japan	in	the	1970s,	I	was	getting	my	first	real	taste
of	leadership	as	a	platoon	commander	in	charge	of	30	or	so	hardcharging	Marines.
Even	after	4	years	at	the	Naval	Academy	and	the	Training	Program	for	Marine
Lieutenants	(appropriately	enough,	called	The	Basic	School),	my	leadership	style	was
still	very	much	in	the	formative	stages.	There	was,	however,	one	Captain	who	I
thought	was	a	really	good	leader.	The	one	thing	I	remember	about	him	was	that	he
yelled	a	lot	at	his	troops.	"Move	that	cannon	over	there!	Do	it	now!	Hurry	up!"	You	get
the	picture.	At	that	point,	I	assumed	that	one	of	the	reasons	he	was	a	good	leader	was
because	he	was	very	vocal	and	yelled	at	his	Marines.	So,	for	the	first	time	in	my	life,	I
began	yelling.

After	a	couple	of	days	of	this	surprising	tirade,	one	of	my	sergeants	came	up	to	me
and	said,	"Sir,	you	know	all	that	yelling	crap?	Cut	it	out,	it	ain't	you"	(these	may	not
have	been	his	exact	words).	Now,	it	takes	some	courage	for	a	Sergeant	to	criticize	his
platoon	commander,	especially	in	light	of	the	fact	that	many	new	Lieutenants	are	not
yet	all	that	confident	in	their	leadership	skills	anyway.	But,	of	course,	he	was	right.
Yelling	was	not	my	style.	So	I	(almost)	never	yelled	at	my	Marines	again	and	I	like	to
think	that	I	was	a	better	leader	for	it.	Thank	you,	Sergeant.

P.S.	There's	another	lesson	hidden	in	the	story	above:	Good	leaders	learn	from	their
employees.

—	Rick	Craig

Team-Fly 	

Team-Fly

	

Marine	Corps	Principles	of	Leadership
The	following	list	contains	a	set	of	leadership	principles	used	by	the	Marine	Corps,	but
pertinent	to	every	leader:

Know	yourself	and	continually	seek	self-improvement.

Be	technically	and	tactically	proficient	(know	your	job).

Develop	a	sense	of	responsibility	among	your	subordinates.

Make	sound	and	timely	decisions.

Set	the	example.

Know	your	Marines	and	look	out	for	their	welfare.

Keep	your	Marines	informed.

Seek	with	responsibility	and	take	responsibility	for	your	actions	and	the	actions	of
your	Marines.

Ensure	that	tasks	are	understood,	supervised,	and	accomplished.

Train	your	Marines	as	a	team.

Employ	your	command	(i.e.,	testing	organization)	in	accordance	with	your	team's
capabilities.	(Set	goals	you	can	achieve.)[1]

It's	easy	to	see	that	these	principles	are	as	valid	for	your	organization	as	they	are	for	the
Marine	Corps.	Rick	wrote	these	principles	down	in	his	day-timer	so	he	could	review	them
periodically,	and	apply	them	to	his	daily	routine.	It	always	seems	to	help	him	keep	what's
really	important	in	perspective.

[1]Derived	from	NAVMC	2767	User's	Guide	to	Marine	Corps	Leadership	Training

Team-Fly 	

Team-Fly

	

The	Test	Manager	As	a	Leader
Military-style	training	for	business	executives	seems	to	be	all	the	rage	these	days.	There
are	boot	camps	and	training	programs	for	executives	and	numerous	books	on	using	military
leadership	skills	in	the	corporate	setting.	This	section	uses	the	model	of	leadership	taught	by
the	Marine	Corps.

Cornerstones	of	Leadership

Over	the	years,	as	a	Marine	officer,	Rick	has	had	the	opportunity	to	teach	many	leadership
forums	for	enlisted	personnel	and	officers	of	various	ages	and	ranks.	Authority,
responsibility,	and	accountability	(Figure	10-3)	are	the	cornerstones	that	the	Marine	Corps
uses	to	teach	Marines	how	to	become	leaders.

	Figure	10-3:	Cornerstones	of	Marine	Leaders

Authority

Authority	is	the	legitimate	power	of	a	leader.	In	the	case	of	the	test	manager,	this	authority
is	vested	in	the	manager	as	a	result	of	his	or	her	position	in	the	organization	and	the	terms
of	employment	with	the	company	that	he	or	she	works	for.	In	some	test	organizations,
informal	leaders	also	exist.	For	example,	in	the	absence	of	an	appointed	test	lead,	an
experienced	tester	may	take	over	the	management	of	a	small	group	of	testers	and	their
work.	Informal	leaders	don't	receive	any	kind	of	power	from	the	organizational	hierarchy,	but
rather	they're	able	to	lead	due	to	their	influence	over	the	people	they're	leading.	This
influence	normally	exists	due	to	the	experience	level	of	the	informal	leader	and	his	or	her
willingness	to	employ	some	or	all	of	the	principles	of	leadership	outlined	in	this	chapter.

Key
Point

Some	military	books	are	now	commonly	found	in	the	business	section	of	many
libraries	and	book	stores:

Sun	Tzu:	The	Art	of	War

Fleet	Marine	Force	Manual	1	(FMFM1)

The	Peloponnesian	War	by	Thucydides

Other	popular	"business"	books	have	a	military	theme	or	background:
Leadership	Secrets	of	Attila	the	Hun

Semper	Fi:	Business	Leadership	the	Marine	Way

Responsibility

Responsibility	is	the	obligation	to	act.	The	test	manager	is	obligated	to	perform	many
actions	in	the	course	of	each	day.	Some	of	these	actions	are	mandated	(i.e.,	daily	meetings,
status	reporting,	performance	appraisals,	etc.).	Other	responsibilities	are	not	mandated,	but
are	required	because	the	leader	knows	and	understands	that	they	will	support	the	ultimate
satisfaction	of	the	mission	of	the	organization	and	its	people.	Examples	include	developing
metrics	and	reports	to	manage	the	testing	effort,	rewarding	staff	members	for	a	job	well
done,	and	mentoring	new	employees.

Accountability

Accountability	means	answering	for	one's	actions.	Test	managers	are	held	accountable	for
maximizing	the	effectiveness	of	their	organization	in	determining	the	quality	of	the	software
they	test.	This	means	that	the	manager	must	test	what's	most	important	first	(i.e.,	risk
management);	they	must	make	use	of	innovations	to	achieve	greater	effectiveness	(i.e.,
tools	and	automation);	they	must	have	a	way	to	measure	the	effectiveness	of	their	testing
group	(i.e.,	test	effectiveness	metrics);	they	must	ensure	the	training,	achievement,	and
welfare	of	their	staff;	and	they	must	constantly	strive	to	improve	the	effectiveness	of	their
efforts.

Key
Point

Test	managers	are	held	accountable	for	maximizing	the	effectiveness	of	their
organization	in	determining	the	quality	of	the	software	they	test.

Politics

To	many	people,	the	word	politics	evokes	an	image	of	some	slick,	conniving,	controlling
person.	Really,	though,	there's	nothing	negative	about	the	word	or	business	we	know	as
politics.	One	of	the	definitions	of	politics	in	Webster's	Dictionary	is	"the	methods	or	tactics
involved	in	managing	a	state	or	government."	For	our	purposes,	we	can	replace	the	words
"state	or	government"	with	"organization"	and	we'll	have	a	workable	definition	of	politics.

Politics	is	how	you	relate	to	other	people	or	groups.	If	you,	as	a	manager,	say,	"I	don't	do
politics,"	you're	really	saying,	"I	don't	do	any	work."	Politics	is	part	of	the	daily	job	of	every
manager	and	includes	his	or	her	work	to	secure	resources,	obtain	buy-in,	sell	the
importance	of	testing,	and	generally	coordinate	and	work	with	other	groups	such	as	the
development	group.

Key
Point

The	Politics	of	Projects	by	Bob	Block	provides	some	good	insights	about	the
role	that	politics	plays	in	organizations.

Mr.	Block's	definition	of	politics	is,	"those	actions	and	interventions	with
people	outside	your	direct	control	that	affect	the	achievement	of	your	goals."

Span	of	Control

Key
Point

A	typical	effective	leader	can	successfully	manage	the	work	of	4	direct
reports,	while	some	leaders	can	effectively	manage	up	to	8.

There's	a	limit	to	the	number	of	people	that	can	be	effectively	managed	by	a	single	person.
This	span	of	control	varies,	of	course,	with	the	skill	of	the	manager	and	the	people	being
managed,	and	the	environment	in	which	they	work.	Several	years	ago,	a	government
agency	conducted	a	study	to	determine	what	the	ideal	span	of	control	is	for	a	proficient
leader.	Their	conclusion	was	that	a	typical	effective	leader	can	successfully	manage	the
work	of	4	direct	reports	and	some	leaders	can	effectively	manage	up	to	8	(note	that	"direct
reports"	do	not	include	administrative	personnel	such	as	clerks	and	secretaries).	The
Commandant	of	the	U.S.	Marine	Corps	ultimately	has	over	200,000	active-duty	and	reserve
"employees,"	but	he	directs	them	through	only	four	(three	active-duty	and	one	reserve)
Division	Commanders	(i.e.,	his	span	of	control	is	four).	We	know	that	some	of	you	are
already	saying,	"That	rule	doesn't	apply	to	me.	I	have	20	direct	reports	and	I'm	a	great
manager."	Well	then,	good	for	you.	But	we	believe	that	if	you	have	large	numbers	of	direct
reports	and	you're	a	good	and	effective	manager,	there's	something	else	happening.
Informal	leaders	have	emerged	to	coordinate,	mentor,	counsel,	or	even	supervise	some	of
their	colleagues.	There's	nothing	inherently	wrong	with	these	informal	"chains	of	command,"
other	than	the	extra	burden	they	put	on	the	informal	leaders.	These	informal	leaders	have	to
function	without	organizational	authority	and	prestige,	and	consequently	have	to	work	even
harder	to	succeed.	They	are	also,	of	course,	not	receiving	pay	for	this	extra	work,	which
can	itself	have	long-term	implications	on	their	overall	morale.	One	last	thought	on	the
subject:	This	is	an	opportunity	to	create	the	career	path	that	we	talked	about	in	the	Software
Tester	Certifications	section	of	Chapter	9.

Effective	Communication

Poor	communication	is	one	of	the	more	frequently	cited	frustrations	of	testers.	It's	important
to	establish	good	communications	channels	to	resolve	conflicts	and	clarify	requirements.
Some	of	these	communications	channels	will	naturally	develop	into	an	informal	network,
while	others	(e.g.,	configuration	management,	defect	reporting,	status	reporting)	need	to	be
made	formal.

Key
Point

"The	most	important	element	in	establishing	a	happy,	prosperous
atmosphere	was	an	insistence	upon	open,	free,	and	honest
communication	up	and	down	the	ranks	of	our	management	structure."

-	Harold	Geneen

One	of	the	most	important	jobs	of	the	test	manager	is	to	provide	feedback	to	the	team
members.	Testers	are	anxious	to	know	when	they've	done	a	good	job	or,	on	the	other	hand,
if	they	missed	a	critical	bug.	In	particular,	testers	need	feedback	on	the	metrics	that	they're

required	to	collect.	Without	the	feedback	loop,	they'll	feel	like	they're	feeding	a	"black	hole."
If	no	feedback	is	provided,	some	testers	will	stop	collecting	metrics	and	others	will	record
"any	old	data."

Feedback	loops	don't	just	go	down	through	the	ranks.	Staff	members	must	feel	comfortable
communicating	with	their	manager.	One	way	to	foster	this	communication	is	to	establish	an
open-door	policy.	Basically,	the	test	manager	should	make	it	known	that	any	staff	member
can	visit	him	or	her	at	any	time	to	discuss	job-related	or	personal	issues.	This	open-door
policy	goes	a	long	way	toward	developing	rapport	with	the	staff	and	creating	the	loyalty	that
all	leaders	need.

Team-Fly 	

Team-Fly

	

The	Test	Manager's	Role	in	the	Team
Test	managers	play	an	important	role	in	the	testing	team.	These	managers	are	responsible
for	justifying	testers'	salaries,	helping	to	develop	career	paths,	building	morale,	and	selling
testing	to	the	rest	of	the	organization.

Equal	Pay	for	Equal	Jobs

Traditionally,	test	engineers	have	received	less	pay	than	their	counterparts	in	the
development	group.	Lately,	we've	seen	a	gradual	swing	toward	parity	in	pay	between	the
two	groups.	If	your	test	engineers	receive	less	pay	than	the	developers,	it's	important	to
determine	why:

Is	it	because	the	developers	have	more	experience?

Is	it	because	the	developers	require	more	training	or	have	to	be	certified?

Is	it	because	software	development	is	seen	as	a	profession	and	testing	is	not?

Or	is	it	just	culture	or	tradition	that	developers	receive	more	pay?

Key
Point A	good	source	for	salary	information	can	be	found	at:	www.salary.com

As	a	test	manager,	you	should	determine	if	a	pay	disparity	exists.	If	it	does	exist	and	the
reason	is	only	culture	or	tradition,	you	should	fight	the	battle	for	parity	of	pay	for	your	staff.
Even	if	you	don't	succeed,	your	fight	will	help	instill	loyalty	and	respect	from	your	staff.	If
your	engineers	receive	less	pay	because	they	have	less	training	or	are	perceived	as	less
professional,	you	have	some	work	to	do	before	lobbying	for	equal	pay.	You	might	consider:

implementing	a	formal	training	curriculum	for	your	testers.

providing	an	opportunity	for	certification	using	one	of	the	programs	described	in	the
Software	Tester	Certifications	section	of	Chapter	9.

developing	a	career	path	so	that	test	engineers	have	a	logical	way	to	advance	in	the
organization	without	transferring	out	of	the	testing	organization.

embarking	on	a	"marketing"	campaign	that	extols	the	benefits	and	return	on
investment	of	testing	to	the	rest	of	the	company.

developing	and	using	metrics	that	measure	the	value	of	testing	and	measure	test
effectiveness.

The	only	way	you	can	fail	is	to	throw	up	your	hands	and	declare,	"This	is	the	way	it	has
always	been	and	this	is	the	way	it	will	always	be!"

Career	Path	Development

http://www.salary.com

It's	desirable	to	have	a	clear	career	path	within	the	testing	organization.	If	the	only	way
testers	can	advance	in	pay	and	prestige	is	by	transferring	to	development	or	some	other
area	within	your	organization,	many	of	your	best	people	will	do	just	that.	In	larger
organizations,	it	may	be	possible	to	establish	different	testing	roles	or	positions	with
established	criteria	for	moving	move	from	one	role	to	another.	For	example,	one	company
that	we	visit	frequently	has	established	the	formal	positions	listed	in	Table	10-1	for	various
testing	jobs.

Table	10-1:	Testing	Positions	at	XYZ	Company

Position Primary	Function

Tester Executes	tests.

Test	Engineer Develops	and	executes	test	cases.

Test	Analyst Participates	in	risk	analysis,	inventories,	and	test	design.

Lead	Test	Analyst Acts	as	a	mentor	and	manages	one	of	the	processes	above.

Test	Lead Supervises	a	small	group	of	testers.

Test	Manager Supervises	the	entire	test	group.

Even	if	you	work	in	a	smaller	test	organization	with	only	one	or	two	testers,	it's	possible	to
create	different	job	titles,	advancement	criteria,	and	possibly	step	increases	in	pay	to
reward	testers	for	their	achievements	and	progress	toward	becoming	a	testing	professional.

Desktop	Procedures

It	is	the	mark	of	a	good	manager	if	his	or	her	subordinate	can	step	in	and	take	over	the
manager's	job	without	causing	a	disruption	to	the	organization.	One	tool	that	Rick	uses	in	the
Marine	Corps	(when	he's	stuck	at	a	desk	job)	to	help	ease	this	transition	is	the	desktop
procedure.	Desktop	procedures	are	simple	instructions	that	describe	all	of	the	routine	tasks
that	must	be	accomplished	by	a	manager	on	a	daily	or	weekly	basis.	These	tasks	may
include	reports	that	must	be	filed,	meetings	attended,	performance	appraisals	written,	etc.

Key
Point

Desktop	procedures	are	simple	instructions	that	describe	all	of	the	routine
tasks	that	must	be	accomplished	by	a	manager	on	a	daily	or	weekly	basis.

Desktop	procedures	are	often	supplemented	by	what	are	called	turnover	files.	Turnover
files	are	examples	of	reports,	meeting	minutes,	contact	lists,	etc.	that,	along	with	the
desktop	procedures,	facilitate	a	smooth	transition	from	one	manager	to	another.	We're
certain	that	many	of	our	readers	already	use	similar	tools,	possibly	with	different	names.	But
if	you	don't,	we	urge	you	to	create	and	use	these	simple	and	effective	tools.

Staying	Late

Many	managers	have	reached	their	position	because	they're	hard	workers,	overachievers,

or	in	a	few	cases	just	plain	workaholics.	For	them,	becoming	a	manager	is	an	opportunity	to
continue	the	trend	to	work	longer	and	longer	hours.	This	may	be	done	out	of	love	for	the	job,
dedication,	inefficiency,	or	for	some	other	reason.	No	matter	what	the	reason	is	for	the
manager	routinely	putting	in	12-hour	days,	it	sends	a	signal	to	the	staff	that	needs	to	be
understood.	How	does	your	staff	"see"	you?	Are	you	seen	as:

dedicated	for	working	long	hours?

inefficient	and	having	to	work	late	to	make	up	for	this	inefficiency?

untrusting	of	the	staff	to	do	their	job?

Are	you	sending	a	signal	that	if	they	become	managers,	they	will	have	to	forgo	their
personal	lives	altogether,	which	will	no	doubt	discourage	some	of	them	from	following	in
your	footsteps?

One	final	thought	on	this	subject.	There's	a	culture	that	exists	in	a	few	organizations
(including	some	parts	of	the	military)	that	urges	staff	members	to	arrive	as	early	as	the	boss
and	not	leave	until	he	or	she	departs.	This	is	a	true	morale	buster.	Often	staff	members	stay
late	just	because	the	boss	is	there,	even	if	they	have	nothing	to	do	or	are	too	burned	out	to
do	it.	This	can	foster	resentment,	plummeting	morale,	and	eventually	lower	efficiency.
Luckily,	this	culture	is	not	too	prevalent,	but	if	it	describes	your	culture	and	you're	the	boss,
then	maybe	it's	time	to	go	home	and	see	your	family!

Motivation

In	a	Marine	Corps	Leadership	symposium,	motivation	was	simply	defined	as	"the	influences
that	affect	our	behavior."	In	his	essay	"What	Leaders	Really	Do,"	John	Kotter	explains	that
leaders	motivate	by:

articulating	the	organization's	vision	in	a	manner	that	stresses	the	value	of	the
audience	they	are	addressing.

involving	the	members	in	deciding	how	to	achieve	the	vision.

helping	employees	improve	their	self-esteem	and	grow	professionally	by	coaching,
feedback	and	role	modeling.

rewarding	success.

We	believe	that	John	Kotter's	model	of	what	motivates	people	is	accurate	and	usable.	We
hope,	though,	that	test	managers	will	remember	that	different	people	are	motivated	by
different	things.	Some	people	are	motivated	by	something	as	simple	as	a	pat	on	the	back	or
an	occasional	"well	done."	Other	people	expect	something	more	tangible	such	as	a	pay
raise	or	promotion.	Test	managers	need	to	understand	what	motivates	their	testers	in
general	and,	specifically,	what	motivates	each	individual	staff	member.	Good	leaders	use
different	motivating	techniques	for	different	individuals.

Key
Point

Good	leaders	use	different	motivating	techniques	for	different	individuals.

At	testing	conferences,	we	often	hear	discussions	about	what	motivates	testers	as	opposed
to	developers.	Developers	seem	to	be	motivated	by	creating	things	(i.e.,	code),	while
testers	are	motivated	by	breaking	things	(i.e.,	test).	While	we	agree	that	some	testers	are
motivated	by	finding	bugs,	we	don't	think	they're	really	motivated	by	the	fact	that	a	bug	was
found	as	much	as	they're	motivated	by	the	belief	that	finding	that	bug	will	ultimately	lead	to	a
better	product	(i.e.,	they	helped	build	a	better	product).

While	we're	talking	about	rewards	and	motivation,	we	would	like	to	reward	you	for	taking
the	time	to	read	this	book.	Send	an	e-mail	to	<ColonelRCraig@aol.com>	and	we'll	send	you
a	coupon	good	for	25%	off	your	next	bill	at	Rick's	restaurant,	MadDogs	and	Englishmen,
located	in	Tampa,	Florida.	Sorry,	plane	tickets	are	not	included.

Key
Point

Don't	forget	to	e-mail	Rick	to	get	a	free	coupon	for	25%	off	your	next	bill	at	his
restaurant,	MadDogs	and	Englishmen.

Building	Morale

Morale	can	be	defined	as	"an	individual's	state	of	mind,"	or	morale	can	refer	to	the	collective
state	of	mind	of	an	entire	group	(e.g.,	the	testing	organization).	The	major	factor	affecting
the	morale	of	an	organization	is	the	individual	and	collective	motivation	of	the	group.	Test
managers	need	to	be	aware	of	the	morale	of	their	organization	and	be	on	the	lookout	for
signs	of	poor	morale,	which	can	rob	an	organization	of	its	effectiveness.	Signs	of	declining
morale	include:

Disputes	between	workers.

Absenteeism	(especially	on	Friday	afternoon	and	Monday	morning).

An	unusual	amount	of	turnover	in	staff.

Requests	for	transfer.

Incompletion	of	work.

Poor	or	shoddy	work.

Change	in	appearance	(dress,	weight,	health).

Lack	of	respect	for	equipment,	work	spaces,	etc.

Disdain	for	authority.

Clock-watching.

Key Morale	can	be	defined	as	"an	individual's	state	of	mind"	or	refer	to	the

mailto:ColonelRCraig@aol.com

Point collective	state	of	mind	of	an	entire	group	(e.g.,	the	testing	organization).

Just	because	some	of	these	signs	exist,	doesn't	necessarily	mean	that	you	have	a	morale
problem.	But	if	the	trend	of	one	or	more	of	these	signs	is	negative,	you	may	have	cause	for
concern.

Managers	who	see	morale	problems	should	discuss	them	with	their	staff,	try	to	determine
the	causes,	and	try	to	find	solutions.	Sometimes,	morale	can	be	affected	by	a	seemingly
trivial	event	that	an	astute	test	manager	can	nip	in	the	bud.	For	example,	we	encountered
one	organization	that	had	a	morale	problem	because	a	new	performance	appraisal	system
was	instituted	without	adequately	explaining	it	to	the	staff	members	who	were	being
measured.	Another	organization	had	a	morale	problem	because	the	testers	thought	that	the
way	bonuses	were	allocated	discounted	their	efforts	when	compared	to	the	developers.
Promoting	frequent	and	open	dialogue	between	the	test	manager	and	his	or	her	staff	can	go
a	long	way	toward	maintaining	the	morale	of	the	group.	Or,	as	the	Marines	would	say,
"Keep	your	Marines	informed."

Key
Point

Promoting	frequent	and	open	dialogue	between	the	test	manager	and	his	or
her	staffs	can	go	a	long	way	toward	maintaining	the	morale	of	the	group.

Selling	Testing

An	important	part	of	the	test	manager's	job	is	to	sell	the	importance	of	testing	to	the	rest	of
the	Information	Technology	(IT)	division,	the	user	community,	and	management.	This	is
obviously	an	instance	of	trying	to	achieve	buy-in	from	the	aforementioned	groups	and	others.
The	test	manager	should	always	be	on	the	lookout	for	opportunities	to	demonstrate	the
value	of	testing.	This	might	mean	speaking	up	in	a	meeting,	making	a	presentation,	or
customizing	metrics	for	the	developer,	user,	or	whomever.

Key
Point

If	a	test	manager	has	a	mentor,	he	or	she	may	be	able	to	use	the	mentor	as	a
sponsor	(i.e.,	a	member	of	management	who	supports	and	promotes	the	work
of	the	test	group).

The	test	manager	must	focus	on	the	value	of	testing	to	the	entire	organization	and	show
what	testing	can	do	for	each	of	the	various	organizational	entities.	For	example,	not	only
does	creating	test	cases	support	the	testing	of	future	releases,	but	the	test	cases
themselves	can	also	be	used	as	documentation	of	the	application.	When	selling	testing,
many	managers	fail	to	emphasize	the	larger	role	that	testing	can	play	in	producing	and
maintaining	quality	software.

This	job	of	promoting	the	value	of	testing	will	have	an	impact	on	staffing	and	budget
requests,	morale	of	the	testing	group,	the	role	of	the	test	manager	in	decision-making
groups	such	as	the	Change	Control	Board	(CCB),	working	relationships	with	other	groups
such	as	development,	and	just	the	general	perception	of	the	testing	group	to	the	rest	of	the
organization.

Manager's	Role	in	Test	Automation

It's	not	the	job	of	the	test	manager	to	become	an	expert	on	testing	tools,	but	he	or	she	does
have	an	important	role	in	their	implementation	and	use.	There	was	a	fairly	extensive
discussion	in	Chapter	6	on	the	pitfalls	of	testing	tools	and,	essentially,	it's	up	to	the	test
manager	to	avoid	those	pitfalls.	Additionally,	the	test	manager	should:

be	knowledgeable	on	the	state	of	the	practice.

obtain	adequate	resources.

ensure	that	the	correct	tool	is	selected.

ensure	that	the	tool	is	properly	integrated	into	the	test	environment.

provide	adequate	training,	identify	and	empower	a	champion.

measure	the	return	on	investment	(ROI)	of	the	tool.

Knowledgeable	on	State	of	Practice

Each	test	manager	should	understand	the	basic	categories	of	tools	and	what	they	can	and
cannot	do.	For	example,	a	test	manager	should	know	what	the	capabilities	and	differences
are	between	a	capture-replay	tool,	a	load	testing	tool,	a	code	coverage	tool,	etc.	This
knowledge	of	tools	should	include	an	awareness	of	the	major	vendors	of	tools,	the	various
types	of	licensing	agreements	available,	and	how	to	conduct	tool	trials.

Obtain	Adequate	Resources

Part	of	the	test	manager's	job	is	to	obtain	the	funding	necessary	to	procure	the	tool,
implement	it,	maintain	it,	and	provide	training	and	ongoing	support.	Remember	that	the	cost
of	implementing	the	tool	and	providing	training	often	exceeds	the	cost	of	the	tool	itself.	While
a	large	part	of	the	training	costs	are	typically	incurred	early	on,	the	manager	must	budget
for	ongoing	training	throughout	the	life	of	the	tool	due	to	staff	turnover	and	updates	in	the
tool.

Ensure	Correct	Tool	Is	Selected

Even	if	your	company	has	an	organization	that	is	assigned	the	primary	job	of	selecting	and
implementing	testing	tools,	the	test	manager	must	still	ensure	that	the	correct	tool	is	chosen
for	his	or	her	testing	group.	We	know	of	many	test	managers	who	have	had	very	bad
experiences	with	some	tools	that	were	"forced	upon	them"	by	the	resident	tool	group.	A	tool
that	works	well	for	one	testing	group	may	not	work	well	for	another.

Key
Point

Just	because	a	tool	works	well	for	one	testing	organization	doesn't	mean	that
it	will	work	well	for	your	organization.

The	good	news	for	those	of	you	who	don't	have	a	tools	group	in	your	company	is	that	you
don't	have	to	worry	about	having	the	tools	gurus	force	you	to	use	the	wrong	tool.	On	the
other	hand,	it's	now	up	to	you	to	do	everything:

Formulate	the	requirements	for	the	tool.

Develop	the	strategy	for	the	tool	use.

Create	the	implementation,	maintenance,	and	training	plans.

And	so	forth…

Ensure	Proper	Integration	of	Tool

In	tool	implementation,	one	of	the	most	important	roles	of	the	test	manager	is	to	ensure	that
the	tool	is	properly	integrated	into	the	test	environment.	For	the	tool	to	be	successfully	used,
it	must	support	the	testing	strategy	outlined	by	the	testing	manager	in	the	organizational
charter	and	in	the	master	test	plan(s).	This	will	require	the	testing	manager	to	determine
what's	most	useful	to	automate,	who	should	do	the	automation,	and	how	the	automated
scripts	will	be	executed	and	maintained.

Provide	Adequate	Training

Many	tools	are	difficult	to	use,	especially	if	the	testers	who	will	be	using	them	don't	have	any
experience	in	programming	or	have	a	fear	of	changing	the	way	they	do	business.	Training
should	include	two	things:

1.	 Teaching	testers	how	to	use	the	tool	(literally,	which	keys	to	push).

2.	 Teaching	testers	how	to	use	the	tool	to	support	the	testing	strategy	outlined	by	the
test	manager.

Key
Point

"Training	is	everything.	The	peach	was	once	a	bitter	almond;	cauliflower
is	nothing	but	cabbage	with	a	college	education."

-	Mark	Twain

The	first	type	of	training	(mentioned	above)	will	most	likely	be	provided	by	the	vendor	of	the
tool.	The	second	type	of	training	may	have	to	be	created	and	conducted	within	the	testing
organization,	since	it's	very	specific	to	the	group	that's	using	the	tool.

Identify	and	Empower	a	Champion

Tool	users,	especially	less	experienced	ones,	can	easily	get	frustrated	if	there's	no	one
readily	available	to	answer	their	questions.	The	tool	vendor's	customer	service	can	help	with
routine	questions	regarding	the	mechanics	of	the	tool,	but	many	of	them	are	incapable	of
answering	questions	relating	to	how	the	tool	is	being	used	at	a	particular	company	or

organization.	That's	where	the	champion	comes	in.	The	test	manager	should	seek	an
enthusiastic	employee	who	wants	to	become	an	expert	on	the	tool,	and	then	provide	that
employee	with	advanced	training,	time	to	help	in	the	tool	implementation,	and	ultimately	the
time	to	help	their	peers	when	they	encounter	difficulty	in	using	the	selected	tool(s).

Measure	the	Return	on	Investment

We've	already	explained	that	tools	are	expensive	to	purchase	and	implement.	A	surprising
number	of	tools	that	are	purchased	are	never	used	or	are	used	sporadically	or	ineffectively.
It's	up	to	the	test	manager	to	determine	if	the	cost	and	effort	to	continue	to	use	the	tool
(e.g.,	maintenance,	upgrades,	training,	and	the	actual	use)	are	worthwhile.

It's	very	painful	to	go	to	management	and	present	a	powerful	argument	to	spend	money	for
the	procurement	of	a	tool	and	then	later	announce	that	the	return	on	investment	of	that	tool
doesn't	warrant	further	use.	Unfortunately,	some	test	managers	throw	good	money	after
bad	by	continuing	to	use	a	tool	that	has	proven	to	be	ineffective.

Team-Fly 	

Team-Fly

	

The	Test	Manager's	Role	in	Training
According	to	the	Fleet	Marine	Force	Manual	1	(FMFM1),	commanders	should	see	the
development	of	their	subordinates	as	a	direct	reflection	on	themselves.	Training	has	been
mentioned	repeatedly	in	this	book	under	various	topics	(e.g.,	test	planning,	implementation
of	tools,	process	improvement,	etc.).	This	section	deals	specifically	with	the	test	manager's
role	in	training,	common	areas	of	training,	and	some	useful	training	techniques.

Key
Point

According	to	the	Fleet	Marine	Force	Manual	1	(FMFM1),	commanders	should
see	the	development	of	their	subordinates	as	a	direct	reflection	on	themselves.

One	common	theme	that	appears	repeatedly	in	most	leadership	and	management	books	is
that	the	leader	is	a	teacher.	Ultimately	a	manager	or	leader	is	responsible	for	the	training	of
his	or	her	staff.	This	is	true	even	in	companies	that	have	a	training	department,	formal
training	curriculum,	and	annual	training	requirements.	Just	because	the	manager	is
responsible	for	the	training	doesn't	mean	that	he	or	she	must	personally	conduct	formal
training,	but	it	does	mean	that	he	or	she	should	ensure	that	all	staff	members	receive
adequate	training	in	the	required	areas,	using	an	appropriate	technique.

Topics	That	Require	Training

The	topics	that	managers	should	provide	training	in	include	software	testing,	tools,	technical
skills,	business	knowledge,	and	communication	skills.

Testing

Many	of	us	are	proud	to	proclaim	that	we're	professional	testers	and,	certainly,	testing	is
now	regarded	by	some	as	a	"profession."	Since	this	is	the	case,	it	only	follows	that	testers,
as	professionals,	should	be	trained	in	their	chosen	career	field.	There	are	formal	training
seminars,	conferences	on	testing	and	related	topics,	Web	sites,	certification	programs	and
books	that	deal	specifically	with	testing.	In	fact,	a	few	universities	are	now	providing	classes
with	a	strong	testing	or	QA	focus.	Managers	need	to	provide	the	time,	money,	and
encouragement	for	their	testers	to	take	advantage	of	these	and	other	opportunities.

Key
Point

"…	A	good	rule	of	thumb	is	that	software	engineering	staff	should
receive	at	least	1	and	as	many	as	3	weeks	of	methods	training	each
year."

-	Roger	Pressman

Tools

In	order	to	be	effective,	testing	tools	require	testers	to	obtain	special	training.	Test
managers	will	want	to	arrange	formal	training	classes	with	the	vendor	of	the	tools	they	use,

as	well	as	informal	coaching	from	the	vendor	and/or	champion.	On-site	training	will	need	to
be	conducted	to	show	your	team	how	the	tool	is	supposed	to	be	used	to	support	the
organization's	testing	strategy.

Technical	Skills

Testers	that	possess	certain	skills,	such	as	programming,	are	often	more	effective	testers
because	they	better	understand	how	a	system	works	rather	than	just	if	it	works.	Some
testers	have	also	told	us	that	they	have	more	confidence	speaking	to	developers	and	other
technical	people	if	they	understand	exactly	what	the	developers	do.	Other	testers	have	also
told	us	that	even	though	they	never	had	to	use	their	programming	skills,	just	having	those
skills	seemed	to	give	them	more	credibility	when	talking	with	developers.	Programming	skills
can	also	help	testers	understand	how	to	automate	test	scripts.

Key
Point

Some	types	of	applications	(e.g.,	Web)	require	testers	to	have	some	technical
knowledge	just	to	be	able	to	properly	do	functional	testing.

Business	Knowledge

A	common	complaint	that	we	hear	about	testers	(usually	from	the	business	experts)	is	that
they	don't	really	understand	the	business	aspects	of	the	software	that	they're	testing.	In
particular,	doing	risk	analysis,	creating	inventories	and	employing	preventive	testing
techniques	require	testers	to	understand	the	underlying	business	needs	that	the	application
is	supporting.	To	alleviate	this	problem,	test	managers	should	arrange	to	have	their	staffs
trained	in	the	business	functions.	A	test	manager	at	an	insurance	company	that	we	often
visit,	for	example,	encouraged	his	staff	members	to	study	insurance	adjusting	and
underwriting.	Other	test	managers	arrange	to	have	their	staff	visit	customers	at	their	site,
work	the	customer	support	desk	for	a	day	or	two,	or	attend	a	college	course	related	to	their
company's	industry.

Communication	Skills

Testers	have	to	communicate	with	people	(e.g.,	developers,	QA,	users,	managers,	etc.)
who	have	a	wide	range	of	backgrounds	and	viewpoints	in	both	verbal	and	written	forms.
Providing	training	in	speaking	and	writing	skills	can	help	facilitate	the	interaction	of	the
testing	staff	with	each	other,	and	with	people	throughout	the	rest	of	the	company	and	even
other	companies.	One	good	way	to	improve	the	communication	skills	of	the	testers	(and	test
manager)	is	to	urge	them	to	submit	papers	and	participate	as	speakers	at	a	conference.
Nothing	improves	communication	skills	better	than	practice.

Methods	of	Training

Test	managers	have	several	options	available	to	them	in	choosing	a	method	for	training	their
staff	members:	mentoring,	on-site	commercial	training,	training	in	a	public	forum,	in-house
training,	and	specialty	training.

Mentoring

Mentoring	is	a	powerful	technique	for	training	staff	members,	especially	newer	ones.	It's	a
process	where	a	less	experienced	person	(e.g.,	a	new-hire	in	a	discipline	such	as	testing)
works	with	a	more	experienced	staff	member.	The	mentor's	job	is	to	help	train	and	promote
the	career	of	his	or	her	understudy.	Mentoring	includes	teaching	understudies	about	the
politics	of	the	organizations,	rules,	etc.,	as	well	as	teaching	them	about	the	methods,	tools,
and	processes	in	place	within	the	organization.	Assigning	a	mentor	to	a	new	hire	also	sends
a	clear	message	to	the	new	employee,	"You're	important	to	us."	There	are	few	things	worse
than	reporting	to	a	new	organization	or	company	and	sitting	around	for	days	or	weeks
without	anything	productive	to	do.

Key
Point

Understudies	are	not	the	only	ones	who	benefit	from	mentoring	programs.
People	who	volunteer	or	are	chosen	to	be	mentors	also	benefit	by	gaining
recognition	as	experts	in	their	field	and	the	opportunity	to	hone	their
communication	and	interpersonal	skills.

In	some	companies,	mentors	are	assigned.	In	this	case,	mentors	have	to	be	trained	in	how
to	be	mentors	and	what	they	have	to	teach	their	understudies.	Some	people	seem	to	be
naturally	good	mentors,	while	others	are	less	effective.	No	one	should	be	forced	to	be	a
mentor	if	they	don't	want	to	be	one.	If	they're	assigned	against	their	wishes,	unwilling
mentors	will	almost	always	be	ineffective	in	their	roles	because	they	impart	a	negative
attitude	to	their	understudies.

Some	people	voluntarily	(and	without	any	organizational	support)	seek	out	understudies	to
mentor.	Similarly,	some	employees	will	seek	out	a	person	to	be	their	mentor.	Both	of	these
scenarios	are	signs	of	motivated	employees	and	normally	exist	in	organizations	with	high
morale.

On-Site	Commercial	Training

It's	possible	to	contract	with	an	individual	or	another	company	to	bring	training	into	your
organization.	This	training	can	be	particularly	valuable	because	it	allows	the	employees	of	a
test	group	to	train	as	a	team.	Sometimes,	the	training	can	even	be	customized	to	meet	the
unique	needs	of	the	group	being	trained.	Even	if	the	training	materials	are	not	customized	in
advance,	a	good	commercial	trainer	should	be	able	to	customize	the	training/presentation	to
a	certain	degree	based	on	the	interaction	of	the	participants.

Key
Point

Even	if	the	training	materials	are	not	customized	in	advance,	a	good
commercial	trainer	should	be	able	to	customize	the	training/presentation	to	a
certain	degree	based	on	the	interaction	of	the	participants.

One	common	problem	with	on-site	training	is	that	participants	are	often	"pulled	out"	of	the
class	to	handle	emergencies	(and	sometimes	just	to	handle	routine	work).	The	loss	of
continuity	greatly	degrades	the	value	of	the	training	for	the	person	who	is	called	out	of	class,
and	also	reduces	the	effectiveness	of	the	training	for	the	other	participants	by	disrupting	the

flow	of	the	presentation.	One	way	to	overcome	this	problem	is	to	conduct	"on-site"	training
at	a	local	hotel	conference	room	or	some	other	venue	removed	from	the	workplace.

Training	in	a	Public	Forum

In	some	cases,	it's	a	good	idea	to	send	one	or	more	of	your	staff	members	to	a	public
training	class.	This	is	especially	useful	if	your	group	is	too	small	to	warrant	bringing	in	a
professional	instructor	to	teach	your	entire	team,	or	if	you	have	a	special	skill	that	only	one
or	two	staff	members	need	(e.g.,	the	champion	of	a	testing	tool).	The	downside	of	public
training	classes	is	that	the	instructor	has	little	opportunity	to	customize	the	material	for	any
one	student,	because	the	audience	is	composed	of	people	from	many	different	backgrounds
and	companies.	On	the	positive	side,	public	forum	training	classes	allow	your	staff	to
interact	with	and	learn	from	people	from	other	companies.	Some	employees	will	also	feel
that	their	selection	to	attend	a	public	training	class	is	a	reward	for	a	job	well	done,	or
recognition	of	the	value	of	the	employee.

Key
Point

Some	employees	will	feel	that	their	selection	to	attend	a	public	training	class	is
a	reward	for	a	job	well	done,	or	recognition	of	the	value	of	the	employee.

In-House	Training

Sometimes,	due	to	budget	constraints,	the	uniqueness	of	the	environment,	or	the	small	size
of	an	organization,	it	may	be	necessary	to	conduct	in-house	training.	The	obvious	drawback
here	is	that	it	can	be	expensive	to	create	training	materials	and	to	train	the	trainer.	Another
drawback	is	that	an	in-house	trainer	may	not	be	as	skilled	a	presenter	as	a	professional
trainer.

Remember	that	the	biggest	cost	of	training	is	usually	the	time	your	staff	spends	in	class,	not
the	cost	of	the	professional	trainer.	So,	having	your	staff	sit	through	an	ineffective
presentation	may	cost	more	in	the	long	run	than	hiring	a	professional	trainer.	Also,	just	like
on-site	commercial	training,	in-house	training	is	subject	to	disruptions	caused	by	participants
leaving	to	handle	emergencies	in	the	workplace.

Key
Point

Remember	that	the	biggest	cost	of	training	is	usually	the	time	your	staff
spends	in	class,	not	the	cost	of	the	professional	trainer.	So,	having	your	staff
sit	through	an	ineffective	presentation	may	cost	more	in	the	long	run	than	hiring
a	professional	trainer.

On	the	positive	side,	having	one	of	your	team	members	create	and	present	the	training
class	can	be	a	great	learning	experience	and	motivator	for	the	person	doing	the
presentation.

Test	managers	from	larger	companies	may	have	an	entire	training	department	dedicated	to
IT	or	even	software	testing.	In	that	case,	your	in-house	training	will	bear	more	resemblance
to	commercial	training	that	happens	to	be	performed	in-house,	than	it	does	to	typical	in-
house	training.

Specialty	Training

There	are	many	types	of	specialty	training	programs	available	today:	Web-enabled	training,
virtual	training	conferences,	and	distance	learning	are	just	a	few.	While	all	of	these	are
valuable	training	techniques,	they	seldom	replace	face-to-face	training.

Case	Study	10-2:	Will	distance	learning	ever	truly	replace	face-to-face	learning	in	a
classroom	setting?

Is	Distance	Learning	a	Viable	Solution?

To:	Mr.	James	Fallows
The	Industry	Standard

September	20,	2000

Dear	James,

I	always	read	your	column	with	interest,	and	the	one	on	September	18	really	grabbed
my	attention.	I	travel	every	week	to	a	different	city,	state,	or	country	to	give	seminars
on	software	testing.	You	would	think	that	being	a	consultant	and	trainer	in	a	technical
area	would	encourage	me	to	buy	in	to	some	of	the	new	"distance	learning"
techniques,	but	so	far	I	am	unimpressed.	And	believe	me	when	I	say	that	I'm	tired	of
traveling	and	want	to	be	convinced	that	there	is	a	better	way	of	communicating	than
having	me	board	a	plane	every	week.

Over	the	years,	I	have	seen	several	stages	of	evolution	that	were	going	to	replace
face-to-face	meetings	and	training.	First	we	had	programmed	learning	in	the	old
"green	screen"	days.	This	was	useful	for	rote	learning	but	didn't	encourage	much
creative	thought.	Next	my	talks	were	videotaped.	Most	of	my	students	think	I'm	a	fairly
dynamic	speaker,	but	occasionally	they	doze	when	I'm	there	in	person	interacting	with
them	you	can	imagine	how	effective	a	two-dimensional	CRT	is.	So	video	didn't	work	-
at	least	not	very	well.	We	tried	the	live	video	feed	with	interactive	chat	rooms.	That
was	only	marginally	more	successful.	Recently,	I	was	asked	to	speak	at	a	virtual
computer	conference.	I	can't	even	imagine	how	that	would	succeed…

Still,	I'm	not	totally	a	Neanderthal.	I	have	participated	in	many	successful	video-
teleconferences.	These	seem	to	work	best	with	people	who	are	comfortable	on	the
phone	and	in	front	of	a	camera.	A	well-defined	agenda	is	a	must,	and	the	meetings
have	to	be	short.	My	biggest	complaint	about	all	forms	of	"interactive"	distance
communications	is	the	tendency	for	many	of	the	participants	(okay,	I'm	talking	about
me)	to	lose	their	train	of	thought	without	the	visual	and	emotional	stimulation	of	a
human	being	in	close	proximity.

I	do	have	high	hopes	for	distance	education	as	opposed	to	training.	By	this	I	mean
where	assignments,	projects,	and	research	are	inter-dispersed	among	short	recorded

or	interactive	lectures,	which	ultimately	leads	to	a	broad	understanding	of	a	topic	or
even	a	degree.	For	a	traveler	like	me,	this	is	an	ideal	way	to	continue	to	learn	without
having	to	be	physically	present.	I	could,	for	example,	continue	my	education	while	in
my	hotel	room	in	Belfast	or	Copenhagen	or	wherever.	The	idea	is	to	use	short	periods
of	time	at	the	convenience	of	the	student.	Training,	on	the	other	hand,	often	requires	a
fairly	intensive	infusion	of	information	on	a	specific	topic	geared	particularly	to	the
audience	at	hand.	To	me,	this	needs	to	be	highly	interactive	and	face-to-face.

Even	in	the	area	of	sales,	I	have	found	no	substitute	for	face-to-face	meetings.	We
have	a	reasonable	record	of	closing	training/consulting	deals	using	the	Internet,	mail,
etc.	but	have	an	almost	perfect	record	when	we	have	actually	gone	to	visit	the	client	in
person.	Is	it	the	medium?	Is	it	training	in	how	to	use	the	technology?	Is	it	that	by
actually	arriving	on	the	client's	doorstep,	we	show	that	we're	serious?	I	don't	really
know.	But	for	the	moment,	I'm	going	to	rack	up	some	serious	frequent-flier	miles.	I
personally	believe	there	will	never	come	a	time	when	advanced	technology	replaces
face-to-face	human	interaction.

-	Rick	Craig

Published	in	the	Industry	Standard,	September	2000.

Team-Fly 	

Team-Fly

	

Metrics	Primer	for	Test	Managers
It's	very	difficult	for	a	test	manager	do	his	or	her	job	well	without	timely,	accurate	metrics	to
help	estimate	schedules,	track	progress,	make	decisions,	and	improve	processes.	The	test
manager	is	in	a	very	powerful	position,	because	testing	is	itself	a	measurement	activity	that
results	in	the	collection	of	metrics	relating	to	the	quality	of	the	software	developed	(usually
by	a	different	group).	These	metrics,	though,	can	be	a	double-edged	sword	for	the
manager.	It's	relatively	easy	to	create	dissatisfaction	or	organizational	dysfunction,	make
decisions	based	on	incorrect	metrics,	and	cause	your	staff	to	be	very,	very	unhappy	if
metrics	are	not	used	judiciously.

Key
Point

Testing	is	itself	a	measurement	activity	that	results	in	the	collection	of	metrics
relating	to	the	quality	of	the	software	developed.

Software	Measurements	and	Metrics

Many	people	(including	us)	do	not	normally	differentiate	between	the	terms	software
measurement	and	software	metrics.	In	his	book	Making	Software	Measurement	Work,	Bill
Hetzel	has	defined	each	of	these	terms	as	well	as	the	terms	software	meter	and	meta-
measure.	While	we	don't	think	it's	imperative	that	you	add	these	terms	to	your	everyday
vocabulary,	it	is	instructive	to	understand	how	each	of	the	terms	describes	a	different	aspect
of	software	measurement.

Software
Measure

A	quantified	observation	about	any	aspect	of	software	-	product,	process	or
project	(e.g.,	raw	data,	lines	of	code).

Software
Metric

A	measurement	used	to	compare	two	or	more	products,	processes,	or	projects
(e.g.,	defect	density	[defects	per	line	of	code]).

Software
Meter

A	metric	that	acts	as	a	trigger	or	threshold.	That	is,	if	a	certain	threshold	is	met,
then	some	action	will	be	warranted	as	a	result	(e.g.,	exit	criteria,	suspension
criteria).

Meta-
Measure

A	measure	of	a	measure.	Usually	used	to	determine	the	return	on	investment
(ROI)	of	a	metric.	Example:	In	software	inspections,	a	measure	is	usually	made
of	the	number	of	defects	found	per	inspection	hour.	This	is	a	measure	of	the
effectiveness	of	another	measurement	activity	(an	inspection	is	a	measurement
activity).	Test	effectiveness	is	another	example,	since	the	test	effectiveness	is	a
measure	of	the	testing,	which	is	itself	a	measurement	activity.

Benefits	of	Using	Metrics

Metrics	can	help	test	managers	identify	risky	areas	that	may	require	more	testing,	training
needs,	and	process	improvement	opportunities.	Furthermore,	metrics	can	also	help	test
managers	control	and	track	project	status	by	providing	a	basis	for	estimating	how	long	the
testing	will	take.

Lord	Kelvin	has	a	famous	quote	that	addresses	using	measures	for	control:

"When	you	can	measure	what	you	are	speaking	about	and	express	it	in	numbers,	you
know	something	about	it;	but	when	you	cannot	measure,	when	you	cannot	express	it
in	numbers,	your	knowledge	is	of	a	meager	and	unsatisfactory	kind:	it	may	be	the
beginning	of	knowledge,	but	you	have	scarcely,	in	your	thoughts,	advanced	to	the
stage	of	science."

It	seems	that	about	half	of	the	speakers	at	software	metrics	conferences	use	the	preceding
quote	at	some	point	in	their	talk.	Indeed,	this	quote	is	so	insightful	and	appropriate	to	our
topic	that	we	too	decided	to	jump	on	the	bandwagon	and	include	it	in	this	book.

Identify	Risky	Areas	That	Require	More	Testing

This	is	what	we	called	the	Pareto	Analysis	in	Chapter	7.	Our	experience	(and	no	doubt
yours	as	well)	has	shown	that	areas	of	a	system	that	have	been	the	source	of	many	defects
in	the	past	will	very	likely	be	a	good	place	to	look	for	defects	now	(and	in	the	future).	So,	by
collecting	and	analyzing	the	defect	density	by	module,	the	tester	can	identify	potentially	risky
areas	that	warrant	additional	testing.	Similarly,	using	a	tool	to	analyze	the	complexity	of	the
code	can	help	identify	potentially	risky	areas	of	the	system	that	require	a	greater	testing
focus.

Key
Point

By	collecting	and	analyzing	defect	density	by	module,	the	tester	can	identify
potentially	risky	areas	that	warrant	additional	testing.

Identify	Training	Needs

In	particular,	metrics	that	measure	information	about	the	type	and	distribution	of	defects	in
the	software,	testware,	or	process	can	identify	training	needs.	For	example,	if	a	certain	type
of	defect,	say	a	memory	leak,	is	encountered	on	a	regular	basis,	it	may	indicate	that	training
is	required	on	how	to	prevent	the	creation	of	this	type	of	bug.	Or,	if	a	large	number	of
"testing"	defects	are	discovered	(e.g.,	incorrectly	constructed	test	cases),	it	may	indicate	a
need	to	provide	training	in	test	case	design.

Identify	Process	Improvement	Opportunities

The	same	kind	of	analysis	described	above	can	be	used	to	locate	opportunities	for	process
improvement.	In	all	of	the	examples	in	the	section	above,	rather	than	providing	training,
maybe	the	process	can	be	improved	or	simplified,	or	maybe	a	combination	of	the	two	can
be	used.	Another	example	would	be	that	if	the	test	manager	found	that	a	large	number	of
the	defects	discovered	were	requirements	defects,	the	manager	might	conclude	that	the
organization	needed	to	implement	requirements	reviews	or	preventive	testing	techniques.

Provide	Control/Track	Status

Test	managers	(and	testers,	developers,	development	managers,	and	others)	need	to	use

metrics	to	control	the	testing	effort	and	track	progress.	For	example,	most	test	managers
use	some	kind	of	measurement	of	the	number,	severity,	and	distribution	of	defects,	and
number	of	test	cases	executed,	as	a	way	of	marking	the	progress	of	test	execution.

Key
Point

You	can't	control	what	you	can't	measure.

-	Tom	DeMarco

Provide	a	Basis	for	Estimating

Without	some	kind	of	metrics,	managers	and	practitioners	are	helpless	when	it	comes	to
estimation.	Estimates	of	how	long	the	testing	will	take,	how	many	defects	are	to	be
expected,	the	number	of	testers	needed,	and	other	variables	have	to	be	based	upon
previous	experiences.	These	previous	experiences	are	"metrics,"	whether	they're	formally
recorded	or	just	lodged	in	the	head	of	a	software	engineer.

Justify	Budget,	Tools,	or	Training

Test	managers	often	feel	that	they're	understaffed	and	need	more	people,	or	they	"know"
that	they	need	a	larger	budget	or	more	training.	However,	without	metrics	to	support	their
"feeling,"	their	requests	will	often	fall	on	deaf	ears.	Test	managers	need	to	develop	metrics
to	justify	their	budgets	and	training	requests.

Provide	Meters	to	"Flag"	Actions

One	sign	of	a	mature	use	of	metrics	is	the	use	of	meters	or	flags	that	signal	that	an	action
must	be	taken.	Examples	include	exit	criteria,	smoke	tests,	and	suspension	criteria.	We
consider	these	to	be	mature	metrics	because	for	meters	to	be	effective,	they	must	be
planned	in	advance	and	based	upon	some	criteria	established	earlier	in	the	project	or	on	a
previous	project.	Of	course,	there	are	exceptions.	Some	organizations	ship	the	product	on	a
specified	day,	no	matter	what	the	consequences.	This	is	also	an	example	of	a	meter
because	the	product	is	shipped	when	the	date	is	reached.

Rules	of	Thumb	for	Using	Metrics

Ask	the	Staff

Ask	the	staff	(developers	and	testers)	what	metrics	would	help	them	to	do	their	jobs	better.
If	the	staff	don't	believe	in	the	metrics	or	believe	that	management	is	cramming	another
worthless	metric	down	their	throats,	they'll	"rebel"	by	not	collecting	the	metric,	or	by
falsifying	the	metric	by	putting	down	"any	old	number."	Bill	Hetzel	and	Bill	Silver	have	outlined
an	entire	metrics	paradigm	known	as	the	practitioner	paradigm,	which	focuses	on	the
observation	that	for	metrics	to	be	effective,	the	practitioners	(i.e.,	developers	and	testers)
must	be	involved	in	deciding	what	metrics	will	be	used	and	how	they	will	be	collected.	For

more	information	on	this	topic,	refer	to	Bill	Hetzel's	book	Making	Software	Measurement
Work.

Key
Point

Taxation	without	representation	is	tyranny	and	so	is	forcing	people	to	use
metrics	without	proper	explanation	and	implementation.

Use	a	Metric	to	Validate	the	Metric

Rarely	do	we	have	enough	confidence	in	any	one	metric	that	we	would	want	to	make	major
decisions	based	upon	that	single	metric.	In	almost	every	instance,	managers	would	be	well
advised	to	try	to	validate	a	metric	with	another	metric.	For	example,	in	Chapter	7	where	we
discussed	test	effectiveness,	we	recommended	that	this	key	measure	be	accomplished	by
using	more	than	one	metric	(e.g.,	a	measure	of	coverage	and	Defect	Removal	Efficiency
[DRE],	or	another	metric	such	as	defect	age).	Similarly,	we	would	not	want	to	recommend
the	release	of	a	product	based	on	a	single	measurement.	We	would	rather	base	this
decision	on	information	about	defects	encountered	and	remaining,	the	coverage	and	results
of	test	cases,	and	so	forth.

Normalize	the	Values	of	the	Metric

Since	every	project,	system,	release,	person,	etc.	is	unique,	all	metrics	will	need	to	be
normalized.	It's	desirable	to	reduce	the	amount	of	normalization	required	by	comparing
similar	objects	rather	than	dissimilar	objects	(e.g.,	it's	better	to	compare	two	projects	that
are	similar	in	size,	scope,	complexity,	etc.	to	each	other	than	to	compare	two	dissimilar
projects	and	have	to	attempt	to	quantify	[or	normalize]	the	impact	of	the	differences).

As	a	rule	of	thumb,	the	further	the	metric	is	from	the	truth	(i.e.,	the	oracle	to	which	it's	being
compared),	the	less	reliable	the	metric	becomes.	For	example,	if	you	don't	have	a	reservoir
of	data,	you	could	compare	your	project	to	industry	data.	This	may	be	better	than	nothing,
but	you	would	have	to	try	to	account	for	differences	in	the	company	cultures,	methodologies,
etc.	in	addition	to	the	differences	in	the	projects.	A	better	choice	would	be	to	compare	a
project	to	another	project	within	the	same	company.	Even	better	would	be	to	compare	your
project	to	a	previous	release	of	the	same	project.

Key
Point

As	a	rule	of	thumb,	the	further	the	metric	is	from	the	truth	(i.e.,	the	oracle	to
which	it's	being	compared),	the	less	reliable	the	metric	becomes.

Measure	the	Value	of	Collecting	the	Metric

Key
Point

"Each	measurement	must	have	a	linkage	to	need."

-	Howard	Rubin

It	can	take	a	significant	amount	of	time	and	effort	to	collect	and	analyze	metrics.	Test
managers	are	urged	to	try	to	gauge	the	value	of	each	metric	collected	versus	the	effort

required	to	collect	and	analyze	the	data.	Software	inspections	are	a	perfect	example.	A
normal	part	of	the	inspection	process	is	to	measure	the	number	of	defects	found	per
inspector	hour.	We	have	to	be	a	little	careful	with	this	data,	though,	because	a	successful
inspection	program	should	help	reduce	the	number	of	defects	found	on	future	efforts,	since
the	trends	and	patterns	of	the	defects	are	rolled	into	a	process	improvement	process	(i.e.,
the	number	of	defects	per	inspector	hour	should	go	down).	A	more	obvious	example	is	the
collection	of	data	that	no	one	is	using.	There	might	be	a	field	on	the	incident	report,	for
example,	that	must	be	completed	by	the	author	of	a	report	that	no	one	is	using.

Periodically	Revalidate	the	Need	for	Each	Metric

Even	though	good	test	managers	may	routinely	weigh	the	value	of	collecting	a	metric,	some
of	these	same	test	managers	may	be	a	little	lax	in	re-evaluating	their	metrics	to	see	if
there's	a	continuing	need	for	them.	Metrics	that	are	useful	for	one	project,	for	example,	may
not	be	as	valuable	for	another	(e.g.,	the	amount	of	time	spent	writing	test	cases	may	be
useful	for	systematic	testing	approaches,	but	has	no	meaning	if	exploratory	testing
techniques	are	used).	A	metric	that's	quite	useful	at	one	point	of	time	may	eventually	outlive
its	usefulness.	For	example,	one	of	our	clients	used	to	keep	manual	phone	logs	to	record
the	time	spent	talking	to	developers,	customers,	etc.	A	new	automated	phone	log	was
implemented	that	did	this	logging	automatically,	but	the	manual	log	was	still	used	for	several
months	before	someone	finally	said,	"Enough	is	enough."

Key
Point

"Not	everything	that	counts	can	be	counted,	and	not	everything	that	can
be	counted	counts."

-	Albert	Einstein

Make	Collecting	and	Analyzing	the	Metric	Easy

Key
Point

Collecting	metrics	as	a	by-product	of	some	other	activity	or	data	collection
activity	is	almost	as	good	as	collecting	them	automatically.

Ideally,	metrics	would	be	collected	automatically.	The	phone	log	explained	in	the	previous
paragraph	is	a	good	example	of	automatically	collecting	metrics.	Another	example	is
counting	the	number	of	lines	of	code,	which	is	done	automatically	for	many	of	you	by	your
compiler.	Collecting	metrics	as	a	by-product	of	some	other	activity	or	data	collection	activity
is	almost	as	good	as	collecting	them	automatically.	For	example,	defect	information	must	be
collected	in	order	to	isolate	and	correct	defects,	but	this	same	information	can	be	used	to
provide	testing	status,	identify	training	and	process	improvement	needs,	and	identify	risky
areas	of	the	system	that	require	additional	testing.

Finally,	some	metrics	will	have	to	be	collected	manually.	For	example,	test	managers	may
ask	their	testers	to	record	the	amount	of	time	they	spend	doing	various	activities	such	as
test	planning.	For	most	of	us,	this	is	a	manual	effort.

Respect	Confidentiality	of	Data

It's	important	that	test	managers	be	aware	that	certain	data	may	be	sensitive	to	other
groups	or	individuals,	and	act	accordingly.	Test	managers	could	benefit	by	understanding
which	programmers	have	a	tendency	to	create	more	defects	or	defects	of	a	certain	type.
While	this	information	may	be	useful,	the	potential	to	alienate	the	developers	should	cause
test	managers	to	carefully	weigh	the	benefit	of	collecting	this	information.	Other	metrics	can
be	organizationally	sensitive.	For	example,	in	some	classified	systems	(e.g.,	government)
information	about	defects	can	itself	be	deemed	classified.

Look	for	Alternate	Interpretations

There's	often	more	than	one	way	to	interpret	the	same	data.	If,	for	example,	you	decide	to
collect	information	(against	our	recommendation)	on	the	distribution	of	defects	by
programmers,	you	could	easily	assume	that	the	programmers	with	the	most	defects	are
lousy	programmers.	Upon	further	analysis,	though,	you	may	determine	that	they	just	write	a
lot	more	code,	are	always	given	the	hardest	programs,	or	have	received	particularly	poor
specifications.

Key
Point

We	highly	recommend	that	anyone	interested	in	metrics	read	the	humorous
book	How	to	Lie	with	Statistics	by	Darrell	Huff.

Consider	the	defect	discovery	rate	shown	in	Figure	10-4.	Upon	examining	this	graph,	many
people	would	be	led	to	believe	that	the	steady	downward	trend	in	the	graph	would	indicate
that	the	quality	of	the	software	must	be	improving,	and	many	would	even	go	so	far	as	to	say
that	we	must	be	approaching	the	time	to	ship	the	product.	Indeed,	this	analysis	could	be
true.	But	are	there	other	interpretations?	Maybe	some	of	the	testers	have	been	pulled	away
to	work	on	a	project	with	a	higher	priority.	Or	maybe	we're	running	out	of	valid	test	cases	to
run.	This	is	another	example	of	where	having	more	than	one	metric	to	measure	the	same
thing	is	useful.

	Figure	10-4:	Declining	Defect	Discovery	Rate

Present	the	Raw	Data

Key
Point

There	are	three	kinds	of	lies:	lies,	damned	lies,	and	statistics.

-	Benjamin	Disraeli

Presenting	the	raw	data	is	really	a	continuation	of	looking	for	alternative	ways	to	interpret
the	data.	We've	found	it	very	useful	to	present	the	raw	data	that	we	collected,	in	addition	to
the	processed	or	interpreted	data.	As	a	matter	of	style,	we	often	ask	our	audience
(whoever	we're	presenting	the	data	to)	to	tell	us	what	the	raw	data	means	to	them.
Sometimes,	their	interpretation	is	something	that	we	haven't	thought	of.	At	the	very	least,
though,	the	raw	data	makes	the	audience	reflect	on	the	results	and	gives	the	test	manager
some	insight	into	how	their	audience	is	thinking.	This	insight	is	very	useful	if	you're	trying	to
use	the	data	to	achieve	buy-in	for	some	aspect	of	the	product	or	process.

Format	the	Data	for	the	Audience

No	doubt,	the	test	manager	will	have	occasion	to	brief	developers,	users,	upper
management,	marketing,	and	many	other	interested	parties.	When	presenting	the	data,	it's
important	for	the	manager	to	consider	the	background	of	the	audience	and	their	needs.	For
example,	if	you're	presenting	data	that	shows	testing	progress,	the	data	might	be	presented
to	the	users	in	a	different	format	than	it	would	to	the	developers.	The	users	may	want	to
know	how	much	of	the	functionality	has	passed	the	test,	while	developers	might	want	to	see
the	data	presented	with	respect	to	the	amount	of	code	that	was	tested.

Beware	of	the	Hawthorne	Effect

The	test	manager	has	at	his	or	her	disposal	a	powerful	weapon	-	metrics	-	for	good	or	evil
due	to	a	phenomenon	called	the	Hawthorne	Effect.

Case	Study	10-3:	Showing	people	that	you	care	about	them	spurs	them	on	to	greater
productivity.

Does	Lighting	Affect	Productivity?

Between	1924	and	1927,	Harvard	professor	Elton	Mayo	conducted	a	series	of
experiments	at	the	Western	Electric	Company	in	Chicago.	Professor	Mayo's	original
study	was	to	determine	the	effect	of	lighting	on	the	productivity	of	workers.	The	work
was	expanded	from	1927	through	1932	to	include	other	topics	such	as	rest	breaks,
hours	worked,	etc.	Before	each	change	was	made,	the	impact	of	the	change	on	the
workers	and	their	work	was	discussed	with	them.	It	seemed	that	no	matter	what
change	was	implemented,	the	productivity	of	the	workers	continuously	improved.
Mayo	eventually	concluded	that	the	mere	process	of	observing	(and	therefore
showing	concern)	about	the	workers	spurred	them	on	to	greater	productivity.	We	have
encountered	many	definitions	of	the	so-called	Hawthorne	Effect,	but	most	of	them
sound	something	like	this:	Showing	people	that	you	care	about	them	spurs	them	on	to
greater	productivity.

Now	I'm	not	a	professor	at	Harvard	and	I	have	not	conducted	any	formal	experiments
on	productivity,	but	I	have	observed	a	more	far-reaching	phenomenon	-	basically,
observing	(measuring)	people	changes	their	behavior.	The	Hawthorne	study	shows

that	people	are	more	productive	when	someone	observes	them	(and	sends	the
message	that	"what	you're	doing	is	important").	I	have	found	that	observing	or
measuring	some	activity	changes	the	behavior	of	the	people	conducting	that	activity
—	but	the	change	is	not	always	for	the	better.	It	depends	on	what	you're	measuring.
For	example,	if	you	spread	the	word	in	your	company	that	"defects	are	bad;	we're
finding	way	too	many	defects,"	the	number	of	defects	reported	would	surely	drop.
People	would	try	to	find	another	way	to	solve	the	problem	without	recording	a	defect.
Notice	that	the	number	of	defects	didn't	really	go	down,	just	the	number	reported.

In	particular,	for	those	of	you	who	specify	individual	objectives	or	goals	for	your	staff,
you'll	probably	discover	that	your	staff	will	focus	on	achieving	those	objectives	over
other	tasks.	If	you	were	to	tell	the	developers	that	the	most	important	goal	is	to	get	the
coding	done	on	time,	they	would	maximize	their	efforts	to	meet	the	deadline,	and	this
may	be	done	without	regard	to	quality	(since	quality	was	not	stressed).

So	you	see,	any	time	you	measure	some	aspect	of	a	person	or	their	work,	the	mere
process	of	collecting	this	metric	can	change	the	person's	behavior	and	therefore
ultimately	change	the	metric	measuring	their	behavior.

So,	let's	define	the	Hawthorne	Effect	for	Software	Engineers	as	"The	process	of
measuring	human	activities	can	itself	change	the	result	of	the	measurement."	Okay,
maybe	we're	not	ready	for	Harvard,	but	this	observation	is	often	true	and	needs	to	be
considered	by	test	managers	every	time	they	implement	a	new	metric.

-	Rick	Craig

Key
Point

Hawthorne	Effect	for	Software	Engineers:

The	process	of	measuring	human	activities	can	itself	change	the	result	of	the
measurement.

Provide	Adequate	Training

To	many	software	engineers,	metrics	are	mysterious	and	even	threatening.	It's	important
that	everyone	affected	by	a	metric	(i.e.,	those	who	collect	them,	those	whose	work	is	being
measured,	and	those	who	make	decisions	based	upon	them)	receive	training.	The	training
should	include	why	the	metric	is	being	collected,	how	it	will	be	used,	the	frequency	of
collection,	who	will	see	and	use	it,	and	how	to	change	the	parameters	of	the	metric.	One
good	training	aid	is	a	metrics	worksheet	such	as	described	below.

Create	a	Metrics	Worksheet

The	metrics	worksheet	shown	in	Table	10-2	takes	much	of	the	mystery	out	of	each	metric
and,	therefore,	is	a	useful	tool	to	assist	in	training	and	buy-in	for	metrics.	It	also	helps	gain
consistency	in	the	collection	and	analysis	of	metrics,	and	provides	a	vehicle	to	periodically

review	each	metric	to	see	if	it's	still	necessary	and	accurately	measures	what	it	was
designed	to	measure.

Table	10-2:	Metrics	Worksheet

Item Description

Handle Shorthand	name	for	the	metric	(e.g.,	number	of	defects	or	lines	of	code
could	be	called	the	quality	metric).

Description Brief	description	of	what	is	being	measured	and	why.

ObservationHow	do	we	obtain	the	measurement?

Frequency How	often	does	the	metric	need	to	be	collected	or	updated?

Scale What	units	of	measurement	are	used	(e.g.,	lines	of	code,	test	cases,
hours,	days,	etc.)?

Range What	range	of	values	is	possible?

Past What	values	have	we	seen	in	the	past?	This	gives	us	a	sense	of
perspective.

Current What	is	the	current	or	last	result?

Expected Do	we	anticipate	any	changes?	If	so,	why?

Meters Are	there	any	actions	to	expect	as	a	result	of	hitting	a	threshold?

NOTE:	Adapted	from	a	course	called	Test	Measurement,	created	by	Bill	Hetzel.

What	Metrics	Should	You	Collect?

We're	often	asked,	"What	metrics	should	I	collect?"	Of	course,	the	correct	answer	is,	"It
depends."	Every	development	and	testing	organization	has	different	needs.	The	Software
Engineering	Institute	(SEI)	has	identified	four	core	metrics	areas:

Schedule

Quality

Resources

Size

Key
Point

In	Software	Metrics:	Establishing	a	Company-Wide	Program,	Robert	Grady
and	Deborah	Caswell	define	rework	as	"all	efforts	over	and	above	those
required	to	produce	a	defect-free	product	correctly	the	first	time."

The	Air	Force	has	a	similar	list,	but	they've	added	another	metric,	"Rework,"	to	the	SEI's
list.	Even	though	it's	impossible	for	us	to	say	exactly	what	metrics	are	needed	in	your

organization,	we	believe	that	you'll	need	at	least	one	metric	for	each	of	the	four	areas
outlined	above.	The	Air	Force	metrics	shown	in	Table	10-3,	for	example,	were	designed
more	for	a	development	or	project	manager,	but	with	a	few	changes	they're	equally
applicable	to	a	testing	effort.	These	metrics	are	only	examples.	You	could	come	up	with
many	other	valid	examples	for	each	of	the	five	metrics	outlined	in	the	table.

Table	10-3:	Example	Metrics

Metric Development	Example Test	Example

Size Number	of	modules	or	lines	of
code.

Number	of	modules,	lines	of	code,	or	test
cases.

Schedule Number	of	modules	completed
versus	the	timeline.

Number	of	test	cases	written	or	executed
versus	the	timeline.

Resources Dollars	spent,	hours	worked. Dollars	spent,	hours	worked.

Quality Number	of	defects	per	line	of
code.

Defect	Removal	Efficiency	(DRE),
coverage.

Rework Lines	of	code	written	to	fix	bugs. Number	of	test	cycles	to	test	bug	fixes.

Metrics	Used	by	the	"Best"	Projects

It's	interesting	to	look	at	the	metrics	actually	employed	at	various	companies.	Bill	Hetzel	and
Rick	Craig	conducted	a	study	in	the	early	1990s	to	determine	what	metrics	were	being
collected	and	used	by	the	"best"	projects	in	the	"best"	companies.	Part	of	the	summary
results	included	a	list	of	those	metrics	seldom	used	by	the	"best"	projects	and	those	metrics
used	by	all	or	most	of	the	best	projects	involved	in	the	study.

Key
Point

"Although	measurement	continues	to	demand	increasing	attention,
measurement	initiatives	continue	to	exhibit	a	high	failure	rate,	and	the
value	of	the	measurement	goes	unrealized."

-	David	Pitts

The	projects	chosen	for	this	study	were	based	on	the	following	criteria:

Perceived	as	using	better	practices	and	measures.

Perceived	as	producing	high-quality	results.

Implemented	recently	or	in	the	final	test,	with	the	project	team	accessible	for
interview.

Had	to	have	one	of	the	highest	scores	on	a	survey	of	practices	and	measures.

Were	these	truly	the	very	best	projects?	Maybe	not.	Were	they	truly	superior	to	the	average
project	available	at	that	time	and	therefore	representative	of	the	best	projects	available?
Probably.

The	data	in	Table	10-4	is	based	upon	the	results	of	a	comprehensive	survey	(more
comprehensive	than	the	one	used	to	select	the	participants	of	the	study),	interviews	with
project	participants,	and	a	review	of	project	documentation.	The	data	from	the	survey	is	now
a	decade	old.	And,	even	though	we	have	no	supporting	proof,	we	believe	that	the	viability	of
the	data	has	probably	not	changed	remarkably	since	1991.

Table	10-4:	Metrics	Used	by	the	"Best"	Projects

Common	Metrics Uncommon	Metrics

Test	Defects

Defects	After	Release

Open	Problems

Open	Issues

Schedule	Performance

Plan	and	Schedule	Changes

Test	Results

Reliability

Time	Spent	Fixing	Problems

Defects	From	Fixes

Lines	of	Code

Process	Compliance

Code	Coverage

Complexity

Cost	of	Rework

Cost	of	Quality

We	don't	offer	any	analysis	of	this	list	and	don't	necessarily	recommend	that	you	base	your
metric	collection	on	these	lists.	They	are	merely	provided	so	you	can	see	what	some	other
quality	companies	have	done.

Measurement	Engineering	Vision

For	those	readers	who	have	studied	engineering,	you	know	that	metrics	are	an	everyday
part	of	being	an	engineer	and	measurement	is	a	way	of	life.	In	fact,	some	of	the
distinguishing	characteristics	of	being	an	engineering	discipline	are	that	there	is	a	repeatable
and	measurable	process	in	place	that	leads	to	a	predictable	result.	For	those	of	us	who	call

ourselves	software	engineers,	we	can	see	that	we	don't	always	meet	the	criteria	specified
above.	We're	confident,	though,	that	as	a	discipline,	we're	making	progress.	This	book	has
outlined	many	repeatable	processes	(e.g.,	test	planning,	risk	analysis,	etc.),	but	to	continue
our	evolution	toward	a	true	engineering	discipline,	we	have	to	reach	the	point	where	metrics
are	an	integral	part	of	how	we	do	business	-	not	just	an	afterthought.

Key
Point

The	distinguishing	characteristics	of	being	an	engineering	discipline	are	that
there	is	a	repeatable	and	measurable	process	in	place	that	leads	to	a
predictable	result.

This	vision	includes:

Building	good	measurements	into	our	processes,	tools	and	technology.

Requiring	good	measurements	before	taking	action.

Expecting	good	measurements.

Insisting	on	good	measurement	of	the	measurement.

Team-Fly 	

Team-Fly

	

Chapter	11:	Improving	the	Testing	Process

Overview
"The	minute	you're	through	changing,	you're	through."

—	Jack	Tramiel

"There	is	nothing	more	difficult	to	take	in	hand,	more	perilous	to	conduct,	or	more
uncertain	in	its	success,	than	to	take	the	lead	in	the	introduction	of	a	new	order	of
things."

—	Niccolo	Machiavelli

Getting	a	software	testing	process	on	paper	is	a	challenge,	but	getting	the	people	in	the
organization	to	commit	to	making	the	required	changes	is	an	even	bigger	challenge.	People
commit	to	change	for	their	own	reasons,	not	for	someone	else's	reasons.	Therefore,	when
people	are	asked	to	commit	to	change,	their	first	concern	is	often	"What	do	I	have	to	gain	or
lose?"	Successful	software	implementation	is	predominantly	a	people	management	exercise
and	not	an	engineering	management	exercise.	Most	of	us	do	what	we	do	(whether	it's
testing	software	or	driving	a	car)	because	we	feel	most	comfortable	doing	things	our	way.
So,	it	shouldn't	be	a	surprise	that	persuading	people	in	the	software	world	to	do	things
someone	else's	way	(e.g.,	the	organization's	way)	can	be	a	daunting	challenge	full	or
surprises.	The	key	to	success	is	to	make	the	organization's	way	"their"	way.

Team-Fly 	

Team-Fly

	

Improving	the	Testing	Process
The	problem	that	many	organizations	face	is	how	to	identify	the	areas	that	could	be
improved	and	how	to	implement	the	changes	(successfully).	Figure	11-1	outlines	the	steps
that	we	typically	follow	when	suggesting	and	implementing	process	improvement	for	our
clients.

	Figure	11-1:	Process	Improvement	Steps

Step	1:	Baseline	Current	Practices

The	first	step	in	improving	the	testing	process	is	to	baseline	the	current	practices.	This	will
give	you	a	point	of	comparison	to	measure	the	success	of	your	process	improvements.	It's
possible	to	baseline	the	entire	software	development	process	(including	test),	the	entire
testing	process,	or	a	subset	of	the	testing	process	(e.g.,	defect	tracking,	test	planning,
etc.).	We	believe	that	it's	generally	beneficial	for	most	testing	organizations	to	baseline	their
entire	testing	process,	rather	than	just	one	aspect	of	it.

Key
Point

A	baseline	is	a	measurement	of	where	your	processes	are	at	any	given	point
in	time	(i.e.,	a	line	in	the	sand).	Baselines	are	used	to	compare	the	processes
of	one	group	at	a	given	time	to	the	same	group	at	another	point	in	time.

If	your	organization	is	undergoing	a	formal	assessment	using	ISO	Standards	or	the	CMM
(Capability	Maturity	Model),	your	testing	group	may	be	able	to	piggyback	onto	these	efforts.
For	a	quick	baseline	of	your	current	testing	practices,	you	can	have	a	questionnaire	(refer	to
Appendix	B	for	a	sample)	completed	by	a	knowledgeable	person	or	group	of	people	in	the
testing	organization.	A	word	of	caution,	however,	is	needed	here.	The	results	you	get	in
completing	the	questionnaire	will	depend	on	who	fills	it	out,	as	you'll	learn	in	Case	Study
11-1.	The	results	will	be	much	more	accurate	if	the	form	is	filled	out	by	a	cross-section	of
the	entire	testing	group	and	others	who	work	alongside	testers,	such	as	developers,
configuration	managers,	business	representatives,	and	others.

Case	Study	11-1:	The	results	of	a	benchmark	study	depend	on	whom	you	ask.

Benchmark	Study	of	Best	Practices

In	the	early	1990s,	Bill	Hetzel	and	I	undertook	a	project	to	develop	a	benchmark	of
best	practices	in	use	at	leading	companies.	One	of	the	surprises	that	I	received	was
the	disparity	in	answers	on	the	level	of	use	of	any	given	process	from	individual	to
individual.	The	graph	below	shows	a	percentile	plot	of	processes	used	from	one	of	the
companies	in	the	study.

Each	dot	on	the	graph	represents	a	person.	You	can	see	that	there	are	people	at	the
bottom	of	the	graph	who	profess	to	use	very	little	in	the	way	of	formal	process	and
there	are	people	at	the	top	who	claim	to	do	almost	everything.	Obviously,	if	you're
trying	to	benchmark	your	processes	using	a	single	person	(or	a	small	number	of
people),	the	results	will	very	much	depend	on	whom	you	ask.	By	the	way,	each
questionnaire	in	the	study	was	confidential,	but	after	interviewing	many	of	the
respondents	I'm	pretty	sure	that	the	people	at	the	top	were	often	managers.

—	Rick	Craig

Key
Point

A	benchmark	is	a	measurement	of	where	your	processes	are	compared
directly	to	other	companies	or	to	a	static	model	(e.g.,	CMM).	It's	possible	that
the	results	of	a	process	assessment	might	be	both	a	baseline	and	a
benchmark.

Step	2:	Develop	Vision	and	Goals

It's	been	said	that	if	you	don't	know	where	you're	going,	any	road	will	get	you	there.	The
complement	to	the	baseline	is	a	vision	of	where	you	want	to	be	or	what	you	want	to	become
sometime	in	the	future.	Just	as	in	completing	an	estimate,	it's	difficult	to	know	exactly	what
your	testing	processes	should	look	like	at	some	point	in	the	future,	and	it's	equally	difficult	to
estimate	the	return	on	investment	(ROI)	of	moving	from	the	current	state	to	the	desired
state.	So,	be	prepared	to	update	your	vision	as	you	go.

One	way	to	determine	the	desired	end	state	is	to	model	your	vision	after	a	testing
organization	that	you	admire.	Of	course	it's	important	to	remember	that	every	organization
has	its	own	unique	set	of	priorities,	risks,	politics,	skill	sets,	etc.,	which	may	require	a
modification	of	their	model	to	match	your	environment.	Alternatively,	a	vision	statement	can
be	created	based	upon	achieving	a	desired	level	of	maturity	(i.e.,	controlled,	efficient,
optimizing)	on	a	Test	Process	Improvement	(TPI)	assessment	(refer	to	Table	11-2).
Whatever	method	you	choose	to	use,	the	vision	statement	of	the	testing	organization	must

support	the	vision	of	the	corporation	that	it	supports,	and	the	statement	itself	will	typically	be
supported	by	a	series	of	high-level	goals.

Case	Study	11-2:	Sample	Vision	Statement	and	Goals

Vision	Statement	and	Goals	of	the	System	Test	Group	for	ABC	Software
Company

Vision	Statement:

The	system	testing	strategy	of	the	ABC	Software	Company	will	employ	state-of-the-
practice	testing	techniques	and	tools	in	order	to	effectively	and	efficiently	measure	the
quality	of	all	systems	of	the	company.

Goals	#1:

A	regression	test	bed	will	be	established	and	maintained	that	covers	all	requirements
and	design	attributes.

Goals	#2:

The	testing	organization	will	achieve	a	DRE	of	80%	or	greater,	and	there	cannot	be
any	Class	3	(critical)	escapes.

Goals	#3:

An	entire	test	cycle	can	be	performed	in	1	week	or	less.

Goals	#4:

The	TPI	process	maturity	level	for	the	system	test	group	will	be	"efficient"	or	better
(refer	to	Table	11-1).

Table	11-1:	ISO	Certification	Process	Checklists

Pass Fail Checklist	for	Testing

□ □ Are	test	plans	and	procedures	created	and	reviewed?

□ □ Are	test	results	recorded?

□ □ Are	defects	or	problems	recorded,	assigned,	and	tracked	to	closure?

□ □ Is	there	an	adequate	test	process	to	ensure	that	areas	impacted	bychanges	are	retested?

Pass Fail Checklist	for	Measurement

□ □
Is	the	software	validated	(tested)	as	a	complete	system	in	an
environment	as	similar	as	possible	to	the	final	operating	environment?	Is
this	done	prior	to	delivery	and	acceptance?

□ □ If	field-testing	is	required,	are	the	responsibilities	of	the	supplier	and	thepurchaser	defined?	Is	the	user	environment	restored	following	the	test?

□ □ Are	product	metrics	collected	and	used	to	manage	the	testing	effort?

□ □ Are	product	defects	measured	and	reported?

□ □ Is	corrective	action	taken	if	metric	levels	exceed	established	targetlevels?

□ □ Are	improvement	goals	established	in	terms	of	metrics

□ □
Are	process	metrics	collected	to	measure	the	effectiveness	of	the
testing	process	in	terms	of	schedule	and	in	terms	of	fault	prevention	and
detection?

Pass Fail Checklist	for	Tools	/	Techniques

□ □ Are	tools	and	techniques	used	to	help	make	testing	and	managementprocesses	more	effective?

□ □ Are	the	used	tools	and	techniques	reviewed,	as	required,	and	improvedupon?

Pass Fail Checklist	for	Training

□ □ Are	training	needs	identified	according	to	a	procedure?

□ □ Is	training	conducted	for	all	personnel	performing	work	related	toquality?

□ □ Are	personnel	who	are	performing	specific	tasks	qualified	on	the	basis	ofappropriate	education,	training,	and/or	experience?

□ □ Are	records	kept	of	personnel	training	and	experience?

Pass Fail Checklist	for	Documentation

□ □ Are	test	plans,	requirements,	and	other	documents	revision	controlled?

□ □ Do	procedures	exist	to	control	document	approval	and	issue?

□ □ Are	changes	to	controlled	documents	reviewed	and	approved?

□ □ Are	current	versions	of	test	documents	identifiable	by	a	master	list	ordocument	control	procedures?

Pass Fail Checklist	for	Configuration	Management

□ □
Is	there	a	Configuration	Management	(CM)	system	that	identifies	and
tracks	versions	of	the	software	under	test,	software	components,	build
status,	and	changes?	Does	the	system	control	simultaneous	updates?

Does	the	configuration	management	plan	include	a	list	of	responsibilities,

□ □CM	activities,	CM	tools	and	techniques,	and	timing	of	when	items	are
brought	under	CM	control?

□ □
Is	there	a	mechanism	and	procedure	that	enables	software,	hardware,
and	files	to	be	uniquely	identified	throughout	the	entire	software
development	lifecycle?

□ □
Is	there	a	documented	mechanism	to	identify,	record,	review,	and
authorize	changes	to	software	items	under	configuration	management?
Is	this	process	always	followed?

□ □ Are	affected	personnel	notified	of	software	changes?

□ □ Is	the	status	of	software	items	and	change	requests	reported?

Key
Point

An	escape	is	a	defect	that	is	not	discovered	by	the	current	evaluation	activity
and	is	pushed	on	to	the	next	phase.

The	point	of	a	vision	statement	and	its	supporting	goals	is	to	keep	everyone	focused	on	the
same	target.	Instead	of	creating	a	vague	and	useless	vision	statement	about	leveraging
synergies	and	creating	a	world-class	organization,	you	should	focus	on	concrete	goals	and
formulate	a	statement	that	everyone	understands	and	is	willing	to	uphold.

Step	3:	Formulate/Prioritize	Requirements

The	baseline	establishes	where	the	testing	organization	is	today,	and	the	vision	describes
the	desired	end	state.	The	actual	requirements	to	get	from	point	'A'	to	point	'B'	should	be
developed	next.	The	requirements	should	follow	all	of	the	basic	rules	of	software
requirements.	They	need	to	be	specific,	measurable,	achievable,	realistic,	and	timely.	The
requirements	must	also	support	the	goals	and	vision	of	the	organization.

Step	4:	Establish	a	Project

Many	process	improvement	efforts	fail	due	to	under-commitment	of	resources.	We
frequently	encounter	a	tester	or	test	manager	at	a	training	class	who	has	been	told	to
"implement	test	automation,	establish	metrics,	create	a	methodology,	and	implement
software	metrics	in	your	'spare'	time."	Those	of	you	who	have	tried	to	implement	process
changes	into	your	organization	in	the	past	know	that	the	scenario	described	above	is	largely
wishful	thinking.

We	feel	that	one	way	to	give	a	process	improvement	effort	the	focus	that	it	needs	is	to
establish	a	project	for	the	process	improvement.	This	means	that	a	project	team	needs	to
be	established,	a	budget	formulated,	people	assigned,	and	a	project	plan	created.	If	you're
part	of	a	smaller	organization,	it	seems	unlikely	that	you	could	form	an	entire	team,	so	the
project	team	will	probably	be	only	one	or	two	people	or	perhaps	one	person	part-time.	If
this	is	the	case,	it's	important	that	this	one	part-time	person	actually	have	some	of	his	or	her
time	allocated	specifically	to	the	process	improvement	project.

Key
Point

One	way	to	give	a	process	improvement	effort	the	focus	that	it	needs	is	to
establish	a	project	for	the	process	improvement..

The	team	member(s)	should	ideally	be	enthusiastic	volunteers.	(Pointing	at	someone	and
saying,	"Hey	you,	you're	the	project	leader"	is	not	a	way	to	get	enthusiastic	volunteers	-	with
the	possible	exception	of	the	military.)	If	there	are	no	enthusiastic	volunteers,	the	project
may	be	in	jeopardy	from	the	very	beginning.	Why	are	there	no	volunteers?	Was	the	process
change	being	forced	from	the	top?	Do	the	developers	and	testers	think	the	change	is	bad?
Or,	is	this	just	another	"great	idea"	that	will	pass?	If	this	is	happening,	then	there's	a	selling
job	that	must	be	accomplished	before	moving	on.

It's	not	enough	that	the	volunteers	be	enthusiastic,	though.	Volunteers	must	also	have
technical	competency	and	the	respect	of	their	peers.	Choosing	the	person	who	has	the	most
time	on	his	or	her	hands	is	not	a	good	approach.	Ironically,	the	person	that	is	always	the
busiest	is	often	the	person	that	you	need.	There	must	be	a	reason	why	they're	always	busy.

Step	5:	Develop	a	Plan

If	you've	never	written	a	project	plan,	we	recommend	that	you	use	the	template	for	a	test
plan	as	a	starting	point.	Everything	in	this	template	may	not	be	applicable	(e.g.,	test	items),
but	generally	it	will	work.	Figure	11-2	shows	what	the	test	plan	template	might	look	like	if
modified	for	a	process	improvement	project.

Template	for	Process	Improvement

Contents

1. Test	Plan	Identifier

2. Introduction

2.1 Genesis	of	Process	Improvement	Initiative

2.2 Scope	of	Initiative

3. Planning	Risks

3.1 Schedule

3.2 Budget

3.3 Staffing

3.4 Buy-In

4. Approach

4.1 Major	Strategy	Decisions

5. Pass/Fail	Criteria

5.1 Describe	what	constitutes	success	and	how	to	measure
progress	and	results.

6. Suspension	Criteria

6.1 What	should	cause	us	to	temporarily	suspend	our	efforts?

7. Deliverables

7.1 Project	Status

7.2 Reports

7.3 Metrics

7.4 Post-Project	Review

8. Environmental
Needs

8.1 Hardware	and	Software

8.2 Tools

8.3 Office	Space

9. Staffing	and	Training
Needs

9.1 In-House

9.2 Contracted

10.Responsibilities

10.1 Team	Members

10.2 Sponsor

10.3 Champion

10.4 Training	Department

10.5 Test	Environment	Group

10.6 Process	Group

11. Schedule

11.1 Project	Initiative

11.2 Incremental	Milestones

11.3 Post-Project	Review

12.Approvals

12.1 Person(s)	Approving	the	Plan

Figure	11-2:	Test	Plan	Template	Modified	for	Process	Improvement 	

Plan	on	periodically	reviewing	the	progress	of	the	program.	It	may	be	useful	to	use	the
organization's	quality	group	to	help	in	the	reviews,	or	groups	of	peers	can	be	used	to	review
the	strengths	and	weaknesses	of	the	implementation.	Certainly,	post-project	reviews	will
assist	in	the	evaluation	of	the	effectiveness	of	the	program.	Careful	collection	and	analysis
of	metrics	is	an	absolute	must	to	determine	if	the	program	is	on	track.

Step	6:	Introduce	Change	Incrementally

One	sure	way	to	derail	a	process	improvement	effort	is	to	try	to	do	too	much	too	soon.	Rick
says	this	reminds	him	of	when	he	gets	badly	out	of	shape	and	tries	to	get	back	into	shape
for	his	next	Marine	Physical	Fitness	Test	-	virtually	overnight!	The	result	is	inevitable:	he	gets
so	sore	and	discouraged	that	it	puts	his	workout	regimen	in	jeopardy.

Implementing	multiple	changes	simultaneously	requires	a	greater	concentration	of
resources,	which	is	one	of	the	problems	that	many	process	improvement	teams	often	face.
Also,	when	many	different	changes	are	implemented	at	the	same	time,	it's	difficult	to	assess
the	impact	of	each	change.	For	example,	if	your	organization	implemented	software	code
inspections	and	preventive	testing	techniques	on	the	same	project	at	the	same	time,	it	would
be	difficult	to	determine	how	much	each	of	these	two	changes	contributed.	That	is	to	say,	it
would	be	difficult	to	know	what	the	ROI	is	of	each	of	these	techniques.

Key
Point

An	influence	leader	is	a	person	whose	example	is	followed	by	his	or	her	peers
because	the	influence	leader	is	perceived	to	be	exceptionally	innovative,
authoritative,	or	technically	astute.

One	possible	model	that	shows	the	effects	of	incrementally	implementing	process
improvements	is	shown	in	Figure	11-3.	Adaptive	change	is	the	lowest	in	complexity,	cost,
and	uncertainty	because	it	involves	re-implementation	of	a	change	in	the	same	test	group	at
a	later	time	or	imitation	of	a	similar	change	by	another	group.	For	example,	an	adaptive
change	for	a	test	group	would	be	to	institute	mandatory	10-hour	workdays	during	the
acceptance	testing	phase.	Similarly,	the	company's	engineering	department	could	initiate	the
same	change	in	work	hours	during	the	unit	testing	phase.	Adaptive	changes	are	not
particularly	threatening	to	employees	because	they're	familiar	changes.

	
Figure	11-3:	Topology	for	Implementing	Process	Improvements
Innovative	changes	fall	midway	on	the	horizontal	scale	of	complexity,	cost,	and
uncertainty.	An	experiment	with	flexible	work	schedules	by	a	software	development
company	qualifies	as	an	innovative	change	if	it	entails	changing	to	the	way	that	other
firms	in	the	industry	already	operate.	Unfamiliarity,	and	hence	greater	uncertainty,	make
fear	of	change	a	significant	problem	when	implementing	innovative	changes.

At	the	high	end	of	the	complexity,	cost,	and	uncertainty	scale	are	radically	innovative
changes.	Changes	of	this	sort	are	the	most	difficult	to	implement	and	tend	to	be	the	most
threatening	to	managerial	confidence	and	employee	job	security.	Changing	a	development
or	testing	methodology	midway	through	a	project,	for	example,	can	tear	the	fabric	of	a
test	department's	culture.	Resistance	to	change	tends	to	increase	as	changes	go	from
adaptive	to	innovative	to	radically	innovative.

Pilots

Pilots	are	an	important	vehicle	for	implementing	process	improvements.	They	allow	the
change	team	and	the	project	team	to	more	closely	control	the	implementation	of	the
change	and	assess	the	impact	it	had	on	the	project.	If	the	new	process	turns	out	to	be	a
disaster,	a	pilot	can	help	reduce	the	risk	and	the	damage	can	be	contained	within	the	pilot
project.

Key
Point

"The	application	(pilot)	must	be	large	enough	to	demonstrate	that	the
approach	is	applicable	to	development	of	large	systems,	but	not	so
large	that	the	prototypers,	who	are	gaining	experience,	encounter
problems	on	account	of	the	size	of	the	project."

-	Roland	Vonk	Prototyping:	The	Effective	Use	of	Case	Technology

Pilots	also	allow	multiple	changes	to	be	implemented	simultaneously,	since	different	pilots
can	be	used	for	different	process	improvements.	When	choosing	a	pilot,	it's	important
that	the	team	members	who	are	chosen	for	the	project	have	a	sincere	desire	to
participate.	As	in	choosing	the	process	improvement	team,	unwilling	participants	can
jeopardize	the	effort.	It's	also	important	that	the	sample	project	be	a	real	project,	not	a
"toy."	The	best	project	for	a	pilot	would	be	a	representative	(and	real)	project	on	the
smaller	scale.

Step	7:	Measure	Results

In	order	to	determine	the	partial	or	total	success	or	failure	of	a	process	improvement
initiative,	it's	necessary	to	compare	the	results	of	the	initiative	to	the	pass/fail	criteria
established	in	the	plan.	This	will	let	you	know	if	you've	met	the	requirements	specified	in
Step	3.

Step	8:	Return	to	Step	1

Process	improvement	is	a	continuous	process	that	will	never	truly	be	completed.	Once	the
overall	vision	has	been	achieved,	it's	time	to	re-establish	the	baseline	and	start	all	over
again.

Obtain	Buy-In	Throughout	the	Process

Buy-in	is	key	to	success.	Without	the	support	of	all	stakeholders,	the	process	improvement
effort	will	almost	always	fail.	Upper	management,	line	management,	and	supporting	groups
must	also	buy	in	to	the	proposed	changes.	It's	sometimes	possible	to	achieve	grass-roots
change	(i.e.,	bottom	up),	but	it's	much	more	difficult	and	time-consuming.

Staff	buy-in	and	effective	communication	are	crucial	to	the	success	of	any	testing	effort.
Team	members	need	to	see	the	seriousness	of	the	efforts	being	made	and	have	to	perceive
the	importance	of	the	end-goal	in	their	daily	work.	Project	leaders,	particularly,	have	to	feel
involved	in	producing	procedures	and	modifying	those	procedures	that	they	disagree	with.
It's	also	very	important	to	get	the	most	senior	buy-in	that	you	can	in	order	to	improve	your
chances	of	getting	the	resources	that	you	need.

Case	Study	11-3:	Without	achieving	buy-in,	process	improvement	initiatives	are
usually	worthless.

The	Case	of	the	Bogus	Metrics

A	few	years	ago,	I	had	the	opportunity	to	speak	at	an	awards	banquet	for	the	software
division	of	a	large	American	company.	The	banquet	began	in	the	normal	fashion	with
cocktails	and	a	hotel-like	meal	of	cold	prime	rib,	rubbery	green	beans,	and	chocolate
"something."	The	Director	moved	to	the	podium	to	begin	his	comments.	His	comments
praised	the	staff	and	described	in	gory	detail	how	the	company	was	benefiting	from
the	hard	work	of	everyone	present.

To	demonstrate	his	point,	he	pontificated	at	great	length	about	the	success	of	the	new
corporate	software	metrics	program	(that	he	had	implemented).	He	went	on	to
describe	how	the	collection	of	project	metrics	on	the	expenditure	of	effort	had
provided	the	information	necessary	to	accurately	predict	the	effort	required	to	develop
and	test	new	products.	It	was	at	this	point	that	the	Director	introduced	me	to	present
awards	to	the	people	responsible	for	this	great	success.

The	first	and	highest	award	went	to	a	man	whom	I'll	call	"Joe."	Joe	and	his	staff,	I	had
been	told,	had	done	"great	things"	in	their	project.	It	turns	out	that	the	Director's
definition	of	"great	things"	meant	that	Joe	had	supported	the	Director's	metrics
program.	In	fact,	Joe's	team	had	a	perfect	record	of	reporting	all	metrics	every	week
right	on	time.

After	describing	the	feats	of	Joe	and	his	team,	I	called	him	forward	to	receive	his
award	and	say	a	few	words.	Joe	came	forward	and	rather	sheepishly	declined	to
make	any	comments,	which	surprised	me	because	Joe	was	known	to	be	a	rather
loquacious	individual	who	relished	the	spotlight.

Later,	I	learned	that	Joe	met	with	the	Director	and	returned	the	award.	It	seems	that
Joe	thought	the	Director's	entire	metrics	program	was	a	waste	of	time	and	was	taking

his	team	away	from	their	primary	mission	of	writing	code.	So	in	order	to	spare	his
team	the	anguish	of	reporting	"worthless"	metrics,	Joe	wrote	a	little	program	to	fill	out
the	weekly	metrics	form	with	more	or	less	random	(but	reasonable)	values.	Then,
these	metrics	were	automatically	e-mailed	to	the	Director	every	Friday	exactly	at	noon
when	they	were	due.

As	if	the	story	weren't	sad	enough	already,	the	Director	was	using	Joe's	bogus	metrics
to	estimate	resource	needs	and	to	allocate	personnel	to	projects.	The	Director	even
reported	that	estimation	had	improved	by	30%.

The	moral	of	this	story	(okay,	one	moral	of	this	story)	is	that	without	buy-in,	metrics
(and	everything	else	for	that	matter)	are	usually	worthless.

—	Rick	Craig

Ask	the	Practitioners

The	first	step	in	achieving	buy-in	and	even	enthusiasm	from	the	software	developers	and
testers	is	to	ask	them	to	participate	in	forming	the	requirements.	If	they	are	not	involved	until
the	project	is	well	underway,	many	will	suffer	from	the	"not	invented	here"	syndrome.

Effective	Communications

Test	managers	can	communicate	to	their	team	members	and	the	entire	organization	through
a	variety	of	media	such	as	face-to-face	conversations,	phone	calls,	e-mail,	voice	mail,
written	memos	and	letters,	drawings,	meetings,	computer	data,	charts,	or	graphs.	Choosing
the	appropriate	media	depends	on	many	factors,	including	the	nature	of	the	message,	its
intended	purpose,	its	audience,	its	proximity	to	the	audience,	and	its	time	frame.

The	most	important	consideration,	though,	is	that	the	test	manager	maintain	a	constant	and
open	dialogue	with	his	or	her	staff.	Staff	members	who	recommend	changes	to	the	process
must	be	confident	that	their	recommendations	will	be	seriously	considered.

Metrics

One	key	to	achieving	buy-in	early	is	to	supply	metrics	that	describe	the	benefits	of	the
proposed	change.	Early	on,	these	metrics	may	often	be	industry	metrics	or	testimonials.	For
example,	if	you	were	trying	to	implement	code	inspections	into	your	organization,	it	would	be
useful	to	show	what	the	benefits	of	such	a	move	had	been	in	other	companies	or
organizations.	For	detailed	information	on	industry	software	metrics,	refer	to	Applied
Software	Measurement	by	Capers	Jones.

Key
Point

Applied	Software	Measurement	by	Capers	Jones	is	an	excellent	source	for
industry	software	metrics.

Information	from	the	pilots	can	be	used	to	garner	buy-in	as	well.	Once	the	pilot	has
completed,	the	results	of	the	process	change	may	be	useful	in	getting	buy-in	for	widespread
implementation	of	the	change	(assuming,	of	course,	that	the	pilot	was	a	success).

Develop	Feedback	Loops

The	practitioners	not	only	need	to	have	the	opportunity	to	participate	in	the	formulation	of
the	requirements,	but	they	must	also	have	the	opportunity	to	provide	feedback,	on	a
continuous	basis,	on	what	is	and	is	not	working.	This	feedback	loop	should	extend	to
practitioners	on	projects	other	than	the	pilot,	if	they	will	eventually	be	affected.

Key
Point

The	practitioners	not	only	need	to	have	the	opportunity	to	participate	in	the
formulation	of	the	requirements,	but	they	must	also	have	the	opportunity	to
provide	feedback,	on	a	continuous	basis,	on	what	is	and	is	not	working.

Just	because	a	developer	or	tester	has	provided	feedback	doesn't	mean	that	every
suggestion	has	to	be	implemented,	but	every	suggestion	does	have	to	be	acted	on,	even	if
the	only	action	is	to	explain	why	the	suggestion	was	not	used.	If	the	practitioners	don't	feel
that	the	feedback	loop	is	truly	working,	they'll	often	withdraw	their	support	of	the	project.

Provide	Training

Another	key	component	of	buy-in	is	to	provide	training	on	the	process	improvement	process
and	initiatives.	Notice	that	we	said	training	should	be	supplied	on	the	process	improvement
process.	All	practitioners	need	to	understand	how	changes	were	nominated,	chosen,	and
eventually	implemented.	The	new	processes	that	are	implemented	will	also	require	training.
Some	of	this	training	may	be	commercial	(e.g.,	how	to	use	a	new	tool),	but	often	the	training
will	have	to	be	conducted	in-house.

Pick	a	Champion	and	Sponsor

It's	vital	to	have	a	champion	and	a	sponsor	for	every	change	that	is	implemented.	The
champion	should	be	an	influence	leader	who	is	willing	to	serve	as	the	on-site	oracle	for	the
new	process.	For	example,	if	a	new	defect	tracking	system	is	implemented,	the	champion
should	be	capable	of	becoming	an	expert	on	the	system	and	how	it's	used;	and	he	or	she
should	have	the	time	and	communication	skills	needed	to	help	other	users	when	asked.	A
sponsor	is	usually	a	senior	manger	who	can	help	to	secure	resources	and	get	buy-in	from
other	senior	managers.

Key
Point

The	champion	should	be	an	influence	leader	who's	willing	to	serve	as	the	on-
site	oracle	for	the	new	process.

A	sponsor	is	usually	a	senior	manager	who	can	help	fight	for	resources	and
get	buy-in.

Post-Project	Reviews

One	alternative	to	Steps	1	and	2	of	our	process	improvement	model	(baseline	current
practices	and	develop	goals)	described	in	this	chapter	is	to	use	a	post-project	review.	The
purpose	of	the	post-project	review	is	to	identify	opportunities	for	improvement	and	also	to
identify	any	"strengths"	or	successful	processes	that	need	to	be	repeated	on	future	projects.
At	the	conclusion	of	the	post-project	review,	the	process	improvement	team	can	then
proceed	to	Steps	6	through	8.

Post-project	reviews	can	be	conducted	in	many	different	ways.	One	of	our	clients,	for
example,	brings	all	the	participants	into	a	room,	where	each	participant	has	the	opportunity
to	identify	three	project	strengths	and	three	opportunities	for	improvement.	The	most
common	strengths	and	opportunities	are	then	reported	as	the	findings	of	the	post-project
review.	The	beauty	of	this	method	is	that	it's	done	at	a	single	sitting	and	includes	all
participants.	On	the	downside,	it	doesn't	really	compare	the	results	to	the	project	objectives.

When	we	conduct	project	reviews,	we	administer	a	questionnaire	(similar	to	the	one	in	the
Appendix)	to	every	participant.	We	then	compile	the	results	and	compare	them	to	an
industry	database.	This	lets	us	know,	in	very	broad	terms,	what	the	participants	did	before
we	arrived	on	site.	Upon	arrival	we	personally	interview	all	(or	most)	project	participants
(including	everyone	who	wants	to	be	included)	and	review	copies	of	their	work	products
(i.e.,	project	plans,	requirement	specifications,	test	plans,	etc.).	After	analyzing	the	results
of	the	questionnaires,	our	interviews,	and	the	documentation	review,	we	present	our	findings
to	(1)	the	project	manager,	(2)	the	project	participants,	and	(3)	the	executive	steering
committee.

We	have	conducted	many	post-project	reviews	(post-mortems)	over	the	years	and	have
compiled	some	useful	guidelines:

Conduct	the	post-project	review	soon	after	the	conclusion	of	the	project.	Don't	start
on	the	day	that	the	project	ends	-	give	the	staff	a	day	or	two	to	relax	-	but	don't	wait
too	long.	One	to	three	weeks	after	the	conclusion	of	the	project	is	an	ideal	time	to
begin	the	review.

Conduct	post-project	reviews	on	every	project,	or	announce	at	the	time	of	project
initiation	whether	or	not	a	project	will	be	subjected	to	a	review.	Waiting	until	the
project	is	finished	and	then	deciding	to	do	a	review	makes	the	whole	process	look
like	a	"witch	hunt."

Get	an	outsider	to	lead	the	post-project	review	team.	Since	the	test	manager	is	in
the	business	of	evaluating	things,	the	task	is	often	given	to	him	or	her.	Other
organizations	assign	the	responsibility	of	conducting	the	review	to	the	project
manager.	Both	of	these	are	bad	ideas.	The	test	manager	is	already	evaluating	the
work	of	the	development	team,	so	having	him	or	her	also	evaluate	the	processes
can	strain	even	a	good	working	relationship.	The	project	manager	is	too	close	to	the
project	and	lacks	the	fresh	perspective	to	do	the	job	right.	An	ideal	candidate	might
be	the	project	manager	from	another	project,	the	QA	manager,	or	an	outside
consultant.

Key
Point

You	should	consider	getting	an	outsider	to	lead	the	post-project	review
team.	An	ideal	candidate	might	be	the	project	manager	from	another
project,	the	QA	manager,	or	an	outside	consultant.

Make	sure	that	all	project	participants	have	an	opportunity	to	voice	their	opinions.
It's	equally	important	that	participants	feel	that	their	opinions	are	heard	and	seriously
considered.	Even	if	all	ideas	are	not	used,	they	should	be	considered.

Keep	it	objective.	Compare	the	results	of	the	project	to	the	objectives	and
requirements	of	the	project.

Don't	make	it	personal.	Don't	report	findings	that	address	individuals	and
personalities.

When	reporting	results,	always	list	the	"strengths"	of	the	project	first.	Every	project
has	something	good	about	it,	even	if	it	was	only	that	they	all	wore	"cool	t-shirts."

Report	the	"weaknesses"	of	the	project	as	"opportunities	for	improvement"	and	limit
them	to	5	or	less	(it's	unlikely	that	more	than	5	opportunities	will	be	acted	on
anyway).

Capture	objective	data	when	possible,	but	remember	that	perceptions	are	also
important.

Assign	to	a	team	the	responsibility	of	analyzing	and	prioritizing	the	results.	The	team
can	then	use	the	process	improvement	flowchart	(refer	to	Figure	11-1)	to	implement
changes,	if	necessary.

Team-Fly 	

Team-Fly

	

ISO	Certification
The	International	Organization	for	Standardization	(ISO)	is	a	worldwide	federation	of
national	standardization	bodies	from	140	countries.	Their	mission	is	to	develop	standards	to
facilitate	the	international	exchange	of	goods	and	services.	ISO	standards	are	documented
agreements	containing	technical	specifications	or	other	precise	criteria	to	be	used
consistently	as	rules,	guidelines,	or	definitions	of	characteristics	to	ensure	that	materials,
products,	processes,	and	services	are	fit	for	their	purpose.

Key
Point

Shouldn't	the	acronym	for	International	Organization	for	Standardization	be
"IOS"	instead	of	"ISO?"	Yes,	if	it	were	an	acronym,	which	it	is	not.

"ISO"	is	derived	from	the	Greek	word	isos,	which	means	"equal."

The	ISO	9000	series	of	standards	is	used	to	establish	a	quality	management	system.	ISO
9000-3	describes	how	ISO	9001	standards	apply	to	software.	TickIt	is	a	certification
scheme	(primarily	used	in	the	United	Kingdom)	tuned	to	deal	with	the	special	requirements
associated	with	applying	ISO	9000	to	software	development.

Key
Point

ISO	emphasizes	the	basic	elements	of	quality	management	and	assesses	an
organization's	process	using	a	rigorous	auditing	model.

Companies	choose	to	seek	ISO	registration	for	a	variety	of	reasons:	to	improve	their	quality
processes,	to	baseline	improvement	efforts,	and	even	to	use	ISO	as	a	marketing	ploy.
Becoming	ISO	certified	always	warrants	a	mention	in	the	business	news	and	makes	the
company	look	better	in	the	eyes	of	the	stockholders	and	the	business	community.

ISO	emphasizes	the	basic	elements	of	quality	management	and	assesses	an	organization's
process	using	a	rigorous	auditing	model.	An	ISO	9000	registration	effort	can	be	a	very
involved	process	that	might	take	a	year	or	more	to	implement.	Periodic	reviews	by	auditors
ensure	that	the	outlined	processes	are	being	maintained.

Key
Point

If	your	company	is	undergoing	ISO	certification,	it	may	be	possible	to	use	this
effort	as	a	springboard	to	improve	the	testing	processes.

ISO	audits	are	at	a	much	higher	level	than	this	book	(i.e.,	the	entire	organization	versus	the
testing	organization).	So	why	do	we	bother	to	mention	them	here?	For	this	one	simple
reason:	companies	that	undergo	quality	audits	such	as	ISO	are	usually	more	receptive	to
process	improvement	activities	throughout	the	organization.	If	your	company	is	undergoing
ISO	certification,	it	may	be	possible	to	use	this	effort	as	a	springboard	to	improve	the
testing	processes.	One	could	even	argue	that	improving	the	testing	process	could	help	your
organization	achieve	ISO	certification.

ISO	Checklists

The	following	checklists	provide	typical	questions	that	auditors	would	ask	a	test	manager

during	the	ISO	certification	process.	The	bottom	line	is,	"Do	you	have	a	procedure	in	place
to	handle	each	of	your	daily	tasks	and	is	that	procedure	repeatable?"	If	you	can	answer
"yes"	to	all	of	the	questions	on	the	auditor's	checklist	(and	prove	compliance),	then	you'll
achieve	ISO	certification.	A	sample	checklist	is	shown	in	Table	11-1.

Pros	and	Cons	of	ISO	Certification

Key
Point

Much	of	the	success	of	the	ISO	is	dependent	upon	the	motivation	for	achieving
the	certification	in	the	first	place.

There	is	considerable	controversy	throughout	the	software	industry	over	the	value	of	ISO
9000	certification	in	determining	the	ability	of	an	organization	to	consistently	produce	"good"
software.	Many	people	who	have	been	directly	involved	in	the	ISO	certification	process
(including	Stefan)	have	seen	the	effects	years	later	and	often	ask	themselves,	"If	we're	ISO
certified,	why	does	this	company	still	suffer	the	consequences	of	quality	and	delivery
problems?"	A	common	answer	is,	"ISO	is	just	a	paper	trail	that	we	have	to	follow	in	order	to
maintain	our	certification	and	compete	in	the	global	marketplace."

Philip	Crosby	(Quality	Is	Still	Free,	Making	Quality	Certain	in	Uncertain	Times)	minces	no
words	in	his	assessment	of	the	value	of	ISO	certification:

"With	a	properly	run	quality	management	process,	there	will	be	no	difficulty	meeting
ISO	9000	requirements.	It's	really	a	very	old-fashioned	Quality	Assurance	kind	of
thing.	But	it	is	not	oriented	toward	the	needs	of	today	and	the	next	century.	It's	only	to
provide	a	living	for	consultants	and	for	quality	people	who	do	not	want	to	think	for
themselves."

On	the	other	hand,	many	organizations	report	successfully	using	ISO	as	a	valuable	tool	for
improving	processes.	Much	of	the	success	of	ISO	is	dependent	upon	the	motivation	for
achieving	the	certification	in	the	first	place.

Team-Fly 	

Team-Fly

	

Capability	Maturity	Model	(CMM)
The	quality	of	software	systems	depends,	to	some	degree,	on	the	quality	of	the
corresponding	software	engineering	processes.	A	software	buyer	is	usually	interested	in
getting	to	know	the	level	of	maturity	of	the	vendor's	software	engineering	process	in	order	to
be	able	to	draw	conclusions	about	the	software	system's	quality.

Key
Point

Finding	out	the	level	of	maturity	of	a	vendor's	software	engineering	process
can	help	you	draw	conclusions	about	the	quality	of	their	testing	software.

The	Capability	Maturity	Model	(CMM)	was	created	for	the	Software	Engineering	Institute
(SEI)	based	on	the	vision	of	Watts	Humphrey.	The	CMM	is	a	framework,	distinguished	by
five	different	maturity	levels,	for	evaluating	the	maturity	of	a	company's	software	engineering
process.	With	the	help	of	an	evaluation	process,	the	maturity	of	a	company's	software
engineering	processes	can	be	assigned	to	one	of	these	levels.	The	levels	are	based	on
each	other,	which	means	that	if	an	engineering	process	fulfills	the	requirements	of	a	level,	it
also	fulfills	all	of	the	requirements	of	all	of	the	levels	below	it.	With	an	increase	in	the	CMM
level,	the	development	risk	can	be	reduced	and	the	productivity	of	the	development	as	well
as	the	quality	of	the	product	can	be	increased.

Key
Point

For	more	information	on	the	CMM,	see	The	Capability	Maturity	Model,
Guidelines	for	Improving	the	Software	Process	from	the	Carnegie	Mellon
University's	Software	Engineering	Institute.

Figure	11-4	shows	the	five	levels	of	the	CMM.	The	CMM	is	only	a	guide	(i.e.,	not	a
cookbook)	for	evolving	toward	a	culture	of	software	engineering	excellence.	It's	a	model	for
organizational	improvement	because	it	provides	guidelines	not	only	for	improving	process
management,	but	also	for	introducing	new	technology	into	an	organization.	In	fact,	process
capability	interacts	with	people,	technology,	and	measurement	across	all	five	levels	of	the
CMM.

	Figure	11-4:	Capability	Maturity	Model	(CMM)
Five	Levels	of	Software	Process	Maturity

A	frequent	complaint	of	people	in	the	testing	business	is	that	the	CMM	largely	ignores
testing	until	Level	3.	This	is	the	primary	reason	why	Martin	Pol	and	Tim	Koomen	created	the
Test	Process	Improvement	(TPI)	model	(refer	to	the	section	entitled	Test	Process
Improvement	[TPI]	Model	for	more	information).	Others	have	also	addressed	this	issue.

In	his	article	"Growth	of	Maturity	in	the	Testing	Process"	Roger	Drabick	has	outlined	testing
activities	that	he	feels	should	be	performed	at	each	level	of	the	CMM.	His	comments	are
indicated	in	the	shaded	boxes	within	the	description	of	each	level	of	the	CMM.

CMM	Level	1	-	Initial

A	Level	1	organization's	process	capability	is	unpredictable	and	often	chaotic	because	the
software	process	is	constantly	changed	as	the	work	progresses.	The	process	is,
essentially,	ad	hoc	and	generally	undisciplined,	making	the	organization	an	unstable
environment	for	developing	software.	Level	1	performance	depends	on	the	individual
capabilities	of	the	staff	and	managers	and	varies	with	their	innate	skills,	knowledge,	and
motivations.	During	times	of	crises,	project	managers	typically	abandon	planned	procedures
and	revert	to	ad	hoc	coding	and	testing.

CMM	Level	2	-	Repeatable

Level	2	organizations	focus	on	project	management,	and	their	process	capabilities	are
usually	elevated	by	the	establishment	of	disciplined	processes	under	sound	management
control.	Realistic	project	schedules	are	developed	based	on	requirements	and	results
observed	from	previous	projects.	Software	requirements	and	work	products	are	typically
baselined	and	their	integrity	controlled.	In	contrast	to	a	Level	1	organization,	a	repeatable
process	exists	for	software	projects	at	Level	2.

At	Level	2,	test	managers	should	strive	toward	developing	specific	testing	and	debugging
goals	and	initiate	a	test	planning	process	for	the	organization.

CMM	Level	3	-	Defined

Documentation	is	the	primary	focus	of	organizations	at	Level	3.	Organization-wide
processes	are	established	for	all	management	and	engineering	activities.	Level	3	processes
evolve	from	the	processes	that	were	developed	and	the	successes	that	were	achieved	while
at	Level	2.	At	Level	2,	one	or	two	projects	may	have	repeatable	processes.	But	at	Level	3,
all	projects	have	repeatable	processes.

Key
Point Level	3	is	the	first	level	where	formal	testing	processes	are	introduced.

This	is	the	first	level	where	formal	software	testing	processes	are	actually	introduced.	In	his
book	Software	Testing	Techniques,	Boris	Beizer	explains,	"Although	programmers,	testers,
and	programming	managers	know	that	code	must	be	designed	and	tested,	many	appear	to
be	unaware	that	tests	themselves	must	be	designed	and	tested	-	designed	by	a	process	no
less	rigorous	and	no	less	controlled	than	used	for	code."	As	an	evaluation	activity,	software

testing	processes	are	created	at	Level	3	in	order	to	verify	that	requirements	are	satisfied	at
each	phase	of	the	software	development	lifecycle.	At	Level	3,	test	managers	should	strive
to	establish	a	formal	software	test	organization.	Test	plans	should	be	integrated	into	the
software	development	lifecycle,	and	test	processes	should	be	controlled	and	closely
monitored.

CMM	Level	4	-	Managed

At	Level	4,	the	measurements	that	were	put	in	place	at	Levels	2	and	3	are	used	to
understand	and	control	software	processes	and	products	quantitatively.

At	this	level,	test	managers	should	strive	to	establish	organization-wide	programs	for
software	review,	technical	training,	test	measurement,	and	software	quality	evaluation.

CMM	Level	5	-	Optimizing

At	Level	5,	continuous	process	improvement	is	enabled	by	quantitative	process	feedback
and	technology	insertion.

At	this	level,	test	managers	should	strive	to	apply	process	controls	to	prevent	future	defects
and	focus	on	quality	control	activities.

Pros	and	Cons	of	the	CMM

While	the	CMM	focuses	on	process	improvement	and	has	a	high	visibility	within	the	software
industry,	it	also	has	some	drawbacks.	The	CMM	does	not	focus	on	the	practitioner	or	the
customer	and,	consequently,	lacks	their	input	on	process	improvements.	This	model	also
requires	the	implementation	of	major	process	changes	in	order	to	introduce	mature
processes.

One	issue,	in	particular,	with	the	CMM	is	the	idea	many	people	have	that	there's	always	a
direct	correlation	between	the	level	of	process-use	and	the	quality	of	the	product	developed.
While	we	certainly	believe	that	improving	processes	usually	also	improves	that	product	(or
we	wouldn't	have	written	this	book),	it's	not	clear	to	us	that	all	of	the	processes	outlined	in
the	CMM	will	necessarily	be	worth	implementing	in	all	organizations.	We	believe	that	some
organizations	(especially	small	entrepreneurial	companies)	might	actually	be	better	off
operating	at	CMM	Level	3	or	4,	rather	than	Level	5.	Level	5	processes	may	be	too
demanding	and	may	require	too	much	control	for	some	groups.

Team-Fly 	

Team-Fly

	

Test	Process	Improvement	(TPI)	Model
Unfortunately,	the	CMM	does	not	(in	our	opinion)	adequately	address	testing	issues	at	levels
1	and	2	(which	is	where	most	companies	are	today).	Martin	Pol	and	Tim	Koomen	have
developed	a	test	process	improvement	process	known	as	TPI,	which	provides	a	roadmap	to
CMM	level	3	(for	testing).	This	process	is	well	documented	in	their	book	Test	Process
Improvement,	and	a	hands-on	class	on	how	to	use	this	model	is	taught	by	each	author.

Key
Point

Refer	to	www.iquip.nl/tpi	for	more	information	on	TPI,	downloadable
checkpoints,	and	a	survey	on	worldwide	TPI	usage.

The	TPI	model	allows	users	of	the	model	to	determine	the	current	state	of	their	testing
process	(e.g.,	baseline),	the	next	logical	area	for	process	improvement,	and	recommended
steps	to	get	there.

Case	Study	11-4:	The	TPI	model	can	help	most	organizations	to	baseline	their
processes	and	determine	targets	for	continuous	improvement.

Once	We	Were	Skeptics,	But	Now	We're	Believers

Our	initial	reaction	to	the	TPI	model	was	outright	skepticism.	We	thought	that	it	would
be	difficult,	if	not	impossible,	to	create	a	single	model	that	could	recommend	next
steps	for	any	organization,	regardless	of	the	size,	skill	level,	and	techniques
employed.	But	after	reading	Test	Process	Improvement	and	attending	Mr.	Pol's	class,
we	became	believers.	The	model	is	not	perfect,	but	it	will	accomplish	the	goal	of
helping	most	organizations	to	baseline	their	processes	and	determine	targets	for
continued	process	improvement.

For	the	most	part,	the	TPI	model	uses	CMM-like	language.	Most	of	the	TPI	terms	have
meanings	similar	to	those	used	by	the	CMM,	facilitating	the	use	of	the	TPI	model	by	current
CMM	advocates.	It's	not	necessary,	however,	to	subscribe	to	the	CMM	model	in	order	to
use	the	TPI.	Figure	11-5	shows	the	principal	pieces	of	the	TPI	model,	which	include	key
areas,	levels,	checkpoints,	and	improvement	suggestions.

	Figure	11-5:	Test	Process	Improvement	(TPI)
Model

Key	Areas	of	the	TPI

http://www.iquip.nl/tpi

The	testing	process	is	broken	into	twenty	key	areas	that	need	to	be	addressed	by	the
testing	organization.	The	baseline	and	improvement	suggestions	are	based	on	the
following	twenty	key	areas:

Test	Strategy

Lifecycle	Model

Moment	of	Involvement

Estimating	and	Planning

Test	Specification	Techniques

Static	Test	Techniques

Metrics

Test	Automation

Testing	Environment

Office	Environment

Commitment	and	Motivation

Test	Functions	and	Training

Scope	of	Methodology

Communication

Reporting

Defect	Management

Testware	Management

Test	Process	Management

Evaluation

Low-Level	Testing

Levels	of	Maturity

Examination	of	each	key	area	leads	to	classification	of	the	test	process	into	certain	levels
of	maturity.	There	can	be	one	to	four	maturity	levels	for	each	of	the	twenty	key	areas	in
the	TPI	model,	and	each	of	these	maturity	levels	is	represented	by	an	A,	B,	C,	or	D.	The
ascending	levels	indicate	increasingly	more	mature	processes	(e.g.,	'B'	is	more	mature

than	'A').

A	value	is	assigned	(by	shading	in	the	template)	of	A,	B,	C	or	D	for	each	key	area.	One
key	area	(office	environment)	has	only	one	level	and	the	others	have	up	to	four.	Office
environment,	for	example,	has	only	one	level	that	you	can	assign	because	you	either	have
a	usable	office	environment	or	you	don't.	Other	key	areas	such	as	test	strategy	have	up
to	four	levels	because	there	are	more	"degrees"	of	process	maturity	in	the	area	of	test
strategy.

Checkpoints

Checkpoints	are	questions	(found	in	Test	Process	Improvement)	that	must	be	answered
in	order	to	determine	the	maturity	of	each	key	area.	If	a	key	area	passes	all	of	the
checkpoints	of	a	certain	level,	then	the	key	area	is	classified	at	that	level.	To	make	sure
that	the	classification	into	levels	is	done	objectively,	one	or	more	checkpoints	are
assigned	to	each	level.

Test	Maturity	Matrix

All	of	the	key	areas	and	levels	in	the	test	maturity	matrix	are	not	equally	important	for	the
performance	of	the	complete	test	process,	and	dependencies	exist	between	the	different
key	areas	and	levels.	Consequently,	all	key	areas	and	levels	are	mutually	linked	in	a	test
maturity	matrix.

Table	11-2:	Blank	TPI	Assessment	(Reprinted	from	Test	Process	Improvement
by	Martin	Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Key	Area
Controlled Efficient Optimizing

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 Test	Strategy A B C D

2 Lifecycle	Model A B

3 Moment	of	Involvement A B C D

4 Estimating	and	Planning A B

5 Test	Specification	Techniques	A	B A B

6 Static	Test	Techniques A B

7 Metrics A B C D

8 Test	Automation A B C

9 Testing	Environment A B D

10 Office	Environment A

11 Commitment	and	Motivation A B C

12 Test	Functions	and	Training A B C

13 Scope	of	Methodology A B C

14 Communication A B C

15 Reporting A B C D

16 Defect	Management A B C

17 Testware	Management A B C D

18 Test	Process	Management A B C

19 Evaluation A B

20 Low-Level	Testing A B C

NOTE:	The	blank	test	maturity	matrix	template	shown	above	is	completed	based	on
the	answers	to	the	questions	or	checkpoints.	Note	that	this	is	a	copy	of	the	blank	TPI
template,	not	a	completed	one!	The	initial	reaction	of	many	people	is	confusion	when
they	see	this	template,	but	it	really	does	make	sense.

The	levels	(A,	B,	C,	and	D)	do	not	line	up	vertically	in	the	model	because	the	first	level	for
one	key	area	may	occur	naturally	before	the	same	level	in	another	key	area.	For
example,	level	'A'	for	Defect	Management	occurs	before	level	'A'	for	Metrics	because	you
need	to	collect	the	defect	information	in	order	to	use	the	defect	metrics.

Improvement	Suggestions

Even	though	the	TPI	model	shows	the	next	logical	step	for	process	improvement	based
on	the	checkpoints	for	each	key	level,	the	authors	of	the	TPI	have	also	included	additional
improvement	suggestions	(refer	to	Figure	11-5)	to	facilitate	the	process.

Example	TPI	Assessment

Table	11-3	shows	the	results	of	a	TPI	assessment	at	an	organization.	The	shaded	area
represents	the	level	of	maturity	achieved	in	each	key	area.	A	value	of	'0'	for	a	key	area
indicates	the	minimal	requirements	to	achieve	level	'A'	have	not	been	met.

Table	11-3:	Example	TPI	Assessment	(Reprinted	from	Test	Process	Improvement
by	Martin	Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Key	Area
Controlled Efficient Optimizing

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 Test	Strategy A B C D

2 Lifecycle	Model A B

3 Moment	of	Involvement A B C D

4 Estimating	and	Planning A B

5 Test	Specification	Techniques A B

6 Static	Test	Techniques A B

7 Metrics A B C D

8 Test	Automation A B C

9 Testing	Environment A B D

10 Office	Environment A

11 Commitment	and	Motivation A B C

12 Test	Functions	and	Training A B C

13 Scope	of	Methodology A B C

14 Communication A B C

15 Reporting A B C D

16 Defect	Management A B C

17 Testware	Management A B C D

18 Test	Process	Management A B C

19 Evaluation A B

20 Low-Level	Testing A B C

Notice	the	three	"levels"	of	maturity	at	the	top	of	Table	11-3:	Controlled,	Efficient,	and
Optimizing.	These	levels	were	added	to	the	TPI	model	to	give	participants	(especially	upper
management)	a	feel	for	their	testing	maturity	level.	This	is	an	imprecise	measurement
because	an	organization	is	rated	as	controlled,	efficient,	or	optimizing	based	on	where	most
of	the	shading	appears	on	the	chart.	This	organization,	for	example,	is	aiming	for	better
control	of	their	testing	process,	because	the	controlled	area	is	still	largely	unshaded.

The	model	works	left	to	right.	In	order	to	improve	the	testing	process	(i.e.,	expand	the
shaded	area),	we	must	first	look	at	the	lowest	level	(A,	B,	C,	D)	that	appears	in	the	left-
most	unshaded	box.	In	our	example,	Test	Strategy	and	Test	Specification	Techniques	are
both	unshaded,	so	you	must	now	look	at	a	dependency	chart	(refer	to	Table	11-4)	to	see	if
any	dependencies	exist.	The	dependency	chart	shows	that	level	'A'	of	the	Test	Strategy	is
dependent	on	11A	(Commitment	and	Motivation)	and	5A	(Test	Specification	Techniques).
Notice	that	11A	is	already	shaded,	so	you	don't	have	to	worry	about	it.	This	means	that	the
next	logical	area	for	process	improvement	is	level	'A'	for	Test	Specification	Techniques.
After	addressing	Test	Specification	Techniques,	you	would	then	target	level	'A'	of	the	Test
Strategy.

Table	11-4:	Overview	of	Dependencies	(Reprinted	from	Test	Process	Improvement
by	Martin	Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Key	Area Level	A Level	B Level	C Level	D

1 Test	Strategy

Strategy	for
single	high-
level	test	(5A,
11A)

Combined
strategy	for
high-level	tests
(2A,	5B,	11B,
14B,	18B)

Combined
strategy	for	high-
level	tests	plus
either	low-level
tests	or	evaluation
(20C	or	(3C,
19B))

Combined
strategy	for	all
test	and
evaluation	levels
(3C,	19,	20C)

2 Lifecycle
Model

Planning,
specification,
execution
(11A)

Planning,
preparation,
specification,
execution,	and
completion	(6A,
17A)

3 Moment	of
Involvement

Completion	of
test	basis
(2A)

Start	of	test
basis	(2B)

Start	of
requirements
definition

Project	initiation
(11C)

4 Estimating	and
Planning

Substantial
estimating	and
planning	(2A)

Statistically
substantiated
estimating	and
planning	(7B,
15B)

5
Test
Specification
Techniques

Informal
techniques

Formal
techniques
(12A,	17A)

6 Static	Test
Techniques

Inspection	of
test	basis Checklists 	

7 Metrics

Project
metrics
(product)
(11B,	15B,
16A,	18B)

Project	metrics
(process)	(15c,
16b)

System	metrics
(13B,	14C,	18C)

Organization
metrics	(>	1
system)

8 Test
Automation Use	of	tools

Managed	test
automation	(5A
or	5B,	12A)

Optimal	test
automation

Test
Managed	and
controlled	test

Testing	in	the
most	suitable 'Environment	on-

9 Environment environment
(12A)

environment
(1B)

call'

10 OfficeEnvironment

Adequate	and
timely	office
environment

11 Commitmentand	Motivation

Assignment	of
budget	and
time

Testing
integrated	in
project
organization
(2A,	15B,	16A,
18B)

Test	engineering
(1C,	3C,	8B,	15C)

12 Test	Functionsand	Training
Test	manager
and	testers

(Formal)
methodical,
technical,	and
functional
support,
management

Formal	internal
quality	assurance
(13A)

13 Scope	ofMethodology

Project
specific	(2A,
5B,	16A,	17A,
18B)

Organization
generic

Organization
optimizing,	R&D
activities	(11B,
18C)

14 Communication Internalcommunication

Project
communication
(defects,
change	control)
(2A,	15B,	16A)

Communication	in
organization	about
the	quality	of	the
test	processes
(13B)

15 Reporting Defects

Progress
(status	of	tests
and	products),
activities	(costs
and	time,
milestones),
defects	with
priorities	(2A,
16A,	18B)

Risks	and
recommendations,
substantiated	with
metrics	(1A,	5B,
7A,	16B)

Recommendations
have	a	software
process
improvement
character	(1C,
11C)

16 Defect
Management

Internal	defect
management

Extensive
defect
management
with	flexible
reporting
facilities

Project	defect
management

17 Testwaremanagement

Internal
testware
management

External
management	of
test	basis	and
test	object

Reusable
testware	(5B)

Traceability	of
system
requirements	to
test	cases

18 Test	ProcessManagement
Planning	and
execution

Planning,
execution,
monitoring,	and
adjusting

Monitoring	and
adjusting	within
organization	(13B)

19 Evaluation Evaluation
techniques

Evaluation
strategy

20 Low-LevelTesting

Low-level	test
lifecycle	model
(planning,
specification,
and	execution)

White-box
techniques

Low-level	test
strategy

Description	for	Test	Spec.	Techniques	(5A)

The	use	of	informal	techniques	means	that	the	person	writing	the	test	specification	has	a	lot
of	freedom	in	inventing	test	cases.	This	causes	the	test	quality	to	be	highly	dependent	on
the	(subject	matter)	skills	of	the	person	writing	the	specification	and	blurs	the	level	of
coverage	compared	to	the	test	basis.	However,	this	is	far	better	than	each	tester	thinking	up
test	cases	for	themselves,	without	worrying	about	the	documentation	of	these	test	cases.

Making	predictions	in	the	specifications	of	the	test	cases	is	very	important,	because	the
judging	of	test	results	afterwards	under	the	pressure	of	time	is	often	insufficiently	thorough
(e.g.,	the	result	is	990;	I	expected	something	between	800	and	1,000,	so	that	number	is
probably	correct).

Checkpoints	for	Test	Spec.	Techniques	(5A)

Test	Process	Improvement	shows	that	the	following	checkpoints	must	be	satisfied	in	order
to	achieve	a	maturity	level	of	'A'	for	the	key	area	Test	Specification	Techniques:

The	test	cases	are	specified	by	means	of	a	described	technique.

The	technique	requires	at	least	a	description	of:

the	starting	situation.

the	change	process	and	the	test	actions	to	be	performed.

the	expected	end	result.

Since	the	checkpoints	for	Test	Specification	Techniques	in	Table	11-3	were	not	satisfied,	a

value	of	'0'	was	assigned.

Improvement	Suggestions	for	Test	Spec.	Techniques	(5A)

Based	on	the	results	of	the	TPI	assessment	example	in	Table	11-3,	the	checkpoints	along
with	the	following	improvement	suggestions	should	be	followed	to	get	from	maturity	level	'0'
to	level	'A'	for	the	key	area	Test	Specification	Techniques:

Make	testers	aware	of	the	importance	of	predictions.

Describe	the	specification	technique.	Try	to	include	as	many	practical	instructions	as
possible,	so	that	the	person	writing	the	specification	stays	focused.

Team-Fly 	

Team-Fly

	

Continuous	Improvement
Whether	your	organization	chooses	to	use	the	process	improvement	model	described	at	the
beginning	of	this	chapter,	CMM,	ISO,	TPI,	or	some	combination	of	these,	or	an	entirely
different	model,	it's	necessary	that	you	constantly	strive	to	improve	the	effectiveness	of	your
testing.	If	you're	not	improving,	you're	probably	going	backwards.	Goals	must	be	constantly
raised,	and	when	achieved,	raised	again.

Static	organizations	become	stale	and	ineffective,	and	suffer	from	declining	morale.	It's
unfortunate	that	organizations	that	have	achieved	a	pinnacle	of	success	might	actually	have
to	work	harder	to	retain	their	position	than	they	did	to	achieve	it	in	the	first	place.

Team-Fly 	

Team-Fly

	

Chapter	12:	Some	Final	Thoughts…

Overview
"Once	you	eliminate	your	number-one	problem,	number	two	gets	a	promotion."

—	Rudy's	Rutabaga	Rule
Gerald	M.	Weinberg's	Secrets	of	Consulting

After	reading	a	book	like	this	or	attending	a	seminar	or	training	session,	you	no	doubt	ask
yourself,	"What	now?"	Hopefully	you	realize	that	very	few	readers	of	this	book	need	to	do
everything	that	we've	suggested.	Similarly,	the	implementation	of	each	topic	in	this	book	will
produce	a	different	ROI	than	every	other	topic.	The	number-one	priority	for	one	organization
might	not	necessarily	be	as	important	to	other	organizations.

We	feel	that	models	such	as	TPI	(refer	to	Chapter	11)	can	help	most	organizations	choose
the	next	logical	step	in	the	quest	for	process	improvement.	Some	of	you,	though,	are	still	not
satisfied.	You	want	to	know	what	you	can	do	now.	Today!	Naturally,	we	can't	answer	that
question	without	knowing	a	lot	more	about	your	organization's	processes,	skills,	budget,
politics,	quality	of	software	produced,	and	a	multitude	of	other	things.	There	is,	though,	a
short	list	of	things	that	we	think	have	a	high	return	on	investment	for	almost	every
organization.	These	are	the	things	that	we	believe	every	testing	organization	should	strive	to
do:

Use	Preventive	Testing	Techniques

Conduct	Software	Risk	Analysis

Determine	Planning	Risks

Develop	a	Testing	Strategy

Use	Inventories

Use	Testing	Tools	When	Appropriate

Analyze	Defect	Trends	and	Patterns

Measure	Test	Effectiveness

Conduct	Training	Continually

Sell	the	Idea	of	Testing

Team-Fly 	

Team-Fly

	

Use	Preventive	Testing	Techniques
There's	nothing	a	testing	organization	can	do	that	will	provide	a	greater	return	on	investment
than	actually	preventing	defects	or	finding	them	very	early	in	the	software	development
lifecycle.	Chapter	1	describes	the	concept	of	preventive	testing,	and	the	rest	of	this	book	is
based	upon	the	concept	that	testing	activities	will	occur	in	advance	of	or	parallel	to	the
software	development.

Key
Point

See	Chapter	1

	

	

Team-Fly 	

Team-Fly

	

Conduct	Software	Risk	Analysis
It's	a	fact	of	life.	It's	just	not	possible	to	test	everything,	so	what	you	test	is	much	more
important	than	how	much	you	test.	Analyzing	software	risks	can	help	testing	organizations
prioritize	their	tests	and	determine	where	to	focus	their	testing	effort.

Key
Point

See	Chapter	2

	

	

Team-Fly 	

Team-Fly

	

Determine	Planning	Risks
We've	never	taken	part	in	a	project	where	everything	went	according	to	the	original	plan.
Requirements	change,	testers	get	sick,	the	code	is	late,	and	the	list	goes	on.	Since	we	can't
create	a	perfect	plan,	we	have	to	identify	potential	planning	risks	and	formulate	viable
contingencies.	These	contingencies	will	always	involve	one	or	more	of	the	following	actions:
adding	resources,	changing	the	schedule,	reducing	the	scope	of	the	project,	or	reducing
some	quality	activities	(like	testing).	The	key	is	to	decide	and	agree	upon	the	best
contingency	for	each	planning	risk	in	advance.

Key
Point

See	Planning	Risks	in	Chapter	2

	

	

Team-Fly 	

Team-Fly

	

Develop	a	Testing	Strategy
There	are	many	issues	that	need	to	be	considered	when	planning	a	testing	effort.	Who
should	do	the	testing?	When	should	we	start?	How	will	we	know	when	we're	done?	What
should	be	automated?	Do	we	need	training?	What	metrics	are	required	to	measure	the
effectiveness	of	our	effort?

Key
Point See	Chapters	3	&	4

Test	planning	helps	address	questions	like	these	and	helps	in	obtaining	buy-in	from	key
parties	by	involving	them	in	the	test	planning	early	in	the	development	lifecycle.

Team-Fly 	

Team-Fly

	

Use	Inventories
Many	organizations	struggle	to	determine	what	actual	conditions	should	be	tested.
Inventories	are	one	way	of	analyzing	a	product	in	order	to	develop	lists	of	potential	test
conditions.	The	inventory	tracking	matrix	that	is	a	by-product	of	developing	inventories
facilitates	the	maintenance	of	the	test	set	and	provides	a	method	of	determining	coverage.
When	coupled	with	software	risk	analysis	(see	above),	inventories	can	provide	the	basis	for
a	sound	testing	strategy.

Key
Point

See	Chapter	5

	

	

Team-Fly 	

Team-Fly

	

Use	Testing	Tools	When	Appropriate
Key
Point

See	Chapter	6

Testing	tools	are	not	a	panacea	and	are	certainly	not	the	answer	to	all	the	problems	that
test	teams	might	encounter,	but	there	are	many	times	when	the	appropriate	use	of	a	tool
can	help	the	test	team	be	more	effective	or	productive.	You	may	or	may	not,	in	fact,	choose
to	use	tools	on	any	given	project,	but	their	use	should	always	be	considered	when	creating
your	testing	strategy.	When	trying	to	decide	whether	or	not	to	use	tools,	remember	to
consider	the	pitfalls	we	discussed	in	Chapter	6.

	

	

Team-Fly 	

Team-Fly

	

Analyze	Defect	Trends	and	Patterns
There	is	a	great	deal	that	one	can	learn	by	analyzing	the	trends,	patterns,	type,	source,
severity,	age,	etc.	of	defects	discovered	and	missed	by	the	testers.	Specifically,	testers	can
identify	process	improvement	and	training	opportunities	and	discover	risky	components	that
warrant	a	greater	dose	of	testing.

Key
Point

See	Chapter	7

	

	

Team-Fly 	

Team-Fly

	

Measure	Test	Effectiveness
It's	very	difficult	for	the	manager	of	a	testing	team	to	determine	how	well	his	or	her	team	is
doing	if	the	manager	does	not	have	a	way	to	measure	test	effectiveness.	Chapter	7	outlines
several	different	metrics	for	measuring	test	effectiveness.	We	believe	that	every	test
manager	should	measure	coverage	and	use	at	least	one	other	measure	of	test
effectiveness	such	as	Defect	Removal	Efficiency	(DRE).

Key
Point

See	Chapter	7

	

	

Team-Fly 	

Team-Fly

	

Conduct	Training	Continually
Testing	is	now	recognized	by	most	software	engineers	as	a	discipline.	In	testing,	as	in	every
discipline,	there's	a	body	of	knowledge	and	certain	skills	that	every	professional	should
possess.	Additionally,	some	testers	will	require	special	or	advanced	skills	or	knowledge
based	upon	the	kind	of	testing	they	perform.

Key
Point See	Chapters	8	&	10

Chapter	10	lists	many	of	the	types	of	training	that	are	available	and	explains	some	of	the
pros	and	cons	of	each.	Remember	that	training	needs	to	be	timely,	appropriate,	and
ongoing.

Team-Fly 	

Team-Fly

	

Sell	the	Idea	of	Testing
There	are	still	a	lot	of	"nay	sayers"	in	this	world	who	are	not	truly	sold	on	the	benefits	of
testing.	It's	up	to	the	test	manager	and	test	teams	to	sell	developers,	users,	and
management	on	the	value	of	testing.	Testers	need	to	make	effective	use	of	metrics,	pilots,
and	public	forums	to	advance	their	cause.

Key
Point

Topics	that	pertain	to	selling	the	idea	of	testing	to	your	organization	are
presented	throughout	this	book.

"It	ain't	over	till	it's	over…."

-	Yogi	Berra

Team-Fly 	

Team-Fly

	

Appendix	A:	Glossary	of	Terms
"The	words	I	use	are	everyday	words	and	yet	are	not	the	same."

—	Paul	Claudel

Glossary	of	Terms
	

A-C

Acceptance	Testing
A	level	of	test	conducted	from	the	viewpoint	of	the	user	or	customer,	used	to
establish	criteria	for	acceptance	of	a	system.	Typically	based	upon	the
requirements	of	the	system.

Ad	Hoc	Testing
Testing	conducted	without	written	or	formal	plans	or	test	cases.

Alpha	Test
An	acceptance	test	conducted	at	the	development	site.

Approach
A	description	of	how	testing	will	be	conducted.	Includes	any	issues	that	affect
the	effectiveness	or	efficiency	of	testing.

See	also	Strategy.

Assumption
A	presumed	activity	or	state.	If	the	assumption	is	false,	it's	a	planning	risk.

See	also	Planning	Risk.

Attribute
A	characteristic	of	the	system	that	spans	the	breadth	of	the	system	(e.g.,
performance,	usability).

Baseline
A	measurement	of	where	your	processes	are	at	any	given	point	in	time.	Used	to
compare	the	processes	of	one	group	at	a	given	time	to	the	same	group	at
another	point	in	time.

Benchmark
A	measurement	of	where	your	processes	are	compared	directly	to	other
companies	or	to	a	static	model	such	as	the	CMM.

Beta	Test
An	acceptance	test	conducted	at	a	customer	site.

Black-Box	Testing
A	type	of	testing	where	the	internal	workings	of	the	system	are	unknown	or
ignored	(i.e.,	functional	or	behavioral	testing).	Testing	to	see	if	the	system	does
what	it's	supposed	to	do.

Boundary	Value	Analysis
Testing	at	or	near	the	boundaries	of	a	system	or	subsystem.

Brainstorming
A	group	problem-solving	technique	that	involves	the	spontaneous	contribution	of
ideas	from	all	members	of	the	group.

Buddy	Testing
A	technique	where	two	programmers	work	together	to	develop	and	test	their
code.	Preventive	techniques	are	used	(i.e.,	the	test	cases	are	written	prior	to	the
code).

Bug
A	flaw	in	the	software	with	potential	to	cause	a	failure.

See	also	Defect.

Calibration
The	measurement	of	coverage	of	test	cases	against	an	inventory	of
requirements	and	design	attributes.

Capability	Maturity	Model	(CMM)
A	framework	used	for	evaluating	the	maturity	of	an	organization's	software
engineering	process.	Developed	by	the	Software	Engineering	Institute	(SEI)	at
Carnegie	Mellon	University.

Certification
Any	of	a	number	of	programs	that	lead	to	formal	recognition	by	an	institution	that
an	individual	has	demonstrated	proficiency	within	and	comprehension	over	a
specified	body	of	knowledge.

Champion
An	influence	leader	who's	willing	to	serve	as	the	on-site	oracle	for	a	new
process.

Change	Control	Board	(CCB)
A	board	typically	composed	of	developers,	testers,	users,	customers,	and
others	tasked	with	prioritizing	defects	and	enhancements.	Also	called
Configuration	Control	Board	(CCB).

Code	Freeze
A	time	when	changes	to	the	system	(requirements,	design,	code,	and
documentation)	are	halted	or	closely	managed.

Configuration	Control	Board	(CCB)

See	Change	Control	Board	(CCB).

Confirmation	Testing
Rerunning	tests	that	revealed	a	bug	to	ensure	that	the	bug	was	fully	and	actually
fixed	(Derived	from	Rex	Black).

Cohabiting	Software
Applications	that	reside	on	the	same	platform	as	the	software	being	testing.

Coincidental	Correctness
A	situation	where	the	expected	result	of	a	test	case	is	realized	in	spite	of
incorrect	processing	of	the	data.

Contingency
An	activity	undertaken	to	eliminate	or	mitigate	a	planning	risk.

Coverage
A	metric	that	describes	how	much	of	a	system	has	been	(or	will	be)	invoked	by	a
test	set.	Coverage	is	typically	based	upon	the	code,	design,	requirements,	or
inventories.

Cut	Line	(in	software	risk	analysis)
The	dividing	line	between	features	to	be	tested	and	features	not	to	be	tested.

Cyclomatic	Complexity
A	technique	using	mathematical	graph	theory	to	describe	the	complexity	of	a
software	module.

D-E

Debugging
The	isolation	and	removal	or	correction	of	a	bug.

Decision	Tables
Tables	that	list	all	possible	conditions	(inputs)	and	all	possible	actions	(outputs).

Defect
A	flaw	in	the	software	with	potential	to	cause	a	failure.

See	also	Bug.

Defect	Age
A	measurement	that	describes	the	period	of	time	from	the	introduction	of	a	defect
until	its	discovery.

Defect	Density
A	metric	that	compares	the	number	of	defects	to	a	measure	of	size	(e.g.,	defects
per	KLOC).	Often	used	as	a	measure	of	defect	quality.

Defect	Discovery	Rate
A	metric	describing	the	number	of	defects	discovered	over	a	specified	period	of
time,	usually	displayed	in	graphical	form.

Defect	Removal	Efficiency	(DRE)
A	measure	of	the	number	of	defects	discovered	in	an	activity	versus	the	number	that
could	have	been	found.	Often	used	as	a	measure	of	test	effectiveness.

Defect	Seeding
The	process	of	intentionally	adding	known	defects	to	those	already	in	a	computer
program	for	the	purpose	of	monitoring	the	rate	of	detection	and	removal,	and
estimating	the	number	of	defects	still	remaining.	Also	called	Error	Seeding.

Desktop	Procedures
Simple	instructions	that	describe	all	of	the	routine	tasks	that	must	be	accomplished
by	a	manager	on	a	daily	or	weekly	basis.

Driver
Modules	that	simulate	high-level	components.

Dry	Run
Executing	test	cases	designed	for	a	current	release	of	software	on	a	previous
version.

E-Factor
Number	of	uninterrupted	hours	versus	number	of	body-present	hours.

Entry	Criteria
Metrics	specifying	the	condition	that	must	be	met	in	order	to	begin	testing	at	the
next	stage	or	level.

Environment	(Test)
The	collection	of	hardware,	software,	data,	and	personnel	that	comprise	a	level	of
test.

Equivalence	Partitioning
A	set	of	inputs	that	are	treated	the	same	by	a	system.

Escape
A	defect	that	is	undetected	by	an	evaluation	activity	and	is	therefore	passed	to	the
next	level	or	stage.

Evaluation
All	processes	used	to	measure	the	quality	of	a	system.	In	the	STEP	methodology,
these	processes	consist	of	testing,	analysis,	and	reviews.

Exit	Criteria
Metrics	specifying	the	conditions	that	must	be	met	in	order	to	promote	a	software
product	to	the	next	stage	or	level.

Exploratory	Testing
A	testing	technique	where	the	test	design	and	execution	are	conducted	concurrently.

F-I

Failure
Any	deviation	of	a	system	that	prevents	it	from	accomplishing	its	mission	or
operating	within	specification.	The	manifestation	of	a	defect.

Feature
A	functional	characteristic	of	a	system.

Fragility
A	measure	of	how	quickly	test	data	becomes	outdated.

Glass-Box	Testing

See	White-Box	Testing	(also	known	as	Glass-Box,	or	Translucent-Box).

Global	Code	Coverage
The	percentage	of	code	executed	during	the	testing	of	an	entire	application.

Hawthorne	Effect
The	observed	phenomenon	that	showing	concern	for	employees	improves	their
productivity.

IEEE
The	Institute	of	Electrical	and	Electronic	Engineers,	Inc.	Publisher	of	engineering
standards.

Immersion	Time
The	amount	of	time	it	takes	a	person	to	become	productive	after	an	interruption.

Impact
The	effect	of	a	failure.

Incident
Any	unusual	result	of	executing	a	test	(or	actual	operation).

Independent	Testing
An	organizational	strategy	where	the	testing	team	and	leadership	is	separate	from
the	development	team	and	leadership.

Independent	Verification	and	Validation	(IV&V)
Verification	and	validation	performed	by	an	organization	that's	technically,
managerially,	and	financially	independent	of	the	development	organization	(derived
from	IEEE	Glossary	of	Terms).

Influence	Leader
A	person	whose	influence	is	derived	from	experience,	character,	or	reputation,
rather	than	by	organizational	charter.

Inspection
A	formal	evaluation	technique	in	which	software	requirements,	design,	or	code	are
examined	in	detail	by	a	person	or	group	other	than	the	author	to	detect	faults,
violation	of	development	standards,	and	other	problems	(definition	from	IEEE
Glossary	of	Terms).

Integrated	Test	Team
An	organizational	strategy	where	testers	and	developers	both	report	to	the	same
line	manager.

Integration	Testing
A	level	of	test	undertaken	to	validate	the	interface	between	internal	components	of	a
system.	Typically	based	upon	the	system	architecture.

Interface	Testing
Testing	to	see	if	data	and	control	are	passed	correctly	between	systems.	Also
called	Systems	Integration	Testing.

International	Organization	for	Standards	(ISO)
A	group	of	quality	standards	developed	to	help	organizations	assess	their
processes	using	a	rigorous	auditing	model.

Inventory
A	list	of	things	to	test.

Inventory	Tracking	Matrix
A	matrix	that	relates	test	cases	to	requirements	and/or	design	attributes.	It's	used
as	a	measure	of	coverage	and	to	maintain	test	sets.

L-M

Latent	Defect
An	existing	defect	that	has	not	yet	caused	a	failure	because	the	exact	set	of
conditions	has	not	been	met.

Level
A	testing	activity	defined	by	a	particular	test	environment.

Lifecycle
The	period	of	time	from	the	conception	of	a	system	until	its	retirement.

Likelihood
The	chance	that	an	event	will	occur.

Masked	Defect
An	existing	defect	that	hasn't	yet	caused	a	failure	because	another	defect	has
prevented	that	part	of	the	code	from	being	executed.

Master	Test	Planning
An	activity	undertaken	to	orchestrate	the	testing	effort	across	levels	and
organizations.

Maturity	Level
A	term	coined	by	Watts	Humphrey	to	denote	the	level	of	process	use	in	software
organizations,	based	on	a	five-tiered	static	model	that	he	developed.

Measurement
A	quantified	observation	about	any	aspect	of	software	(derived	from	Dr.	Bill	Hetzel).

Mentoring
Using	an	experienced	person	(tester)	to	help	introduce	a	newer	staff	member	to	the
processes,	culture,	and	politics	of	an	organization.

Meta-Measure
A	measure	of	a	measure.	Usually	used	to	measure	the	effectiveness	of	a	measure,
e.g.,	number	of	defects	discovered	per	inspector	hour	(derived	from	Dr.	Bill	Hetzel).

Meter
A	metric	that	acts	as	a	trigger	or	threshold.	That	is,	if	some	threshold	is	met,	then
an	action	is	warranted,	e.g.,	exit	criteria	(derived	from	Dr.	Bill	Hetzel).

Methodology	(Test)
A	description	of	how	testing	will	be	conducted	in	an	organization.	Describes	the
tasks,	product,	and	roles.

Metric
A	measurement	used	to	compare	two	or	more	products,	processes,	or	projects
(derived	from	Dr.	Bill	Hetzel).

Milestone
A	major	checkpoint	or	a	sub-goal	identified	on	the	project	or	testing	schedule.

Mitigation
An	activity	undertaken	to	reduce	risk.

Model	Office
An	(acceptance)	test	environment	created	to	closely	mirror	the	production
environment,	including	the	use	of	real	data.

Morale
An	individual	or	group's	state	of	mind.

Motivation
The	influences	that	affect	behavior.

Mutation	Analysis
Purposely	altering	a	program	from	its	intended	version	in	order	to	evaluate	the
ability	of	the	test	cases	to	detect	the	alteration.

N-R

Negative	Test
Testing	invalid	input.

Objective
A	broad	category	of	things	to	test.	An	objective	is	to	testing,	what	a	requirement	is
to	software.

Orthogonal	Arrays
A	technique	used	to	choose	test	cases	by	employing	arrays	of	integers.

Parallel	Implementation
Installing	and	using	a	new	system	(or	a	newer	version	of	an	existing	system)	at	the
same	time	the	old	system	(or	a	previous	version)	is	installed	and	running.

Parallel	Testing
A	type	of	testing	where	the	test	results	of	a	new	system	(or	a	newer	version	of	a
previous	system)	are	compared	to	those	from	an	old	or	previous	version	of	the
system.

Pareto	Principle
80%	of	the	contribution	comes	from	20%	of	the	contributors.

Phased	Implementation
Shipping	a	product	to	the	entire	customer	base	in	increments.

Pilot
A	production	system	installed	at	a	single	or	small	number	of	client	sites.

Planning	Risk
A	risk	that	jeopardizes	the	(testing)	software	development	schedule.

Politics
The	methods	or	tactics	involved	in	managing	an	organization.

Positive	Test
Testing	valid	input.

Preventive	Testing
Building	test	cases	based	upon	the	requirements	specification	prior	to	the	creation
of	the	code,	with	the	express	purpose	of	validating	the	requirements.

Prototype
An	original	and	usually	working	model	of	a	new	product	or	new	version	of	an
existing	product,	which	serves	as	a	basis	or	standard	for	later	models.

QA
Quality	assurance.	The	QA	group	is	responsible	for	checking	whether	the	software
or	processes	conform	to	established	standards.

Quality
Conformance	to	requirements.

Quiet	Time
A	period	of	time	set	aside	from	all	meeting	and	other	interruption	in	order	to	improve

productivity

Random	Testing
Testing	using	data	that	is	in	the	format	of	real	data,	but	with	all	of	the	fields
generated	randomly.

Regression	Testing
Retesting	previously	tested	features	to	ensure	that	a	change	or	bug	fix	has	not
affected	them.

Release
A	particular	version	of	software	that	is	made	available	to	a	group	or	organization
(i.e.,	a	customer,	the	test	group,	etc.).

Requirements	Traceability
Demonstrating	that	all	requirements	are	covered	by	one	or	more	test	cases.

Resumption	Criteria
Metrics	that	describe	when	testing	will	resume	after	it	has	been	completely	or
partially	halted.

Review
Any	type	of	group	activity	undertaken	to	verify	an	activity,	process	or	artifact	(i.e.,
walkthrough,	inspection,	buddy	check,	etc.).

Risk
The	chance	of	injury,	damage	or	loss;	a	dangerous	chance	or	hazard.

Risk	Management
The	science	of	risk	analysis,	avoidance,	and	control.

S

Safety	Critical	(System)
A	system	that	could	cause	loss	of	life	or	limb	if	a	failure	occurred.

Scaffolding	Code
Code	that	simulates	the	function	of	non-existent	components	(e.g.,	stubs	and
drivers).

Script
An	automated	test	procedure.

Semi-Random	Testing

Testing	using	data	that's	in	the	format	of	real	data,	but	with	the	fields	generated	with
minimally	defined	parameters.

Smoke	Test
A	test	run	to	demonstrate	that	the	basic	functionality	of	a	system	exists	and	that	a
certain	level	of	stability	has	been	achieved.	Frequently	used	as	part	of	the	entrance
criteria	to	a	level	of	test.

Software
The	requirements,	design,	code,	and	associated	documentation	of	an	application.

Software	Configuration	Management
A	discipline	of	managing	the	components	of	a	system.	Includes	library	management
and	the	process	of	determining	and	prioritizing	changes.

Software	Risk	Analysis
An	analysis	undertaken	to	identify	and	prioritize	features	and	attributes	for	testing.

Software	Under	Test	(SUT)
The	entire	product	to	be	tested,	including	software	and	associated	documentation.

Span	of	Control
The	number	of	people	directly	reporting	to	a	manager.

Spoilage
(1)	A	metric	that	uses	defect	age	and	distribution	to	measure	the	effectiveness	of
testing.	(2)	According	to	Grady	and	Caswell,	at	Hitachi,	spoilage	means	"the	cost	to
fix	post-release	bugs."

Sponsor
Usually	a	senior	manager	who	can	help	obtain	resources	and	get	buy-in.

State
The	condition	in	which	a	system	exists	at	a	particular	instance	in	time	(e.g.,	the
elevator	is	on	the	bottom	floor).

State-Transition	Diagram
A	diagram	that	describes	the	way	systems	change	from	one	state	to	another.

STEP	(Systematic	Test	and	Evaluation	Process)
Software	Quality	Engineering's	copyrighted	testing	methodology.

Strategy
A	description	of	how	testing	will	be	conducted.	Includes	any	issues	that	affect	the

effectiveness	or	efficiency	of	testing.

See	also	Approach.

Stress	Testing
Testing	to	evaluate	a	system	at	or	beyond	the	limits	of	its	requirements.

Stubs
Modules	that	simulate	low-level	components.

Suspension	Criteria
Metrics	that	describe	a	situation	in	which	testing	will	be	completely	or	partially
halted	(temporarily).

SWAT	Team
A	reserve	group	of	expert	testers	who	can	be	rapidly	called,	in	an	emergency.

System	Testing
A	(relatively)	comprehensive	test	undertaken	to	validate	an	entire	system	and	its
characteristics.	Typically	based	upon	the	requirements	and	design	of	the	system.

Systems	Integration	Testing

See	Interface	Testing.

T

TBD(To	Be	Determined)
A	placeholder	in	a	document.

Test	Automation
Using	testing	tools	to	execute	tests	with	little	or	no	human	intervention.

Test	Bed

See	Environment	(Test).

Test	Case
Describes	a	particular	condition	to	be	tested.	Defined	by	an	input	and	an	expected
result.

Test	Coordinator
A	person	charged	with	organizing	a	testing	group	including	people,	infrastructure,
and/or	methodologies.	Often	used	for	a	one-time	or	limited-time	testing	effort.	An
organizational	style	using	a	test	coordinator.

Test	Data
Data	(including	inputs,	required	results,	and	actual	results)	developed	or	used	in	test
cases	and	test	procedures.

Test	Deliverable
Any	document,	procedure,	or	other	artifact	created	during	the	course	of	testing
that's	intended	to	be	used	and	maintained.

Test	Design	Specification
A	document	describing	a	group	of	test	cases	used	to	test	a	feature(s).

Test	Effectiveness
A	measure	of	the	quality	of	the	testing	effort	(e.g.,	How	well	was	the	testing	done?).

Test	Implementation
The	process	of	acquiring	test	data,	developing	test	procedures,	preparing	the	test
environment,	and	selecting	and	implementing	the	tools	that	will	be	used	to	facilitate
this	process.

Test	Incident	Report
A	description	of	an	incident.

Test	Item
A	programmatic	measure	of	something	that	will	be	tested	(i.e.,	a	program,
requirement	specification,	version	of	an	application,	etc.).

Test	Log
A	chronological	record	of	relevant	details	about	the	execution	of	test	cases.

Test	Procedure
A	description	of	the	steps	necessary	to	execute	a	test	case	or	group	of	test	cases.

Test	Process	Improvement	(TPI)
A	method	for	baselining	testing	processes	and	identifying	process	improvement
opportunities,	using	a	static	model	developed	by	Martin	Pol	and	Tim	Koomen.

Test	Set
A	group	of	test	cases.

Test	Suite
According	to	Linda	Hayes,	a	test	suite	is	a	set	of	individual	tests	that	are	executed
as	a	package	in	a	particular	sequence.	Test	suites	are	usually	related	by	the	area	of
the	application	that	they	exercise,	by	their	priority,	or	by	content.

Test	Summary	Report
A	report	that	summarizes	all	of	the	testing	activities	that	have	taken	place	at	a
particular	level	of	test	(or	the	entire	testing	process	in	the	case	of	a	master	test
plan).

Testing
Concurrent	lifecycle	process	of	engineering,	using,	and	maintaining	testware	in
order	to	measure	and	improve	the	quality	of	the	software	being	tested.

Testing	Tool
A	hardware	or	software	product	that	replaces	or	enhances	some	aspect	of	human
activity	involved	in	testing.

Testware
Any	document	or	product	created	as	part	of	the	testing	effort.

Testware	Configuration	Management
The	discipline	of	managing	the	test	components	of	a	system.	Includes	library
management	and	the	process	of	determining	and	prioritizing	changes.

Turnover	Files
Examples	of	reports,	meeting	minutes,	contact	lists,	and	other	documents	that,
along	with	desktop	procedures,	facilitate	a	smooth	transition	from	one	manager	to
another.

U-W

Unit
A	piece	of	code	that	performs	a	function,	typically	written	by	a	single	programmer.	A
module.

Unit	Testing
A	level	of	test	undertaken	to	validate	a	single	unit	of	code.	Typically	conducted	by
the	programmer	who	wrote	the	code.

Usability	Laboratory
A	specially	equipped	laboratory	designed	to	allow	potential	users	of	a	system	to	"try
out"	a	prototype	of	a	system	prior	to	its	completion.

Use-Case
A	use-case	describes	a	sequence	of	interactions	between	an	external	"actor"	and	a
system,	which	results	in	the	actor	accomplishing	a	task	that	provides	a	benefit	to
someone.

Validation
Any	of	a	number	of	activities	undertaken	to	demonstrate	conformance	to
requirements	(stated	and	implied)	(i.e.,	building	the	right	product).	Often	done
through	the	execution	of	tests	or	reviews	that	include	a	comparison	to	the
requirements.

Verification
Any	of	a	number	of	activities	undertaken	to	demonstrate	that	the	results	of	one
stage	are	consistent	with	the	previous	stage	(i.e.,	the	design	is	verified	against	the
requirements	specification).	Typically	done	using	reviews	(i.e.,	doing	the	thing	right).

Walkthrough
A	peer	review	of	a	software	product	that	is	conducted	by	sequentially	"walking
through"	the	product.	A	type	of	verification.

Waterfall	Model
A	model	of	software	development	based	upon	distinct,	sequential	phases.

White-Box	Testing	(also	known	as	Glass-Box,	or	Translucent-Box)
Testing	based	upon	knowledge	of	the	internal	(structure)	of	the	system.	Testing	not
only	what	the	system	does,	but	also	how	it	does	it	(i.e.,	Structural	Testing).

Team-Fly 	

Team-Fly

	

Appendix	B:	Testing	Survey

Overview
"It's	better	to	know	some	of	the	questions	than	all	of	the	answers."

—	James	Thurber

The	following	survey	was	designed	to	be	used	at	a	testing	conference	to	measure	industry
trends	in	test	and	evaluation	process	use.	We've	also	found	it	to	be	a	useful	tool	to	baseline
current	practices	within	an	organization.

Additionally,	a	gap	analysis	can	be	used	to	identify	and	prioritize	process	improvement
opportunities.	A	large	difference	between	the	perceived	value	and	usage	value	indicates	a
process	that,	if	improved,	could	yield	a	large	return	on	investment	(ROI).

Team-Fly 	

Team-Fly

	

Test	and	Evaluation	Practices	Survey
Tables	B-1	through	B-4	contain	a	list	of	some	test	and	evaluation	activities	that	might	be
employed	in	your	software	activities.	For	each	activity,	indicate	the	degree	of	use	in	your
division/area	and	how	valuable	or	important	you	consider	it	to	be	towards	producing	good
software.	If	you	do	not	know	the	usage	or	have	no	opinion	on	the	value,	leave	it	blank.	Table
B-5	contains	a	list	of	some	questions	that	pertain	to	trends	and	perspectives	in	testing.

Usage Value

0No	Usage	–	Not	used. 0Unimportant	–	Not	needed	or	waste	of	time.

1Infrequent	Use	–	Used	some	of	thetime. 1Limited	Value	–	Would	be	nice.

2Common	Use	–	Used	most	of	thetime. 2Significant	Value	–	Recommended	practice.

3Standard	Use	–	Used	all	of	the	time. 3Critical	–	Should	be	a	standard	practice	foreveryone.

Table	B-1:	Management	and	Measures

Description	of	Activity
Enter	0,	1,	2,

or	3

Usage Value

M1 An	overall	quality	and/or	test	and	evaluation	plan	is	produced _____ _____

M2 A	person	is	responsible	for	the	testing	and	evaluation	process _____ _____

M3 A	capital	budget	is	provided	each	year	for	the	testing	and
evaluation	process _____ _____

M4 A	record	of	the	time	spent	on	testing	and	evaluation	is	produced _____ _____

M5 The	cost	of	testing	and	reviews	is	measured	and	reported _____ _____

M6 A	record	of	faults	and	defects	found	in	each	review	or	test	stage	is
produced _____ _____

M7 A	record	of	what	is	missed	in	each	review	or	test	stage	is
produced _____ _____

M8 Test	and	review	effectiveness/efficiency	is	measured	and	reported _____ _____

M9 The	cost	of	debugging	is	separated	from	testing _____ _____

M10Defect	density	(defects	per	thousand	lines	of	code)	ismeasured _____ _____

M11 A	person	or	department	is	responsible	for	managing	the	test
environment	and	tools

_____ _____

M12 The	pattern	of	faults	and	defects	found	is	regularly	analyzed _____ _____

M13 Full-time	testers	are	used	for	high-level	testing	(system	and/oracceptance) _____ _____

M14 Full-time	testers	are	used	for	low-level	testing	(unit	and	object) _____ _____

M15 Full-time	reviewers	are	used	in	formal	reviews	and	inspections _____ _____

M16Compliance/adherence	to	the	test	and	evaluation	process	ismonitored _____ _____

Usage Value

0No	Usage	–	Not	used. 0Unimportant	–	Not	needed	or	waste	of	time.

1Infrequent	Use	–	Used	some	of	thetime. 1Limited	Value	–	Would	be	nice.

2Common	Use	–	Used	most	of	thetime. 2Significant	Value	–	Recommended	practice.

3Standard	Use	–	Used	all	of	the	time. 3Critical	–	Should	be	a	standard	practice	foreveryone.

Table	B-2:	Evaluation	Process

Description	of	Activity
Enter	0,	1,	2,

or	3

Usage Value

E1 Review	and	inspection	points	are	well-defined	and	documented _____ _____

E2 Specialized	training	is	provided	for	specific	roles	(moderator,
recorder,	reader) _____ _____

E3 Requirements	documents	are	formally	reviewed	and	inspected _____ _____

E4 Design	documents	are	formally	reviewed	and	inspected _____ _____

E5 Code	is	formally	reviewed	and	inspected _____ _____

E6 Changes	are	formally	reviewed	and	inspected _____ _____

E7 Testing	plans	and	documents	are	formally	reviewed _____ _____

E8 Guidelines	are	used	to	control	review	length	and	review	item	size _____ _____

A	standard	set	of	outcomes	is	used	for	formal	reviews	and

E9 inspections _____ _____

E10 Statistics	are	kept	for	time	spent	by	reviewer	and	revieweffectiveness _____ _____

E11 Standard	review	reports	are	used	for	recording	issues	andsummarizing	results _____ _____

E12 Defects	and	review	issues	missed	are	measured	and	tracked _____ _____

E13 Risk	analysis	is	formally	performed _____ _____

E14 Safety/hazard	analysis	is	formally	performed _____ _____

E15 Specialized	evaluation/analysis	training	is	provided _____ _____

E16 Defects	are	analyzed	as	to	phase	introduced	and	root	cause _____ _____

E17 Review	process	adherence/compliance	is	monitored	and	tracked _____ _____

Usage Value

0No	Usage	–	Not	used. 0Unimportant	–	Not	needed	or	waste	of	time.

1Infrequent	Use	–	Used	some	of	thetime. 1Limited	Value	–	Would	be	nice.

2Common	Use	–	Used	most	of	thetime. 2Significant	Value	–	Recommended	practice.

3Standard	Use	–	Used	all	of	the	time. 3Critical	–	Should	be	a	standard	practice	foreveryone.

Table	B-3:	Testing	Process	and	Activities

Description	of	Activity
Enter	0,	1,	2,	or

3

Usage Value

P1 Unit	testing	plans	and	specifications	are	documented _____ _____

P2 Unit	testing	defects	are	tracked	and	analyzed _____ _____

P3 Unit	test	summary	reports	are	tracked	and	analyzed _____ _____

P4 System-level	test	plans	and	specifications	are	documented _____ _____

P5 System-level	defects	are	tracked	and	analyzed _____ _____

P6 System-level	reports	are	produced _____ _____

P7 Test	objectives	are	systematically	inventoried	and	analyzed _____ _____

P8
Risk	is	acknowledged	and	used	to	design,	organize,	and	execute
tests _____ _____

P9 Requirements	test	coverage	is	tracked	and	measured _____ _____

P10 Design	test	coverage	is	tracked	and	measured	(traced) _____ _____

P11 Code	coverage	is	analyzed	or	traced _____ _____

P12 Tests	are	rerun	when	software	changes _____ _____

P13 Unit-level	test	sets	are	saved	and	maintained _____ _____

P14 System-level	test	sets	are	saved	and	maintained _____ _____

P15 Test	cases	and	procedures	are	assigned	unique	names _____ _____

P16 Tests	are	specified	before	the	technical	design	of	the	software _____ _____

P17 Test	cases	and	procedures	are	formally	documented _____ _____

P18 Test	documents	and	test	programs	are	reviewed	like	software _____ _____

P19 Defects	found	are	analyzed	as	to	phase	introduced	and	rootcause _____ _____

P20 Test	process	adherence/compliance	is	monitored	and	measured _____ _____

P21 Testware	is	considered	an	asset	and	assigned	a	value _____ _____

Usage Value

0No	Usage	–	Not	used. 0Unimportant	–	Not	needed	or	waste	of	time.

1Infrequent	Use	–	Used	some	of	thetime. 1Limited	Value	–	Would	be	nice.

2Common	Use	–	Used	most	of	thetime. 2Significant	Value	–	Recommended	practice.

3Standard	Use	–	Used	all	of	the	time. 3Critical	–	Should	be	a	standard	practice	foreveryone.

Table	B-4:	Test	and	Evaluation	Tools

Description	of	Activity
Enter	0,	1,	2,

or	3

Usage Value

T1 Comparator	(file	output)	is	used	to	support	testing _____ _____

Simulators	(hardware,	software,	or	communications)	are	part	of	our

T2 test	environment _____ _____

T3 Capture/playback	tools	are	used	for	retesting _____ _____

T4 Coverage	measurement	tools	are	used	in	unit	testing _____ _____

T5 Coverage	measurement	tools	are	used	in	system	testing _____ _____

T6 Data	or	file	generator	(parameter	or	code-driven)	tools	are
available _____ _____

T7 Data	analyzer	tools	are	used	to	profile	test	sets	and	files _____ _____

T8 A	test	database	(bed	of	tests	which	simulate	the	test	environment)
is	available _____ _____

T9 Test	case	or	procedure	generator	(parameter	or	code-driven)	tools
are	available _____ _____

T10 Static	code	analyzers	are	used	to	analyze	risk	and	change _____ _____

T11 Test	management	tools	to	track	and	record	execution	results	areused _____ _____

T12 Tools	are	used	to	estimate	test	and	evaluation	effort	and/orschedule _____ _____

Identify	any	major	commercial	tools	that	you	or	your	division/area	used	regularly:

Tool Vendor

Table	B-5:	Trends	and	Perspectives

Compared	with	several	years	ago… Worse About
Same

A	Little
Better

A	Lot
Better

Don't
Know

Our	overall	software	effort	and	quality	is _____ _____ _____ _____ _____

The	effectiveness	of	our	reviews	and
inspections	program	is _____ _____ _____ _____ _____

The	effectiveness	of	our	unit-level	testing
is _____ _____ _____ _____ _____

The	effectiveness	of	our	build/integration
level	testing	is _____ _____ _____ _____ _____

The	effectiveness	of	our	system-level
testing	is _____ _____ _____ _____ _____

The	effectiveness	of	our	acceptance-level
testing	is _____ _____ _____ _____ _____

The	use	of	automation/tools	to	support
test	and	evaluation	is _____ _____ _____ _____ _____

Our	choice	of	what	to	measure	and	track
is _____ _____ _____ _____ _____

Your	estimate	of	the	percentage	of	the	total	time
spent	in	your	division/area	on	software	development
and	maintenance	that	is	spent	on…

Low% Best
Guess High%

Don't
Know

Quality	management	activities _____ _____ _____ _____

Reviews	and	inspections	(requirements,	design,	code) _____ _____ _____ _____

Low-level	testing	(unit	and	integration) _____ _____ _____ _____

High-level	testing	(system	and	acceptance) _____ _____ _____ _____

The	one	thing	I	wish	my	division/area	would	do	or	change	regarding	our	test	and	evaluation
effort	is:	___

Team-Fly 	

Team-Fly

	

Appendix	C:	IEEE	Templates
"Innovate!	Follow	the	standard	and	do	it	intelligently.	That	means	including	what	you
know	needs	to	be	included	regardless	of	what	the	standard	says.	It	means	adding
additional	levels	or	organization	that	make	sense."

—	IEEE	Computer	Society,
Software	Engineering	Standards	Collection

IEEE	Templates
For	your	convenience,	we've	included	in	this	section	all	of	the	IEEE	templates	(and
variations)	used	in	this	book.	Some	templates	have	been	modified	based	on	the	experiences
of	the	authors	and	as	described	in	the	text	of	this	book.	These	changes	(additions)	are
presented	in	italics.	If	you	delete	all	of	the	italicized	words	in	each	template,	the	original
IEEE	template	would	remain.

For	a	complete	description	of	each	template,	please	refer	to	the	corresponding	section	of
the	book	indicated	in	the	right	margin.	The	complete	IEEE	guidelines	can	be	purchased	from
the	IEEE	Web	site	at	www.ieee.org.

Test	Documents

IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation	Template	for
Test	Documents	Contents

1.
Test	Plan
Used	for	the	master	test	plan	and	level-specific	test	plans.

2.
Test	Design	Specification
Used	at	each	test	level	to	specify	the	test	set	architecture	and	coverage	traces.

3.
Test	Case	Specification
Used	as	needed	to	describe	test	cases	or	automated	scripts.

4.Test	Procedure	Specification	Used	to	specify	the	steps	for	executing	a	set	oftest	cases.

5.
Test	Log
Used	as	needed	to	record	the	execution	of	test	procedures.

6.

Test	Incident	Report
Used	to	describe	anomalies	that	occur	during	testing	or	in	production.	These
anomalies	may	be	in	the	requirements,	design,	code,	documentation,	or	the	test
cases	themselves.	Incidents	may	later	be	classified	as	defects	or
enhancements.

7.
Test	Summary	Report
Used	to	report	completion	of	testing	at	a	level	or	a	major	test	objective	within	a
level.

Figure	C-1:	Template	for	Test	Documents	from	IEEE	Std.	829-1998	Refer	to	Chapter	1
for	more	information.

http://www.ieee.org

Test	Plan

IEEE	Std.	829-1998	Standard	for	Software	Test	Documentation	Template	for
Test	Planning	Contents

1.	 Test	Plan	Identifier

2.	 Table	of	Contents

3.	 References

4.	 Glossary

5.	 Introduction

6.	 Test	Items

7.	 Software	Risk	Issues

8.	 Features	to	Be	Tested

9.	 Features	Not	to	Be	Tested

10.	 Approach

11.	 Item	Pass/Fail	Criteria

12.	 Suspension	Criteria	and	Resumption	Requirements

13.	 Test	Deliverables

14.	 Testing	Tasks

15.	 Environmental	Needs

16.	 Responsibilities

17.	 Staffing	and	Training	Needs

18.	 Schedule

19.	 Planning	Risks	and	Contingencies

20.	 Approvals

Figure	C-2:	Template	for	Test	Planning	from	IEEE	Std.	829-1998	Refer	to	Chapter	3	for
more	information.

Unit	Testing

IEEE	Std.	1008–1987	for	Software	Unit	Testing	Contents

1.Scope	and	References

1.1Inside	the	Scope

1.2Outside	the	Scope

1.3References

2.Definitions

3.Unit	Testing	Activities

3.1Plan	the	General	Approach,	Resources,	and	Schedule

3.2Determine	Features	to	Be	Tested

3.3Refine	the	General	Plan

3.4Design	the	Set	of	Tests

3.5Implement	the	Refined	Plan	and	Design

3.6Execute	the	Test	Procedures

3.7Check	for	Termination

3.8Evaluate	the	Test	Effort	and	Unit

Figure	C-3:	Rick's	copy	of	the	Unit	Testing	Standard	Refer	to	Chapter	4	for	more
information.

Test	Design	Specification

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test	Design
Specification	Contents

1.	 Test	Design	Specification	Identifier

2.	 Features	to	Be	Tested

3.	 Approach	Refinement

4.	 Test	Identification

5.	 Feature	Pass/Fail	Criteria

Figure	C-4:	Test	Design	Specification	Template	from	IEEE	Std.	829-1998	Refer	to
Chapter	5	for	more	information.

Test	Case	Specification

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test	Case
Specification	Contents

1.	 Test	Case	Specification	Identifier

2.	 Test	Items

3.	 Input	Specifications

4.	 Output	Specifications

5.	 Environmental	Needs

6.	 Special	Procedural	Requirements

7.	 Inter-Case	Dependencies

Figure	C-5:	Test	Case	Specification	Template	from	IEEE	Std.	829-1998	Refer	to
Chapter	5	for	more	information.

Test	Procedure

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Procedure	Contents

1.0
Test	Procedure	Specification	Identifier	Specify	the	unique	identifier	assigned
to	this	test	procedure.
Supply	a	reference	to	the	associated	test	design	specification.

2.0
Purpose
Describe	the	purpose(s)	of	the	procedure	and	refer	to	the	test	cases	being
executed.

3.0Special	Requirements	Describe	any	special	requirements	such	asenvironmental	needs,	skill	level,	training,	etc.

4.0Procedure	Steps	This	is	the	heart	of	the	test	procedure.	The	IEEE	describesseveral	steps	listed	below:

4.1
Log
Describe	any	special	methods	or	formats	for	logging	the	results	of	test
execution,	the	incidents	observed,	and	any	other	events	pertinent	to	the
test.

4.2
Set	up
Describe	the	sequence	of	actions	necessary	to	prepare	for	execution	of
the	procedure.

4.3
Start
Describe	the	actions	necessary	to	begin	execution	of	the	procedure.

4.4
Proceed
Describe	any	actions	necessary	during	execution	of	the	procedure.

4.4.1 Step	1

4.4.2 Step	2

4.4.3 Step	3

4.4.4 Step	Z

4.5
Measure
Describe	how	the	test	measurements	will	be	made.

4.6
Shut	Down
Describe	the	action	necessary	to	suspend	testing	when	unscheduled
events	dictate.

4.7
Restart
Identify	any	procedural	restart	points	and	describe	the	action	necessary	to
restart	the	procedure	at	each	of	these	points.

4.8
Stop
Describe	the	actions	necessary	to	bring	execution	to	an	orderly	halt.

4.9
Wrap	Up
Describe	the	action	necessary	to	restore	the	environment.

4.10Contingencies	Describe	the	actions	necessary	to	deal	with	anomaliesand	other	events	that	may	occur	during	execution.

Figure	C-6:	Test	Procedure	Template	from	IEEE	Std.	829-1998	Refer	to	Chapter	5	for
more	information.

Test	Log

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test	Log
Contents

1.	 Test	Log	Identifier

2.	 Description

3.	 Activity	and	Event	Entries

Figure	C-7:	Test	Log	Template	from	IEEE	Std.	829-1998	Refer	to	Chapter	7	for	more
information.

Test	Incident	Report

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Incident	Report	Contents

1. Incident	Summary	Report	Identifier

2. Incident	Summary

3. Incident	Description

3.1 Inputs

3.2 Expected	Results

3.3 Actual	Results

3.4 Anomalies

3.5 Date	and	Time

3.6 Procedure	Step

3.7 Environment

3.8 Attempts	to	Repeat

3.9 Testers

3.10 Observers

4. Impact

5. Investigation

6 Metrics

7.Disposition

Figure	C-8:	Template	for	Test	Incident	Report	from	IEEE	Std.	829-1998	Refer	to

Chapter	7	for	more	information.

Test	Summary	Report

IEEE	Std.	829-1998	for	Software	Test	Documentation	Template	for	Test
Summary	Report	Contents

1.Test	Summary	Report	Identifier

2.Summary

3.Variances

4.Comprehensive	Assessment

5.Summary	of	Results

5.1 Resolved	Incidents

5.2 Unresolved	Incidents

6.Evaluation

7.Recommendations

8.Summary	of	Activities

9.Approvals

Figure	C-9:	Template	for	Test	Summary	Report	from	IEEE-829-1998	Refer	to	Chapter	7
for	more	information.

Test	Plan	for	Process	Improvement

Template	for	Process	Improvement	Contents

1. Test	Plan	Identifier

2. Introduction

2.1 Genesis	of	Process	Improvement	Initiative

2.2 Scope	of	Initiative

3. Planning	Risks

3.1 Schedule

3.2 Budget

3.3 Staffing

3.4 Buy-In

4. Approach

4.1 Major	Strategy	Decisions

5. Pass/Fail	Criteria

5.1 What	constitutes	success?	How	are	progress	and	results	measured?

6. Suspension	Criteria

6.1 What	should	cause	us	to	temporarily	suspend	our	efforts?

7. Deliverables

7.1 Project	Status

7.2 Reports

7.3 Metrics

7.4 Post-Project	Review

8. Environmental	Needs

8.1 Hardware	and	Software

8.2 Tools

8.3 Office	Space

9. Staffing	and	Training	Needs

9.1 In-House

9.2 Contracted

10.Responsibilities

10.1Team	Members

10.2Sponsor

10.3Champion

10.4Training	Department

10.5Test	Environment	Group

10.6Process	Group

11. Schedule

11.1Project	Initiative

11.2 Incremental	Milestones

11.3Post-Project	Review

12.Approvals

12.1Person(s)	Approving	the	Plan

Figure	C-10:	Test	Plan	Template	MODIFIED	for	Process	Improvement	Refer	to	Chapter
11	for	more	information.

Team-Fly 	

Team-Fly

	

Appendix	D:	Sample	Master	Test	Plan
"Planning	is	a	process	that	should	build	upon	itself	–	each	step	should	create	a	new
understanding	of	the	situation	which	becomes	the	point	of	departure	for	new	plans."

—	Planning,	MCDP	5
U.S.	Marine	Corps

Sample	Master	Test	Plan
Below	is	a	sample	master	test	plan	that	was	created	to	test	the	STQE.net	Web	site,	which
later	became	known	as	StickyMinds.com.

STQE.net	Master	Test	Plan,	Release	1
Version	1.5

1.	Test	Plan	Identifier

STQE.net	MTP	1.5

2.	References

The	following	documents	have	been	used	in	the	preparation	of	this	document:
1.	 SQE.NET	Requirements	Definition,	Version	3.2

2.	 SQE.NET	Web	Site	Control	Structure,	Version	1.00

3.	 SQE.NET	Test	Objectives,	Version	1.5

4.	 SQE	Systematic	Software	Testing	Course	Notes

5.	 STQE.NET	Issue	form

3.	Introduction

Software	Quality	Engineering	has	contracted	with	an	outside	software	development	vendor
to	create	a	World	Wide	Web	(WWW)	site	to	function	as	a	knowledge	and	information
sharing	site	for	software	testing	and	quality	engineering	professionals.	The	target	audience
will	be	the	same	as	the	Software	Testing	and	Quality	Engineering	magazine,	software
managers	(development,	testing,	and	quality)	and	test	professionals,	and	software
engineers	who	are	interested	in	building	and	delivering	better	software.

Unlike	many	WWW	sites,	this	site,	to	be	known	as	SQE.net,	is	a	software-driven	database
application	using	Microsoft	Site	Builder	with	ASP	coding	and	the	MS-SQL	database.	This
Master	Test	Plan	(MTP)	covers	the	testing	activities	of	the	software	and	does	not
cover	the	initial	or	on-going	tasks	of	adding,	editing,	publishing,	and	verifying	the
content.

The	SQE.net	site	will	be	introduced	in	releases	with	each	release	having	increasing
functionality:

Release	1.0,	also	known	as	"Live	Beta,"	will	be	an	opportunity	for	the	interest	area
moderators	and	product	providers	(vendors)	to	begin	to	enter	data	into	the
databases.	Formal	testing	of	SQE.net's	initial	capabilities	will	begin	with	this

release.	After	formal	testing	and	loading	content,	the	site	will	be	accepted	into
production	and	the	public	"Grand	Opening"	of	the	site	will	be	announced.	After	all
functionality	for	Release	1.0	has	been	delivered,	internal	bug	fix	releases	will	be
denoted	with	a	letter	suffix,	i.e.	1.0a,	1.0b,	etc.

Future	enhancements,	such	as	job	postings,	banner	ad	management,	a	"What's	new"
feature,	and	a	comprehensive	site	search	engine,	will	take	place	in	subsequent	releases.
This	master	test	plan,	covering	the	testing	for	Release	1	includes	the	following	testing	levels:

Unit	and	Integration	Testing:	the	vendor	as	part	of	its	development	of	the	site
software	will	perform	these	levels.	This	plan	will	not	discuss	these	levels	of	testing.

Smoke	Test:	The	smoke	test	will	be	conducted	by	the	SQE	test	team.	The	test
plans	are	written	in	a	manner	which	can	easily	be	automated.	The	purpose	of	the
smoke	test	is	to	verify	that	the	software	is	stable	enough	to	conduct	further
functional	testing.

Functional	Test:	The	functional	test	is	designed	to	verify	that	the	functions	at	each
user	level	work	as	designed.	Many	of	the	tests	designed	in	the	smoke	test	may	be
re-used	along	with	some	additional	tests	to	create	the	functional	test	plan.	These
tests	will	also	be	written	in	a	format	that	can	be	easily	automated.	It	is	at	this	level
of	test	that	the	data	will	be	verified	to	be	in	the	correct	state,	updated	to	the
appropriate	database,	etc.	This	level	of	test	will	be	conducted	at	a	more	detailed
level	due	to	lack	of	formal	testing	in	the	unit	test	phase.

System	Testing:	This	level	of	test	will	test	the	functions	of	the	system	as	a	whole
system.	Again,	many	tests	from	previous	test	phases	may	be	reused	in	the	system
test	phase	along,	with	new	tests.	The	approach	will	be	to	verify	the	functional	test
plan	utilizing	more	than	one	browser,	operating	system	and	monitor	size.

Performance	Test:	This	level	of	test	will	verify	that	the	system	can	perform
adequately	with	a	high	volume	of	users.	This	test	will	be	performed	manually,
utilizing	the	tests	from	previous	test	phases.	The	tests	are	being	designed	in	a
manner	such	that	they	can	be	reused	and	automated.	Performance	tests	will	be
performed	on	the	live	production	site.

Acceptance	Testing:	This	level	of	test	is	to	test	the	Web	site	from	an	end-user
perspective.	The	scenarios	should	be	constructed	from	different	types	of	users
entering	the	site,	what	they	would	likely	do	and	the	questions	they	would	likely	ask.
This	test	can	be	constructed	using	the	tests	from	previous	test	phases	and	adding
additional	tests	as	needed.

Beta	Testing:	This	level	occurs	on	the	live	SQE.NET	site	and	is	performed
concurrently	with	acceptance	testing.	The	content	providers	(moderators	and
product	providers),	who	will	be	adding	data	to	the	site,	will	provide	feedback	on	the
performance	and	functionality	of	the	site.

The	philosophy	of	the	testing	is	risk-based	testing.	All	test	objectives	and	tests	will	be
prioritized	for	each	level	of	testing	as	critical,	high,	medium,	or	low	priority.

4.	Test	Items

The	software	items	to	be	tested	include	the	following:

1.	 SQE.NET	site	software:	Testing	will	be	on	the	latest	version	available	from	the
development	vendor.	Each	version	will	be	identified	with	an	internal	version	code.
The	testing	will	be	done	with	the	software	using	the	SQL	Server	database	only
and	not	with	the	Access	database	used	for	development.

2.	 Netscape	Navigator	Version	3.02	and	Internet	Explorer	(IE)	Version	4.02:	We
have	specified	that	SQE.NET	is	to	work	with	Netscape	3.0	and	IE	4.0	and	above
with	frames.	Testing	may	be	done	on	any	version,	but	formal	system	and
acceptance	testing	will	be	performed	using	these	versions.	Additional	browser
testing	will	be	done	on	the	latest	MS-Windows	browsers,	including	Netscape	4.0
and	the	upcoming	IE	5.0.

3.	 Microsoft	Windows	Platform:	Most	testing	will	be	performed	on	PCs	running	a
minimum	of	Microsoft	Windows	95,	OSR	1.	However,	the	reference	platform	for
testing	is	Microsoft	Windows	98	with	the	latest	service	pack.

4.	 Macintosh	Platform:	Minimal	testing	will	be	performed	on	the	Macintosh	platform
with	Netscape	running	the	latest	version	of	Mac	OS	Version	8.0.	SQE	will	recruit
and	rely	on	Beta	testing	on	the	Mac	platform.

5.	 UNIX:	No	formal	testing	will	be	done	on	UNIX	workstations.	SQE	will	recruit	and
rely	on	Beta	testing	for	UNIX.

5.	Software	Risk	Issues

As	this	is	the	initial	release	of	the	STQE.net,	testing	will	be	required	to	verify	all
requirements	of	the	site.	Software	risk	issues	are	identified	and	prioritized	in	the	STQE.net
Test	Objectives	spreadsheet	that	is	included	in	Appendix	A	of	this	plan.

6.	Features	and	Functions	to	Test

Test	objectives	are	listed	as	requirements-based,	design-based,	or	code-based	and	further
separated	into	groups:	Requirements	Based

RB-FN Features	-	Navigation	Bar

RB-FH Features	-	Home

RB-UMFeatures	-	User	Member	Management	(Join,	Sign-In,	Update	Profile)

RB-FI Features	-	Interest	Areas

RB-FB Features	-	Books

RB-FT Features	-	Tools	and	Services

RB-FC Features	-	Calendar	of	Events

RB-FD Features	-	Disclosures	and	Terms

RB-FS Features	-	Sponsors	and	Advertisers

RB-FA Features	-	Administrators

RB-SGScenarios	-	Guests

RB-SU Scenarios	-	User	Members	(Logged-In)

RB-SMScenarios	-	Moderators

RB-SP Scenarios	-	Providers	(Vendors)

RB-SA Scenarios	-	Administrator

Design	Based

DB-USUsage

DB-SCSecurity

DB-MLMulti-Language

DB-PF Performance	(Volume	and	Stress)

DB-BCBrowser	Configurations

DB-SRSite	Failure/Restart

DB-BKBackup/Recovery

Code	Based

CB-LK Links

CB-HSSyntax	(HTML	and	ASP	Code)

CB-TGMetatags	and	Graphics	Tags

7.	Features	Not	to	Test

We	expect	to	test	all	of	the	objectives	in	the	Test	Objectives	Inventory	(Appendix	A).
However,	if	time	does	not	permit,	some	of	the	low-priority	items	may	be	dropped.

8.	Approach

The	testing	will	be	done	manually	until	the	site	is	sufficiently	stable	to	begin	developing
automatic	tests.	The	testing	will	cover	the	requirements	for	all	of	the	different	roles

participating	in	the	site:	guests,	members,	vendors,	moderators,	and	administrators.

Automated	Testing	Tools

We	are	going	to	implement	automated	testing	using	commercially	available,	off-the-shelf
tools.	A	tool	will	be	used	for	feedback/defect	tracking.	A	tool	will	be	implemented	for	test
scripting	using	a	mix	of	manual	and	automated	tests.	Capture/playback	tools	will	be	used	on
a	limited	basis	for	automating	parts	of	the	smoke	test.	Other	utilities,	such	as	link	testers
and	HTML	syntax	checkers,	will	be	used	as	needed.	We	do	not	plan	any	automated
performance	testing	for	Release	1.

The	smoke	tests	will	be	the	first	series	of	tests	to	automate.	Work	will	begin	when	the	GUI
interface	and	database	are	stable.

Defect	Tracking

Testing	issues	and	feedback	from	beta	users	will	be	reported	on	the	STQE.net	Issue	Form
and	entered	into	a	tool.	Within	one	business	day,	we	will	analyze	and	classify	any	new	issue
as	a	software	defect,	enhancement,	could	not	reproduce,	not	a	problem,	or	failure.	Severity
level	and	fix	priority	of	software	defects	will	be	set.	Issue	classes,	severity	categories,	and
fix	priorities	are	listed	in	Appendix	B.

Change	Management

When	the	vendor	turns	the	software	over	to	SQE	for	testing,	all	changes	to	the	site
software	will	come	under	change	control.	The	project	manager	will	approve	all	changes
moved	into	the	test	environment.	A	change	notice	must	define	the	modules	being	changed
and	the	reason	for	the	change,	including	all	repaired	defects.	Except	for	critical	fixes	that
are	blocking	current	testing	efforts,	changes	will	be	scheduled	not	to	impact	testing.

Except	for	emergency	repairs,	changes	will	not	be	moved	into	the	live	environment	until	the
test	manager	approves	a	new	version	for	production.	After	the	software	is	moved	to	the	live
environment,	testing	will	confirm	that	the	software	matches	the	configuration	in	test	and
perform	a	smoke	test.

Test	Cycles

Each	time	a	new	version	is	released	to	the	test	environment,	the	following	process	will	be
undertaken:

Configuration	will	be	checked	and	recorded.

Smoke	test	will	be	run.

If	successful,	the	system	and/or	acceptance	test	suite	will	be	updated	to	account	for
changes	uncovered	by	the	Smoke	Test	and	then	run.	The	incidents	will	be	analyzed
and	software	defects	reported.

Ad	hoc	testing	will	be	performed	by	the	testers	of	new	or	changed	functionality	or
functionality	that	has	been	error	prone.

New	tests	will	be	developed.

While	Release	1	is	in	the	"live	beta"	status,	updates	that	"pass"	a	test	cycle	will	be	moved	to
the	production	host	and	made	"live."

Metrics

Metrics	will	be	kept	for	test	effort,	incidents,	defects,	and	test	cases	executed	for	each	test
cycle.

9.	Item	Pass/Fail	Criteria

The	entrance	criteria	for	each	level	of	testing	are	defined	in	Appendix	C.	The	exit	criteria	are
the	entrance	criteria	for	the	following	test	level.	The	Web	site	will	not	be	opened	for	content
providers	when	any	critical	defects	exist	in	those	functions	involved	with	the	addition	of
content.

Release	1	of	the	site	will	not	be	opened	to	the	general	public	until	all	critical	and	high-
severity	defects	have	been	resolved.	The	project	manager	will	have	the	discretion	to
determine	that	some	critical	and	high	defects	may	be	deferred,	where	the	effects	of	their
failures	do	not	affect	guests	and	members	in	the	use	of	the	site.

10.	Suspension	Criteria	and	Resumption	Req'mts

With	each	update	from	the	vendor,	a	smoke	test	will	be	performed.	If	this	test	does	not
pass,	further	testing	is	halted	until	a	version	is	delivered	that	will	pass	that	test.	Testing	will
resume	when	an	update	that	can	pass	the	smoke	test	has	been	delivered.

11.	Test	Deliverables

The	following	documents	will	be	prepared:

Master	Test	Plan	(this	document)

Test	Design

Test	Procedures

Test	Logs

Test	Summary	Report

Test	Data

Automated	Test	Scripts

Incident	Reports

Incident	Log

12.	Remaining	Test	Tasks

The	vendor	will	perform	the	unit	and	integration	testing.	The	browsers	and	the	operating
systems	are	accepted,	as	is.

13.	Test	Environment

Testers	will	identify	the	browser	used	during	all	tests.	Four	Web	sites	will	be	used	in	this
development	process:

Development:	This	site,	located	on	the	developer	network,	is	the	vendor's
development	environment.

Note The	development	uses	an	Access	database	for	SQL	tables	for	fasterdevelopment.	All	other	sites	use	MS-SQL	databases.

Development	Staging:	Updates	to	the	software	will	be	moved	to	the	Development
Staging	site	for	the	Smoke	Test.	This	site,	located	on	the	developer	network,	uses
the	MS-SQL	database	(same	as	production).

SQE	Test:	This	site,	located	at	SQE,	will	be	used	for	Functional,	System,	and
Acceptance	testing.

Live	Production:	This	site	will	be	located	at	an	ISP	supporting	24x7	operations.
Performance	testing	will	be	done	on	this	site.

A	separate	test	site	may	be	needed	for	automated	testing.

14.	Staffing	and	Training	Needs

The	following	roles	are	identified:

Project	Manager:	Responsible	for	managing	the	total	implementation	of	the
SQE.NET	Web	site.	This	includes	creating	requirements,	managing	the	vendor
relationship,	overseeing	the	testing	process,	and	reporting	to	senior	management.

Test	Manager:	Responsible	for	developing	the	master	test	plan,	reviewing	the	test
deliverables,	managing	the	test	cycles,	collecting	metrics	and	reporting	status	to	the
Project	Manager,	and	recommending	when	testing	is	complete.

Test	Engineer:	Responsible	for	designing	the	tests,	creating	the	test	procedures,
creating	the	test	data,	executing	tests,	preparing	incident	reports,	analyzing
incidents,	writing	automated	test	procedures,	and	reporting	metrics	to	the	test

manager.

PC/Network	Support:	Responsible	for	maintaining	the	PCs	and	network	at	the
SQE	office	to	support	the	testing.

The	test	manager	and	test	engineers	should	be	familiar	with	the	STEP	methodology	from
having	taken	the	SST	course.

15.	Responsibilities

Role Candidate Timing

Project	Manager Jennifer	Brock All,	Part-Time

Test	Manager John	Lisle All,	Part-Time

Test	Engineers Jennifer	Brock,	John	Lisle,	Paul	DanonAll,	Part-Time

PC	/	Network	Support Jim	Sowder All,	Part-Time

16.	Schedule

See	Appendix	D	for	the	schedule	to	develop	the	test	planning	and	design	documents.	The
following	table	represents	the	plan	for	the	expected	test	cycles.

Testing	Cycle Event Who Milestone

Test	Cycle	1 Start 3/8/1999

Run	Smoke	Test JB,	JD,	WM 3/8/1999

Complete	System	Test	(except	performance) JB,	JD,	WM 3/12/1999

Complete	Acceptance JB,	JD,	WM 3/12/1999

Turnover Content	Providers WM 3/15/1999

Test	Cycle	2 Start 3/22/1999

Run	Smoke	Test JB,	JD,	WM 3/22/1999

Complete	Acceptance JB,	JD,	WM 3/26/1999

Test	Cycle	3 Start 4/5/1999

Run	Smoke	Test JB,	JD,	WM 4/5/1999

Complete	Acceptance JB,	JD,	WM 4/9/1999

Test	Cycle	4 Start 4/12/1999

Run	Smoke	Test JB,	JD,	WM 4/12/1999

Complete	Acceptance JB,	JD,	WM 4/16/1999

Test	Cycle	5 Start 4/19/1999

Run	Smoke	Test JB,	JD,	WM 4/19/1999

Complete	System	Test JB,	JD,	WM 4/23/1999

Complete	Acceptance JB,	JD,	WM 4/23/1999

Turnover General	Public WM 5/3/1999

17.	Planning	Risks	and	Contingencies

1.	 Web	Site	Not	Ready	for	Content	Providers	–	This	will	cause	a	delay	to	the	live
beta.	We	need	to	give	the	content	providers	at	least	four	weeks	to	enter	data
before	opening	the	site	to	the	public.

2.	 Web	Site	Not	Ready	for	Content	Addition	and	General	Public	–	This	could	be
because	the	software	is	not	ready	or	because	insufficient	content	is	available.	This
will	cause	a	delay	to	the	opening	of	the	site.

3.	 Web	Testing	Software	Not	Available	–	This	will	delay	the	introduction	of	automated
testing,	and	more	manual	testing	will	be	required.	May	need	to	recruit	more	staff
to	do	the	testing.

4.	 Test	Staff	Shortages	–	All	of	the	test	staff	are	part-time	and	have	other	priorities.
No	slack	time	is	allocated	for	illness	or	vacation.

5.	 Host	Web	Site	for	Live	Production	–	The	search	for	the	Host	of	the	live	site	is	a
separate	project	and	not	completed.

6.	 Configuration	Management	Problems	–	The	project	team	has	experienced
problems	with	the	development	vendor's	configuration/change	management.

18.	Approvals

This	plan	needs	to	be	approved	by	the	project	manager	for	the	Web	site	and	the	SQE
project	sponsor.

Appendix	A	for	STQE.net	MTP

Refer	to	electronic	spreadsheet	for	Test	Objectives	Inventory.

Appendix	B	for	STQE.net	MTP

Incident
Classification Definition

Software
Defect

Clearly	a	defect	in	the	software,	maybe	requirements	based,	code	based,
or	design	based.

Enhancement An	enhancement	to	existing	application.	It	could	be	code	related,	data,	or
process.

Could	Not
Reproduce

Could	not	recreate	situation;	made	several	attempts	before	categorizing
as	such.

Not	a	Problem Could	reproduce	and	determined	application,	process,	and	data	were
intentionally	designed	to	behave	as	they	are.

Failure	–
Environment

Failure	occurred	and	has	been	determined	to	be	due	to	a	problem	with	the
environment.	Same	failure	does	not	occur	when	the	environment	has	been
corrected.

Failure	–
Testware
Defect

Failure	occurred	and	determination	made.	Testware	was	incorrect.
Testware	needs	to	be	corrected.

Failure	–	Test
Execution

Failure	occurred	and	determination	made	was	related	to	improper
execution	of	the	test.

Failure	–
Other Failure	occurred	and	does	not	fit	into	above	categories.

Severity Definition

Low Minor	flaw	not	affecting	operation	or	understanding	of	feature.

Medium Feature	is	usable,	but	some	functionality	is	lost	or	user	may	misinterpret	and
use	improperly.

High Important	functionality	is	lost	or	feature	is	not	usable,	but	there	is	a	work-around
or	feature	is	not	critical	to	the	operations.

Critical Important	feature	is	not	usable.	Emergency	fix	is	authorized.

Fix
Priority Response

Low Correct	in	next	scheduled	enhancement	release	or	update	documentation	and	do
not	fix.

Medium Fix	after	high-priority	defects	and	enhancements.	Document	work-around	or
affect	on	users.

High Fix	within	72	working	hours,	stop	work	on	enhancements,	if	necessary.

Critical Fix	ASAP,	within	12	hours;	overtime	authorized;	skip	full	acceptance	testing,	if
necessary.	Don't	go	home	until	fixed.

Appendix	C	for	STQE.net	MTP

Test	Level Description

Unit	Test

Component/Module	for	unit	test	is	100%	complete:

Items	to	test	are	outlined;	unit	tester	should	know	expected	results.

All	programs	in	unit	test	compile	cleanly.

A	listing	of	all	unit-tested	programs	exists.

Functional
Test

Components/Modules	for	integration	test	are	100%	complete:

Unit	tests	are	executed	and	all	open	high	or	critical	severity	level
defects	are	closed.

Unit	tests	are	executed	and	all	high	or	emergency	priority	to	fix
defects	are	closed.

All	programs	scheduled	for	integration	test	compile	cleanly.

A	listing	of	all	integration	programs	is	complete.

High-level	integration	test	plan	complete	and	peer	reviewed.

System	Test

Components/Modules	for	System	test	are	100%	complete:

Integration	and	unit	tests	are	complete	and	all	open	high	or	critical
severity	level	defects	are	closed.

Integration	and	unit	tests	are	complete	and	all	open	high	or
emergency	priority	to	fix	defects	are	closed.

All	programs	scheduled	to	run	as	part	of	the	system	test	execute
with	no	failures.	This	will	be	verified	by	running	the	smoke	test.

System	test	plan	is	complete	and	reviewed.

Change	management	process	is	in	place	and	adhered	to.

Performance
Test

Components/Modules	for	Performance	test	are	100%	complete:

System	tests	are	complete	and	all	open	high	or	critical	severity	level
defects	are	closed.

All	programs	scheduled	to	run	as	part	of	the	system	test	execute
with	no	failures.

Performance	test	plan	is	complete	and	reviewed.

Change	management	process	is	in	place	and	adhered	to.

Acceptance
Test

Components/Modules	for	Acceptance	test	are	100%	complete:

System	test	is	complete	and	all	high	or	critical	severity	level	defects
are	closed.

System	test	is	complete	and	all	high	or	emergency	priority	to	fix
defects	are	closed.

All	programs	scheduled	to	run	as	part	of	the	acceptance	test
execute	with	no	failures.	This	will	be	verified	by	running	the	smoke
test.

Acceptance	test	plan	is	complete	and	reviewed.

Change	management	process	is	in	place	and	adhered	to.

Live	Beta

Components/Modules	for	Live	Beta	are	100%	complete:

Acceptance	test	is	complete	and	all	high	or	critical	severity	level
defects	are	closed.

Acceptance	test	is	complete	and	all	high	or	emergency	priority	to	fix
defects	are	closed.

All	programs	scheduled	to	run	as	part	of	the	live	beta	execute	with
no	failures.	This	will	be	verified	by	running	the	smoke	test.

Data	is	refreshed.

Change	management	process	is	in	place	and	adhered	to.

Appendix	D	for	STQE.net	MTP

Deliverable Event Who Milestone

Master	Test	Plan First	Draft JBL 2/8/1999

Review JBL,	JB,	WM 2/9/1999

Version	1.0 JBL 2/12/1999

Review JBL,	JB,	WM,	DG 2/24/1999

Version	1.1 JBL 3/1/1999

Test	Objectives First	Draft	(Partial) JBL 2/8/1999

Version	0.9	(Partial) JBL 2/12/1999

Review JBL,	JB,	WM,	DG 2/24/1999

Version	1.0 JBL 3/1/1999

Review JBL,	JB,	WM 3/3/1999

Version	1.1 JBL 3/8/1999

Web	Control	Structure First	Draft	(Partial) JBL 2/11/1999

Review JBL,	JB,	WM,	DG 2/15/1999

Version	1.0 JBL 3/1/1999

Review JBL,	JB,	WM 3/3/1999

Version	1.1 JBL 3/9/1999

Smoke	Test	Design First	Draft JBL 3/8/1999

Review JBL,	JB,	WM 3/12/1999

Version	1.0 JBL 3/15/1999

Review JBL,	JB,	WM 3/18/1999

Version	1.1 JBL 3/24/1999

System/Acceptance	Test	DesignFirst	Draft JBL 3/12/1999

Review JBL,	JB,	WM 3/15/1999

Version	1.0 JBL 3/24/1999

Review JBL,	JB,	WM 3/27/1999

Version	1.1 JBL 3/31/1999

Team-Fly 	

Team-Fly

	

Appendix	E:	Simplified	Unit	Test	Plan
"KISS	-	Keep	It	Simple,	Sir!"

—	Anonymous

Simplified	Unit	Test	Plan
This	unit	test	plan	template	was	created	by	our	colleague	Dale	Perry	in	order	to	clarify	and
simplify	the	tasks	needed	to	perform	unit	testing.

Created	By:	Dale	Perry	Version	2.1

1.	Identification

Version/release	information	and	configuration	identification.

2.	References

Any	supporting	documentation	including:

Requirements	specifications

Design	specifications

Other	documents/diagrams

3.	Module/Component/Unit

Owner Identification Type New Modified

Owner	of	the	module/component

Module	identification	(e.g.,	name,	etc.)

Type	of	module	(e.g.,	C	program,	DLL,	etc.)

Is	this	a	new	module	or	a	modified	existing	module?

4.	Functions/Features	(Attributes,	Sub-Functions)

Function Sub-Function/Attribute Test	Aspect/Risk New Modified

Identify	all	modified	functions/features	and	the	attributes	of	those	features.

Test	Aspect/Risk:

Why	does	this	need	to	be	tested	and	what	is	the	risk	associated	with	the
feature	or	function?

Business	Risk

Risk	to	business	if	feature	does	not	function	correctly	or
causes	faults

Technical	Risk

Complexity,	technology	or	other	software	concerns

Is	this	a	new	function	or	a	modification	to	an	existing	function?

Add	as	many	entries	as	required.

5.	Shared	Elements

Element Sharing	Element Type Risk New Modified

Identify	any	shared	constructs	and	what	they	are	shared	with	(e.g.,	constructs,
transactions,	messages,	objects,	classes).	This	will	help	focus	regression	test
efforts.

What	are	the	risks	to	the	shared	elements?

Is	the	shared	element	new	or	being	modified?

Add	as	many	entries	as	required.

6.	Interfaces/Communications

Interface Type Risk New Modified

Identify	all	interfaces	and	the	type	of	interface:

Communication

Database

Transaction

Network

Other

What	are	the	risks	to	the	shared	interfaces?

Is	the	interface	new	or	being	modified?

Add	as	many	entries	as	required.

7.	Non-Modified	or	Other	Functions	and	Attributes

Function Sub-Function/Attribute Risk

Identify	all	other	functions/features	and	their	sub-functions	and	attributes	that	are
part	of	the	modified	component.	This	does	not	apply	to	new	features	or	functions
unless	they	are	added	to	an	existing	module	or	to	other	existing	features/functions.

What	are	the	risks	to	those	non-modified	elements?

This	will	also	help	identify	elements	that	require	regression	testing.

8.	External	Updates

Element Type/Category Version

Identify	any	external	elements	that	were	updated	or	modified	to	support	the	change:

These	can	include	DLLs,	object	classes,	shared	libraries,	vendor	packages,	etc.

This	will	allow	identification	of	those	elements	that	vary	from	those	in	the	final
production	environment,	and	may	indicate	where	a	more	advanced	version	was	used
during	development	than	will	be	used	in	production.

9.	Approach

How	will	unit	testing	be	accomplished?

Debugged

Coverage	tool

Other	tool

How	will	proof	of	test	be	provided	to	show	unit	test	was	completed?

Trace	reports

Coverage	reports

Debug	printouts

Other

10.	Pass/Fail	Criteria

How	will	test	results	be	evaluated	prior	to	build/integration	testing?

Team-Fly 	

Team-Fly

	

Appendix	F:	Process	Diagrams
"One	picture	is	worth	a	thousand	words."

—	Old	Chinese	Proverb

	Figure	F-1:	Test	Process	and	Documentation
Relationship

	
Figure	F-2:	STEP	Process	Flow,	Timing,	and	Lifecycle	Relationship

Team-Fly 	

Team-Fly

	

Appendix	G:	Bibliography
"The	next	best	thing	to	knowing	something	is	knowing	where	to	find	it."

—	Samuel	Johnson

	

Allison,	Anna	S.	W.	"Conveying	the	Context	of	Your	Numbers,	Meaningful	Metrics";
Software	Testing	&	Quality	Engineering,	Jan/Feb	2002.

Beck,	Kent	(1999).	Extreme	Programming:	Embrace	Change	(The	XP	Series).
Addison	Wesley.	ISBN	0-201-61641-6.

Beizer,	Boris	(1983).	Software	Testing	Techniques.	Van	Nostrand	Reinhold	Company.
ISBN	0-442-24592-0.

Beizer,	Boris	(1995).	Black-Box	Testing,	Techniques	for	Functional	Testing	of
Software	and	Systems.	John	Wiley	&	Sons.	ISBN	0-471-12094-4.

Berbert,	Todd.	"Extreme	Testing"
http://www.ayeconference.com/articles/estremetesting.shtml

Berra,Yogi,Joe	Garagiola,	and	Dale	Berra	(1998).	The	Yogi	Book.	Workman
Publishing.	ISBN	0-761-11090-9.

Bersoff,	Edward	H.,Vilas	D.	Henderson,Stanley	G.	Siegel,	(1980).	Software
Configuration	Management,	An	Investment	in	Product	Integrity.	Prentice-Hall.	ISBN
0-13-821769-6.

Black,	Rex.	"Effective	Status	Reporting";	Software	Testing	&	Quality	Engineering,
March/April	2000.

Black,	Rex	(1999).	Managing	the	Testing	Process.	Microsoft	Press.	ISBN	0-7356-
0584-x.

Block,	Robert	(1983).	The	Politics	of	Projects.	Yourdon	Press.	ISBN	0-13-685553-9.

Boehm,	Barry	W.	(1989).	Software	Risk	Management.	IEEE	Computer	Society
Press.	ISBN	0-8186-8906-4.

Brooks,	Frederick	P.	"No	Silver	Bullets	-	Essence	and	Accidents	of	Software
Engineering";	Computer.	April	1987.

Brooks,	Jr.,Frederick	P.	(1995).	The	Mythical	Man-Month.	Addison	Wesley.	ISBN	0-
201-83595-9.

http://www.ayeconference.com/articles/estremetesting.shtml

Carrison,	Dan	and	Rod	Walsh	(1998).	Semper	Fi:	Business	Leadership	the	Marine
Corps	Way.	AMACOM.	ISBN	0-814-40413-8.

Charette,	Robert	N.	(1989).	Software	Engineering	Risk	Analysis	and	Management.
McGraw-Hill.	ISBN	0-07-010661-4.

Cockburn,	Alister.	"Goals	and	Use	Cases";	Object-Oriented	Programming.	1997.

Cole,	Oliver	E.	"Looking	Under	the	Covers	to	Test	Web	Applications";	Proceedings	of
STAR	East	Conference,	2001.

Collard,	Ross.	"Small	Change,	Big	Trouble";	Software	Testing	&	Quality	Engineering,
January/February	2002.

Collard,	Ross.	"Test	Design,	Developing	Test	Cases	From	Use	Cases";	Software
Testing	&	Quality	Engineering,	July/August	1999.

Collard,	Ross.	"What	People	Like	About	Automated	Test	Tools";	Proceedings	of
Rational	ASQ	User	Conference,1997.

Compton,	Stephen	B.	and	Guy	R.	Conner	(1994).	Configuration	Management	for
Software.	Van	Nostrand	Reinhold.	ISBN	0-442-01746-4.

Craig,	Rick	D.	"Independent	Test	Teams";	Quality	Data	Processing,	July	1989.

Craig,	Rick	D.	"Is	Distance	Learning	a	Viable	Solution?";	Industry	Standard,	Sept
2000.

Craig,	Rick.	"The	Case	of	the	Bogus	Metrics";	Software	Quality	Management,	New
Year	1995,	p.	4.

Craig,	Rick	D.	"Using	the	'Buddy	System'	for	Unit	Testing";	Management	Issues	&
Software	Development;	Application	Development	Trends,	Dec	1995.

Craig,	Rick	D.	and	Bill	Hetzel	(1990).	Software	Measures	and	Practices	Study.	STQE
Press.

Crosby,	Philip	B.	(1992).	Quality	Is	Free:	The	Art	of	Making	Quality	Certain.	Mentor
Books.	ISBN	0-451-62585-4.

Crosby,	Philip	B.	(1995).	Quality	Is	Still	Free:	Making	Certain	in	Uncertain	Times.
McGraw-Hill.	ISBN	0-07-014532-6.

Crosby,	Philip	B.	(1997).	The	Absolutes	of	Leadership.	Jossey-Bass	Publishers.	ISBN
07879-0942-4.

Daich,	Gregory	T.	"Effective	Acquirer/Supplier	Software	Document	Reviews";
Crosstalk,	Aug	1999.

Davis,	Alan	M.	(1995).	201	Principles	of	Software	Development.	IEEE	Computer
Society.	ISBN	0-07-015840-1.

Dedolph,	F.	Michael.	"Why	Testers	Should	Participate	in	Early	Reviews";	Software
Testing	&	Quality	Engineering,	March/April	2001.

DeMarco,	Tom	and	Timothy	Lister	(1999).	Peopleware:	Productive	Projects	and
Teams.	Dorset	House.	ISBN	0-93263343-9.

Donaldson,	Scott	E.	and	Stanley	G.	Siegel	(2001).	Successful	Software
Development.	Prentice-Hall.	ISBN	0-13-086826-4.

Down,Alex,Michael	Coleman,	and	Peter	Absolon	(1994).	Risk	Management	for
Software	Projects.	McGraw-Hill.	ISBN	0-07-707816-0.

Drabick,	Rodger.	"Growth	of	Maturity	in	the	Testing	Process";	International	Software
Testing	Institute.	http://www.softtest.org/articles

Draper,	Stephen	W.	"The	Hawthorne	Effect";	University	of	Glasgow,	Department	of
Psychology.	http://staff.psy.gla.ac.uk/~steve/hawth.html.

Dunn,	Robert	H.	(1984).	Software	Defect	Removal.	McGraw-Hill.	ISBN	0-07-018313-
9.

Dunn,	Robert	H.	(1999).	"The	Quest	for	Software	Reliability"	in	Handbook	of	Software
Quality	Assurance	edited	by	G.	Gordon	Schulmeyer,	and	James	I.	McManus,
Prentice	Hall.	ISBN	0-130-10470-1.

Dustin,	Elfriede.	"Orthogonally	Speaking";	Software	Testing	&	Quality	Engineering,
Sept/Oct	2001.

Dyes,	Tim.	"Tracking	Severity";	Software	Testing	&	Quality	Engineering.	March/April
1998.

Eisenberg,	Abne	M.	(1979).	Job	Talk.	Macmillan	Publishing	Company.	ISBN	0-02-
535120-6.

Fenton,	Norman	E.	"Software	Measurement	Programs";	Software	Testing	&	Quality
Engineering,	May/June	1999.

Fenton,	Norman	E.	(1991).	Software	Metrics,	A	Rigorous	Approach.	Chapman	&	Hall.
ISBN	0-412-40440-0.

Fisk,	Jim	and	Barron,	Robert	(1984).	Official	MBA	Handbook	of	Great	Business
Quotations.	Simon	&	Schuster,	Inc.	ISBN	0-671-50318-9.

Franklin,	Benjamin	(1976).	Poor	Richard's	Almanac.	David	McKay	Co.	ISBN	0-679-

http://www.softtest.org/articles
http://staff.psy.gla.ac.uk/~steve/hawth.html

50072-3.

Freeman,	Peter	(1987).	Software	Perspectives,	The	System	Is	the	Message.
Addison-Wesley.	ISBN	0-201-11969-2.

Freedman,	Daniel	P.	and	Gerald	M.	Weinberg	(1990).	Handbook	of	Walkthroughs,
Inspections,	and	Technical	Reviews:	Evaluating	Programs,	Projects,	and	Products.
Dorset	House	Publishing.	ISBN	0-932633-19-6.

Gause,	Donald	C.	and	Gerald	M.	Weinberg	(1989).	Exploring	Requirements,	Quality
Before	Design.	Dorset	House	Publishing.	ISBN	0-932633-13-7.

Gause,	Donald	C.	and	Gerald	M.	Weinberg	(1990).	Are	Your	Lights	On?	Dorset
House	Publishing.	ISBN	0-932-63316-1.

Gilb,	Tom	(1988).	Principles	of	Software	Engineering	Management.	Addison-Wesley.
ISBN	0-201-19246-2.

Gilb,	Tom	and	Dorothy	Graham	(1993).	Software	Inspection.	Addison-Wesley.	ISBN
0-201-63181-4.

Goodman,	Paul	(1993).	Practical	Implementation	of	Software	Metrics.	McGraw-Hill.
ISBN	0-07-707665-6.

Grady,	Robert	B.	(1992).	Practical	Software	Metrics	for	Project	Management	and
Process	Improvement.	Prentice-Hall.	ISBN	0-13-720384-5.

Grady,	Robert	B.	and	Deborah	L.	Caswell	(1998).	Software	Metrics:	Establishing	a
Company-Wide	Program.	Prentice-Hall.	ISBN	0-13-821844-7.

Graham,	Dorothy	R.	"Measuring	the	Value	of	Testing";	Proceedings	of	STAR	East,
Software	Quality	Engineering,	2001.

Grayson,	Dawn	and	Amy	Ostrom.	"Customer	Satisfaction	Fables";	Sloan
Management	Review,	Massachusetts	Institute	of	Technology;	Summer	1994.

Grote,	Dick	and	Jonb	Boroshok.	"Are	Most	Layoffs	Carried	Out	Fairly?";	Optimize
Magazine	(Information	Week),	Dec	2001.

Hayes,	Linda	G.	(1995).	Automated	Testing	Handbook.	Software	Testing	Institute.
ISBN	0-970-74650-4.

Hendrickson,	Elisabeth.	"Writing	Effective	Bug	Reports";	Software	Testing	&	Quality
Engineering,	July/Aug	2001.

Hetzel,	Bill	(1993).	Making	Software	Measurements	Work.	John	Wiley	&	Sons.	ISBN
0-471-56568-7.

Hetzel,	Bill	(1984).	The	Complete	Guide	to	Software	Testing.	QED	Information
Sciences.	ISBN	0-89435-110-9.

Hetzel,	Bill.	The	Systematic	Test	and	Evaluation	Process	Summary	Guide,	Software
Quality	Engineering.

Huff,	Darrell	(1954).	How	to	Lie	with	Statistics.	W.W.	Norton.	ISBN	0-393-31072-8.

IEEE	Standards	Software	Engineering	1999	Edition,	Volume	2,	Process	Standards.
The	Institute	of	Electrical	and	Electronics	Engineers.	ISBN	0-7381-1560-6.

IEEE	Standards	Software	Engineering	1999	Edition,	Volume	4,	Resource	and
Technique	Standards.	The	Institute	of	Electrical	and	Electronics	Engineers.	ISBN	0-
7381-1562-2.

Jeffries,	Ronald	E.	"Extreme	Testing:	Why	Aggressive	Software	Development	Calls
for	Radical	Testing	Efforts";	Software	Testing	&	Quality	Engineering,	March/April
1999.

Joch,	Alan.	"How	Software	Doesn't	Work";	Byte,	Dec	1995.

Johnson,	Jim.	"Chaos	Into	Success";	Software	Magazine,	Dec	1999.

Johnson,	Mark.	"Matching	ISO	9000	Registration	to	Your	Organization";	Software
Testing	&	Quality	Engineering,	July/August	1999.

Jones,	Capers	(1991).	Applied	Software	Measurement,	Assuring	Productivity	and
Quality.	McGraw-Hill.	ISBN	0-07-032813-7.

Jones,	Capers	(1994).	Assessment	and	Control	of	Software	Risks.	Prentice	Hall.
ISBN	0-13-741406-4.

Jones,	Capers	(1997).	Software	Quality,	Analysis	and	Guidelines	for	Success.
International	Thomson	Computer	Press.	ISBN	1-85032-867-6.

Kaner,	Cem.	"Rethinking	Software	Metrics";	Software	Testing	&	Quality	Engineering,
March/April	2000.

Kaner,	Cem	(1988).	Testing	Computer	Software.	TAB	Professional	and	Reference
Books.	ISBN	0-8306-9563-x.

Kit,	Edward	(1995).	Software	Testing	in	the	Real	World,	Improving	the	Process.
Addison	Wesley.	ISBN	0-201-87756-2.

Koomen,	Tim	and	Martin	Pol	(1999).	Test	Process	Improvement.	ACM	Press.	ISBN	0-
201-59624-5.

Kotter,	John	P.	(1998).	"What	Leaders	Really	Do"	in	Harvard	Business	Review	on

Leadership.	Harvard	Business	School	Press.	ISBN	0-87584-883-4.

Kreitner,	Robert	and	Angelo	Kinicki	(1998).	Organizational	Behavior.	McGraw-Hill.
ISBN	0-256-22512-5.

Laporte,	Claude	Y.	and	Sylvie	Trudel.	"Addressing	People	Issues	When	Developing
and	Implementing	Engineering	Processes";	Crosstalk,	Nov	1999.

Levenson,	Nancy	and	Clark	S.	Turner.	"An	Investigation	of	the	Therac-25	Accidents";
IEEE	Computer,	Vol.	26,	No.	7,	July	1993,	pp.	18-41.

Leveson,	Nancy	G.	(1995).	Safeware,	System	Safety	and	Computers.	Addison-
Wesley.	ISBN	0-201-11972-2.

Levine,	Robert.	"A	Special	Report	on	the	Office	of	the	Future";	The	Industry	Standard,
May	7,	2001,	p.	88.

Lewis,	William	E.	(2000).	Software	Testing	and	Continuous	Quality	Improvement.
CRC	Press.	ISBN	0-8493-9833-9.

Lindgaard,	Gitte	(1994).	Usability	Testing	and	System	Evaluation,	A	Guide	for
Designing	Useful	Computer	Systems.	Chapman	&	Hall.	ISBN	0-412-46100-5.

Lizotte,	Renee.	"The	NQA	and	ISO	9000";	Software	Quality	Management	Magazine,
Autumn	1994.

Lohr,	Claire.	"Mastering	Test	Design,	Course	Notes"	Software	Quality	Engineering,
2001.

Lubar,	David	(1995).	It's	Not	a	Bug,	It's	a	Feature!	Addison-Wesley.	ISBN	0-201-
48304-1.

Martin,	Charles	F.	(1988).	User-Centered	Requirements	Analysis.	Prentice-Hall.	ISBN
0-13-940578-x.

McCabe,	Thomas	J.	and	G.	Gordon	Schulmeyer	(1999).	"The	Pareto	Principle
Applied	to	Software	Quality	Assurance";	Handbook	of	Software	Quality	Assurance.
Prentice-Hall.	ISBN	0-13010470-1.

McCabe,	Thomas	J.	and	Arthur	H.	Watson.	"Software	Complexity";	Crosstalk,	Dec
1994.

McCabe,	Tom.	"Successful	Tool	Usage";	Software	Quality	Management	Magazine,
Spring	1994.

McConnell,	Steve	(1996).	Rapid	Development.	Microsoft	Press.	ISBN	1-55615-900-
5.

Metzger,	Philip	W.	and	John	Boddie.	(1995).	Managing	a	Programming	Project.
Prentice-Hall.	ISBN	0-13-554239-1.

Möller,	K.	H.,	and	D.	J.	Paulish	(1993).	Software	Metrics,	A	Practitioner's	Guide	to
Improved	Product	Development.	IEEE	Press.	ISBN	0-7803-0444-6.

Myers,	Glenford	(1979).	The	Art	of	Software	Testing.	John	Wiley	&	Sons.	ISBN	0-
471-04328-1.

Neumann,	Peter	G.	(1995).	Computer	Related	Risks.	Addison-Wesley.	ISBN	0-201-
55805.

Ould,	Martyn	A.	(1999).	Managing	Software	Quality	and	Business	Risk.	Wiley.	ISBN
0-471-99782-X.

Ould,	Martyn	A.	and	Unwin,	Charles	(1988).	Testing	in	Software	Development.
Cambridge	University	Press.	ISBN	0-521-33786-0.

Packard,	David	(1996).	The	HP	Way:	How	Bill	Hewlett	and	I	Built	Our	Company.
Harperbusiness.	ISBN	0-887-30817-1.

Pajerek,	Lori.	"Bought	Any	Good	Shelfware	Lately?";	Crosstalk,	Dec	1997.

Patel,	Eric,	"Getting	the	Most	From	Outsourcing";	Software	Testing	&	Quality
Engineering,	Nov/Dec	2001.

Patton,	Ron	(2001).	Software	Testing.	Sams	Publishing.	ISBN	0-672-31983-7.

Paulk,	Mark	C.	et	al.	(1995).	The	Capability	Maturity	Model,	Guidelines	for
Improving	the	Software	Process.	Addison-Wesley.	ISBN	0-201-54664-7.

Petroski,	Henry	(1982).	To	Engineer	Is	Human.	St.	Martin's	Press.	ISBN	0-312-
80680-9.

Pettichord,	Bret.	"Testers	and	Developers	Think	Differently";	Software	Testing	&
Quality	Engineering,	January/February	2000.

Phillips,	Donald	T.	(1992).	Lincoln	on	Leadership.	Warner	Books.	ISBN	0-446-39459-
9.

Pitts,	David.	"Why	Is	Software	Measurement	Hard?";	Proceedings	of	the	1999
Applications	of	Software	Measurement	Conference.

Pol,	Martin	and	Eric	van	Veenendaal	(1998).	Structured	Testing	of	Information
Systems.	Kluwer,	Deventer,	The	Netherlands.	ISBN	90-267-2910-3.

Pontin,	Jason.	"The	Future	of	Electronic	Education";	Red	Herring,	January	2002.

Prasse,	Dr.	Michael	J.	"It	Works,	But	Is	It	Usable?";	Partner's	Progress,	SQE.
Second	Quarter,	1993.

Preece,	Jenny,	et	al.	(1993).	A	Guide	to	Usability.	Addison-Wesley.	ISBN	0-201-
62768-x.

Pressman,	Roger	S.	(1996).	A	Manager's	Guide	to	Software	Engineering.	McGraw-
Hill.	ISBN	0-070-52229-4.

Schmauch,	Charles	H.	(1994).	ISO	9000	for	Software	Developers.	American	Society
Quality	Press.	ISBN	0-87389-246-1.

Sherman,	Roger.	"Best	Development	and	Testing	Strategies	of	Microsoft";
Proceedings	of	STAR	West	Conference,	1998.

Smith,	Lt.	Col.	Robert	W.	(1979).	Guidebook	for	Marines.	Marine	Corps	Association.

"Space	Events	Diary";	April	–	June	1999.	http://www.ssc.se/ssd/dia992.html

Splaine,	Steven	and	Stefan	P.	Jaskiel	(2001).	The	Web	Testing	Handbook.	Software
Quality	Engineering.	ISBN	0-9704363-0-0.

Stahl,	Bob.	"Usability	Testing";	Software	Testing	&	Quality	Engineering,	Sept/Oct
2001.

Starbuck,	Ronald.	"How	to	Control	Software	Changes";	Software	Testing	&	Quality
Engineering,	November/December	1999.

Suzuki,	John.	"Distributed	Teams";	Software	Testing	&	Quality	Engineering.	Sept/Oct
2001.

Teal,	Thomas	(1998).	"The	Human	Side	of	Management"	in	Harvard	Business	Review
on	Leadership.	Harvard	Business	School	Press.	ISBN	0-87584-883-4.

Tingey,	Michael	O.	(1997).	Comparing	ISO	9000,	Malcolm	Baldrige,	and	the	SEI
CMM	for	Software.	Prentice-Hall.	ISBN	0-13-376260-2.

Tzu,	Sun	and	Samuel	B.	Griffith	(translation)	(1984).	The	Art	of	War.	Oxford	University
Press.	ISBN	0-195-01476-6.

U.S.	Marine	Corps	(1984).	NAVMC	2767	User's	Guide	to	Marine	Corps	Leadership.
U.S.	Marine	Corps	Association.	PCN	100	013456	00.

U.S.	Marine	Corps	(1997).	MCDP	5	Planning.	U.S.	Marine	Corps	Association.	PCN
142	000004	00.

Vonk,	Roland	(1990).	Prototyping:	The	Effective	Use	of	Case	Technology.	Prentice-
Hall.	ISBN	0-137-31589-9.

http://www.ssc.se/ssd/dia992.html

Waters,	John	K.	"Extreme	Method	Simplifies	Development	Puzzle";	Application
Development	Trends,	July	2000.

Weatherill,	Terry.	"In	the	Testing	Maturity	Model	Maze";	Journal	of	Software	Testing
Professionals,	March	2001.

Weinberg,	Gerald	M.	(1986).	Becoming	A	Technical	Leader,	An	Organic	Problem-
Solving	Approach.	Dorset	House	Publishing.	ISBN	0-932633-02-1.

Weinberg,	Gerald	M.	(1992).	Quality	Software	Management,	Volume	1,	Systems
Thinking.	Dorset	House	Publishing.	ISBN	0-932633-22-6.

Weinberg,	Gerald	M.	(1993).	Quality	Software	Management,	Volume	2,	First-Order
Measurement.	Dorset	House	Publishing.	ISBN	0-932633-24-2.

Weinberg,	Gerald	M.	(1998).	The	Psychology	of	Computer	Programming.	Dorset
House	Publishing.	ISBN	0-932-63342-0.

Weinberg,	Gerald	M.	(1985).	The	Secrets	of	Consulting,	A	Guide	to	Giving	and
Getting	Advice	Successfully.	Dorset	House	Publishing.	ISBN	0-932633-01-3.

Wiegers,	Karl	E.	(1999).	Software	Requirements.	Microsoft	Press.	ISBN	0-7356-
0631-5.

Yakich,	Joe.	"Interviewing	Your	Interviewer";	Software	Testing	&	Quality	Engineering,
March/April	1999.

Yourdon,	Edward	(1989).	Structured	Walk-Throughs.	Prentice-Hall.	ISBN	0-13-
855289-4.

Team-Fly 	

Team-Fly

	

Index
"Let	your	fingers	do	the	walking."

—	The	'Yellow	Pages'

A
Absolon,	Peter,	26
acceptance	testing,	102–21,	241
accountability,	348
activities
measurement	phase,	16
risk	analysis,	27
STEPTM,	14–16

activity	timing
acceptance	testing,	103–6
integration	testing,	132–33
test	levels	and,	58–59

adaptive	changes,	398
ad	hoc	teams.	See	test	coordinators
ad	hoc	testing,	157,	173–75,	177
alpha	testing,	112–13
ambiguities,	specification,	5
analysis
audience
acceptance	testing	and,	103
integration	testing	and,	132
master	test	plans	and,	57–58
system	testing	and,	121–22

boundary	value,	165–66
data,	256
defect,	124
defect	trend	and	pattern,	431
failure	pattern,	258
help	desk,	272
mutation,	235–36
Pareto,	284–85,	371
planning	risk,	52
relative	risk.	See	features	to	test
risk,	23–52

software	risk,	28–47,	52
test	environment,	203–313
test	failure.	See	dry	runs

analysis	and	design,	145–98
analysts,	test,	19,	353
anomalies.	See	incidents
Applied	Software	Measurement,	403
approach
refinement	of,	185
sections	in	master	test	plans,	70–83.	See	also	strategy

approvals
master	test	plan,	92–95
test	summary	report,	263–64

approvers,	test	plan,	92,	93
Arbiter,	Petronius,	295

architecture,	STEPTM,	13–14
arrays,	orthogonal,	170–73
art,	black-box,	173–78
Art	of	Software	Testing,	3
Art	of	War,	347
ASQ	(American	Society	for	Quality),	333–34
assumptions.	See	also	risk
developer,	298,	299
project,	51–52

ATM	(Automatic	Teller	Machine)	example
cut-lines,	45
equivalence	partitions,	164
failure	impact,	35
likelihood	of	failure,	33
mitigated	list	of	priorities,	46
prioritized	features	and	attributes,	68
requirements,	230
sample	test	cases,	5
simplified	test	case	description,	231
sorted	priorities,	44
summed	priorities,	38

attributes
defect	tracking	tool,	255–57
global,	32

tester,	312–13
attrition,	tester.	See	staff	retention
audience	analysis.	See	also	glossaries,	master	test	plan
acceptance	testing	and,	103
integration	testing	and,	132
master	test	plans	and,	57–58
system	testing	and,	121–22

audits,	ISO,	407–8
authority,	347
authors,	test	plan,	92,	93
automation
awareness	of,	358
building	versus	buying,	226–27
decisions,	214–18
erroneous	applications	of,	221
limitations	of,	216
pitfalls	of.	See	traps,	test	tool
test	feature,	237
test	procedure.	See	scripts
test	script,	224–25
test	tool,	81

Team-Fly 	

Team-Fly

	

Index

B
baselines,	390
BCS	(British	Computer	Society),	335
Beck,	Kent,	144
behaviors.	See	motivation
Beizer,	Boris,	264,	414
benchmarks,	390
Berra,	Yogi,	97,	339,	432
Berry,	Bev,	316
beta	tests,	112–13
bibliography,	499–512
Black,	Rex,	xxi,	80,	315
black-box	art,	173–78
black-box	science,	161–73
black-box	testing,	159–61
Block,	Robert,	349
Boehm,	Barry	W.,	26
BOK	(Body	of	Knowledge),	333
boot	camps,	executive,	346
boundary	value	analysis,	165–66
brainstorming	teams,	31–32,	149.	See	also	sessions,	brainstorming
branch	coverage,	181,	182
Brooks,	Frederick	P.,	75
buddy	testing,	143–44
budgets
bug,	275
justification	of,	373

bug	committees.	See	CCB	(Change	Control	Board)
bug	metrics,	258
bugs.	See	also	defects
clumped.	See	Pareto	analysis;	Pareto	principle
finding.	See	inspections
finding	the	ratio	of	fixes	to,	41

fixing	of,	80,	125–26
hidden,	278
mutant-statement.	See	mutation	analysis
nonexistent,	125
seeded,	234
severity	of,	266

build	testing.	See	integration	testing
business	knowledge,	363–64
buy-in
education	and,	138
integrated	test	teams	and,	298
lack	of,	220
process	improvement	and,	400–407

Team-Fly 	

Team-Fly

	

Index

C
calculations.	See	formulas
calibration,	21
candidate	skills,	319
captured	data,	210
career	path	development,	332,	352–53.	See	also	certification
case	studies
acceptance	testing	environments,	203–13,	passim
approach	section,	master	test	plan,	71
benchmarks	of.	See	benchmarks
bogus	metrics,	401–2
bug	parties,	157
certification	benefits,	336
change	implementation	strategy,	126
critique	forms,	meeting,	310
defect	seeding,	234
degrees	and	certification,	337–38
developers	and	bug	fixes,	141
developmental	tests,	128
distance	learning,	367–69
documenting	test	methodology,	74
exit	criteria,	116
fast	trash,	216
impact	scale,	example,	252
impossible	deliverable	dates,	48–49
imprisoned	testers,	304
incident	log,	example,	254
initial	TPI	skepticism,	416
late	software,	267
lighting	and	productivity,	379–80
master	test	plan,	unused,	56
nonexistent	bugs,	125
risks	and	contingencies,	sample,	49–50
security	access,	88
silver	bullets,	214–15
state-transition	diagrams,	169–70
survey	design,	270–71
test	automation	engineers,	222
test	environment,	example,	119–21
tester	characteristics,	312

tester-to-developer	ratios,	322–23
testing,	comprehensive,	69
testing	difficulties,	9
testware	defects,	253
unstructured	test,	successful,	178
unstructured	test	example,	178
vision	statement,	392–93
wisdom,	timeless,	295
work	immersion,	307

Caswell,	Deborah	L.,	282,	382
CCB	(Change	Control	Board)
conflict	resolution	by,	83
impact	reviews	by,	115,	251
members	of,	123,	124
names	of,	124
purpose	of,	123

CCB	(Configuration	Control	Board).	See	CCB	(Change	Control	Board)
certifiable	testing	knowledge,	331
certification
advantages	of.	See	values,	tester	certification
categories	of	tester,	327–29
complementing	a	degree	with,	336
ISO	(International	Organization	for	Standards),	407–11
organizational	requirements	for,	333–35
organization-based,	328
personal	benefits	of,	336
preparing	for,	333–35
product-based,	327
quality-centric,	329
software-based,	328
software-centric,	329
software	tester,	323–38
TickIt,	407
values	of,	329–33
vendor-based,	328

certified	vendors,	224
champions
choosing	of,	404
empowering	of,	360–61
identification	of,	139

change	management,	478–79.	See	also	CCB	(Change	Control	Board);	configuration
management

changes,	incremental,	397
changes	of	state.	See	state-transition	diagrams
characteristics
data	source,	209
good	tester,	312–13

Charette,	Robert	N.,	26
chart,	Gantt,	85,	90
checklists
ISO,	408–10
planning	risk,	91

checkpoints,	418,	424
class,	equivalence,	162
clear-box	testing.	See	white-box	testing
CMB	(Change	Management	Board).	See	CCB	(Change	Control	Board)
CMM	(Capability	Maturity	Model),	411–16.	See	also	TPI	(Test	Process	Improvement)
code
fixing	versus	freezing.	See	configuration	management
frozen,	80,	125,	126
high-level.	See	scripts
scaffolding,	133,	135

code-based	objectives,	sample,	477
code	coverage,	287–91
code	coverage	tools,	181.	See	also	test	coverage	decisions
code	deadlines	and	unit	testing	conflicts,	137
code	execution	percentages.	See	global	code	coverage
cohabiting	software,	99,	121,	201,	205–7
coincidental	testing,	160
Coleman,	Michael,	26
collocation,	tester-developer,	305
combinations,	test	case,	25
commitments,	quality,	91
common	objectives,	147
common	obstacles	in	unit	testing,	137–38
common	requirements,	150
common	testing	vocabularies,	331
communication

effective,	350–51,	402
meetings	and,	82–83
skills,	364
with	nontechnical	people.	See	audience	analysis
with	project	participants.	See	master	test	planning
with	users	and	developers.	See	usability	testing

company	certification	values,	333
company-sensitive	data,	209
Complete	Guide	to	Software	Testing,	3
complexity
change,	398
cyclomatic,	39,	180–81

computer-based	training.	See	distance	learning
computing	risk	priorities,	37–38
conditions,	unaddressed,	155–56.	See	also	decision	tables
conferences
vendor,	224
video.	See	distance	learning

confidential	data,	377
configuration,	hardware,	204–5
configuration	management
acceptance	testing,	114–15
integration	testing,	135
master	test	planning,	79–81
system	testing,	123–27
unit	testing,	140

confirmation	testing,	80
conflicts,	application.	See	cohabiting	software
contingencies,	47–52
continuing	education.	See	certification
continuous	improvement,	425
controls,	testing	effort,	372
coordinators,	test,	300–301
Copeland,	Lee,	xxix,	170
cornerstones	of	leadership,	346–47
costs,	tool,	227–28
coverage,	181–82

coverage	measures,	285–91
coverage	techniques,	181–82
created	data,	210
criteria
best	project,	383–84
engineering,	385
entrance,	127–29
exit,	107,	115–16,	127–29
item	pass/fail,	83–84
pass	or	fail,	186
resumption,	84
suspension,	84.	See	also	meters

critical	defects,	252
criticality,	test	plan,	56–57
critical	system	components.	See	decision	tables
critique	forms,	meeting,	310
CSDP	(Certified	Software	Development	Professional),	334
CSQE	(Certified	Software	Quality	Engineer),	333–34
CSTE	(Certified	Software	Test	Engineer),	334
CSTP	(Certified	Software	Test	Professional),	334
cubicles	and	offices,	305–6
customer	environment	profiles,	204
customer	needs,	288–89
customer	satisfaction	measures,	269–72
customer	site	testing.	See	beta	tests
cut-lines,	44–45
cyclomatic	complexity,	39,	180–81

Team-Fly 	

Team-Fly

	

Index

D
data
captured,	210
characteristics	of,	209
classified,	209
confidential,	377
copied	and	simulated,	120
created,	210
formats,	208–9,	379
fragile,	87
gathered.	See	captured	data
generated,	209–10
nontestable	sources	of,	208–9
production,	209–10
random,	210–11
raw,	378–79
sensitive,	209,	377
sources,	208–11
test,	87,	208–12
volume	generation,	211

data	analysis,	256
data	generation	tools,	210
data	sources,	nontestable,	208–9
DDP	(Defect	Detection	Percentage),	276
deadlines.	See	overtime
decision	coverage,	182
decision	tables,	166–68
declining	defect	discovery	rates,	378
defect	age,	280–82
defect	density,	140,	371
defect	measures,	272–85
defects
critical,	252
declining	discovery	rates	of,	378
estimates	of	remaining,	266–67
found	in	testing,	273–74
identification	of.	See	inspections

latent,	275
major,	252
masked,	275
minor,	252
pair-wise,	173
testware,	253
undetected,	24
weighted	by	age,	283

defect	seeding,	232–35
defect	spoilage,	282–84
defect	tracking,	246,	478
defined	processes,	414
definitions.	See	glossary	of	terms
delayed	implementation.	See	planning	risks	and	contingencies
deliverables,	test,	85–86,	480
delivery	dates,	48–49
DeMarco,	Tom,	282
density,	defect,	140,	371
dependencies,	inter-case,	190
design,	usability	lab,	111
design	analysis,	158–59
design-based	objectives,	sample,	code-based,	477
design	documents,	15
design	techniques,	146
desktop	procedures,	353–54
detailed	test	planning,	97–144
developers
assumptions	held	by,	298,	299
as	test	plan	authors,	132–33
documentation	roles	of,	139–40
motivational	factors	for,	355
risk	analysis	roles	of,	28
testing	roles	of,	299,	313–14
test	organization	roles	of,	299–300

development,	career	path,	352–53
developmental	tests,	128
development	site	testing.	See	alpha	testing

development	teams,	38–39
development	triggers.	See	design	documents
deviations,	test	plan.	See	variances
diagrams
process,	495–98
state-transition,	168–70

discount	coupon,	restaurant,	356
disparities,	pay.	See	pay	parity
disposition,	254
dissatisfaction,	tester.	See	staff	retention
dissemination,	test	plan,	63
distance	learning,	367–69
document	control	numbers.	See	identifiers
document	control	systems.	See	test	plan	identifiers
document	signers.	See	approvals,	test	summary	report
Down,	Alex,	26
DRE	(Defect	Removal	Efficiency),	276–80
drivers,	133,	135
dry	runs,	229–30
Dunn,	Robert	H.,	234
dynamic	defect	logs,	256
dynamics,	test	plan,	63

Team-Fly 	

Team-Fly

	

Index

E
early	views	of	testing,	10–11
E-factor,	306
effectiveness,	test,	268–91
Eighty-Twenty	rule.	See	Pareto	principle
Einstein,	Albert,	376
entrance	criteria,	107,	127–29
environmental	accessibility,	42
environmental	factors,	306
environmental	needs,	86–88,	190
environmental	reality.	See	methodology	decisions
environmental	variables,	99
environments
acceptance	testing,	119–21
integration	testing,	135
office,	304–10
simulated	production,	201
test-level,	98,	200–213
unique	training.	See	in-house	training
work.	See	office	space

equivalence	partitioning,	162–65
escape,	393
estimate	basis,	373
estimates
automation,	217
remaining	defect,	266–67
resident	bug.	See	defect	seeding
target	completion.	See	activity	timing
testing	staff	ratio,	321–23
time	and	resource.	See	metrics;	schedules

evaluations
test	summary	report,	262–63
testware,	228–38

evaluation	software,	10
evolving	test	definitions.	See	history,	testing

examples
Air	Force	metrics,	383
bug	budget,	275
development	test	exit	criteria,	128
DRE	(Defect	Removal	Efficiency),	277–78
equivalence	partitioning,	163
impact	scale,	252
implemented	change	strategy,	126
incident	log,	254
metrics	worksheet,	382
successful	unstructured	testing,	178
system	test	DRE,	279–80
test	environment,	119–21
test	environment	attributes,	201
test	procedure,	frequent	flyer,	194–96
test	status	report,	258
TPI	assessment,	420–21
unstructured	test,	178

execution,	test,	239–92.	See	also	architecture,	STEPTM

executive	bootcamps,	346
exit	criteria.	See	also	meters
acceptance	testing,	115–16
system	testing,	127–29

exit	interviews,	323
expectations
tester,	324
unrealistic,	220

expected	results.	See	item	pass/fail	criteria
experience-based	testing.	See	ad	hoc	testing
expert	testers.	See	outsourcing
exploratory	testing,	177–78
Exploring	Requirements:	Quality	Before	Design,	31
Extreme	Programming,	144

Team-Fly 	

Team-Fly

	

Index

F
factors
environmental,	306
risk	analysis	timing,	29

failure,	246
failure	pattern	analysis,	258
feature	inventories,	32
features
environmental.	See	simulations
low-risk.	See	features	not	to	test
new	or	modified,	40–41
prioritizing,	43
safety-critical.	See	safety-critical	systems

features	not	to	test,	68–70.	See	also	cut-lines
features	to	test,	67–68,	184.	See	also	impact;	risk	analysis
feedback	loops,	403
figures
activity	timing,	15,	16
analysis,	software	risk,	30
ATM	equivalence	partitions,	164
automation	candidates,	218
black-box	versus	white-box	testing,	160
bug-to-fix	ratios,	41
build	scheme,	sample,	134
car	inventory,	147
CMM	(Capability	Maturity	Model),	413
code	implementing	module,	179
complete	shipments,	117
decision	tree,	defect	analysis,	124
defect	density,	module,	285
defect	density	formula,	284
defect	discovery	rate	curves,	266,	274
defect	spoilage	formula,	283
design,	usability	lab,	111
DRE	example,	278
DRE	formula,	276
E-factor	formula,	306
elements	of	STEPTM,	12
environmental	needs,	87

evaluation	process,	software,	77
functions,	configuration	management,	123
Gantt	chart,	85
IEEE	templates
test	case	specification,	188–89,	464
test	design	specification,	464
test	documents,	18,	461
test	incident	report,	248,	467
test	log,	466
test	log	template,	244
test	plan,	462
test	plan	for	process	improvement,	468–69
test	planning,	62
test	procedure,	465–66
test	procedure	template,	192–94
test	summary	report,	468
unit	testing,	463

incremental	shipments,	118
influences,	strategy	decision,	70
interpersonal	roles,	341
inventory	creation	process,	148
levels,	integration,	131
levels,	test	planning,	55
master	versus	detailed	test	plans,	100
mutation	analysis,	236
overlapping	test	levels,	127
parallel	mutually-supportive	development,	17
pilot	site	releases,	117
planning	activity	sequence,	102
planning	phase	process,	98
process	improvement	steps,	389
responsibilities	matrix,	89
risk	analysis	activities,	27
risk	priority,	37
scope,	test	and	evaluation	plan,	65
seed	ratio	formula,	233
signature	page,	sample,	93
specifications,	system-level	test,	197
STEP	TM	process	flow,	497
structure,	test	specification,	192
system	test	DRE,	279–80
test	case	domains,	25
test	case	specification,	188
test	design	specification,	183
test	effectiveness	categories,	269

tester	certification	categories,	328
test	execution	diagram,	240
testing	views,	early	and	modern,	11
test-level	activity	timing,	13
test-level	decisions,	73
test	levels,	typical,	74,	104
test	planning	importance,	57
test	plan	timing,	59
test	procedure,	frequent	flyer,	194–96
test	process	and	documentation,	496
test	summary	reports,	260,	261
test	verification,	289
topology,	process	improvement,	398
TPI	model,	417
unit	testing	standard,	136–37
V	model,	101
waterfall	model,	7

files,	turnover,	353
first	impressions,	317
fix	priorities,	486
flags
action,	373
suspension	conditions,	85

Fleet	Marine	Force	Manual,	347
flowcharts,	task,	139
formats
audience-specific	data,	379.	See	also	audience	analysis
conflicting	data	source,	208–9

formulas
bug-to-fix	ratios,	41
cyclomatic	complexity,	180
defect	density,	284
DRE	(Defect	Removal	Efficiency),	276,	278
E-factor,	306
seed	ratios	and	real	defects,	233
spoilage,	283
system	test	DRE,	279–80

fragile	data,	87
Freedman,	Daniel	P.,	78
free-form	test	logs,	244
frozen	code,	80,	125,	126

Fuller,	Thomas,	264
functional	coverage,	181
functional	testing,	212–13

Team-Fly 	

Team-Fly

	

Index

G
Gantt	chart,	85,	90
Gause,	Donald	C.,	31
Gelperin,	David,	xxix
generated	data,	209–10
Gilb,	Tom,	78,	268
Gilb's	Law,	268
glass-box	testing.	See	white-box	testing
global	attributes,	32
global	code	coverage,	291
glossaries,	master	test	plan,	64.	See	also	audience	analysis
glossary	of	terms,	433–50
goals,	system	test	group,	393
gradual	implementation,	117
Grady,	Robert	B.,	282,	382
Graham,	Dorothy,	78,	276
groups,	quality	assurance,	229,	301–2
guidelines,	post-project	review,	405–7

Team-Fly 	

Team-Fly

	

Index

H
Handbook	of	Walkthroughs,	Inspections,	and	Technical	Reviews,	78
hardware,	120
hardware	configuration,	204–5
Hawthorne	Effect,	379–80
help,	job-hunting,	330
help	desk	calls,	272
help	desk	personnel,	314
Hetzel,	Bill,	xxix,	2,	3,	369,	374
Hevner,	Alan	R.,	315
high-impact	features,	35
high-level	code.	See	scripts
high-priority	risks.	See	safety-critical	systems
high-risk	features,	242
history
team,	38
testing,	2–9

Hollocker,	C.	P.,	78
How	to	Lie	with	Statistics,	377
Huff,	Darrell,	377

Team-Fly 	

Team-Fly

	

Index

I
identifiers
test	case	specification,	189
test	design	specification,	184
test	plan,	62–63
test	summary	report,	261

IEEE	(Institute	of	Electrical	and	Electronic	Engineers)
certification	requirements,	334
documentation	approach,	189
modified	process	improvement	template,	395–96
templates,	459–70
test	case	specification,	464
test	design	specification,	464
test	document,	18,	461
test	incident	report,	248–54,	467
test	log,	466
test	plan,	462
test	plan	for	process	improvement,	468–69
test	planning,	62
test	procedure,	465–66
test	summary	report,	468
unit	testing,	463

test	case	specification,	187–91
test	design	specification,	182–87
test	incident	reports,	248–54
test	log	template,	244
test	procedure	specification,	192–98
unit	testing	standard,	136

IIST	(International	Institute	for	Software	Testing),	334
imaginative	testing.	See	exploratory	testing
immersion	time,	306–8
impact
categories	of.	See	standardized	impact	scales
initial	values	of,	34
numerical	values	of,	36
of	inspections	on	testing,	79
prioritization	of,	250
raters	of,	250
risk	components	of,	26
subjective	ratings	of,	251

test	incident,	250–52
user	opinions	about,	35

implementation
gradual,	117.	See	also	incremental	changes
parallel,	118–19
phased,	118
test,	199–238
test	set.	See	architecture,	STEPTM

improvements
continuous,	425
identifying	opportunities	for.	See	post-project	reviews
process,	398
software	quality.	See	preventive	testing
test	process,	387–426
time	estimate.	See	schedules

improvement	suggestions,	420,	425
incentives,	study,	331–32
incident	descriptions,	249–50
incidents,	124,	245
incident	summaries,	249
incident	summary	report	identifiers,	249
incremental	changes,	397–99.	See	also	gradual	implementation
incremental	shipments,	118
independent	test	teams,	121,	138,	296–97
indicators,	likelihood-of-failure,	38–43
industry	knowledge.	See	business	knowledge

industry	practice	versus	STEPTM,	20–21
influence	leaders,	397,	404
informal	leaders,	350
informal	testing.	See	ad	hoc	testing
informational	roles,	342
information	sources
acceptance	testing,	107
integration	testing,	133–34
system	testing,	122

in-house	training,	366–67
initial	processes,	413

innovative	changes,	398
input	specifications,	189
inspections
defined,	77
described	by	function,	79
unit	testing,	142–43

integrated	test	teams,	298
integration	levels,	131
integration	testing,	130–35,	241
integration	test	issues,	134
inter-case	dependencies,	190
interface	risks,	87
interfaces,	120,	207–8
interpersonal	roles,	341
interpersonal	skills.	See	mentoring
interviews,	team,	320–21
introduction,	master	test	plan,	64–65
inventories
creation	of,	146–59
defined,	146
evaluating	items	of,	157
feature,	32
interface	testing,	147
prioritization	of,	151
tracing	of,	154
use	of,	430

inventory	coverage.	See	coverage	measures
inventory-tracking	matrices,	153–55,	159
ISEB	(Information	Systems	Examination	Board),	335
ISO	(International	Organization	for	Standards)
audits,	407–8
certification,	407–11
checklists,	408–10
pros	and	cons	of	certification,	410–11

item	pass/fail	criteria,	83–84.	See	also	test	items
items,	test,	65–66,	189
IV&V	(Independent	Verification	and	Validation),	303

Team-Fly 	

Team-Fly

	

Index

J
job-hunting	advantages.	See	certification
job	requirements,	316
Jones,	Capers,	403

Team-Fly 	

Team-Fly

	

Index

K
Kalashian,	Darin,	327,	329,	338
Kaner,	Cem,	162,	315
key	points
accountability,	348
ad	hoc	tests,	174
after-the-fact	metrics,	277
alpha	tests,	112
application	pilots,	399
applications,	skill-intensive,	363
approach	refinement,	185
approvers,	92
automation,	comprehensive,	216
automation	tools,	in-house,	226
automation	tools,	unused,	226
baselines,	390
benchmarks,	390
beta	tests,	112
black-box	testing,	159
boundary	value	analysis,	165
branch	coverage,	182
calibration,	21
candidate	skills,	319
CCB	(Change	Control	Board),	115,	123,	124
certification	benefits,	326
champions	as	sponsors,	404
changes,	detailed	test	plan,	107
CMM	(Capability	Maturity	Model),	412,	414
code	coverage	tools,	289,	290
cohabiting	software,	99,	201
coincidental	correctness,	160
collocation,	tester-developer,	305
combined	testing	roles,	20
common	planning	risks,	47
configuration	management,	114
confirmation	testing,	80
counting	what	counts,	376
coverage	issues,	181
customer	satisfaction	measures,	272
customer	satisfaction	surveys,	271
customized	training,	365

cyclomatic	complexity,	39
DDP	(Defect	Detection	Percentage),	276
defect	age,	280
defect	counts,	273
defect	density,	140
defect	reports,	early,	251
defect	seeding,	232
defect	tracking	tools,	254,	255,	256
desktop	procedures,	353
developer	assumptions,	298
developers	as	testers,	299
developer	training,	138
developmental	tests,	128.	See	also	integration	testing;	unit	testing
documentation	responsibilities,	developer,	139
DRE	(Defect	Removal	Efficiency),	277,	278
drivers	and	stubs,	133
effective	communication,	350
effective	leaders,	349
engineering	disciplines,	385
engineering	process	maturity,	411
equivalence	classes,	162
error	detection,	79
escape,	393
exploratory	tests,	177,	178
features	not	to	test.	See	features	not	to	test
feedback,	practitioner,	403
free-form	test	logs,	244
frozen	code,	80
global	attributes,	32
global	code	coverage,	291
How	to	Lie	with	Statistics,	377
human	elements,	294
IEEE	documentation,	189
immersion	time,	307
impact,	35
impact	ratings,	imprecise,	251
impressions,	candidate,	317
incident	report	analysis,	257
incidents,	124
incident	tracking	tools,	254
independent	test	teams,	297
industry	software	metrics,	403
influence	leaders,	397
inspections,	77
integration	testing,	130

interview	focus,	317
ISO	(International	Organization	for	Standards),	407,	408,	410
IV&V	(Independent	Verification	and	Validation),	303
job	requirement	definitions,	316
latent	defects,	24
late	projects,	325
late	software	projects,	75
level-specific	plans,	101
likelihood,	33
management	versus	leadership,	343
masked	defects,	24
measurement	and	control,	372
measurement	failure	rates,	383
measurement	linkage,	375
measurements,	human	activity,	380
mentoring	benefits,	365
mentors	as	sponsors,	357
metric	byproducts,	376
metric	reliability,	375
metrics,	252
milestone	estimates,	90
military	books,	347
morale,	356,	357
motivation	techniques,	355
mutation	analysis,	236
negative	tests,	175
network	licenses,	228
new	test	cases,	243
orthogonal	arrays,	170
outsourcing,	302
overtime	conservation,	325
Pareto	principle,	284
pass/fail	criteria,	84
path	coverage,	182
pilots,	116
planning,	54,	55,	56
planning	risks	and	contingencies,	49
players	and	playing	together,	294
poor	timing,	227
positive	tests,	175
privacy	measures,	309
privacy	versus	community,	305
process	definitions,	219
production	data,	210
profiles,	customer,	204

project	establishment,	394
project	politics,	349
prototypes,	110
quality	definitions,	3
questions	for	candidates,	318
quiet	times,	308
random	testing,	175
reference	checks,	320
regression	testing,	80
regression	tests,	225
requirements	coverage,	76,	285
reviews,	test	document,	229
rework,	382
risk	analysis,	26
risk	analysis	activities,	27
risk	management,	26
risk	mitigation,	46
safety-critical	systems,	36
salary	information,	351
scaffolding	code,	133
scope	reductions,	test	plan,	58
scripts,	192
seeded	bugs,	234
smoke	tests,	129
software	inspections,	78
software	risk	analysis,	28
spoilage,	282
statement	coverage,	182
statistical	deception,	378
STEPTM	test	planning,	20
STEPTM	versatility,	12
subordinate	development,	362
suspension	criteria,	85
SUT	(Software	Under	Test),	114
SWAT	teams,	295
systematic	unit	testing,	140
TBD	(To	Be	Determined),	59
team	interviews,	321
testable	combinations,	25
test	case	availability,	143
test	case	creation,	6
test	case	domains,	25
test	case	maintenance,	223
test	case	objectives,	246
test	cases,	documented,	142

test	coordinators	as	testers,	301
test	deliverable	examples,	86
test	design	specifications,	183,	186
tester-to-developer	ratios,	321,	322
test	execution,	202,	242
test	implementation,	200
testing	candidates,	242
testing	content,	67
testing	metrics,	369
test	objectives,	146
test	sets,	229
test	summary	reports,	259,	260
testware	evaluations,	228
tool	choices,	poor,	221–22
tool	selection,	359
TPI	(Test	Process	Improvement),	416
training,	360
training	allowances,	362
training	as	recognition,	366
training	costs,	367
training-to-productivity	ratios,	323
underestimated	training	needs,	220
unexplained	metrics,	374
unit	testing	bugs,	255
unproductive	meetings,	309
unstable	software,	224
update	strategies,	82
usability	labs,	110
usability	requirements,	109
vendor	software,	223
vocabularies,	common	testing,	331
volume	testing,	135
waterfall	model,	8
weighted	test	cases,	259
white-box	testing,	159,	160,	161
workspaces	and	performance,	304

Kinicki,	Angelo,	343
KLOC	(number	of	defects	per	thousand	lines	of	code),	140
knowledge
business,	363–64
certifiable	testing,	331

Koomen,	Tim,	412
Kotter	model,	355

Kreitner,	Robert,	343

Team-Fly 	

Team-Fly

	

Index

L
labs,	usability,	40,	110–12
latent	defects,	24
leaders
influence,	397,	404
informal,	350

leadership
cornerstones	of,	346–47
defined,	343
Marine	Corps	principles	of,	345–46
platoon,	344–45
styles	of,	344
training	executives	for,	346

Leadership	Secrets	of	Attila	the	Hun,	347
leads,	test,	353
levels
integration,	131,	133
maturity,	418
overlapping	test,	127
software	process	maturity,	412–15
standard.	See	test	levels
test,	72,	98,	100
test	environment,	13
test	execution,	16
test	planning,	54–57
TPI	maturity,	421

level-specific	plans,	56,	99,	101
library	management,	123
likelihood
assigning	numerical	values	to,	36
group	consensus	on,	34
modifying	values	of,	38
risk	component	of,	26

limitations,	automated	test,	216
limited	tool	implementation.	See	pilots
load	generation	tools,	211
logs

incident,	254
test,	244–45,	256

Lohr,	Claire,	xxix
low-level	testing.	See	buddy	testing
low-risk	features.	See	features	not	to	test

Team-Fly 	

Team-Fly

	

Index

M
maintenance
test	credibility,	252
test	matrix,	158–59
test	plan,	63

Making	Software	Measurements	Work,	369
management
configuration
acceptance	testing	and,	114–15
integration	testing	and,	135
master	test	plans	and,	79–81
unit	testing	and,	140

contrasted	with	leadership,	343–45
defined,	340,	343
library,	123
matrix,	301
quality.	See	ISO	(International	Organization	for	Standards)
risk,	26–27
roles	of,	340
seamless.	See	desktop	procedures
software	configuration,	123–27

Manager's	Guide	to	Software	Engineering,	26
Managing	the	Testing	Process,	315
masked	defects,	24
master	test	plan,	sample,	472–88
master	test	planning,	53–96
matrices
inventory-tracking,	153–55,	156,	159
maintenance	of	testing,	158–59
test	maturity,	417,	418–19
traceability,	122,	231

matrix	management,	301
maturity,	engineering	process,	411
maturity	levels,	418
Mayo,	Elton,	379
McConnell,	Steve,	6
measurement	engineering	vision,	385

measurement	phase	activities,	16
measurements
metric	need,	375–76
result,	399
ROI	(Return	on	Investment),	361
software	quality.	See	preventive	testing
test	effectiveness,	268–92,	431
testing	status,	258–59

meetings,	82–83,	309–10
mentoring,	364–65
meta-measures,	370
meters,	373

methodology,	STEPTM,	10–21
methodology	decisions,	72–74.	See	also	buddy	testing
metrics
after-the-fact,	277
benefits	of	using,	370–71
bug,	258,	266
buy-in	potential	of,	403
code	coverage,	289
collection	of,	81,	376–77,	382–83
defect	spoilage,	282
developer	feelings	and,	141
exit	criteria,	115
help	desk,	272
justifying	budgets	with,	373
master	test	plan,	479
misinterpreted,	377
mutually-validating,	265,	374
periodic	revalidation	of,	376
political	problems	with,	39
previous	release,	274
rules	for	using,	374–82
SEI	(Software	Engineering	Institute),	382
software	measurements	and,	369–70
test	incident	report,	252–53
test	suspension,	85
unit	testing,	140–41
U.S.	Air	Force,	382–83
validation	through,	81
worksheets	for,	381–82

metrics	primer	for	test	managers,	369–85

metric	values,	normalized,	375
metric	worksheets,	381–82
milestones,	90
minor	defects,	252
mitigation,	45–47
model	offices,	213–14
models
CMM	(Capability	Maturity	Model),	411–16
finished	product.	See	acceptance	testing
IEEE	test	design	specification,	182
ISO	auditing,	407–11
Kotter,	355
program	specification.	See	buddy	testing
sequential	development,	6
TPI	(Total	Process	Improvement),	416–25
waterfall,	6–8

module	interfaces,	132
monkey	testing,	175
morale,	324,	356–57
motivation,	332
multiple	tracking	systems,	257
mutation	analysis,	235–36
Myers,	Glenford,	3
Mythical	Man-Month,	75

Team-Fly 	

Team-Fly

	

Index

N
negative	tests,	175
neophyte	testers,	242
new	hires,	315

Team-Fly 	

Team-Fly

	

Index

O
objectives
common,	147
parsing	of,	152–53
prioritization	of,	151
sample	test,	476–77
test,	146
usability	lab,	110

observations,	user	action.	See	usability	labs
office	environments,	304–10
offices
model,	213–14
private,	305–6

office	space,	304
operating	systems,	customer.	See	hardware	configuration
optimized	processes,	415
Organizational	Behavior,	343
organizational	politics,	348–49
organization-based	certifications,	328
organizations,	test,	293–310
orientation,	test	plan.	See	test	items
orthogonal	arrays,	170–73
outlines,	test	plan,	61
output-oriented	testing.	See	white-box	testing
output	specifications,	190
outsourcing,	302–3
overlapping	objectives,	150
overlapping	test	levels,	106,	127
overtime,	324–26

Team-Fly 	

Team-Fly

	

Index

P
pair-wise	defects,	173
parallel	implementation,	118–19
Pareto	analysis,	284–85,	371
Pareto	principle,	42
parsed	objectives,	152–53
partitioned	templates.	See	test	plan	sections
partitioning,	equivalence,	162–65
pass	or	fail	criteria,	186
Patel,	Eric,	327,	329,	336
path	coverage,	182
paths,	career,	332,	352–53
pay	parity,	351–52
Peloponnesian	War,	347
performance	testing,	213
Perry,	Dale,	xxix,	489
PhAge	(phase	age).	See	defect	age
phased	implementation,	118
philosophies,	common	testing,	331
pilots,	116–17,	399.	See	also	incremental	changes
pitfalls,	automation.	See	traps,	test	tool
planning
defined,	55
detailed	test,	97–144
master	test,	53–96

planning	levels,	13
planning	risks	and	contingencies,	47–52,	91–92.	See	also	project	assumptions
plans,	sabotaged.	See	resources,	master	test	plan
planted	problems.	See	defect	seeding
Pol,	Martin,	412
politics,	39,	75,	348–49
Politics	of	Projects,	349

populations,	database.	See	environmental	needs
positive	tests,	175
post-implementation	test	planning,	63
post-project	reviews,	404–7.	See	also	quality	assurance	groups;	testing	survey
potential	testers,	241–42
preparations
candidate	interview,	317
certification,	333–35

Pressman,	Roger	S.,	26
preventive	testing,	4–6,	429
principle,	Pareto,	42
priorities
feature,	43–44
fix,	486.	See	also	configuration	management
impact,	250
objective,	151
risk.	See	impact
summed,	38
test	execution,	242–43.	See	also	risk	analysis

private	offices,	305–6
problems
developer	and	tester,	80
interface,	207
real	data,	208–9
survey	analysis.	See	customer	satisfaction	measures
test-effectiveness,	268

procedures
desktop,	353–54
unit	testing,	137–38

process,	inventory	creation,	148
process	diagrams,	495–98
process	evaluation,	454
process	improvement	models
CMM	(Capability	Maturity	Model),	411–16
ISO	(International	Organization	for	Standards),	407–11
TPI	(Total	Process	Improvement),	416–25

process	improvement	opportunities,	372
process-oriented	testing.	See	white-box	testing
product-based	certifications,	327

production	data,	209–10
production	defects,	275–76
production	environments,	simulated,	201
professional	development.	See	certification
professional	testers.	See	independent	test	teams;	integrated	test	teams
proficiency,	demonstrated.	See	software	tester	certifications
profiles
cohabiting	application,	206
customer	environment,	204,	213
user,	209

project	assumptions,	51–52
project	establishment,	394–95
project	information.	See	master	test	planning
promotions,	330
pros	and	cons
CMM	(Capability	Maturity	Model),	415–16
of	ISO	certification,	410–11
test	organization,	296

prototypes,	109–10

Team-Fly 	

Team-Fly

	

Index

Q
QAI	(Quality	Assurance	Institute),	334
QA	(Quality	Assurance),	301–2
qualities,	tester,	312–13
quality,	3
quality	assurance	groups,	229
quality-centric	certification,	329
quality	commitments,	91
quality	management.	See	ISO	(International	Organization	for	Standards)
questions
candidate	interview,	318,	320
defect	density,	284
help	desk,	272
test-effectiveness,	268
tool	vendor,	223–24
update,	82

quiet	time,	308–9

Team-Fly 	

Team-Fly

	

Index

R
radical	changes,	398
random	data,	210–11
random	testing,	175–76
Rapid	Development,	6
raters,	impact,	250
rates,	defect	discovery,	378
ratings,	severity,	251
ratios
report.	See	span	of	control
testers-to-developers,	323
training-to-productivity,	323

raw	data,	378–79
realistic	test	environments.	See	test	data	volume
recent	graduates,	315
recertification,	335
recommendations,	software	release.	See	test	summary	reports
records
software	defect.	See	defect	tracking
test	case	result,	243
test	detail.	See	test	logs

reductions
number	combination.	See	semi-random	testing
quality	and	scope.	See	planning	risks	and	contingencies

redundant	tests.	See	equivalence	partitioning
reference	materials,	149.	See	also	information	sources
references
checking	of	personal,	320
master	test	plan,	63–64
related	software	testing.	See	bibliography

regression	testing,	80,	126,	128,	225
relationships,	test	level,	100
release	criteria.	See	exit	criteria
release	strategies,	116–19

repeatable	processes,	413–14
repetitive	tasks,	217–18
report	ratios.	See	span	of	control
reports
sample	test	status,	258
test	incident,	245–57
test	summary,	259–64

required	training	topics,	362–64
requirements
ATM	(Automatic	Teller	Machine),	230,	231
common,	150
design	coverage	and,	286–87
formulating	and	prioritizing,	393
job,	316
organization-based	certification,	333–35
resumption,	84
special	procedural,	190
traceability,	154
traced	test	case,	113
unit	testing,	139–40
usability,	109
user,	288–89
verification.	See	preventive	testing

requirements-based	objectives,	sample,	476–77
requirements-based	tests,	15
requirements	coverage.	See	coverage	measures
requirement	specifications,	107
requirements	traceability,	113–14.	See	also	software	risk	analysis
resistance,	potential,	398
resource-competitive	applications.	See	cohabiting	software
resources
adequate	provision	of,	359
master	test	plan,	74–75

responses,	fix	priority,	486
responsibilities
developer,	139–40
master	test	plan,	88–89
STEPTM,	19–20
test	execution,	241
testing	activity,	19

user,	108
responsibility,	348
restaurant	discount	coupon,	356
result	records,	243
results,	expected.	See	item	pass/fail	criteria
results-oriented	testing.	See	black-box	testing
résumés,	candidate,	317
resumption,	test,	84
resumption	criteria,	84–85
retention,	staff,	323–26
reviewers
roles	and	responsibilities	of,	19
test	plan,	92,	93
test	summary	report.	See	approvals,	test	summary	report

reviews
post-project,	404–7.	See	also	quality	assurance	groups
risk	value,	38–43
test	document,	229
unit	testing,	142–43

rewards,	overtime,	325–26
rework,	382
risk
computing	priorities	for,	37–38
defined,	26
functional	coverage	and,	181
lowering	of.	See	mitigation
reviewing	assigned	values	of,	38–43
verbalizing,	66

risk	analysis,	23–52
risk	analysis	experts.	See	brainstorming
risk	associations
cyclomatic	complexity,	39
environmental	accessibility,	42
new	or	modified	features,	40–41
new	technology	methods,	41
user-friendly	software	features,	40

Risk	Management	for	Software	Projects,	26
risk	priorities,	43

risks
high-priority.	See	safety-critical	systems
interface,	87
planning,	47–52,	429

risk	values,	modified,	38–43
risky	areas,	371
roles
decision	making,	342
informational,	342
interpersonal,	341
management,	340
STEPTM,	19–20
test	manager,	351–69

rules
80/20.	See	Pareto	principle
brainstorming,	31
for	using	metrics,	374–82

Team-Fly 	

Team-Fly

	

Index

S
safety-critical	systems,	36,	69
salary
equalization.	See	pay	parity
increases,	330

satisfaction,	user	requirement.	See	acceptance	testing
scaffolding	code,	133
scalability,	white-box,	181
scales
standardized	impact,	251
weighting,	36

schedules,	test,	90–91.	See	also	planning	risks	and	contingencies
scheme,	sample	build,	134
science
black-box,	161–73
white-box,	179–82

scope,	test	plan.	See	introduction,	master	test	plan
scope	considerations,	65
scripts,	test,	192,	217
seamless	management.	See	desktop	procedures
sections
master	test	plan
approach,	70–83
approvals,	92–95
environmental	needs,	86–88
features	not	to	test,	68–70
features	to	test,	67–68
glossary,	64
introduction,	64–65
item	pass/fail	criteria,	83–84
planning	risks	and	contingencies,	91–92
references,	63–64
responsibilities,	88–89
schedules,	90–91
software	risk	issues,	66–67
staffing	and	training	needs,	89–90
suspension	criteria	and	resumption	requirements,	84–85

table	of	contents,	63
test	deliverables,	85–86
testing	tasks,	86
test	items,	65–66
test	plan	identifier,	62–63

sample	master	test	plan,	472–88
simplified	unit	test	plan,	490–94

seeded	bugs,	234
seeding,	defect,	232–35
semi-random	testing,	176–77
Semper	Fi,	347
sensitive	data,	209,	377
sequential	development	model,	6
sequential	execution,	16
sessions,	brainstorming,	66–67
severity	ratings,	251
shared	test	information.	See	test	logs
shelfware,	222
shipments,	117,	118
signature	pages,	92,	93
signatures.	See	approvals,	test	summary	report
silver	bullets,	214–15
simplified	unit	test	plan,	489–94
simulations,	test
production	environments,	201
real-world	conditions.	See	environmental	needs

simultaneous	implementation.	See	parallel	implementation
skills
communication,	364.	See	also	mentoring
interpersonal.	See	mentoring
technical,	363
tester	candidate,	319

smoke	tests,	129–30,	218
software
changing.	See	unstable	software
cohabiting,	99,	201,	205–7
complex,	39
evaluation	of,	10

inadequately	tested,	25
late	releases	of,	267
parallel	development	of,	17
prototypes	of,	109–10
unstable,	224–25

software-based	certifications,	328
software-centric	certification,	329
software	configuration	management,	123–27
Software	Defect	Removal,	234
Software	Engineering	Risk	Analysis	and	Management,	26
Software	Inspection,	78
software	measurements	and	metrics,	369–70
software	meters,	373
Software	Metrics,	282
software	process	maturity,	412–15
software	quality.	See	CMM	(Capability	Maturity	Model)
Software	Reviews	and	Audits	Handbook,	78
software	risk	analysis,	28–47,	52,	429
software	risk	issues,	66–67
Software	Risk	Management,	26
software	tester	certifications,	326–38
software	testers,	311–38
sources,	information
acceptance	testing,	107
integration	testing,	133–34
system	testing,	122
test	data,	208–11

space,	office,	304
span	of	control,	349–50
special	procedural	requirements,	190
specialty	training,	367
specification	ambiguities,	5
specifications
design,	288–89
IEEE	test	case,	187–91
IEEE	test	design,	182–87
IEEE	test	procedure,	192–98

input,	189
output,	190
requirement,	107
simple	test,	191
system	level	test,	197
test	case,	186,	187
user,	288–89

Splaine,	Steven,	xxix
spoilage,	282
sponsors,	404
staffing	and	training	needs,	89–90
staffing	test	plans.	See	resources,	master	test	plan
staff	retention,	323–26
stages,	test	planning.	See	test	planning	levels
standardized	impact	scales,	251
standard	levels.	See	test	levels
standards,	unit	testing,	139–40
standard	templates,	60–61
state	machines,	169
statement	coverage,	182
statements
scope.	See	introduction,	master	test	plan
vision,	392

state-transition	diagrams,	168–70
status.	See	disposition
steps
mutation	analysis,	236
process	improvement,	389
software	risk	analysis,	30

STEPTM	(Systematic	Test	and	Evaluation	Process),	10–21
architecture,	13–14
elements	of,	12
history	of,	2
relationship	diagram,	496
roles	and	responsibilities	in,	19–20
scope	and	objectives	of,	10–11
summarized,	20–21
timing	activities	of,	14–16
work	products	of,	17–19

STQE.net	master	test	plan,	471–88
strategies
change	implementation,	126
code	coverage,	182
effective	meeting,	309–10
lack	of	clear,	219–20
organizational,	300
quiet	time,	308–9
release,	116–19
testing,	430
update.	See	test	plan	changes
walkthrough	and	inspection,	79

strategy,	212–13
strengths,	code	coverage,	290–91
string	testing.	See	integration	testing
structural	testing.	See	white-box	testing
structured	tests,	supplemented.	See	ad	hoc	testing
Structured	Walkthroughs,	78
structures,	test	organization,	294–303
stubs,	133,	135
study	incentives,	331–32
subsystem	testing.	See	integration	testing
suggestions,	improvement,	420
summaries
STEPTM,	20–21
test	summary	report,	261–62

supplemental	testing.	See	IV&V	(Independent	Verification	and	Validation)
support,	demonstrated,	332–33
surveys
customer	satisfaction,	269–72
testing,	451–58

suspension	criteria,	84–85.	See	also	meters
SUT	(Software	Under	Test),	114
SWAT	teams,	295
systematic	software	testing,	173–74
system	design.	See	state-transition	diagrams
systems,	safety-critical,	69

system	testing,	121–30,	241

Team-Fly 	

Team-Fly

	

Index

T
table	of	contents,	master	test	plan,	63
tables
ATM	cut-line,	45
ATM	example	requirements,	230
ATM	test	cases,	5
blank	TPI	assessment,	419
bug	budget	example,	275
code	coverage,	288
data	source	characteristics,	209
decision,	166–68
defect	age	scale,	281
defect	creation	versus	defect	discovery,	282
defects	weighted	by	defect	age,	283
environmental	variables,	99
evaluation	process,	454
impact	of	ATM	failure,	35
inventory-tracking	matrix,	154,	155,	156,	159
ISO	certification	checklists,	408–10
L9(34)	orthogonal	array,	171,	172
likelihood,	ATM	failure,	33
management	and	measures,	453
metrics,	382,	383,	384
mitigated	ATM	priorities,	46
overview	of	dependencies,	422–23
priorities,	sorted	ATM	feature,	44
priorities,	summed	ATM,	38
prioritized	ATM	cut-line,	68
requirements,	design	coverage,	287
requirements	traceability,	test	case,	113,	231
responsibilities,	test	execution,	242
simple	test	specifications,	191
software	quality	and	test	certification,	329
STEPTM	activities,	14
STEPTM	roles	and	responsibilities,	19
STEPTM	versus	industry	practices,	21
subsections,	incident	description,	250
techniques	versus	levels	of	test,	162
test	and	evaluation	tools,	456
test	case	description,	simplified	ATM,	231
test	cases,	payroll	tax	table,	168

test	environment	attributes,	201
testing	definitions,	3
testing	process	and	activities,	455
test	log,	245
test	organization	pros	and	cons,	296
test	status	report,	258
TPI	assessment,	421
trends	and	perspectives,	457
walkthroughs	versus	inspections,	78

task	flowcharts,	139
tasks
repetitive,	217–18
tedious,	218
testing,	86

TBD	(To	Be	Determined),	59.	See	also	activity	timing
team	history,	38
team	interviews,	320–21
teams
ad	hoc	testing.	See	test	coordinators
brainstorming,	31,	149
experienced	development,	38–39
independent	test,	121,	138,	296–97
integrated	test,	298
new	development,	38–39
software	risk	analysis,	28
SWAT,	295
temporary.	See	test	coordinators

technical	skills,	363
technical	support	personnel,	314
technical	writers,	314
techniques
coverage,	181–82
design,	146
motivation,	355
test	automation,	128
test	specification,	424

tedious	tasks,	218
templates
IEEE	(Institute	of	Electrical	and	Electronic	Engineers)
test	case	specification,	188–89,	464
test	design	specification,	183,	464

test	document,	18,	461
test	incident	report,	248–54,	467
test	log,	244,	466
test	plan,	462
test	plan	for	process	improvement,	468–69
test	planning,	62
test	procedure,	192–94,	465–66
test	summary	report,	468
unit	testing,	463

modified	IEEE	process	improvement,	395–96
schedule,	90
test	case	spreadsheet,	191

temporary	teams.	See	test	coordinators
terminology,	testing.	See	glossary	of	terms
testable	features,	67–68
test	and	evaluation	tools,	456
test	automation,	213–14
test	automation	engineers,	222
test	case	combinations,	25
test	case	descriptions.	See	test	design	specification;	test	design	specifications
test	cases
ATM	(Automatic	Teller	Machines),	5
early	benefits	of,	6
equivalence.	See	equivalence	partitioning
erroneous,	252
exploratory,	243
recording	the	results	of,	243
referenced.	See	incident	summaries
reusable,	142
simplified	ATM	description,	231
traceability	of	requirements	to,	231

test	case	specifications,	187–91
test	coordinators,	300–301
test	coverage	decisions,	75–76
test	cycles,	479
test	data,	87,	208–12
test	data	sources,	208–11
test	data	volume,	211–12
test	deliverables,	85–86

test	design	documentation,	182–97
test	design	specifications,	182–87
test	document	reviews,	229
test	document	template,	IEEE,	461
test	duties.	See	responsibilities
test	effectiveness	questions,	268–91
test	environments
acceptance	testing,	119–21
factoring	bugs	out	of,	277
implementation	of,	200–213
inadequate	or	unique,	226–27
integration	testing,	135
realistic.	See	environmental	accessibility

tester	candidates,	313–15
testers
ad	hoc,	173–74
certified,	326–27
characteristics	of,	312–13
dissatisfied.	See	staff	retention
expectations	of,	324
experienced,	35–36
exploratory,	177
finding	of	good,	313–15
hiring	of,	316–21
neophyte,	242
poorly	trained,	220–21
potential,	241–42,	313–15
primary	functions	of,	353
professional.	See	independent	test	teams
software,	311–38
staff	requirements	for,	321–23
untrained,	137
value	of	certification	to,	329

tester-to-developer	ratios.	See	testing	staff	ratios
test	execution,	239–92
test	identification,	185
test	implementation,	199–238
test	incident	reports,	245–57
testing
acceptance,	102–21

ad	hoc,	157,	173–75
alpha	and	beta,	112–13
black-box,	159–61
buddy,	143–44
build.	See	integration	testing
clear-box.	See	white-box	testing
comprehensive.	See	equivalence	partitioning;	requirements	traceability
confirmation,	80
customer	site.	See	beta	tests
defined,	3,	4
development	site.	See	alpha	testing
difficulties	of,	9
early	views	of,	10–11
experienced-based.	See	ad	hoc	testing
experiential.	See	exploratory	testing
exploratory,	177–78
functional,	212–13
glass-box.	See	white-box	testing
history	of,	2–9
human	dynamics	in,	294
imaginative.	See	exploratory	testing
impulse.	See	ad	hoc	testing
informal.	See	ad	hoc	testing
in	secure	environments,	88
integration,	130–35
interface,	207–8
low-level.	See	buddy	testing
modern	views	of,	10–11
monkey,	175
output-oriented.	See	black-box	testing
preventive,	4–6,	429
process-oriented.	See	white-box	testing
random,	175–76
regression,	80,	126,	128,	225
results-oriented.	See	white-box	testing
risk-based	approaches	in,	289
selling	the	importance	of,	357–58,	432
semi-random,	176–77
string.	See	integration	testing
structural.	See	white-box	testing
subsystem.	See	integration	testing
supplemental.	See	IV&V	(Independent	Verification	and	Validation)
system,	121–30
systematic	software,	173–74
thread.	See	integration	testing

training	requirements	for,	362
translucent-box.	See	white-box	testing
under	real	world	conditions.	See	test	environments
undocumented.	See	ad	hoc	testing
unit,	136–44
unplanned.	See	ad	hoc	testing
usability,	108–10
volume,	135
when	to	conclude,	264–67
white-box,	159–61,	179–81

testing	champions,	139,	360–61
Testing	Computer	Software,	162
testing	documents.	See	testware
testing	extremes.	See	boundary	value	analysis
testing	methodology,	74
testing	milestones,	90
testing	positions,	353
testing	process,	1–22
testing	process	and	activities,	455
testing	products.	See	testware
testing	roles	and	responsibilities,	19
testing	staff	ratios,	321–23
testing	status	and	results,	258–64
testing	strategy	development,	430
testing	surveys,	451–58
testing	tasks,	86
test	items,	65–66,	189
test-level	environments,	98
test-level	requirements,	99
test	levels,	72,	98,	100,	486–87
test	logs,	244–45
test	managers
leadership	roles	of,	346–51
metrics	primer	for,	369–85
responsibilities	of,	19
team	roles	of,	351–60
training	roles	of,	361–69

test	maturity	matrix,	417,	418–19
test	objectives,	146,	150,	151.	See	also	design	analysis
test	organizations,	293–310
test	performance	descriptions.	See	approach
test	plan	changes,	82
test	plan	criteria,	262
test	plan	development,	395–97
test	plan	dissemination,	63
test	plan	identifiers,	62–63
test	planning	levels,	54–57
test	plan	reductions.	See	cut-lines
test	plans
electronic	dissemination	and	maintenance	of,	63
level-specific,	56
reader	customization	of.	See	audience	analysis

test	plan	sections,	61–95
test	plan	templates.	See	standard	templates
test	plan	versions.	See	test	plan	identifiers
test	plan	writers,	94,	132
test	priorities.	See	software	risk	analysis
test	procedure,	example,	194–96
test	procedure	template,	IEEE,	192–94,	465–66
test	results,	desired.	See	output	specifications
test	results,	misleading,	84
tests
alpha,	112–13
automated	feature,	237
beta,	112–13
developmental,	128
requirements-based,	15
resumption	of,	84
smoke,	129–30,	218
suspension	of,	84

test	scripts,	automated,	224–25
test	sets,	229
test	specification	technique,	424
test	status	measurements,	258

test	summary	reports,	259–64
test	tools	traps,	219–28
test	vocabularies,	258
testware
defects	in,	253
evaluation	of,	228–38
parallel	development	of,	17
reuse	of,	142

thread	testing.	See	integration	testing
Thucydides,	347
time
immersion,	306–8
quiet,	308–9

timing
activity,	58–59,	103–6,	132–33
poor	implementation,	227
software	release,	267
STEPTM	activity,	14–16

tools
automated,	81,	214–16
code	coverage,	181,	236.	See	also	test	coverage	decisions
commercial	versus	in-house,	255–56
cost	of,	227–28
data	generation,	210
defect	tracking,	255–57
expensive,	227–28
inadequate	testing,	221–22
integration	of,	360
inventory-maintenance,	158
justification	of,	373
load	generation,	211
modified	tracking,	256
path	coverage,	180
selection	of,	359
test	and	evaluation,	456
test	automation,	358
training	requirements	for,	363
unit	testing,	137–38
unused.	See	shelfware
vendors	of,	223–24

TPI	(Test	Process	Improvement),	416–25.	See	also	CMM	(Capability	Maturity	Model)

traceability,	230–31.	See	also	test	effectiveness	questions
traceability,	requirements,	113–14,	154
traceability	matrices,	122
tracking,	defect,	246
tracking	systems,	multiple,	257
tracking	tools,	modified,	256
training
computer-based.	See	distance	learning
continuous	process	of,	432
identifying	needs	for,	372
inadequate	provision	of,	220–21
in-house	provision	of,	366–67
in	public	forums,	366
justification	of,	373
methods	of,	364
on-site	commercial,	365–66
poor,	220–21
provision	of,	360,	381,	404
required	topics	for,	362–64
specialty,	367
test	manager	roles	in,	361–69
video	tape.	See	distance	learning
Web-based.	See	distance	learning

training,	process	improvement,	404
training	needs,	89,	372
translucent-box	testing.	See	white-box	testing
traps,	test	tool,	219–28
tree,	defect	analysis	decision,	124
triggers,	development.	See	design	documents
turnover	files,	353
Twain,	Mark,	360
Tzu,	Sun,	347

Team-Fly 	

Team-Fly

	

Index

U
unaddressed	conditions,	155–56
unclear	strategies,	219–20
underestimated	time	and	resources,	226
undetected	defects,	24
undocumented	testing.	See	ad	hoc	testing
unequal	test	results,	84
unhappy	workers.	See	overtime
unit	testing,	136–44
auditing	the	quality	of.	See	mutation	analysis
educating	developers	about,	138
execution	of,	241
metrics	from,	140–41
mutation	analysis	of,	235
obstacles	to,	137–38
sample	plan	of,	489–94
standards	and	requirements	for,	139–40
training	for,	137

unmasked	defects,	24
unplanned	problems.	See	planning	risks	and	contingencies
unplanned	testing.	See	ad	hoc	testing
unresolved	incidents.	See	test	summary	reports
unscheduled	events.	See	planning	risks	and	contingencies
unstable	software,	224–25
untestable	data	sources,	208–9
unusual	test	results.	See	incidents
updates,	software	risk	analysis,	47
usability	labs,	40,	110–12
usability	risk	factors,	40
usability	testing,	108–10
U.S.	Air	Force	metrics,	382–83
user	requirements.	See	acceptance	testing
user	responsibilities,	108
users

risk	analysis	roles	of,	28
tester	roles	of,	314

U.S.	Marine	Corps
cornerstones	of	leadership,	346–47
principles	of	leadership,	345–46

Team-Fly 	

Team-Fly

	

Index

V
validation
metric,	81,	374
requirements.	See	acceptance	testing
test	data.	See	environmental	needs

values
assigned	numerical,	36
initial	likelihood,	34
ISO	certification,	410
normalized	metric,	375
reviewed	and	modified,	38–43
spoilage,	283
tester	certification,	329–33

variances,	262
vendor-based	certifications,	328
vendors,	test	tool,	223–26
versions,	test	plan.	See	test	plan	identifiers
video	tape	training.	See	distance	learning
views	of	testing,	10–11
vision,	measurement	engineering,	385
visions	and	goals,	392–93
vision	statements,	392
V	model,	101
vocabularies,	test,	258
volume,	test	data,	211–12
volume	testing,	135

Team-Fly 	

Team-Fly

	

Index

W
walkthroughs,	76–79,	142–43
waterfall	model,	6–8
weaknesses
code	coverage,	288–90
random	testing,	175–76

Web-based	training.	See	distance	learning
Web	page	test	logs,	244–45
weighting	scales,	36
Weinberg,	Gerald	M.,	31,	78
Whitaker,	James,	315
white-box	testing,	159–61,	179–81
work,	full-potential.	See	immersion	time
work	environments.	See	office	space

work	products,	STEPTM,	17–19
workspaces.	See	office	space

Team-Fly 	

Team-Fly

	

Index

Y
Yourdon,	Edward,	78

Team-Fly 	

Team-Fly

	

List	of	Figures

Chapter	1:	An	Overview	of	the	Testing	Process
Figure	1-1:	Waterfall	Model	of	Software	Development

Figure	1-2:	Views	of	Testing

Figure	1-3:	Elements	of	STEP

Figure	1-4:	Activity	Timing	at	Each	Level	of	Test

Figure	1-5:	Activity	Timing	at	Various	Levels	of	Test

Figure	1-6:	Activity	Timing	at	Various	Levels	of	Test

Figure	1-7:	Parallel,	Mutually	Supportive	Development

Figure	1-8:	Template	for	Test	Documents	from	IEEE	Std.	829-1998.	The	templates	for
many	IEEE	documents	are	presented	in	this	book,	but	we	recommend	that	you	purchase
the	complete	guidelines	from	the	IEEE	at—	www.ieee.org

Chapter	2:	Risk	Analysis
Figure	2-1:	Domain	of	All	Possible	Test	Cases	(TC)	in	a	Software	System

Figure	2-2:	Risk	Analysis	Activities

Figure	2-3:	Software	Risk	Analysis	Process	Overview

Figure	2-4:	Risk	Priority

Figure	2-5:	Formulae	for	Measuring	the	Ratio	of	Bugs	to	Fixes

Chapter	3:	Master	Test	Planning
Figure	3-1:	Levels	of	Test	Planning

Figure	3-2:	Importance	of	Test	Planning

Figure	3-3:	Timing	of	Test	Planning

Figure	3-4:	Template	for	Test	Planning	from	IEEE	Std.	829-1998

Figure	3-5:	Scope	of	Test	and	Evaluation	Plans

Figure	3-6:	Influences	on	Strategy	Decisions

Figure	3-7:	Test	Level	Decisions

Figure	3-8:	Typical	Test	Levels

Figure	3-9:	Software	Evaluation	Process

Figure	3-10:	Sample	Gantt	Chart

Figure	3-11:	Environmental	Needs

Figure	3-12:	Responsibilities	Matrix

Figure	3-13:	Sample	Signature	Page

Chapter	4:	Detailed	Test	Planning
Figure	4-1:	Planning	Phase	Process

Figure	4-2:	Master	versus	Detailed	Test	Plans

Figure	4-3:	The	"V"	Model	of	Software	Testing

Figure	4-4:	Sequence	of	Planning	Activities

Figure	4-5:	Typical	Test	Levels

Figure	4-6:	Usability	Lab	Design	by	Dr.	Michael	J.	Prasse,	Director	of	OCLC	Usability
Lab

Figure	4-7:	Release	Using	Pilot	Site

Figure	4-8:	Complete	Shipment	to	Some	Users

Figure	4-9:	Incremental	Shipments	to	All	Users

Figure	4-10:	Functions	of	Configuration	Management

Figure	4-11:	Defect	Analysis	Decision	Tree

Figure	4-12:	Consequences	of	Overlapping	Test	Levels

Figure	4-13:	Levels	of	Integration	in	a	Typical	Car

Figure	4-14:	Sample	Build	Scheme

Figure	4-15:	Rick's	copy	of	the	Unit	Testing	Standard

Chapter	5:	Analysis	and	Design
Figure	5-1:	Inventory	of	Types	of	Cars

Figure	5-2:	Process	for	Creating	an	Inventory

Figure	5-3:	Black-Box	versus	White-Box	Testing

Figure	5-4:	Equivalence	Partitioning	in	a	Typical	Passenger	Jet

Figure	5-5:	ATM	Equivalence	Partitions

Figure	5-6:	Code	Implementing	Module

Figure	5-7:	Test	Design	Specification

Figure	5-8:	Test	Design	Specification	Template	from	IEEE	Std.	829-1998

Figure	5-9:	Test	Case	Specification

Figure	5-10:	Test	Case	Specification	Template	from	IEEE	Std.	829-1998

Figure	5-11:	Structure	of	a	Test	Procedure	Specification

Figure	5-12:	Test	Procedure	Template	from	IEEE	Std.	829-1998

Figure	5-13:	Example	Test	Procedure	for	a	Frequent	Flyer	System	Using	the	IEEE
Template

Figure	5-14:	Specifications	for	a	Typical	System-Level	Test

Chapter	6:	Test	Implementation
Figure	6-1:	Repetitive	and	Tedious	Tasks	Are	Prime	Candidates	for	Automation

Figure	6-2:	Formulae	for	Calculating	Seed	Ratio	and	Estimated	Number	of	Real	Defects
Still	Present

Figure	6-3:	Steps	in	the	Mutation	Analysis	Process

Chapter	7:	Test	Execution
Figure	7-1:	Executing	the	Tests

Figure	7-2:	Test	Log	Template	from	IEEE	Std.	829-1998

Figure	7-3:	Template	for	Test	Incident	Report	from	IEEE	Std.	829-1998

Figure	7-4:	There	Should	Be	a	Test	Summary	Report	for	Each	Test	Plan

Figure	7-5:	Template	for	Test	Summary	Report	from	IEEE-829-1998

Figure	7-6:	Defect	Discovery	Rate

Figure	7-7:	Categories	of	Metrics	for	Test	Effectiveness

Figure	7-8:	Defect	Discovery	Rates	for	Projects	A	and	B

Figure	7-9:	Formula	for	Defect	Removal	Efficiency	(DRE)

Figure	7-10:	DRE	Example

Figure	7-11:	System	Test	DRE	Example

Figure	7-12:	Formula	for	Defect	Spoilage

Figure	7-13:	Formula	for	Defect	Density

Figure	7-14:	Defect	Density	in	Various	Modules

Figure	7-15:	Test	Verification

Chapter	8:	The	Test	Organization
Figure	8-1:	Formula	for	Calculating	the	Productive	Percentage	of	a	Workday

Chapter	9:	The	Software	Tester
Figure	9-1:	Categories	of	Tester	Certifications

Chapter	10:	The	Test	Manager
Figure	10-1:	The	Manager's	Roles

Figure	10-2:	Interpersonal	Roles	of	a	Test	Manager

Figure	10-3:	Cornerstones	of	Marine	Leaders

Figure	10-4:	Declining	Defect	Discovery	Rate

Chapter	11:	Improving	the	Testing	Process
Figure	11-1:	Process	Improvement	Steps

Figure	11-2:	Test	Plan	Template	Modified	for	Process	Improvement

Figure	11-3:	Topology	for	Implementing	Process	Improvements

Figure	11-4:	Capability	Maturity	Model	(CMM)	Five	Levels	of	Software	Process	Maturity

Figure	11-5:	Test	Process	Improvement	(TPI)	Model

Appendix	C:	IEEE	Templates
Figure	C-1:	Template	for	Test	Documents	from	IEEE	Std.	829-1998	Refer	to	Chapter	1
for	more	information.

Figure	C-2:	Template	for	Test	Planning	from	IEEE	Std.	829-1998	Refer	to	Chapter	3	for
more	information.

Figure	C-3:	Rick's	copy	of	the	Unit	Testing	Standard	Refer	to	Chapter	4	for	more
information.

Figure	C-4:	Test	Design	Specification	Template	from	IEEE	Std.	829-1998	Refer	to
Chapter	5	for	more	information.

Figure	C-5:	Test	Case	Specification	Template	from	IEEE	Std.	829-1998	Refer	to	Chapter
5	for	more	information.

Figure	C-6:	Test	Procedure	Template	from	IEEE	Std.	829-1998	Refer	to	Chapter	5	for
more	information.

Figure	C-7:	Test	Log	Template	from	IEEE	Std.	829-1998	Refer	to	Chapter	7	for	more
information.

Figure	C-8:	Template	for	Test	Incident	Report	from	IEEE	Std.	829-1998	Refer	to	Chapter
7	for	more	information.

Figure	C-9:	Template	for	Test	Summary	Report	from	IEEE-829-1998	Refer	to	Chapter	7
for	more	information.

Figure	C-10:	Test	Plan	Template	MODIFIED	for	Process	Improvement	Refer	to	Chapter
11	for	more	information.

Appendix	F:	Process	Diagrams
Figure	F-1:	Test	Process	and	Documentation	Relationship

Figure	F-2:	STEP	Process	Flow,	Timing,	and	Lifecycle	Relationship

Team-Fly 	

Team-Fly

	

List	of	Tables

Chapter	1:	An	Overview	of	the	Testing	Process
Table	1-1:	Definitions	of	Testing	Over	the	Years

Table	1-2:	Sample	Test	Cases	for	an	ATM

Table	1-3:	STEP	Activities	&	Their	Locations	in	This	Book

Table	1-4:	Roles	and	Responsibilities

Table	1-5:	Major	Differences	Between	STEP	and	Industry	Practice

Chapter	2:	Risk	Analysis
Table	2-1:	Likelihood	of	Failure	for	ATM	Features/Attributes

Table	2-2:	Impact	of	Failure	for	ATM	Features/Attributes

Table	2-3:	Summed	Priorities	for	ATM	Features/Attributes

Table	2-4:	Sorted	Priorities	for	ATM	Features/Attributes

Table	2-5:	"Cut	Line"	for	ATM	Features/Attributes

Table	2-6:	Mitigated	List	of	Priorities	for	ATM	Features/Attributes

Chapter	3:	Master	Test	Planning
Table	3-1:	Prioritized	List	of	ATM	Features/Attributes	with	"Cut	Line"

Table	3-2:	Comparison	of	Walkthroughs	versus	Inspections

Chapter	4:	Detailed	Test	Planning
Table	4-1:	Sample	Environmental	Variables

Table	4-2:	Tracing	Test	Cases	to	Requirements

Chapter	5:	Analysis	and	Design
Table	5-1:	Inventory	Tracking	Matrix

Table	5-2:	Inventory	Tracking	Matrix

Table	5-3:	Inventory	Tracking	Matrix

Table	5-4:	Inventory	Tracking	Matrix

Table	5-5:	Techniques	vs.	Levels	of	Test

Table	5-6:	Decision	Table

Table	5-7:	Test	Cases	for	Payroll	Tax	Table

Table	5-8:	L9(34)	Orthogonal	Array

Table	5-9:	L9(34)	Orthogonal	Array

Table	5-10:	Simple	Test	Case	Specifications

Chapter	6:	Test	Implementation
Table	6-1:	Example	Test	Environment	Attributes	at	Various	Levels

Table	6-2:	Data	Source	Characteristics

Table	6-3:	Requirements	for	ATM	Example

Table	6-4:	Simplified	Description	of	Test	Cases	for	ATM	Example

Table	6-5:	Traceability	of	Requirements	to	Test	Cases

Chapter	7:	Test	Execution
Table	7-1:	Responsibilities	for	Test	Execution

Table	7-2:	Sample	Test	Log

Table	7-3:	Subsections	Under	Incident	Description

Table	7-4:	Sample	Test	Status	Report

Table	7-5:	Bug	Budget	Example

Table	7-6:	Scale	for	Defect	Age	on	Project	X

Table	7-7:	Defect	Creation	versus	Discovery	on	Project	X

Table	7-8:	Number	of	Defects	Weighted	by	Defect	Age	on	Project	X

Table	7-9:	Requirements	and	Design	Coverage

Table	7-10:	Code	Coverage

Chapter	8:	The	Test	Organization
Table	8-1:	Pros	and	Cons	of	Various	Test	Organizations

Chapter	9:	The	Software	Tester
Table	9-1:	Comparison	of	Software	Quality	and	Test	Certifications	(Reprinted	with
permission	from	Certification:	A	Win-Win	Investment	for	Employees	and	Employers	by
Darin	Kalashian	and	Eric	Patel)

Chapter	10:	The	Test	Manager
Table	10-1:	Testing	Positions	at	XYZ	Company

Table	10-2:	Metrics	Worksheet

Table	10-3:	Example	Metrics

Table	10-4:	Metrics	Used	by	the	"Best"	Projects

Chapter	11:	Improving	the	Testing	Process
Table	11-1:	ISO	Certification	Process	Checklists

Table	11-2:	Blank	TPI	Assessment	(Reprinted	from	Test	Process	Improvement	by	Martin
Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Table	11-3:	Example	TPI	Assessment	(Reprinted	from	Test	Process	Improvement	by
Martin	Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Table	11-4:	Overview	of	Dependencies	(Reprinted	from	Test	Process	Improvement	by
Martin	Pol	and	Tim	Koomen	with	permission	of	IQUIP)

Appendix	B:	Testing	Survey
Table	B-1:	Management	and	Measures

Table	B-2:	Evaluation	Process

Table	B-3:	Testing	Process	and	Activities

Table	B-4:	Test	and	Evaluation	Tools

Table	B-5:	Trends	and	Perspectives

Team-Fly 	

Team-Fly

List	of	Case	Studies

Preface
Case	Study:	Not	all	testers	need	all	of	the	same	skills.

Chapter	1:	An	Overview	of	the	Testing	Process
Case	Study	1-1:	Different	testers	may	have	different	reasons	why	they	think	testing	is
difficult,	but	they	all	seem	to	agree	that	IT	IS	DIFFICULT!

Chapter	2:	Risk	Analysis
Case	Study	2-1:	Suppose	Jane	Doe	resigned	and	your	ambitious	schedule	suddenly
became	impossible.	What	would	you	do?

Case	Study	2-2:	Sample	Planning	Risk	and	Contingencies

Case	Study	2-3:	Sample	Planning	Risk	and	Contingencies

Chapter	3:	Master	Test	Planning
Case	Study	3-1:	If	the	Master	Test	Plan	was	so	great,	why	didn't	they	use	it?

Case	Study	3-2:	What	do	your	company's	templates	have	in	common	with	employee
morale?

Case	Study	3-3:	Does	your	company	really	test	every	feature?

Case	Study	3-4:	Example	of	the	Approach	Section	in	a	Master	Test	Plan

Case	Study	3-5:	Many	people	who	are	used	to	actually	doing	the	coding	and	testing	are
frustrated	by	the	process	of	sitting	around	trying	to	help	us	document	a	testing
methodology	-	they	feel	like	they	should	be	doing	"real"	work.

Case	Study	3-6:	Security	access	may	seem	trivial,	but	it's	really	an	important	part	of	the
test	environment.

Chapter	4:	Detailed	Test	Planning
Case	Study	4-1:	Are	the	users	really	"stupid"	or	is	the	user	interface	difficult	to
understand?

Case	Study	4-2:	Some	exit	criteria	may	be	standard	across	the	organization,	while	others
may	be	unique	to	each	project.

Case	Study	4-3:	Example	of	a	Test	Environment

Case	Study	4-4:	If	a	developer	fixes	a	bug	really	fast	and	creates	a	new	build,	did	the
bug	really	exist?

Case	Study	4-5:	How	does	your	organization	manage	changes	to	the	software	under
test?

Case	Study	4-6:	How	does	your	organization	define	developmental	tests?	What	are	your
exit	criteria?

Case	Study	4-7:	Most	developers	would	rather	just	fix	the	bugs	in	their	code	rather	than
reveal	them.

Chapter	5:	Analysis	and	Design
Case	Study	5-1:	These	creative	testers	used	ad	hoc	testing	techniques	to	help	evaluate
their	systematic	testing	process.

Case	Study	5-2:	State-transition	diagrams	are	used	in	airline	reservations	systems.

Case	Study	5-3:	How	can	Mary	Brown	always	find	the	bugs,	just	by	looking	at	the
system?

Case	Study	5-4:	A	Successful	Example	of	Unstructured	Testing

Chapter	6:	Test	Implementation
Case	Study	6-1:	People	in	an	Acceptance	Testing	Environment

Case	Study	6-2:	Hardware	in	an	Acceptance	Testing	Environment

Case	Study	6-3:	Cohabiting	Software	in	an	Acceptance	Testing	Environment

Case	Study	6-4:	Interfaces	in	an	Acceptance	Testing	Environment

Case	Study	6-5:	Data	in	an	Acceptance	Testing	Environment

Case	Study	6-6:	Strategy	in	an	Acceptance	Testing	Environment

Case	Study	6-7:	The	tool	will	do	all	of	the	work.	Or,	will	it?

Case	Study	6-8:	If	you	automate	a	bunch	of	garbage,	all	you	end	up	with	is	fast	trash.

Case	Study	6-10:	Some	organizations	enlist	developers	to	assist	in	the	automation	of
tests.

Case	Study	6-11:	What	do	software	bugs	and	fish	have	in	common?

Chapter	7:	Test	Execution
Case	Study	7-1:	On	September	9,	1945,	a	moth	trapped	between	relays	caused	a
problem	in	Harvard	University's	Mark	II	Aiken	Relay	Calculator.

Case	Study	7-2:	Example	Impact	Scale

Case	Study	7-3:	What	happens	when	there's	a	defect	in	the	testware?

Case	Study	7-4:	Example	Incident	Log	Entry

Case	Study	7-5:	In	the	world	of	software,	timing	can	be	everything.

Case	Study	7-6:	The	Science	of	Survey	Design

Case	Study	7-7:	Personal	Bias	in	Survey	Design

Chapter	8:	The	Test	Organization
Case	Study	8-1:	A	Few	Words	from	Petronius	Arbiter

Case	Study	8-2:	Not	all	workspaces	are	ideal.

Case	Study	8-3:	How	long	does	it	take	for	you	to	truly	immerse	yourself	in	your	work?

Case	Study	8-4:	Some	organizations	use	meeting	critique	forms	to	measure	the
effectiveness	of	their	meetings.

Chapter	9:	The	Software	Tester
Case	Study	9-1:	Not	all	testers	need	all	of	the	same	skills

Case	Study	9-2:	Survey	Results	from	a	Typical	Class	of	25	Students

Case	Study	9-3:	Certification	Can	Benefit	You	on	Many	Levels

Case	Study	9-4:	Certification	is	one	of	the	best	ways	to	complement	a	software
engineering	degree.

Chapter	10:	The	Test	Manager
Case	Study	10-1:	Choosing	the	correct	leadership	style	is	an	important	part	of	being	an
effective	leader.

Case	Study	10-2:	Will	distance	learning	ever	truly	replace	face-to-face	learning	in	a
classroom	setting?

Case	Study	10-3:	Showing	people	that	you	care	about	them	spurs	them	on	to	greater
productivity.

Chapter	11:	Improving	the	Testing	Process
Case	Study	11-1:	The	results	of	a	benchmark	study	depend	on	whom	you	ask.

Case	Study	11-2:	Sample	Vision	Statement	and	Goals

Case	Study	11-3:	Without	achieving	buy-in,	process	improvement	initiatives	are	usually
worthless.

Case	Study	11-4:	The	TPI	model	can	help	most	organizations	to	baseline	their	processes
and	determine	targets	for	continuous	improvement.

Team-Fly

	Table of Contents
	BackCover
	Systematic Software Testing
	Foreword
	Preface
	Who Should Read This Book?
	Who Are the Authors?

	Chapter 1: An Overview of the Testing Process
	A Brief History of Testing
	STEP Methodology

	Chapter 2: Risk Analysis
	What Is Risk?
	Software Risk Analysis
	Planning Risks and Contingencies

	Chapter 3: Master Test Planning
	Levels (Stages) of Test Planning
	Audience Analysis
	Activity Timing
	Standard Templates
	Sections of a Test Plan

	Chapter 4: Detailed Test Planning
	Acceptance Testing
	System Testing
	Integration Testing
	Unit Testing

	Chapter 5: Analysis and Design
	Creating Inventories
	Black-Box vs. White-Box
	Black-Box Science
	Black-Box Art
	White-Box Science
	Test Design Documentation

	Chapter 6: Test Implementation
	Test Environment
	Model Office Concept
	What Should Be Automated?
	Avoiding Testing Tool Traps

	Chapter 7: Test Execution
	Before Beginning Test Execution
	Test Log
	Test Incident Reports
	Testing Status and Results
	When Are We Done Testing?
	Measuring Test Effectiveness

	Chapter 8: The Test Organization
	Test Organizations
	Office Environment

	Chapter 9: The Software Tester
	Finding Good Testers
	Hiring Testers
	How Many Testers Do You Need?
	Retaining Staff
	Software Tester Certifications
	Value of Certification to Test Managers

	Chapter 10: The Test Manager
	Management vs. Leadership
	Marine Corps Principles of Leadership
	The Test Manager As a Leader
	The Test Manager's Role in the Team
	The Test Manager's Role in Training
	Metrics Primer for Test Managers

	Chapter 11: Improving the Testing Process
	Improving the Testing Process
	ISO Certification
	Capability Maturity Model (CMM)
	Test Process Improvement (TPI) Model
	Continuous Improvement

	Chapter 12: Some Final Thoughts…
	Use Preventive Testing Techniques
	Conduct Software Risk Analysis
	Determine Planning Risks
	Develop a Testing Strategy
	Use Inventories
	Use Testing Tools When Appropriate
	Analyze Defect Trends and Patterns
	Measure Test Effectiveness
	Conduct Training Continually
	Sell the Idea of Testing

	Appendix A: Glossary of Terms
	Appendix B: Testing Survey
	Test and Evaluation Practices Survey

	Appendix C: IEEE Templates
	Appendix D: Sample Master Test Plan
	Appendix E: Simplified Unit Test Plan
	Appendix F: Process Diagrams
	Appendix G: Bibliography
	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_Y

	List of Figures
	List of Tables
	List of Case Studies

